Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --rewriting #-} open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} postulate A : Set f g : A → A f≡g : ∀ a → f a ≡ g a {-# REWRITE f≡g #-} -- Adding the same rule again would make Agda loop postulate f≡g' : ∀ a → f a ≡ g a {-# REWRITE f≡g' #-} goal : ∀ {a} → f a ≡ g a goal = refl
{ "alphanum_fraction": 0.5431309904, "avg_line_length": 14.9047619048, "ext": "agda", "hexsha": "4cc2417efafb90161b1bcba26ca7847f29a4c566", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/RewriteLhsReduction.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/RewriteLhsReduction.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/RewriteLhsReduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 122, "size": 313 }
module Oscar.Class where open import Oscar.Data.Equality open import Oscar.Function open import Oscar.Relation open import Oscar.Level open import Oscar.Function open import Oscar.Relation -- instance EquivalenceProp : ∀ {a} {A : Set a} → Equivalence (_≡_ {a} {A}) -- EquivalenceProp = {!!} -- instance EquivalenceProp1 : ∀ {a} {A : Set a} {b} {B : A → Set b} → Equivalence (_≡̇_ {a} {A} {b} {B}) -- Equivalence.reflexivity EquivalenceProp1 x x₁ = refl -- import Oscar.Data.Term.internal.SubstituteAndSubstitution FunctionName as ⋆ -- instance SemigroupFinTerm : Semigroup _⊸_ _≡̇_ -- Semigroup.equivalence SemigroupFinTerm = it -- Semigroup._◇_ SemigroupFinTerm = ⋆._◇_ -- (Semifunctor._◃ SemifunctorFinTerm g) ∘ f -- -- Semigroup.◇-associativity SemigroupFinTerm = {!!} -- instance Semigroup⋆ : ∀ {a} {A : Set a} {x} {X : A → Set x} → Semigroup (_⟨ X ⟩→_) _≡̇_ -- Semigroup.equivalence Semigroup⋆ = it -- Semigroup._◇_ Semigroup⋆ g f = g ∘ f -- Semigroup.◇-associativity Semigroup⋆ = {!!} -- instance SemifunctorFinTerm : Semifunctor _⊸_ _≡̇_ (_⟨ Term ⟩→_) _≡̇_ id -- Semifunctor.domain SemifunctorFinTerm = it -- Semifunctor.codomain SemifunctorFinTerm = it -- SemifunctorFinTerm Semifunctor.◃ = ⋆._◃_ -- Semifunctor.◃-extensionality SemifunctorFinTerm = ⋆.◃-extensionality -- Semifunctor.◃-associativity SemifunctorFinTerm = ⋆.◃-associativity -- -- sufficient for all my substitutions (Term, Formula, etc.) -- _◂_ : ∀ {m n a} {A : Nat → Set a} ⦃ _ : Semifunctor _⊸_ _≡̇_ (_⟨ A ⟩→_) _≡̇_ id ⦄ → m ⊸ n → m ⟨ A ⟩→ n -- _◂_ ⦃ semifunctor ⦄ f x = Semifunctor._◃ semifunctor f x -- -- even more general, handling all pointwise (semi)functors -- _◂'_ : ∀ {a} {A : Set a} {m n : A} {b} {B : A → Set b} {c} {C : A → Set c} {d} {D : A → Set d} -- ⦃ _ : Semifunctor (λ m n → B m → C n) _≡̇_ _⟨ D ⟩→_ _≡̇_ id ⦄ → (B m → C n) → m ⟨ D ⟩→ n -- _◂'_ ⦃ semifunctor ⦄ f x = Semifunctor._◃ semifunctor f x -- record UsableSemifunctor {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) {d} (D : A → Set d) : Set (a ⊔ b ⊔ c ⊔ d) where -- field -- ⦃ semifunctor ⦄ : Semifunctor (λ m n → B m → C n) _≡̇_ _⟨ D ⟩→_ _≡̇_ id -- _◄_ : ∀ {m n} → (B m → C n) → m ⟨ D ⟩→ n -- _◄_ f x = Semifunctor._◃ semifunctor f x -- open UsableSemifunctor ⦃ … ⦄ -- instance UsableSemifunctor⋆ : ∀ {a} {A : Set a} {b} {B : A → Set b} {c} {C : A → Set c} {d} {D : A → Set d} -- -- { _≋₁_ : ∀ {m n} → (B m → C n) → (B m → C n) → Set (b ⊔ c) } -- -- ⦃ _ : ∀ {m n} → Equivalence (_≋₁_ {m} {n}) ⦄ -- -- ⦃ _ : Semifunctor (λ m n → B m → C n) _≋₁_ _⟨ D ⟩→_ _≡̇_ id ⦄ → UsableSemifunctor B C D -- ⦃ _ : Semifunctor (λ m n → B m → C n) _≡̇_ _⟨ D ⟩→_ _≡̇_ id ⦄ -- → UsableSemifunctor B C D -- UsableSemifunctor.semifunctor (UsableSemifunctor⋆ ⦃ semi ⦄) = semi -- {- -- instance UsableSemifunctorFinTermTerm : UsableSemifunctor Fin Term Term -- UsableSemifunctor.semifunctor UsableSemifunctorFinTermTerm = it -- -} -- -- obviously won't work unless we supply _≋₁_ -- _◂''_ : ∀ {a} {A : Set a} {m n : A} {b} {B : A → Set b} {c} {C : A → Set c} {d} {D : A → Set d} -- ( _≋₁_ : ∀ {m n} → (B m → C n) → (B m → C n) → Set (b ⊔ c) ) -- ⦃ _ : ∀ {m n} → Equivalence (_≋₁_ {m} {n}) ⦄ -- ⦃ _ : Semifunctor (λ m n → B m → C n) _≋₁_ _⟨ D ⟩→_ _≡̇_ id ⦄ → (B m → C n) → m ⟨ D ⟩→ n -- _◂''_ _ ⦃ _ ⦄ ⦃ semifunctor ⦄ f x = Semifunctor._◃ semifunctor f x -- foo : ∀ {m n} → m ⊸ n → Term m → Term n -- foo {m} {n} f x = f ◄ x -- --foo f x = f ◂ x -- --foo f x = _◂''_ _≡̇_ f x -- -- record Ṁonoid {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- -- field -- -- ε̇ : ∀ {m} → B m → C m -- -- _◇̇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n -- -- ◇̇-left-identity : ∀ {m n} → (f : B m → C n) → ε̇ ◇̇ f ≡̇ f -- -- ◇̇-right-identity : ∀ {m n} → (f : B m → C n) → f ◇̇ ε̇ ≡̇ f -- -- ◇̇-associativity : ∀ {k l m n} (f : B k → C l) (g : B l → C m) (h : B m → C n) → h ◇̇ (g ◇̇ f) ≡̇ (h ◇̇ g) ◇̇ f -- -- record Monoid {a} {A : Set a} {b} (_↠_ : A → A → Set b) : Set (a ⊔ b) where -- -- field -- -- ε : ∀ {m} → m ↠ m -- -- _◇_ : ∀ {l m n} → m ↠ n → l ↠ m → l ↠ n -- -- ◇-left-identity : ∀ {m n} → (f : m ↠ n) → ε ◇ f ≡ f -- -- ◇-right-identity : ∀ {m n} → (f : m ↠ n) → f ◇ ε ≡ f -- -- ◇-associativity : ∀ {k l m n} (f : k ↠ l) (g : l ↠ m) (h : m ↠ n) → h ◇ (g ◇ f) ≡ (h ◇ g) ◇ f -- -- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- -- field -- -- ε : ∀ {m} → B m → C m -- -- _◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n -- -- ◇-left-identity : ∀ {m n} → (f : B m → C n) → ε ◇ f ≡̇ f -- -- ◇-right-identity : ∀ {m n} → (f : B m → C n) → f ◇ ε ≡̇ f -- -- ◇-associativity : ∀ {k l m n} (f : B k → C l) (g : B l → C m) (h : B m → C n) → h ◇ (g ◇ f) ≡̇ (h ◇ g) ◇ f -- -- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- -- field -- -- ε : ∀ {m} → B m → C m -- -- _◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n -- -- ◇-left-identity : ∀ {m n} → (f : B m → C n) → ε ◇ f ≡̇ f -- -- ◇-right-identity : ∀ {m n} → (f : B m → C n) → f ◇ ε ≡̇ f -- -- ◇-associativity : ∀ {k l m n} (f : B k → C l) (g : B l → C m) (h : B m → C n) → h ◇ (g ◇ f) ≡̇ (h ◇ g) ◇ f -- -- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- -- field -- -- ε : ∀ {m} → B m → C m -- -- _◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n -- -- ◇-left-identity : ∀ {m n} → (f : B m → C n) → ε ◇ f ≡̇ f -- -- ◇-right-identity : ∀ {m n} → (f : B m → C n) → f ◇ ε ≡̇ f -- -- ◇-associativity : ∀ {k l m n} (f : B k → C l) (g : B l → C m) (h : B m → C n) → h ◇ (g ◇ f) ≡̇ (h ◇ g) ◇ f
{ "alphanum_fraction": 0.4647484435, "avg_line_length": 49.525, "ext": "agda", "hexsha": "45cb6081a5cccb3b22e57daa01eb3b14474a07ed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2833, "size": 5943 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRingSolver.HornerEval where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int hiding (_+_ ; _·_ ; -_) open import Cubical.Data.Vec open import Cubical.Data.Bool open import Cubical.Relation.Nullary.Base using (¬_; yes; no) open import Cubical.Algebra.CommRingSolver.Utility open import Cubical.Algebra.CommRingSolver.RawAlgebra open import Cubical.Algebra.CommRingSolver.IntAsRawRing open import Cubical.Algebra.CommRingSolver.HornerForms open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ ℓ' : Level eval : {A : RawAlgebra ℤAsRawRing ℓ'} {n : ℕ} (P : IteratedHornerForms A n) → Vec ⟨ A ⟩ n → ⟨ A ⟩ eval {A = A} (const r) [] = RawAlgebra.scalar A r eval {A = A} 0H (_ ∷ _) = RawAlgebra.0r A eval {A = A} (P ·X+ Q) (x ∷ xs) = let open RawAlgebra A P' = (eval P (x ∷ xs)) Q' = eval Q xs in if (isZero A P) then Q' else P' · x + Q' module _ (R : CommRing ℓ) where private νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) open RingTheory (CommRing→Ring R) open IteratedHornerOperations νR someCalculation : {x : fst R} → _ ≡ _ someCalculation {x = x} = 0r ≡⟨ sym (+IdR 0r) ⟩ 0r + 0r ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + 0r ⟩ 0r · x + 0r ∎ evalIsZero : {n : ℕ} (P : IteratedHornerForms νR n) → (l : Vec (fst R) n) → isZero νR P ≡ true → eval P l ≡ 0r evalIsZero (const (pos ℕ.zero)) [] isZeroP = refl evalIsZero (const (pos (ℕ.suc n))) [] isZeroP = byBoolAbsurdity isZeroP evalIsZero (const (negsuc _)) [] isZeroP = byBoolAbsurdity isZeroP evalIsZero 0H (x ∷ xs) _ = refl evalIsZero {n = ℕ.suc n} (P ·X+ Q) (x ∷ xs) isZeroPandQ with isZero νR P ... | true = eval Q xs ≡⟨ evalIsZero Q xs isZeroQ ⟩ 0r ∎ where isZeroQ = snd (extractFromAnd _ _ isZeroPandQ) ... | false = byBoolAbsurdity isZeroP where isZeroP = fst (extractFromAnd _ _ isZeroPandQ) computeEvalSummandIsZero : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) → (xs : Vec (fst R) n) → (x : (fst R)) → isZero νR P ≡ true → eval (P ·X+ Q) (x ∷ xs) ≡ eval Q xs computeEvalSummandIsZero P Q xs x isZeroP with isZero νR P ... | true = refl ... | false = byBoolAbsurdity isZeroP computeEvalNotZero : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) → (xs : Vec (fst R) n) → (x : (fst R)) → ¬ (isZero νR P ≡ true) → eval (P ·X+ Q) (x ∷ xs) ≡ (eval P (x ∷ xs)) · x + eval Q xs computeEvalNotZero P Q xs x notZeroP with isZero νR P ... | true = byBoolAbsurdity (sym (¬true→false true notZeroP)) ... | false = refl combineCasesEval : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec (fst R) n) → eval (P ·X+ Q) (x ∷ xs) ≡ (eval P (x ∷ xs)) · x + eval Q xs combineCasesEval P Q x xs with isZero νR P ≟ true ... | yes p = eval (P ·X+ Q) (x ∷ xs) ≡⟨ computeEvalSummandIsZero P Q xs x p ⟩ eval Q xs ≡⟨ sym (+IdL _) ⟩ 0r + eval Q xs ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + eval Q xs ⟩ 0r · x + eval Q xs ≡[ i ]⟨ (evalIsZero P (x ∷ xs) p (~ i)) · x + eval Q xs ⟩ (eval P (x ∷ xs)) · x + eval Q xs ∎ ... | no p = computeEvalNotZero P Q xs x p compute+ₕEvalBothZero : (n : ℕ) (P Q : IteratedHornerForms νR (ℕ.suc n)) (r s : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec (fst R) n) → (isZero νR (P +ₕ Q) and isZero νR (r +ₕ s)) ≡ true → eval ((P ·X+ r) +ₕ (Q ·X+ s)) (x ∷ xs) ≡ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) compute+ₕEvalBothZero n P Q r s x xs bothZero with isZero νR (P +ₕ Q) and isZero νR (r +ₕ s) | bothZero ... | true | p = eval {A = νR} 0H (x ∷ xs) ≡⟨ refl ⟩ 0r ≡⟨ someCalculation ⟩ 0r · x + 0r ≡⟨ step1 ⟩ (eval (P +ₕ Q) (x ∷ xs)) · x + eval (r +ₕ s) xs ≡⟨ step2 ⟩ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) ∎ where step1 : 0r · x + 0r ≡ (eval (P +ₕ Q) (x ∷ xs)) · x + eval (r +ₕ s) xs step1 i = (evalIsZero (P +ₕ Q) (x ∷ xs) (fst (extractFromAnd _ _ (bothZero))) (~ i)) · x + (evalIsZero (r +ₕ s) xs (snd (extractFromAnd _ _ (bothZero))) (~ i)) step2 = sym (combineCasesEval (P +ₕ Q) (r +ₕ s) x xs) ... | false | p = byBoolAbsurdity p compute+ₕEvalNotBothZero : (n : ℕ) (P Q : IteratedHornerForms νR (ℕ.suc n)) (r s : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec (fst R) n) → (isZero νR (P +ₕ Q) and isZero νR (r +ₕ s)) ≡ false → eval ((P ·X+ r) +ₕ (Q ·X+ s)) (x ∷ xs) ≡ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) compute+ₕEvalNotBothZero n P Q r s _ _ notBothZero with isZero νR (P +ₕ Q) and isZero νR (r +ₕ s) | notBothZero ... | true | p = byBoolAbsurdity (sym p) ... | false | p = refl
{ "alphanum_fraction": 0.5213060321, "avg_line_length": 40.4552238806, "ext": "agda", "hexsha": "a3cf5ef335db49f459b358b6171b3cbcd2ad1cb8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRingSolver/HornerEval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRingSolver/HornerEval.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRingSolver/HornerEval.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2034, "size": 5421 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the `Reflects` construct ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Reflects where open import Agda.Builtin.Equality open import Data.Bool.Base open import Data.Empty open import Level open import Relation.Nullary private variable p : Level P : Set p ------------------------------------------------------------------------ -- `Reflects P b` is equivalent to `if b then P else ¬ P`. -- These lemmas are intended to be used mostly when `b` is a value, so -- that the `if` expressions have already been evaluated away. -- In this case, `of` works like the relevant constructor (`ofⁿ` or -- `ofʸ`), and `invert` strips off the constructor to just give either -- the proof of `P` or the proof of `¬ P`. of : ∀ {b} → if b then P else ¬ P → Reflects P b of {b = false} ¬p = ofⁿ ¬p of {b = true } p = ofʸ p invert : ∀ {b} → Reflects P b → if b then P else ¬ P invert (ofʸ p) = p invert (ofⁿ ¬p) = ¬p ------------------------------------------------------------------------ -- Other lemmas -- `Reflects` is deterministic. det : ∀ {b b′} → Reflects P b → Reflects P b′ → b ≡ b′ det (ofʸ p) (ofʸ p′) = refl det (ofʸ p) (ofⁿ ¬p′) = ⊥-elim (¬p′ p) det (ofⁿ ¬p) (ofʸ p′) = ⊥-elim (¬p p′) det (ofⁿ ¬p) (ofⁿ ¬p′) = refl
{ "alphanum_fraction": 0.5062413315, "avg_line_length": 30.0416666667, "ext": "agda", "hexsha": "6a5f73f61d99ea1b1a890651b14c61aa082c5861", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Nullary/Reflects.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Nullary/Reflects.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Nullary/Reflects.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 419, "size": 1442 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing where open import Cubical.Algebra.CommRing.Base public open import Cubical.Algebra.CommRing.Properties public
{ "alphanum_fraction": 0.8072289157, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "0f159f20ac6802ccffd9aacec91a58d186b7e9a5", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing.agda", "max_line_length": 54, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 36, "size": 166 }
{-# OPTIONS --without-K #-} module Pim2Cat where open import Level using (zero) open import Data.Product using (_,_; _×_; proj₁; proj₂) import Relation.Binary.PropositionalEquality as P using (_≡_; refl; isEquivalence) open import Categories.Category using (Category) open import Categories.Groupoid using (Groupoid) open import Categories.Monoidal using (Monoidal) open import Categories.Monoidal.Helpers using (module MonoidalHelperFunctors) open import Categories.Bifunctor using (Bifunctor) open import Categories.NaturalIsomorphism using (NaturalIsomorphism) open import Categories.Monoidal.Braided using (Braided) open import Categories.Monoidal.Symmetric using (Symmetric) open import Categories.RigCategory using (RigCategory; module BimonoidalHelperFunctors) open import PiU using (U; PLUS; ZERO; TIMES; ONE) open import PiLevelm2 using (_⟷_; collapse) -- We will define a rig category whose objects are Pi types and whose -- morphisms are the trivial equivalence that identifies all Pi types; -- and where the equivalence of morphisms is propositional equality ≡ ------------------------------------------------------------------------------ -- First it is a category triv : {A B : U} → (f : A ⟷ B) → (collapse P.≡ f) triv collapse = P.refl Pim2Cat : Category zero zero zero Pim2Cat = record { Obj = U ; _⇒_ = _⟷_ ; _≡_ = P._≡_ ; id = collapse ; _∘_ = λ _ _ → collapse ; assoc = P.refl ; identityˡ = λ {A} {B} {f} → triv f ; identityʳ = λ {A} {B} {f} → triv f ; equiv = P.isEquivalence ; ∘-resp-≡ = λ _ _ → P.refl } -- and a groupoid Pim2Groupoid : Groupoid Pim2Cat Pim2Groupoid = record { _⁻¹ = λ _ → collapse ; iso = record { isoˡ = P.refl; isoʳ = P.refl } } -- The additive structure is monoidal PLUS-bifunctor : Bifunctor Pim2Cat Pim2Cat Pim2Cat PLUS-bifunctor = record { F₀ = λ {( x , y) → PLUS x y} ; F₁ = λ {(x , y) → collapse} ; identity = P.refl ; homomorphism = P.refl ; F-resp-≡ = λ { (e₁ , e₂) → P.refl } } module PLUSh = MonoidalHelperFunctors Pim2Cat PLUS-bifunctor ZERO 0PLUSx≡x : NaturalIsomorphism PLUSh.id⊗x PLUSh.x 0PLUSx≡x = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } xPLUS0≡x : NaturalIsomorphism PLUSh.x⊗id PLUSh.x xPLUS0≡x = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } [xPLUSy]PLUSz≡xPLUS[yPLUSz] : NaturalIsomorphism PLUSh.[x⊗y]⊗z PLUSh.x⊗[y⊗z] [xPLUSy]PLUSz≡xPLUS[yPLUSz] = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } CPMPLUS : Monoidal Pim2Cat CPMPLUS = record { ⊗ = PLUS-bifunctor ; id = ZERO ; identityˡ = 0PLUSx≡x ; identityʳ = xPLUS0≡x ; assoc = [xPLUSy]PLUSz≡xPLUS[yPLUSz] ; triangle = P.refl ; pentagon = P.refl } -- The multiplicative structure is also monoidal TIMES-bifunctor : Bifunctor Pim2Cat Pim2Cat Pim2Cat TIMES-bifunctor = record { F₀ = λ {( x , y) → TIMES x y} ; F₁ = λ {(x , y) → collapse } ; identity = P.refl ; homomorphism = P.refl ; F-resp-≡ = λ { (e₁ , e₂) → P.refl} } module TIMESh = MonoidalHelperFunctors Pim2Cat TIMES-bifunctor ONE 1TIMESy≡y : NaturalIsomorphism TIMESh.id⊗x TIMESh.x 1TIMESy≡y = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } yTIMES1≡y : NaturalIsomorphism TIMESh.x⊗id TIMESh.x yTIMES1≡y = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } [xTIMESy]TIMESz≡xTIMES[yTIMESz] : NaturalIsomorphism TIMESh.[x⊗y]⊗z TIMESh.x⊗[y⊗z] [xTIMESy]TIMESz≡xTIMES[yTIMESz] = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } CPMTIMES : Monoidal Pim2Cat CPMTIMES = record { ⊗ = TIMES-bifunctor ; id = ONE ; identityˡ = 1TIMESy≡y ; identityʳ = yTIMES1≡y ; assoc = [xTIMESy]TIMESz≡xTIMES[yTIMESz] ; triangle = P.refl ; pentagon = P.refl } -- The monoidal structures are symmetric xPLUSy≈yPLUSx : NaturalIsomorphism PLUSh.x⊗y PLUSh.y⊗x xPLUSy≈yPLUSx = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } BMPLUS : Braided CPMPLUS BMPLUS = record { braid = xPLUSy≈yPLUSx ; unit-coh = P.refl ; hexagon₁ = P.refl ; hexagon₂ = P.refl } xTIMESy≈yTIMESx : NaturalIsomorphism TIMESh.x⊗y TIMESh.y⊗x xTIMESy≈yTIMESx = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } BMTIMES : Braided CPMTIMES BMTIMES = record { braid = xTIMESy≈yTIMESx ; unit-coh = P.refl ; hexagon₁ = P.refl ; hexagon₂ = P.refl } SBMPLUS : Symmetric BMPLUS SBMPLUS = record { symmetry = P.refl } SBMTIMES : Symmetric BMTIMES SBMTIMES = record { symmetry = P.refl } -- And finally the multiplicative structure distributes over the -- additive one module r = BimonoidalHelperFunctors BMPLUS BMTIMES x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] : NaturalIsomorphism r.x⊗[y⊕z] r.[x⊗y]⊕[x⊗z] x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } [x⊕y]⊗z≡[x⊗z]⊕[y⊗z] : NaturalIsomorphism r.[x⊕y]⊗z r.[x⊗z]⊕[y⊗z] [x⊕y]⊗z≡[x⊗z]⊕[y⊗z] = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } x⊗0≡0 : NaturalIsomorphism r.x⊗0 r.0↑ x⊗0≡0 = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } 0⊗x≡0 : NaturalIsomorphism r.0⊗x r.0↑ 0⊗x≡0 = record { F⇒G = record { η = λ X → collapse ; commute = λ f → P.refl } ; F⇐G = record { η = λ X → collapse ; commute = λ f → P.refl } ; iso = λ X → record { isoˡ = P.refl ; isoʳ = P.refl } } TERig : RigCategory SBMPLUS SBMTIMES TERig = record { distribₗ = x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] ; distribᵣ = [x⊕y]⊗z≡[x⊗z]⊕[y⊗z] ; annₗ = 0⊗x≡0 ; annᵣ = x⊗0≡0 ; laplazaI = P.refl ; laplazaII = P.refl ; laplazaIV = P.refl ; laplazaVI = P.refl ; laplazaIX = P.refl ; laplazaX = P.refl ; laplazaXI = P.refl ; laplazaXIII = P.refl ; laplazaXV = P.refl ; laplazaXVI = P.refl ; laplazaXVII = P.refl ; laplazaXIX = P.refl ; laplazaXXIII = P.refl } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5716127369, "avg_line_length": 22.484057971, "ext": "agda", "hexsha": "90235e63f6abadb8c7f1d92b1ac65d21359d88c6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Pim2Cat.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Pim2Cat.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Pim2Cat.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3269, "size": 7757 }
{-# OPTIONS --cubical #-} module _ where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path data ⊤ : Set where tt : ⊤ data S : Set where base : S loop : base ≡ base postulate P' : base ≡ base → Set pl : P' loop foo : P' loop foo with tt ... | w = pl
{ "alphanum_fraction": 0.6271777003, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "c45ba59cb0c9dd613fbe4616d64f8f12600da83c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4214.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4214.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4214.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 287 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Sum where open import Cubical.Data.Sum.Base public open import Cubical.Data.Sum.Properties public
{ "alphanum_fraction": 0.7647058824, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "e72ec4260f0026db29c5443d71c5e8e89b4007c9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Sum.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Sum.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Sum.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 39, "size": 170 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some code related to transitive closures that relies on the K rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Relation.Binary.Construct.Closure.Transitive.WithK where open import Function open import Relation.Binary open import Relation.Binary.Construct.Closure.Transitive open import Relation.Binary.PropositionalEquality using (_≡_; refl) module _ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} where ∼⁺⟨⟩-injectiveˡ : ∀ {x y z} {p r : x [ _∼_ ]⁺ y} {q s} → (x [ _∼_ ]⁺ z ∋ x ∼⁺⟨ p ⟩ q) ≡ (x ∼⁺⟨ r ⟩ s) → p ≡ r ∼⁺⟨⟩-injectiveˡ refl = refl ∼⁺⟨⟩-injectiveʳ : ∀ {x y z} {p r : x [ _∼_ ]⁺ y} {q s} → (x [ _∼_ ]⁺ z ∋ x ∼⁺⟨ p ⟩ q) ≡ (x ∼⁺⟨ r ⟩ s) → q ≡ s ∼⁺⟨⟩-injectiveʳ refl = refl
{ "alphanum_fraction": 0.4769921437, "avg_line_length": 35.64, "ext": "agda", "hexsha": "1eff43bbca0eee3788012cd069780f446157379a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive/WithK.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 314, "size": 891 }
-- Intuitionistic propositional calculus. -- Hilbert-style formalisation of syntax. -- Nested terms. module IPC.Syntax.Hilbert where open import IPC.Syntax.Common public -- Derivations. infix 3 _⊢_ data _⊢_ (Γ : Cx Ty) : Ty → Set where var : ∀ {A} → A ∈ Γ → Γ ⊢ A app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B ci : ∀ {A} → Γ ⊢ A ▻ A ck : ∀ {A B} → Γ ⊢ A ▻ B ▻ A cs : ∀ {A B C} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cpair : ∀ {A B} → Γ ⊢ A ▻ B ▻ A ∧ B cfst : ∀ {A B} → Γ ⊢ A ∧ B ▻ A csnd : ∀ {A B} → Γ ⊢ A ∧ B ▻ B unit : Γ ⊢ ⊤ cboom : ∀ {C} → Γ ⊢ ⊥ ▻ C cinl : ∀ {A B} → Γ ⊢ A ▻ A ∨ B cinr : ∀ {A B} → Γ ⊢ B ▻ A ∨ B ccase : ∀ {A B C} → Γ ⊢ A ∨ B ▻ (A ▻ C) ▻ (B ▻ C) ▻ C infix 3 _⊢⋆_ _⊢⋆_ : Cx Ty → Cx Ty → Set Γ ⊢⋆ ∅ = 𝟙 Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A -- Monotonicity with respect to context inclusion. mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η ci = ci mono⊢ η ck = ck mono⊢ η cs = cs mono⊢ η cpair = cpair mono⊢ η cfst = cfst mono⊢ η csnd = csnd mono⊢ η unit = unit mono⊢ η cboom = cboom mono⊢ η cinl = cinl mono⊢ η cinr = cinr mono⊢ η ccase = ccase mono⊢⋆ : ∀ {Γ″ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Γ″ → Γ′ ⊢⋆ Γ″ mono⊢⋆ {∅} η ∙ = ∙ mono⊢⋆ {Γ″ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Shorthand for variables. v₀ : ∀ {A Γ} → Γ , A ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ} → Γ , A , B ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ} → Γ , A , B , C ⊢ A v₂ = var i₂ -- Reflexivity. refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Deduction theorem. lam : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ▻ B lam (var top) = ci lam (var (pop i)) = app ck (var i) lam (app t u) = app (app cs (lam t)) (lam u) lam ci = app ck ci lam ck = app ck ck lam cs = app ck cs lam cpair = app ck cpair lam cfst = app ck cfst lam csnd = app ck csnd lam unit = app ck unit lam cboom = app ck cboom lam cinl = app ck cinl lam cinr = app ck cinr lam ccase = app ck ccase lam⋆ : ∀ {Ξ Γ A} → Γ ⧺ Ξ ⊢ A → Γ ⊢ Ξ ▻⋯▻ A lam⋆ {∅} = I lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam lam⋆₀ : ∀ {Γ A} → Γ ⊢ A → ∅ ⊢ Γ ▻⋯▻ A lam⋆₀ {∅} = I lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam -- Detachment theorem. det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B det t = app (mono⊢ weak⊆ t) v₀ det⋆ : ∀ {Ξ Γ A} → Γ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⊢ A det⋆ {∅} = I det⋆ {Ξ , B} = det ∘ det⋆ {Ξ} det⋆₀ : ∀ {Γ A} → ∅ ⊢ Γ ▻⋯▻ A → Γ ⊢ A det⋆₀ {∅} = I det⋆₀ {Γ , B} = det ∘ det⋆₀ -- Cut and multicut. cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut t u = app (lam u) t multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A multicut {∅} ∙ u = mono⊢ bot⊆ u multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t -- Transitivity. trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″ trans⊢⋆ {∅} ts ∙ = ∙ trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u -- Contraction. ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B cont t = det (app ccont (lam (lam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C exch t = det (det (app cexch (lam (lam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) -- Useful theorems in functional form. pair : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B pair t u = app (app cpair t) u fst : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ A fst t = app cfst t snd : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ B snd t = app csnd t boom : ∀ {C Γ} → Γ ⊢ ⊥ → Γ ⊢ C boom t = app cboom t inl : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ A ∨ B inl t = app cinl t inr : ∀ {A B Γ} → Γ ⊢ B → Γ ⊢ A ∨ B inr t = app cinr t case : ∀ {A B C Γ} → Γ ⊢ A ∨ B → Γ , A ⊢ C → Γ , B ⊢ C → Γ ⊢ C case t u v = app (app (app ccase t) (lam u)) (lam v) -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) -- Convertibility. data _⋙_ {Γ : Cx Ty} : ∀ {A} → Γ ⊢ A → Γ ⊢ A → Set where refl⋙ : ∀ {A} → {t : Γ ⊢ A} → t ⋙ t trans⋙ : ∀ {A} → {t t′ t″ : Γ ⊢ A} → t ⋙ t′ → t′ ⋙ t″ → t ⋙ t″ sym⋙ : ∀ {A} → {t t′ : Γ ⊢ A} → t ⋙ t′ → t′ ⋙ t congapp⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ▻ B} → {u u′ : Γ ⊢ A} → t ⋙ t′ → u ⋙ u′ → app t u ⋙ app t′ u′ congi⋙ : ∀ {A} → {t t′ : Γ ⊢ A} → t ⋙ t′ → app ci t ⋙ app ci t′ congk⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B} → t ⋙ t′ → u ⋙ u′ → app (app ck t) u ⋙ app (app ck t′) u′ congs⋙ : ∀ {A B C} → {t t′ : Γ ⊢ A ▻ B ▻ C} → {u u′ : Γ ⊢ A ▻ B} → {v v′ : Γ ⊢ A} → t ⋙ t′ → u ⋙ u′ → v ⋙ v′ → app (app (app cs t) u) v ⋙ app (app (app cs t′) u′) v′ congpair⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B} → t ⋙ t′ → u ⋙ u′ → app (app cpair t) u ⋙ app (app cpair t′) u′ congfst⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B} → t ⋙ t′ → app cfst t ⋙ app cfst t′ congsnd⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B} → t ⋙ t′ → app csnd t ⋙ app csnd t′ congboom⋙ : ∀ {C} → {t t′ : Γ ⊢ ⊥} → t ⋙ t′ → app (cboom {C = C}) t ⋙ app cboom t′ conginl⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → t ⋙ t′ → app (cinl {A = A} {B}) t ⋙ app cinl t′ conginr⋙ : ∀ {A B} → {t t′ : Γ ⊢ B} → t ⋙ t′ → app (cinr {A = A} {B}) t ⋙ app cinr t′ congcase⋙ : ∀ {A B C} → {t t′ : Γ ⊢ A ∨ B} → {u u′ : Γ ⊢ A ▻ C} → {v v′ : Γ ⊢ B ▻ C} → t ⋙ t′ → u ⋙ u′ → v ⋙ v′ → app (app (app ccase t) u) v ⋙ app (app (app ccase t′) u′) v′ -- TODO: Verify this. beta▻ₖ⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → app (app ck t) u ⋙ t -- TODO: Verify this. beta▻ₛ⋙ : ∀ {A B C} → {t : Γ ⊢ A ▻ B ▻ C} → {u : Γ ⊢ A ▻ B} → {v : Γ ⊢ A} → app (app (app cs t) u) v ⋙ app (app t v) (app u v) -- TODO: What about eta for ▻? beta∧₁⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → app cfst (app (app cpair t) u) ⋙ t beta∧₂⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → app csnd (app (app cpair t) u) ⋙ u eta∧⋙ : ∀ {A B} → {t : Γ ⊢ A ∧ B} → t ⋙ app (app cpair (app cfst t)) (app csnd t) eta⊤⋙ : ∀ {t : Γ ⊢ ⊤} → t ⋙ unit -- TODO: Verify this. beta∨₁⋙ : ∀ {A B C} → {t : Γ ⊢ A} → {u : Γ ⊢ A ▻ C} → {v : Γ ⊢ B ▻ C} → app (app (app ccase (app cinl t)) u) v ⋙ app u t -- TODO: Verify this. beta∨₂⋙ : ∀ {A B C} → {t : Γ ⊢ B} → {u : Γ ⊢ A ▻ C} → {v : Γ ⊢ B ▻ C} → app (app (app ccase (app cinr t)) u) v ⋙ app v t -- TODO: What about eta and commuting conversions for ∨? What about ⊥?
{ "alphanum_fraction": 0.3778424114, "avg_line_length": 27.2086330935, "ext": "agda", "hexsha": "e4b9e5d13db8e76eb1c1b1361d7464cb459b085a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Syntax/Hilbert.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Syntax/Hilbert.agda", "max_line_length": 87, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Syntax/Hilbert.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 3757, "size": 7564 }
{- Add axioms (i.e., propositions) to a structure S without changing the definition of structured equivalence. X ↦ Σ[ s ∈ S X ] (P X s) where (P X s) is a proposition for all X and s. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Axioms where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Foundations.SIP open import Cubical.Data.Sigma private variable ℓ ℓ₁ ℓ₁' ℓ₂ : Level AxiomsStructure : (S : Type ℓ → Type ℓ₁) (axioms : (X : Type ℓ) → S X → Type ℓ₂) → Type ℓ → Type (ℓ-max ℓ₁ ℓ₂) AxiomsStructure S axioms X = Σ[ s ∈ S X ] (axioms X s) AxiomsEquivStr : {S : Type ℓ → Type ℓ₁} (ι : StrEquiv S ℓ₁') (axioms : (X : Type ℓ) → S X → Type ℓ₂) → StrEquiv (AxiomsStructure S axioms) ℓ₁' AxiomsEquivStr ι axioms (X , (s , a)) (Y , (t , b)) e = ι (X , s) (Y , t) e axiomsUnivalentStr : {S : Type ℓ → Type ℓ₁} (ι : (A B : TypeWithStr ℓ S) → A .fst ≃ B .fst → Type ℓ₁') {axioms : (X : Type ℓ) → S X → Type ℓ₂} (axioms-are-Props : (X : Type ℓ) (s : S X) → isProp (axioms X s)) (θ : UnivalentStr S ι) → UnivalentStr (AxiomsStructure S axioms) (AxiomsEquivStr ι axioms) axiomsUnivalentStr {S = S} ι {axioms = axioms} axioms-are-Props θ {X , s , a} {Y , t , b} e = ι (X , s) (Y , t) e ≃⟨ θ e ⟩ PathP (λ i → S (ua e i)) s t ≃⟨ invEquiv (Σ-contractSnd λ _ → isOfHLevelPathP' 0 (axioms-are-Props _ _) _ _) ⟩ Σ[ p ∈ PathP (λ i → S (ua e i)) s t ] PathP (λ i → axioms (ua e i) (p i)) a b ≃⟨ ΣPath≃PathΣ ⟩ PathP (λ i → AxiomsStructure S axioms (ua e i)) (s , a) (t , b) ■ inducedStructure : {S : Type ℓ → Type ℓ₁} {ι : (A B : TypeWithStr ℓ S) → A .fst ≃ B .fst → Type ℓ₁'} (θ : UnivalentStr S ι) {axioms : (X : Type ℓ) → S X → Type ℓ₂} (A : TypeWithStr ℓ (AxiomsStructure S axioms)) (B : TypeWithStr ℓ S) → (typ A , str A .fst) ≃[ ι ] B → TypeWithStr ℓ (AxiomsStructure S axioms) inducedStructure θ {axioms} A B eqv = B .fst , B .snd , subst (uncurry axioms) (sip θ _ _ eqv) (A .snd .snd) transferAxioms : {S : Type ℓ → Type ℓ₁} {ι : (A B : TypeWithStr ℓ S) → A .fst ≃ B .fst → Type ℓ₁'} (θ : UnivalentStr S ι) {axioms : (X : Type ℓ) → S X → Type ℓ₂} (A : TypeWithStr ℓ (AxiomsStructure S axioms)) (B : TypeWithStr ℓ S) → (typ A , str A .fst) ≃[ ι ] B → axioms (fst B) (snd B) transferAxioms θ {axioms} A B eqv = subst (uncurry axioms) (sip θ _ _ eqv) (A .snd .snd)
{ "alphanum_fraction": 0.6247139588, "avg_line_length": 37.4571428571, "ext": "agda", "hexsha": "d773a389d2772147d51a7d34e55552bec5c847f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Axioms.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Axioms.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Axioms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1094, "size": 2622 }
module OldBasicILP.Syntax.Common where open import Common.ContextPair public
{ "alphanum_fraction": 0.858974359, "avg_line_length": 19.5, "ext": "agda", "hexsha": "986a57fed730fa9390e5f66b7e27c9d2eb834864", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/Syntax/Common.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/Syntax/Common.agda", "max_line_length": 38, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/Syntax/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 16, "size": 78 }
module Algebra.LabelledGraph.Reasoning where open import Algebra.Dioid open import Algebra.LabelledGraph -- Standard syntax sugar for writing equational proofs infix 4 _≈_ data _≈_ {A B eq} {d : Dioid B eq} (x y : LabelledGraph d A) : Set where prove : x ≡ y -> x ≈ y infix 1 begin_ begin_ : ∀ {A B eq} {d : Dioid B eq} {x y : LabelledGraph d A} -> x ≈ y -> x ≡ y begin prove p = p infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ {A B eq} {d : Dioid B eq} (x : LabelledGraph d A) {y z : LabelledGraph d A} -> x ≡ y -> y ≈ z -> x ≈ z _ ≡⟨ p ⟩ prove q = prove (transitivity p q) infix 3 _∎ _∎ : ∀ {A B eq} {d : Dioid B eq} (x : LabelledGraph d A) -> x ≈ x _∎ _ = prove reflexivity infixl 8 _>>_ _>>_ : ∀ {A B eq} {d : Dioid B eq} {x y z : LabelledGraph d A} -> x ≡ y -> y ≡ z -> x ≡ z _>>_ = transitivity L : ∀ {A B eq} {d : Dioid B eq} {x y z : LabelledGraph d A} {r : B} -> x ≡ y -> x [ r ]> z ≡ y [ r ]> z L = left-congruence R : ∀ {A B eq} {d : Dioid B eq} {x y z : LabelledGraph d A} {r : B} -> x ≡ y -> z [ r ]> x ≡ z [ r ]> y R = right-congruence
{ "alphanum_fraction": 0.5637583893, "avg_line_length": 32.59375, "ext": "agda", "hexsha": "398aec7a1c4de554f55cbf0e9a1a85ef7cfdf95a", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2019-05-09T23:53:28.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-17T20:48:20.000Z", "max_forks_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "snowleopard/alga-proofs", "max_forks_repo_path": "src/Algebra/LabelledGraph/Reasoning.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d", "max_issues_repo_issues_event_max_datetime": "2018-06-23T13:54:02.000Z", "max_issues_repo_issues_event_min_datetime": "2018-04-12T16:25:13.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "snowleopard/alga-proofs", "max_issues_repo_path": "src/Algebra/LabelledGraph/Reasoning.agda", "max_line_length": 113, "max_stars_count": 60, "max_stars_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "snowleopard/alga-proofs", "max_stars_repo_path": "src/Algebra/LabelledGraph/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:05:29.000Z", "max_stars_repo_stars_event_min_datetime": "2017-12-27T14:57:04.000Z", "num_tokens": 456, "size": 1043 }
module Type.Category.ExtensionalFunctionsCategory.HomFunctor where import Functional as Fn open import Function.Proofs open import Function.Equals open import Function.Equals.Proofs open import Logic.Predicate import Lvl import Relator.Equals.Proofs.Equiv open import Structure.Category open import Structure.Category.Dual open import Structure.Category.Functor open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type.Category.ExtensionalFunctionsCategory open import Type private variable ℓ ℓₒ ℓₘ ℓₑ : Lvl.Level -- Note: This is implicitly using the identity type as the equivalence for (_⟶_). module _ {Obj : Type{ℓₒ}} {_⟶_ : Obj → Obj → Type{ℓₘ}} (C : Category(_⟶_)) where open Category(C) covariantHomFunctor : Obj → ((intro C) →ᶠᵘⁿᶜᵗᵒʳ typeExtensionalFnCategoryObject{ℓₘ}) ∃.witness (covariantHomFunctor x) y = (x ⟶ y) Functor.map (∃.proof (covariantHomFunctor _)) = (_∘_) _⊜_.proof (Function.congruence (Functor.map-function (∃.proof (covariantHomFunctor _))) {f₁} {f₂} f₁f₂) {g} = congruence₂ₗ(_∘_) ⦃ binaryOperator ⦄ g f₁f₂ _⊜_.proof (Functor.op-preserving (∃.proof (covariantHomFunctor _))) = Morphism.associativity(_∘_) _⊜_.proof (Functor.id-preserving (∃.proof (covariantHomFunctor _))) = Morphism.identityₗ(_∘_)(id) contravariantHomFunctor : Obj → (dual(intro C) →ᶠᵘⁿᶜᵗᵒʳ typeExtensionalFnCategoryObject{ℓₘ}) ∃.witness (contravariantHomFunctor x) y = (y ⟶ x) Functor.map (∃.proof (contravariantHomFunctor _)) = Fn.swap(_∘_) _⊜_.proof (Function.congruence (Functor.map-function (∃.proof (contravariantHomFunctor _))) {g₁} {g₂} g₁g₂) {f} = congruence₂ᵣ(_∘_) ⦃ binaryOperator ⦄ f g₁g₂ _⊜_.proof (Functor.op-preserving (∃.proof (contravariantHomFunctor _))) = symmetry(_) (Morphism.associativity(_∘_)) _⊜_.proof (Functor.id-preserving (∃.proof (contravariantHomFunctor _))) = Morphism.identityᵣ(_∘_)(id)
{ "alphanum_fraction": 0.7599033816, "avg_line_length": 49.2857142857, "ext": "agda", "hexsha": "86a7cf96c66878170b3c00a96b43e22a06f64bef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Category/ExtensionalFunctionsCategory/HomFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Category/ExtensionalFunctionsCategory/HomFunctor.agda", "max_line_length": 159, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Category/ExtensionalFunctionsCategory/HomFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 698, "size": 2070 }
{-# OPTIONS --without-K #-} module pointed.core where open import sum open import equality.core open import function.core open import function.isomorphism.core PSet : ∀ i → Set _ PSet i = Σ (Set i) λ X → X PMap : ∀ {i j} → PSet i → PSet j → Set _ PMap (X , x) (Y , y) = Σ (X → Y) λ f → f x ≡ y _∘P_ : ∀ {i j k}{𝓧 : PSet i}{𝓨 : PSet j}{𝓩 : PSet k} → PMap 𝓨 𝓩 → PMap 𝓧 𝓨 → PMap 𝓧 𝓩 (g , q) ∘P (f , p) = (g ∘ f , ap g p · q) instance pmap-comp : ∀ {i j k} → Composition _ _ _ _ _ _ pmap-comp {i}{j}{k} = record { U₁ = PSet i ; U₂ = PSet j ; U₃ = PSet k ; hom₁₂ = PMap ; hom₂₃ = PMap ; hom₁₃ = PMap ; _∘_ = _∘P_ }
{ "alphanum_fraction": 0.5291411043, "avg_line_length": 22.4827586207, "ext": "agda", "hexsha": "1c66284b351da097c555f3e214dea067396d4188", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/pointed/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/pointed/core.agda", "max_line_length": 52, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/pointed/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 299, "size": 652 }
{-# OPTIONS --without-K #-} open import lib.Basics module lib.types.FreeGroup where module _ {i} where private data #FreeGroup-aux (A : Type i) : Type i where #fg-nil : #FreeGroup-aux A _#fg::_ : A → #FreeGroup-aux A → #FreeGroup-aux A _#fg-inv::_ : A → #FreeGroup-aux A → #FreeGroup-aux A {- Is this okay? The template is to have 'data' here, - but then the β rules for paths will not typecheck. -} record #FreeGroup (A : Type i) : Type i where constructor #freegroup field #freegroup-proj : #FreeGroup-aux A #freegroup-unit : Unit → Unit FreeGroup : (A : Type i) → Type i FreeGroup A = #FreeGroup A module _ {A : Type i} where fg-nil : FreeGroup A fg-nil = #freegroup #fg-nil _ infixr 60 _fg::_ _fg::_ : A → FreeGroup A → FreeGroup A a fg:: (#freegroup fg _) = #freegroup (a #fg:: fg) _ infixr 60 _fg-inv::_ _fg-inv::_ : A → FreeGroup A → FreeGroup A a fg-inv:: (#freegroup fg _) = #freegroup (a #fg-inv:: fg) _ postulate -- HIT fg-inv-l : ∀ (a : A) → (fg : FreeGroup A) → a fg-inv:: a fg:: fg == fg fg-inv-r : ∀ (a : A) → (fg : FreeGroup A) → a fg:: a fg-inv:: fg == fg postulate -- HIT FreeGroup-level : is-set (FreeGroup A) FreeGroup-is-set = FreeGroup-level module FreeGroupElim {j} {P : FreeGroup A → Type j} (p : (x : FreeGroup A) → is-set (P x)) (nil* : P fg-nil) (_fg::*_ : ∀ a {fg} (fg* : P fg) → P (a fg:: fg)) (_fg-inv::*_ : ∀ a {fg} (fg* : P fg) → P (a fg-inv:: fg)) (fg-inv-l* : ∀ a {fg} (fg* : P fg) → (a fg-inv::* (a fg::* fg*)) == fg* [ P ↓ fg-inv-l a fg ] ) (fg-inv-r* : ∀ a {fg} (fg* : P fg) → (a fg::* (a fg-inv::* fg*)) == fg* [ P ↓ fg-inv-r a fg ]) where f : Π (FreeGroup A) P f = f-aux phantom phantom phantom where f-aux* : Π (#FreeGroup-aux A) (P ∘ (λ fg → #freegroup fg _)) f-aux* #fg-nil = nil* f-aux* (a #fg:: fg) = a fg::* f-aux* fg f-aux* (a #fg-inv:: fg) = a fg-inv::* f-aux* fg f-aux : Phantom p → Phantom fg-inv-l* → Phantom fg-inv-r* → Π (FreeGroup A) P f-aux phantom phantom phantom (#freegroup fg _) = f-aux* fg postulate -- HIT fg-inv-l-β : ∀ a fg → apd f (fg-inv-l a fg) == fg-inv-l* a (f fg) fg-inv-r-β : ∀ a fg → apd f (fg-inv-r a fg) == fg-inv-r* a (f fg) open FreeGroupElim public renaming (f to FreeGroup-elim) module FreeGroupRec {i} {A : Type i} {j} {B : Type j} (p : is-set B) (nil* : B) (_fg::*[_]_ : A → FreeGroup A → B → B) (_fg-inv::*[_]_ : A → FreeGroup A → B → B) (fg-inv-l* : ∀ a {fg} fg* → (a fg-inv::*[ a fg:: fg ] (a fg::*[ fg ] fg*)) == fg*) (fg-inv-r* : ∀ a {fg} fg* → (a fg::*[ a fg-inv:: fg ] (a fg-inv::*[ fg ] fg*)) == fg*) where private module M = FreeGroupElim (λ x → p) nil* (λ a {fg} fg* → a fg::*[ fg ] fg*) (λ a {fg} fg* → a fg-inv::*[ fg ] fg*) (λ a {fg} fg* → ↓-cst-in (fg-inv-l* a {fg} fg*)) (λ a {fg} fg* → ↓-cst-in (fg-inv-r* a {fg} fg*)) f : FreeGroup A → B f = M.f open FreeGroupRec public renaming (f to FreeGroup-rec)
{ "alphanum_fraction": 0.5094577554, "avg_line_length": 34.4782608696, "ext": "agda", "hexsha": "ccc7e3ede5a8a6a80adfbc92d807f33e95a57c79", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/FreeGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/FreeGroup.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/FreeGroup.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1159, "size": 3172 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Commutative semirings with some additional structure ("almost" -- commutative rings), used by the ring solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Solver.Ring.AlmostCommutativeRing where open import Relation.Binary open import Algebra open import Algebra.Structures open import Algebra.FunctionProperties import Algebra.Morphism as Morphism open import Function open import Level ------------------------------------------------------------------------ -- Definitions record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# -‿cong : -_ Preserves _≈_ ⟶ _≈_ -‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y)) -‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y)) open IsCommutativeSemiring isCommutativeSemiring public record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsAlmostCommutativeRing isAlmostCommutativeRing public commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open CommutativeSemiring commutativeSemiring public using ( +-semigroup; +-monoid; +-commutativeMonoid ; *-semigroup; *-monoid; *-commutativeMonoid ; semiring ) rawRing : RawRing _ rawRing = record { _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } ------------------------------------------------------------------------ -- Homomorphisms record _-Raw-AlmostCommutative⟶_ {r₁ r₂ r₃} (From : RawRing r₁) (To : AlmostCommutativeRing r₂ r₃) : Set (r₁ ⊔ r₂ ⊔ r₃) where private module F = RawRing From module T = AlmostCommutativeRing To open Morphism.Definitions F.Carrier T.Carrier T._≈_ field ⟦_⟧ : Morphism +-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_ *-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_ -‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_ 0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0# 1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1# -raw-almostCommutative⟶ : ∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) → AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R -raw-almostCommutative⟶ R = record { ⟦_⟧ = id ; +-homo = λ _ _ → refl ; *-homo = λ _ _ → refl ; -‿homo = λ _ → refl ; 0-homo = refl ; 1-homo = refl } where open AlmostCommutativeRing R -- A homomorphism induces a notion of equivalence on the raw ring. Induced-equivalence : ∀ {c₁ c₂ ℓ} {Coeff : RawRing c₁} {R : AlmostCommutativeRing c₂ ℓ} → Coeff -Raw-AlmostCommutative⟶ R → Rel (RawRing.Carrier Coeff) ℓ Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧ where open AlmostCommutativeRing R open _-Raw-AlmostCommutative⟶_ morphism ------------------------------------------------------------------------ -- Conversions -- Commutative rings are almost commutative rings. fromCommutativeRing : ∀ {r₁ r₂} → CommutativeRing r₁ r₂ → AlmostCommutativeRing _ _ fromCommutativeRing CR = record { isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = -‿cong ; -‿*-distribˡ = -‿*-distribˡ ; -‿+-comm = ⁻¹-∙-comm } } where open CommutativeRing CR import Algebra.Properties.Ring as R; open R ring import Algebra.Properties.AbelianGroup as AG; open AG +-abelianGroup -- Commutative semirings can be viewed as almost commutative rings by -- using identity as the "almost negation". fromCommutativeSemiring : ∀ {r₁ r₂} → CommutativeSemiring r₁ r₂ → AlmostCommutativeRing _ _ fromCommutativeSemiring CS = record { -_ = id ; isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = id ; -‿*-distribˡ = λ _ _ → refl ; -‿+-comm = λ _ _ → refl } } where open CommutativeSemiring CS
{ "alphanum_fraction": 0.5583636753, "avg_line_length": 31.5472972973, "ext": "agda", "hexsha": "f8f01468bc0415ed18b05215c55654799f2f43fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/AlmostCommutativeRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/AlmostCommutativeRing.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/AlmostCommutativeRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1483, "size": 4669 }
open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Unit macro m : Term → TC ⊤ m _ = bindTC (quoteTC (Set → @0 Set → Set)) λ t → typeError (termErr t ∷ []) _ : Set _ = m
{ "alphanum_fraction": 0.6383928571, "avg_line_length": 16, "ext": "agda", "hexsha": "ace305146e7a64d90cc73bb92278b21f3702fda2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5317.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5317.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5317.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 76, "size": 224 }
{-# OPTIONS --without-K #-} module Cat where import Level as L open import Data.Fin hiding (fromℕ; toℕ) open import Data.Nat open import Data.Product open import Data.List open import Function renaming (_∘_ to _○_) open import HoTT open import FT open import FT-Nat import Equivalences as E open import Path2Equiv {-- 1. postulate path2equiv 2. show that (FT, path) is equivalent to (FinSet, bijections) as categories 3. show that [[ ]]: (B, <->) -> (Set, function) is a functor [where (Set is Agda's Set)]. --} {-- Categories, functors, etc. adapted from: http://wiki.portal.chalmers.se/agda/uploads/Main.Libraries/20110915Category.agda Consider using: https://github.com/tomprince/agda-categories https://github.com/tomprince/agda-categories/blob/master/Categories/Category.agda --} ------------------------------------------------------------------ -- Categories record Setoid (a b : L.Level) : Set (L.suc (a L.⊔ b)) where infix 2 _∼_ field object : Set a _∼_ : object → object → Set b refl∼ : {x : object} → x ∼ x sym∼ : {x y : object} → x ∼ y → y ∼ x trans∼ : {x y z : object} → y ∼ z → x ∼ y → x ∼ z strictSetoid : ∀ {a} → Set a → Setoid a a strictSetoid A = record { object = A ; _∼_ = _≡_ ; refl∼ = λ {x} → refl x ; sym∼ = ! ; trans∼ = λ q p → p ∘ q } ∥_∥ : ∀ {a b c} {X : Set a} → (h : X → X → Setoid b c) → (x y : X) → Set b ∥ h ∥ x y = Setoid.object (h x y) record Cat (a b c : L.Level) : Set (L.suc (a L.⊔ b L.⊔ c)) where field object : Set a hom : object → object → Setoid b c identity : (x : object) → ∥ hom ∥ x x comp : {x y z : object} → ∥ hom ∥ y z → ∥ hom ∥ x y → ∥ hom ∥ x z comp∼ : {x y z : object} → {g0 g1 : ∥ hom ∥ y z} → {f0 f1 : ∥ hom ∥ x y} → (g0∼g1 : let open Setoid (hom y z) in g0 ∼ g1) → (f0∼f1 : let open Setoid (hom x y) in f0 ∼ f1) → let open Setoid (hom x z) in comp g0 f0 ∼ comp g1 f1 associativity∼ : {w x y z : object} → (f : ∥ hom ∥ y z) → (g : ∥ hom ∥ x y) → (h : ∥ hom ∥ w x) → let open Setoid (hom w z) in comp (comp f g) h ∼ comp f (comp g h) left-identity∼ : {x y : object} → (f : ∥ hom ∥ x y) → let open Setoid (hom x y) in comp (identity y) f ∼ f right-identity∼ : {x y : object} → (f : ∥ hom ∥ x y) → let open Setoid (hom x y) in comp f (identity x) ∼ f -- the type of objects in category C ob : ∀ {a b c} → Cat a b c → Set a ob C = Cat.object C -- the type of morphisms between two given objects in C _〈_,_〉 : ∀ {a b c} → (C : Cat a b c) → ob C → ob C → Set b C 〈 X , Y 〉 = ∥ Cat.hom C ∥ X Y -- the type of identities of morphisms _∣_∼_ : ∀ {a b c} → (C : Cat a b c) → {X Y : ob C} → C 〈 X , Y 〉 → C 〈 X , Y 〉 → Set c _∣_∼_ C {X} {Y} f g = Setoid._∼_ (Cat.hom C X Y) f g -- convenient abbreviation for identity morphism idC : ∀ {a b c} → (C : Cat a b c) → (x : ob C) → C 〈 x , x 〉 idC C x = Cat.identity C x -- convenient abbreviation for composition of morphisms _∣_∘_ : ∀ {a b c} → (C : Cat a b c) → {x y z : ob C } → C 〈 y , z 〉 → C 〈 x , y 〉 → C 〈 x , z 〉 C ∣ g ∘ f = Cat.comp C g f ------------------------------------------------------------------ -- Functors record _=>_ {a b c a' b' c'} (C : Cat a b c) (D : Cat a' b' c') : Set (a L.⊔ a' L.⊔ b L.⊔ b' L.⊔ c L.⊔ c') where field object : ob C → ob D hom : {X Y : ob C} → C 〈 X , Y 〉 → D 〈 object X , object Y 〉 hom∼ : {X Y : ob C} → (f g : C 〈 X , Y 〉) → (f∼g : C ∣ f ∼ g) → D ∣ hom f ∼ hom g identity∼ : {X : ob C} → D ∣ hom (idC C X) ∼ idC D (object X) comp∼ : {X Y Z : ob C} → (f : C 〈 Y , Z 〉) → (g : C 〈 X , Y 〉) → D ∣ hom (C ∣ f ∘ g) ∼ (D ∣ hom f ∘ hom g) -- Applying the functor to objects _`_ : ∀ {a b c a' b' c'} {X : Cat a b c} → {Y : Cat a' b' c'} → X => Y → ob X → ob Y F ` x = _=>_.object F x -- Applying the functor to morphisms _``_ : ∀ {a b c a' b' c'} {X : Cat a b c} → {Y : Cat a' b' c'} → {x0 x1 : ob X} → (F : X => Y) → X 〈 x0 , x1 〉 → Y 〈 F ` x0 , F ` x1 〉 F `` f = _=>_.hom F f ------------------------------------------------------------------ -- The category (FinSet,bijections) -- M, N, L are finite sets witnessed by their sizes m, n, l -- F, G, H are bijections -- bijections between two sets M and N record Bijection (m n : ℕ) : Set where field f : Fin m → Fin n g : Fin n → Fin m injective : {x y : Fin m} → f x ≡ f y → x ≡ y surjective : {x : Fin n} → f (g x) ≡ x -- there is a bijection from each set to itself idBijection : (m : ℕ) → Bijection m m idBijection m = record { f = id ; g = id ; injective = id ; surjective = λ {x} → refl x } -- composition of bijections ∘Bijection : {m n l : ℕ} → Bijection n l → Bijection m n → Bijection m l ∘Bijection G F = record { f = Bijection.f G ○ Bijection.f F ; g = Bijection.g F ○ Bijection.g G ; injective = λ α → Bijection.injective F (Bijection.injective G α) ; surjective = λ {x} → Bijection.f G (Bijection.f F (Bijection.g F (Bijection.g G x))) ≡⟨ ap (λ x → Bijection.f G x) (Bijection.surjective F) ⟩ Bijection.f G (Bijection.g G x) ≡⟨ Bijection.surjective G ⟩ x ∎ } -- two bijections are the "same" if they agree modulo ≡ ∼Bijection : {m n : ℕ} → Bijection m n → Bijection m n → Set ∼Bijection F G = (Bijection.f F) E.∼ (Bijection.f G) -- the set of all bijections between two sets M and N taken modulo ≡ BijectionSetoid : (m n : ℕ) → Setoid L.zero L.zero BijectionSetoid m n = record { object = Bijection m n ; _∼_ = ∼Bijection ; refl∼ = λ {F} → E.refl∼ {f = Bijection.f F} ; sym∼ = λ {F} {G} → E.sym∼ {f = Bijection.f F} {g = Bijection.f G} ; trans∼ = λ {F} {G} {H} P Q → E.trans∼ {f = Bijection.f F} {g = Bijection.f G} {h = Bijection.f H} Q P } -- the category of finite sets and bijections FinCat : Cat L.zero L.zero L.zero FinCat = record { object = ℕ ; hom = BijectionSetoid ; identity = idBijection ; comp = λ G F → ∘Bijection G F ; comp∼ = λ {m} {n} {l} {G₀} {G₁} {F₀} {F₁} Q P x → Bijection.f (∘Bijection G₀ F₀) x ≡⟨ bydef ⟩ Bijection.f G₀ (Bijection.f F₀ x) ≡⟨ ap (λ z → Bijection.f G₀ z) (P x) ⟩ Bijection.f G₀ (Bijection.f F₁ x) ≡⟨ Q (Bijection.f F₁ x) ⟩ Bijection.f (∘Bijection G₁ F₁) x ∎ ; associativity∼ = λ F G H x → Bijection.f (∘Bijection F G) (Bijection.f H x) ≡⟨ bydef ⟩ Bijection.f F (Bijection.f G (Bijection.f H x)) ∎ ; left-identity∼ = λ {m} {n} F x → Bijection.f (idBijection n) (Bijection.f F x) ≡⟨ bydef ⟩ Bijection.f F x ∎ ; right-identity∼ = λ {m} {n} F x → Bijection.f F (Bijection.f (idBijection m) x) ≡⟨ bydef ⟩ Bijection.f F x ∎ } ------------------------------------------------------------------ -- The category (FinSet,HoTT-equivalence) -- M, N, L are finite sets witnessed by their sizes m, n, l -- F, G, H are equivalences -- an equivalence (A ≃ B) consists of a function f : A → B -- and a proof that it is an equivalence; the proof consists of -- two functions g and h : B → A together with two proofs that -- (f ○ g) ∼ id and (h ○ f) ∼ id -- for now, I am suggesting that two such equivalences are the same -- if the forward functions f are the same ∼Equiv : {m n : ℕ} → (Fin m E.≃ Fin n) → (Fin m E.≃ Fin n) → Set ∼Equiv F G = (proj₁ F) E.∼ (proj₁ G) -- the set of all equivalences between two sets M and N taken modulo ≡ EquivSetoid : (m n : ℕ) → Setoid L.zero L.zero EquivSetoid m n = record { object = (Fin m) E.≃ (Fin n) ; _∼_ = ∼Equiv ; refl∼ = λ {F} → E.refl∼ {f = proj₁ F} ; sym∼ = λ {F} {G} → E.sym∼ {f = proj₁ F} {g = proj₁ G} ; trans∼ = λ {F} {G} {H} P Q → E.trans∼ {f = proj₁ F} {g = proj₁ G} {h = proj₁ H} Q P } FinCat' : Cat L.zero L.zero L.zero FinCat' = record { object = ℕ ; hom = EquivSetoid ; identity = λ m → E.id≃ {A = Fin m} ; comp = λ q p → E.trans≃ p q ; comp∼ = λ {m} {n} {l} {G₀} {G₁} {F₀} {F₁} Q P x → proj₁ (E.trans≃ F₀ G₀) x ≡⟨ bydef ⟩ proj₁ G₀ (proj₁ F₀ x) ≡⟨ ap (λ z → proj₁ G₀ z) (P x) ⟩ proj₁ G₀ (proj₁ F₁ x) ≡⟨ Q (proj₁ F₁ x) ⟩ proj₁ (E.trans≃ F₁ G₁) x ∎ ; associativity∼ = λ F G H x → refl (proj₁ F (proj₁ G (proj₁ H x))) ; left-identity∼ = λ {m} {n} F x → refl (proj₁ F x) ; right-identity∼ = λ {m} {n} F x → refl (proj₁ F x) } ------------------------------------------------------------------ -- The category (FT,path) -- evaluation evalF : {b₁ b₂ : FT} → (b₁ ⇛ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧ evalF p = proj₁ (path2equiv p) -- could equivalently use sym≃ on the result of path2equiv p evalB : {b₁ b₂ : FT} → (b₁ ⇛ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧ evalB p = proj₁ (path2equiv (sym⇛ p)) -- equivalence of combinators _∼c_ : {b₁ b₂ : FT} → (c₁ c₂ : b₁ ⇛ b₂) → Set _∼c_ {b₁} {b₂} c₁ c₂ = (v : ⟦ b₁ ⟧) → evalF c₁ v ≡ evalF c₂ v -- equivalence class of paths between two types paths : FT → FT → Setoid L.zero L.zero paths b₁ b₂ = record { object = b₁ ⇛ b₂ ; _∼_ = _∼c_ ; refl∼ = λ {c} v → refl (evalF c v) ; sym∼ = λ p v → ! (p v) ; trans∼ = λ q p v → (p v) ∘ (q v) } -- the category of finite types and paths FTCat : Cat L.zero L.zero L.zero FTCat = record { object = FT ; hom = paths ; identity = λ b → id⇛ {b} ; comp = λ c₂ c₁ → c₁ ◎ c₂ ; comp∼ = λ {b₀} {b₁} {b₂} {c₂} {c₂'} {c₁} {c₁'} q p v → evalF (c₁ ◎ c₂) v ≡⟨ bydef ⟩ evalF c₂ (evalF c₁ v) ≡⟨ ap (λ z → evalF c₂ z) (p v) ⟩ evalF c₂ (evalF c₁' v) ≡⟨ q (evalF c₁' v) ⟩ evalF (c₁' ◎ c₂') v ∎ ; associativity∼ = λ r q p v → evalF (p ◎ (q ◎ r)) v ≡⟨ bydef ⟩ evalF r (evalF q (evalF p v)) ≡⟨ bydef ⟩ evalF ((p ◎ q) ◎ r) v ∎ ; left-identity∼ = λ p v → evalF id⇛ (evalF p v) ≡⟨ bydef ⟩ evalF p v ∎ ; right-identity∼ = λ p v → evalF p (evalF id⇛ v) ≡⟨ bydef ⟩ evalF p v ∎ } ------------------------------------------------------------------ {-- Two categories C and D are equivalent if we have: - a functor F : C -> D - a functor G : D -> C - two natural isomorphisms ε : F ∘ G -> I_D and η : G ∘ F -> I_C --} ff : {m n : ℕ} → (Fin m E.≃ Fin n) → (fromℕ m ⇛ fromℕ n) ff = {!!} gg : {b₀ b₁ : FT} → (b₀ ⇛ b₁) → (Fin (suc (toℕ b₀)) E.≃ Fin (suc (toℕ b₁))) gg = {!!} -- functor from FinCat' to FTCat fin2ft : FinCat' => FTCat fin2ft = record { object = fromℕ ; -- (Fin 1) should map to ZERO hom = ff ; -- hom∼ = {!!} ; identity∼ = {!!} ; comp∼ = {!!} } -- functor from FTCat to FinCat' ft2fin : FTCat => FinCat' ft2fin = record { object = λ b → suc (toℕ b) ; -- ZERO maps to (Fin 1) hom = gg ; hom∼ = {!!} ; identity∼ = {!!} ; comp∼ = {!!} } ------------------------------------------------------------------
{ "alphanum_fraction": 0.4708608703, "avg_line_length": 33.8691860465, "ext": "agda", "hexsha": "aa8db0450d0afc46a18a9f31fd6fb0f6910355ce", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/Cat.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Cat.agda", "max_line_length": 81, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/Cat.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4432, "size": 11651 }
module L.Data.Bool.Core where open import L.Base.Coproduct.Core open import L.Base.Unit.Core -- Deriving the introduction rule as a special case of Coproducts. Bool : Set Bool = ⊤ + ⊤ ff : Bool ff = inr ⋆ tt : Bool tt = inl ⋆ -- And the elimination rule if : ∀{c} (C : Bool → Set c) → C tt → C ff → (e : Bool) → C e if = λ C c d e → case C (λ _ → c) (λ _ → d) e
{ "alphanum_fraction": 0.6075268817, "avg_line_length": 18.6, "ext": "agda", "hexsha": "9f19db4c48413362fba4a5ea56be925ae1679016", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Data/Bool/Core.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Data/Bool/Core.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Data/Bool/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 136, "size": 372 }
{-# OPTIONS --cubical #-} module HyperFalse where open import Prelude hiding (false) {-# NO_POSITIVITY_CHECK #-} record _↬_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where inductive; constructor hyp field invoke : (B ↬ A) → B open _↬_ yes? : ⊥ ↬ ⊥ yes? .invoke h = h .invoke h no! : (⊥ ↬ ⊥) → ⊥ no! h = h .invoke h boom : ⊥ boom = no! yes?
{ "alphanum_fraction": 0.5811965812, "avg_line_length": 15.9545454545, "ext": "agda", "hexsha": "4e692057e67da953b174b08c146f63d2beb95885", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "HyperFalse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "HyperFalse.agda", "max_line_length": 58, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "HyperFalse.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 138, "size": 351 }
-- Andreas, 2016-04-14 issue 1796 for rewrite -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.size.solve:100 #-} -- {-# OPTIONS -v tc.with.abstract:40 #-} open import Common.Size open import Common.Equality data Either (A B : Set) : Set where left : A → Either A B right : B → Either A B either : {A B : Set} → Either A B → ∀{C : Set} → (A → C) → (B → C) → C either (left a) l r = l a either (right b) l r = r b data Nat : Size → Set where zero : ∀{i} → Nat (↑ i) suc : ∀{i} → Nat i → Nat (↑ i) primrec : ∀{ℓ} (C : Size → Set ℓ) → (z : ∀{i} → C i) → (s : ∀{i} → Nat i → C i → C (↑ i)) → ∀{i} → Nat i → C i primrec C z s zero = z primrec C z s (suc n) = s n (primrec C z s n) case : ∀{i} → Nat i → ∀{ℓ} (C : Size → Set ℓ) → (z : ∀{i} → C i) → (s : ∀{i} → Nat i → C (↑ i)) → C i case n C z s = primrec C z (λ n r → s n) n diff : ∀{i} → Nat i → ∀{j} → Nat j → Either (Nat i) (Nat j) diff = primrec (λ i → ∀{j} → Nat j → Either (Nat i) (Nat j)) -- case zero: the second number is bigger and the difference right -- case suc n: (λ{i} n r m → case m (λ j → Either (Nat (↑ i)) (Nat j)) -- subcase zero: the first number (suc n) is bigger and the difference (left (suc n)) -- subcase suc m: recurse on (n,m) r) gcd : ∀{i} → Nat i → ∀{j} → Nat j → Nat ∞ gcd zero m = m gcd (suc n) zero = suc n gcd (suc n) (suc m) = either (diff n m) (λ n' → gcd n' (suc m)) (λ m' → gcd (suc n) m') er : ∀{i} → Nat i → Nat ∞ er zero = zero er (suc n) = suc (er n) diff-diag-erase : ∀{i} (n : Nat i) → diff (er n) (er n) ≡ right zero diff-diag-erase zero = refl diff-diag-erase (suc n) = diff-diag-erase n gcd-diag-erase : ∀{i} (n : Nat i) → gcd (er n) (er n) ≡ er n gcd-diag-erase zero = refl gcd-diag-erase (suc {i} n) rewrite diff-diag-erase n -- Before fix: diff-diag-erase {i} n. -- The {i} was necessary, otherwise rewrite failed -- because an unsolved size var prevented abstraction. | gcd-diag-erase n = refl
{ "alphanum_fraction": 0.5272459499, "avg_line_length": 28.6901408451, "ext": "agda", "hexsha": "26ac18da18f3a93352e45c88e551cb5fe78c41b2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1796rewrite.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1796rewrite.agda", "max_line_length": 74, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1796rewrite.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 800, "size": 2037 }
{-# OPTIONS --universe-polymorphism #-} module Imports.Test where open import Imports.Level record Foo (ℓ : Level) : Set ℓ where
{ "alphanum_fraction": 0.7196969697, "avg_line_length": 16.5, "ext": "agda", "hexsha": "2ba90f54078fa0414a25950e5d2526311e8341d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/Imports/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/Imports/Test.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Imports/Test.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 33, "size": 132 }
open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Sigma using (Σ; _,_) postulate F : Set → Set₁ P : (A : Set) → F A → Set easy : {A : Set₁} → A A : Set₁ A = Σ Set λ B → Σ (F B) (P B) f : (X Y : A) → X ≡ Y f (C , x , p) (D , y , q) = proof module _ where abstract proof : (C , x , p) ≡ (D , y , q) proof = easy
{ "alphanum_fraction": 0.5069637883, "avg_line_length": 18.8947368421, "ext": "agda", "hexsha": "6a49958233fe9d2b10e216c548d66853dc9143bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4005.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4005.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4005.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 155, "size": 359 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Equivalence where open import Level open import Categories.Adjoint open import Categories.Category open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (_≃_; NaturalIsomorphism) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D E : Category o ℓ e record ⊣Equivalence (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where field unit : idF ≃ (R ∘F L) counit : (L ∘F R) ≃ idF module unit = NaturalIsomorphism unit module counit = NaturalIsomorphism counit private module C = Category C module D = Category D module L = Functor L module R = Functor R module ℱ = Functor field zig : ∀ {A : C.Obj} → counit.⇒.η (L.F₀ A) D.∘ L.F₁ (unit.⇒.η A) D.≈ D.id zag : ∀ {B : D.Obj} → R.F₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.F₀ B) C.≈ C.id zag {B} = F≃id⇒id (≃.sym unit) helper where open C open HomReasoning helper : R.F₁ (L.F₁ (R.F₁ (counit.⇒.η B) ∘ unit.⇒.η (R.F₀ B))) ≈ id helper = begin R.F₁ (L.F₁ (R.F₁ (counit.⇒.η B) ∘ unit.⇒.η (R.F₀ B))) ≈⟨ ℱ.homomorphism (R ∘F L) ⟩ R.F₁ (L.F₁ (R.F₁ (counit.⇒.η B))) ∘ R.F₁ (L.F₁ (unit.⇒.η (R.F₀ B))) ≈˘⟨ R.F-resp-≈ (F≃id-comm₁ counit) ⟩∘⟨refl ⟩ R.F₁ (counit.⇒.η (L.F₀ (R.F₀ B))) ∘ R.F₁ (L.F₁ (unit.⇒.η (R.F₀ B))) ≈˘⟨ R.homomorphism ⟩ R.F₁ (counit.⇒.η (L.F₀ (R.F₀ B)) D.∘ L.F₁ (unit.⇒.η (R.F₀ B))) ≈⟨ R.F-resp-≈ zig ⟩ R.F₁ D.id ≈⟨ R.identity ⟩ id ∎ L⊣R : L ⊣ R L⊣R = record { unit = unit.F⇒G ; counit = counit.F⇒G ; zig = zig ; zag = zag } module L⊣R = Adjoint L⊣R open L⊣R hiding (unit; counit; zig; zag) public R⊣L : R ⊣ L R⊣L = record { unit = counit.F⇐G ; counit = unit.F⇐G ; zig = λ {X} → let open C.HomReasoning open MR C in begin unit.⇐.η (R.F₀ X) C.∘ R.F₁ (counit.⇐.η X) ≈˘⟨ elimʳ zag ⟩ (unit.⇐.η (R.F₀ X) C.∘ R.F₁ (counit.⇐.η X)) C.∘ (R.F₁ (counit.⇒.η X) C.∘ unit.⇒.η (R.F₀ X)) ≈⟨ center ([ R ]-resp-∘ (counit.iso.isoˡ _) ○ R.identity) ⟩ unit.⇐.η (R.F₀ X) C.∘ C.id C.∘ unit.⇒.η (R.F₀ X) ≈⟨ refl⟩∘⟨ C.identityˡ ⟩ unit.⇐.η (R.F₀ X) C.∘ unit.⇒.η (R.F₀ X) ≈⟨ unit.iso.isoˡ _ ⟩ C.id ∎ ; zag = λ {X} → let open D.HomReasoning open MR D in begin L.F₁ (unit.⇐.η X) D.∘ counit.⇐.η (L.F₀ X) ≈˘⟨ elimʳ zig ⟩ (L.F₁ (unit.⇐.η X) D.∘ counit.⇐.η (L.F₀ X)) D.∘ counit.⇒.η (L.F₀ X) D.∘ L.F₁ (unit.⇒.η X) ≈⟨ center (counit.iso.isoˡ _) ⟩ L.F₁ (unit.⇐.η X) D.∘ D.id D.∘ L.F₁ (unit.⇒.η X) ≈⟨ refl⟩∘⟨ D.identityˡ ⟩ L.F₁ (unit.⇐.η X) D.∘ L.F₁ (unit.⇒.η X) ≈⟨ ([ L ]-resp-∘ (unit.iso.isoˡ _)) ○ L.identity ⟩ D.id ∎ } module R⊣L = Adjoint R⊣L
{ "alphanum_fraction": 0.4990814452, "avg_line_length": 33.6701030928, "ext": "agda", "hexsha": "76ec79068b5302911a1db7212615d3569009e0ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Adjoint/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Adjoint/Equivalence.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Adjoint/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1453, "size": 3266 }
open import Relation.Binary.Core module InsertSort.Everything {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import InsertSort.Impl1.Correctness.Order _≤_ tot≤ open import InsertSort.Impl1.Correctness.Permutation.Alternative _≤_ tot≤ open import InsertSort.Impl1.Correctness.Permutation.Base _≤_ tot≤ open import InsertSort.Impl2.Correctness.Order _≤_ tot≤ open import InsertSort.Impl2.Correctness.Permutation.Alternative _≤_ tot≤ open import InsertSort.Impl2.Correctness.Permutation.Base _≤_ tot≤
{ "alphanum_fraction": 0.7441016334, "avg_line_length": 39.3571428571, "ext": "agda", "hexsha": "c9f2a3618addcdcf166df3d6091175b270d36f56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/InsertSort/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/InsertSort/Everything.agda", "max_line_length": 73, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/InsertSort/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 173, "size": 551 }
import cedille-options module to-string (options : cedille-options.options) where open import cedille-types open import constants open import syntax-util open import ctxt open import rename open import general-util open import datatype-util open import type-util open import free-vars open import json data expr-side : Set where left : expr-side right : expr-side neither : expr-side is-left : expr-side → 𝔹 is-left left = tt is-left _ = ff is-right : expr-side → 𝔹 is-right right = tt is-right _ = ff exprd-eq : exprd → exprd → 𝔹 exprd-eq TERM TERM = tt exprd-eq TYPE TYPE = tt exprd-eq KIND KIND = tt exprd-eq _ _ = ff is-eq-op : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-eq-op{TERM} (VarSigma _) = tt is-eq-op{TERM} (Rho _ _ _ _) = tt is-eq-op{TERM} (Phi _ _ _) = tt is-eq-op{TERM} (Delta _ _ _) = tt is-eq-op _ = ff pattern arrow-var = "_arrow_" pattern TpArrow tp me tp' = TpAbs me arrow-var (Tkt tp) tp' pattern KdArrow tk kd = KdAbs arrow-var tk kd is-arrow : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-arrow {TYPE} (TpArrow _ _ _) = tt is-arrow {KIND} (KdArrow _ _) = tt is-arrow _ = ff is-type-level-app : ∀ {ed} → ⟦ ed ⟧ → 𝔹 is-type-level-app {TYPE} (TpApp T tT) = tt is-type-level-app _ = ff {- need-parens e1 e2 s returns tt iff we need parens when e1 occurs as the given side s of parent expression e2. -} need-parens : {ed : exprd} → {ed' : exprd} → ⟦ ed ⟧ → ⟦ ed' ⟧ → expr-side → 𝔹 need-parens {TYPE} {TYPE} (TpAbs _ _ _ _) (TpArrow _ _ _) left = tt need-parens {TYPE} {TYPE} (TpIota _ _ _) (TpArrow _ _ _) left = tt need-parens {KIND} {KIND} (KdAbs _ _ _) (KdArrow _ _) left = tt need-parens {TYPE} {KIND} (TpAbs _ _ _ _) (KdArrow _ _) left = tt need-parens {TYPE} {KIND} (TpIota _ _ _) (KdArrow _ _) left = tt need-parens {TERM} {_} (Var x) p lr = ff need-parens {TERM} {_} (Hole pi) p lr = ff need-parens {TERM} {_} (IotaPair t₁ t₂ x Tₓ) p lr = ff need-parens {TERM} {_} (IotaProj t n) p lr = ff need-parens {TYPE} {_} (TpVar x) p lr = ff need-parens {TYPE} {_} (TpEq t₁ t₂) p lr = ff need-parens {TYPE} {_} (TpHole pi) p lr = ff need-parens {KIND} {_} (KdHole pi) p lr = ff need-parens {KIND} {_} KdStar p lr = ff need-parens {_} {TERM} _ (IotaPair t₁ t₂ x Tₓ) lr = ff need-parens {_} {TYPE} _ (TpEq t₁ t₂) lr = ff need-parens {_} {TERM} _ (Beta ot ot') lr = ff need-parens {_} {TERM} _ (Phi tₑ t₁ t₂) lr = is-left lr need-parens {_} {TERM} _ (Rho _ _ _ _) right = ff need-parens {_} {TERM} _ (Delta _ _ _) right = ff need-parens {_} {TERM} _ (LetTm _ _ _ _ _) lr = ff need-parens {_} {TERM} _ (LetTp _ _ _ _) lr = ff need-parens {_} {TERM} _ (Lam _ _ _ _) lr = ff need-parens {_} {TERM} _ (Mu _ _ _ _ _) right = ff need-parens {_} {TYPE} _ (TpLam _ _ _) lr = ff need-parens {_} {TYPE} _ (TpAbs _ _ _ _) lr = ff need-parens {_} {KIND} _ (KdAbs _ _ _) neither = ff need-parens {_} {TYPE} _ (TpIota _ _ _) lr = ff need-parens {TERM} {_} (App t t') p lr = tt need-parens {TERM} {_} (AppE t tT) p lr = tt need-parens {TERM} {_} (Beta ot ot') p lr = ff need-parens {TERM} {_} (Delta _ T t) p lr = tt need-parens {TERM} {_} (Lam me x tk? t) p lr = tt need-parens {TERM} {_} (LetTm me x T t t') p lr = tt need-parens {TERM} {_} (LetTp x T t t') p lr = tt need-parens {TERM} {_} (Phi tₑ t₁ t₂) p lr = tt need-parens {TERM} {_} (Rho tₑ x Tₓ t) p lr = tt need-parens {TERM} {_} (VarSigma t) p lr = ~ is-eq-op p need-parens {TERM} {_} (Mu _ _ _ _ _) p lr = tt need-parens {TERM} {_} (Sigma _ _ _ _ _) p lr = tt need-parens {TYPE} {e} (TpAbs me x tk T) p lr = ~ exprd-eq e TYPE || ~ is-arrow p || is-left lr need-parens {TYPE} {_} (TpIota x T₁ T₂) p lr = tt need-parens {TYPE} {_} (TpApp T tT) p lr = ~ is-arrow p && (~ is-type-level-app p || is-right lr) need-parens {TYPE} {_} (TpLam x tk T) p lr = tt need-parens {KIND} {_} (KdAbs x tk k) p lr = ~ is-arrow p || is-left lr pattern ced-ops-drop-spine = cedille-options.options.mk-options _ _ _ _ ff _ _ _ ff _ _ pattern ced-ops-conv-arr = cedille-options.options.mk-options _ _ _ _ _ _ _ _ ff _ _ pattern ced-ops-conv-abs = cedille-options.options.mk-options _ _ _ _ _ _ _ _ tt _ _ drop-spine : cedille-options.options → {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ drop-spine ops @ ced-ops-drop-spine = h where drop-mod-argse : (mod : args) → (actual : args) → args drop-mod-argse (ArgE _ :: asₘ) (ArgE _ :: asₐ) = drop-mod-argse asₘ asₐ drop-mod-argse (Arg _ :: asₘ) (Arg t :: asₐ) = drop-mod-argse asₘ asₐ drop-mod-argse (_ :: asₘ) asₐ@(Arg t :: _) = drop-mod-argse asₘ asₐ -- ^ Relevant term arg, so wait until we find its corresponding relevant module arg ^ drop-mod-argse _ asₐ = asₐ drop-mod-args-term : ctxt → var × args → term drop-mod-args-term Γ (v , as) = let uqv = unqual-all (ctxt.qual Γ) v in flip recompose-apps (Var uqv) $ maybe-else' (ifMaybe (~ v =string uqv) $ ctxt-get-qi Γ uqv) as λ qi → drop-mod-argse (snd qi) as drop-mod-args-type : ctxt → var × 𝕃 tmtp → type drop-mod-args-type Γ (v , as) = let uqv = unqual-all (ctxt.qual Γ) v in flip recompose-tpapps (TpVar uqv) $ maybe-else' (ifMaybe (~ v =string uqv) $ ctxt-qualif-args-length Γ Erased uqv) as λ n → drop n as h : {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ h {TERM} Γ t = maybe-else' (decompose-var-headed t) t (drop-mod-args-term Γ) h {TYPE} Γ T = maybe-else' (decompose-tpvar-headed T) T (drop-mod-args-type Γ) h Γ x = x drop-spine ops Γ x = x to-string-rewrite : {ed : exprd} → ctxt → cedille-options.options → ⟦ ed ⟧ → Σi exprd ⟦_⟧ to-string-rewrite{TYPE} Γ ced-ops-conv-arr (TpAbs me x (Tkt T) T') = , TpAbs me (if is-free-in x T' then x else arrow-var) (Tkt T) T' to-string-rewrite{KIND} Γ ced-ops-conv-arr (KdAbs x tk k) = , KdAbs (if is-free-in x k then x else arrow-var) tk k to-string-rewrite{TERM} Γ ops (VarSigma t) with to-string-rewrite Γ ops t ...| ,_ {TERM} (VarSigma t') = , t' ...| t? = , VarSigma t to-string-rewrite Γ ops x = , drop-spine ops Γ x ------------------------------- open import pretty use-newlines : 𝔹 use-newlines = ~ iszero (cedille-options.options.pretty-print-columns options) && cedille-options.options.pretty-print options doc-to-rope : DOC → rope doc-to-rope = if use-newlines then pretty (cedille-options.options.pretty-print-columns options) else flatten-out strM : Set strM = {ed : exprd} → DOC → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → DOC × ℕ × 𝕃 tag strEmpty : strM strEmpty s n ts Γ pe lr = s , n , ts to-stringh : {ed : exprd} → ⟦ ed ⟧ → strM strM-Γ : (ctxt → strM) → strM strM-Γ f s n ts Γ = f Γ s n ts Γ infixr 2 _>>str_ _>>str_ : strM → strM → strM (m >>str m') s n ts Γ pe lr with m s n ts Γ pe lr (m >>str m') s n ts Γ pe lr | s' , n' , ts' = m' s' n' ts' Γ pe lr strAdd : string → strM strAdd s s' n ts Γ pe lr = s' <> TEXT [[ s ]] , n + string-length s , ts strLine : strM strLine s n ts Γ pe lr = s <> LINE , suc n , ts strNest : ℕ → strM → strM strNest i m s n ts Γ pe lr with m nil n ts Γ pe lr ...| s' , n' , ts' = s <> nest i s' , n' , ts' strFold' : (ℕ → ℕ) → {ed : exprd} → 𝕃 (ℕ × strM) → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → 𝕃 (ℕ × DOC) × ℕ × 𝕃 tag strFold' l [] n ts Γ pe lr = [] , n , ts strFold' l ((i , x) :: []) n ts Γ pe lr with x nil n ts Γ pe lr ...| sₓ , nₓ , tsₓ = [ i , sₓ ] , nₓ , tsₓ strFold' l ((i , x) :: xs) n ts Γ pe lr with x nil n ts Γ pe lr ...| sₓ , nₓ , tsₓ with strFold' l xs (l nₓ) tsₓ Γ pe lr ...| sₓₛ , nₓₛ , tsₓₛ = (i , sₓ) :: sₓₛ , nₓₛ , tsₓₛ strFold : (ℕ → ℕ) → (𝕃 (ℕ × DOC) → DOC) → 𝕃 (ℕ × strM) → strM strFold l f ms s n ts Γ pe lr with strFold' l ms n ts Γ pe lr ...| s' , n' , ts' = s <> f s' , n' , ts' strFoldi : ℕ → (ℕ → ℕ) → (𝕃 DOC → DOC) → 𝕃 strM → strM strFoldi i l f = strNest i ∘' strFold suc (f ∘' map snd) ∘' map (_,_ 0) -- Either fit all args on one line, or give each their own line strList : ℕ → 𝕃 strM → strM strList i = strFoldi i suc λ ms → flatten (spread ms) :<|> stack ms -- Fit as many args on each line as possible -- (n = number of strM args) -- (𝕃 strM so that optional args (nil) are possible) strBreak : (n : ℕ) → fold n strM λ X → ℕ → 𝕃 strM → X strBreak = h [] where h : 𝕃 (ℕ × strM) → (n : ℕ) → fold n strM λ X → ℕ → 𝕃 strM → X h ms (suc n) i m = h (map (_,_ i) m ++ ms) n h ms zero = strFold suc filln $ reverse ms strBracket : char → strM → char → strM strBracket l m r s n ts Γ pe lr with m nil (suc (suc n)) ts Γ pe lr ...| s' , n' , ts' = s <> bracket (char-to-string l) s' (char-to-string r) , suc (suc n') , ts' strΓ' : defScope → var → strM → strM strΓ' ds v m s n ts Γ = let gl = ds iff globalScope v' = if gl then (ctxt.mn Γ # v) else v in m s n ts (record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' (unqual-local v) (if gl then ctxt.ps Γ else []); i = trie-insert (ctxt.i Γ) v' (var-decl , missing-location) }) strΓ : var → strM → strM strΓ x m s n ts Γ = m s n ts (ctxt-var-decl x Γ) ctxt-get-file-id : ctxt → (filename : string) → ℕ ctxt-get-file-id = trie-lookup-else 0 ∘ ctxt.id-map make-loc-tag : ctxt → (filename start-to end-to : string) → (start-from end-from : ℕ) → tag make-loc-tag Γ fn s e = make-tag "loc" (("fn" , json-nat (ctxt-get-file-id Γ fn)) :: ("s" , json-raw [[ s ]]) :: ("e" , json-raw [[ e ]]) :: []) var-loc-tag : ctxt → location → var → 𝕃 (string × 𝕃 tag) var-loc-tag Γ ("missing" , "missing") x = [] var-loc-tag Γ ("" , _) x = [] var-loc-tag Γ (_ , "") x = [] var-loc-tag Γ (fn , pi) x = let fn-tag = "fn" , json-nat (ctxt-get-file-id Γ fn) s-tag = "s" , json-raw [[ pi ]] e-tag = "e" , json-raw [[ posinfo-plus-str pi x ]] in [ "loc" , fn-tag :: s-tag :: e-tag :: [] ] var-tags : ctxt → var → var → 𝕃 (string × 𝕃 tag) var-tags Γ qv uqv = (if qv =string qualif-var Γ uqv then id else ("shadowed" , []) ::_) (var-loc-tag Γ (ctxt-var-location Γ qv) uqv) strAddTags : string → 𝕃 (string × 𝕃 tag) → strM strAddTags sₙ tsₙ sₒ n tsₒ Γ pe lr = let n' = n + string-length sₙ in sₒ <> TEXT [[ sₙ ]] , n' , map (uncurry λ k vs → make-tag k vs n n') tsₙ ++ tsₒ strVar : var → strM strVar v = strM-Γ λ Γ → let uqv = unqual-local v -- $ unqual-all (ctxt-get-qualif Γ) v uqv' = if cedille-options.options.show-qualified-vars options then v else uqv in strAddTags uqv' (var-tags Γ (qualif-var Γ v) uqv) strKvar : var → strM strKvar v = strM-Γ λ Γ → strVar (unqual-all (ctxt.qual Γ) v) -- Only necessary to unqual-local because of module parameters strBvar : var → (class body : strM) → strM strBvar v cm bm = strAdd (unqual-local v) >>str cm >>str strΓ' localScope v bm strMetaVar : var → span-location → strM strMetaVar x (fn , pi , pi') s n ts Γ pe lr = let n' = n + string-length x in s <> TEXT [[ x ]] , n' , make-loc-tag Γ fn pi pi' n n' :: ts {-# TERMINATING #-} term-to-stringh : term → strM type-to-stringh : type → strM kind-to-stringh : kind → strM ctr-to-string : ctr → strM case-to-string : case → strM cases-to-string : cases → strM caseArgs-to-string : case-args → strM → strM params-to-string : params → strM params-to-string' : strM → params → strM params-to-string'' : params → strM → strM optTerm-to-string : maybe term → char → char → 𝕃 strM optClass-to-string : maybe tpkd → strM optType-to-string : maybe char → maybe type → 𝕃 strM arg-to-string : arg → strM args-to-string : args → strM binder-to-string : erased? → string lam-to-string : erased? → string arrowtype-to-string : erased? → string vars-to-string : 𝕃 var → strM bracketL : erased? → string bracketR : erased? → string braceL : erased? → string braceR : erased? → string opacity-to-string : opacity → string hole-to-string : posinfo → strM to-string-ed : {ed : exprd} → ⟦ ed ⟧ → strM to-string-ed{TERM} = term-to-stringh to-string-ed{TYPE} = type-to-stringh to-string-ed{KIND} = kind-to-stringh to-stringh' : {ed : exprd} → expr-side → ⟦ ed ⟧ → strM to-stringh' {ed} lr t {ed'} s n ts Γ mp lr' = elim-Σi (to-string-rewrite Γ options t) λ t' → parens-if (maybe𝔹 mp (λ pe → need-parens t' pe lr)) (to-string-ed t') s n ts Γ (just t') lr where parens-if : 𝔹 → strM → strM parens-if p s = if p then (strAdd "(" >>str strNest 1 s >>str strAdd ")") else s to-stringl : {ed : exprd} → ⟦ ed ⟧ → strM to-stringr : {ed : exprd} → ⟦ ed ⟧ → strM to-stringl = to-stringh' left to-stringr = to-stringh' right to-stringh = to-stringh' neither set-parent : ∀ {ed} → ⟦ ed ⟧ → strM → strM set-parent t m s n ts Γ _ lr = m s n ts Γ (just t) lr apps-to-string : ∀ {ll : 𝔹} → (if ll then term else type) → strM apps-to-string {tt} t with decompose-apps t ...| tₕ , as = set-parent t $ strList 2 (to-stringl tₕ :: map arg-to-string as) apps-to-string {ff} T with decompose-tpapps T ...| Tₕ , as = set-parent T $ strList 2 (to-stringl Tₕ :: map arg-to-string (tmtps-to-args ff as)) lams-to-string : term → strM lams-to-string t = elim-pair (decompose-lams-pretty t) λ xs b → set-parent t $ strFold suc filln $ foldr {B = 𝕃 (ℕ × strM)} (λ {(x , me , oc) r → (1 , (strAdd (lam-to-string me) >>str strAdd " " >>str strBvar x (strNest 4 (optClass-to-string oc)) (strAdd " ."))) :: map (map-snd $ strΓ' localScope x) r}) [ 2 , to-stringr b ] xs where decompose-lams-pretty : term → 𝕃 (var × erased? × maybe tpkd) × term decompose-lams-pretty = h [] where h : 𝕃 (var × erased? × maybe tpkd) → term → 𝕃 (var × erased? × maybe tpkd) × term h acc (Lam me x oc t) = h ((x , me , oc) :: acc) t h acc t = reverse acc , t term-to-stringh (App t t') = apps-to-string (App t t') term-to-stringh (AppE t tT) = apps-to-string (AppE t tT) term-to-stringh (Beta t t') = strBreak 3 0 [ strAdd "β" ] 2 [ strAdd "<" >>str to-stringh (erase t ) >>str strAdd ">" ] 2 [ strAdd "{" >>str to-stringh (erase t') >>str strAdd "}" ] term-to-stringh (Delta _ T t) = strBreak 3 0 [ strAdd "δ" ] 2 [ to-stringl T >>str strAdd " -" ] 1 [ to-stringr t ] term-to-stringh (Hole pi) = hole-to-string pi term-to-stringh (IotaPair t₁ t₂ x Tₓ) = strBreak 3 1 [ strAdd "[ " >>str to-stringh t₁ >>str strAdd "," ] 1 [ to-stringh t₂ ] 1 [ strAdd "@ " >>str strBvar x (strAdd " . ") (strNest (5 + string-length x) (to-stringh Tₓ)) >>str strAdd " ]" ] term-to-stringh (IotaProj t n) = to-stringh t >>str strAdd (if n iff ι1 then ".1" else ".2") term-to-stringh (Lam me x oc t) = lams-to-string (Lam me x oc t) term-to-stringh (LetTm me x T t t') = strBreak 4 1 [ strAdd (bracketL me) >>str strAdd (unqual-local x) ] 5 ( optType-to-string (just ':') T ) 3 [ strAdd "= " >>str to-stringh t >>str strAdd (bracketR me) ] 1 [ strΓ' localScope x (to-stringr t') ] term-to-stringh (LetTp x k T t) = strBreak 4 1 [ strAdd (bracketL NotErased) >>str strAdd (unqual-local x) ] 5 [ strAdd ": " >>str to-stringh k ] 3 [ strAdd "= " >>str to-stringh T >>str strAdd (bracketR NotErased) ] 1 [ strΓ' localScope x (to-stringr t) ] term-to-stringh (Phi tₑ t₁ t₂) = strBreak 3 0 [ strAdd "φ " >>str to-stringl tₑ >>str strAdd " -" ] 2 [ to-stringh t₁ ] 2 [ strAdd "{ " >>str to-stringr (erase t₂) >>str strAdd " }" ] term-to-stringh (Rho tₑ x Tₓ t) = strBreak 3 0 [ strAdd "ρ " >>str to-stringl tₑ ] 1 [ strAdd "@ " >>str strBvar x (strAdd " . ") (to-stringh (erase Tₓ)) ] 1 [ strAdd "- " >>str strNest 2 (to-stringr t) ] term-to-stringh (VarSigma t) = strAdd "ς " >>str to-stringh t term-to-stringh (Var x) = strVar x term-to-stringh (Mu x t ot t~ cs) = strAdd "μ " >>str strBvar x (strAdd " . " >>str strBreak 2 2 [ to-stringl t ] 3 ( optType-to-string (just '@') ot )) (strAdd " " >>str strBracket '{' (cases-to-string cs) '}') term-to-stringh (Sigma ot t oT t~ cs) = strAdd "σ " >>str strBreak 3 2 (maybe-else' {B = 𝕃 strM} ot [] λ t → [ strAdd "<" >>str to-stringh t >>str strAdd ">" ]) 2 [ to-stringl t ] 3 ( optType-to-string (just '@') oT ) >>str strAdd " " >>str strBracket '{' (cases-to-string cs) '}' type-to-stringh (TpArrow T a T') = strBreak 2 2 [ to-stringl T >>str strAdd (arrowtype-to-string a) ] 2 [ to-stringr T' ] type-to-stringh (TpAbs me x tk T) = strBreak 2 3 [ strAdd (binder-to-string me ^ " ") >>str strBvar x (strAdd " : " >>str to-stringl -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringh T) ] type-to-stringh (TpIota x T₁ T₂) = strBreak 2 2 [ strAdd "ι " >>str strBvar x (strAdd " : " >>str to-stringh T₁ >>str strAdd " .") strEmpty ] 2 [ strΓ' localScope x (to-stringh T₂) ] type-to-stringh (TpApp T tT) = apps-to-string (TpApp T tT) type-to-stringh (TpEq t₁ t₂) = strBreak 2 2 [ strAdd "{ " >>str to-stringh (erase t₁) ] 2 [ strAdd "≃ " >>str to-stringh (erase t₂) >>str strAdd " }" ] type-to-stringh (TpHole pi) = hole-to-string pi type-to-stringh (TpLam x tk T) = strBreak 2 3 [ strAdd "λ " >>str strBvar x (strAdd " : " >>str to-stringh -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringr T) ] type-to-stringh (TpVar x) = strVar x kind-to-stringh (KdArrow k k') = strBreak 2 2 [ to-stringl -tk' k >>str strAdd " ➔" ] 2 [ to-stringr k' ] kind-to-stringh (KdAbs x tk k) = strBreak 2 4 [ strAdd "Π " >>str strBvar x (strAdd " : " >>str to-stringl -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringh k) ] kind-to-stringh (KdHole pi) = hole-to-string pi kind-to-stringh KdStar = strAdd "★" hole-to-string pi = strM-Γ λ Γ → strAddTags "●" (var-loc-tag Γ (split-var pi) "●") optTerm-to-string nothing c1 c2 = [] optTerm-to-string (just t) c1 c2 = [ strAdd (𝕃char-to-string (c1 :: [ ' ' ])) >>str to-stringh t >>str strAdd (𝕃char-to-string (' ' :: [ c2 ])) ] optClass-to-string nothing = strEmpty optClass-to-string (just atk) = strAdd " : " >>str to-stringh -tk' atk optType-to-string pfx nothing = [] optType-to-string pfx (just T) = [ maybe-else strEmpty (λ pfx → strAdd (𝕃char-to-string (pfx :: [ ' ' ]))) pfx >>str to-stringh T ] arg-to-string (Arg t) = to-stringr t arg-to-string (ArgE (Ttm t)) = strAdd "-" >>str strNest 1 (to-stringr t) arg-to-string (ArgE (Ttp T)) = strAdd "·" >>str strNest 2 (to-stringr T) args-to-string = set-parent (App (Hole pi-gen) (Hole pi-gen)) ∘ foldr' strEmpty λ t x → strAdd " " >>str arg-to-string t >>str x binder-to-string tt = "∀" binder-to-string ff = "Π" lam-to-string tt = "Λ" lam-to-string ff = "λ" arrowtype-to-string ff = " ➔" arrowtype-to-string tt = " ➾" opacity-to-string opacity-open = "" opacity-to-string opacity-closed = "opaque " vars-to-string [] = strEmpty vars-to-string (v :: []) = strVar v vars-to-string (v :: vs) = strVar v >>str strAdd " " >>str vars-to-string vs ctr-to-string (Ctr x T) = strAdd x >>str strAdd " : " >>str to-stringh T case-to-string (Case x as t _) = strM-Γ λ Γ → let as-f = λ x as → strVar x >>str caseArgs-to-string as (strAdd " ➔ " >>str to-stringr t) in case (env-lookup Γ x , options) of uncurry λ where (just (ctr-def mps T _ _ _ , _ , _)) ced-ops-drop-spine → as-f (unqual-all (ctxt.qual Γ) x) as _ _ → as-f x as cases-to-string = h use-newlines where h : 𝔹 → cases → strM h _ [] = strEmpty h tt (m :: []) = strAdd "| " >>str case-to-string m h tt (m :: ms) = strAdd "| " >>str case-to-string m >>str strLine >>str h tt ms h ff (m :: []) = case-to-string m h ff (m :: ms) = case-to-string m >>str strAdd " | " >>str h ff ms caseArgs-to-string [] m = m caseArgs-to-string (CaseArg _ x (just (Tkk _)) :: as) m = strAdd " ·" >>str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseArg ff x _ :: as) m = strAdd " " >>str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseArg tt x _ :: as) m = strAdd " -" >>str strBvar x strEmpty (caseArgs-to-string as m) braceL me = if me then "{" else "(" braceR me = if me then "}" else ")" bracketL me = if me then "{ " else "[ " bracketR me = if me then " } -" else " ] -" param-to-string : param → (strM → strM) × strM param-to-string (Param me v atk) = strΓ' localScope v , (strAdd (braceL me) >>str strAdd (unqual-local v) >>str strAdd " : " >>str to-stringh -tk' atk >>str strAdd (braceR me)) params-to-string'' ps f = elim-pair (foldr (λ p → uncurry λ g ms → elim-pair (param-to-string p) λ h m → g ∘ h , m :: map h ms) (id , []) ps) λ g ms → strList 2 (strEmpty :: ms) >>str g f params-to-string' f [] = f params-to-string' f (p :: []) = elim-pair (param-to-string p) λ g m → m >>str g f params-to-string' f (p :: ps) = elim-pair (param-to-string p) λ g m → m >>str strAdd " " >>str params-to-string' (g f) ps params-to-string = params-to-string' strEmpty strRun : ctxt → strM → rope strRun Γ m = doc-to-rope $ fst $ m {TERM} NIL 0 [] Γ nothing neither strRunTag : (name : string) → ctxt → strM → tagged-val strRunTag name Γ m with m {TERM} NIL 0 [] Γ nothing neither ...| s , n , ts = name , doc-to-rope s , ts to-stringe : {ed : exprd} → ⟦ ed ⟧ → strM to-stringe = to-stringh ∘' (if cedille-options.options.erase-types options then erase else id) to-string-tag : {ed : exprd} → string → ctxt → ⟦ ed ⟧ → tagged-val to-string-tag name Γ t = strRunTag name Γ (to-stringe t) to-string : {ed : exprd} → ctxt → ⟦ ed ⟧ → rope to-string Γ t = strRun Γ (to-stringh t) tpkd-to-stringe : tpkd → strM tpkd-to-stringe = to-stringe -tk'_ tpkd-to-string : ctxt → tpkd → rope tpkd-to-string Γ atk = strRun Γ (tpkd-to-stringe atk) params-to-string-tag : string → ctxt → params → tagged-val params-to-string-tag name Γ ps = strRunTag name Γ (params-to-string ps)
{ "alphanum_fraction": 0.6075582753, "avg_line_length": 36.9723661485, "ext": "agda", "hexsha": "22ff552eb7ef647791edf5246b1e83a9862ccf14", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/to-string.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/to-string.agda", "max_line_length": 187, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/to-string.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8144, "size": 21407 }
data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + n = n suc m + n = suc ?
{ "alphanum_fraction": 0.5185185185, "avg_line_length": 13.5, "ext": "agda", "hexsha": "ece36b73ddadb65c5055ea9a5da58fcfd96b855e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1541.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1541.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1541.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 108 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.types.Bool open import lib.types.Truncation hiding (Trunc) open import Pointed open import Preliminaries hiding (_^_) module Judgmental_Computation where -- Chapter 6: On the Truncation's Judgmental -- Computation Rule {- Recall the definition of the propositional truncation that we use (Prelims.agda): postulate ∣∣_∣∣ : ∀ {i} → (X : Type i) → Type i tr-is-prop : ∀ {i} {X : Type i} → is-prop (∣∣ X ∣∣) ∣_∣ : ∀ {i} {X : Type i} → X → ∣∣ X ∣∣ tr-rec : ∀ {i j} {X : Type i} {P : Type j} → (is-prop P) → (X → P) → ∣∣ X ∣∣ → P We now redefine the propositional truncation so that rec has the judgmental β rule. We use the library implementation (library.types.Truncation). However, we still only talk about the *propositional* truncation (not the more general n-truncation). This file is independent of (almost) all the other files of the formalisation. -} -- The propositional truncation operator: Trunc : ∀ {i} → Type i → Type i Trunc = lib.types.Truncation.Trunc ⟨-1⟩ -- By definition, the truncation is propositional: h-tr : ∀ {i} → (X : Type i) → is-prop (Trunc X) h-tr X = Trunc-level -- The projection. ∣_∣ : ∀ {i} → {X : Type i} → X → Trunc X ∣_∣ = [_] -- The recursion principle, with judgmental computation. rec : ∀ {i j} → {X : Type i} → {P : Type j} → (is-prop P) → (X → P) → Trunc X → P rec = Trunc-rec -- Similarly the induction principle. ind : ∀ {i j} → {X : Type i} → {P : Trunc X → Type j} → ((z : Trunc X) → is-prop (P z)) → ((x : X) → P ∣ x ∣) → (z : Trunc X) → P z ind = Trunc-elim -- Chapter 6.1: The Interval -- Proposition 6.1.1 interval : Type₀ interval = Trunc Bool i₁ : interval i₁ = ∣ true ∣ i₂ : interval i₂ = ∣ false ∣ seg : i₁ == i₂ seg = prop-has-all-paths (h-tr _) _ _ -- We prove that the interval has the "correct" recursion principle: module interval {i} {Y : Type i} (y₁ y₂ : Y) (p : y₁ == y₂) where g : Bool → Σ Y λ y → y₁ == y g true = (y₁ , idp) g false = (y₂ , p) ĝ : interval → Σ Y λ y → y₁ == y ĝ = rec (contr-is-prop (pathfrom-is-contr _)) g f : interval → Y f = fst ∘ ĝ f-i₁ : f i₁ == y₁ f-i₁ = idp f-i₂ : f i₂ == y₂ f-i₂ = idp f-seg : ap f seg == p f-seg = ap f seg =⟨ idp ⟩ ap (fst ∘ ĝ) seg =⟨ ! (∘-ap _ _ _) ⟩ (ap fst) (ap ĝ seg) =⟨ ap (ap fst) (prop-has-all-paths (contr-is-set (pathfrom-is-contr _) _ _) _ _) ⟩ (ap fst) (pair= p po-aux) =⟨ fst=-β p _ ⟩ p ∎ where po-aux : idp == p [ _==_ y₁ ↓ p ] po-aux = from-transp (_==_ y₁) p (trans-pathfrom p idp) -- Everything again outside the module: interval-rec : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → (interval → Y) interval-rec = interval.f interval-rec-i₁ : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → (interval-rec y₁ y₂ p) i₁ == y₁ interval-rec-i₁ = interval.f-i₁ -- or: λ _ _ _ → idp interval-rec-i₂ : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → (interval-rec y₁ y₂ p) i₂ == y₂ interval-rec-i₂ = interval.f-i₂ -- or: λ _ _ _ → idp interval-rec-seg : ∀ {i} → {Y : Type i} → (y₁ y₂ : Y) → (p : y₁ == y₂) → ap (interval-rec y₁ y₂ p) seg == p interval-rec-seg = interval.f-seg -- Chapter 6.2: Function Extensionality -- Lemma 6.2.1 (Shulman) / Corollary 6.2.2 interval→funext : ∀ {i j} → {X : Type i} → {Y : Type j} → (f g : (X → Y)) → ((x : X) → f x == g x) → f == g interval→funext {X = X} {Y = Y} f g hom = ap i-x seg where x-i : X → interval → Y x-i x = interval-rec (f x) (g x) (hom x) i-x : interval → X → Y i-x i x = x-i x i -- Thus, function extensionality holds automatically; -- i.e. we could derive all lemmata in lib.types.Pi, -- which we choose to import for convenience. open import lib.types.Pi -- Chapter 6.3: Judgmental Factorisation -- We use the definitions from Chapter 5, but we -- re-define them as our definition of "Trunc" has -- chanced factorizes : ∀ {i j} → {X : Type i} → {Y : Type j} → (f : X → Y) → Type (lmax i j) factorizes {X = X} {Y = Y} f = Σ (Trunc X → Y) λ f' → (x : X) → f' ∣ x ∣ == f x -- Proposition 6.3.1 - note the line proof' = λ _ → idp judgmental-factorizer : ∀ {i j} → {X : Type i} → {Y : Type j} → (f : X → Y) → factorizes f → factorizes f judgmental-factorizer {X = X} {Y = Y} f (f₂ , proof) = f' , proof' where g : X → (z : Trunc X) → Σ Y λ y → y == f₂ z g x = λ z → f x , (f x =⟨ ! (proof _) ⟩ f₂ ∣ x ∣ =⟨ ap f₂ (prop-has-all-paths (h-tr _) _ _) ⟩ f₂ z ∎) g-codom-prop : is-prop ((z : Trunc X) → Σ Y λ y → y == f₂ z) g-codom-prop = contr-is-prop (Π-level (λ z → pathto-is-contr _)) ĝ : Trunc X → (z : Trunc X) → Σ Y λ y → y == f₂ z ĝ = rec g-codom-prop g f' : Trunc X → Y f' = λ z → fst (ĝ z z) proof' : (x : X) → f' ∣ x ∣ == f x proof' = λ _ → idp -- Proposition 6.3.2 - we need the induction principle, but with that, -- it is actually simpler than the previous construction. -- Still, it is nearly a replication. factorizes-dep : ∀ {i j} → {X : Type i} → {Y : Trunc X → Type j} → (f : (x : X) → (Y ∣ x ∣)) → Type (lmax i j) factorizes-dep {X = X} {Y = Y} f = Σ ((z : Trunc X) → Y z) λ f₂ → ((x : X) → f x == f₂ ∣ x ∣) judgmental-factorizer-dep : ∀ {i j} → {X : Type i} → {Y : Trunc X → Type j} → (f : (x : X) → Y ∣ x ∣) → factorizes-dep {X = X} {Y = Y} f → factorizes-dep {X = X} {Y = Y} f judgmental-factorizer-dep {X = X} {Y = Y} f (f₂ , proof) = f' , proof' where g : (x : X) → Σ (Y ∣ x ∣) λ y → y == f₂ ∣ x ∣ g x = f x , proof x g-codom-prop : (z : Trunc X) → is-prop (Σ (Y z) λ y → y == f₂ z) g-codom-prop z = contr-is-prop (pathto-is-contr _) ĝ : (z : Trunc X) → Σ (Y z) λ y → y == f₂ z ĝ = ind g-codom-prop g f' : (z : Trunc X) → Y z f' = fst ∘ ĝ proof' : (x : X) → f' ∣ x ∣ == f x proof' x = idp -- Chapter 6.4: An Invertibility Paradox {- The content of this section is partially taken from my formalisation of the contents of my original blog post; see http://homotopytypetheory.org/2013/10/28/ for a discussion and http://red.cs.nott.ac.uk/~ngk/html-trunc-inverse/trunc-inverse.html for a formalisation (the slightly simpler formalization that is mentioned in the thesis ['Finally, we want to remark that te construction of myst doest not need the full strength of Proposition 6.3.1']). -} -- Definition 6.4.1 is-transitive : ∀ {i} → Type i → Type (lsucc i) is-transitive {i} X = (x₁ x₂ : X) → _==_ {A = Type• i} (X , x₁) (X , x₂) -- Example 6.4.2 module dec-trans {i} (X : Type i) (dec : has-dec-eq X) where module _ (x₁ x₂ : X) where -- I define a function X → X that switches x and x₀. switch : X → X switch = λ y → match dec y x₁ withl (λ _ → x₂) withr (λ _ → match dec y x₂ withl (λ _ → x₁) withr (λ _ → y)) -- Rather tedious to prove, but completely straightforward: -- this map is its own inverse. switch-selfinverse : (y : X) → switch (switch y) == y switch-selfinverse y with dec y x₁ switch-selfinverse y | inl _ with dec x₂ x₁ switch-selfinverse y | inl y-x₁ | inl x-x₁ = x-x₁ ∙ ! y-x₁ switch-selfinverse y | inl _ | inr _ with dec x₂ x₂ switch-selfinverse y | inl y-x₁ | inr _ | inl _ = ! y-x₁ switch-selfinverse y | inl _ | inr _ | inr ¬x₂-x₂ = Empty-elim {P = λ _ → x₂ == y} (¬x₂-x₂ idp) switch-selfinverse y | inr _ with dec y x₂ switch-selfinverse y | inr _ | inl _ with dec x₂ x₁ switch-selfinverse y | inr ¬x₂-x₁ | inl y-x₂ | inl x₂-x₁ = Empty-elim (¬x₂-x₁ (y-x₂ ∙ x₂-x₁)) switch-selfinverse y | inr _ | inl _ | inr _ with dec x₁ x₁ switch-selfinverse y | inr _ | inl y-x₂ | inr _ | inl _ = ! y-x₂ switch-selfinverse y | inr _ | inl _ | inr _ | inr ¬x₁-x₁ = Empty-elim {P = λ _ → _ == y} (¬x₁-x₁ idp) switch-selfinverse y | inr _ | inr _ with dec y x₁ switch-selfinverse y | inr ¬y-x₁ | inr _ | inl y-x₁ = Empty-elim {P = λ _ → x₂ == y} (¬y-x₁ y-x₁) switch-selfinverse y | inr _ | inr _ | inr _ with dec y x₂ switch-selfinverse y | inr _ | inr ¬y-x₂ | inr _ | inl y-x₂ = Empty-elim {P = λ _ → x₁ == y} (¬y-x₂ y-x₂) switch-selfinverse y | inr _ | inr _ | inr _ | inr _ = idp switch-maps : switch x₂ == x₁ switch-maps with dec x₂ x₁ switch-maps | inl x₂-x₁ = x₂-x₁ switch-maps | inr _ with dec x₂ x₂ switch-maps | inr _ | inl _ = idp switch-maps | inr _ | inr ¬x-x = Empty-elim {P = λ _ → x₂ == x₁} (¬x-x idp) -- switch is an equivalence switch-eq : X ≃ X switch-eq = equiv switch switch switch-selfinverse switch-selfinverse -- X is transitive: is-trans : is-transitive X is-trans x₁ x₂ = pair= (ua X-X) x₁-x₂ where X-X : X ≃ X X-X = switch-eq x₂ x₁ x₁-x₂ : PathOver (idf (Type i)) (ua X-X) x₁ x₂ x₁-x₂ = ↓-idf-ua-in X-X (switch-maps x₂ x₁) -- Example 6.4.2 addendum: ℕ is transitive. -- (Recall that we have defined _+_ ourselves, -- so that it is defined by recursion on the -- second argument - this is not important -- here, but it is the reason why we hide _+_.) open import lib.types.Nat hiding (_+_) ℕ-trans : is-transitive ℕ ℕ-trans = dec-trans.is-trans ℕ ℕ-has-dec-eq -- Example 6.4.3 -- (Note that this does not need the univalence axiom) -- Preparation path-trans-aux : ∀ {i} → (X : Type i) → (x₁ x₂ x₃ : X) → (x₂ == x₃) → (p₁₂ : x₁ == x₂) → (p₁₃ : x₁ == x₃) → _==_ {A = Type• i} ((x₁ == x₂) , p₁₂) ((x₁ == x₃) , p₁₃) path-trans-aux X x₁ .x₁ .x₁ p idp idp = idp -- The proposition of Example 6.4.3 path-trans : ∀ {i} → (X : Type i) → (x₁ x₂ : X) → is-transitive (x₁ == x₂) path-trans X x₁ x₂ = path-trans-aux X x₁ x₂ x₂ idp -- In particular, loop spaces are transitive. -- To show this, we choose postcomposition here - -- whether the function exponentiation operator is more -- convenient to use with pre- or postcomposition depends -- on the concrete case. infix 10 _^_ _^_ : ∀ {i} {A : Set i} → (A → A) → ℕ → A → A f ^ 0 = idf _ f ^ S n = f ∘ (f ^ n) loop-trans : ∀ {i} → (X : Type• i) → (n : ℕ) → is-transitive (fst ((Ω ^ (S n)) X)) loop-trans {i} X n = path-trans type point point where type : Type i type = fst ((Ω ^ n) X) point : type point = snd ((Ω ^ n) X) -- We omit the formalisation for Examples 6.4.4, 6.4.5, -- as they would require us to define -- (or import) groups / are not essential -- Finally: Theorem 6.4.6, the myst paradoxon -- We need some preparations. module constr-myst {i} (X : Type i) (x₀ : X) (t : is-transitive X) where f : X → Type• i f x = (X , x) f'' : Trunc X → Type• i f'' _ = (X , x₀) f-fact : factorizes f f-fact = f'' , (λ x → t x₀ x) f' : Trunc X → Type• i f' = fst (judgmental-factorizer f f-fact) -- the myst function: myst : (z : Trunc X) → fst (f' z) myst = snd ∘ f' check : (x : X) → myst ∣ x ∣ == x check x = idp myst-∣_∣-is-id : myst ∘ ∣_∣ == idf X myst-∣_∣-is-id = λ= λ x → idp -- Let us do Myst explicitly for ℕ: open import lib.types.Nat myst-ℕ = constr-myst.myst ℕ 0 (dec-trans.is-trans ℕ ℕ-has-dec-eq) myst-∣_∣-is-id : (n : ℕ) → myst-ℕ ∣ n ∣ == n myst-∣_∣-is-id n = idp test : myst-ℕ ∣ 17 ∣ == 17 test = idp
{ "alphanum_fraction": 0.5580687255, "avg_line_length": 31.4931506849, "ext": "agda", "hexsha": "a35994cdf4951beb29619e811b7acec5ff182d2c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/thesis/Judgmental_Computation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/thesis/Judgmental_Computation.agda", "max_line_length": 115, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/thesis/Judgmental_Computation.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 4417, "size": 11495 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Relation.Binary.Equality where open import Light.Library.Relation.Binary using (Binary ; SelfBinary) open import Light.Library.Relation using (Base) open import Light.Variable.Levels open import Light.Level using (Setω) open import Light.Variable.Sets -- Binary relation wrapper for equality. (Purely conventional.) -- (To facilitate instance lookup.) record Equality ⦃ base : Base ⦄ (𝕒 : Set aℓ) (𝕓 : Set bℓ) : Setω where constructor wrap field relation : Binary 𝕒 𝕓 open Binary relation using () renaming (are to _≈_) public SelfEquality : ∀ ⦃ base : Base ⦄ → Set aℓ → Setω SelfEquality 𝕒 = Equality 𝕒 𝕒 open Equality ⦃ ... ⦄ using (_≈_) public private module Eq = Equality ⦃ ... ⦄ relation : ∀ (𝕒 : Set aℓ) (𝕓 : Set bℓ) ⦃ base : Base ⦄ ⦃ equals : Equality 𝕒 𝕓 ⦄ → Binary 𝕒 𝕓 relation _ _ = Eq.relation self‐relation : ∀ (𝕒 : Set aℓ) ⦃ base : Base ⦄ ⦃ equals : SelfEquality 𝕒 ⦄ → SelfBinary 𝕒 self‐relation _ = Eq.relation
{ "alphanum_fraction": 0.6967680608, "avg_line_length": 35.0666666667, "ext": "agda", "hexsha": "76c24abb18aebabb13c991014ab2d7da30b682a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Relation/Binary/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Relation/Binary/Equality.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Relation/Binary/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 344, "size": 1052 }
module Oscar.Category.Semifunctor where open import Oscar.Category.Setoid open import Oscar.Category.Semigroupoid open import Oscar.Level module _ {𝔬₁ 𝔪₁ 𝔮₁} (semigroupoid₁ : Semigroupoid 𝔬₁ 𝔪₁ 𝔮₁) {𝔬₂ 𝔪₂ 𝔮₂} (semigroupoid₂ : Semigroupoid 𝔬₂ 𝔪₂ 𝔮₂) where private module 𝔊₁ = Semigroupoid semigroupoid₁ private module 𝔊₂ = Semigroupoid semigroupoid₂ -- record IsSemifunctor -- (μ : 𝔊₁.⋆ → 𝔊₂.⋆) -- (𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y) -- : Set (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂) where -- field -- extensionality : ∀ {x y} {f₁ f₂ : x 𝔊₁.↦ y} → f₁ ≋ f₂ → 𝔣 f₁ ≋ 𝔣 f₂ -- distributivity : ∀ {x y} (f : x 𝔊₁.↦ y) {z} (g : y 𝔊₁.↦ z) → 𝔣 (g 𝔊₁.∙ f) ≋ 𝔣 g 𝔊₂.∙ 𝔣 f -- open IsSemifunctor ⦃ … ⦄ public -- record Semifunctor 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ : Set (lsuc (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂)) where -- field -- semigroupoid₁ : Semigroupoid 𝔬₁ 𝔪₁ 𝔮₁ -- semigroupoid₂ : Semigroupoid 𝔬₂ 𝔪₂ 𝔮₂ -- module 𝔊₁ = Semigroupoid semigroupoid₁ -- module 𝔊₂ = Semigroupoid semigroupoid₂ -- field -- μ : 𝔊₁.⋆ → 𝔊₂.⋆ -- 𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y -- ⦃ isSemifunctor ⦄ : IsSemifunctor semigroupoid₁ semigroupoid₂ μ 𝔣 -- record Semigroupoids 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ : Set (lsuc (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂)) where -- constructor _,_ -- field -- semigroupoid₁ : Semigroupoid 𝔬₁ 𝔪₁ 𝔮₁ -- semigroupoid₂ : Semigroupoid 𝔬₂ 𝔪₂ 𝔮₂ -- module 𝔊₁ = Semigroupoid semigroupoid₁ -- module 𝔊₂ = Semigroupoid semigroupoid₂ -- module _ -- {𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂} (semigroupoids : Semigroupoids 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂) -- where -- open Semigroupoids semigroupoids -- record IsSemifunctor -- {μ : 𝔊₁.⋆ → 𝔊₂.⋆} -- (𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y) -- : Set (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂) where -- instance _ = 𝔊₁.IsSetoid↦ -- instance _ = 𝔊₂.IsSetoid↦ -- field -- extensionality : ∀ {x y} {f₁ f₂ : x 𝔊₁.↦ y} → f₁ ≋ f₂ → 𝔣 f₁ ≋ 𝔣 f₂ -- distributivity : ∀ {x y} (f : x 𝔊₁.↦ y) {z} (g : y 𝔊₁.↦ z) → 𝔣 (g 𝔊₁.∙ f) ≋ 𝔣 g 𝔊₂.∙ 𝔣 f -- open IsSemifunctor ⦃ … ⦄ public -- record Semifunctor 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ : Set (lsuc (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂)) where -- constructor _,_ -- field -- semigroupoids : Semigroupoids 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ -- open Semigroupoids semigroupoids public -- field -- {μ} : 𝔊₁.⋆ → 𝔊₂.⋆ -- 𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y -- ⦃ isSemifunctor ⦄ : IsSemifunctor semigroupoids 𝔣 -- open IsSemifunctor isSemifunctor public
{ "alphanum_fraction": 0.5855745721, "avg_line_length": 31.4615384615, "ext": "agda", "hexsha": "7b0d7221af543af64988cd6300258ef7a7ed77fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/Semifunctor.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/Semifunctor.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/Semifunctor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1385, "size": 2454 }
module Issue561 where open import Agda.Builtin.Bool open import Issue561.Core primitive primIsDigit : Char → Bool main : IO Bool main = return true
{ "alphanum_fraction": 0.7662337662, "avg_line_length": 12.8333333333, "ext": "agda", "hexsha": "a786291bb46b20c1d31857ebee6f1ef39a4d4169", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue561.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue561.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue561.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 154 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module Extensions where ExtensionOf : ∀ {ℓ} {A B : Type ℓ} (f : A → B) (P : B → Type ℓ) (φ : (a : A) → P (f a)) → Type ℓ ExtensionOf {A = A} {B = B} f P φ = Σ (Π B P) (λ ψ → (a : A) → ψ (f a) == φ a) syntax ExtensionOf f P φ = ⟨ P ⟩⟨ φ ↗ f ⟩ path-extension : ∀ {ℓ} {A B : Type ℓ} {f : A → B} {P : B → Type ℓ} {φ : (a : A) → P (f a)} (e₀ e₁ : ⟨ P ⟩⟨ φ ↗ f ⟩) → ⟨ (λ b → fst e₀ b == fst e₁ b) ⟩⟨ (λ a → snd e₀ a ∙ ! (snd e₁ a)) ↗ f ⟩ ≃ (e₀ == e₁) path-extension {f = f} (ψ₀ , ε₀) (ψ₁ , ε₁) = equiv to {!!} {!!} {!!} where to : ExtensionOf f (λ b → ψ₀ b == ψ₁ b) (λ a → ε₀ a ∙ ! (ε₁ a)) → (ψ₀ , ε₀) == (ψ₁ , ε₁) to (α , β) = pair= (λ= α) {!!} from : (ψ₀ , ε₀) == (ψ₁ , ε₁) → ExtensionOf f (λ b → ψ₀ b == ψ₁ b) (λ a → ε₀ a ∙ ! (ε₁ a)) from p = {!!} -- from : (e₀ == e₁) → ⟨ (λ b → fst e₀ b == fst e₁ b) ⟩⟨ (λ a → snd e₀ a ∙ ! (snd e₁ a)) ↗ f ⟩ -- from = {!!} -- Definition equiv_path_extension `{Funext} {A B : Type} {f : A -> B} -- {P : B -> Type} {d : forall x:A, P (f x)} -- (ext ext' : ExtensionAlong f P d) -- : (ExtensionAlong f -- (fun y => pr1 ext y = pr1 ext' y) -- (fun x => pr2 ext x @ (pr2 ext' x)^)) -- <~> ext = ext'.
{ "alphanum_fraction": 0.3787561146, "avg_line_length": 40.8857142857, "ext": "agda", "hexsha": "4448d1c96c7342ba91e56169d5a9b6410a3ecc93", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/Extensions.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/Extensions.agda", "max_line_length": 104, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/Extensions.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 603, "size": 1431 }
open import IO using ( run ; putStrLn ) open import Web.URI using ( AURI ; toString ; http://_ ; _/_ ) module Web.URI.Examples.HelloWorld where hw : AURI hw = http://"example.com"/"hello"/"world" main = run (putStrLn (toString hw))
{ "alphanum_fraction": 0.6837606838, "avg_line_length": 26, "ext": "agda", "hexsha": "40afeb87ae33394f2cb1c9930ab6919cb6f8f160", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-uri", "max_forks_repo_path": "src/Web/URI/Examples/HelloWorld.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-uri", "max_issues_repo_path": "src/Web/URI/Examples/HelloWorld.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-uri", "max_stars_repo_path": "src/Web/URI/Examples/HelloWorld.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z", "num_tokens": 65, "size": 234 }
{- Verified Red-Black Trees Toon Nolten Based on Chris Okasaki's "Red-Black Trees in a Functional Setting" where he uses red-black trees to implement sets. Invariants ---------- 1. No red node has a red parent 2. Every Path from the root to an empty node contains the same number of black nodes. (Empty nodes are considered black) -} module RedBlackTree where open import Data.Bool using (Bool; true; false) renaming (T to So; not to ¬) _⇒_ : ∀{ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _ P ⇒ T = {{p : P}} → T infixr 3 _⇒_ if_then_else_ : ∀{ℓ}{A : Set ℓ} b → (So b ⇒ A) → (So (¬ b) ⇒ A) → A if true then t else f = t if false then t else f = f open import Data.Nat hiding (_<_; _≤_; _≟_; compare) renaming (decTotalOrder to ℕ-DTO) open import Level hiding (suc) open import Relation.Binary hiding (_⇒_) open import Data.Sum using (_⊎_) renaming (inj₁ to h+0; inj₂ to h+1) open import Data.Product using (Σ; Σ-syntax; _,_; proj₁; proj₂) module RBTree {a ℓ}(order : StrictTotalOrder a ℓ ℓ) where open module sto = StrictTotalOrder order A = Carrier pattern LT = tri< _ _ _ pattern EQ = tri≈ _ _ _ pattern GT = tri> _ _ _ _≤_ = compare data Color : Set where R B : Color _=ᶜ_ : Color → Color → Bool R =ᶜ R = true B =ᶜ B = true _ =ᶜ _ = false Height = ℕ data Tree : Color → Height → Set a where E : Tree B 0 R : ∀{h} → Tree B h → A → Tree B h → Tree R h B : ∀{cl cr h} → Tree cl h → A → Tree cr h → Tree B (suc h) data IRTree : Height → Set a where IRl : ∀{h} → Tree R h → A → Tree B h → IRTree h IRr : ∀{h} → Tree B h → A → Tree R h → IRTree h data OutOfBalance : Height → Set a where _◂_◂_ : ∀{c h} → IRTree h → A → Tree c h → OutOfBalance h _▸_▸_ : ∀{c h} → Tree c h → A → IRTree h → OutOfBalance h data Treeish : Color → Height → Set a where RB : ∀{c h} → Tree c h → Treeish c h IR : ∀{h} → IRTree h → Treeish R h -- Insertion balance : ∀{h} → OutOfBalance h → Tree R (suc h) balance (IRl (R a x b) y c ◂ z ◂ d) = R (B a x b) y (B c z d) balance (IRr a x (R b y c) ◂ z ◂ d) = R (B a x b) y (B c z d) balance (a ▸ x ▸ IRl (R b y c) z d) = R (B a x b) y (B c z d) balance (a ▸ x ▸ IRr b y (R c z d)) = R (B a x b) y (B c z d) blacken : ∀{c h} → (Treeish c h) → (if c =ᶜ B then Tree B h else Tree B (suc h)) blacken (RB E) = E blacken (RB (R l b r)) = (B l b r) blacken (RB (B l b r)) = (B l b r) blacken (IR (IRl l b r)) = (B l b r) blacken (IR (IRr l b r)) = (B l b r) ins : ∀{c h} → (a : A) → (t : Tree c h) → Σ[ c' ∈ Color ] (if c =ᶜ B then (Tree c' h) else (Treeish c' h)) ins a E = R , R E a E -- ins a (R _ b _) with a ≤ b ins a (R l _ _) | LT with ins a l ins _ (R _ b r) | LT | R , t = R , IR (IRl t b r) ins _ (R _ b r) | LT | B , t = R , (RB (R t b r)) ins _ (R l b r) | EQ = R , RB (R l b r) ins a (R _ _ r) | GT with ins a r ins _ (R l b _) | GT | R , t = R , (IR (IRr l b t)) ins _ (R l b _) | GT | B , t = R , (RB (R l b t)) -- ins a (B _ b _) with a ≤ b ins a (B l _ _) | LT with ins a l ins _ (B {R} _ b r) | LT | c , RB t = B , B t b r ins _ (B {R} _ b r) | LT | .R , IR t = R , balance (t ◂ b ◂ r) ins _ (B {B} _ b r) | LT | c , t = B , B t b r ins _ (B l b r) | EQ = B , B l b r ins a (B _ _ r) | GT with ins a r ins _ (B {cr = R} l b _) | GT | c , RB t = B , B l b t ins _ (B {cr = R} l b _) | GT | .R , IR t = R , balance (l ▸ b ▸ t) ins _ (B {cr = B} l b _) | GT | c , t = B , B l b t insert : ∀{c h} → (a : A) → (t : Tree c h) → Tree B h ⊎ Tree B (suc h) insert {R} a t with ins a t ... | R , t' = h+1 (blacken t') ... | B , t' = h+0 (blacken t') insert {B} a t with ins a t ... | R , t' = h+1 (blacken (RB t')) ... | B , t' = h+0 (blacken (RB t')) -- Simple Set Operations set : ∀{c h} → Set _ set {c}{h} = Tree c h empty : set empty = E member : ∀{c h} → (a : A) → set {c}{h} → Bool member a E = false member a (R l b r) with a ≤ b ... | LT = member a l ... | EQ = true ... | GT = member a r member a (B l b r) with a ≤ b ... | LT = member a l ... | EQ = true ... | GT = member a r -- Usage example open import Relation.Binary.Properties.DecTotalOrder ℕ-DTO ℕ-STO : StrictTotalOrder _ _ _ ℕ-STO = strictTotalOrder open module rbtree = RBTree ℕ-STO t0 : Tree B 2 t0 = B (R (B E 1 E) 2 (B (R E 3 E) 5 (R E 7 E))) 8 (B E 9 (R E 10 E)) t1 : Tree B 3 t1 = B (B (B E 1 E) 2 (B E 3 E)) 4 (B (B E 5 (R E 7 E)) 8 (B E 9 (R E 10 E))) t2 : Tree B 3 t2 = B (B (B E 1 E) 2 (B E 3 E)) 4 (B (R (B E 5 E) 6 (B E 7 E)) 8 (B E 9 (R E 10 E))) open import Relation.Binary.PropositionalEquality t1≡t0+4 : h+1 t1 ≡ insert 4 t0 t1≡t0+4 = refl t2≡t1+6 : h+0 t2 ≡ insert 6 t1 t2≡t1+6 = refl
{ "alphanum_fraction": 0.5191109265, "avg_line_length": 27.8265895954, "ext": "agda", "hexsha": "e4d8ad9a4999c447371b15ca8e2553eab343265a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "toonn/sciartt", "max_forks_repo_path": "RedBlackTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "toonn/sciartt", "max_issues_repo_path": "RedBlackTree.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "toonn/sciartt", "max_stars_repo_path": "RedBlackTree.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2065, "size": 4814 }
-- Andreas, 2015-03-26 -- Andrea discovered that unfold for Lists is typable with sized types -- (and termination checks). -- Dually, fold for Streams should work. Therefore, the restriction -- of coinductive records to recursive records should be lifted. {-# OPTIONS --copatterns #-} open import Common.Size -- StreamF A X i = ∀j<i. A × X j record StreamF (A : Set) (X : Size → Set) (i : Size) : Set where coinductive field head : A tail : ∀{j : Size< i} → X j module F = StreamF record Stream (A : Set) (i : Size) : Set where coinductive field head : A tail : ∀{j : Size< i} → Stream A j module S = Stream module Inlined {A T} (f : ∀ i → StreamF A T i → T i) where fix : ∀ i → Stream A i → StreamF A T i F.head (fix i s) = S.head s F.tail (fix i s) {j = j} = f j (fix j (S.tail s {j = j})) module Mutual {A T} (f : ∀ i → StreamF A T i → T i) where mutual fold : ∀ i → Stream A i → T i fold i s = f i (h i s) h : ∀ i → Stream A i → StreamF A T i F.head (h i s) = S.head s F.tail (h i s) {j = j} = fold j (S.tail s {j = j}) module Local where fold : ∀{A T} → (f : ∀ i → StreamF A T i → T i) → ∀ i → Stream A i → T i fold {A} {T} f i s = f i (h i s) where h : ∀ i → Stream A i → StreamF A T i F.head (h i s) = S.head s F.tail (h i s) {j = j} = fold f j (S.tail s {j = j}) -- Unfold for lists -- ListF A X i = ⊤ + ∃j<i. A × X j data ListF (A : Set) (X : Size → Set) (i : Size) : Set where [] : ListF A X i _∷_ : ∀{j : Size< i} (a : A) (xs : X j) → ListF A X i data List (A : Set) (i : Size) : Set where [] : List A i _∷_ : ∀{j : Size< i} (a : A) (xs : List A j) → List A i module With where unfold : ∀{A}{S : Size → Set} → (f : ∀ i → S i → ListF A S i) → ∀ i → S i → List A i unfold f i s with f i s ... | [] = [] ... | _∷_ {j = j} a s' = a ∷ unfold f j s' unfold : ∀{A}{S : Size → Set} → (f : ∀ i → S i → ListF A S i) → ∀ i → S i → List A i unfold {A}{S} f i s = aux (f i s) where aux : ListF A S i → List A i aux [] = [] aux (_∷_ {j = j} a s') = a ∷ unfold f j s'
{ "alphanum_fraction": 0.5132450331, "avg_line_length": 24.5813953488, "ext": "agda", "hexsha": "8614ef3881a0d703abfac4883ec179f6b9bed19b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1470.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1470.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1470.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 835, "size": 2114 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Empty {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Tools.Unit open import Tools.Product -- Validity of the Empty type. Emptyᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ Empty / [Γ] Emptyᵛ [Γ] ⊢Δ [σ] = Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)) , λ _ x₂ → id (Emptyⱼ ⊢Δ) -- Validity of the Empty type as a term. Emptyᵗᵛ : ∀ {Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ ¹ ⟩ Empty ∷ U / [Γ] / Uᵛ [Γ] Emptyᵗᵛ [Γ] ⊢Δ [σ] = let ⊢Empty = Emptyⱼ ⊢Δ [Empty] = Emptyᵣ (idRed:*: (Emptyⱼ ⊢Δ)) in Uₜ Empty (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) [Empty] , (λ x x₁ → Uₜ₌ Empty Empty (idRedTerm:*: ⊢Empty) (idRedTerm:*: ⊢Empty) Emptyₙ Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) [Empty] [Empty] (id (Emptyⱼ ⊢Δ)))
{ "alphanum_fraction": 0.6416938111, "avg_line_length": 38.375, "ext": "agda", "hexsha": "a4de0c9b499b3c37002222f3c3df90bee12f092e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Empty.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 450, "size": 1228 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommMonoid.Instances.FreeComMonoid where open import Cubical.Foundations.Prelude open import Cubical.HITs.FreeComMonoids open import Cubical.Algebra.CommMonoid.Base private variable ℓ : Level FCMCommMonoid : {A : Type ℓ} → CommMonoid ℓ FCMCommMonoid {A = A} = makeCommMonoid {M = FreeComMonoid A} ε _·_ trunc assoc identityᵣ comm
{ "alphanum_fraction": 0.777486911, "avg_line_length": 27.2857142857, "ext": "agda", "hexsha": "5575351eba6225f53953ee80c85f52c29c05a259", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommMonoid/Instances/FreeComMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommMonoid/Instances/FreeComMonoid.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommMonoid/Instances/FreeComMonoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 119, "size": 382 }
module Reduction where import Level open import Data.Empty open import Data.Unit as Unit open import Data.Nat open import Data.List as List renaming ([] to Ø; [_] to [_]L) open import NonEmptyList as NList open import Data.Fin hiding (_+_) open import Data.Vec as Vec renaming ([_] to [_]V; _++_ to _++V_) open import Data.Product as Prod open import Function open import Relation.Binary.PropositionalEquality as PE hiding ([_]) open import Relation.Binary open ≡-Reasoning Rel₀ : Set → Set₁ Rel₀ X = Rel X Level.zero open import Common.Context as Context open import Algebra open Monoid {{ ... }} hiding (refl) open import SyntaxRaw open import Syntax ----------------------------------------------------- ---- Action of types on terms ----------------------------------------------------- PreArrow : RawCtx → Set PreArrow Γ = PreType Ø Γ Ø × PreTerm (∗ ∷ Γ) Ø × PreType Ø Γ Ø Args : TyCtx → Set Args Ø = ⊤ Args (Γ ∷ Θ) = PreArrow Γ × (Args Θ) getArg : ∀ {Θ Γ₁} → TyVar Θ Γ₁ → Args Θ → PreTerm (∗ ∷ Γ₁) Ø getArg zero ((_ , t , _) , ts) = t getArg (succ Γ₁ X) (_ , ts) = getArg X ts projArgDom : ∀ {Θ} → Args Θ → TyCtxMorP Ø Θ projArgDom {Ø} a = tt projArgDom {Γ ∷ Θ} ((A , _) , a) = (Λ A , projArgDom a) projArgCodom : ∀ {Θ} → Args Θ → TyCtxMorP Ø Θ projArgCodom {Ø} a = tt projArgCodom {Γ ∷ Θ} ((_ , _ , B) , a) = (Λ B , projArgDom a) -- | Extend arguments by the identity on a given type. extArgs : ∀ {Θ Γ} → Args Θ → PreType Ø Γ Ø → Args (Γ ∷ Θ) extArgs a A = ((A , varPO zero , A) , a) -- | Domain of ⟪ A ⟫(φ) for arguments φ : Args Θ. ⟪_⟫₀ : ∀ {Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → Args Θ → PreType Ø (Γ₂ ++ Γ₁) Ø ⟪_⟫₀ {Γ₁ = Γ₁} {Γ₂} C φ = substTy (weakenPT' Γ₂ C) (projArgDom φ) §ₜ ctxProjP' Ø Γ₂ Γ₁ -- | Functorial action of a type A on terms. -- We are given one term with its types for domain and codomain for each -- variable in Θ. This is ensured by Args Θ. The result is then a term, which -- can be thought of as ⟪A⟫(φ) : ⟪A⟫₀(φ) → ⟪A⟫₁(φ). -- Otherwise, ⟪A⟫ is just defined by induction in A, as in the paper. -- Note: For now, we have to declare this as non-terminating, as the induction -- is not obviously terminating for Agda. This should be fixable through sized -- types. tyAction : ∀ {Θ Γ₁ Γ₂} → (A : Raw Θ Γ₁ Γ₂) → DecentType A → Args Θ → PreTerm (∗ ∷ Γ₂ ++ Γ₁) Ø tyAction ._ (DT-⊤ Θ Γ) ts = varPO zero tyAction ._ (DT-tyVar Γ₁ X) ts = weakenPO'' Γ₁ Ø (getArg X ts) tyAction ._ (DT-inst {Θ} {Γ₁} {Γ₂} {B} A t p q) ts = substP (tyAction A p ts) f where -- | Substitute t for the second variable, i.e., f = (id, t, x). f : CtxMorP (∗ ∷ Γ₂ ++ Γ₁) (∗ ∷ Γ₂ ↑ B ++ Γ₁) f = subst (Vec (PreTerm (∗ ∷ Γ₂ ++ Γ₁) Ø)) -- (CtxMorP (∗ ∷ Γ₂ ++ Γ₁)) (cong suc r) (varPO zero ∷ (ctxProjP' [ ∗ ]L Γ₂ Γ₁) ++V [ weakenPO' (∗ ∷ Γ₂) (t , q) ]V ++V ctxProjP Γ₁ (∗ ∷ Γ₂) ) where r : length' Γ₂ + suc (length' Γ₁) ≡ length' (Γ₂ ↑ B ++ Γ₁) r = begin length' Γ₂ + suc (length' Γ₁) ≡⟨ refl ⟩ length' Γ₂ + length' (B ∷ Γ₁) ≡⟨ PE.sym (length'-hom Γ₂ (B ∷ Γ₁)) ⟩ length' (Γ₂ ++ B ∷ Γ₁) ≡⟨ mvVar-length Γ₁ Γ₂ B ⟩ length' (Γ₂ ↑ B ++ Γ₁) ∎ tyAction ._ (DT-paramAbstr {Θ} {Γ₂} {B} Γ₁ {A} p) ts = subst (λ u → PreTerm u Ø) (cong (_∷_ ∗) (mvVar Γ₁ Γ₂ B)) (tyAction A p ts) tyAction ._ (DT-fp {Θ} {Γ₂} Γ₁ μ D D-dec) ts = weakenPO'' Γ₁ Ø (rec Γ₂ (∗ ∷ Γ₂) (gs D D-dec 0) §ₘ ctxidP (∗ ∷ Γ₂)) where RB : PreType Ø Γ₂ Ø RB = subst (λ u → PreType Ø u Ø) (proj₂ identity Γ₂) (⟪ fpPT {Θ} {Γ₂} Ø μ (mkFpDataP {D = D} D-dec) ⟫₀ ts) -- Construction of gₖ = αₖ id (⟪ Bₖ ⟫ (ts, id)) mkBase : ∀{Γ'} (f : CtxMor Raw Γ' Γ₂) (A : Raw (Γ₂ ∷ Θ) Γ' Ø) → DecentCtxMor f → DecentType A → ℕ → Σ RawCtx (λ Γ' → PreType [ Γ₂ ]L Γ' Ø × CtxMorP Γ' Γ₂ × PreTerm (∗ ∷ Γ') Ø) mkBase {Γ'} g M g-dec M-dec k = (Γ' , C , mkCtxMorP g-dec , αₖ §ₘ r) where A : PreType (Γ₂ ∷ Θ) Γ' Ø A = mkPreType M-dec αₖ : PreTerm (∗ ∷ Γ') (∗ ∷ Γ') αₖ = α _ Γ' ∗ k r : CtxMorP (∗ ∷ Γ') (∗ ∷ Γ') r = tyAction M M-dec (extArgs ts RB) ∷ ctxProjP Γ' [ ∗ ]L C : PreType [ Γ₂ ]L Γ' Ø C = substTy A (tyVarPT Ø zero , weakenTyCtxMor₁ Γ₂ (projArgDom ts)) -- Construct the g₁, ..., gₙ used in the recursion gs : (D : FpData Raw Θ Γ₂) → DecentFpData D → ℕ → FpMapDataP Γ₂ gs [ Γ' , f , M ] (f-dec , M-dec) k = [ mkBase f M f-dec M-dec k ] gs ((Γ' , f , M) ∷ D) ((f-dec , M-dec) , D-dec) k = mkBase f M f-dec M-dec k ∷ gs D D-dec (suc k) tyAction ._ (DT-fp {Θ} {Γ₂} Γ₁ ν D D-dec) ts = weakenPO'' Γ₁ Ø (corec Γ₂ (∗ ∷ Γ₂) (gs D D-dec 0) §ₘ ctxidP (∗ ∷ Γ₂)) where -- Construction of gₖ = αₖ id (⟪ Bₖ ⟫ (ts, id)) mkBase : ∀{Γ'} (x : CtxMor Raw Γ' Γ₂ × Raw (Γ₂ ∷ Θ) Γ' Ø) → (f : DecentCtxMor (proj₁ x)) → (q : DecentType (proj₂ x)) → ℕ → Σ RawCtx (λ Γ' → PreType [ Γ₂ ]L Γ' Ø × CtxMorP Γ' Γ₂ × PreTerm (∗ ∷ Γ') Ø) mkBase {Γ'} (g , M) g-dec M-dec k = (Γ' , C , mkCtxMorP g-dec , f) where A : PreType (Γ₂ ∷ Θ) Γ' Ø A = mkPreType M-dec ξₖ : PreTerm (∗ ∷ Γ') (∗ ∷ Γ') ξₖ = ξ _ Γ' ∗ k RA : PreType Ø Γ₂ Ø RA = subst (λ u → PreType Ø u Ø) (proj₂ identity Γ₂) (⟪ fpPT {Θ} {Γ₂} Ø μ (mkFpDataP {D = D} D-dec) ⟫₀ ts) f : PreTerm (∗ ∷ Γ') Ø f = substPO (tyAction M M-dec (extArgs ts RA)) ((ξₖ §ₘ ctxidP (∗ ∷ Γ')) ∷ weakenCtxMorP (ctxidP Γ')) C : PreType [ Γ₂ ]L Γ' Ø C = substTy A (tyVarPT Ø zero , weakenTyCtxMor₁ Γ₂ (projArgDom ts)) -- Construct the g₁, ..., gₙ used in the recursion gs : (D : FpData Raw Θ Γ₂) → DecentFpData D → ℕ → FpMapDataP Γ₂ gs [ Γ' , x ] (f , p) k = [ mkBase x f p k ] gs ((Γ' , x) ∷ D₁) ((f , q) , p₁) k = mkBase x f q k ∷ gs D₁ p₁ (suc k) ⟪_⟫ : ∀ {Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → Args Θ → PreTerm (∗ ∷ Γ₂ ++ Γ₁) Ø ⟪ A , A-dec ⟫ = tyAction A A-dec ----------------------------------------------------- ---- Reduction relation on pre-types and pre-terms ----------------------------------------------------- getRecCtx : ∀{Γ} → (D : FpMapDataP Γ) → Pos D → RawCtx getRecCtx [ x ] _ = proj₁ x getRecCtx (x ∷ D) zero = proj₁ x getRecCtx (x ∷ D) (suc p) = getRecCtx D p getRecMor : ∀{Γ} (D : FpMapDataP Γ) (p : Pos D) → PreTerm (∗ ∷ getRecCtx D p) Ø getRecMor [ Γ' , A , f , t ] _ = t getRecMor ((Γ' , A , f , t) ∷ D) zero = t getRecMor (x ∷ D) (suc p) = getRecMor D p getRecTy : ∀{Γ} (D : FpMapDataP Γ) (p : Pos D) → PreType [ Γ ]L (getRecCtx D p) Ø getRecTy [ x ] _ = proj₁ (proj₂ x) getRecTy (x ∷ D) zero = proj₁ (proj₂ x) getRecTy (x ∷ D) (suc p) = getRecTy D p getRecSubst : ∀{Γ} (D : FpMapDataP Γ) (p : Pos D) → CtxMorP (getRecCtx D p) Γ getRecSubst [ Γ' , A , f , t ] _ = f getRecSubst ((Γ' , A , f , t) ∷ D) zero = f getRecSubst (x ∷ D) (suc p) = getRecSubst D p infix 0 _≻_ -- | Contraction for terms data _≻_ : {Γ₁ Γ₂ : RawCtx} → PreTerm Γ₁ Γ₂ → PreTerm Γ₁ Γ₂ → Set where contract-iter : (Γ Δ : RawCtx) (D : FpMapDataP Γ) (C : PreType Ø Ø Γ) (p : Pos D) (τ : CtxMorP Δ (getRecCtx D p)) (u : PreTerm Δ Ø) → rec Γ Δ D §ₘ (α Δ (getRecCtx D p) ∗ (toℕ p) §ₘ' τ §ₒ u) ∷ getRecSubst D p • τ ≻ (getRecMor D p) ↓[ (⟪ getRecTy D p ⟫ ( ( fpPT Γ μ (getFpData D) §ₜ ctxidP Γ , rec Γ (∗ ∷ Γ) D §ₘ ctxidP _ , (weakenPT'' Γ C) §ₜ ctxidP Γ) , tt)) ∷ ctxProjP (getRecCtx D p) [ ∗ ]L ] ↓[ u ∷ τ ] contract-coiter : (Γ Δ : RawCtx) (D : FpMapDataP Γ) (C : PreType Ø Ø Γ) (p : Pos D) (τ : CtxMorP Δ (getRecCtx D p)) (u : PreTerm Δ Ø) → ξ Δ (getRecCtx D p) ∗ (toℕ p) §ₘ' τ §ₒ corec Γ Δ D §ₘ u ∷ (getRecSubst D p • τ) ≻ (⟪ getRecTy D p ⟫ ( (weakenPT'' Γ C §ₜ ctxidP Γ , corec Γ (∗ ∷ Γ) D §ₘ ctxidP _ , fpPT Γ ν (getFpData D) §ₜ ctxidP Γ) , tt) ↓[ (getRecMor D p) ∷ ctxProjP (getRecCtx D p) [ ∗ ]L ]) ↓[ u ∷ τ ] -- | Lift term reduction to fixed point data data _∼>_ : {Γ : RawCtx} → Rel₀ (FpMapDataP Γ) -- | Compatible closure of contraction data _⟶_ : {Γ₁ Γ₂ : RawCtx} → Rel₀ (PreTerm Γ₁ Γ₂) where contract : {Γ₁ Γ₂ : RawCtx} (t₁ t₂ : PreTerm Γ₁ Γ₂) → t₁ ≻ t₂ → t₁ ⟶ t₂ inst-clos₁ : ∀ {Γ₁ Γ₂ A} (s₁ s₂ : PreTerm Γ₁ (Γ₂ ↑ A)) (t : PreTerm Γ₁ Ø) → s₁ ⟶ s₂ → instPO {Γ₁} {Γ₂} s₁ t ⟶ instPO s₂ t inst-clos₂ : ∀ {Γ₁ Γ₂ A} (s : PreTerm Γ₁ (Γ₂ ↑ A)) (t₁ t₂ : PreTerm Γ₁ Ø) → t₁ ⟶ t₂ → instPO {Γ₁} {Γ₂} s t₂ ⟶ instPO s t₂ grec-clos : (Γ : RawCtx) (Δ : RawCtx) (D D' : FpMapDataP Γ) (ρ : FP) → D ∼> D' → grec Γ Δ D ρ ⟶ grec Γ Δ D' ρ data _∼>_ where single-clos : {Γ : RawCtx} (Γ' : RawCtx) (A : PreType [ Γ ]L Γ' Ø) (f : CtxMorP Γ' Γ) (M₁ M₂ : PreTerm (∗ ∷ Γ') Ø) → M₁ ⟶ M₂ → [ Γ' , A , f , M₁ ] ∼> [ Γ' , A , f , M₂ ] step-clos₁ : {Γ : RawCtx} (Γ' : RawCtx) (A : PreType [ Γ ]L Γ' Ø) (f : CtxMorP Γ' Γ) (M₁ M₂ : PreTerm (∗ ∷ Γ') Ø) (D : FpMapDataP Γ) → M₁ ⟶ M₂ → ((Γ' , A , f , M₁) ∷ D) ∼> ((Γ' , A , f , M₂) ∷ D) step-clos₂ : {Γ : RawCtx} (Γ' : RawCtx) (A : PreType [ Γ ]L Γ' Ø) (f : CtxMorP Γ' Γ) (M : PreTerm (∗ ∷ Γ') Ø) (D₁ D₂ : FpMapDataP Γ) → D₁ ∼> D₂ → ((Γ' , A , f , M) ∷ D₁) ∼> ((Γ' , A , f , M) ∷ D₂) -- | β-reduction for parameter abstraction/instantiation data _⟶ₚ_ : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} → Rel₀ (PreType Θ Γ₁ Γ₂) where β-red : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) {A : U} (B : PreType Θ (A ∷ Γ₁) Γ₂) (t : PreTerm Γ₁ Ø) → instPT (paramAbstrPT Γ₁ B) t ⟶ₚ substPT B (t ∷ (ctxidP Γ₁)) -- | Lift type reductions to fixed point data data _∼>ₜ_ : {Θ : TyCtx} {Γ : RawCtx} → Rel₀ (FpDataP Θ Γ) -- | Reduction on types. This is either a β-reduction for parameters, -- a reduction of a term in parameter position, or it happens through -- the compatible closure. data _⟶ₜ_ : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} → Rel₀ (PreType Θ Γ₁ Γ₂) where param-conv : ∀ {Θ Γ₁ Γ₂ A} (B : PreType Θ Γ₁ (Γ₂ ↑ A)) (t₁ t₂ : PreTerm Γ₁ Ø) → t₁ ⟶ t₂ → instPT {Γ₂ = Γ₂} B t₁ ⟶ₜ instPT B t₂ inst-conv : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} → (A₁ A₂ : PreType Θ Γ₁ Γ₂) → A₁ ⟶ₚ A₂ → A₁ ⟶ₜ A₂ instPT-clos : ∀ {Θ Γ₁ Γ₂ A} (B₁ B₂ : PreType Θ Γ₁ (Γ₂ ↑ A)) (t : PreTerm Γ₁ Ø) → B₁ ⟶ₜ B₂ → instPT {Γ₂ = Γ₂} B₁ t ⟶ₜ instPT B₂ t paramAbstr-clos : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) {A : U} → (B₁ B₂ : PreType Θ (A ∷ Γ₁) Γ₂) → B₁ ⟶ₜ B₂ → paramAbstrPT Γ₁ B₁ ⟶ₜ paramAbstrPT Γ₁ B₂ fp-clos : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) → (ρ : FP) (D₁ D₂ : FpDataP Θ Γ₂) → D₁ ∼>ₜ D₂ → fpPT Γ₁ ρ D₁ ⟶ₜ fpPT Γ₁ ρ D₂ data _∼>ₜ_ where singlePT-clos : {Θ : TyCtx} {Γ : RawCtx} (Γ' : RawCtx) (f : CtxMorP Γ' Γ) (A₁ A₂ : PreType (Γ ∷ Θ) Γ' Ø) → A₁ ⟶ₜ A₂ → [ Γ' , f , A₁ ] ∼>ₜ [ Γ' , f , A₂ ] stepPT-clos₁ : {Θ : TyCtx} {Γ : RawCtx} (Γ' : RawCtx) (f : CtxMorP Γ' Γ) (A₁ A₂ : PreType (Γ ∷ Θ) Γ' Ø) (D : FpDataP Θ Γ) → A₁ ⟶ₜ A₂ -> ((Γ' , f , A₁) ∷ D) ∼>ₜ ((Γ' , f , A₂) ∷ D) stepPT-clos₂ : {Θ : TyCtx} {Γ : RawCtx} (Γ' : RawCtx) (f : CtxMorP Γ' Γ) (A : PreType (Γ ∷ Θ) Γ' Ø) (D₁ D₂ : FpDataP Θ Γ) → D₁ ∼>ₜ D₂ -> ((Γ' , f , A) ∷ D₁) ∼>ₜ ((Γ' , f , A) ∷ D₂)
{ "alphanum_fraction": 0.4731138993, "avg_line_length": 37.8827160494, "ext": "agda", "hexsha": "a7b9c052b49f4bf374ea122e53774cacc0109ed9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-24T10:54:38.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-24T10:54:38.000Z", "max_forks_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "StillerHarpo/CoindDepTypes", "max_forks_repo_path": "Syntax/Reduction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_issues_repo_issues_event_max_datetime": "2020-07-24T12:53:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-07-24T12:53:30.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "StillerHarpo/CoindDepTypes", "max_issues_repo_path": "Syntax/Reduction.agda", "max_line_length": 79, "max_stars_count": 2, "max_stars_repo_head_hexsha": "480ee27c2c0c20fb35f371177a68721cbc6668c3", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "StillerHarpo/CoindDepTypes", "max_stars_repo_path": "Syntax/Reduction.agda", "max_stars_repo_stars_event_max_datetime": "2018-04-06T02:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-27T14:45:11.000Z", "num_tokens": 5109, "size": 12274 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Nat.GCD where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Induction.WellFounded open import Cubical.Data.Fin open import Cubical.Data.Sigma as Σ open import Cubical.Data.NatPlusOne open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Data.Nat.Order open import Cubical.Data.Nat.Divisibility private variable m n d : ℕ -- common divisors isCD : ℕ → ℕ → ℕ → Type₀ isCD m n d = (d ∣ m) × (d ∣ n) isPropIsCD : isProp (isCD m n d) isPropIsCD = isProp× isProp∣ isProp∣ symCD : isCD m n d → isCD n m d symCD (d∣m , d∣n) = (d∣n , d∣m) -- greatest common divisors isGCD : ℕ → ℕ → ℕ → Type₀ isGCD m n d = (isCD m n d) × (∀ d' → isCD m n d' → d' ∣ d) GCD : ℕ → ℕ → Type₀ GCD m n = Σ ℕ (isGCD m n) isPropIsGCD : isProp (isGCD m n d) isPropIsGCD = isProp× isPropIsCD (isPropΠ2 (λ _ _ → isProp∣)) isPropGCD : isProp (GCD m n) isPropGCD (d , dCD , gr) (d' , d'CD , gr') = ΣProp≡ (λ _ → isPropIsGCD) (antisym∣ (gr' d dCD) (gr d' d'CD)) symGCD : isGCD m n d → isGCD n m d symGCD (dCD , gr) = symCD dCD , λ { d' d'CD → gr d' (symCD d'CD) } divsGCD : m ∣ n → isGCD m n m divsGCD p = (∣-refl refl , p) , λ { d (d∣m , _) → d∣m } -- The base case of the Euclidean algorithm zeroGCD : ∀ m → isGCD m 0 m zeroGCD m = divsGCD (∣-zeroʳ m) private lem₁ : prediv d (suc n) → prediv d (m % suc n) → prediv d m lem₁ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = (q * c₁ + c₂) , p where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst p = (q * c₁ + c₂) * d ≡⟨ sym (*-distribʳ (q * c₁) c₂ d) ⟩ (q * c₁) * d + c₂ * d ≡⟨ cong (_+ c₂ * d) (sym (*-assoc q c₁ d)) ⟩ q * (c₁ * d) + c₂ * d ≡[ i ]⟨ q * (p₁ i) + (p₂ i) ⟩ q * (suc n) + r ≡⟨ n%k≡n[modk] m (suc n) .snd ⟩ m ∎ lem₂ : prediv d (suc n) → prediv d m → prediv d (m % suc n) lem₂ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = c₂ ∸ q * c₁ , p where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst p = (c₂ ∸ q * c₁) * d ≡⟨ ∸-distribʳ c₂ (q * c₁) d ⟩ c₂ * d ∸ (q * c₁) * d ≡⟨ cong (c₂ * d ∸_) (sym (*-assoc q c₁ d)) ⟩ c₂ * d ∸ q * (c₁ * d) ≡[ i ]⟨ p₂ i ∸ q * (p₁ i) ⟩ m ∸ q * (suc n) ≡⟨ cong (_∸ q * (suc n)) (sym (n%k≡n[modk] m (suc n) .snd)) ⟩ (q * (suc n) + r) ∸ q * (suc n) ≡⟨ cong (_∸ q * (suc n)) (+-comm (q * (suc n)) r) ⟩ (r + q * (suc n)) ∸ q * (suc n) ≡⟨ ∸-cancelʳ r zero (q * (suc n)) ⟩ r ∎ -- The inductive step of the Euclidean algorithm stepGCD : isGCD (suc n) (m % suc n) d → isGCD m (suc n) d fst (stepGCD ((d∣n , d∣m%n) , gr)) = PropTrunc.map2 lem₁ d∣n d∣m%n , d∣n snd (stepGCD ((d∣n , d∣m%n) , gr)) d' (d'∣m , d'∣n) = gr d' (d'∣n , PropTrunc.map2 lem₂ d'∣n d'∣m) -- putting it all together using well-founded induction euclid< : ∀ m n → n < m → GCD m n euclid< = WFI.induction <-wellfounded λ { m rec zero p → m , zeroGCD m ; m rec (suc n) p → let d , dGCD = rec (suc n) p (m % suc n) (n%sk<sk m n) in d , stepGCD dGCD } euclid : ∀ m n → GCD m n euclid m n with n ≟ m ... | lt p = euclid< m n p ... | gt p = Σ.mapʳ symGCD (euclid< n m p) ... | eq p = m , divsGCD (∣-refl (sym p)) isContrGCD : ∀ m n → isContr (GCD m n) isContrGCD m n = euclid m n , isPropGCD _ -- the gcd operator on ℕ gcd : ℕ → ℕ → ℕ gcd m n = euclid m n .fst gcdIsGCD : ∀ m n → isGCD m n (gcd m n) gcdIsGCD m n = euclid m n .snd
{ "alphanum_fraction": 0.5349391212, "avg_line_length": 32.5689655172, "ext": "agda", "hexsha": "73139e4461ab02c621e7eb5710982177a628dd41", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Data/Nat/GCD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Data/Nat/GCD.agda", "max_line_length": 107, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Data/Nat/GCD.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 1672, "size": 3778 }
open import Oscar.Prelude open import Oscar.Class.HasEquivalence import Oscar.Data.Constraint module Oscar.Data.ProductIndexEquivalence where module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {ℓ} ⦃ _ : HasEquivalence 𝔒 ℓ ⦄ where record _≈₀_ (P Q : Σ 𝔒 𝔓) : Ø ℓ where constructor ∁ field π₀ : π₀ P ≈ π₀ Q open _≈₀_ public module _ {𝔬} (𝔒 : Ø 𝔬) {𝔭} (𝔓 : 𝔒 → Ø 𝔭) {ℓ} ⦃ _ : HasEquivalence 𝔒 ℓ ⦄ where ProductIndexEquivalence⟦_/_⟧ : (P Q : Σ 𝔒 𝔓) → Ø ℓ ProductIndexEquivalence⟦_/_⟧ = _≈₀_
{ "alphanum_fraction": 0.6299212598, "avg_line_length": 24.1904761905, "ext": "agda", "hexsha": "c8ed41ca5cbf6172d0e3cde30a8bdb4b2fc7a13a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/ProductIndexEquivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/ProductIndexEquivalence.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/ProductIndexEquivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 250, "size": 508 }
-- https://www.codewars.com/kata/50654ddff44f800200000004 {-# OPTIONS --safe #-} module Solution where open import Data.Nat multiply : ℕ → ℕ → ℕ multiply a b = a * b
{ "alphanum_fraction": 0.6882352941, "avg_line_length": 15.4545454545, "ext": "agda", "hexsha": "b0e64ff2a1d7cda8e29b105a43f4fc71f96b544c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-09T17:22:10.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T17:22:10.000Z", "max_forks_repo_head_hexsha": "1a423e8cb0fbcac94738f6e51dc333f057b0a731", "max_forks_repo_licenses": [ "WTFPL" ], "max_forks_repo_name": "hiljusti/codewars-solutions", "max_forks_repo_path": "agda/multiply/solution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1a423e8cb0fbcac94738f6e51dc333f057b0a731", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "WTFPL" ], "max_issues_repo_name": "hiljusti/codewars-solutions", "max_issues_repo_path": "agda/multiply/solution.agda", "max_line_length": 57, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1a423e8cb0fbcac94738f6e51dc333f057b0a731", "max_stars_repo_licenses": [ "WTFPL" ], "max_stars_repo_name": "hiljusti/codewars-solutions", "max_stars_repo_path": "agda/multiply/solution.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-21T22:21:55.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-22T08:47:51.000Z", "num_tokens": 53, "size": 170 }
module Channel where open import Data.Bool hiding (_≤_) open import Data.Fin hiding (_≤_) open import Data.List hiding (map) open import Data.Maybe open import Data.Nat open import Data.Nat.Properties open import Data.Product hiding (map) open import Relation.Binary.PropositionalEquality open import Typing open import Syntax hiding (send ; recv) open import Global data ChannelEnd : Set where POS NEG : ChannelEnd otherEnd : ChannelEnd → ChannelEnd otherEnd POS = NEG otherEnd NEG = POS -- the main part of a channel endpoint value is a valid channel reference -- the channel end determines whether it's the front end or the back end of the channel -- enforces that the session context has only one channel data ChannelRef : (G : SCtx) (ce : ChannelEnd) (s : STypeF SType) → Set where here-pos : ∀ {s s'} {G : SCtx} → (ina-G : Inactive G) → s ≲' s' → ChannelRef (just (s , POS) ∷ G) POS s' here-neg : ∀ {s s'} {G : SCtx} → (ina-G : Inactive G) → dualF s ≲' s' → ChannelRef (just (s , NEG) ∷ G) NEG s' there : ∀ {b s} {G : SCtx} → (vcr : ChannelRef G b s) → ChannelRef (nothing ∷ G) b s -- coerce channel ref to a supertype vcr-coerce : ∀ {G b s s'} → ChannelRef G b s → s ≲' s' → ChannelRef G b s' vcr-coerce (here-pos ina-G x) s≤s' = here-pos ina-G (subF-trans x s≤s') vcr-coerce (here-neg ina-G x) s≤s' = here-neg ina-G (subF-trans x s≤s') vcr-coerce (there vcr) s≤s' = there (vcr-coerce vcr s≤s') -- find matching wait instruction in thread pool vcr-match : ∀ {G G₁ G₂ b₁ b₂ s₁ s₂} → SSplit G G₁ G₂ → ChannelRef G₁ b₁ s₁ → ChannelRef G₂ b₂ s₂ → Maybe (b₁ ≡ otherEnd b₂ × dualF s₂ ≲' s₁) vcr-match () (here-pos _ _) (here-pos _ _) vcr-match (ss-posneg ss) (here-pos{s} ina-G s<=s') (here-neg ina-G₁ ds<=s'') = just (refl , subF-trans (dual-subF ds<=s'') (subF-trans (eqF-implies-subF (eqF-sym (dual-involutionF s))) s<=s')) vcr-match (ss-left ss) (here-pos _ _) (there vcr2) = nothing vcr-match (ss-negpos ss) (here-neg ina-G ds<=s') (here-pos ina-G₁ s<=s'') = just (refl , subF-trans (dual-subF s<=s'') ds<=s') vcr-match (ss-left ss) (here-neg _ _) (there vcr2) = nothing vcr-match (ss-right ss) (there vcr1) (here-pos _ ina-G) = nothing vcr-match (ss-right ss) (there vcr1) (here-neg _ ina-G) = nothing vcr-match (ss-both ss) (there vcr1) (there vcr2) = vcr-match ss vcr1 vcr2 -- ok. brute force for a fixed tree with three levels data SSplit2 (G G₁ G₂ G₁₁ G₁₂ : SCtx) : Set where ssplit2 : (ss1 : SSplit G G₁ G₂) → (ss2 : SSplit G₁ G₁₁ G₁₂) → SSplit2 G G₁ G₂ G₁₁ G₁₂ vcr-match-2-sr : ∀ {G G₁ G₂ G₁₁ G₁₂ b₁ b₂ s₁ s₂ t₁ t₂} → SSplit2 G G₁ G₂ G₁₁ G₁₂ → ChannelRef G₁₁ b₁ (recv t₁ s₁) → ChannelRef G₁₂ b₂ (send t₂ s₂) → Maybe (SubT t₂ t₁ × dual s₂ ≲ s₁ × ∃ λ G' → ∃ λ G₁' → ∃ λ G₁₁' → ∃ λ G₁₂' → SSplit2 G' G₁' G₂ G₁₁' G₁₂' × ChannelRef G₁₁' b₁ (SType.force s₁) × ChannelRef G₁₂' b₂ (SType.force s₂)) vcr-match-2-sr (ssplit2 ss-[] ()) (here-pos ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (here-pos ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-left ss1) ()) (here-pos ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (here-pos ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-posneg ss1) ()) (here-pos ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (here-pos ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 ss-[] ()) (here-pos ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (here-pos ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-left ss1) (ss-posneg ss2)) (here-pos ina-G (sub-recv{s1} t t' t<=t' s1<=s1')) (here-neg ina-G₁ (sub-send .t t'' t'<=t s1<=s1'')) = just ((subt-trans t'<=t t<=t') , (sub-trans (dual-sub s1<=s1'') (sub-trans (eq-implies-sub (eq-sym (dual-involution s1))) s1<=s1')) , _ , _ , _ , _ , ssplit2 (ss-left ss1) (ss-posneg ss2) , here-pos ina-G (Sub.force s1<=s1') , here-neg ina-G₁ (Sub.force s1<=s1'')) vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (here-pos ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-posneg ss1) ()) (here-pos ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (here-pos ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 ss-[] ()) (here-pos ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (here-pos ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-left ss1) (ss-left ss2)) (here-pos ina-G x) (there vcr2) = nothing vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (here-pos ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-posneg ss1) (ss-left ss2)) (here-pos ina-G x) (there vcr2) = nothing vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (here-pos ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 ss-[] ()) (here-neg ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr {s₁ = s₁} {s₂} (ssplit2 (ss-left ss1) (ss-negpos ss2)) (here-neg ina-G (sub-recv .t t'' t<=t' s1<=s1'')) (here-pos ina-G₁ (sub-send t t' t'<=t s1<=s1')) = just ((subt-trans t'<=t t<=t') , ((sub-trans (dual-sub s1<=s1') s1<=s1'') , (_ , (_ , (_ , (_ , ((ssplit2 (ss-left ss1) (ss-negpos ss2)) , ((here-neg ina-G (Sub.force s1<=s1'')) , (here-pos ina-G₁ (Sub.force s1<=s1')))))))))) vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-posneg ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ x₁) vcr-match-2-sr (ssplit2 ss-[] ()) (here-neg ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (here-neg ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (here-neg ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-posneg ss1) ()) (here-neg ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (here-neg ina-G x) (here-neg ina-G₁ x₁) vcr-match-2-sr (ssplit2 ss-[] ()) (here-neg ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (here-neg ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-left ss1) (ss-left ss2)) (here-neg ina-G x) (there vcr2) = nothing vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (here-neg ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-posneg ss1) ()) (here-neg ina-G x) (there vcr2) vcr-match-2-sr (ssplit2 (ss-negpos ss1) (ss-left ss2)) (here-neg ina-G x) (there vcr2) = nothing vcr-match-2-sr (ssplit2 ss-[] ()) (there vcr1) (here-pos ina-G x) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (there vcr1) (here-pos ina-G x) vcr-match-2-sr (ssplit2 (ss-left ss1) (ss-right ss2)) (there vcr1) (here-pos ina-G x) = nothing vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (there vcr1) (here-pos ina-G x) vcr-match-2-sr (ssplit2 (ss-posneg ss1) (ss-right ss2)) (there vcr1) (here-pos ina-G x) = nothing vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (there vcr1) (here-pos ina-G x) vcr-match-2-sr (ssplit2 ss-[] ()) (there vcr1) (here-neg ina-G x) vcr-match-2-sr (ssplit2 (ss-both ss1) ()) (there vcr1) (here-neg ina-G x) vcr-match-2-sr (ssplit2 (ss-left ss1) (ss-right ss2)) (there vcr1) (here-neg ina-G x) = nothing vcr-match-2-sr (ssplit2 (ss-right ss1) ()) (there vcr1) (here-neg ina-G x) vcr-match-2-sr (ssplit2 (ss-negpos ss1) (ss-right ss2)) (there vcr1) (here-neg ina-G x) = nothing vcr-match-2-sr (ssplit2 ss-[] ()) (there vcr1) (there vcr2) vcr-match-2-sr (ssplit2 (ss-both ss1) (ss-both ss2)) (there vcr1) (there vcr2) with vcr-match-2-sr (ssplit2 ss1 ss2) vcr1 vcr2 ... | nothing = nothing ... | just (t2<=t1 , ds2<=s1 , _ , _ , _ , _ , ssplit2 ss1' ss2' , vcr1' , vcr2') = just (t2<=t1 , ds2<=s1 , _ , _ , _ , _ , (ssplit2 (ss-both ss1') (ss-both ss2')) , ((there vcr1') , (there vcr2'))) vcr-match-2-sr (ssplit2 (ss-right ss1) (ss-both ss2)) (there vcr1) (there vcr2) = map (λ { (t2<=t1 , ds2<=s1 , _ , _ , _ , _ , ssplit2 ss1' ss2' , vcr1' , vcr2') → t2<=t1 , ds2<=s1 , _ , _ , _ , _ , (ssplit2 (ss-right ss1') (ss-both ss2')) , (there vcr1') , (there vcr2') }) (vcr-match-2-sr (ssplit2 ss1 ss2) vcr1 vcr2) vcr-match-2-sr (ssplit2 (ss-negpos ss1) ()) (there vcr1) (there vcr2) vcr-match-2-sb : ∀ {G G₁ G₂ G₁₁ G₁₂ b₁ b₂ s₁₁ s₁₂ s₂₁ s₂₂} → SSplit2 G G₁ G₂ G₁₁ G₁₂ → ChannelRef G₁₁ b₁ (sintern s₁₁ s₁₂) → ChannelRef G₁₂ b₂ (sextern s₂₁ s₂₂) → (lab : Selector) → Maybe (dual s₂₁ ≲ s₁₁ × dual s₂₂ ≲ s₁₂ × ∃ λ G' → ∃ λ G₁' → ∃ λ G₁₁' → ∃ λ G₁₂' → SSplit2 G' G₁' G₂ G₁₁' G₁₂' × ChannelRef G₁₁' b₁ (selection lab (SType.force s₁₁) (SType.force s₁₂)) × ChannelRef G₁₂' b₂ (selection lab (SType.force s₂₁) (SType.force s₂₂))) vcr-match-2-sb (ssplit2 ss1 ss2) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-pos ina-G₁ (sub-sextern s1<=s1'' s2<=s2'')) lab = nothing vcr-match-2-sb (ssplit2 ss-[] ()) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ x₁) lab vcr-match-2-sb (ssplit2 (ss-both ss1) ()) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ x₁) lab vcr-match-2-sb (ssplit2 (ss-left ss1) (ss-posneg ss2)) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ (sub-sextern s1<=s1'' s2<=s2'')) Left = just ((sub-trans (dual-sub s1<=s1'') (sub-trans (eq-implies-sub (eq-sym (dual-involution _))) s1<=s1')) , (sub-trans (dual-sub s2<=s2'') (sub-trans (eq-implies-sub (eq-sym (dual-involution _))) s2<=s2')) , _ , _ , _ , _ , (ssplit2 (ss-left ss1) (ss-posneg ss2)) , (here-pos ina-G (Sub.force s1<=s1')) , (here-neg ina-G₁ (Sub.force s1<=s1''))) vcr-match-2-sb (ssplit2 (ss-left ss1) (ss-posneg ss2)) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ (sub-sextern s1<=s1'' s2<=s2'')) Right = just ((sub-trans (dual-sub s1<=s1'') (sub-trans (eq-implies-sub (eq-sym (dual-involution _))) s1<=s1')) , (sub-trans (dual-sub s2<=s2'') (sub-trans (eq-implies-sub (eq-sym (dual-involution _))) s2<=s2')) , _ , _ , _ , _ , (ssplit2 (ss-left ss1) (ss-posneg ss2)) , (here-pos ina-G (Sub.force s2<=s2')) , (here-neg ina-G₁ (Sub.force s2<=s2''))) vcr-match-2-sb (ssplit2 (ss-right ss1) ()) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ x₁) lab vcr-match-2-sb (ssplit2 (ss-posneg ss1) ()) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ x₁) lab vcr-match-2-sb (ssplit2 (ss-negpos ss1) ()) (here-pos ina-G (sub-sintern s1<=s1' s2<=s2')) (here-neg ina-G₁ x₁) lab vcr-match-2-sb (ssplit2 ss1 ss2) (here-pos ina-G x) (there vcr2) lab = nothing vcr-match-2-sb (ssplit2 ss-[] ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) lab vcr-match-2-sb (ssplit2 (ss-both ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) lab vcr-match-2-sb (ssplit2 (ss-left ss1) (ss-negpos ss2)) (here-neg ina-G (sub-sintern s1<=s1'' s2<=s2'')) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) Left = just ((sub-trans (dual-sub s1<=s1') s1<=s1'') , ((sub-trans (dual-sub s2<=s2') s2<=s2'') , (_ , (_ , (_ , (_ , ((ssplit2 (ss-left ss1) (ss-negpos ss2)) , ((here-neg ina-G (Sub.force s1<=s1'')) , (here-pos ina-G₁ (Sub.force s1<=s1')))))))))) vcr-match-2-sb (ssplit2 (ss-left ss1) (ss-negpos ss2)) (here-neg ina-G (sub-sintern s1<=s1'' s2<=s2'')) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) Right = just ((sub-trans (dual-sub s1<=s1') s1<=s1'') , ((sub-trans (dual-sub s2<=s2') s2<=s2'') , (_ , (_ , (_ , (_ , ((ssplit2 (ss-left ss1) (ss-negpos ss2)) , ((here-neg ina-G (Sub.force s2<=s2'')) , (here-pos ina-G₁ (Sub.force s2<=s2')))))))))) vcr-match-2-sb (ssplit2 (ss-right ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) lab vcr-match-2-sb (ssplit2 (ss-posneg ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) lab vcr-match-2-sb (ssplit2 (ss-negpos ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextern s1<=s1' s2<=s2')) lab vcr-match-2-sb (ssplit2 ss1 ss2) (here-neg ina-G x) (here-neg ina-G₁ x₁) lab = nothing vcr-match-2-sb (ssplit2 ss1 ss2) (here-neg ina-G x) (there vcr2) lab = nothing vcr-match-2-sb (ssplit2 ss1 ss2) (there vcr1) (here-pos ina-G x) lab = nothing vcr-match-2-sb (ssplit2 ss1 ss2) (there vcr1) (here-neg ina-G x) lab = nothing vcr-match-2-sb (ssplit2 ss-[] ()) (there vcr1) (there vcr2) lab vcr-match-2-sb (ssplit2 (ss-both ss1) (ss-both ss2)) (there vcr1) (there vcr2) lab = map (λ { (ds21<=s11 , ds22<=s12 , _ , _ , _ , _ , ssplit2 ss1' ss2' , vcr1' , vcr2') → ds21<=s11 , ds22<=s12 , _ , _ , _ , _ , (ssplit2 (ss-both ss1') (ss-both ss2')) , ((there vcr1') , (there vcr2')) }) (vcr-match-2-sb (ssplit2 ss1 ss2) vcr1 vcr2 lab) vcr-match-2-sb (ssplit2 (ss-left ss1) ()) (there vcr1) (there vcr2) lab vcr-match-2-sb (ssplit2 (ss-right ss1) (ss-both ss2)) (there vcr1) (there vcr2) lab = map (λ { (ds21<=s11 , ds22<=s12 , _ , _ , _ , _ , ssplit2 ss1' ss2' , vcr1' , vcr2') → ds21<=s11 , ds22<=s12 , _ , _ , _ , _ , (ssplit2 (ss-right ss1') (ss-both ss2')) , ((there vcr1') , (there vcr2')) }) (vcr-match-2-sb (ssplit2 ss1 ss2) vcr1 vcr2 lab) vcr-match-2-sb (ssplit2 (ss-posneg ss1) ()) (there vcr1) (there vcr2) lab vcr-match-2-sb (ssplit2 (ss-negpos ss1) ()) (there vcr1) (there vcr2) lab vcr-match-2-nsb : ∀ {G G₁ G₂ G₁₁ G₁₂ b₁ b₂ m₁ m₂ alti alte} → SSplit2 G G₁ G₂ G₁₁ G₁₂ → ChannelRef G₁₁ b₁ (sintN m₁ alti) → ChannelRef G₁₂ b₂ (sextN m₂ alte) → (lab : Fin m₁) → Maybe (Σ (m₁ ≤ m₂) λ { p → ((i : Fin m₁) → dual (alti i) ≲ alte (inject≤ i p)) × ∃ λ G' → ∃ λ G₁' → ∃ λ G₁₁' → ∃ λ G₁₂' → SSplit2 G' G₁' G₂ G₁₁' G₁₂' × ChannelRef G₁₁' b₁ (SType.force (alti lab)) × ChannelRef G₁₂' b₂ (SType.force (alte (inject≤ lab p)))}) vcr-match-2-nsb (ssplit2 ss1 ss2) (here-pos ina-G _) (here-pos ina-G₁ _) lab = nothing vcr-match-2-nsb (ssplit2 ss-[] ()) (here-pos ina-G (sub-sintN m'≤m x)) (here-neg ina-G₁ x₁) lab vcr-match-2-nsb (ssplit2 (ss-both ss1) ()) (here-pos ina-G (sub-sintN m'≤m x)) (here-neg ina-G₁ x₁) lab vcr-match-2-nsb {m₁ = m₁} {alti = alti} {alte = alte} (ssplit2 (ss-left ss1) (ss-posneg ss2)) (here-pos ina-G (sub-sintN {alt = alt} m'≤m subint)) (here-neg ina-G₁ (sub-sextN m≤m' subext)) lab = just (≤-trans m'≤m m≤m' , auxSub , _ , _ , _ , _ , (ssplit2 (ss-left ss1) (ss-posneg ss2)) , (here-pos ina-G (Sub.force (subint lab))) , (here-neg ina-G₁ auxExt)) where auxSub : (i : Fin m₁) → dual (alti i) ≲ alte (inject≤ i (≤-trans m'≤m m≤m')) auxSub i with subext (inject≤ i m'≤m) ... | r rewrite (inject-trans m≤m' m'≤m i) = sub-trans (dual-sub (subint i)) r auxExt : dualF (SType.force (alt (inject≤ lab m'≤m))) ≲' SType.force (alte (inject≤ lab (≤-trans m'≤m m≤m'))) auxExt with Sub.force (subext (inject≤ lab m'≤m)) ... | se rewrite inject-trans m≤m' m'≤m lab = se vcr-match-2-nsb (ssplit2 (ss-right ss1) ()) (here-pos ina-G (sub-sintN m'≤m x)) (here-neg ina-G₁ x₁) lab vcr-match-2-nsb (ssplit2 (ss-posneg ss1) ()) (here-pos ina-G (sub-sintN m'≤m x)) (here-neg ina-G₁ x₁) lab vcr-match-2-nsb (ssplit2 (ss-negpos ss1) ()) (here-pos ina-G (sub-sintN m'≤m x)) (here-neg ina-G₁ x₁) lab vcr-match-2-nsb (ssplit2 ss1 ss2) (here-pos ina-G x) (there vcr2) lab = nothing vcr-match-2-nsb (ssplit2 ss-[] ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextN m≤m' x₁)) lab vcr-match-2-nsb (ssplit2 (ss-both ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextN m≤m' x₁)) lab vcr-match-2-nsb {m₁ = m₁} {alti = alti} {alte = alte} (ssplit2 (ss-left ss1) (ss-negpos ss2)) (here-neg ina-G (sub-sintN m'≤m subint)) (here-pos ina-G₁ (sub-sextN {alt = alt} m≤m' subext)) lab = just ((≤-trans m'≤m m≤m') , auxSub , _ , _ , _ , _ , ssplit2 (ss-left ss1) (ss-negpos ss2) , here-neg ina-G (Sub.force (subint lab)) , here-pos ina-G₁ auxExt) where auxSub : (i : Fin m₁) → dual (alti i) ≲ alte (inject≤ i (≤-trans m'≤m m≤m')) auxSub i with subext (inject≤ i m'≤m) ... | sub2 rewrite (inject-trans m≤m' m'≤m i) = sub-trans (sub-trans (dual-sub (subint i)) (eq-implies-sub (eq-sym (dual-involution _)))) sub2 auxExt : SType.force (alt (inject≤ lab m'≤m)) ≲' SType.force (alte (inject≤ lab (≤-trans m'≤m m≤m'))) auxExt with Sub.force (subext (inject≤ lab m'≤m)) ... | se rewrite (inject-trans m≤m' m'≤m lab) = se vcr-match-2-nsb (ssplit2 (ss-right ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextN m≤m' x₁)) lab vcr-match-2-nsb (ssplit2 (ss-posneg ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextN m≤m' x₁)) lab vcr-match-2-nsb (ssplit2 (ss-negpos ss1) ()) (here-neg ina-G x) (here-pos ina-G₁ (sub-sextN m≤m' x₁)) lab vcr-match-2-nsb (ssplit2 ss1 ss2) (here-neg ina-G x) (here-neg ina-G₁ x₁) lab = nothing vcr-match-2-nsb (ssplit2 ss1 ss2) (here-neg ina-G x) (there vcr2) lab = nothing vcr-match-2-nsb (ssplit2 ss1 ss2) (there vcr1) (here-pos ina-G x) lab = nothing vcr-match-2-nsb (ssplit2 ss1 ss2) (there vcr1) (here-neg ina-G x) lab = nothing vcr-match-2-nsb (ssplit2 ss-[] ()) (there vcr1) (there vcr2) lab vcr-match-2-nsb (ssplit2 (ss-both ss1) (ss-both ss2)) (there vcr1) (there vcr2) lab = map (λ { (m1≤m2 , fdi≤e , _ , _ , _ , _ , ssplit2 ss1' ss2' , vcr1' , vcr2') → m1≤m2 , fdi≤e , _ , _ , _ , _ , (ssplit2 (ss-both ss1') (ss-both ss2')) , there vcr1' , there vcr2' }) (vcr-match-2-nsb (ssplit2 ss1 ss2) vcr1 vcr2 lab) vcr-match-2-nsb (ssplit2 (ss-left ss1) ()) (there vcr1) (there vcr2) lab vcr-match-2-nsb (ssplit2 (ss-right ss1) (ss-both ss2)) (there vcr1) (there vcr2) lab = map (λ { (m1≤m2 , fdi≤e , _ , _ , _ , _ , ssplit2 ss1' ss2' , vcr1' , vcr2') → m1≤m2 , fdi≤e , _ , _ , _ , _ , (ssplit2 (ss-right ss1') (ss-both ss2')) , there vcr1' , there vcr2' }) (vcr-match-2-nsb (ssplit2 ss1 ss2) vcr1 vcr2 lab) vcr-match-2-nsb (ssplit2 (ss-posneg ss1) ()) (there vcr1) (there vcr2) lab vcr-match-2-nsb (ssplit2 (ss-negpos ss1) ()) (there vcr1) (there vcr2) lab
{ "alphanum_fraction": 0.6227077202, "avg_line_length": 79.2286995516, "ext": "agda", "hexsha": "ce4217504a9567ecca8b0eb6701bca131248a227", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Channel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Channel.agda", "max_line_length": 502, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Channel.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 7864, "size": 17668 }
module Structure.Categorical.Names where import Lvl open import Functional using (const ; swap) open import Logic open import Structure.Setoid import Structure.Operator.Names as Names import Structure.Relator.Names as Names open import Type private variable ℓₒ ℓₘ ℓₑ : Lvl.Level private variable Obj : Type{ℓₒ} private variable x y z w : Obj -- Obj is the collection of objects. -- _⟶_ is the collection of morphisms. module _ (Morphism : Obj → Obj → Type{ℓₘ}) where -- A morphism is an endomorphism when the domain and the codomain are equal. -- Something which morphs itself (referring to the object). Endomorphism : Obj → Stmt{ℓₘ} Endomorphism a = Morphism a a module ArrowNotation where _⟶_ : Obj → Obj → Type{ℓₘ} _⟶_ = Morphism -- Reversed arrow _⟵_ : Obj → Obj → Type{ℓₘ} _⟵_ = swap(_⟶_) -- Self-pointing arrow ⟲_ : Obj → Type{ℓₘ} ⟲_ = Endomorphism module Morphism where module _ (Morphism : Obj → Obj → Type{ℓₘ}) where open ArrowNotation(Morphism) -- The domain of a morphism dom : ∀{x y : Obj} → Morphism(x)(y) → Obj dom{x}{_} (_) = x -- The codomain of a morphism codom : ∀{x y : Obj} → Morphism(x)(y) → Obj codom{_}{y} (_) = y module _ {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ equiv-morphism : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ where open ArrowNotation(Morphism) module _ (_▫_ : Names.SwappedTransitivity(_⟶_)) where Associativity : Stmt Associativity = ∀{x y z w : Obj} → Names.AssociativityPattern {T₁ = z ⟶ w} {T₂ = y ⟶ z} {T₃ = x ⟶ y} (_▫_)(_▫_)(_▫_)(_▫_) Idempotent : (x ⟶ x) → Stmt Idempotent(f) = (f ▫ f ≡ f) module _ (id : Names.Reflexivity(_⟶_)) where Identityₗ : Stmt Identityₗ = ∀{x y}{f : x ⟶ y} → (id ▫ f ≡ f) Identityᵣ : Stmt Identityᵣ = ∀{x y}{f : x ⟶ y} → (f ▫ id ≡ f) Inverseₗ : (x ⟶ y) → (y ⟶ x) → Stmt Inverseₗ(f)(f⁻¹) = (f⁻¹ ▫ f ≡ id) Inverseᵣ : (x ⟶ y) → (y ⟶ x) → Stmt Inverseᵣ(f)(f⁻¹) = (f ▫ f⁻¹ ≡ id) Involution : (x ⟶ x) → Stmt Involution(f) = Inverseᵣ f f module Polymorphism where module _ {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ equiv-morphism : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ where open ArrowNotation(Morphism) module _ (_▫_ : Names.SwappedTransitivity(_⟶_)) where IdempotentOn : Obj → Obj → (∀{x y} → (x ⟶ y)) → Stmt IdempotentOn(x)(z) (f) = ∀{y} → (f{y}{z} ▫ f{x}{y} ≡ f{x}{z}) module _ (id : Names.Reflexivity(_⟶_)) where InvolutionOn : Obj → Obj → (∀{x y} → (x ⟶ y)) → Stmt InvolutionOn(x)(y) (f) = (f{x}{y} ▫ f{y}{x} ≡ id{y}) Involution : (∀{x y} → (x ⟶ y)) → Stmt Involution(f) = ∀{x y} → InvolutionOn(x)(y)(f)
{ "alphanum_fraction": 0.5773722628, "avg_line_length": 31.4942528736, "ext": "agda", "hexsha": "a8cbfbd65b08f57795f4710ab3d4f6d1d9bde86f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Categorical/Names.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Categorical/Names.agda", "max_line_length": 127, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Categorical/Names.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1053, "size": 2740 }
{-# OPTIONS --cubical-compatible #-} variable @0 A : Set record D : Set₁ where field f : A
{ "alphanum_fraction": 0.5940594059, "avg_line_length": 11.2222222222, "ext": "agda", "hexsha": "1513207f56f2efddc15b6fc0bd59e99fb2c88c47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5410-4.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5410-4.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5410-4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 32, "size": 101 }
module QuoteContext where open import Common.Level open import Common.Prelude open import Common.Product open import Common.Equality open import Common.Reflection Vec : Set → Nat → Set Vec A zero = ⊤ Vec A (suc x) = A × Vec A x test : (n : Nat) (v : Vec Nat n) (m : Nat) → List (Arg Type) test zero v n = quoteContext test (suc m) v n = quoteContext test-zero : test 0 _ 0 ≡ vArg (def (quote Nat) []) ∷ vArg (def (quote ⊤) []) ∷ [] test-zero = refl test-suc : test 1 (zero , _) 0 ≡ vArg (def (quote Nat) []) ∷ vArg (def (quote Σ) (hArg (def (quote lzero) []) ∷ hArg (def (quote lzero) []) ∷ vArg (def (quote Nat) []) ∷ vArg (lam visible (abs "x" (def (quote Vec) (vArg (def (quote Nat) []) ∷ vArg (var 1 []) ∷ [])))) ∷ [])) ∷ vArg (def (quote Nat) []) ∷ [] test-suc = refl
{ "alphanum_fraction": 0.5680190931, "avg_line_length": 24.6470588235, "ext": "agda", "hexsha": "40725884eb72a8034e69a7319bde78c36872630a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/QuoteContext.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/QuoteContext.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/QuoteContext.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 302, "size": 838 }
data D (A : Set) : Set where c : A → D A postulate f : (A : Set) → D A → D A P : (A : Set) → D A → Set _ : (A : Set) (B : _) (g : A → B) → P _ (f _ (c g))
{ "alphanum_fraction": 0.3963414634, "avg_line_length": 20.5, "ext": "agda", "hexsha": "001385ebd0afd788a68776999b1d4b13525fad21", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4969.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4969.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4969.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 164 }
{-# OPTIONS --cumulativity #-} open import Agda.Primitive open import Agda.Builtin.Equality lone ltwo lthree : Level lone = lsuc lzero ltwo = lsuc lone lthree = lsuc ltwo fails : _≡_ {a = lthree} {A = Set₂} Set₀ Set₁ fails = refl
{ "alphanum_fraction": 0.7081545064, "avg_line_length": 17.9230769231, "ext": "agda", "hexsha": "6ffc5506881ae9a8ac2baba30ddb840720831e60", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Cumulativity-inequal-universes.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Cumulativity-inequal-universes.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Cumulativity-inequal-universes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 233 }
open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Equality variable A B : Set data Eqn (A : Set) : Set where eqn : (x y : A) → x ≡ y → Eqn A infix 3 _==_ pattern _==_ x y = eqn x y refl infixl 0 such-that syntax such-that a (λ x → P) p = a is x such-that p proves P such-that : (x : A) (P : A → Set) → P x → A such-that x _ _ = x infix -1 check_ check_ : A → ⊤ check _ = _ infixl -2 _and_ _and_ : ⊤ → A → ⊤ _ and _ = _ -- Record fields can be marked with @tactic data ShouldRun : Set where run norun : ShouldRun defaultTo : {A : Set} (x : A) → ShouldRun → Term → TC ⊤ defaultTo _ norun _ = typeError (strErr "Should not run!" ∷ []) defaultTo x run hole = bindTC (quoteTC x) (unify hole) record Class (r : ShouldRun) : Set where constructor con field x : Bool @(tactic defaultTo x r) {y} : Bool open Class -- # Cases where the tactic should run test₁ test₂ test₃ : Class run test₁ = con true -- Constructor application test₂ = record { x = true } -- Record construction test₃ .x = true -- Missing copattern clause _ = check test₁ == con true {true} and test₂ == con true {true} and test₃ == con true {true} -- More elaborate missing copatterns test₃′ : List Bool → Class run test₃′ [] .x = false test₃′ [] .y = true test₃′ (b ∷ _) .x = b _ = check test₃′ [] == con false {true} and λ b → test₃′ (b ∷ []) == con b {b} -- # Cases where the tactic should not run -- ## Giving the field explicitly test₄ test₅ : Class norun test₄ = con true {_} is c such-that refl proves c .y ≡ false test₅ = record{ x = true; y = _ } is c such-that refl proves c .y ≡ false _ = check test₄ == con true {false} and test₅ == con true {false} -- ## Eta-expansion -- Eta-expansion of record metas should *not* trigger the tactic, since that -- would make eta-expansion potentially lose solutions. For instance, -- `con true {false} == _1`. Here solving `_1 := con true {false}` is valid, but -- eta-expanding to `con _2 {_3}` and running `defaultTo _2 _3` leads to an error. test₆ : Class norun test₆ = _ is c such-that refl proves c .x ≡ true is c such-that refl proves c .y ≡ false check₆ : test₆ ≡ con true {false} check₆ = refl
{ "alphanum_fraction": 0.6315789474, "avg_line_length": 25.6086956522, "ext": "agda", "hexsha": "f20aeb46860ff15ec2b9ce6e4cb56db516dd449d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4124.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4124.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4124.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 770, "size": 2356 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A module used for creating function pipelines, see -- README.Function.Reasoning for examples ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Reasoning where open import Function using (_∋_) -- Need to give _∋_ a new name as syntax cannot contain underscores infixl 0 ∋-syntax ∋-syntax = _∋_ -- Create ∶ syntax syntax ∋-syntax A a = a ∶ A -- Export pipeline functions open import Function public using (_|>_; _|>′_)
{ "alphanum_fraction": 0.5404958678, "avg_line_length": 26.3043478261, "ext": "agda", "hexsha": "aee44dcfd728cb21d5665ac77fc60c7f12f277b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Reasoning.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 129, "size": 605 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Function.Surjective.Properties where open import Path open import Function.Fiber open import Level open import HITs.PropositionalTruncation open import Data.Sigma open import Function.Surjective.Base open import Function.Injective.Base open import Function.Injective.Properties open import Path.Reasoning open import Relation.Nullary.Discrete open import Function surj-to-inj : (A ↠! B) → (B ↣ A) surj-to-inj (f , surj) .fst x = surj x .fst surj-to-inj (f , surj) .snd x y f⁻¹⟨x⟩≡f⁻¹⟨y⟩ = x ≡˘⟨ surj x .snd ⟩ f (surj x .fst) ≡⟨ cong f f⁻¹⟨x⟩≡f⁻¹⟨y⟩ ⟩ f (surj y .fst) ≡⟨ surj y .snd ⟩ y ∎ Discrete-distrib-surj : (A ↠! B) → Discrete A → Discrete B Discrete-distrib-surj = Discrete-pull-inj ∘ surj-to-inj SplitSurjective⟨id⟩ : SplitSurjective (id {A = A}) SplitSurjective⟨id⟩ x .fst = x SplitSurjective⟨id⟩ x .snd _ = x ↠!-ident : A ↠! A ↠!-ident .fst = id ↠!-ident .snd y .fst = y ↠!-ident .snd y .snd _ = y ↠!-comp : A ↠! B → B ↠! C → A ↠! C ↠!-comp a→b b→c .fst = b→c .fst ∘ a→b .fst ↠!-comp a→b b→c .snd y .fst = a→b .snd (b→c .snd y .fst) .fst ↠!-comp a→b b→c .snd y .snd = cong (fst b→c) (snd (snd a→b (fst (snd b→c y)))) ; snd (snd b→c y)
{ "alphanum_fraction": 0.6370250606, "avg_line_length": 30.925, "ext": "agda", "hexsha": "c3c0b60fdedae679ff26d4238aa9f16a1f9fff26", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Function/Surjective/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Function/Surjective/Properties.agda", "max_line_length": 96, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Function/Surjective/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 525, "size": 1237 }
module Data.Collection.Properties where open import Data.Collection.Core open import Data.Collection.Equivalence open import Data.Collection.Inclusion open import Data.Collection open import Data.Sum renaming (map to mapSum) open import Data.Product open import Function.Equivalence using (_⇔_; equivalence) -- open import Data.List public using (List; []; _∷_) -- open import Data.String public using (String; _≟_) -- open import Level using (zero) -- open import Function using (id; _∘_) open import Relation.Nullary open import Relation.Nullary.Negation -- open import Relation.Nullary.Decidable renaming (map to mapDec; map′ to mapDec′) open import Relation.Unary -- open import Relation.Binary open import Relation.Binary.PropositionalEquality -------------------------------------------------------------------------------- -- Singleton -------------------------------------------------------------------------------- singleton-≡ : ∀ {x y} → x ∈ c[ singleton y ] ⇔ x ≡ y singleton-≡ = equivalence to from where to : ∀ {x y} → x ∈ c[ singleton y ] → x ≡ y to here = refl to (there ()) from : ∀ {x y} → x ≡ y → x ∈ c[ singleton y ] from refl = here -------------------------------------------------------------------------------- -- Delete -------------------------------------------------------------------------------- -- still-∈-after-deleted : ∀ {x} y A → x ≢ y → x ∈ c[ A ] → x ∈ c[ delete y A ] still-∈-after-deleted : ∀ y A → c[ A ] ⊆[ _≢_ y ] c[ delete y A ] still-∈-after-deleted y [] ≢y () still-∈-after-deleted y (a ∷ A) {x} ≢y ∈A with y ≟ a still-∈-after-deleted y (a ∷ A) ≢y here | yes p = contradiction p ≢y still-∈-after-deleted y (a ∷ A) ≢y (there ∈A) | yes p = still-∈-after-deleted y A ≢y ∈A still-∈-after-deleted y (x ∷ A) ≢y here | no ¬p = here still-∈-after-deleted y (a ∷ A) ≢y (there ∈A) | no ¬p = there (still-∈-after-deleted y A ≢y ∈A) -- still-∉-after-recovered : ∀ {x} y A → x ≢ y → x ∉c delete y A → x ∉ c[ A ] still-∉-after-recovered : ∀ y A → c[ delete y A ] ⊈[ _≢_ y ] c[ A ] still-∉-after-recovered y [] ≢y ∉A-y () still-∉-after-recovered y (a ∷ A) ≢y ∉A-y ∈a∷A with y ≟ a still-∉-after-recovered y (a ∷ A) ≢y ∉A-y here | yes p = contradiction p ≢y still-∉-after-recovered y (a ∷ A) ≢y ∉A-y (there ∈A) | yes p = contradiction (still-∈-after-deleted y A ≢y ∈A) ∉A-y still-∉-after-recovered y (a ∷ A) ≢y ∉A-y here | no ¬p = contradiction here ∉A-y still-∉-after-recovered y (a ∷ A) ≢y ∉A-y (there ∈A) | no ¬p = contradiction (there (still-∈-after-deleted y A ≢y ∈A)) ∉A-y -------------------------------------------------------------------------------- -- Union -------------------------------------------------------------------------------- in-right-union : ∀ A B → c[ B ] ⊆ c[ union A B ] in-right-union [] B x∈B = x∈B in-right-union (a ∷ A) B x∈B with a ∈? B in-right-union (a ∷ A) B x∈B | yes p = in-right-union A B x∈B in-right-union (a ∷ A) B x∈B | no ¬p = there (in-right-union A B x∈B) in-left-union : ∀ A B → c[ A ] ⊆ c[ union A B ] in-left-union [] B () in-left-union (a ∷ A) B x∈A with a ∈? B in-left-union (a ∷ A) B here | yes p = in-right-union A B p in-left-union (a ∷ A) B (there x∈A) | yes p = in-left-union A B x∈A in-left-union (a ∷ A) B here | no ¬p = here in-left-union (a ∷ A) B (there x∈A) | no ¬p = there (in-left-union A B x∈A) ∪-left-identity : ∀ A → c[ [] ] ∪ c[ A ] ≋ c[ A ] ∪-left-identity A = equivalence to inj₂ where to : c[ [] ] ∪ c[ A ] ⊆ c[ A ] to (inj₁ ()) to (inj₂ ∈A) = ∈A ∪-right-identity : ∀ A → c[ A ] ∪ c[ [] ] ≋ c[ A ] ∪-right-identity A = equivalence to inj₁ where to : c[ A ] ∪ c[ [] ] ⊆ c[ A ] to (inj₁ ∈A) = ∈A to (inj₂ ()) in-either : ∀ A B → c[ union A B ] ⊆ c[ A ] ∪ c[ B ] in-either [] B x∈A∪B = inj₂ x∈A∪B in-either (a ∷ A) B x∈A∪B with a ∈? B in-either (a ∷ A) B x∈A∪B | yes p = mapSum there id (in-either A B x∈A∪B) in-either (a ∷ A) B here | no ¬p = inj₁ here in-either (a ∷ A) B (there x∈A∪B) | no ¬p = mapSum there id (in-either A B x∈A∪B) not-in-left-union : ∀ A B → c[ union A B ] ⊈ c[ A ] not-in-left-union A B ∉union ∈A = contradiction (in-left-union A B ∈A) ∉union not-in-right-union : ∀ A B → c[ union A B ] ⊈ c[ B ] not-in-right-union A B ∉union ∈A = contradiction (in-right-union A B ∈A) ∉union in-neither : ∀ A B → c[ union A B ] ⊈ c[ A ] ∪ c[ B ] in-neither A B ∉union (inj₁ ∈A) = contradiction (in-left-union A B ∈A) ∉union in-neither A B ∉union (inj₂ ∈B) = contradiction (in-right-union A B ∈B) ∉union ∪-union : ∀ A B → c[ A ] ∪ c[ B ] ≋ c[ union A B ] ∪-union A B = equivalence to (in-either A B) where to : ∀ {x} → x ∈ c[ A ] ∪ c[ B ] → x ∈ c[ union A B ] to (inj₁ ∈A) = in-left-union A B ∈A to (inj₂ ∈B) = in-right-union A B ∈B head-∈ : ∀ a A B → c[ a ∷ A ] ⊆ c[ B ] → a ∈ c[ B ] head-∈ a A B ⊆B = ⊆B here tail-⊆ : ∀ a A B → c[ a ∷ A ] ⊆ c[ B ] → c[ A ] ⊆ c[ B ] tail-⊆ a A B ⊆B ∈A = ⊆B (there ∈A) union-monotone : ∀ {A B C D a} (P : String → Set a) → c[ A ] ⊆[ P ] c[ C ] → c[ B ] ⊆[ P ] c[ D ] → c[ union A B ] ⊆[ P ] c[ union C D ] union-monotone {[]} {B} {C} {D} P A⊆C B⊆D ∈P ∈A∪B = in-right-union C D (B⊆D ∈P ∈A∪B) union-monotone {a ∷ A} {B} {C} {D} P A⊆C B⊆D ∈P ∈A∪B with a ∈? B union-monotone {a ∷ A} P A⊆C B⊆D ∈P ∈A∪B | yes p = union-monotone P (λ P A → A⊆C P (there A)) B⊆D ∈P ∈A∪B union-monotone {a ∷ A} {B} {C} {D} P A⊆C B⊆D ∈P here | no ¬p = in-left-union C D (A⊆C ∈P here) union-monotone {a ∷ A} P A⊆C B⊆D ∈P (there ∈A∪B) | no ¬p = union-monotone P (λ P₁ A₁ → A⊆C P₁ (there A₁)) B⊆D ∈P ∈A∪B -- union-monotone {A} P A⊆C B⊆D ∈P ∈A∪B = {! !} -- union-monotone : ∀ A B C D → c[ A ] ⊆ c[ C ] → c[ B ] ⊆ c[ D ] → c[ union A B ] ⊆ c[ union C D ] -- union-monotone [] ._ C D A⊆C B⊆D here = in-right-union C D (B⊆D here) -- union-monotone [] ._ C D A⊆C B⊆D (there ∈A∪B) = in-right-union C D (B⊆D (there ∈A∪B)) -- union-monotone (a ∷ A) B C D A⊆C B⊆D ∈A∪B with a ∈? B -- union-monotone (a ∷ A) B C D A⊆C B⊆D ∈A∪B | yes p = union-monotone A B C D (A⊆C ∘ there) B⊆D ∈A∪B -- union-monotone (a ∷ A) B C D A⊆C B⊆D here | no ¬p = in-left-union C D (A⊆C here) -- union-monotone (a ∷ A) B C D A⊆C B⊆D (there ∈A∪B) | no ¬p = union-monotone A B C D (A⊆C ∘ there) B⊆D ∈A∪B
{ "alphanum_fraction": 0.499611137, "avg_line_length": 47.9776119403, "ext": "agda", "hexsha": "71f955177489b7b3f4f6b6b4141de7b8dae8ccec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/lambda-calculus", "max_forks_repo_path": "Data/Collection/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/lambda-calculus", "max_issues_repo_path": "Data/Collection/Properties.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/lambda-calculus", "max_stars_repo_path": "Data/Collection/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2614, "size": 6429 }
-- Classical propositional logic, de Bruijn approach, initial encoding module Bi.Cp where open import Lib using (List; _,_; LMem; lzero; lsuc) -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc -- Terms module Cp where infixl 1 _$_ infixr 0 lam=>_ infixr 0 abort=>_ data Tm (tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm tc a lam=>_ : forall {a b} -> Tm (tc , a) b -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b) fst : forall {a b} -> Tm tc (a && b) -> Tm tc a snd : forall {a b} -> Tm tc (a && b) -> Tm tc b left : forall {a b} -> Tm tc a -> Tm tc (a || b) right : forall {a b} -> Tm tc b -> Tm tc (a || b) case' : forall {a b c} -> Tm tc (a || b) -> Tm (tc , a) c -> Tm (tc , b) c -> Tm tc c abort=>_ : forall {a} -> Tm (tc , NOT a) FALSE -> Tm tc a syntax pair' x y = [ x , y ] syntax case' xy x y = case xy => x => y v0 : forall {tc a} -> Tm (tc , a) a v0 = var lzero v1 : forall {tc a b} -> Tm (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {tc a b c} -> Tm (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) Thm : Ty -> Set Thm a = forall {tc} -> Tm tc a open Cp public
{ "alphanum_fraction": 0.4543946932, "avg_line_length": 24.7808219178, "ext": "agda", "hexsha": "022960ac658c10958a378be65d198aa42fa36850", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Bi/Cp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Bi/Cp.agda", "max_line_length": 92, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Bi/Cp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 701, "size": 1809 }
module _ where open import Function.Iteration using (repeatᵣ ; repeatₗ) [+]-repeatᵣ-𝐒 : ∀{x y z : ℕ} → (x + y ≡ repeatᵣ y (const 𝐒) z x) [+]-repeatᵣ-𝐒 {x} {𝟎} = [≡]-intro [+]-repeatᵣ-𝐒 {x} {𝐒 y} {z} = congruence₁(𝐒) ([+]-repeatᵣ-𝐒 {x} {y} {z}) [+]-repeatₗ-𝐒 : ∀{x y z : ℕ} → (x + y ≡ repeatₗ y (const ∘ 𝐒) x z) [+]-repeatₗ-𝐒 {x} {𝟎} = [≡]-intro [+]-repeatₗ-𝐒 {x} {𝐒 y} {z} = congruence₁(𝐒) ([+]-repeatₗ-𝐒 {x} {y} {z}) [⋅]-repeatᵣ-[+] : ∀{x y} → (x ⋅ y ≡ repeatᵣ y (_+_) x 0) [⋅]-repeatᵣ-[+] {x} {𝟎} = [≡]-intro [⋅]-repeatᵣ-[+] {x} {𝐒 y} = congruence₁(x +_) ([⋅]-repeatᵣ-[+] {x} {y}) [^]-repeatᵣ-[⋅] : ∀{x y} → (x ^ y ≡ repeatᵣ y (_⋅_) x 1) [^]-repeatᵣ-[⋅] {x} {𝟎} = [≡]-intro [^]-repeatᵣ-[⋅] {x} {𝐒 y} = congruence₁(x ⋅_) ([^]-repeatᵣ-[⋅] {x} {y})
{ "alphanum_fraction": 0.4629388817, "avg_line_length": 38.45, "ext": "agda", "hexsha": "b54b1c830eb9832953dab45fb6554c9608f06d8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Proofs/Iteration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Proofs/Iteration.agda", "max_line_length": 72, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Proofs/Iteration.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 482, "size": 769 }
-- Andreas, 2015-11-10, issue reported by Wolfram Kahl -- {-# OPTIONS -v scope.mod.inst:30 #-} -- {-# OPTIONS -v tc.mod.check:10 -v tc.mod.apply:80 -v impossible:10 #-} postulate A : Set a : A module Id (A : Set) (a : A) where x = a module ModParamsToLoose (A : Set) where private module M (a : A) where module I = Id A a open M public open ModParamsToLoose A open I a y : A y = x
{ "alphanum_fraction": 0.6313131313, "avg_line_length": 18.8571428571, "ext": "agda", "hexsha": "82db01dce93a14b091aceb91330a431a503088a1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1701b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1701b.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1701b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 142, "size": 396 }
open import FRP.JS.String using ( String ) open import FRP.JS.Time using ( Time ; _+_ ) open import FRP.JS.Behaviour using ( Beh ; map ; [_] ; join ) open import FRP.JS.DOM using ( DOM ; text ) open import FRP.JS.RSet using ( ⟦_⟧; ⟨_⟩ ) open import FRP.JS.Time using ( toUTCString ; every ) open import FRP.JS.Delay using ( _sec ; _min ) module FRP.JS.Demo.FastClock where model : ⟦ Beh ⟨ Time ⟩ ⟧ model = map (λ t → t + 5 min) (every (1 sec)) view : ∀ {w} → ⟦ Beh (DOM w) ⟧ view = join (map (λ t → text [ toUTCString t ]) model) main : ∀ {w} → ⟦ Beh (DOM w) ⟧ main = view
{ "alphanum_fraction": 0.6273830156, "avg_line_length": 30.3684210526, "ext": "agda", "hexsha": "97c4cf47e3f4aa31324ea1e4f8529a392cc0bf1e", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "demo/agda/FRP/JS/Demo/FastClock.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "demo/agda/FRP/JS/Demo/FastClock.agda", "max_line_length": 61, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "demo/agda/FRP/JS/Demo/FastClock.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 207, "size": 577 }
open import Agda.Builtin.Sigma open import Agda.Builtin.Equality postulate A : Set B : A → Set a : A Pi : (A → Set) → Set Pi B = {x : A} → B x foo : Pi \ y → Σ (B y) \ _ → Pi \ z → Σ (y ≡ a → B z) \ _ → B y → B z → A foo = {!!} , (\ { refl → {!!} }) , {!!}
{ "alphanum_fraction": 0.456928839, "avg_line_length": 19.0714285714, "ext": "agda", "hexsha": "e077c65fb4e69ddc5451db4adcd6eb9b1e20eebf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/interaction/Issue3678.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/Issue3678.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/Issue3678.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 117, "size": 267 }
{-# OPTIONS --without-K #-} open import Prelude import GSeTT.Syntax import GSeTT.Rules import GSeTT.Typed-Syntax open import MCaTT.Desuspension open import CaTT.Ps-contexts import CaTT.CaTT module MCaTT.MCaTT where J = CaTT.CaTT.J eqdecJ = CaTT.CaTT.eqdecJ open import Globular-TT.Syntax J ↓C : Pre-Ctx → Pre-Ctx ↓T : Pre-Ctx → Pre-Ty → Pre-Ty ↓t : Pre-Ctx → Pre-Tm → Pre-Tm ↓S : Pre-Ctx → Pre-Sub → Pre-Sub ↓C ⊘ = ⊘ ↓C (Γ ∙ x # ∗) = ↓C Γ ↓C (Γ ∙ x # A@(_ ⇒[ _ ] _)) = (↓C Γ) ∙ x # (↓T Γ A) ↓T Γ ∗ = ∗ ↓T Γ (t ⇒[ ∗ ] u) = ∗ ↓T Γ (t ⇒[ A@(_ ⇒[ _ ] _) ] u) = (↓t Γ t) ⇒[ ↓T Γ A ] (↓t Γ u) count-objects-in_until_ : Pre-Ctx → ℕ → ℕ count-objects-in ⊘ until x = 0 count-objects-in Γ ∙ y # ∗ until x with dec-≤ y x ... | inl y≤x = S (count-objects-in Γ until x) ... | inr x<y = count-objects-in Γ until x count-objects-in Γ ∙ y # (_ ⇒[ _ ] _) until x = count-objects-in Γ until x ↓t Γ (Var x) = Var (x - (count-objects-in Γ until x)) ↓t Δ (Tm-constructor i@(((Γ , _) , _) , _) γ) = Tm-constructor i (↓S (GPre-Ctx Γ) γ) ↓S Γ <> = <> ↓S Γ < γ , x ↦ t > = < ↓S Γ γ , x ↦ ↓t Γ t > rule : J → GSeTT.Typed-Syntax.Ctx × Pre-Ty rule (((Γ , Γ⊢ps) , A) , _) = let Γ⊢ = Γ⊢ps→Γ⊢ Γ⊢ps in (↓GC Γ Γ⊢ , ↓⊢C Γ Γ⊢) , ↓T (GPre-Ctx Γ) (CaTT.CaTT.Ty→Pre-Ty A) open import Globular-TT.Rules J rule open import Globular-TT.CwF-Structure J rule open import Globular-TT.Uniqueness-Derivations J rule eqdecJ open import Globular-TT.Disks J rule eqdecJ
{ "alphanum_fraction": 0.5650433622, "avg_line_length": 28.2830188679, "ext": "agda", "hexsha": "9e53864868d9cfc31537bfacb1c0175558ff66ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ThiBen/catt-formalization", "max_forks_repo_path": "MCaTT/MCaTT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ThiBen/catt-formalization", "max_issues_repo_path": "MCaTT/MCaTT.agda", "max_line_length": 86, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ThiBen/catt-formalization", "max_stars_repo_path": "MCaTT/MCaTT.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-20T00:41:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-01T08:26:53.000Z", "num_tokens": 665, "size": 1499 }
-- Andreas, 2015-12-05 issue reported by Conor -- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc:20 #-} module Issue1734 where infix 4 _≡_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x record One : Set where constructor <> data Two : Set where tt ff : Two -- two : ∀{α}{A : Set α} → A → A → Two → A two : (S T : Set) → Two → Set two a b tt = a two a b ff = b record Sg (S : Set)(T : S -> Set) : Set where constructor _,_ field fst : S snd : T fst open Sg public _+_ : Set -> Set -> Set S + T = Sg Two (two S T) data Twoey : Two -> Set where ffey : Twoey ff ttey : Twoey tt postulate Thingy : Set ThingyIf : Two -> Set ThingyIf tt = Thingy ThingyIf ff = One thingy? : (b : Two) -> ThingyIf b -> Twoey b + One -> Thingy + One thingy? .ff <> (tt , ffey) = ff , <> thingy? .tt x (tt , ttey) = tt , x thingy? _ _ _ = ff , <> -- WORKS: thingy? _ _ (ff , _ ) = ff , <> {- Correct split tree split at 2 | `- Issue1734.Sg._,_ -> split at 2 | +- Issue1734.Two.tt -> split at 2 | | | +- Issue1734.Twoey.ffey -> split at 1 | | | | | `- Issue1734.One.<> -> done, 0 bindings | | | `- Issue1734.Twoey.ttey -> done, 1 bindings | `- Issue1734.Two.ff -> done, 3 bindings but clause compiler deviated from it: thingy? b x p = case p of (y , z) -> case y of tt -> case x of <> -> case z of ffey -> ff , <> ttey -> tt , <> _ -> case z of ttey -> tt , x _ -> ff , <> compiled clauses (still containing record splits) case 2 of Issue1734.Sg._,_ -> case 2 of Issue1734.Two.tt -> case 1 of Issue1734.One.<> -> case 1 of Issue1734.Twoey.ffey -> ff , <> Issue1734.Twoey.ttey -> tt , <> _ -> case 2 of Issue1734.Twoey.ttey -> tt , x _ -> ff , <> -} test1 : ∀ x → thingy? tt x (tt , ttey) ≡ tt , x test1 = λ x → refl -- should pass! first-eq-works : ∀ x → thingy? ff x (tt , ffey) ≡ ff , x first-eq-works = λ x → refl -- It's weird. I couldn't make it happen with Twoey b alone: I needed Twoey b + One. -- I also checked that reordering the arguments made it go away. This... thygni? : (b : Two) -> Twoey b + One -> ThingyIf b -> Thingy + One thygni? .ff (tt , ffey) <> = ff , <> thygni? .tt (tt , ttey) x = tt , x thygni? _ _ _ = ff , <> works : ∀ x → thygni? tt (tt , ttey) x ≡ tt , x works = λ x → refl -- Moreover, replacing the gratuitous <> pattern by a variable... hingy? : (b : Two) -> ThingyIf b -> Twoey b + One -> Thingy + One hingy? .ff x (tt , ffey) = ff , <> hingy? .tt x (tt , ttey) = tt , x hingy? _ _ _ = ff , <> -- ...gives... works2 : ∀ x → hingy? tt x (tt , ttey) ≡ tt , x works2 = λ x -> refl -- ...and it has to be a variable: an _ gives the same outcome as <>.
{ "alphanum_fraction": 0.5202072539, "avg_line_length": 23.3467741935, "ext": "agda", "hexsha": "57d93ff6b26c0c1dfe0b4246aeb0e218b9b65466", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1734.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1734.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1734.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1055, "size": 2895 }
-- Andreas, 2018-10-16, wrong quantity in lambda-abstraction applyErased : {@0 A B : Set} → (@0 A → B) → @0 A → B applyErased f x = f x test : {A : Set} → A → A test x = applyErased (λ (@ω y) → y) x -- Expected error: -- -- Wrong quantity annotation in lambda abstraction. -- -- Current error (because @ω as default quantity is ignored): -- -- Variable y is declared erased, so it cannot be used here -- when checking that the expression y has type _B_7
{ "alphanum_fraction": 0.6630196937, "avg_line_length": 26.8823529412, "ext": "agda", "hexsha": "8aa26835cccd1fff9aa5d7b85ae1180fb8ee09be", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Erasure-Lambda-Wrong-Attribute.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Erasure-Lambda-Wrong-Attribute.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Erasure-Lambda-Wrong-Attribute.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 137, "size": 457 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Semirings.Definition open import Numbers.Naturals.Order open import Numbers.Naturals.Semiring module Numbers.Naturals.Order.Lemmas where open Semiring ℕSemiring inequalityShrinkRight : {a b c : ℕ} → a +N b <N c → b <N c inequalityShrinkRight {a} {b} {c} (le x proof) = le (x +N a) (transitivity (applyEquality succ (equalityCommutative (Semiring.+Associative ℕSemiring x a b))) proof) inequalityShrinkLeft : {a b c : ℕ} → a +N b <N c → a <N c inequalityShrinkLeft {a} {b} {c} (le x proof) = le (x +N b) (transitivity (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring x b a)) (applyEquality (x +N_) (Semiring.commutative ℕSemiring b a)))) proof) productCancelsRight : (a b c : ℕ) → (zero <N a) → (b *N a ≡ c *N a) → (b ≡ c) productCancelsRight a zero zero aPos eq = refl productCancelsRight zero zero (succ c) (le x ()) eq productCancelsRight (succ a) zero (succ c) aPos eq = contr where h : zero ≡ succ c *N succ a h = eq contr : zero ≡ succ c contr = exFalso (naughtE h) productCancelsRight zero (succ b) zero (le x ()) eq productCancelsRight (succ a) (succ b) zero aPos eq = contr where h : succ b *N succ a ≡ zero h = eq contr : succ b ≡ zero contr = exFalso (naughtE (equalityCommutative h)) productCancelsRight zero (succ b) (succ c) (le x ()) eq productCancelsRight (succ a) (succ b) (succ c) aPos eq = applyEquality succ (productCancelsRight (succ a) b c aPos l) where i : succ a +N b *N succ a ≡ succ c *N succ a i = eq j : succ c *N succ a ≡ succ a +N c *N succ a j = refl k : succ a +N b *N succ a ≡ succ a +N c *N succ a k = transitivity i j l : b *N succ a ≡ c *N succ a l = canSubtractFromEqualityLeft {succ a} {b *N succ a} {c *N succ a} k productCancelsLeft : (a b c : ℕ) → (zero <N a) → (a *N b ≡ a *N c) → (b ≡ c) productCancelsLeft a b c aPos pr = productCancelsRight a b c aPos j where i : b *N a ≡ a *N c i = identityOfIndiscernablesLeft _≡_ pr (multiplicationNIsCommutative a b) j : b *N a ≡ c *N a j = identityOfIndiscernablesRight _≡_ i (multiplicationNIsCommutative a c) productCancelsRight' : (a b c : ℕ) → (b *N a ≡ c *N a) → (a ≡ zero) || (b ≡ c) productCancelsRight' zero b c pr = inl refl productCancelsRight' (succ a) b c pr = inr (productCancelsRight (succ a) b c (succIsPositive a) pr) productCancelsLeft' : (a b c : ℕ) → (a *N b ≡ a *N c) → (a ≡ zero) || (b ≡ c) productCancelsLeft' zero b c pr = inl refl productCancelsLeft' (succ a) b c pr = inr (productCancelsLeft (succ a) b c (succIsPositive a) pr) subtractionPreservesInequality : {a b : ℕ} → (c : ℕ) → a +N c <N b +N c → a <N b subtractionPreservesInequality {a} {b} zero prABC rewrite commutative a 0 | commutative b 0 = prABC subtractionPreservesInequality {a} {b} (succ c) (le x proof) = le x (canSubtractFromEqualityRight {b = succ c} (transitivity (equalityCommutative (+Associative (succ x) a (succ c))) proof)) cancelInequalityLeft : {a b c : ℕ} → a *N b <N a *N c → b <N c cancelInequalityLeft {a} {zero} {zero} (le x proof) rewrite (productZeroRight a) = exFalso (naughtE (equalityCommutative proof)) cancelInequalityLeft {a} {zero} {succ c} pr = succIsPositive c cancelInequalityLeft {a} {succ b} {zero} (le x proof) rewrite (productZeroRight a) = exFalso (naughtE (equalityCommutative proof)) cancelInequalityLeft {a} {succ b} {succ c} pr = succPreservesInequality q' where p' : succ b *N a <N succ c *N a p' = canFlipMultiplicationsInIneq {a} {succ b} {a} {succ c} pr p'' : b *N a +N a <N succ c *N a p'' = identityOfIndiscernablesLeft _<N_ p' (commutative a (b *N a)) p''' : b *N a +N a <N c *N a +N a p''' = identityOfIndiscernablesRight _<N_ p'' (commutative a (c *N a)) p : b *N a <N c *N a p = subtractionPreservesInequality a p''' q : a *N b <N a *N c q = canFlipMultiplicationsInIneq {b} {a} {c} {a} p q' : b <N c q' = cancelInequalityLeft {a} {b} {c} q <NProp : {a b : ℕ} → .(a <N b) → a <N b <NProp {zero} {succ b} a<b = succIsPositive _ <NProp {succ a} {succ b} a<b = succPreservesInequality (<NProp (canRemoveSuccFrom<N a<b)) zeroLeast : {m n : ℕ} → m <N n → 0 <N n zeroLeast {zero} m<n = m<n zeroLeast {succ m} {succ n} m<n = le n (applyEquality succ (Semiring.sumZeroRight ℕSemiring n))
{ "alphanum_fraction": 0.6526483292, "avg_line_length": 48.3406593407, "ext": "agda", "hexsha": "f1202c5bb50cc0ca53ef2c1aea41adc56c4e1088", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Naturals/Order/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Naturals/Order/Lemmas.agda", "max_line_length": 239, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Naturals/Order/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1636, "size": 4399 }
{-# OPTIONS --without-K #-} module Explore.Explorable.Isos where open import Function open import Data.Product open import Data.Nat open import Data.Vec renaming (sum to vsum) open import Function.Related.TypeIsomorphisms.NP import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_; _≗_) open import Explore.Type open import Explore.Explorable open import Explore.Product swap-μ : ∀ {A B} → Explorable (A × B) → Explorable (B × A) swap-μ = μ-iso swap-iso swapS-preserve : ∀ {A B} f (μA×B : Explorable (A × B)) → sum μA×B f ≡ sum (swap-μ μA×B) (f ∘ swap) swapS-preserve = μ-iso-preserve swap-iso μ^ : ∀ {A} (μA : Explorable A) n → Explorable (A ^ n) μ^ μA zero = μLift μ𝟙 μ^ μA (suc n) = μA ×-μ μ^ μA n μVec : ∀ {A} (μA : Explorable A) n → Explorable (Vec A n) μVec μA n = μ-iso (^↔Vec n) (μ^ μA n)
{ "alphanum_fraction": 0.6715328467, "avg_line_length": 29.3571428571, "ext": "agda", "hexsha": "39115e548dfb54ce683f78c86f95dbf19a5dd091", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Experimental/Isos.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Experimental/Isos.agda", "max_line_length": 98, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Experimental/Isos.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 304, "size": 822 }
open import Preliminaries module Lab3-LRSol where {- de Bruijn indices are representd as proofs that an element is in a list -} data _∈_ {A : Set} : (x : A) (l : List A) → Set where -- type \in i0 : {x : A} {xs : List A} → x ∈ x :: xs iS : {x y : A} {xs : List A} → x ∈ xs → x ∈ y :: xs {- types of the STLC -} data Tp : Set where b : Tp -- uninterpreted base type _⇒_ : Tp → Tp → Tp -- type \=> {- contexts are lists of Tp's -} Ctx = List Tp _,,_ : Ctx → Tp → Ctx Γ ,, τ = τ :: Γ infixr 10 _⇒_ infixr 9 _,,_ infixr 8 _|-_ -- type \entails {- Γ ⊢ τ represents a term of type τ in context Γ -} data _|-_ (Γ : Ctx) : Tp → Set where c : Γ |- b -- some constant of the base type v : {τ : Tp} → τ ∈ Γ → Γ |- τ lam : {τ1 τ2 : Tp} → Γ ,, τ1 |- τ2 → Γ |- τ1 ⇒ τ2 app : {τ1 τ2 : Tp} → Γ |- τ1 ⇒ τ2 → Γ |- τ1 → Γ |- τ2 module Examples where i : [] |- b ⇒ b i = lam (v i0) -- \ x -> x k : [] |- b ⇒ b ⇒ b k = lam (lam (v (iS i0))) -- \ x -> \ y -> x {- TASK 1: Define a term representing \ x -> \ y -> y -} k' : [] |- b ⇒ b ⇒ b k' = lam (lam (v i0)) {- The following proof is like a "0-ary" logical relation. It gives a semantics of the STLC in Agda. This shows that the STLC is sound, relative to Agda. -} module Semantics (B : Set) (elB : B) where -- works for any interpretation of the base type b -- function mapping STLC types to Agda types [_]t : Tp → Set -- type \(0 and \)0 [ b ]t = B [ τ1 ⇒ τ2 ]t = [ τ1 ]t → [ τ2 ]t -- function mapping STLC contexts to Agda types [_]c : Ctx → Set [ [] ]c = Unit [ τ :: Γ ]c = [ Γ ]c × [ τ ]t {- TASK 2 : Define the interpretation of terms -} [_] : {Γ : Ctx} {τ : Tp} → Γ |- τ → [ Γ ]c → [ τ ]t [ c ] γ = elB [ v i0 ] γ = snd γ [ v (iS x) ] γ = [ v x ] (fst γ) [ lam e ] γ = \ x → [ e ] (γ , x) [ app e1 e2 ] γ = [ e1 ] γ ([ e2 ] γ) {- the following test should pass test : ⟦ Examples.k ⟧ == \ γ x y → x test = Refl -} {- you can ignore the implementation of this module. the interface for the components you need is listed below -} module RenamingAndSubstitution where -- renamings = variable for variable substitutions. -- For simplicity, these are defined as tuples, by recursion on the context. -- It might clean up some of the proofs to use a functional view, -- {τ : Tp} → τ ∈ Γ → τ ∈ Γ' -- because then we could avoid some of the inductions here, -- and some of the associativity/unit properties would be free. module Renamings where infix 9 _⊇_ _⊇_ : Ctx → Ctx → Set -- type \sup= Γ' ⊇ [] = Unit Γ' ⊇ (τ :: Γ) = (Γ' ⊇ Γ) × (τ ∈ Γ') -- variables are functorial in the context rename-var : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → τ ∈ Γ → τ ∈ Γ' rename-var (ρ , x') i0 = x' rename-var (ρ , _) (iS x) = rename-var ρ x {- conceptually, we could define p and ⊇-compose and ⊇-id as primitive and derive this. but this works better inductively than ⊇-single does. -} p· : {Γ : Ctx} {Γ' : Ctx} → Γ ⊇ Γ' → {τ : Tp} → (Γ ,, τ) ⊇ Γ' p· {Γ' = []} ren = <> p· {Γ' = (τ :: Γ')} (ρ , x) = p· ρ , iS x idr : {Γ : Ctx} → Γ ⊇ Γ idr {[]} = <> idr {τ :: Γ} = p· idr , i0 _·rr_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 ⊇ Γ3 → Γ1 ⊇ Γ3 _·rr_ {Γ1} {Γ2} {[]} ρ2 ρ3 = <> _·rr_ {Γ1} {Γ2} {x :: Γ3} ρ2 (ρ3 , x3) = (ρ2 ·rr ρ3) , rename-var ρ2 x3 -- category with families notation p : {Γ : Ctx} {τ : Tp} → (Γ ,, τ ⊇ Γ) p = p· idr -- next, we should show associativity and unit laws for ∘rr. -- However: -- (1) because renamings are defined using variables, this depends on (some of) functoriality of τ ∈ -, -- so we define that here, too. -- (2) we only need one of the unit laws rename-var-· : {Γ1 Γ2 Γ3 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) (ρ3 : Γ2 ⊇ Γ3) {τ : Tp} (x : τ ∈ Γ3) → rename-var ρ2 (rename-var ρ3 x) == rename-var (_·rr_ ρ2 ρ3) x rename-var-· ρ2 ρ3 i0 = Refl rename-var-· ρ2 ρ3 (iS x) = rename-var-· ρ2 (fst ρ3) x ·rr-assoc : {Γ1 Γ2 Γ3 Γ4 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) (ρ3 : Γ2 ⊇ Γ3) (ρ4 : Γ3 ⊇ Γ4) → _·rr_ ρ2 (_·rr_ ρ3 ρ4) == _·rr_ (_·rr_ ρ2 ρ3) ρ4 ·rr-assoc {Γ4 = []} ρ2 ρ3 ρ4 = Refl ·rr-assoc {Γ4 = τ4 :: Γ4} ρ2 ρ3 (ρ4 , x4) = ap2 _,_ (·rr-assoc ρ2 ρ3 ρ4) (rename-var-· ρ2 ρ3 x4) -- rest of functoriality of rename-var mutual -- generalization to get the induction to go through rename-var-p' : {Γ Γ' : Ctx} {τ τ' : Tp} (ρ : Γ' ⊇ Γ) (x : τ ∈ Γ) → rename-var (p· ρ {τ'}) x == (iS (rename-var ρ x)) rename-var-p' ρ i0 = Refl rename-var-p' (ρ , _) (iS x) = rename-var-p' ρ x -- this would be definitional if renamings were functions. -- this instances is often needed below rename-var-p : {Γ : Ctx} {τ τ' : Tp} (x : τ ∈ Γ) → rename-var (p· idr {τ'}) x == (iS x) rename-var-p x = ap iS (rename-var-ident _ x) ∘ rename-var-p' idr x rename-var-ident : {τ : Tp} (Γ : Ctx) (x : τ ∈ Γ) → rename-var idr x == x rename-var-ident .(τ :: Γ) (i0 {τ} {Γ}) = Refl rename-var-ident .(τ' :: Γ) (iS {τ} {τ'} {Γ} x) = rename-var-p x -- beta reduction for p pβ1' : {Γ1 Γ2 Γ3 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) (ρ3 : Γ2 ⊇ Γ3) {τ : Tp} (x : τ ∈ Γ1) → (ρ2 , x) ·rr (p· ρ3) == (ρ2 ·rr ρ3) pβ1' {Γ1} {_} {[]} ρ2 ρ3 x = Refl pβ1' {Γ1} {_} {τ3 :: Γ3} ρ2 (ρ3 , x3) x₁ = ap (λ x → x , rename-var ρ2 x3) (pβ1' ρ2 ρ3 _) mutual ·rr-unitr : {Γ1 Γ2 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) → ρ2 ·rr idr == ρ2 ·rr-unitr {Γ1} {[]} ρ2 = Refl ·rr-unitr {Γ1} {τ2 :: Γ2} (ρ2 , x2) = ap (λ x → x , x2) (pβ1 ρ2 x2) pβ1 : {Γ1 Γ2 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) {τ : Tp} (x : τ ∈ Γ1) → (ρ2 , x) ·rr p == ρ2 pβ1 ρ2 x = ·rr-unitr ρ2 ∘ pβ1' ρ2 idr x -- p· is equivalent to the alternate definition. p·-def : {Γ1 Γ2 : Ctx} {τ : Tp} (ρ : Γ1 ⊇ Γ2) → p· ρ {τ} == p ·rr ρ p·-def {_}{[]} ρ = Refl p·-def {_}{τ1 :: Γ1} (ρ , x) = ap2 _,_ (p·-def ρ) (! (rename-var-p x)) -- terms are functorial in renamings addvar-ren : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → Γ' ,, τ ⊇ Γ ,, τ addvar-ren ρ = (p· ρ , i0) rename : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → Γ |- τ → Γ' |- τ rename ρ c = c rename ρ (v x) = v (rename-var ρ x) rename ρ (lam e) = lam (rename (addvar-ren ρ) e) rename ρ (app e e') = app (rename ρ e) (rename ρ e') rename-· : {Γ1 Γ2 Γ3 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) (ρ3 : Γ2 ⊇ Γ3) {τ : Tp} (e : Γ3 |- τ) → rename ρ2 (rename ρ3 e) == rename (ρ2 ·rr ρ3) e rename-· ρ2 ρ3 c = Refl rename-· ρ2 ρ3 (v x) = ap v (rename-var-· ρ2 ρ3 x) rename-·{Γ1}{Γ2}{Γ3} ρ2 ρ3 (lam e) = ap lam (ap (λ x → rename (x , i0) e) lemma1 ∘ rename-· (addvar-ren ρ2) (addvar-ren ρ3) e) where lemma1 : (p· ρ2 , i0) ·rr (p· ρ3) == p· (ρ2 ·rr ρ3) lemma1 = (p· ρ2 , i0) ·rr (p· ρ3) =⟨ pβ1' (p· ρ2) ρ3 i0 ⟩ (p· ρ2) ·rr ρ3 =⟨ ap (λ x → _·rr_ x ρ3) (p·-def ρ2) ⟩ (p ·rr ρ2) ·rr ρ3 =⟨ ! (·rr-assoc p ρ2 ρ3) ⟩ p ·rr (ρ2 ·rr ρ3) =⟨ ! (p·-def (ρ2 ·rr ρ3))⟩ p· (ρ2 ·rr ρ3) ∎ rename-· ρ2 ρ3 (app e e₁) = ap2 app (rename-· ρ2 ρ3 e) (rename-· ρ2 ρ3 e₁) -- not necessary for the proof, but an easy corollary of the above rename-id : {Γ : Ctx}{τ : Tp} (e : Γ |- τ) → rename idr e == e rename-id c = Refl rename-id (v x) = ap v (rename-var-ident _ x) rename-id (lam e) = ap lam (rename-id e) rename-id (app e e₁) = ap2 app (rename-id e) (rename-id e₁) open Renamings -- expression-for-variable substitutions module Subst where _|-c_ : Ctx → Ctx → Set Γ' |-c [] = Unit Γ' |-c (τ :: Γ) = (Γ' |-c Γ) × (Γ' |- τ) _·rs_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 |-c Γ3 → Γ1 |-c Γ3 _·rs_ {Γ1} {Γ2} {[]} ρ θ = <> _·rs_ {Γ1} {Γ2} {τ3 :: Γ3} ρ (θ , e) = ρ ·rs θ , rename ρ e addvar : {Γ Γ' : Ctx} {τ : Tp} → Γ |-c Γ' → (Γ ,, τ) |-c (Γ' ,, τ) addvar θ = p ·rs θ , v i0 ids : {Γ : Ctx} → Γ |-c Γ ids {[]} = <> ids {τ :: Γ} = p ·rs ids , v i0 subst-var : {Γ Γ' : Ctx}{τ : Tp} → Γ |-c Γ' → τ ∈ Γ' → Γ |- τ subst-var (θ , e) i0 = e subst-var (θ , _) (iS x) = subst-var θ x subst : {Γ Γ' : Ctx}{τ : Tp} → Γ |-c Γ' → Γ' |- τ → Γ |- τ subst θ c = c subst θ (v x) = subst-var θ x subst θ (lam e) = lam (subst (addvar θ) e) subst θ (app e e') = app (subst θ e) (subst θ e') subst1 : {τ τ0 : Tp} → [] |- τ0 → ([] ,, τ0) |- τ → [] |- τ subst1 e0 e = subst (<> , e0) e -- composition of renamings and substitutions _·sr_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 |-c Γ2 → Γ2 ⊇ Γ3 → Γ1 |-c Γ3 _·sr_ {Γ1} {Γ2} {[]} θ ρ = <> _·sr_ {Γ1} {Γ2} {τ3 :: Γ3} θ (ρ , x) = _·sr_ θ ρ , subst-var θ x _·ss_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 |-c Γ2 → Γ2 |-c Γ3 → Γ1 |-c Γ3 _·ss_ {Γ3 = []} θ1 θ2 = <> _·ss_ {Γ1} {Γ2} {τ :: Γ3} θ1 (θ2 , e2) = θ1 ·ss θ2 , subst θ1 e2 -- subst var functoriality subst-var-·rs : {Γ1 Γ2 Γ3 : Ctx} (ρ : Γ1 ⊇ Γ2) (θ : Γ2 |-c Γ3) {τ : Tp} (x : τ ∈ Γ3) → subst-var (ρ ·rs θ) x == rename ρ (subst-var θ x) subst-var-·rs ρ θ i0 = Refl subst-var-·rs ρ (θ , _) (iS x) = subst-var-·rs ρ θ x subst-var-∘ss : {Γ1 Γ2 Γ3 : Ctx} → (θ2 : Γ1 |-c Γ2) (θ3 : Γ2 |-c Γ3) {τ : Tp} (x : τ ∈ Γ3) → subst-var (_·ss_ θ2 θ3) x == subst θ2 (subst-var θ3 x) subst-var-∘ss θ2 θ3 i0 = Refl subst-var-∘ss θ2 (θ3 , _) (iS x) = subst-var-∘ss θ2 θ3 x subst-var-·sr : {Γ1 Γ2 Γ3 : Ctx} {τ : Tp} → (θ2 : Γ1 |-c Γ2) (ρ : Γ2 ⊇ Γ3) (x : τ ∈ Γ3) → (subst-var θ2 (rename-var ρ x)) == subst-var (_·sr_ θ2 ρ) x subst-var-·sr θ2 ρ i0 = Refl subst-var-·sr θ2 ρ (iS x) = subst-var-·sr θ2 (fst ρ) x subst-var-id : {Γ : Ctx} {τ : Tp} → (x : τ ∈ Γ) → v x == subst-var ids x subst-var-id i0 = Refl subst-var-id {τ :: Γ} (iS x) = ! (_ =〈 subst-var-·rs (p· idr) ids x 〉 rename (p· idr) _ =〈 ! (ap (rename (p· idr)) (subst-var-id x)) 〉 rename (p· idr) (v x) =〈 ap v (rename-var-p x) 〉 v (iS x) ∎) -- associativity and unit laws for composition. -- also includes some β rules for composing with p. -- and functoriality of subst in the various compositions, since substitutions involve terms. ∘rsr-assoc : {Γ1 Γ2 Γ3 Γ4 : Ctx} → (ρ2 : Γ1 ⊇ Γ2) (θ3 : Γ2 ⊢c Γ3) (ρ4 : Γ3 ⊇ Γ4) → (ρ2 ·rs θ3) ·sr ρ4 == ρ2 ·rs (θ3 ·sr ρ4) ∘rsr-assoc {Γ1} {Γ2} {Γ3} {[]} ρ2 θ3 ρ4 = Refl ∘rsr-assoc {Γ1} {Γ2} {Γ3} {τ4 :: Γ4} ρ2 θ3 (ρ4 , x4) = ap2 _,_ (∘rsr-assoc ρ2 θ3 ρ4) (subst-var-·rs ρ2 θ3 x4) ·sr-pβ' : {Γ1 Γ2 Γ3 : Ctx} {τ : Tp} → (θ2 : Γ1 ⊢c Γ2) (ρ : Γ2 ⊇ Γ3) {e : _ ⊢ τ} → (θ2 , e) ·sr (p· ρ) == θ2 ·sr ρ ·sr-pβ' {Γ1} {Γ2} {[]} θ2 ρ = Refl ·sr-pβ' {Γ1} {Γ2} {τ :: Γ3} θ2 (ρ , x) = ap2 _,_ (·sr-pβ' θ2 ρ) Refl mutual ·sr-unitr : {Γ1 Γ2 : Ctx} → (θ : Γ1 ⊢c Γ2) → θ ·sr idr == θ ·sr-unitr {Γ1} {[]} θ = Refl ·sr-unitr {Γ1} {τ2 :: Γ2} (θ , e) = ap (λ x → x , e) (·sr-pβ θ) ·sr-pβ : {Γ1 Γ2 : Ctx} {τ : Tp} → (θ2 : Γ1 ⊢c Γ2) {e : _ ⊢ τ} → (θ2 , e) ·sr p == θ2 ·sr-pβ θ2 = ·sr-unitr θ2 ∘ ·sr-pβ' θ2 idr subst-id : {Γ : Ctx} {τ : Tp} {e : Γ ⊢ τ} → e == subst (ids) e subst-id {e = c} = Refl subst-id {e = v x} = subst-var-id x subst-id {e = lam e} = ap lam (subst-id) subst-id {e = app e e₁} = ap2 app subst-id subst-id subst-·rs : {Γ1 Γ2 Γ4 : Ctx} {τ : Tp} → (ρ : Γ4 ⊇ Γ1) (θ2 : Γ1 ⊢c Γ2) (e : Γ2 ⊢ τ) → rename ρ (subst θ2 e) == subst (ρ ·rs θ2) e subst-·rs ρ θ2 c = Refl subst-·rs ρ θ2 (v x) = ! (subst-var-·rs ρ θ2 x) subst-·rs ρ θ2 (lam e) = ap lam (ap (λ x → subst x e) (ap (λ x → x , v i0) (lemma2 ρ θ2)) ∘ subst-·rs (addvar-ren ρ) (addvar θ2) e) where lemma1 : {Γ3 Γ5 : Ctx} (ρ₁ : Γ5 ⊇ Γ3) {τ3 : Tp} → (addvar-ren {_}{_}{τ3} ρ₁) ·rr (p· idr) == (p· idr) ·rr ρ₁ lemma1 {Γ3} {Γ5} ρ₁ = (p· ρ₁ , i0) ·rr (p· idr) =〈 Refl 〉 (p· ρ₁ , i0) ·rr p =〈 ap (λ x → (x , i0) ·rr p) (p·-def ρ₁)〉 (p ·rr ρ₁ , i0) ·rr p =〈 pβ1 (p ·rr ρ₁) i0 〉 p ·rr ρ₁ =〈 Refl 〉 (p· idr) ·rr ρ₁ ∎ lemma2 : {Γ1 Γ2 Γ4 : Ctx} {τ : Tp} → (ρ : Γ4 ⊇ Γ1) (θ2 : Γ1 ⊢c Γ2) → (addvar-ren{_}{_}{τ} ρ) ·rs (fst (addvar θ2)) == p ·rs (ρ ·rs θ2) lemma2 {Γ2 = []} ρ₁ θ3 = Refl lemma2 {Γ2 = τ2 :: Γ2} ρ₁ (θ3 , e3) = ap2 _,_ (lemma2 ρ₁ θ3) (! (rename-· (p· idr) ρ₁ e3) ∘ (ap (λ x → rename x e3) (lemma1 ρ₁) ∘ rename-· (addvar-ren ρ₁) (p· idr) e3)) subst-·rs ρ θ2 (app e e₁) = ap2 app (subst-·rs ρ θ2 e) (subst-·rs ρ θ2 e₁) ·rss-assoc : {Γ1 Γ2 Γ3 Γ4 : Ctx} → (ρ : Γ4 ⊇ Γ1) (θ2 : Γ1 ⊢c Γ2) (θ3 : Γ2 ⊢c Γ3) → ρ ·rs (θ2 ·ss θ3) == (ρ ·rs θ2) ·ss θ3 ·rss-assoc {Γ1} {Γ2} {[]} ρ θ2 θ3 = Refl ·rss-assoc {Γ1} {Γ2} {x :: Γ3} ρ θ2 (θ3 , e3) = ap2 _,_ (·rss-assoc ρ θ2 θ3) (subst-·rs ρ θ2 e3) subst-·sr : {Γ1 Γ2 Γ3 : Ctx} {τ : Tp} → (θ2 : Γ1 ⊢c Γ2) (ρ : Γ2 ⊇ Γ3) (e : Γ3 ⊢ τ) → (subst θ2 (rename ρ e)) == subst (θ2 ·sr ρ) e subst-·sr θ2 ρ c = Refl subst-·sr θ2 ρ (v x) = subst-var-·sr θ2 ρ x subst-·sr θ2 ρ (lam e) = ap lam (ap (λ x → subst x e) (ap (λ x → x , v i0) (lemma θ2 ρ)) ∘ subst-·sr (addvar θ2) (addvar-ren ρ) e) where lemma : {Γ1 Γ2 Γ3 : Ctx} {τ : Tp} → (θ2 : Γ1 ⊢c Γ2) (ρ : Γ2 ⊇ Γ3) → (addvar{_}{_}{τ} θ2) ·sr (p· ρ) == p ·rs (θ2 ·sr ρ) lemma θ2 ρ = ∘rsr-assoc (p· idr) θ2 ρ ∘ ·sr-pβ' (_·rs_ (p· idr) θ2) ρ {v i0} subst-·sr θ2 ρ (app e e₁) = ap2 app (subst-·sr θ2 ρ e) (subst-·sr θ2 ρ e₁) ·srs-assoc : {Γ1 Γ2 Γ3 Γ4 : Ctx} (θ : Γ1 ⊢c Γ2) (ρ : Γ2 ⊇ Γ3) (θ' : Γ3 ⊢c Γ4) → θ ·ss (ρ ·rs θ') == (θ ·sr ρ) ·ss θ' ·srs-assoc {Γ1} {Γ2} {Γ3} {[]} θ ρ θ' = Refl ·srs-assoc {Γ1} {Γ2} {Γ3} {x :: Γ4} θ ρ (θ' , e') = ap2 _,_ (·srs-assoc θ ρ θ') (subst-·sr θ ρ e') subst-·ss : {Γ1 Γ2 Γ3 : Ctx} → (θ2 : Γ1 ⊢c Γ2) (θ3 : Γ2 ⊢c Γ3) {τ : Tp} (e : Γ3 ⊢ τ) → subst (θ2 ·ss θ3) e == subst θ2 (subst θ3 e) subst-·ss θ2 θ3 c = Refl subst-·ss θ2 θ3 (v x) = subst-var-∘ss θ2 θ3 x subst-·ss θ2 θ3 (lam e) = ap lam (subst-·ss (addvar θ2) (addvar θ3) e ∘ ap (λ x → subst x e) (ap (λ x → x , v i0) (lemma1 ∘ ·rss-assoc p θ2 θ3))) where lemma1 : (p ·rs θ2) ·ss θ3 == (addvar θ2) ·ss (fst (addvar θ3)) lemma1 = (p ·rs θ2) ·ss θ3 =〈 ! (ap (λ x → x ·ss θ3) (·sr-pβ (p ·rs θ2) {v i0})) 〉 ((p ·rs θ2 , v i0) ·sr p) ·ss θ3 =〈 ! (·srs-assoc (p ·rs θ2 , v i0) p θ3) 〉 (p ·rs θ2 , v i0) ·ss (p ·rs θ3) ∎ subst-·ss θ2 θ3 (app e e₁) = ap2 app (subst-·ss θ2 θ3 e) (subst-·ss θ2 θ3 e₁) ·ss-unitl : {Γ1 Γ2 : Ctx} → (θ : Γ1 ⊢c Γ2) → ids ·ss θ == θ ·ss-unitl {Γ2 = []} θ = Refl ·ss-unitl {Γ2 = τ :: Γ2} (θ , e) = ap2 _,_ (·ss-unitl θ) (! subst-id) compose1 : {τ1 τ2 : Tp} {Γ : Ctx} (θ : [] ⊢c Γ) (e' : [] ⊢ τ1) → (θ , e') == (<> , e') ·ss (addvar θ) compose1 {τ1}{τ2} θ e' = ap (λ x → x , e') (! (·srs-assoc (<> , e') (p{_}{τ1}) θ) ∘ ! (·ss-unitl θ)) subst-compose1 : {τ1 τ2 : Tp} {Γ : Ctx} (θ : [] ⊢c Γ) (e' : [] ⊢ τ1) (e : Γ ,, τ1 ⊢ τ2) → subst (θ , e') e == subst1 e' (subst (addvar θ) e) subst-compose1{τ1}{τ2}{Γ} θ e' e = subst-·ss (<> , e') (addvar θ) e ∘ ap (λ x → subst x e) (compose1{τ1}{τ2}{Γ} θ e') open Subst public open RenamingAndSubstitution using (subst1 ; _⊢c_ ; subst ; subst-id ; subst-compose1) {- θ : Γ ⊢c Γ' means θ is a substitution for Γ' in terms of Γ. It is defined as follows: _⊢c_ : Ctx → Ctx → Set Γ' ⊢c [] = Unit Γ' ⊢c (τ :: Γ) = (Γ' ⊢c Γ) × (Γ' ⊢ τ) -- apply a substitution to a term subst : {Γ Γ' : Ctx}{τ : Tp} → Γ ⊢c Γ' → Γ' ⊢ τ → Γ ⊢ τ -- substitution for a single variable subst1 : {τ τ0 : Tp} → [] ⊢ τ0 → ([] ,, τ0) ⊢ τ → [] ⊢ τ -- you will need these two properties: subst-compose1 : {τ1 τ2 : Tp} {Γ : Ctx} (θ : [] ⊢c Γ) (e' : [] ⊢ τ1) (e : Γ ,, τ1 ⊢ τ2) → subst (θ , e') e == subst1 e' (subst (addvar θ) e) subst-id : {Γ : Ctx} {τ : Tp} {e : Γ ⊢ τ} → e == subst (ids) e -} module OpSem where -- step relation data _↦_ : {τ : Tp} → [] |- τ → [] |- τ → Set where Step/app :{τ1 τ2 : Tp} {e e' : [] |- τ1 ⇒ τ2} {e1 : [] |- τ1} → e ↦ e' → (app e e1) ↦ (app e' e1) Step/β : {τ1 τ2 : Tp} {e : [] ,, τ1 |- τ2} {e1 : [] |- τ1} → (app (lam e) e1) ↦ subst1 e1 e -- reflexive/transitive closure data _↦*_ : {τ : Tp} → [] |- τ → [] |- τ → Set where Done : {τ : Tp} {e : [] |- τ} → e ↦* e Step : {τ : Tp} {e1 e2 e3 : [] |- τ} → e1 ↦ e2 → e2 ↦* e3 → e1 ↦* e3 {- Next, you will prove "very weak normalization". The theorem is that any closed term *of base type b* evaluates to the constant c. No claims are made about terms of function type. -} module VeryWeakNormalization where open OpSem WN : (τ : Tp) → [] ⊢ τ → Set -- WN_τ(e) iff e ↦* c WN b e = e ↦* c -- WN_τ(e) iff for all e1 : τ1, if WN_τ1(e1) then WN_τ2(e e1) WN (τ1 ⇒ τ2) e = (e1 : [] ⊢ τ1) → WN τ1 e1 → WN τ2 (app e e1) -- extend WN to contexts and substitutions WNc : (Γ : Ctx) → [] ⊢c Γ → Set WNc [] θ = Unit WNc (τ :: Γ) (θ , e) = WNc Γ θ × WN τ e {- TASK 3 : show that the relation is closed under head expansion: -} head-expand : (τ : Tp) {e e' : [] ⊢ τ} → e ↦ e' → WN τ e' → WN τ e head-expand b e↦e' w = Step e↦e' w head-expand (τ1 ⇒ τ2) e↦e' w = λ e1 we1 → head-expand τ2 (Step/app e↦e') (w e1 we1) {- TASK 4 : prove the fundamental theorem -} fund : {Γ : Ctx} {τ : Tp} {θ : [] ⊢c Γ} → (e : Γ ⊢ τ) → WNc Γ θ → WN τ (subst θ e) fund c wθ = Done fund (v i0) (_ , we) = we fund (v (iS x)) (wθ , _) = fund (v x) wθ fund {_}{._}{θ} (lam{τ1}{τ2} e) wθ = λ e1 we1 → head-expand τ2 Step/β (transport (λ x → WN τ2 x) (subst-compose1 θ e1 e) (fund e (wθ , we1))) fund (app e e₁) wθ = fund e wθ _ (fund e₁ wθ) {- TASK 5 : conclude weak normalization at base type -} corollary : (e : [] ⊢ b) → e ↦* c corollary e = transport (\ x -> x ↦* _) (! subst-id) (fund e <>) {- TASK 6 : change the definition of the logical relation so that you also can conclude normalization at function type -} module WeakNormalization where open OpSem WN : (τ : Tp) → [] ⊢ τ → Set WN b e = e ↦* c WN (τ1 ⇒ τ2) e = Σ \ (e' : [] ,, τ1 ⊢ τ2) → (e ↦* lam e') × ((e1 : [] ⊢ τ1) → WN τ1 e1 → WN τ2 (subst1 e1 e')) -- extend WN to contexts and substitutions WNc : (Γ : Ctx) → [] ⊢c Γ → Set WNc [] θ = Unit WNc (τ :: Γ) (θ , e) = WNc Γ θ × WN τ e open RenamingAndSubstitution using (addvar) --- you will want to use -- addvar : {Γ Γ' : Ctx} {τ : Tp} → Γ ⊢c Γ' → (Γ ,, τ) ⊢c (Γ' ,, τ) head-expand : (τ : Tp) {e e' : [] ⊢ τ} → e ↦ e' → WN τ e' → WN τ e head-expand b e↦e' w = Step e↦e' w head-expand (τ1 ⇒ τ2) e↦e' (body , steps , wn) = body , Step e↦e' steps , wn -- Hint: you will need a couple of lemmas about ↦* that we didn't need above -- (I used three of them) head-expand* : {τ : Tp} {e e' : [] ⊢ τ} → e ↦* e' → WN τ e' → WN τ e head-expand* Done w = w head-expand* (Step s ss) w = head-expand _ s (head-expand* ss w) Step/app* :{τ1 τ2 : Tp} {e e' : [] ⊢ τ1 ⇒ τ2} {e1 : [] ⊢ τ1} → e ↦* e' → (app e e1) ↦* (app e' e1) Step/app* Done = Done Step/app* (Step s ss) = (Step (Step/app s) (Step/app* ss)) Step' : {τ : Tp} {e1 e2 e3 : [] ⊢ τ} → e1 ↦* e2 → e2 ↦ e3 → e1 ↦* e3 Step' Done s = Step s Done Step' (Step s ss) s' = Step s (Step' ss s') fund : {Γ : Ctx} {τ : Tp} {θ : [] ⊢c Γ} → (e : Γ ⊢ τ) → WNc Γ θ → WN τ (subst θ e) fund c wθ = Done fund (v i0) (_ , we) = we fund (v (iS x)) (wθ , _) = fund (v x) wθ fund {_}{._}{θ} (lam{τ1}{τ2} e) wθ = subst (addvar θ) e , Done , (λ e1 we1 → transport (WN τ2) (subst-compose1 θ e1 e) (fund e (wθ , we1))) fund (app e e₁) wθ with fund e wθ ... | (body , reduction , wn) = head-expand* (Step' (Step/app* reduction) Step/β) (wn _ (fund e₁ wθ)) {- TASK 6a -} corollary1 : (e : [] ⊢ b) → e ↦* c corollary1 e = transport (λ x → x ↦* _) (! subst-id) (fund e <>) {- TASK 6b -} corollary2 : {τ1 τ2 : Tp} (e : [] ⊢ τ1 ⇒ τ2) → Σ \(e' : _) → e ↦* (lam e') corollary2 e with (fund e <>) ... | (e' , steps , _) = e' , transport (λ x → x ↦* _) (! subst-id) steps
{ "alphanum_fraction": 0.4495340899, "avg_line_length": 41.3702290076, "ext": "agda", "hexsha": "0789d085ae6094b9964515297acce1e9298f3d04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "old/Lab3-LRSol.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "old/Lab3-LRSol.agda", "max_line_length": 143, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "old/Lab3-LRSol.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 9722, "size": 21678 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic properties of ℕᵇ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Binary.Properties where open import Algebra.Bundles open import Algebra.Morphism.Structures import Algebra.Morphism.MonoidMonomorphism as MonoidMonomorphism open import Algebra.Consequences.Propositional open import Data.Nat.Binary.Base open import Data.Nat as ℕ using (ℕ; z≤n; s≤s) import Data.Nat.Properties as ℕₚ open import Data.Nat.Solver open import Data.Product using (_,_; proj₁; proj₂; ∃) open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Function using (_∘_; _$_; id) open import Function.Definitions using (Injective) open import Function.Definitions.Core2 using (Surjective) open import Level using (0ℓ) open import Relation.Binary open import Relation.Binary.Consequences open import Relation.Binary.Morphism import Relation.Binary.Morphism.OrderMonomorphism as OrderMonomorphism open import Relation.Binary.PropositionalEquality import Relation.Binary.Reasoning.Base.Triple as InequalityReasoning open import Relation.Nullary using (¬_; yes; no) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation using (contradiction) open import Algebra.Definitions {A = ℕᵇ} _≡_ open import Algebra.Structures {A = ℕᵇ} _≡_ import Algebra.Properties.CommutativeSemigroup ℕₚ.+-commutativeSemigroup as ℕ-+-semigroupProperties import Relation.Binary.Construct.StrictToNonStrict _≡_ _<_ as StrictToNonStrict open +-*-Solver ------------------------------------------------------------------------ -- Properties of _≡_ ------------------------------------------------------------------------ 2[1+x]≢0 : ∀ {x} → 2[1+ x ] ≢ 0ᵇ 2[1+x]≢0 () 1+[2x]≢0 : ∀ {x} → 1+[2 x ] ≢ 0ᵇ 1+[2x]≢0 () 2[1+_]-injective : Injective _≡_ _≡_ 2[1+_] 2[1+_]-injective refl = refl 1+[2_]-injective : Injective _≡_ _≡_ 1+[2_] 1+[2_]-injective refl = refl _≟_ : Decidable {A = ℕᵇ} _≡_ zero ≟ zero = yes refl zero ≟ 2[1+ _ ] = no λ() zero ≟ 1+[2 _ ] = no λ() 2[1+ _ ] ≟ zero = no λ() 2[1+ x ] ≟ 2[1+ y ] = Dec.map′ (cong 2[1+_]) 2[1+_]-injective (x ≟ y) 2[1+ _ ] ≟ 1+[2 _ ] = no λ() 1+[2 _ ] ≟ zero = no λ() 1+[2 _ ] ≟ 2[1+ _ ] = no λ() 1+[2 x ] ≟ 1+[2 y ] = Dec.map′ (cong 1+[2_]) 1+[2_]-injective (x ≟ y) ≡-isDecEquivalence : IsDecEquivalence {A = ℕᵇ} _≡_ ≡-isDecEquivalence = isDecEquivalence _≟_ ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid ℕᵇ ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Properties of toℕ & fromℕ ------------------------------------------------------------------------ toℕ-double : ∀ x → toℕ (double x) ≡ 2 ℕ.* (toℕ x) toℕ-double zero = refl toℕ-double 1+[2 x ] = cong ((2 ℕ.*_) ∘ ℕ.suc) (toℕ-double x) toℕ-double 2[1+ x ] = cong (2 ℕ.*_) (sym (ℕₚ.*-distribˡ-+ 2 1 (toℕ x))) toℕ-suc : ∀ x → toℕ (suc x) ≡ ℕ.suc (toℕ x) toℕ-suc zero = refl toℕ-suc 2[1+ x ] = cong (ℕ.suc ∘ (2 ℕ.*_)) (toℕ-suc x) toℕ-suc 1+[2 x ] = ℕₚ.*-distribˡ-+ 2 1 (toℕ x) toℕ-pred : ∀ x → toℕ (pred x) ≡ ℕ.pred (toℕ x) toℕ-pred zero = refl toℕ-pred 2[1+ x ] = cong ℕ.pred $ sym $ ℕₚ.*-distribˡ-+ 2 1 (toℕ x) toℕ-pred 1+[2 x ] = toℕ-double x toℕ-fromℕ : toℕ ∘ fromℕ ≗ id toℕ-fromℕ 0 = refl toℕ-fromℕ (ℕ.suc n) = begin toℕ (fromℕ (ℕ.suc n)) ≡⟨⟩ toℕ (suc (fromℕ n)) ≡⟨ toℕ-suc (fromℕ n) ⟩ ℕ.suc (toℕ (fromℕ n)) ≡⟨ cong ℕ.suc (toℕ-fromℕ n) ⟩ ℕ.suc n ∎ where open ≡-Reasoning toℕ-injective : Injective _≡_ _≡_ toℕ toℕ-injective {zero} {zero} _ = refl toℕ-injective {2[1+ x ]} {2[1+ y ]} 2[1+xN]≡2[1+yN] = cong 2[1+_] x≡y where 1+xN≡1+yN = ℕₚ.*-cancelˡ-≡ {ℕ.suc _} {ℕ.suc _} 1 2[1+xN]≡2[1+yN] xN≡yN = cong ℕ.pred 1+xN≡1+yN x≡y = toℕ-injective xN≡yN toℕ-injective {2[1+ x ]} {1+[2 y ]} 2[1+xN]≡1+2yN = contradiction 2[1+xN]≡1+2yN (ℕₚ.even≢odd (ℕ.suc (toℕ x)) (toℕ y)) toℕ-injective {1+[2 x ]} {2[1+ y ]} 1+2xN≡2[1+yN] = contradiction (sym 1+2xN≡2[1+yN]) (ℕₚ.even≢odd (ℕ.suc (toℕ y)) (toℕ x)) toℕ-injective {1+[2 x ]} {1+[2 y ]} 1+2xN≡1+2yN = cong 1+[2_] x≡y where 2xN≡2yN = cong ℕ.pred 1+2xN≡1+2yN xN≡yN = ℕₚ.*-cancelˡ-≡ 1 2xN≡2yN x≡y = toℕ-injective xN≡yN toℕ-surjective : Surjective _≡_ toℕ toℕ-surjective n = (fromℕ n , toℕ-fromℕ n) toℕ-isRelHomomorphism : IsRelHomomorphism _≡_ _≡_ toℕ toℕ-isRelHomomorphism = record { cong = cong toℕ } fromℕ-injective : Injective _≡_ _≡_ fromℕ fromℕ-injective {x} {y} f[x]≡f[y] = begin x ≡⟨ sym (toℕ-fromℕ x) ⟩ toℕ (fromℕ x) ≡⟨ cong toℕ f[x]≡f[y] ⟩ toℕ (fromℕ y) ≡⟨ toℕ-fromℕ y ⟩ y ∎ where open ≡-Reasoning fromℕ-toℕ : fromℕ ∘ toℕ ≗ id fromℕ-toℕ = toℕ-injective ∘ toℕ-fromℕ ∘ toℕ fromℕ-pred : ∀ n → fromℕ (ℕ.pred n) ≡ pred (fromℕ n) fromℕ-pred n = begin fromℕ (ℕ.pred n) ≡⟨ cong (fromℕ ∘ ℕ.pred) (sym (toℕ-fromℕ n)) ⟩ fromℕ (ℕ.pred (toℕ x)) ≡⟨ cong fromℕ (sym (toℕ-pred x)) ⟩ fromℕ (toℕ (pred x)) ≡⟨ fromℕ-toℕ (pred x) ⟩ pred x ≡⟨ refl ⟩ pred (fromℕ n) ∎ where open ≡-Reasoning; x = fromℕ n x≡0⇒toℕ[x]≡0 : ∀ {x} → x ≡ zero → toℕ x ≡ 0 x≡0⇒toℕ[x]≡0 {zero} _ = refl toℕ[x]≡0⇒x≡0 : ∀ {x} → toℕ x ≡ 0 → x ≡ zero toℕ[x]≡0⇒x≡0 {zero} _ = refl ------------------------------------------------------------------------ -- Properties of _<_ ------------------------------------------------------------------------ -- Basic properties x≮0 : ∀ {x} → x ≮ zero x≮0 () x≢0⇒x>0 : ∀ {x} → x ≢ zero → x > zero x≢0⇒x>0 {zero} 0≢0 = contradiction refl 0≢0 x≢0⇒x>0 {2[1+ _ ]} _ = 0<even x≢0⇒x>0 {1+[2 _ ]} _ = 0<odd 1+[2x]<2[1+x] : ∀ x → 1+[2 x ] < 2[1+ x ] 1+[2x]<2[1+x] x = odd<even (inj₂ refl) <⇒≢ : _<_ ⇒ _≢_ <⇒≢ (even<even x<x) refl = <⇒≢ x<x refl <⇒≢ (odd<odd x<x) refl = <⇒≢ x<x refl >⇒≢ : _>_ ⇒ _≢_ >⇒≢ y<x = ≢-sym (<⇒≢ y<x) ≡⇒≮ : _≡_ ⇒ _≮_ ≡⇒≮ x≡y x<y = <⇒≢ x<y x≡y ≡⇒≯ : _≡_ ⇒ _≯_ ≡⇒≯ x≡y x>y = >⇒≢ x>y x≡y <⇒≯ : _<_ ⇒ _≯_ <⇒≯ (even<even x<y) (even<even y<x) = <⇒≯ x<y y<x <⇒≯ (even<odd x<y) (odd<even (inj₁ y<x)) = <⇒≯ x<y y<x <⇒≯ (even<odd x<y) (odd<even (inj₂ refl)) = <⇒≢ x<y refl <⇒≯ (odd<even (inj₁ x<y)) (even<odd y<x) = <⇒≯ x<y y<x <⇒≯ (odd<even (inj₂ refl)) (even<odd y<x) = <⇒≢ y<x refl <⇒≯ (odd<odd x<y) (odd<odd y<x) = <⇒≯ x<y y<x >⇒≮ : _>_ ⇒ _≮_ >⇒≮ y<x = <⇒≯ y<x <⇒≤ : _<_ ⇒ _≤_ <⇒≤ = inj₁ ------------------------------------------------------------------------------ -- Properties of _<_ and toℕ & fromℕ. toℕ-mono-< : toℕ Preserves _<_ ⟶ ℕ._<_ toℕ-mono-< {zero} {2[1+ _ ]} _ = ℕₚ.0<1+n toℕ-mono-< {zero} {1+[2 _ ]} _ = ℕₚ.0<1+n toℕ-mono-< {2[1+ x ]} {2[1+ y ]} (even<even x<y) = begin ℕ.suc (2 ℕ.* (ℕ.suc xN)) ≤⟨ ℕₚ.+-monoʳ-≤ 1 (ℕₚ.*-monoʳ-≤ 2 xN<yN) ⟩ ℕ.suc (2 ℕ.* yN) ≤⟨ ℕₚ.≤-step ℕₚ.≤-refl ⟩ 2 ℕ.+ (2 ℕ.* yN) ≡⟨ sym (ℕₚ.*-distribˡ-+ 2 1 yN) ⟩ 2 ℕ.* (ℕ.suc yN) ∎ where open ℕₚ.≤-Reasoning; xN = toℕ x; yN = toℕ y; xN<yN = toℕ-mono-< x<y toℕ-mono-< {2[1+ x ]} {1+[2 y ]} (even<odd x<y) = ℕₚ.+-monoʳ-≤ 1 (ℕₚ.*-monoʳ-≤ 2 (toℕ-mono-< x<y)) toℕ-mono-< {1+[2 x ]} {2[1+ y ]} (odd<even (inj₁ x<y)) = begin ℕ.suc (ℕ.suc (2 ℕ.* xN)) ≡⟨⟩ 2 ℕ.+ (2 ℕ.* xN) ≡⟨ sym (ℕₚ.*-distribˡ-+ 2 1 xN) ⟩ 2 ℕ.* (ℕ.suc xN) ≤⟨ ℕₚ.*-monoʳ-≤ 2 xN<yN ⟩ 2 ℕ.* yN ≤⟨ ℕₚ.*-monoʳ-≤ 2 (ℕₚ.≤-step ℕₚ.≤-refl) ⟩ 2 ℕ.* (ℕ.suc yN) ∎ where open ℕₚ.≤-Reasoning; xN = toℕ x; yN = toℕ y; xN<yN = toℕ-mono-< x<y toℕ-mono-< {1+[2 x ]} {2[1+ .x ]} (odd<even (inj₂ refl)) = ℕₚ.≤-reflexive (sym (ℕₚ.*-distribˡ-+ 2 1 (toℕ x))) toℕ-mono-< {1+[2 x ]} {1+[2 y ]} (odd<odd x<y) = ℕₚ.+-monoʳ-< 1 (ℕₚ.*-monoʳ-< 1 xN<yN) where xN = toℕ x; yN = toℕ y; xN<yN = toℕ-mono-< x<y toℕ-cancel-< : ∀ {x y} → toℕ x ℕ.< toℕ y → x < y toℕ-cancel-< {zero} {2[1+ y ]} x<y = 0<even toℕ-cancel-< {zero} {1+[2 y ]} x<y = 0<odd toℕ-cancel-< {2[1+ x ]} {2[1+ y ]} x<y = even<even (toℕ-cancel-< (ℕ.≤-pred (ℕₚ.*-cancelˡ-< 2 x<y))) toℕ-cancel-< {2[1+ x ]} {1+[2 y ]} x<y rewrite ℕₚ.*-distribˡ-+ 2 1 (toℕ x) = even<odd (toℕ-cancel-< (ℕₚ.*-cancelˡ-< 2 (ℕₚ.≤-trans (s≤s (ℕₚ.n≤1+n _)) (ℕₚ.≤-pred x<y)))) toℕ-cancel-< {1+[2 x ]} {2[1+ y ]} x<y with toℕ x ℕₚ.≟ toℕ y ... | yes x≡y = odd<even (inj₂ (toℕ-injective x≡y)) ... | no x≢y rewrite ℕₚ.+-suc (toℕ y) (toℕ y ℕ.+ 0) = odd<even (inj₁ (toℕ-cancel-< (ℕₚ.≤∧≢⇒< (ℕₚ.*-cancelˡ-≤ 1 (ℕₚ.+-cancelˡ-≤ 2 x<y)) x≢y))) toℕ-cancel-< {1+[2 x ]} {1+[2 y ]} x<y = odd<odd (toℕ-cancel-< (ℕₚ.*-cancelˡ-< 2 (ℕ.≤-pred x<y))) fromℕ-cancel-< : ∀ {x y} → fromℕ x < fromℕ y → x ℕ.< y fromℕ-cancel-< = subst₂ ℕ._<_ (toℕ-fromℕ _) (toℕ-fromℕ _) ∘ toℕ-mono-< fromℕ-mono-< : fromℕ Preserves ℕ._<_ ⟶ _<_ fromℕ-mono-< = toℕ-cancel-< ∘ subst₂ ℕ._<_ (sym (toℕ-fromℕ _)) (sym (toℕ-fromℕ _)) toℕ-isHomomorphism-< : IsOrderHomomorphism _≡_ _≡_ _<_ ℕ._<_ toℕ toℕ-isHomomorphism-< = record { cong = cong toℕ ; mono = toℕ-mono-< } toℕ-isMonomorphism-< : IsOrderMonomorphism _≡_ _≡_ _<_ ℕ._<_ toℕ toℕ-isMonomorphism-< = record { isOrderHomomorphism = toℕ-isHomomorphism-< ; injective = toℕ-injective ; cancel = toℕ-cancel-< } ------------------------------------------------------------------------------ -- Relational properties of _<_ <-irrefl : Irreflexive _≡_ _<_ <-irrefl refl (even<even x<x) = <-irrefl refl x<x <-irrefl refl (odd<odd x<x) = <-irrefl refl x<x <-trans : Transitive _<_ <-trans {zero} {_} {2[1+ _ ]} _ _ = 0<even <-trans {zero} {_} {1+[2 _ ]} _ _ = 0<odd <-trans (even<even x<y) (even<even y<z) = even<even (<-trans x<y y<z) <-trans (even<even x<y) (even<odd y<z) = even<odd (<-trans x<y y<z) <-trans (even<odd x<y) (odd<even (inj₁ y<z)) = even<even (<-trans x<y y<z) <-trans (even<odd x<y) (odd<even (inj₂ refl)) = even<even x<y <-trans (even<odd x<y) (odd<odd y<z) = even<odd (<-trans x<y y<z) <-trans (odd<even (inj₁ x<y)) (even<even y<z) = odd<even (inj₁ (<-trans x<y y<z)) <-trans (odd<even (inj₂ refl)) (even<even x<z) = odd<even (inj₁ x<z) <-trans (odd<even (inj₁ x<y)) (even<odd y<z) = odd<odd (<-trans x<y y<z) <-trans (odd<even (inj₂ refl)) (even<odd x<z) = odd<odd x<z <-trans (odd<odd x<y) (odd<even (inj₁ y<z)) = odd<even (inj₁ (<-trans x<y y<z)) <-trans (odd<odd x<y) (odd<even (inj₂ refl)) = odd<even (inj₁ x<y) <-trans (odd<odd x<y) (odd<odd y<z) = odd<odd (<-trans x<y y<z) -- Should not be implemented via the morphism `toℕ` in order to -- preserve O(log n) time requirement. <-cmp : Trichotomous _≡_ _<_ <-cmp zero zero = tri≈ x≮0 refl x≮0 <-cmp zero 2[1+ _ ] = tri< 0<even (λ()) x≮0 <-cmp zero 1+[2 _ ] = tri< 0<odd (λ()) x≮0 <-cmp 2[1+ _ ] zero = tri> (λ()) (λ()) 0<even <-cmp 2[1+ x ] 2[1+ y ] with <-cmp x y ... | tri< x<y _ _ = tri< lt (<⇒≢ lt) (<⇒≯ lt) where lt = even<even x<y ... | tri≈ _ refl _ = tri≈ (<-irrefl refl) refl (<-irrefl refl) ... | tri> _ _ x>y = tri> (>⇒≮ gt) (>⇒≢ gt) gt where gt = even<even x>y <-cmp 2[1+ x ] 1+[2 y ] with <-cmp x y ... | tri< x<y _ _ = tri< lt (<⇒≢ lt) (<⇒≯ lt) where lt = even<odd x<y ... | tri≈ _ refl _ = tri> (>⇒≮ gt) (>⇒≢ gt) gt where gt = subst (_< 2[1+ x ]) refl (1+[2x]<2[1+x] x) ... | tri> _ _ y<x = tri> (>⇒≮ gt) (>⇒≢ gt) gt where gt = odd<even (inj₁ y<x) <-cmp 1+[2 _ ] zero = tri> (>⇒≮ gt) (>⇒≢ gt) gt where gt = 0<odd <-cmp 1+[2 x ] 2[1+ y ] with <-cmp x y ... | tri< x<y _ _ = tri< lt (<⇒≢ lt) (<⇒≯ lt) where lt = odd<even (inj₁ x<y) ... | tri≈ _ x≡y _ = tri< lt (<⇒≢ lt) (<⇒≯ lt) where lt = odd<even (inj₂ x≡y) ... | tri> _ _ x>y = tri> (>⇒≮ gt) (>⇒≢ gt) gt where gt = even<odd x>y <-cmp 1+[2 x ] 1+[2 y ] with <-cmp x y ... | tri< x<y _ _ = tri< lt (<⇒≢ lt) (<⇒≯ lt) where lt = odd<odd x<y ... | tri≈ _ refl _ = tri≈ (≡⇒≮ refl) refl (≡⇒≯ refl) ... | tri> _ _ x>y = tri> (>⇒≮ gt) (>⇒≢ gt) gt where gt = odd<odd x>y _<?_ : Decidable _<_ _<?_ = tri⟶dec< <-cmp ------------------------------------------------------------------------------ -- Structures for _<_ <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = resp₂ _<_ } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = <-trans ; compare = <-cmp } ------------------------------------------------------------------------------ -- Bundles for _<_ <-strictPartialOrder : StrictPartialOrder _ _ _ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-strictTotalOrder : StrictTotalOrder _ _ _ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } ------------------------------------------------------------------------------ -- Other properties of _<_ x<2[1+x] : ∀ x → x < 2[1+ x ] x<1+[2x] : ∀ x → x < 1+[2 x ] x<2[1+x] zero = 0<even x<2[1+x] 2[1+ x ] = even<even (x<2[1+x] x) x<2[1+x] 1+[2 x ] = odd<even (inj₁ (x<1+[2x] x)) x<1+[2x] zero = 0<odd x<1+[2x] 2[1+ x ] = even<odd (x<2[1+x] x) x<1+[2x] 1+[2 x ] = odd<odd (x<1+[2x] x) ------------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------------ -- Basic properties <⇒≱ : _<_ ⇒ _≱_ <⇒≱ x<y (inj₁ y<x) = contradiction y<x (<⇒≯ x<y) <⇒≱ x<y (inj₂ y≡x) = contradiction (sym y≡x) (<⇒≢ x<y) ≤⇒≯ : _≤_ ⇒ _≯_ ≤⇒≯ x≤y x>y = <⇒≱ x>y x≤y ≮⇒≥ : _≮_ ⇒ _≥_ ≮⇒≥ {x} {y} x≮y with <-cmp x y ... | tri< lt _ _ = contradiction lt x≮y ... | tri≈ _ eq _ = inj₂ (sym eq) ... | tri> _ _ y<x = <⇒≤ y<x ≰⇒> : _≰_ ⇒ _>_ ≰⇒> {x} {y} x≰y with <-cmp x y ... | tri< lt _ _ = contradiction (<⇒≤ lt) x≰y ... | tri≈ _ eq _ = contradiction (inj₂ eq) x≰y ... | tri> _ _ x>y = x>y ≤∧≢⇒< : ∀ {x y} → x ≤ y → x ≢ y → x < y ≤∧≢⇒< (inj₁ x<y) _ = x<y ≤∧≢⇒< (inj₂ x≡y) x≢y = contradiction x≡y x≢y 0≤x : ∀ x → zero ≤ x 0≤x zero = inj₂ refl 0≤x 2[1+ _ ] = inj₁ 0<even 0≤x 1+[2 x ] = inj₁ 0<odd x≤0⇒x≡0 : ∀ {x} → x ≤ zero → x ≡ zero x≤0⇒x≡0 (inj₂ x≡0) = x≡0 ------------------------------------------------------------------------------ -- Properties of _<_ and toℕ & fromℕ. fromℕ-mono-≤ : fromℕ Preserves ℕ._≤_ ⟶ _≤_ fromℕ-mono-≤ m≤n with ℕₚ.m≤n⇒m<n∨m≡n m≤n ... | inj₁ m<n = inj₁ (fromℕ-mono-< m<n) ... | inj₂ m≡n = inj₂ (cong fromℕ m≡n) toℕ-mono-≤ : toℕ Preserves _≤_ ⟶ ℕ._≤_ toℕ-mono-≤ (inj₁ x<y) = ℕₚ.<⇒≤ (toℕ-mono-< x<y) toℕ-mono-≤ (inj₂ refl) = ℕₚ.≤-reflexive refl toℕ-cancel-≤ : ∀ {x y} → toℕ x ℕ.≤ toℕ y → x ≤ y toℕ-cancel-≤ = subst₂ _≤_ (fromℕ-toℕ _) (fromℕ-toℕ _) ∘ fromℕ-mono-≤ fromℕ-cancel-≤ : ∀ {x y} → fromℕ x ≤ fromℕ y → x ℕ.≤ y fromℕ-cancel-≤ = subst₂ ℕ._≤_ (toℕ-fromℕ _) (toℕ-fromℕ _) ∘ toℕ-mono-≤ toℕ-isHomomorphism-≤ : IsOrderHomomorphism _≡_ _≡_ _≤_ ℕ._≤_ toℕ toℕ-isHomomorphism-≤ = record { cong = cong toℕ ; mono = toℕ-mono-≤ } toℕ-isMonomorphism-≤ : IsOrderMonomorphism _≡_ _≡_ _≤_ ℕ._≤_ toℕ toℕ-isMonomorphism-≤ = record { isOrderHomomorphism = toℕ-isHomomorphism-≤ ; injective = toℕ-injective ; cancel = toℕ-cancel-≤ } ------------------------------------------------------------------------------ -- Relational properties of _≤_ ≤-refl : Reflexive _≤_ ≤-refl = inj₂ refl ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive {x} {_} refl = ≤-refl {x} ≤-trans : Transitive _≤_ ≤-trans = StrictToNonStrict.trans isEquivalence (resp₂ _<_) <-trans <-≤-trans : ∀ {x y z} → x < y → y ≤ z → x < z <-≤-trans x<y (inj₁ y<z) = <-trans x<y y<z <-≤-trans x<y (inj₂ refl) = x<y ≤-<-trans : ∀ {x y z} → x ≤ y → y < z → x < z ≤-<-trans (inj₁ x<y) y<z = <-trans x<y y<z ≤-<-trans (inj₂ refl) y<z = y<z ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym = StrictToNonStrict.antisym isEquivalence <-trans <-irrefl ≤-total : Total _≤_ ≤-total x y with <-cmp x y ... | tri< x<y _ _ = inj₁ (<⇒≤ x<y) ... | tri≈ _ x≡y _ = inj₁ (≤-reflexive x≡y) ... | tri> _ _ y<x = inj₂ (<⇒≤ y<x) -- Should not be implemented via the morphism `toℕ` in order to -- preserve O(log n) time requirement. _≤?_ : Decidable _≤_ x ≤? y with <-cmp x y ... | tri< x<y _ _ = yes (<⇒≤ x<y) ... | tri≈ _ x≡y _ = yes (≤-reflexive x≡y) ... | tri> _ _ y<x = no (<⇒≱ y<x) ------------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------------ -- Bundles ≤-preorder : Preorder 0ℓ 0ℓ 0ℓ ≤-preorder = record { isPreorder = ≤-isPreorder } ≤-partialOrder : Poset 0ℓ 0ℓ 0ℓ ≤-partialOrder = record { isPartialOrder = ≤-isPartialOrder } ≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ ≤-totalOrder = record { isTotalOrder = ≤-isTotalOrder } ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------------ -- Equational reasoning for _≤_ and _<_ module ≤-Reasoning = InequalityReasoning ≤-isPreorder <-trans (resp₂ _<_) <⇒≤ <-≤-trans ≤-<-trans hiding (step-≈; step-≈˘) ------------------------------------------------------------------------------ -- Properties of _<ℕ_ ------------------------------------------------------------------------------ <⇒<ℕ : ∀ {x y} → x < y → x <ℕ y <⇒<ℕ x<y = toℕ-mono-< x<y <ℕ⇒< : ∀ {x y} → x <ℕ y → x < y <ℕ⇒< {x} {y} t[x]<t[y] = begin-strict x ≡⟨ sym (fromℕ-toℕ x) ⟩ fromℕ (toℕ x) <⟨ fromℕ-mono-< t[x]<t[y] ⟩ fromℕ (toℕ y) ≡⟨ fromℕ-toℕ y ⟩ y ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of _+_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Raw bundles for _+_ +-rawMagma : RawMagma 0ℓ 0ℓ +-rawMagma = record { _≈_ = _≡_ ; _∙_ = _+_ } +-0-rawMonoid : RawMonoid 0ℓ 0ℓ +-0-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _+_ ; ε = 0ᵇ } ------------------------------------------------------------------------ -- toℕ/fromℕ are homomorphisms for _+_ toℕ-homo-+ : ∀ x y → toℕ (x + y) ≡ toℕ x ℕ.+ toℕ y toℕ-homo-+ zero _ = refl toℕ-homo-+ 2[1+ x ] zero = cong ℕ.suc (sym (ℕₚ.+-identityʳ _)) toℕ-homo-+ 1+[2 x ] zero = cong ℕ.suc (sym (ℕₚ.+-identityʳ _)) toℕ-homo-+ 2[1+ x ] 2[1+ y ] = begin toℕ (2[1+ x ] + 2[1+ y ]) ≡⟨⟩ toℕ 2[1+ (suc (x + y)) ] ≡⟨⟩ 2 ℕ.* (1 ℕ.+ (toℕ (suc (x + y)))) ≡⟨ cong ((2 ℕ.*_) ∘ ℕ.suc) (toℕ-suc (x + y)) ⟩ 2 ℕ.* (2 ℕ.+ toℕ (x + y)) ≡⟨ cong ((2 ℕ.*_) ∘ (2 ℕ.+_)) (toℕ-homo-+ x y) ⟩ 2 ℕ.* (2 ℕ.+ (toℕ x ℕ.+ toℕ y)) ≡⟨ solve 2 (λ m n → con 2 :* (con 2 :+ (m :+ n)) := con 2 :* (con 1 :+ m) :+ con 2 :* (con 1 :+ n)) refl (toℕ x) (toℕ y) ⟩ toℕ 2[1+ x ] ℕ.+ toℕ 2[1+ y ] ∎ where open ≡-Reasoning toℕ-homo-+ 2[1+ x ] 1+[2 y ] = begin toℕ (2[1+ x ] + 1+[2 y ]) ≡⟨⟩ toℕ (suc 2[1+ (x + y) ]) ≡⟨ toℕ-suc 2[1+ (x + y) ] ⟩ ℕ.suc (toℕ 2[1+ (x + y) ]) ≡⟨⟩ ℕ.suc (2 ℕ.* (ℕ.suc (toℕ (x + y)))) ≡⟨ cong (λ v → ℕ.suc (2 ℕ.* ℕ.suc v)) (toℕ-homo-+ x y) ⟩ ℕ.suc (2 ℕ.* (ℕ.suc (m ℕ.+ n))) ≡⟨ solve 2 (λ m n → con 1 :+ (con 2 :* (con 1 :+ (m :+ n))) := con 2 :* (con 1 :+ m) :+ (con 1 :+ (con 2 :* n))) refl m n ⟩ (2 ℕ.* ℕ.suc m) ℕ.+ (ℕ.suc (2 ℕ.* n)) ≡⟨⟩ toℕ 2[1+ x ] ℕ.+ toℕ 1+[2 y ] ∎ where open ≡-Reasoning; m = toℕ x; n = toℕ y toℕ-homo-+ 1+[2 x ] 2[1+ y ] = begin toℕ (1+[2 x ] + 2[1+ y ]) ≡⟨⟩ toℕ (suc 2[1+ (x + y) ]) ≡⟨ toℕ-suc 2[1+ (x + y) ] ⟩ ℕ.suc (toℕ 2[1+ (x + y) ]) ≡⟨⟩ ℕ.suc (2 ℕ.* (ℕ.suc (toℕ (x + y)))) ≡⟨ cong (ℕ.suc ∘ (2 ℕ.*_) ∘ ℕ.suc) (toℕ-homo-+ x y) ⟩ ℕ.suc (2 ℕ.* (ℕ.suc (m ℕ.+ n))) ≡⟨ solve 2 (λ m n → con 1 :+ (con 2 :* (con 1 :+ (m :+ n))) := (con 1 :+ (con 2 :* m)) :+ (con 2 :* (con 1 :+ n))) refl m n ⟩ (ℕ.suc (2 ℕ.* m)) ℕ.+ (2 ℕ.* (ℕ.suc n)) ≡⟨⟩ toℕ 1+[2 x ] ℕ.+ toℕ 2[1+ y ] ∎ where open ≡-Reasoning; m = toℕ x; n = toℕ y toℕ-homo-+ 1+[2 x ] 1+[2 y ] = begin toℕ (1+[2 x ] + 1+[2 y ]) ≡⟨⟩ toℕ (suc 1+[2 (x + y) ]) ≡⟨ toℕ-suc 1+[2 (x + y) ] ⟩ ℕ.suc (toℕ 1+[2 (x + y) ]) ≡⟨⟩ ℕ.suc (ℕ.suc (2 ℕ.* (toℕ (x + y)))) ≡⟨ cong (ℕ.suc ∘ ℕ.suc ∘ (2 ℕ.*_)) (toℕ-homo-+ x y) ⟩ ℕ.suc (ℕ.suc (2 ℕ.* (m ℕ.+ n))) ≡⟨ solve 2 (λ m n → con 1 :+ (con 1 :+ (con 2 :* (m :+ n))) := (con 1 :+ (con 2 :* m)) :+ (con 1 :+ (con 2 :* n))) refl m n ⟩ (ℕ.suc (2 ℕ.* m)) ℕ.+ (ℕ.suc (2 ℕ.* n)) ≡⟨⟩ toℕ 1+[2 x ] ℕ.+ toℕ 1+[2 y ] ∎ where open ≡-Reasoning; m = toℕ x; n = toℕ y toℕ-isMagmaHomomorphism-+ : IsMagmaHomomorphism +-rawMagma ℕₚ.+-rawMagma toℕ toℕ-isMagmaHomomorphism-+ = record { isRelHomomorphism = toℕ-isRelHomomorphism ; homo = toℕ-homo-+ } toℕ-isMonoidHomomorphism-+ : IsMonoidHomomorphism +-0-rawMonoid ℕₚ.+-0-rawMonoid toℕ toℕ-isMonoidHomomorphism-+ = record { isMagmaHomomorphism = toℕ-isMagmaHomomorphism-+ ; ε-homo = refl } toℕ-isMonoidMonomorphism-+ : IsMonoidMonomorphism +-0-rawMonoid ℕₚ.+-0-rawMonoid toℕ toℕ-isMonoidMonomorphism-+ = record { isMonoidHomomorphism = toℕ-isMonoidHomomorphism-+ ; injective = toℕ-injective } suc≗1+ : suc ≗ 1ᵇ +_ suc≗1+ zero = refl suc≗1+ 2[1+ _ ] = refl suc≗1+ 1+[2 _ ] = refl suc-+ : ∀ x y → suc x + y ≡ suc (x + y) suc-+ zero y = sym (suc≗1+ y) suc-+ 2[1+ x ] zero = refl suc-+ 1+[2 x ] zero = refl suc-+ 2[1+ x ] 2[1+ y ] = cong (suc ∘ 2[1+_]) (suc-+ x y) suc-+ 2[1+ x ] 1+[2 y ] = cong (suc ∘ 1+[2_]) (suc-+ x y) suc-+ 1+[2 x ] 2[1+ y ] = refl suc-+ 1+[2 x ] 1+[2 y ] = refl 1+≗suc : (1ᵇ +_) ≗ suc 1+≗suc = suc-+ zero fromℕ-homo-+ : ∀ m n → fromℕ (m ℕ.+ n) ≡ fromℕ m + fromℕ n fromℕ-homo-+ 0 _ = refl fromℕ-homo-+ (ℕ.suc m) n = begin fromℕ ((ℕ.suc m) ℕ.+ n) ≡⟨⟩ suc (fromℕ (m ℕ.+ n)) ≡⟨ cong suc (fromℕ-homo-+ m n) ⟩ suc (a + b) ≡⟨ sym (suc-+ a b) ⟩ (suc a) + b ≡⟨⟩ (fromℕ (ℕ.suc m)) + (fromℕ n) ∎ where open ≡-Reasoning; a = fromℕ m; b = fromℕ n ------------------------------------------------------------------------ -- Algebraic properties of _+_ -- Mostly proved by using the isomorphism between `ℕ` and `ℕᵇ` provided -- by `toℕ`/`fromℕ`. private module +-Monomorphism = MonoidMonomorphism toℕ-isMonoidMonomorphism-+ +-assoc : Associative _+_ +-assoc = +-Monomorphism.assoc ℕₚ.+-isMagma ℕₚ.+-assoc +-comm : Commutative _+_ +-comm = +-Monomorphism.comm ℕₚ.+-isMagma ℕₚ.+-comm +-identityˡ : LeftIdentity zero _+_ +-identityˡ _ = refl +-identityʳ : RightIdentity zero _+_ +-identityʳ = +-Monomorphism.identityʳ ℕₚ.+-isMagma ℕₚ.+-identityʳ +-identity : Identity zero _+_ +-identity = +-identityˡ , +-identityʳ +-cancelˡ-≡ : LeftCancellative _+_ +-cancelˡ-≡ = +-Monomorphism.cancelˡ ℕₚ.+-isMagma ℕₚ.+-cancelˡ-≡ +-cancelʳ-≡ : RightCancellative _+_ +-cancelʳ-≡ = +-Monomorphism.cancelʳ ℕₚ.+-isMagma ℕₚ.+-cancelʳ-≡ ------------------------------------------------------------------------ -- Structures for _+_ +-isMagma : IsMagma _+_ +-isMagma = isMagma _+_ +-isSemigroup : IsSemigroup _+_ +-isSemigroup = +-Monomorphism.isSemigroup ℕₚ.+-isSemigroup +-0-isMonoid : IsMonoid _+_ 0ᵇ +-0-isMonoid = +-Monomorphism.isMonoid ℕₚ.+-0-isMonoid +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0ᵇ +-0-isCommutativeMonoid = +-Monomorphism.isCommutativeMonoid ℕₚ.+-0-isCommutativeMonoid ------------------------------------------------------------------------ -- Bundles for _+_ +-magma : Magma 0ℓ 0ℓ +-magma = magma _+_ +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { ε = zero ; isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } ------------------------------------------------------------------------------ -- Properties of _+_ and _≤_ +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ {x} {x'} {y} {y'} x≤x' y≤y' = begin x + y ≡⟨ sym $ cong₂ _+_ (fromℕ-toℕ x) (fromℕ-toℕ y) ⟩ fromℕ m + fromℕ n ≡⟨ sym (fromℕ-homo-+ m n) ⟩ fromℕ (m ℕ.+ n) ≤⟨ fromℕ-mono-≤ (ℕₚ.+-mono-≤ m≤m' n≤n') ⟩ fromℕ (m' ℕ.+ n') ≡⟨ fromℕ-homo-+ m' n' ⟩ fromℕ m' + fromℕ n' ≡⟨ cong₂ _+_ (fromℕ-toℕ x') (fromℕ-toℕ y') ⟩ x' + y' ∎ where open ≤-Reasoning m = toℕ x; m' = toℕ x' n = toℕ y; n' = toℕ y' m≤m' = toℕ-mono-≤ x≤x'; n≤n' = toℕ-mono-≤ y≤y' +-monoˡ-≤ : ∀ x → (_+ x) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ x y≤z = +-mono-≤ y≤z (≤-refl {x}) +-monoʳ-≤ : ∀ x → (x +_) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ x y≤z = +-mono-≤ (≤-refl {x}) y≤z +-mono-<-≤ : _+_ Preserves₂ _<_ ⟶ _≤_ ⟶ _<_ +-mono-<-≤ {x} {x'} {y} {y'} x<x' y≤y' = begin-strict x + y ≡⟨ sym $ cong₂ _+_ (fromℕ-toℕ x) (fromℕ-toℕ y) ⟩ fromℕ m + fromℕ n ≡⟨ sym (fromℕ-homo-+ m n) ⟩ fromℕ (m ℕ.+ n) <⟨ fromℕ-mono-< (ℕₚ.+-mono-<-≤ m<m' n≤n') ⟩ fromℕ (m' ℕ.+ n') ≡⟨ fromℕ-homo-+ m' n' ⟩ fromℕ m' + fromℕ n' ≡⟨ cong₂ _+_ (fromℕ-toℕ x') (fromℕ-toℕ y') ⟩ x' + y' ∎ where open ≤-Reasoning m = toℕ x; n = toℕ y m' = toℕ x'; n' = toℕ y' m<m' = toℕ-mono-< x<x'; n≤n' = toℕ-mono-≤ y≤y' +-mono-≤-< : _+_ Preserves₂ _≤_ ⟶ _<_ ⟶ _<_ +-mono-≤-< {x} {x'} {y} {y'} x≤x' y<y' = subst₂ _<_ (+-comm y x) (+-comm y' x') y+x<y'+x' where y+x<y'+x' = +-mono-<-≤ y<y' x≤x' +-monoˡ-< : ∀ x → (_+ x) Preserves _<_ ⟶ _<_ +-monoˡ-< x y<z = +-mono-<-≤ y<z (≤-refl {x}) +-monoʳ-< : ∀ x → (x +_) Preserves _<_ ⟶ _<_ +-monoʳ-< x y<z = +-mono-≤-< (≤-refl {x}) y<z x≤y+x : ∀ x y → x ≤ y + x x≤y+x x y = begin x ≡⟨ sym (+-identityˡ x) ⟩ 0ᵇ + x ≤⟨ +-monoˡ-≤ x (0≤x y) ⟩ y + x ∎ where open ≤-Reasoning x≤x+y : ∀ x y → x ≤ x + y x≤x+y x y = begin x ≤⟨ x≤y+x x y ⟩ y + x ≡⟨ +-comm y x ⟩ x + y ∎ where open ≤-Reasoning x<x+y : ∀ x {y} → y > 0ᵇ → x < x + y x<x+y x {y} y>0 = begin-strict x ≡⟨ sym (fromℕ-toℕ x) ⟩ fromℕ (toℕ x) <⟨ fromℕ-mono-< (ℕₚ.m<m+n (toℕ x) (toℕ-mono-< y>0)) ⟩ fromℕ (toℕ x ℕ.+ toℕ y) ≡⟨ fromℕ-homo-+ (toℕ x) (toℕ y) ⟩ fromℕ (toℕ x) + fromℕ (toℕ y) ≡⟨ cong₂ _+_ (fromℕ-toℕ x) (fromℕ-toℕ y) ⟩ x + y ∎ where open ≤-Reasoning x<x+1 : ∀ x → x < x + 1ᵇ x<x+1 x = x<x+y x 0<odd x<1+x : ∀ x → x < 1ᵇ + x x<1+x x rewrite +-comm 1ᵇ x = x<x+1 x x<1⇒x≡0 : ∀ {x} → x < 1ᵇ → x ≡ zero x<1⇒x≡0 0<odd = refl ------------------------------------------------------------------------ -- Other properties x≢0⇒x+y≢0 : ∀ {x} (y : ℕᵇ) → x ≢ zero → x + y ≢ zero x≢0⇒x+y≢0 {2[1+ _ ]} zero _ = λ() x≢0⇒x+y≢0 {zero} _ 0≢0 = contradiction refl 0≢0 ------------------------------------------------------------------------ -- Properties of _*_ ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- Raw bundles for _*_ *-rawMagma : RawMagma 0ℓ 0ℓ *-rawMagma = record { _≈_ = _≡_ ; _∙_ = _*_ } *-1-rawMonoid : RawMonoid 0ℓ 0ℓ *-1-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _*_ ; ε = 1ᵇ } ------------------------------------------------------------------------ -- toℕ/fromℕ are homomorphisms for _*_ private 2*ₙ2*ₙ = (2 ℕ.*_) ∘ (2 ℕ.*_) toℕ-homo-* : ∀ x y → toℕ (x * y) ≡ toℕ x ℕ.* toℕ y toℕ-homo-* x y = aux x y (size x ℕ.+ size y) ℕₚ.≤-refl where aux : (x y : ℕᵇ) → (cnt : ℕ) → (size x ℕ.+ size y ℕ.≤ cnt) → toℕ (x * y) ≡ toℕ x ℕ.* toℕ y aux zero _ _ _ = refl aux 2[1+ x ] zero _ _ = sym (ℕₚ.*-zeroʳ (toℕ x ℕ.+ (ℕ.suc (toℕ x ℕ.+ 0)))) aux 1+[2 x ] zero _ _ = sym (ℕₚ.*-zeroʳ (toℕ x ℕ.+ (toℕ x ℕ.+ 0))) aux 2[1+ x ] 2[1+ y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin toℕ (2[1+ x ] * 2[1+ y ]) ≡⟨⟩ toℕ (double 2[1+ (x + (y + xy)) ]) ≡⟨ toℕ-double 2[1+ (x + (y + xy)) ] ⟩ 2 ℕ.* (toℕ 2[1+ (x + (y + xy)) ]) ≡⟨⟩ 2*ₙ2*ₙ (ℕ.suc (toℕ (x + (y + xy)))) ≡⟨ cong (2*ₙ2*ₙ ∘ ℕ.suc) (toℕ-homo-+ x (y + xy)) ⟩ 2*ₙ2*ₙ (ℕ.suc (m ℕ.+ (toℕ (y + xy)))) ≡⟨ cong (2*ₙ2*ₙ ∘ ℕ.suc ∘ (m ℕ.+_)) (toℕ-homo-+ y xy) ⟩ 2*ₙ2*ₙ (ℕ.suc (m ℕ.+ (n ℕ.+ toℕ xy))) ≡⟨ cong (2*ₙ2*ₙ ∘ ℕ.suc ∘ (m ℕ.+_) ∘ (n ℕ.+_)) (aux x y cnt |x|+|y|≤cnt) ⟩ 2*ₙ2*ₙ (ℕ.suc (m ℕ.+ (n ℕ.+ (m ℕ.* n)))) ≡⟨ solve 2 (λ m n → con 2 :* (con 2 :* (con 1 :+ (m :+ (n :+ m :* n)))) := (con 2 :* (con 1 :+ m)) :* (con 2 :* (con 1 :+ n))) refl m n ⟩ (2 ℕ.* (1 ℕ.+ m)) ℕ.* (2 ℕ.* (1 ℕ.+ n)) ≡⟨⟩ toℕ 2[1+ x ] ℕ.* toℕ 2[1+ y ] ∎ where open ≡-Reasoning; m = toℕ x; n = toℕ y; xy = x * y |x|+|y|≤cnt = ℕₚ.≤-trans (ℕₚ.+-monoʳ-≤ (size x) (ℕₚ.n≤1+n (size y))) |x|+1+|y|≤cnt aux 2[1+ x ] 1+[2 y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin toℕ (2[1+ x ] * 1+[2 y ]) ≡⟨⟩ toℕ (2[1+ (x + y * 2[1+ x ]) ]) ≡⟨⟩ 2 ℕ.* (ℕ.suc (toℕ (x + y * 2[1+ x ]))) ≡⟨ cong ((2 ℕ.*_) ∘ ℕ.suc) (toℕ-homo-+ x _) ⟩ 2 ℕ.* (ℕ.suc (m ℕ.+ (toℕ (y * 2[1+ x ])))) ≡⟨ cong ((2 ℕ.*_) ∘ ℕ.suc ∘ (m ℕ.+_)) (aux y 2[1+ x ] cnt |y|+1+|x|≤cnt) ⟩ 2 ℕ.* (1+m ℕ.+ (n ℕ.* (toℕ 2[1+ x ]))) ≡⟨⟩ 2 ℕ.* (1+m ℕ.+ (n ℕ.* 2[1+m])) ≡⟨ solve 2 (λ m n → con 2 :* ((con 1 :+ m) :+ (n :* (con 2 :* (con 1 :+ m)))) := (con 2 :* (con 1 :+ m)) :* (con 1 :+ con 2 :* n)) refl m n ⟩ 2[1+m] ℕ.* (ℕ.suc (2 ℕ.* n)) ≡⟨⟩ toℕ 2[1+ x ] ℕ.* toℕ 1+[2 y ] ∎ where open ≡-Reasoning; m = toℕ x; n = toℕ y; 1+m = ℕ.suc m; 2[1+m] = 2 ℕ.* (ℕ.suc m) eq : size x ℕ.+ (ℕ.suc (size y)) ≡ size y ℕ.+ (ℕ.suc (size x)) eq = ℕ-+-semigroupProperties.x∙yz≈z∙yx (size x) 1 _ |y|+1+|x|≤cnt = subst (ℕ._≤ cnt) eq |x|+1+|y|≤cnt aux 1+[2 x ] 2[1+ y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin toℕ (1+[2 x ] * 2[1+ y ]) ≡⟨⟩ toℕ 2[1+ (y + x * 2[1+ y ]) ] ≡⟨⟩ 2 ℕ.* (ℕ.suc (toℕ (y + x * 2[1+ y ]))) ≡⟨ cong ((2 ℕ.*_) ∘ ℕ.suc) (toℕ-homo-+ y (x * 2[1+ y ])) ⟩ 2 ℕ.* (ℕ.suc (n ℕ.+ (toℕ (x * 2[1+ y ])))) ≡⟨ cong ((2 ℕ.*_) ∘ ℕ.suc ∘ (n ℕ.+_)) (aux x 2[1+ y ] cnt |x|+1+|y|≤cnt) ⟩ 2 ℕ.* (1+n ℕ.+ (m ℕ.* toℕ 2[1+ y ])) ≡⟨⟩ 2 ℕ.* (1+n ℕ.+ (m ℕ.* 2[1+n])) ≡⟨ solve 2 (λ m n → con 2 :* ((con 1 :+ n) :+ (m :* (con 2 :* (con 1 :+ n)))) := (con 1 :+ (con 2 :* m)) :* (con 2 :* (con 1 :+ n))) refl m n ⟩ (ℕ.suc 2m) ℕ.* 2[1+n] ≡⟨⟩ toℕ 1+[2 x ] ℕ.* toℕ 2[1+ y ] ∎ where open ≡-Reasoning m = toℕ x; n = toℕ y; 1+n = ℕ.suc n 2m = 2 ℕ.* m; 2[1+n] = 2 ℕ.* (ℕ.suc n) aux 1+[2 x ] 1+[2 y ] (ℕ.suc cnt) (s≤s |x|+1+|y|≤cnt) = begin toℕ (1+[2 x ] * 1+[2 y ]) ≡⟨⟩ toℕ 1+[2 (x + y * 1+2x) ] ≡⟨⟩ ℕ.suc (2 ℕ.* (toℕ (x + y * 1+2x))) ≡⟨ cong (ℕ.suc ∘ (2 ℕ.*_)) (toℕ-homo-+ x (y * 1+2x)) ⟩ ℕ.suc (2 ℕ.* (m ℕ.+ (toℕ (y * 1+2x)))) ≡⟨ cong (ℕ.suc ∘ (2 ℕ.*_) ∘ (m ℕ.+_)) (aux y 1+2x cnt |y|+1+|x|≤cnt) ⟩ ℕ.suc (2 ℕ.* (m ℕ.+ (n ℕ.* [1+2x]'))) ≡⟨ cong ℕ.suc $ ℕₚ.*-distribˡ-+ 2 m (n ℕ.* [1+2x]') ⟩ ℕ.suc (2m ℕ.+ (2 ℕ.* (n ℕ.* [1+2x]'))) ≡⟨ cong (ℕ.suc ∘ (2m ℕ.+_)) (sym (ℕₚ.*-assoc 2 n _)) ⟩ (ℕ.suc 2m) ℕ.+ 2n ℕ.* [1+2x]' ≡⟨⟩ [1+2x]' ℕ.+ 2n ℕ.* [1+2x]' ≡⟨ cong (ℕ._+ (2n ℕ.* [1+2x]')) $ sym (ℕₚ.*-identityˡ [1+2x]') ⟩ 1 ℕ.* [1+2x]' ℕ.+ 2n ℕ.* [1+2x]' ≡⟨ sym (ℕₚ.*-distribʳ-+ [1+2x]' 1 2n) ⟩ (ℕ.suc 2n) ℕ.* [1+2x]' ≡⟨ ℕₚ.*-comm (ℕ.suc 2n) [1+2x]' ⟩ toℕ 1+[2 x ] ℕ.* toℕ 1+[2 y ] ∎ where open ≡-Reasoning m = toℕ x; n = toℕ y; 2m = 2 ℕ.* m; 2n = 2 ℕ.* n 1+2x = 1+[2 x ]; [1+2x]' = toℕ 1+2x eq : size x ℕ.+ (ℕ.suc (size y)) ≡ size y ℕ.+ (ℕ.suc (size x)) eq = ℕ-+-semigroupProperties.x∙yz≈z∙yx (size x) 1 _ |y|+1+|x|≤cnt = subst (ℕ._≤ cnt) eq |x|+1+|y|≤cnt toℕ-isMagmaHomomorphism-* : IsMagmaHomomorphism *-rawMagma ℕₚ.*-rawMagma toℕ toℕ-isMagmaHomomorphism-* = record { isRelHomomorphism = toℕ-isRelHomomorphism ; homo = toℕ-homo-* } toℕ-isMonoidHomomorphism-* : IsMonoidHomomorphism *-1-rawMonoid ℕₚ.*-1-rawMonoid toℕ toℕ-isMonoidHomomorphism-* = record { isMagmaHomomorphism = toℕ-isMagmaHomomorphism-* ; ε-homo = refl } toℕ-isMonoidMonomorphism-* : IsMonoidMonomorphism *-1-rawMonoid ℕₚ.*-1-rawMonoid toℕ toℕ-isMonoidMonomorphism-* = record { isMonoidHomomorphism = toℕ-isMonoidHomomorphism-* ; injective = toℕ-injective } fromℕ-homo-* : ∀ m n → fromℕ (m ℕ.* n) ≡ fromℕ m * fromℕ n fromℕ-homo-* m n = begin fromℕ (m ℕ.* n) ≡⟨ cong fromℕ (cong₂ ℕ._*_ m≡aN n≡bN) ⟩ fromℕ (toℕ a ℕ.* toℕ b) ≡⟨ cong fromℕ (sym (toℕ-homo-* a b)) ⟩ fromℕ (toℕ (a * b)) ≡⟨ fromℕ-toℕ (a * b) ⟩ a * b ∎ where open ≡-Reasoning a = fromℕ m; b = fromℕ n m≡aN = sym (toℕ-fromℕ m); n≡bN = sym (toℕ-fromℕ n) private module *-Monomorphism = MonoidMonomorphism toℕ-isMonoidMonomorphism-* ------------------------------------------------------------------------ -- Algebraic properties of _*_ -- Mostly proved by using the isomorphism between `ℕ` and `ℕᵇ` provided -- by `toℕ`/`fromℕ`. *-assoc : Associative _*_ *-assoc = *-Monomorphism.assoc ℕₚ.*-isMagma ℕₚ.*-assoc *-comm : Commutative _*_ *-comm = *-Monomorphism.comm ℕₚ.*-isMagma ℕₚ.*-comm *-identityˡ : LeftIdentity 1ᵇ _*_ *-identityˡ = *-Monomorphism.identityˡ ℕₚ.*-isMagma ℕₚ.*-identityˡ *-identityʳ : RightIdentity 1ᵇ _*_ *-identityʳ x = trans (*-comm x 1ᵇ) (*-identityˡ x) *-identity : Identity 1ᵇ _*_ *-identity = (*-identityˡ , *-identityʳ) *-zeroˡ : LeftZero zero _*_ *-zeroˡ _ = refl *-zeroʳ : RightZero zero _*_ *-zeroʳ zero = refl *-zeroʳ 2[1+ _ ] = refl *-zeroʳ 1+[2 _ ] = refl *-zero : Zero zero _*_ *-zero = *-zeroˡ , *-zeroʳ *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ a b c = begin a * (b + c) ≡⟨ sym (fromℕ-toℕ (a * (b + c))) ⟩ fromℕ (toℕ (a * (b + c))) ≡⟨ cong fromℕ (toℕ-homo-* a (b + c)) ⟩ fromℕ (k ℕ.* (toℕ (b + c))) ≡⟨ cong (fromℕ ∘ (k ℕ.*_)) (toℕ-homo-+ b c) ⟩ fromℕ (k ℕ.* (m ℕ.+ n)) ≡⟨ cong fromℕ (ℕₚ.*-distribˡ-+ k m n) ⟩ fromℕ (k ℕ.* m ℕ.+ k ℕ.* n) ≡⟨ cong fromℕ $ sym $ cong₂ ℕ._+_ (toℕ-homo-* a b) (toℕ-homo-* a c) ⟩ fromℕ (toℕ (a * b) ℕ.+ toℕ (a * c)) ≡⟨ cong fromℕ (sym (toℕ-homo-+ (a * b) (a * c))) ⟩ fromℕ (toℕ (a * b + a * c)) ≡⟨ fromℕ-toℕ (a * b + a * c) ⟩ a * b + a * c ∎ where open ≡-Reasoning; k = toℕ a; m = toℕ b; n = toℕ c *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ = comm+distrˡ⇒distrʳ *-comm *-distribˡ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ ------------------------------------------------------------------------ -- Structures *-isMagma : IsMagma _*_ *-isMagma = isMagma _*_ *-isSemigroup : IsSemigroup _*_ *-isSemigroup = *-Monomorphism.isSemigroup ℕₚ.*-isSemigroup *-1-isMonoid : IsMonoid _*_ 1ᵇ *-1-isMonoid = *-Monomorphism.isMonoid ℕₚ.*-1-isMonoid *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1ᵇ *-1-isCommutativeMonoid = *-Monomorphism.isCommutativeMonoid ℕₚ.*-1-isCommutativeMonoid *-+-isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _+_ _*_ zero 1ᵇ *-+-isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-0-isCommutativeMonoid ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ } *-+-isSemiring : IsSemiring _+_ _*_ zero 1ᵇ *-+-isSemiring = record { isSemiringWithoutAnnihilatingZero = *-+-isSemiringWithoutAnnihilatingZero ; zero = *-zero } *-+-isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ zero 1ᵇ *-+-isCommutativeSemiring = record { isSemiring = *-+-isSemiring ; *-comm = *-comm } ------------------------------------------------------------------------ -- Bundles *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } *-+-semiring : Semiring 0ℓ 0ℓ *-+-semiring = record { isSemiring = *-+-isSemiring } *-+-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ *-+-commutativeSemiring = record { isCommutativeSemiring = *-+-isCommutativeSemiring } ------------------------------------------------------------------------ -- Properties of _*_ and _≤_ & _<_ *-mono-≤ : _*_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ *-mono-≤ {x} {u} {y} {v} x≤u y≤v = toℕ-cancel-≤ (begin toℕ (x * y) ≡⟨ toℕ-homo-* x y ⟩ toℕ x ℕ.* toℕ y ≤⟨ ℕₚ.*-mono-≤ (toℕ-mono-≤ x≤u) (toℕ-mono-≤ y≤v) ⟩ toℕ u ℕ.* toℕ v ≡⟨ sym (toℕ-homo-* u v) ⟩ toℕ (u * v) ∎) where open ℕₚ.≤-Reasoning *-monoʳ-≤ : ∀ x → (x *_) Preserves _≤_ ⟶ _≤_ *-monoʳ-≤ x y≤y' = *-mono-≤ (≤-refl {x}) y≤y' *-monoˡ-≤ : ∀ x → (_* x) Preserves _≤_ ⟶ _≤_ *-monoˡ-≤ x y≤y' = *-mono-≤ y≤y' (≤-refl {x}) *-mono-< : _*_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ *-mono-< {x} {u} {y} {v} x<u y<v = toℕ-cancel-< (begin-strict toℕ (x * y) ≡⟨ toℕ-homo-* x y ⟩ toℕ x ℕ.* toℕ y <⟨ ℕₚ.*-mono-< (toℕ-mono-< x<u) (toℕ-mono-< y<v) ⟩ toℕ u ℕ.* toℕ v ≡⟨ sym (toℕ-homo-* u v) ⟩ toℕ (u * v) ∎) where open ℕₚ.≤-Reasoning *-monoʳ-< : ∀ x → ((1ᵇ + x) *_) Preserves _<_ ⟶ _<_ *-monoʳ-< x {y} {z} y<z = begin-strict (1ᵇ + x) * y ≡⟨ *-distribʳ-+ y 1ᵇ x ⟩ 1ᵇ * y + x * y ≡⟨ cong (_+ x * y) (*-identityˡ y) ⟩ y + x * y <⟨ +-mono-<-≤ y<z (*-monoʳ-≤ x (<⇒≤ y<z)) ⟩ z + x * z ≡⟨ cong (_+ x * z) (sym (*-identityˡ z)) ⟩ 1ᵇ * z + x * z ≡⟨ sym (*-distribʳ-+ z 1ᵇ x) ⟩ (1ᵇ + x) * z ∎ where open ≤-Reasoning *-monoˡ-< : ∀ x → (_* (1ᵇ + x)) Preserves _<_ ⟶ _<_ *-monoˡ-< x {y} {z} y<z = begin-strict y * (1ᵇ + x) ≡⟨ *-comm y (1ᵇ + x) ⟩ (1ᵇ + x) * y <⟨ *-monoʳ-< x y<z ⟩ (1ᵇ + x) * z ≡⟨ *-comm (1ᵇ + x) z ⟩ z * (1ᵇ + x) ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Other properties of _*_ x*y≡0⇒x≡0∨y≡0 : ∀ x {y} → x * y ≡ zero → x ≡ zero ⊎ y ≡ zero x*y≡0⇒x≡0∨y≡0 zero {_} _ = inj₁ refl x*y≡0⇒x≡0∨y≡0 _ {zero} _ = inj₂ refl x≢0∧y≢0⇒x*y≢0 : ∀ {x y} → x ≢ zero → y ≢ zero → x * y ≢ zero x≢0∧y≢0⇒x*y≢0 {x} {_} x≢0 y≢0 xy≡0 with x*y≡0⇒x≡0∨y≡0 x xy≡0 ... | inj₁ x≡0 = x≢0 x≡0 ... | inj₂ y≡0 = y≢0 y≡0 2*x≡x+x : ∀ x → 2ᵇ * x ≡ x + x 2*x≡x+x x = begin 2ᵇ * x ≡⟨⟩ (1ᵇ + 1ᵇ) * x ≡⟨ *-distribʳ-+ x 1ᵇ 1ᵇ ⟩ 1ᵇ * x + 1ᵇ * x ≡⟨ cong₂ _+_ (*-identityˡ x) (*-identityˡ x) ⟩ x + x ∎ where open ≡-Reasoning 1+-* : ∀ x y → (1ᵇ + x) * y ≡ y + x * y 1+-* x y = begin (1ᵇ + x) * y ≡⟨ *-distribʳ-+ y 1ᵇ x ⟩ 1ᵇ * y + x * y ≡⟨ cong (_+ x * y) (*-identityˡ y) ⟩ y + x * y ∎ where open ≡-Reasoning *-1+ : ∀ x y → y * (1ᵇ + x) ≡ y + y * x *-1+ x y = begin y * (1ᵇ + x) ≡⟨ *-distribˡ-+ y 1ᵇ x ⟩ y * 1ᵇ + y * x ≡⟨ cong (_+ y * x) (*-identityʳ y) ⟩ y + y * x ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of double ------------------------------------------------------------------------ double[x]≡0⇒x≡0 : ∀ {x} → double x ≡ zero → x ≡ zero double[x]≡0⇒x≡0 {zero} _ = refl x≢0⇒double[x]≢0 : ∀ {x} → x ≢ zero → double x ≢ zero x≢0⇒double[x]≢0 x≢0 = x≢0 ∘ double[x]≡0⇒x≡0 double≢1 : ∀ {x} → double x ≢ 1ᵇ double≢1 {zero} () double≗2* : double ≗ 2ᵇ *_ double≗2* x = toℕ-injective $ begin toℕ (double x) ≡⟨ toℕ-double x ⟩ 2 ℕ.* (toℕ x) ≡⟨ sym (toℕ-homo-* 2ᵇ x) ⟩ toℕ (2ᵇ * x) ∎ where open ≡-Reasoning double-*-assoc : ∀ x y → (double x) * y ≡ double (x * y) double-*-assoc x y = begin (double x) * y ≡⟨ cong (_* y) (double≗2* x) ⟩ (2ᵇ * x) * y ≡⟨ *-assoc 2ᵇ x y ⟩ 2ᵇ * (x * y) ≡⟨ sym (double≗2* (x * y)) ⟩ double (x * y) ∎ where open ≡-Reasoning double[x]≡x+x : ∀ x → double x ≡ x + x double[x]≡x+x x = trans (double≗2* x) (2*x≡x+x x) double-distrib-+ : ∀ x y → double (x + y) ≡ double x + double y double-distrib-+ x y = begin double (x + y) ≡⟨ double≗2* (x + y) ⟩ 2ᵇ * (x + y) ≡⟨ *-distribˡ-+ 2ᵇ x y ⟩ (2ᵇ * x) + (2ᵇ * y) ≡⟨ sym (cong₂ _+_ (double≗2* x) (double≗2* y)) ⟩ double x + double y ∎ where open ≡-Reasoning double-mono-≤ : double Preserves _≤_ ⟶ _≤_ double-mono-≤ {x} {y} x≤y = begin double x ≡⟨ double≗2* x ⟩ 2ᵇ * x ≤⟨ *-monoʳ-≤ 2ᵇ x≤y ⟩ 2ᵇ * y ≡⟨ sym (double≗2* y) ⟩ double y ∎ where open ≤-Reasoning double-mono-< : double Preserves _<_ ⟶ _<_ double-mono-< {x} {y} x<y = begin-strict double x ≡⟨ double≗2* x ⟩ 2ᵇ * x <⟨ *-monoʳ-< 1ᵇ x<y ⟩ 2ᵇ * y ≡⟨ sym (double≗2* y) ⟩ double y ∎ where open ≤-Reasoning double-cancel-≤ : ∀ {x y} → double x ≤ double y → x ≤ y double-cancel-≤ {x} {y} 2x≤2y with <-cmp x y ... | tri< x<y _ _ = <⇒≤ x<y ... | tri≈ _ x≡y _ = ≤-reflexive x≡y ... | tri> _ _ x>y = contradiction 2x≤2y (<⇒≱ (double-mono-< x>y)) double-cancel-< : ∀ {x y} → double x < double y → x < y double-cancel-< {x} {y} 2x<2y with <-cmp x y ... | tri< x<y _ _ = x<y ... | tri≈ _ refl _ = contradiction 2x<2y (<-irrefl refl) ... | tri> _ _ x>y = contradiction (double-mono-< x>y) (<⇒≯ 2x<2y) x<double[x] : ∀ x → x ≢ zero → x < double x x<double[x] x x≢0 = begin-strict x <⟨ x<x+y x (x≢0⇒x>0 x≢0) ⟩ x + x ≡⟨ sym (double[x]≡x+x x) ⟩ double x ∎ where open ≤-Reasoning x≤double[x] : ∀ x → x ≤ double x x≤double[x] x = begin x ≤⟨ x≤x+y x x ⟩ x + x ≡⟨ sym (double[x]≡x+x x) ⟩ double x ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of suc ------------------------------------------------------------------------ 2[1+_]-double-suc : 2[1+_] ≗ double ∘ suc 2[1+_]-double-suc zero = refl 2[1+_]-double-suc 2[1+ x ] = cong 2[1+_] (2[1+_]-double-suc x) 2[1+_]-double-suc 1+[2 x ] = refl 1+[2_]-suc-double : 1+[2_] ≗ suc ∘ double 1+[2_]-suc-double zero = refl 1+[2_]-suc-double 2[1+ x ] = refl 1+[2_]-suc-double 1+[2 x ] = begin 1+[2 1+[2 x ] ] ≡⟨ cong 1+[2_] (1+[2_]-suc-double x) ⟩ 1+[2 (suc 2x) ] ≡⟨⟩ suc 2[1+ 2x ] ≡⟨ cong suc (2[1+_]-double-suc 2x) ⟩ suc (double (suc 2x)) ≡⟨ cong (suc ∘ double) (sym (1+[2_]-suc-double x)) ⟩ suc (double 1+[2 x ]) ∎ where open ≡-Reasoning; 2x = double x suc≢0 : ∀ {x} → suc x ≢ zero suc≢0 {zero} () suc≢0 {2[1+ _ ]} () suc≢0 {1+[2 _ ]} () 0<suc : ∀ x → zero < suc x 0<suc x = x≢0⇒x>0 (suc≢0 {x}) x<suc[x] : ∀ x → x < suc x x<suc[x] x = begin-strict x <⟨ x<1+x x ⟩ 1ᵇ + x ≡⟨ sym (suc≗1+ x) ⟩ suc x ∎ where open ≤-Reasoning x≤suc[x] : ∀ x → x ≤ suc x x≤suc[x] x = <⇒≤ (x<suc[x] x) x≢suc[x] : ∀ x → x ≢ suc x x≢suc[x] x = <⇒≢ (x<suc[x] x) suc-mono-≤ : suc Preserves _≤_ ⟶ _≤_ suc-mono-≤ {x} {y} x≤y = begin suc x ≡⟨ suc≗1+ x ⟩ 1ᵇ + x ≤⟨ +-monoʳ-≤ 1ᵇ x≤y ⟩ 1ᵇ + y ≡⟨ sym (suc≗1+ y) ⟩ suc y ∎ where open ≤-Reasoning suc[x]≤y⇒x<y : ∀ {x y} → suc x ≤ y → x < y suc[x]≤y⇒x<y {x} (inj₁ sx<y) = <-trans (x<suc[x] x) sx<y suc[x]≤y⇒x<y {x} (inj₂ refl) = x<suc[x] x x<y⇒suc[x]≤y : ∀ {x y} → x < y → suc x ≤ y x<y⇒suc[x]≤y {x} {y} x<y = begin suc x ≡⟨ sym (fromℕ-toℕ (suc x)) ⟩ fromℕ (toℕ (suc x)) ≡⟨ cong fromℕ (toℕ-suc x) ⟩ fromℕ (ℕ.suc (toℕ x)) ≤⟨ fromℕ-mono-≤ (toℕ-mono-< x<y) ⟩ fromℕ (toℕ y) ≡⟨ fromℕ-toℕ y ⟩ y ∎ where open ≤-Reasoning suc-* : ∀ x y → suc x * y ≡ y + x * y suc-* x y = begin suc x * y ≡⟨ cong (_* y) (suc≗1+ x) ⟩ (1ᵇ + x) * y ≡⟨ 1+-* x y ⟩ y + x * y ∎ where open ≡-Reasoning *-suc : ∀ x y → x * suc y ≡ x + x * y *-suc x y = begin x * suc y ≡⟨ cong (x *_) (suc≗1+ y) ⟩ x * (1ᵇ + y) ≡⟨ *-1+ y x ⟩ x + x * y ∎ where open ≡-Reasoning x≤suc[y]*x : ∀ x y → x ≤ (suc y) * x x≤suc[y]*x x y = begin x ≤⟨ x≤x+y x (y * x) ⟩ x + y * x ≡⟨ sym (suc-* y x) ⟩ (suc y) * x ∎ where open ≤-Reasoning suc[x]≤double[x] : ∀ x → x ≢ zero → suc x ≤ double x suc[x]≤double[x] x = x<y⇒suc[x]≤y {x} {double x} ∘ x<double[x] x suc[x]<2[1+x] : ∀ x → suc x < 2[1+ x ] suc[x]<2[1+x] x = begin-strict suc x <⟨ x<double[x] (suc x) suc≢0 ⟩ double (suc x) ≡⟨ sym (2[1+_]-double-suc x) ⟩ 2[1+ x ] ∎ where open ≤-Reasoning double[x]<1+[2x] : ∀ x → double x < 1+[2 x ] double[x]<1+[2x] x = begin-strict double x <⟨ x<suc[x] (double x) ⟩ suc (double x) ≡⟨ sym (1+[2_]-suc-double x) ⟩ 1+[2 x ] ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of pred ------------------------------------------------------------------------ pred-suc : pred ∘ suc ≗ id pred-suc zero = refl pred-suc 2[1+ x ] = sym (2[1+_]-double-suc x) pred-suc 1+[2 x ] = refl suc-pred : ∀ {x} → x ≢ zero → suc (pred x) ≡ x suc-pred {zero} 0≢0 = contradiction refl 0≢0 suc-pred {2[1+ _ ]} _ = refl suc-pred {1+[2 x ]} _ = sym (1+[2_]-suc-double x) pred-mono-≤ : pred Preserves _≤_ ⟶ _≤_ pred-mono-≤ {x} {y} x≤y = begin pred x ≡⟨ cong pred (sym (fromℕ-toℕ x)) ⟩ pred (fromℕ m) ≡⟨ sym (fromℕ-pred m) ⟩ fromℕ (ℕ.pred m) ≤⟨ fromℕ-mono-≤ (ℕₚ.pred-mono (toℕ-mono-≤ x≤y)) ⟩ fromℕ (ℕ.pred n) ≡⟨ fromℕ-pred n ⟩ pred (fromℕ n) ≡⟨ cong pred (fromℕ-toℕ y) ⟩ pred y ∎ where open ≤-Reasoning; m = toℕ x; n = toℕ y pred[x]<x : ∀ {x} → x ≢ zero → pred x < x pred[x]<x {x} x≢0 = begin-strict pred x <⟨ x<suc[x] (pred x) ⟩ suc (pred x) ≡⟨ suc-pred x≢0 ⟩ x ∎ where open ≤-Reasoning ------------------------------------------------------------------------ -- Properties of size ------------------------------------------------------------------------ |x|≡0⇒x≡0 : ∀ {x} → size x ≡ 0 → x ≡ 0ᵇ |x|≡0⇒x≡0 {zero} refl = refl
{ "alphanum_fraction": 0.4570037298, "avg_line_length": 34.9963741842, "ext": "agda", "hexsha": "83ed3c23d6bf8ca5c81515872c97e559b92186f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Nat/Binary/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Nat/Binary/Properties.agda", "max_line_length": 119, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Nat/Binary/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 22952, "size": 48260 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lemmas for use in proving the polynomial homomorphism. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Tactic.RingSolver.Core.Polynomial.Parameters module Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas {r₁ r₂ r₃ r₄} (homo : Homomorphism r₁ r₂ r₃ r₄) where open import Data.Bool using (Bool;true;false) open import Data.Nat.Base as ℕ using (ℕ; suc; zero; compare; _≤′_; ≤′-step; ≤′-refl) open import Data.Nat.Properties as ℕₚ using (≤′-trans) open import Data.Vec.Base as Vec using (Vec; _∷_) open import Data.Fin using (Fin; zero; suc) open import Data.List using (_∷_; []) open import Data.Unit using (tt) open import Data.List.Kleene open import Data.Product using (_,_; proj₁; proj₂; map₁; _×_) open import Data.Empty using (⊥-elim) open import Data.Maybe using (nothing; just) open import Function open import Level using (lift) open import Relation.Nullary using (Dec; yes; no) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open Homomorphism homo hiding (_^_) open import Tactic.RingSolver.Core.Polynomial.Reasoning to open import Tactic.RingSolver.Core.Polynomial.Base from open import Tactic.RingSolver.Core.Polynomial.Semantics homo open import Algebra.Operations.Ring rawRing ------------------------------------------------------------------------ -- Power lemmas -- -- We prove some things about our odd exponentiation operator (described -- in Algebra.Operations.Ring.Compact) here. -- First, that the optimised operator is the same as normal -- exponentiation. pow-opt : ∀ x ρ i → x *⟨ ρ ⟩^ i ≈ ρ ^ i * x pow-opt x ρ ℕ.zero = sym (*-identityˡ x) pow-opt x ρ (suc i) = refl -- Some normal identities on exponentiation. -- xⁿxᵐ = xⁿ⁺ᵐ pow-add′ : ∀ x i j → (x ^ i +1) * (x ^ j +1) ≈ x ^ (j ℕ.+ suc i) +1 pow-add′ x i ℕ.zero = refl pow-add′ x i (suc j) = begin x ^ i +1 * (x ^ j +1 * x) ≈⟨ sym (*-assoc _ _ _) ⟩ x ^ i +1 * x ^ j +1 * x ≈⟨ ≪* pow-add′ x i j ⟩ x ^ (j ℕ.+ suc i) +1 * x ∎ pow-add : ∀ x y i j → y ^ j +1 * x *⟨ y ⟩^ i ≈ x *⟨ y ⟩^ (i ℕ.+ suc j) pow-add x y ℕ.zero j = refl pow-add x y (suc i) j = go x y i j where go : ∀ x y i j → y ^ j +1 * ((y ^ i +1) * x) ≈ y ^ (i ℕ.+ suc j) +1 * x go x y ℕ.zero j = sym (*-assoc _ _ _) go x y (suc i) j = begin y ^ j +1 * (y ^ i +1 * y * x) ≈⟨ *≫ *-assoc _ y x ⟩ y ^ j +1 * (y ^ i +1 * (y * x)) ≈⟨ go (y * x) y i j ⟩ y ^ (i ℕ.+ suc j) +1 * (y * x) ≈⟨ sym (*-assoc _ y x) ⟩ y ^ suc (i ℕ.+ suc j) +1 * x ∎ -- Here we show a homomorphism on exponentiation, i.e. that using the -- exponentiation function on polynomials and then evaluating is the same -- as evaluating and then exponentiating. pow-hom : ∀ {n} i → (xs : Coeff n +) → ∀ ρ ρs → ⅀⟦ xs ⟧ (ρ , ρs) *⟨ ρ ⟩^ i ≈ ⅀⟦ xs ⍓+ i ⟧ (ρ , ρs) pow-hom ℕ.zero (x Δ j & xs) ρ ρs rewrite ℕₚ.+-identityʳ j = refl pow-hom (suc i) (x ≠0 Δ j & xs) ρ ρs = begin ρ ^ i +1 * (((x , xs) ⟦∷⟧ (ρ , ρs)) *⟨ ρ ⟩^ j) ≈⟨ pow-add _ ρ j i ⟩ (((x , xs) ⟦∷⟧ (ρ , ρs)) *⟨ ρ ⟩^ (j ℕ.+ suc i)) ∎ -- Proving a congruence (we don't get this for free because we're using -- setoids). pow-mul-cong : ∀ {x y} → x ≈ y → ∀ ρ i → x *⟨ ρ ⟩^ i ≈ y *⟨ ρ ⟩^ i pow-mul-cong x≈y ρ ℕ.zero = x≈y pow-mul-cong x≈y ρ (suc i₁) = *≫ x≈y -- The identity: -- (xy)ⁿ = xⁿyⁿ pow-distrib-+1 : ∀ x y i → (x * y) ^ i +1 ≈ x ^ i +1 * y ^ i +1 pow-distrib-+1 x y ℕ.zero = refl pow-distrib-+1 x y (suc i) = begin (x * y) ^ i +1 * (x * y) ≈⟨ ≪* pow-distrib-+1 x y i ⟩ (x ^ i +1 * y ^ i +1) * (x * y) ≈⟨ *-assoc _ _ _ ⟨ trans ⟩ (*≫ (sym (*-assoc _ _ _) ⟨ trans ⟩ (≪* *-comm _ _))) ⟩ x ^ i +1 * (x * y ^ i +1 * y) ≈⟨ (*≫ *-assoc _ _ _) ⟨ trans ⟩ sym (*-assoc _ _ _) ⟩ (x ^ i +1 * x) * (y ^ i +1 * y) ∎ pow-distrib : ∀ x y i → (x * y) ^ i ≈ x ^ i * y ^ i pow-distrib x y ℕ.zero = sym (*-identityˡ _) pow-distrib x y (suc i) = pow-distrib-+1 x y i -- This proves the identity: -- (xⁿ)ᵐ = xⁿᵐ -- The reason it looks different is because we're using the special exponentiation -- operator. pow-mult-+1 : ∀ x i j → (x ^ i +1) ^ j +1 ≈ x ^ (i ℕ.+ j ℕ.* suc i) +1 pow-mult-+1 x i ℕ.zero rewrite ℕₚ.+-identityʳ i = refl pow-mult-+1 x i (suc j) = begin (x ^ i +1) ^ j +1 * (x ^ i +1) ≈⟨ ≪* pow-mult-+1 x i j ⟩ (x ^ (i ℕ.+ j ℕ.* suc i) +1) * (x ^ i +1) ≈⟨ pow-add′ x _ i ⟩ x ^ (i ℕ.+ suc (i ℕ.+ j ℕ.* suc i)) +1 ∎ pow-cong-+1 : ∀ {x y} i → x ≈ y → x ^ i +1 ≈ y ^ i +1 pow-cong-+1 ℕ.zero x≈y = x≈y pow-cong-+1 (suc i) x≈y = pow-cong-+1 i x≈y ⟨ *-cong ⟩ x≈y pow-cong : ∀ {x y} i → x ≈ y → x ^ i ≈ y ^ i pow-cong ℕ.zero x≈y = refl pow-cong (suc i) x≈y = pow-cong-+1 i x≈y -- Demonstrating that the proof of zeroness is correct. zero-hom : ∀ {n} (p : Poly n) → Zero p → (ρs : Vec Carrier n) → 0# ≈ ⟦ p ⟧ ρs zero-hom (Κ x ⊐ i≤n) p≡0 ρs = Zero-C⟶Zero-R x p≡0 -- x¹⁺ⁿ = xxⁿ pow-suc : ∀ x i → x ^ suc i ≈ x * x ^ i pow-suc x ℕ.zero = sym (*-identityʳ _) pow-suc x (suc i) = *-comm _ _ -- x¹⁺ⁿ = xⁿx pow-sucʳ : ∀ x i → x ^ suc i ≈ x ^ i * x pow-sucʳ x ℕ.zero = sym (*-identityˡ _) pow-sucʳ x (suc i) = refl -- In the proper evaluation function, we avoid ever inserting an unnecessary 0# -- like we do here. However, it is easier to prove with the form that does insert -- 0#. So we write one here, and then prove that it's equivalent to the one that -- adds a 0#. ⅀?⟦_⟧ : ∀ {n} (xs : Coeff n *) → Carrier × Vec Carrier n → Carrier ⅀?⟦ [] ⟧ _ = 0# ⅀?⟦ ∹ x ⟧ = ⅀⟦ x ⟧ _⟦∷⟧?_ : ∀ {n} (x : Poly n × Coeff n *) → Carrier × Vec Carrier n → Carrier (x , xs) ⟦∷⟧? (ρ , ρs) = ρ * ⅀?⟦ xs ⟧ (ρ , ρs) + ⟦ x ⟧ ρs ⅀?-hom : ∀ {n} (xs : Coeff n +) → ∀ ρ → ⅀?⟦ ∹ xs ⟧ ρ ≈ ⅀⟦ xs ⟧ ρ ⅀?-hom _ _ = refl ⟦∷⟧?-hom : ∀ {n} (x : Poly n) → ∀ xs ρ ρs → (x , xs) ⟦∷⟧? (ρ , ρs) ≈ (x , xs) ⟦∷⟧ (ρ , ρs) ⟦∷⟧?-hom x (∹ xs ) ρ ρs = refl ⟦∷⟧?-hom x [] ρ ρs = (≪+ zeroʳ _) ⟨ trans ⟩ +-identityˡ _ pow′-hom : ∀ {n} i (xs : Coeff n *) → ∀ ρ ρs → ((⅀?⟦ xs ⟧ (ρ , ρs)) *⟨ ρ ⟩^ i) ≈ (⅀?⟦ xs ⍓* i ⟧ (ρ , ρs)) pow′-hom i (∹ xs ) ρ ρs = pow-hom i xs ρ ρs pow′-hom zero [] ρ ρs = refl pow′-hom (suc i) [] ρ ρs = zeroʳ _ -- Here, we show that the normalising cons is correct. -- This lets us prove with respect to the non-normalising form, especially -- when we're using the folds. ∷↓-hom-0 : ∀ {n} (x : Poly n) → ∀ xs ρ ρs → ⅀?⟦ x Δ 0 ∷↓ xs ⟧ (ρ , ρs) ≈ (x , xs) ⟦∷⟧ (ρ , ρs) ∷↓-hom-0 x xs ρ ρs with zero? x ∷↓-hom-0 x xs ρ ρs | no ¬p = refl ∷↓-hom-0 x [] ρ ρs | yes p = zero-hom x p ρs ∷↓-hom-0 x (∹ xs ) ρ ρs | yes p = begin ⅀⟦ xs ⍓+ 1 ⟧ (ρ , ρs) ≈⟨ sym (pow-hom 1 xs ρ ρs) ⟩ ρ * ⅀⟦ xs ⟧ (ρ , ρs) ≈⟨ sym (+-identityʳ _) ⟨ trans ⟩ (+≫ zero-hom x p ρs) ⟩ ρ * ⅀⟦ xs ⟧ (ρ , ρs) + ⟦ x ⟧ ρs ∎ ∷↓-hom-s : ∀ {n} (x : Poly n) → ∀ i xs ρ ρs → ⅀?⟦ x Δ suc i ∷↓ xs ⟧ (ρ , ρs) ≈ (ρ ^ i +1) * (x , xs) ⟦∷⟧ (ρ , ρs) ∷↓-hom-s x i xs ρ ρs with zero? x ∷↓-hom-s x i xs ρ ρs | no ¬p = refl ∷↓-hom-s x i [] ρ ρs | yes p = sym ((*≫ sym (zero-hom x p ρs)) ⟨ trans ⟩ zeroʳ _) ∷↓-hom-s x i (∹ xs ) ρ ρs | yes p = begin ⅀⟦ xs ⍓+ (suc (suc i)) ⟧ (ρ , ρs) ≈⟨ sym (pow-hom (suc (suc i)) xs ρ ρs) ⟩ (ρ ^ suc i +1) * ⅀⟦ xs ⟧ (ρ , ρs) ≈⟨ *-assoc _ _ _ ⟩ (ρ ^ i +1) * (ρ * ⅀⟦ xs ⟧ (ρ , ρs)) ≈⟨ *≫ (sym (+-identityʳ _) ⟨ trans ⟩ (+≫ zero-hom x p ρs)) ⟩ ρ ^ i +1 * (ρ * ⅀⟦ xs ⟧ (ρ , ρs) + ⟦ x ⟧ ρs) ∎ ∷↓-hom : ∀ {n} → (x : Poly n) → ∀ i xs ρ ρs → ⅀?⟦ x Δ i ∷↓ xs ⟧ (ρ , ρs) ≈ ρ ^ i * ((x , xs) ⟦∷⟧ (ρ , ρs)) ∷↓-hom x ℕ.zero xs ρ ρs = ∷↓-hom-0 x xs ρ ρs ⟨ trans ⟩ sym (*-identityˡ _) ∷↓-hom x (suc i) xs ρ ρs = ∷↓-hom-s x i xs ρ ρs ⟦∷⟧-hom : ∀ {n} → (x : Poly n) → (xs : Coeff n *) → ∀ ρ ρs → (x , xs) ⟦∷⟧ (ρ , ρs) ≈ ρ * ⅀?⟦ xs ⟧ (ρ , ρs) + ⟦ x ⟧ ρs ⟦∷⟧-hom x [] ρ ρs = sym ((≪+ zeroʳ _) ⟨ trans ⟩ +-identityˡ _) ⟦∷⟧-hom x (∹ xs) ρ ρs = refl -- This proves that injecting a polynomial into more variables is correct. -- Basically, we show that if a polynomial doesn't care about the first few -- variables, we can drop them from the input vector. ⅀-⊐↑-hom : ∀ {i n m} → (xs : Coeff i +) → (si≤n : suc i ≤′ n) → (sn≤m : suc n ≤′ m) → ∀ ρ → ⅀⟦ xs ⟧ (drop-1 (≤′-step si≤n ⟨ ≤′-trans ⟩ sn≤m) ρ) ≈ ⅀⟦ xs ⟧ (drop-1 si≤n (proj₂ (drop-1 sn≤m ρ))) ⅀-⊐↑-hom xs si≤n ≤′-refl (_ ∷ _) = refl ⅀-⊐↑-hom xs si≤n (≤′-step sn≤m) (_ ∷ ρ) = ⅀-⊐↑-hom xs si≤n sn≤m ρ ⊐↑-hom : ∀ {n m} → (x : Poly n) → (sn≤m : suc n ≤′ m) → ∀ ρ → ⟦ x ⊐↑ sn≤m ⟧ ρ ≈ ⟦ x ⟧ (proj₂ (drop-1 sn≤m ρ)) ⊐↑-hom (Κ x ⊐ i≤sn) _ _ = refl ⊐↑-hom (⅀ xs ⊐ i≤sn) = ⅀-⊐↑-hom xs i≤sn trans-join-coeffs-hom : ∀ {i j-1 n} → (i≤j-1 : suc i ≤′ j-1) → (j≤n : suc j-1 ≤′ n) → (xs : Coeff i +) → ∀ ρ → ⅀⟦ xs ⟧ (drop-1 i≤j-1 (proj₂ (drop-1 j≤n ρ))) ≈ ⅀⟦ xs ⟧ (drop-1 (≤′-step i≤j-1 ⟨ ≤′-trans ⟩ j≤n) ρ) trans-join-coeffs-hom i<j-1 ≤′-refl xs (_ ∷ _) = refl trans-join-coeffs-hom i<j-1 (≤′-step j<n) xs (_ ∷ ρ) = trans-join-coeffs-hom i<j-1 j<n xs ρ trans-join-hom : ∀ {i j-1 n} → (i≤j-1 : i ≤′ j-1) → (j≤n : suc j-1 ≤′ n) → (x : FlatPoly i) → ∀ ρ → ⟦ x ⊐ i≤j-1 ⟧ (proj₂ (drop-1 j≤n ρ)) ≈ ⟦ x ⊐ (≤′-step i≤j-1 ⟨ ≤′-trans ⟩ j≤n) ⟧ ρ trans-join-hom i≤j-1 j≤n (Κ x) _ = refl trans-join-hom i≤j-1 j≤n (⅀ x) = trans-join-coeffs-hom i≤j-1 j≤n x ⊐↓-hom : ∀ {n m} → (xs : Coeff n *) → (sn≤m : suc n ≤′ m) → ∀ ρ → ⟦ xs ⊐↓ sn≤m ⟧ ρ ≈ ⅀?⟦ xs ⟧ (drop-1 sn≤m ρ) ⊐↓-hom [] sn≤m _ = 0-homo ⊐↓-hom (∹ x₁ Δ zero & ∹ xs) sn≤m _ = refl ⊐↓-hom (∹ x Δ suc j & xs ) sn≤m _ = refl ⊐↓-hom (∹ _≠0 x {x≠0} Δ zero & []) sn≤m ρs = let (ρ , ρs′) = drop-1 sn≤m ρs in begin ⟦ x ⊐↑ sn≤m ⟧ ρs ≈⟨ ⊐↑-hom x sn≤m ρs ⟩ ⟦ x ⟧ ρs′ ∎ drop-1⇒lookup : ∀ {n} (i : Fin n) (ρs : Vec Carrier n) → proj₁ (drop-1 (space≤′n i) ρs) ≡ Vec.lookup ρs i drop-1⇒lookup zero (ρ ∷ ρs) = ≡.refl drop-1⇒lookup (suc i) (ρ ∷ ρs) = drop-1⇒lookup i ρs -- The fold: this function saves us hundreds of lines of proofs in the rest of the -- homomorphism proof. -- Many of the functions on polynomials are defined using para: this function allows -- us to prove properties of those functions (in a foldr-fusion style) *ignoring* -- optimisations we have made to the polynomial structure. poly-foldR : ∀ {n} ρ ρs → ([f] : Fold n) → (f : Carrier → Carrier) → (∀ {x y} → x ≈ y → f x ≈ f y) → (∀ x y → x * f y ≈ f (x * y)) → (∀ y {ys} zs → ⅀?⟦ ys ⟧ (ρ , ρs) ≈ f (⅀?⟦ zs ⟧ (ρ , ρs)) → [f] (y , ys) ⟦∷⟧? (ρ , ρs) ≈ f ((y , zs) ⟦∷⟧? (ρ , ρs)) ) → (f 0# ≈ 0#) → ∀ xs → ⅀?⟦ para [f] xs ⟧ (ρ , ρs) ≈ f (⅀⟦ xs ⟧ (ρ , ρs)) poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ suc i & []) = let y,ys = f (x , []) y = proj₁ y,ys ys = proj₂ y,ys in begin ⅀?⟦ y Δ suc i ∷↓ ys ⟧ (ρ , ρs) ≈⟨ ∷↓-hom-s y i ys ρ ρs ⟩ (ρ ^ i +1) * ((y , ys) ⟦∷⟧ (ρ , ρs)) ≈˘⟨ *≫ ⟦∷⟧?-hom y ys ρ ρs ⟩ (ρ ^ i +1) * ((y , ys) ⟦∷⟧? (ρ , ρs)) ≈⟨ *≫ step x [] (sym base) ⟩ (ρ ^ i +1) * e ((x , []) ⟦∷⟧? (ρ , ρs)) ≈⟨ *≫ cng (⟦∷⟧?-hom x [] ρ ρs) ⟩ (ρ ^ i +1) * e ((x , []) ⟦∷⟧ (ρ , ρs)) ≈⟨ dist _ _ ⟩ e (ρ ^ i +1 * ((x , []) ⟦∷⟧ (ρ , ρs))) ∎ poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ suc i & ∹ xs) = let ys = para f xs y,zs = f (x , ys) y = proj₁ y,zs zs = proj₂ y,zs in begin ⅀?⟦ y Δ suc i ∷↓ zs ⟧ (ρ , ρs) ≈⟨ ∷↓-hom-s y i zs ρ ρs ⟩ (ρ ^ i +1) * ((y , zs) ⟦∷⟧ (ρ , ρs)) ≈˘⟨ *≫ ⟦∷⟧?-hom y zs ρ ρs ⟩ (ρ ^ i +1) * ((y , zs) ⟦∷⟧? (ρ , ρs)) ≈⟨ *≫ step x (∹ xs) (poly-foldR ρ ρs f e cng dist step base xs) ⟩ (ρ ^ i +1) * e ((x , (∹ xs )) ⟦∷⟧? (ρ , ρs)) ≈⟨ *≫ cng (⟦∷⟧?-hom x (∹ xs ) ρ ρs) ⟩ (ρ ^ i +1) * e ((x , (∹ xs )) ⟦∷⟧ (ρ , ρs)) ≈⟨ dist _ _ ⟩ e (ρ ^ i +1 * ((x , (∹ xs )) ⟦∷⟧ (ρ , ρs))) ∎ poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ ℕ.zero & []) = let y,zs = f (x , []) y = proj₁ y,zs zs = proj₂ y,zs in begin ⅀?⟦ y Δ ℕ.zero ∷↓ zs ⟧ (ρ , ρs) ≈⟨ ∷↓-hom-0 y zs ρ ρs ⟩ ((y , zs) ⟦∷⟧ (ρ , ρs)) ≈˘⟨ ⟦∷⟧?-hom y zs ρ ρs ⟩ ((y , zs) ⟦∷⟧? (ρ , ρs)) ≈⟨ step x [] (sym base) ⟩ e ((x , []) ⟦∷⟧? (ρ , ρs)) ≈⟨ cng (⟦∷⟧?-hom x [] ρ ρs) ⟩ e ((x , []) ⟦∷⟧ (ρ , ρs)) ∎ poly-foldR ρ ρs f e cng dist step base (x ≠0 Δ ℕ.zero & (∹ xs )) = let ys = para f xs y,zs = f (x , ys) y = proj₁ y,zs zs = proj₂ y,zs in begin ⅀?⟦ y Δ ℕ.zero ∷↓ zs ⟧ (ρ , ρs) ≈⟨ ∷↓-hom-0 y zs ρ ρs ⟩ ((y , zs) ⟦∷⟧ (ρ , ρs)) ≈˘⟨ ⟦∷⟧?-hom y zs ρ ρs ⟩ ((y , zs) ⟦∷⟧? (ρ , ρs)) ≈⟨ step x (∹ xs ) (poly-foldR ρ ρs f e cng dist step base xs) ⟩ e ((x , (∹ xs )) ⟦∷⟧ (ρ , ρs)) ≈⟨ cng (⟦∷⟧?-hom x (∹ xs ) ρ ρs) ⟩ e ((x , (∹ xs )) ⟦∷⟧ (ρ , ρs)) ∎ poly-mapR : ∀ {n} ρ ρs → ([f] : Poly n → Poly n) → (f : Carrier → Carrier) → (∀ {x y} → x ≈ y → f x ≈ f y) → (∀ x y → x * f y ≈ f (x * y)) → (∀ x y → f (x + y) ≈ f x + f y) → (∀ y → ⟦ [f] y ⟧ ρs ≈ f (⟦ y ⟧ ρs) ) → (f 0# ≈ 0#) → ∀ xs → ⅀?⟦ poly-map [f] xs ⟧ (ρ , ρs) ≈ f (⅀⟦ xs ⟧ (ρ , ρs)) poly-mapR ρ ρs [f] f cng *-dist +-dist step′ base xs = poly-foldR ρ ρs (map₁ [f]) f cng *-dist step base xs where step : ∀ y {ys} zs → ⅀?⟦ ys ⟧ (ρ , ρs) ≈ f (⅀?⟦ zs ⟧ (ρ , ρs)) →(map₁ [f] (y , ys) ⟦∷⟧? (ρ , ρs)) ≈ f ((y , zs) ⟦∷⟧? (ρ , ρs)) step y {ys} zs ys≋zs = begin map₁ [f] (y , ys) ⟦∷⟧? (ρ , ρs) ≡⟨⟩ ρ * ⅀?⟦ ys ⟧ (ρ , ρs) + ⟦ [f] y ⟧ ρs ≈⟨ ((*≫ ys≋zs) ⟨ trans ⟩ *-dist ρ _) ⟨ +-cong ⟩ step′ y ⟩ f (ρ * ⅀?⟦ zs ⟧ (ρ , ρs)) + f (⟦ y ⟧ ρs) ≈⟨ sym (+-dist _ _) ⟩ f ((y , zs) ⟦∷⟧? (ρ , ρs)) ∎
{ "alphanum_fraction": 0.4437151528, "avg_line_length": 35.8708860759, "ext": "agda", "hexsha": "7ecf834237cb4fda0e61f41ab968f2ebd754bf8b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Lemmas.agda", "max_line_length": 128, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 6981, "size": 14169 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Duality where open import Level open import Data.Product using (Σ; _,_) open import Categories.Category open import Categories.Category.Construction.Cones as Con open import Categories.Category.Construction.Cocones as Coc open import Categories.Functor open import Categories.Functor.Limits open import Categories.Object.Initial open import Categories.Object.Terminal open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Colimit as Col open import Categories.Diagram.Duality open import Categories.Morphism.Duality as MorD private variable o ℓ e : Level C D E J : Category o ℓ e module _ (G : Functor C D) {J : Category o ℓ e} where private module C = Category C module D = Category D module G = Functor G module J = Category J coPreservesLimit⇒PreservesCoLimit : ∀ {F : Functor J C} (L : Limit (Functor.op F)) → PreservesLimit G.op L → PreservesColimit G (coLimit⇒Colimit C L) coPreservesLimit⇒PreservesCoLimit L is⊤ = record { ! = λ {K} → coCone⇒⇒Cocone⇒ _ (! {Cocone⇒coCone _ K}) ; !-unique = λ f → !-unique (Cocone⇒⇒coCone⇒ _ f) } where open IsTerminal is⊤ PreservesColimit⇒coPreservesLimit : ∀ {F : Functor J C} (L : Colimit F) → PreservesColimit G L → PreservesLimit G.op (Colimit⇒coLimit C L) PreservesColimit⇒coPreservesLimit L is⊥ = record { ! = λ {K} → Cocone⇒⇒coCone⇒ _ (! {coCone⇒Cocone _ K}) ; !-unique = λ f → !-unique (coCone⇒⇒Cocone⇒ _ f) } where open IsInitial is⊥ module _ {o ℓ e} (G : Functor C D) where private module G = Functor G coContinuous⇒Cocontinuous : Continuous o ℓ e G.op → Cocontinuous o ℓ e G coContinuous⇒Cocontinuous Con L = coPreservesLimit⇒PreservesCoLimit G (Colimit⇒coLimit C L) (Con (Colimit⇒coLimit C L)) Cocontinuous⇒coContinuous : Cocontinuous o ℓ e G → Continuous o ℓ e G.op Cocontinuous⇒coContinuous Coc L = PreservesColimit⇒coPreservesLimit G (coLimit⇒Colimit C L) (Coc (coLimit⇒Colimit C L))
{ "alphanum_fraction": 0.6580263756, "avg_line_length": 36.0491803279, "ext": "agda", "hexsha": "eb225bf824730ff52ce5d0377f8d4d3c919fcf0c", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Duality.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Duality.agda", "max_line_length": 89, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Duality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 694, "size": 2199 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sum combinators for setoid equality preserving functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Function.Setoid where open import Data.Sum open import Data.Sum.Relation.Binary.Pointwise open import Relation.Binary open import Function.Equality as F using (_⟶_; _⟨$⟩_) open import Function.Equivalence as Eq using (Equivalence; _⇔_; module Equivalence) open import Function.Injection as Inj using (Injection; _↣_; module Injection) open import Function.Inverse as Inv using (Inverse; _↔_; module Inverse) open import Function.LeftInverse as LeftInv using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse) open import Function.Related open import Function.Surjection as Surj using (Surjection; _↠_; module Surjection) ------------------------------------------------------------------------ -- Combinators for equality preserving functions module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} {D : Setoid d₁ d₂} where _⊎-⟶_ : (A ⟶ B) → (C ⟶ D) → (A ⊎ₛ C) ⟶ (B ⊎ₛ D) _⊎-⟶_ f g = record { _⟨$⟩_ = fg ; cong = fg-cong } where open Setoid (A ⊎ₛ C) using () renaming (_≈_ to _≈AC_) open Setoid (B ⊎ₛ D) using () renaming (_≈_ to _≈BD_) fg = map (_⟨$⟩_ f) (_⟨$⟩_ g) fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_ fg-cong (inj₁ x∼₁y) = inj₁ (F.cong f x∼₁y) fg-cong (inj₂ x∼₂y) = inj₂ (F.cong g x∼₂y) module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where inj₁ₛ : A ⟶ (A ⊎ₛ B) inj₁ₛ = record { _⟨$⟩_ = inj₁ ; cong = inj₁ } inj₂ₛ : B ⟶ (A ⊎ₛ B) inj₂ₛ = record { _⟨$⟩_ = inj₂ ; cong = inj₂ } [_,_]ₛ : ∀ {c₁ c₂} {C : Setoid c₁ c₂} → (A ⟶ C) → (B ⟶ C) → (A ⊎ₛ B) ⟶ C [ f , g ]ₛ = record { _⟨$⟩_ = [ f ⟨$⟩_ , g ⟨$⟩_ ] ; cong = λ where (inj₁ x∼₁y) → F.cong f x∼₁y (inj₂ x∼₂y) → F.cong g x∼₂y } module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where swapₛ : (A ⊎ₛ B) ⟶ (B ⊎ₛ A) swapₛ = [ inj₂ₛ , inj₁ₛ ]ₛ ------------------------------------------------------------------------ -- Combinators for more complex function types module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} {D : Setoid d₁ d₂} where _⊎-equivalence_ : Equivalence A B → Equivalence C D → Equivalence (A ⊎ₛ C) (B ⊎ₛ D) A⇔B ⊎-equivalence C⇔D = record { to = to A⇔B ⊎-⟶ to C⇔D ; from = from A⇔B ⊎-⟶ from C⇔D } where open Equivalence _⊎-injection_ : Injection A B → Injection C D → Injection (A ⊎ₛ C) (B ⊎ₛ D) _⊎-injection_ A↣B C↣D = record { to = to A↣B ⊎-⟶ to C↣D ; injective = inj _ _ } where open Injection open Setoid (A ⊎ₛ C) using () renaming (_≈_ to _≈AC_) open Setoid (B ⊎ₛ D) using () renaming (_≈_ to _≈BD_) inj : ∀ x y → (to A↣B ⊎-⟶ to C↣D) ⟨$⟩ x ≈BD (to A↣B ⊎-⟶ to C↣D) ⟨$⟩ y → x ≈AC y inj (inj₁ x) (inj₁ y) (inj₁ x∼₁y) = inj₁ (injective A↣B x∼₁y) inj (inj₂ x) (inj₂ y) (inj₂ x∼₂y) = inj₂ (injective C↣D x∼₂y) -- Can be removed in Agda 2.6.0? inj (inj₁ x) (inj₂ y) () inj (inj₂ x) (inj₁ y) () _⊎-left-inverse_ : LeftInverse A B → LeftInverse C D → LeftInverse (A ⊎ₛ C) (B ⊎ₛ D) A↞B ⊎-left-inverse C↞D = record { to = Equivalence.to eq ; from = Equivalence.from eq ; left-inverse-of = [ (λ x → inj₁ (left-inverse-of A↞B x)) , (λ x → inj₂ (left-inverse-of C↞D x)) ] } where open LeftInverse eq = LeftInverse.equivalence A↞B ⊎-equivalence LeftInverse.equivalence C↞D module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} {D : Setoid d₁ d₂} where _⊎-surjection_ : Surjection A B → Surjection C D → Surjection (A ⊎ₛ C) (B ⊎ₛ D) A↠B ⊎-surjection C↠D = record { to = LeftInverse.from inv ; surjective = record { from = LeftInverse.to inv ; right-inverse-of = LeftInverse.left-inverse-of inv } } where open Surjection inv = right-inverse A↠B ⊎-left-inverse right-inverse C↠D _⊎-inverse_ : Inverse A B → Inverse C D → Inverse (A ⊎ₛ C) (B ⊎ₛ D) A↔B ⊎-inverse C↔D = record { to = Surjection.to surj ; from = Surjection.from surj ; inverse-of = record { left-inverse-of = LeftInverse.left-inverse-of inv ; right-inverse-of = Surjection.right-inverse-of surj } } where open Inverse surj = Inverse.surjection A↔B ⊎-surjection Inverse.surjection C↔D inv = Inverse.left-inverse A↔B ⊎-left-inverse Inverse.left-inverse C↔D
{ "alphanum_fraction": 0.5255945183, "avg_line_length": 32.2207792208, "ext": "agda", "hexsha": "acf8744fc5f6a659bbc4061787c67322e71884a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Function/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Function/Setoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Function/Setoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1898, "size": 4962 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? open import Data.Unit open import Data.Int as ℤ using (ℤ) open import Data.List open import Data.List.Relation.Unary.All as List module MyTestModule where emptyList : List ℤ emptyList = [] empty : List.All (λ (x : ℤ) → ⊤) emptyList empty = checkProperty record { databasePath = DATABASE_PATH ; propertyUUID = ???? }
{ "alphanum_fraction": 0.6994219653, "avg_line_length": 23.5909090909, "ext": "agda", "hexsha": "65b666694c7442cc2c0513ac83ac223879f0eca8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Yiergot/vehicle", "max_forks_repo_path": "examples/simple/quantifierIn/quantifierIn-output.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Yiergot/vehicle", "max_issues_repo_path": "examples/simple/quantifierIn/quantifierIn-output.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Yiergot/vehicle", "max_stars_repo_path": "examples/simple/quantifierIn/quantifierIn-output.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 154, "size": 519 }
------------------------------------------------------------------------ -- An investigation of various ways to define the semantics of an -- untyped λ-calculus and a virtual machine, and a discussion of -- type soundness and compiler correctness -- -- Nils Anders Danielsson ------------------------------------------------------------------------ module Lambda where -- Syntax and type system for an untyped λ-calculus. import Lambda.Syntax ------------------------------------------------------------------------ -- Semantics based on substitutions -- Substitutions. import Lambda.Substitution -- A big-step semantics for the language. Conditional coinduction is -- used to avoid duplication of rules. -- -- Cousot and Cousot give a similar definition in "Bi-inductive -- structural semantics", and their definition inspired this one. -- Their definition has almost the same rules, but these rules are -- interpreted in the framework of bi-induction rather than the -- framework of mixed induction and (conditional) coinduction. import Lambda.Substitution.OneSemantics -- Two separate semantics for the language, one for converging terms -- and the other for diverging terms, as given by Leroy and Grall in -- "Coinductive big-step operational semantics". -- -- Leroy and Grall attempted to unify their two semantics into a -- single one, using only coinduction, but failed to find a definition -- which was equivalent to the two that they started with. However, -- they aimed for a definition which did not have more rules than the -- definition for converging terms; the definition in OneSemantics -- does not satisfy this criterion. import Lambda.Substitution.TwoSemantics -- The two definitions are equivalent. import Lambda.Substitution.Equivalence -- A functional semantics, along with a type soundness proof. import Lambda.Substitution.Functional ------------------------------------------------------------------------ -- Virtual machine -- A virtual machine with two semantics (one relational and one -- functional), a compiler from the λ-calculus defined above into the -- language of the virtual machine, and a proof showing that the two -- semantics are equivalent. import Lambda.VirtualMachine ------------------------------------------------------------------------ -- Semantics based on closures -- A semantics for the untyped λ-calculus, based on closures and -- environments, as given by Leroy and Grall in "Coinductive big-step -- operational semantics" (more or less). -- -- The module also contains a proof which shows that the compiler in -- Lambda.VirtualMachine preserves the semantics (assuming that the -- virtual machine is deterministic). Leroy and Grall prove almost the -- same thing. In their proof they use a relation indexed by a natural -- number to work around limitations in Coq's productivity checker. -- Agda has similar limitations, but I work around them using mixed -- induction/coinduction, which in my opinion is more elegant. I am -- not sure if my workaround would work in Coq, though. import Lambda.Closure.Relational -- A semantics for the untyped λ-calculus which uses the partiality -- monad, along with another compiler correctness proof. An advantage -- of formulating the semantics in this way is that it is very easy to -- state compiler correctness. import Lambda.Closure.Functional -- The module above uses some workarounds in order to convince Agda -- that the code is productive. The following module contains (more or -- less) the same code without the workarounds, but is checked with -- the termination checker turned off. import Lambda.Closure.Functional.No-workarounds -- The relational and functional semantics are equivalent. import Lambda.Closure.Equivalence -- An alternative definition of the functional semantics. This -- definition uses continuation-passing style instead of bind. import Lambda.Closure.Functional.Alternative -- A definition of a type system (with recursive types) for the -- λ-calculus given above, and a proof of type soundness for the -- functional semantics. import Lambda.Closure.Functional.Type-soundness -- A very brief treatment of different kinds of term equivalences, -- including contextual equivalence and applicative bisimilarity. import Lambda.Closure.Equivalences -- A functional semantics, a compiler and a compiler correctness -- proof, and a type soundness proof for a non-deterministic untyped -- λ-calculus with constants. import Lambda.Closure.Functional.Non-deterministic -- A variant of the code above without the workarounds used to -- convince Agda that the code is productive. import Lambda.Closure.Functional.Non-deterministic.No-workarounds
{ "alphanum_fraction": 0.7253356062, "avg_line_length": 37.246031746, "ext": "agda", "hexsha": "3ca5b4c094a30c7e4438c3ba550c1c81db6d1b17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 935, "size": 4693 }
open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Show using (show) open import Function using (_$!_) open import IO using (run; putStrLn) sum : ℕ sum = f 1000000000 0 where f : ℕ → ℕ → ℕ f zero acc = acc f (suc n) acc = f n $! suc n + acc main = run (putStrLn (show sum))
{ "alphanum_fraction": 0.6348684211, "avg_line_length": 21.7142857143, "ext": "agda", "hexsha": "10509db800b365b646bf6d6ecba5cb37e5fea90e", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-01-17T23:23:37.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-09T19:39:43.000Z", "max_forks_repo_head_hexsha": "e686673067a3744475f89582cbdcc3719425a9bf", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ThePeeps191/one-two-three...infinity", "max_forks_repo_path": "Agda.agda", "max_issues_count": 23, "max_issues_repo_head_hexsha": "e686673067a3744475f89582cbdcc3719425a9bf", "max_issues_repo_issues_event_max_datetime": "2022-01-23T21:18:50.000Z", "max_issues_repo_issues_event_min_datetime": "2016-09-10T13:51:09.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ThePeeps191/one-two-three...infinity", "max_issues_repo_path": "Agda.agda", "max_line_length": 46, "max_stars_count": 9, "max_stars_repo_head_hexsha": "e686673067a3744475f89582cbdcc3719425a9bf", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ThePeeps191/one-two-three...infinity", "max_stars_repo_path": "Agda.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T09:01:59.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-02T18:14:51.000Z", "num_tokens": 107, "size": 304 }
{-# OPTIONS --without-K --rewriting #-} module HoTT where open import lib.Basics public open import lib.Equivalence2 public open import lib.NConnected public open import lib.NType2 public open import lib.Relation2 public open import lib.Function2 public open import lib.cubical.Cubical public open import lib.types.Types public open import lib.groups.Groups public open import lib.groupoids.Groupoids public open import lib.modalities.Modalities public {- To use coinduction in the form of [∞], [♭] and [♯] you can do: open import HoTT open Coinduction You can also use coinductive records and copatterns instead, that’s prettier (see experimental/GlobularTypes.agda for an example) -} module Coinduction where open import lib.Coinduction public -- deprecated operators module _ where infix 15 _∎ _∎ = _=∎ conn-elim = conn-extend conn-elim-β = conn-extend-β conn-elim-general = conn-extend-general conn-intro = conn-in if_then_else_ : ∀ {i} {A : Type i} → Bool → A → A → A if true then t else e = t if false then t else e = e
{ "alphanum_fraction": 0.7450424929, "avg_line_length": 24.0681818182, "ext": "agda", "hexsha": "81bc171b4ca6f8a96878154ad2917eb80d189707", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/HoTT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/HoTT.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/HoTT.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 304, "size": 1059 }
module StreamPredicates where open import PropsAsTypes open import Stream module Modalities (A : Set) where private Aω : Set Aω = Stream A record Always (P : Pred Aω) (s : Stream A) : Prop where coinductive field valid : P s step : Always P (tl s) open Always public data Eventually (P : Pred Aω) (s : Stream A) : Prop where now : P s → Eventually P s later : Eventually P (tl s) → Eventually P s GE : Pred Aω → Pred Aω GE P = Always (Eventually P) EG : Pred Aω → Pred Aω EG P = Eventually (Always P) Always⇒GE : ∀{P : Pred Aω} → Always P ⊆ GE P Always⇒GE s p .valid = now (p .valid) Always⇒GE s p .step = Always⇒GE (s .tl) (p .step) EG⇒Eventually : ∀{P : Pred Aω} → EG P ⊆ Eventually P EG⇒Eventually s (now p) = now (p .valid) EG⇒Eventually s (later Evs') = later (EG⇒Eventually (s .tl) Evs') EG⇒GE : ∀{P : Pred Aω} → EG P ⊆ GE P EG⇒GE s p .valid = EG⇒Eventually s p EG⇒GE s (now p) .step = Always⇒GE (tl s) (p .step) EG⇒GE s (later p) .step = EG⇒GE (tl s) p module ModalitiesExamples where open import Data.Nat open import Relation.Binary.PropositionalEquality as PE exP : Pred (Stream ℕ) exP s = s .hd ≡ 0 alt : Stream ℕ alt .hd = 0 alt .tl .hd = 1 alt .tl .tl = alt open Modalities ℕ exP-holds-on-alt-GE : GE exP alt exP-holds-on-alt-GE .valid = now refl exP-holds-on-alt-GE .step .valid = later (now refl) exP-holds-on-alt-GE .step .step = exP-holds-on-alt-GE exP-holds-not-on-alt-EG : ¬ (EG exP alt) exP-holds-not-on-alt-EG (now p) = zero-not-suc 0 (p .step .valid) exP-holds-not-on-alt-EG (later (now p)) = zero-not-suc 0 (p .valid) exP-holds-not-on-alt-EG (later (later EGalt'')) = exP-holds-not-on-alt-EG EGalt''
{ "alphanum_fraction": 0.6100840336, "avg_line_length": 27.0454545455, "ext": "agda", "hexsha": "fbb8c8018468ede3ababf89f81c4973e310e376c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/Lecture/StreamPredicates.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/Lecture/StreamPredicates.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/Lecture/StreamPredicates.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 678, "size": 1785 }
{-# OPTIONS --universe-polymorphism #-} -- in a lot of cases we have a relation that is already reflexive and symmetric -- and we want to make it symmetric module Categories.Support.ZigZag where open import Level open import Relation.Binary open import Relation.Binary.Construct.On using () renaming (isEquivalence to on-preserves-equivalence) open import Categories.Support.Equivalence using () renaming (Setoid to ISetoid; module Setoid to ISetoid) data Direction : Set where ↘ ↗ : Direction rotate : Direction → Direction rotate ↘ = ↗ rotate ↗ = ↘ data ZigZag′ {c ℓ₂} {Carrier : Set c} (_∼_ : Carrier -> Carrier -> Set ℓ₂) : (x y : Carrier) (begin end : Direction) → Set (c ⊔ ℓ₂) where zig : ∀ {x y z e} (first : x ∼ y) (rest : ZigZag′ _∼_ y z ↗ e) → ZigZag′ _∼_ x z ↘ e zag : ∀ {x y z e} (first : y ∼ x) (rest : ZigZag′ _∼_ y z ↘ e) → ZigZag′ _∼_ x z ↗ e slish : ∀ {x y} (last : x ∼ y) → ZigZag′ _∼_ x y ↘ ↘ slash : ∀ {x y} (last : y ∼ x) → ZigZag′ _∼_ x y ↗ ↗ ZigZag : ∀ {c ℓ₁ ℓ₂} (Base : Preorder c ℓ₁ ℓ₂) → (x y : Preorder.Carrier Base) (begin end : Direction) → Set (c ⊔ ℓ₂) ZigZag Base = ZigZag′ (Preorder._∼_ Base) zz-sym′ : ∀ {c ℓ₁ ℓ₂} {Base : Preorder c ℓ₁ ℓ₂} {x y z begin middle end} → ZigZag Base y z middle end → ZigZag Base y x middle begin → ZigZag Base z x (rotate end) begin zz-sym′ {Base = Base} (zig first rest) accum = zz-sym′ {Base = Base} rest (zag first accum) zz-sym′ {Base = Base} (zag first rest) accum = zz-sym′ {Base = Base} rest (zig first accum) zz-sym′ (slish last) accum = zag last accum zz-sym′ (slash last) accum = zig last accum zz-sym : ∀ {c ℓ₁ ℓ₂} {Base : Preorder c ℓ₁ ℓ₂} {x y begin end} → ZigZag Base x y begin end → ZigZag Base y x (rotate end) (rotate begin) zz-sym {Base = Base} (zig first rest) = zz-sym′ {Base = Base} rest (slash first) zz-sym {Base = Base} (zag first rest) = zz-sym′ {Base = Base} rest (slish first) zz-sym (slish last) = slash last zz-sym (slash last) = slish last zz-trans : ∀ {c ℓ₁ ℓ₂} {Base : Preorder c ℓ₁ ℓ₂} {x y z begin end begin′ end′} → ZigZag Base x y begin end → ZigZag Base y z begin′ end′ → ZigZag Base x z begin end′ zz-trans {Base = Base} (zig first rest) yz = zig first (zz-trans {Base = Base} rest yz) zz-trans {Base = Base} (zag first rest) yz = zag first (zz-trans {Base = Base} rest yz) zz-trans {Base = Base} (slish last) (zig first rest) = zig (Preorder.trans Base last first) rest zz-trans (slish last) (zag first rest) = zig last (zag first rest) zz-trans {Base = Base} (slish last) (slish only) = slish (Preorder.trans Base last only) zz-trans (slish last) (slash only) = zig last (slash only) zz-trans (slash last) (zig first rest) = zag last (zig first rest) zz-trans {Base = Base} (slash last) (zag first rest) = zag (Preorder.trans Base first last) rest zz-trans (slash last) (slish only) = zag last (slish only) zz-trans {Base = Base} (slash last) (slash only) = slash (Preorder.trans Base only last) data Alternating′ {c ℓ₂} {Carrier : Set c} (_∼_ : Carrier -> Carrier -> Set ℓ₂) (x y : Carrier) : Set (c ⊔ ℓ₂) where disorient : ∀ {begin end} (zz : ZigZag′ _∼_ x y begin end) → Alternating′ _∼_ x y Alternating : ∀ {c ℓ₁ ℓ₂} (Base : Preorder c ℓ₁ ℓ₂) → (x y : Preorder.Carrier Base) → Set (c ⊔ ℓ₂) Alternating Base = Alternating′ (Preorder._∼_ Base) is-equivalence : ∀ {c ℓ₁ ℓ₂} (Base : Preorder c ℓ₁ ℓ₂) → IsEquivalence (Alternating Base) is-equivalence Base = record { refl = disorient (slash (Base.refl)) ; sym = my-sym ; trans = my-trans } where module Base = Preorder Base my-sym : ∀ {i j} → Alternating Base i j → Alternating Base j i my-sym (disorient zz) = disorient (zz-sym {Base = Base} zz) my-trans : ∀ {i j k} → Alternating Base i j → Alternating Base j k → Alternating Base i k my-trans (disorient ij) (disorient jk) = disorient (zz-trans {Base = Base} ij jk) setoid : ∀ {c ℓ₁ ℓ₂} (Base : Preorder c ℓ₁ ℓ₂) → Setoid c (c ⊔ ℓ₂) setoid Base = record { Carrier = Preorder.Carrier Base ; _≈_ = Alternating Base ; isEquivalence = is-equivalence Base } isetoid : ∀ {c ℓ₁ ℓ₂} (Base : Preorder c ℓ₁ ℓ₂) → ISetoid c (c ⊔ ℓ₂) isetoid Base = record { Carrier = Preorder.Carrier Base ; _≈_ = Alternating Base ; isEquivalence = is-equivalence Base } -- the main eliminators for Alternating -- they prove that any equivalence that -- respects the base preorder also respects its Alternating completion. locally-minimal : ∀ {c ℓ₁ ℓ₂ ℓ′} (Base : Preorder c ℓ₁ ℓ₂) {_≈_ : Rel (Preorder.Carrier Base) ℓ′} (≈-isEquivalence : IsEquivalence _≈_) → (Preorder._∼_ Base ⇒ _≈_) → (Alternating Base ⇒ _≈_) locally-minimal Base {_≋_} isEq inj (disorient zz) = impl zz where open IsEquivalence isEq renaming (trans to _>trans>_) impl : ∀ {i j b e} → ZigZag Base i j b e → i ≋ j impl (zig first rest) = inj first >trans> impl rest impl (zag first rest) = sym (inj first) >trans> impl rest impl (slish last) = inj last impl (slash last) = sym (inj last) minimal : ∀ {c ℓ₁ ℓ₂ c′ ℓ′} (Base : Preorder c ℓ₁ ℓ₂) (Dest : Setoid c′ ℓ′) (f : Preorder.Carrier Base → Setoid.Carrier Dest) → (Preorder._∼_ Base =[ f ]⇒ Setoid._≈_ Dest) → (Alternating Base =[ f ]⇒ Setoid._≈_ Dest) minimal Base Dest f inj = locally-minimal Base (on-preserves-equivalence f (Setoid.isEquivalence Dest)) inj .iminimal : ∀ {c ℓ₁ ℓ₂ c′ ℓ′} (Base : Preorder c ℓ₁ ℓ₂) (Dest : ISetoid c′ ℓ′) (f : Preorder.Carrier Base → ISetoid.Carrier Dest) → (Preorder._∼_ Base =[ f ]⇒ ISetoid._≈_ Dest) → (Alternating Base =[ f ]⇒ ISetoid._≈_ Dest) iminimal Base Dest f inj = locally-minimal Base (on-preserves-equivalence f (ISetoid.isEquivalence Dest)) inj
{ "alphanum_fraction": 0.6645126548, "avg_line_length": 54.0873786408, "ext": "agda", "hexsha": "f1a6aee1a3a3d266ce531e42dfe852174bbcffdc", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Support/ZigZag.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Support/ZigZag.agda", "max_line_length": 222, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Support/ZigZag.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2025, "size": 5571 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Algebra.Category.Groupoid where open import Algebra.Category.Category open import Core -- A groupoid is a category where all morphisms are isomorphisms. record Groupoid {c h r} : Set (lsuc (c ⊔ h ⊔ r)) where field category : Category {c} {h} {r} open Category category public field iso : ∀ {A B} (f : Hom A B) → Iso f open module MyIso {A B} (f : Hom A B) = Iso (iso f) public using (inv; left-inv; right-inv; inv-unique) field inv-cong : ∀ {A B} {f g : Hom A B} → f ≈ g → inv f ≈ inv g -- The inverse function is an involution. inv-invol : ∀ {A B} {f : Hom A B} → inv (inv f) ≈ f inv-invol {f = f} = begin inv (inv f) ≈[ sym (right-id _) ] inv (inv f) ∘ id ≈[ ∘-cong refl (sym (left-inv _)) ] inv (inv f) ∘ (inv f ∘ f) ≈[ sym (assoc _ _ _) ] (inv (inv f) ∘ inv f) ∘ f ≈[ ∘-cong (left-inv _) refl ] id ∘ f ≈[ left-id _ ] f qed
{ "alphanum_fraction": 0.5572232645, "avg_line_length": 30.4571428571, "ext": "agda", "hexsha": "198fba3577418100b6325cc9da5fe3334e89241d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Algebra/Category/Groupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Algebra/Category/Groupoid.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Algebra/Category/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 384, "size": 1066 }
module Data.Num.Pred where open import Data.Num.Core open import Data.Num open import Data.Num.Properties open import Data.Num.Continuous -- open import Data.Num.Bijection open import Data.Nat open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin using (Fin; suc; zero; #_) open import Data.Vec open import Data.Product hiding (map) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Nullary.Decidable using (True; fromWitness; toWitness) open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) -- infixl 6 _∔_ infixl 6 _∔_ data Term : ℕ → Set where var : ∀ {n} → Fin n → Term n _∔_ : ∀ {n} → Term n → Term n → Term n data Predicate : ℕ → Set where -- equality _≋P_ : ∀ {n} → (t₁ : Term n) → (t₂ : Term n) → Predicate n -- implication _→P_ : ∀ {n} → (p₁ : Predicate n) → (p₂ : Predicate n) → Predicate n -- ∀, introduces new variable ∀P : ∀ {n} → (p : Predicate (suc n)) → Predicate n record Signature : Set₁ where constructor sig field carrier : Set _⊕_ : carrier → carrier → carrier _≈_ : carrier → carrier → Set open Signature ℕ-sig : Signature ℕ-sig = sig ℕ _+_ _≡_ Numeral-sig : (b d : ℕ) → True (Continuous? b d 0) → Signature Numeral-sig b d cont = sig (Numeral b d 0) (_⊹_ {cont = cont}) _≋_ -- BijN-sig : ℕ → Signature -- BijN-sig b = sig (BijN b) (_⊹_ {surj = fromWitness (BijN⇒Surjective b)}) _≡_ -- Env : Set → ℕ → Set Env = Vec -- the decoder ⟦_⟧T : ∀ {n} → Term n → (sig : Signature) → Vec (carrier sig) n → carrier sig ⟦ var i ⟧T _ env = lookup i env ⟦ term₁ ∔ term₂ ⟧T (sig A _⊕_ _≈_) env = ⟦ term₁ ⟧T (sig A _⊕_ _≈_) env ⊕ ⟦ term₂ ⟧T (sig A _⊕_ _≈_) env ⟦_⟧P : ∀ {n} → Predicate n → (sig : Signature) → Env (carrier sig) n → Set ⟦ t₁ ≋P t₂ ⟧P (sig carrier _⊕_ _≈_) env = ⟦ t₁ ⟧T (sig carrier _⊕_ _≈_) env ≈ ⟦ t₂ ⟧T (sig carrier _⊕_ _≈_) env ⟦ p →P q ⟧P signature env = ⟦ p ⟧P signature env → ⟦ q ⟧P signature env ⟦ ∀P pred ⟧P signature env = ∀ x → ⟦ pred ⟧P signature (x ∷ env) module Example-1 where ≋-trans : Predicate zero ≋-trans = let x = var (# 0) y = var (# 1) z = var (# 2) in ∀P (∀P (∀P (((x ≋P y) →P (y ≋P z)) →P (x ≋P z)))) ≋-trans-ℕ : Set ≋-trans-ℕ = ⟦ ≋-trans ⟧P ℕ-sig [] ≋-trans-Numeral : (b d : ℕ) → True (Continuous? b d 0) → Set ≋-trans-Numeral b d prop = ⟦ ≋-trans ⟧P (Numeral-sig b d prop) [] -- lemma for env lookup-map : ∀ {i j} → {A : Set i} {B : Set j} → (f : A → B) → ∀ {n} → (xs : Vec A n) (i : Fin n) → lookup i (map f xs) ≡ f (lookup i xs) lookup-map f [] () lookup-map f (x ∷ xs) zero = refl lookup-map f (x ∷ xs) (suc i) = lookup-map f xs i -- ------------------------------------------------------------------------ -- -- toℕ : preserving structures of terms and predicates -- ------------------------------------------------------------------------ toℕ-term-homo : ∀ {b d n} → (cont : True (Continuous? b d 0)) → (t : Term n) → (env : Vec (Numeral b d 0) n) → ⟦ t ⟧T ℕ-sig (map ⟦_⟧ env) ≡ ⟦ ⟦ t ⟧T (Numeral-sig b d cont) env ⟧ toℕ-term-homo cont (var i) env = lookup-map ⟦_⟧ env i toℕ-term-homo {b} {d} cont (t₁ ∔ t₂) env rewrite toℕ-term-homo cont t₁ env | toℕ-term-homo cont t₂ env = sym (toℕ-⊹-homo cont (⟦ t₁ ⟧T (Numeral-sig b d cont) env) (⟦ t₂ ⟧T (Numeral-sig b d cont) env)) mutual toℕ-pred-ℕ⇒Numeral : ∀ {b d n} → (cont : True (Continuous? b (suc d) 0)) → (pred : Predicate n) → (env : Vec (Numeral b (suc d) 0) n) → ⟦ pred ⟧P ℕ-sig (map ⟦_⟧ env) → ⟦ pred ⟧P (Numeral-sig b (suc d) cont) env toℕ-pred-ℕ⇒Numeral {b} {d} cont (t₁ ≋P t₂) env sem-ℕ = begin ⟦ ⟦ t₁ ⟧T (Numeral-sig b (suc d) cont) env ⟧ ≡⟨ sym (toℕ-term-homo cont t₁ env) ⟩ ⟦ t₁ ⟧T ℕ-sig (map ⟦_⟧ env) ≡⟨ sem-ℕ ⟩ ⟦ t₂ ⟧T ℕ-sig (map ⟦_⟧ env) ≡⟨ toℕ-term-homo cont t₂ env ⟩ ⟦ ⟦ t₂ ⟧T (Numeral-sig b (suc d) cont) env ⟧ ∎ toℕ-pred-ℕ⇒Numeral cont (p →P q) env sem-ℕ ⟦p⟧P-Numeral = toℕ-pred-ℕ⇒Numeral cont q env (sem-ℕ (toℕ-pred-Numeral⇒ℕ cont p env ⟦p⟧P-Numeral)) toℕ-pred-ℕ⇒Numeral cont (∀P pred) env sem-ℕ x = toℕ-pred-ℕ⇒Numeral cont pred (x ∷ env) (sem-ℕ ⟦ x ⟧) toℕ-pred-Numeral⇒ℕ : ∀ {b d n} → (cont : True (Continuous? b (suc d) 0)) → (pred : Predicate n) → (env : Vec (Numeral b (suc d) 0) n) → ⟦ pred ⟧P (Numeral-sig b (suc d) cont) env → ⟦ pred ⟧P ℕ-sig (map ⟦_⟧ env) toℕ-pred-Numeral⇒ℕ {b} {d} cont (t₁ ≋P t₂) env sem-Num = begin ⟦ t₁ ⟧T ℕ-sig (map ⟦_⟧ env) ≡⟨ toℕ-term-homo cont t₁ env ⟩ ⟦ ⟦ t₁ ⟧T (Numeral-sig b (suc d) cont) env ⟧ ≡⟨ sem-Num ⟩ ⟦ ⟦ t₂ ⟧T (Numeral-sig b (suc d) cont) env ⟧ ≡⟨ sym (toℕ-term-homo cont t₂ env) ⟩ ⟦ t₂ ⟧T ℕ-sig (map ⟦_⟧ env) ∎ toℕ-pred-Numeral⇒ℕ cont (p →P q) env sem-Num ⟦p⟧P = toℕ-pred-Numeral⇒ℕ cont q env (sem-Num (toℕ-pred-ℕ⇒Numeral cont p env ⟦p⟧P)) toℕ-pred-Numeral⇒ℕ {b} {d} cont (∀P pred) env sem-Num n with n ≟ ⟦ fromℕ {cont = cont} n z≤n ⟧ toℕ-pred-Numeral⇒ℕ {b} {d} cont (∀P pred) env sem-Num n | yes eq rewrite eq = toℕ-pred-Numeral⇒ℕ cont pred (fromℕ {cont = cont} n _ ∷ env) (sem-Num (fromℕ {cont = cont} n _)) toℕ-pred-Numeral⇒ℕ {b} {d} cont (∀P pred) env sem-Num n | no ¬eq = contradiction (sym (fromℕ-toℕ cont n _)) ¬eq module Example-2 where +-comm-Predicate : Predicate 0 +-comm-Predicate = ∀P (∀P ((var (# 1) ∔ var (# 0)) ≋P (var (# 0) ∔ var (# 1)))) +-comm-ℕ : ∀ a b → a + b ≡ b + a +-comm-ℕ = +-comm +-comm-Num : ∀ {b d} → {cont : True (Continuous? b (suc d) 0)} → (xs ys : Numeral b (suc d) 0) → (_⊹_ {cont = cont} xs ys) ≋ (_⊹_ {cont = cont} ys xs) +-comm-Num {cont = cont} = toℕ-pred-ℕ⇒Numeral cont +-comm-Predicate [] +-comm-ℕ -- -- mutual -- toℕ-pred-ℕ⇒Bij : ∀ {b n} -- → (pred : Predicate n) -- → (env : Vec (Bij (suc b)) n) -- → ⟦ pred ⟧ ℕ-sig (map toℕ env) -- → ⟦ pred ⟧ (BijN-sig (suc b)) env -- toℕ-pred-ℕ⇒Bij {b} (t₁ ≋ t₂) env ⟦t₁≈t₂⟧ℕ -- rewrite toℕ-term-homo t₁ env | toℕ-term-homo t₂ env -- ⟦ t₁ ⟧T ℕ-sig (map toℕ env) ≡ toℕ (⟦ t₁ ⟧T (Bij-sig (suc b)) env) -- = toℕ-injective (⟦ t₁ ⟧T (BijN-sig (suc b)) env) (⟦ t₂ ⟧T (BijN-sig (suc b)) env) ⟦t₁≈t₂⟧ℕ -- toℕ-pred-ℕ⇒Bij (p ⇒ q) env ⟦p→q⟧ℕ ⟦p⟧B = toℕ-pred-ℕ⇒Bij q env (⟦p→q⟧ℕ (toℕ-pred-Bij⇒ℕ p env ⟦p⟧B)) -- toℕ-pred-ℕ⇒Bij (All p) env ⟦λx→p⟧ℕ x = toℕ-pred-ℕ⇒Bij p (x ∷ env) (⟦λx→p⟧ℕ (toℕ x)) -- -- toℕ-pred-Bij⇒ℕ : ∀ {b n} -- → (pred : Predicate n) -- → (env : Vec (Bij (suc b)) n) -- → ⟦ pred ⟧ (BijN-sig (suc b)) env -- → ⟦ pred ⟧ ℕ-sig (map toℕ env) -- toℕ-pred-Bij⇒ℕ (t₁ ≋ t₂) env ⟦t₁≈t₂⟧B -- rewrite toℕ-term-homo t₁ env | toℕ-term-homo t₂ env -- = cong toℕ ⟦t₁≈t₂⟧B -- toℕ-pred-Bij⇒ℕ (p ⇒ q) env ⟦p→q⟧B ⟦p⟧ℕ = toℕ-pred-Bij⇒ℕ q env (⟦p→q⟧B (toℕ-pred-ℕ⇒Bij p env ⟦p⟧ℕ)) -- toℕ-pred-Bij⇒ℕ {b} (All p) env ⟦λx→p⟧B x -- rewrite (sym (toℕ-fromℕ b x)) -- rewritting "x" to "toℕ (fromℕ x)" -- = toℕ-pred-Bij⇒ℕ p (fromℕ x ∷ env) (⟦λx→p⟧B (fromℕ x)) -- fromℕ-term-homo : ∀ {b n} -- → (term : Term n) -- → (env : Vec ℕ n) -- → ⟦ term ⟧T (Bij-sig (suc b)) (map fromℕ env) ≡ fromℕ (⟦ term ⟧T ℕ-sig env) -- fromℕ-term-homo (var i) env = lookup-map fromℕ env i -- fromℕ-term-homo {b} {n} (t₁ ∔ t₂) env -- rewrite fromℕ-term-homo {b} {n} t₁ env | fromℕ-term-homo {b} {n} t₂ env -- = sym (fromℕ-⊹-homo (⟦ t₁ ⟧T (sig ℕ _+_ _≡_) env) (⟦ t₂ ⟧T (sig ℕ _+_ _≡_) env)) -- -- -- ------------------------------------------------------------------------ -- -- open import Data.Nat.Properties.Simple -- -- -- testExtract : {pred : Predicate 0} -- → ⟦ pred ⟧ ℕ-sig [] -- → Predicate 0 -- testExtract {pred} ⟦pred⟧ℕ = pred -- -- ∔-comm : Predicate 0 -- ∔-comm = testExtract {All (All (var (suc zero) ∔ var zero ≋ var zero ∔ var (suc zero)))} +-comm -- -- ∔-assoc : Predicate 0 -- ∔-assoc = testExtract {All (All (All (var (suc (suc zero)) ∔ var (suc zero) ∔ var zero ≋ var (suc (suc zero)) ∔ (var (suc zero) ∔ var zero))))} +-assoc -- ∔-assoc = testExtract {All (All (All (var (suc (suc zero)) ∔ var (suc zero) ∔ var zero ≋ var (suc (suc zero)) ∔ (var (suc zero) ∔ var zero))))} +-assoc
{ "alphanum_fraction": 0.5133767986, "avg_line_length": 36.9128630705, "ext": "agda", "hexsha": "3afc88c57dd2abc601cf7c6188e75c8f68fe8399", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Pred.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Pred.agda", "max_line_length": 154, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Pred.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 3826, "size": 8896 }
{-# OPTIONS --cubical #-} module Multidimensional.Data.DirNum.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.Nat open import Multidimensional.Data.Dir -- Dependent "directional numerals": -- for natural n, obtain 2ⁿ "numerals". -- This is basically a little-endian binary notation. -- NOTE: Would an implementation of DirNum with dependent vectors be preferable -- over using products? DirNum : ℕ → Type₀ DirNum zero = Unit DirNum (suc n) = Dir × (DirNum n) DirNum→ℕ : ∀ {n} → DirNum n → ℕ DirNum→ℕ {zero} tt = zero DirNum→ℕ {suc n} (↓ , d) = doublesℕ (suc zero) (DirNum→ℕ d) DirNum→ℕ {suc n} (↑ , d) = suc (doublesℕ (suc zero) (DirNum→ℕ d)) -- give the next numeral, cycling back to 0 -- in case of 2ⁿ - 1 next : ∀ {n} → DirNum n → DirNum n next {zero} tt = tt next {suc n} (↓ , ds) = (↑ , ds) next {suc n} (↑ , ds) = (↓ , next ds) prev : ∀ {n} → DirNum n → DirNum n prev {zero} tt = tt prev {suc n} (↓ , ds) = (↓ , prev ds) prev {suc n} (↑ , ds) = (↓ , ds) zero-n : (n : ℕ) → DirNum n zero-n zero = tt zero-n (suc n) = (↓ , zero-n n) one-n : (n : ℕ) → DirNum n one-n zero = tt one-n (suc n) = (↑ , zero-n n) -- numeral for 2ⁿ - 1 max-n : (n : ℕ) → DirNum n max-n zero = tt max-n (suc n) = (↑ , max-n n) -- -- TODO: rename -- embed-next : (r : ℕ) → DirNum r → DirNum (suc r) -- embed-next zero tt = (↓ , tt) -- embed-next (suc r) (d , ds) with zero-n? ds -- ... | no _ = (d , embed-next r ds) -- ... | yes _ = (d , zero-n (suc r)) sucDoubleDirNum+ : (r : ℕ) → DirNum r → DirNum (suc r) sucDoubleDirNum+ r x = (↑ , x) -- bad name, since this is doubling "to" suc r doubleDirNum+ : (r : ℕ) → DirNum r → DirNum (suc r) doubleDirNum+ r x = (↓ , x) dropLeast : {r : ℕ} → DirNum (suc r) → DirNum r dropLeast {zero} d = tt dropLeast {suc r} (x , x₁) = x₁ dropMost : {r : ℕ} → DirNum (suc r) → DirNum r dropMost {zero} d = tt dropMost {suc zero} (x , (x₁ , x₂)) = (x₁ , x₂) dropMost {suc (suc r)} (x , x₁) = (x , dropMost x₁) -- need to prove property about doubleable --doubleDirNum : (r : ℕ) (d : DirNum r) → doubleable-n? {r} d ≡ true → DirNum r -- bad? is not correct when not "doubleable" -- possibly should view as operations in residue classes? doubleDirNum : (r : ℕ) (d : DirNum r) → DirNum r doubleDirNum zero d = tt doubleDirNum (suc r) d = doubleDirNum+ r (dropMost {r} d) -- doubleDirNum zero d doubleable = ⊥-elim (false≢true doubleable) -- doubleDirNum (suc r) d doubleable = doubleDirNum+ r (dropMost {r} d)
{ "alphanum_fraction": 0.6166007905, "avg_line_length": 30.119047619, "ext": "agda", "hexsha": "7fb200287ebc5f2fac5f6a18bdff1573de1896db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/Data/DirNum/Base.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/Data/DirNum/Base.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/Data/DirNum/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 957, "size": 2530 }
module MinMax where open import Prelude open import Logic.Base open import Logic.Relations open import Logic.Identity using (_≡_) import Logic.ChainReasoning open import DecidableOrder as DecOrder module Min {A : Set}(Ord : DecidableOrder A) where open DecidableOrder Ord min : A → A → A min a b with decide a b ... | \/-IL _ = a ... | \/-IR _ = b data CaseMin x y : A → Set where leq : x ≤ y → CaseMin x y x geq : x ≥ y → CaseMin x y y case-min′ : ∀ x y → CaseMin x y (min x y) case-min′ x y with decide x y ... | \/-IL xy = leq xy ... | \/-IR ¬xy with total x y ... | \/-IL xy = elim-False (¬xy xy) ... | \/-IR yx = geq yx case-min : (P : A → Set)(x y : A) → (x ≤ y → P x) → (y ≤ x → P y) → P (min x y) case-min P x y ifx ify with min x y | case-min′ x y ... | .x | leq xy = ifx xy ... | .y | geq yx = ify yx min-glb : ∀ x y z → z ≤ x → z ≤ y → z ≤ min x y min-glb x y z zx zy with min x y | case-min′ x y ... | .x | leq _ = zx ... | .y | geq _ = zy min-left : ∀ x y → min x y ≤ x min-left x y with min x y | case-min′ x y ... | .x | leq _ = refl _ ... | .y | geq yx = yx min-right : ∀ x y → min x y ≤ y min-right x y with min x y | case-min′ x y ... | .x | leq xy = xy ... | .y | geq _ = refl _ min-sym : ∀ x y → min x y ≡ min y x min-sym x y = antisym _ _ (lem x y) (lem y x) where lem : ∀ a b → min a b ≤ min b a lem a b with min b a | case-min′ b a ... | .b | leq _ = min-right _ _ ... | .a | geq _ = min-left _ _ Dual : {A : Set} → DecidableOrder A → DecidableOrder A Dual Ord = record { _≤_ = _≥_ ; refl = refl ; antisym = \x y xy yx → antisym _ _ yx xy ; trans = \x y z xy yz → trans _ _ _ yz xy ; total = \x y → total _ _ ; decide = \x y → decide _ _ } where open DecidableOrder Ord module Max {A : Set}(Ord : DecidableOrder A) = Min (Dual Ord) renaming ( min to max ; case-min to case-max ; case-min′ to case-max′ ; CaseMin to CaseMax ; module CaseMin to CaseMax ; leq to geq ; geq to leq ; min-glb to max-lub ; min-sym to max-sym ; min-right to max-right ; min-left to max-left ) module MinMax {A : Set}(Ord : DecidableOrder A) where open DecidableOrder Ord public open Min Ord public open Max Ord public module DistributivityA {A : Set}(Ord : DecidableOrder A) where open MinMax Ord min-max-distr : ∀ x y z → min x (max y z) ≡ max (min x y) (min x z) min-max-distr x y z = antisym _ _ left right where open Logic.ChainReasoning.Mono.Homogenous _≤_ refl trans left : min x (max y z) ≤ max (min x y) (min x z) left with max y z | case-max′ y z ... | .z | Min.geq _ = max-right _ _ ... | .y | Min.leq _ = max-left _ _ right : max (min x y) (min x z) ≤ min x (max y z) -- right with max (min x y) (min x z) | case-max′ (min x y) (min x z) right = case-max (\w → w ≤ min x (max y z)) (min x y) (min x z) (\_ → case-max (\w → min x y ≤ min x w) y z (\_ → refl _) (\yz → min-glb x z _ (min-left x y) ( chain> min x y === y by min-right x y === z by yz ) ) ) (\_ → case-max (\w → min x z ≤ min x w) y z (\zy → min-glb x y _ (min-left x z) ( chain> min x z === z by min-right x z === y by zy ) ) (\_ → refl _) ) module DistributivityB {A : Set}(Ord : DecidableOrder A) where open DistributivityA (Dual Ord) public renaming (min-max-distr to max-min-distr) module Distributivity {A : Set}(Ord : DecidableOrder A) where open DistributivityA Ord public open DistributivityB Ord public -- Testing postulate X : Set OrdX : DecidableOrder X -- open DecidableOrder OrdX open MinMax OrdX -- hiding (_≤_) open Distributivity OrdX open Logic.ChainReasoning.Mono.Homogenous -- Displayforms doesn't work for MinMax._≤_ (reduces to DecidableOrder._≤_) test : ∀ x y → min x y ≤ x test x y = min-left x y
{ "alphanum_fraction": 0.4673133699, "avg_line_length": 31.4039735099, "ext": "agda", "hexsha": "426d900a0d633e51a5158afbe09ddd4c8d6cd458", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/order/MinMax.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/order/MinMax.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/order/MinMax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1467, "size": 4742 }
module Pruning where le2 : {B : Set} -> (A : Set) -> A -> (C : Set) -> C -> (A -> C -> B) -> B le2 _ x _ y f = f x y test : le2 Set _ (Set -> Set) _ (\ H -> (\M -> (z : Set) -> H == M z)) test z = refl {- let : {B : Set} -> (A : Set) -> A -> (A -> B) -> B let A x f = f x test : let Set _ (\ H -> let (Set -> Set) _ (\ M -> (z : Set) -> H == M z)) test z = refl -}
{ "alphanum_fraction": 0.4010840108, "avg_line_length": 23.0625, "ext": "agda", "hexsha": "bb0684447a958ca4ab6828a34f7b8a0b95d0de09", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "src/prototyping/term/tests/Pruning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "src/prototyping/term/tests/Pruning.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/tests/Pruning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 156, "size": 369 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Category as Category import Categories.Category.Cartesian as Cartesian open import Categories.Object.Terminal using (Terminal) open import Categories.Object.Product using (Product) open import MultiSorted.AlgebraicTheory import MultiSorted.Substitution as Substitution import MultiSorted.Product as Product module MultiSorted.SyntacticCategory {ℓt} {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (T : Theory ℓt Σ) where open Theory T open Substitution T -- The syntactic category 𝒮 : Category.Category 𝓈 (lsuc ℴ) (lsuc (ℓt ⊔ 𝓈 ⊔ ℴ)) 𝒮 = record { Obj = Context ; _⇒_ = _⇒s_ ; _≈_ = _≈s_ ; id = id-s ; _∘_ = _∘s_ ; assoc = λ {_ _ _ _ _ _ σ} x → subst-∘s (σ x) ; sym-assoc = λ {_ _ _ _ _ _ σ} x → eq-symm (subst-∘s (σ x)) ; identityˡ = λ x → eq-refl ; identityʳ = λ {A B f} x → tm-var-id ; identity² = λ x → eq-refl ; equiv = record { refl = λ x → eq-refl ; sym = λ ξ y → eq-symm (ξ y) ; trans = λ ζ ξ y → eq-tran (ζ y) (ξ y)} ; ∘-resp-≈ = ∘s-resp-≈s } -- We use the product structure which gives back the context directly prod-𝒮 : Context → Context prod-𝒮 Γ = Γ π-𝒮 : ∀ {Γ} (x : var Γ) → Γ ⇒s ctx-slot (sort-of Γ x) π-𝒮 x _ = tm-var x tuple-𝒮 : ∀ Γ {Δ} → (∀ (x : var Γ) → Δ ⇒s ctx-slot (sort-of Γ x)) → Δ ⇒s Γ tuple-𝒮 Γ ts = λ x → ts x var-var project-𝒮 : ∀ {Γ Δ} {x : var Γ} {ts : ∀ (y : var Γ) → Δ ⇒s ctx-slot (sort-of Γ y)} → π-𝒮 x ∘s tuple-𝒮 Γ ts ≈s ts x project-𝒮 {Γ} {Δ} {x} {ts} var-var = eq-refl unique-𝒮 : ∀ {Γ Δ} {ts : ∀ (x : var Γ) → Δ ⇒s ctx-slot (sort-of Γ x)} {g : Δ ⇒s Γ} → (∀ x → π-𝒮 x ∘s g ≈s ts x) → tuple-𝒮 Γ ts ≈s g unique-𝒮 ξ x = eq-symm (ξ x var-var) producted-𝒮 : Product.Producted 𝒮 {Σ = Σ} ctx-slot producted-𝒮 = record { prod = prod-𝒮 ; π = π-𝒮 ; tuple = tuple-𝒮 ; project = λ {Γ Δ x ts} → project-𝒮 {ts = ts} ; unique = unique-𝒮 } -- The terminal object is the empty context ⊤-𝒮 : Context ⊤-𝒮 = ctx-empty !-𝒮 : ∀ {Γ} → Γ ⇒s ⊤-𝒮 !-𝒮 () !-unique-𝒮 : ∀ {Γ} (σ : Γ ⇒s ⊤-𝒮) → !-𝒮 ≈s σ !-unique-𝒮 σ () terminal-𝒮 : Terminal 𝒮 terminal-𝒮 = record { ⊤ = ⊤-𝒮 ; ⊤-is-terminal = record { ! = !-𝒮 ; !-unique = !-unique-𝒮 } } -- Binary product is context contatenation product-𝒮 : ∀ {Γ Δ} → Product 𝒮 Γ Δ product-𝒮 {Γ} {Δ} = record { A×B = ctx-concat Γ Δ ; π₁ = λ x → tm-var (var-inl x) ; π₂ = λ x → tm-var (var-inr x) ; ⟨_,_⟩ = ⟨_,_⟩s ; project₁ = λ x → eq-refl ; project₂ = λ x → eq-refl ; unique = λ {Θ σ σ₁ σ₂} ξ₁ ξ₂ z → u Θ σ σ₁ σ₂ ξ₁ ξ₂ z } where u : ∀ Θ (σ : Θ ⇒s ctx-concat Γ Δ) (σ₁ : Θ ⇒s Γ) (σ₂ : Θ ⇒s Δ) → ((λ x → σ (var-inl x)) ≈s σ₁) → ((λ y → σ (var-inr y)) ≈s σ₂) → ⟨ σ₁ , σ₂ ⟩s ≈s σ u Θ σ σ₁ σ₂ ξ₁ ξ₂ (var-inl z) = eq-symm (ξ₁ z) u Θ σ σ₁ σ₂ ξ₁ ξ₂ (var-inr z) = eq-symm (ξ₂ z) -- The cartesian structure of the syntactic category cartesian-𝒮 : Cartesian.Cartesian 𝒮 cartesian-𝒮 = record { terminal = terminal-𝒮 ; products = record { product = product-𝒮 } }
{ "alphanum_fraction": 0.5275729873, "avg_line_length": 29.2327586207, "ext": "agda", "hexsha": "5e4a1cc95ee348a497145f02f736474e7c48a505", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/MultiSorted/SyntacticCategory.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/MultiSorted/SyntacticCategory.agda", "max_line_length": 99, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/MultiSorted/SyntacticCategory.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1432, "size": 3391 }
{- --- 4. Lists --- -} data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ open import Data.Nat open import Relation.Binary.PropositionalEquality {- 4.1 Length -} length : {A : Set} → List A → ℕ length [] = 0 length (x ∷ l) = 1 + (length l) {- 4.2 List reversal -} concat : {A : Set} → List A → List A → List A concat [] l = l concat (x ∷ k) l = x ∷ (concat k l) concat-length : {A : Set} → (k l : List A) → length (concat k l) ≡ (length k) + (length l) concat-length [] l = refl concat-length (x ∷ k) l rewrite concat-length k l = refl concat-assoc : {A : Set} → (j k l : List A) → concat (concat j k) l ≡ concat j (concat k l) concat-assoc [] k l = refl concat-assoc (x ∷ j) k l rewrite concat-assoc j k l = refl {- 4.3 List reversal -} snoc : {A : Set} → A -> List A → List A snoc a [] = a ∷ [] snoc a (x ∷ l) = x ∷ (snoc a l) rev : {A : Set} → List A → List A rev [] = [] rev (x ∷ l) = snoc x (rev l) snoc-length : {A : Set} → (a : A) → (l : List A) → length (snoc a l) ≡ suc (length l) snoc-length a [] = refl snoc-length a (x ∷ l) rewrite snoc-length a l = refl rev-length : {A : Set} → (l : List A) → (length (rev l)) ≡ (length l) rev-length [] = refl rev-length (x ∷ l) rewrite snoc-length x (rev l) | rev-length l = refl snoc-rev : {A : Set} → (a : A) → (l : List A) → rev (snoc a l) ≡ a ∷ (rev l) snoc-rev a [] = refl snoc-rev a (x ∷ l) rewrite snoc-rev a l = refl double-rev : {A : Set} → (l : List A) → rev (rev l) ≡ l double-rev [] = refl double-rev (x ∷ l) rewrite snoc-rev x (rev l) | double-rev l = refl {- 4.4 Filtering -} open import Data.Bool filter : {A : Set} → (p : A → Bool) → (l : List A) → List A filter p [] = [] filter p (x ∷ l) with p x filter p (x ∷ l) | false = filter p l filter p (x ∷ l) | true = x ∷ (filter p l) empty-list : {A : Set} → (l : List A) → filter (λ _ → false) l ≡ [] empty-list [] = refl empty-list (x ∷ l) = empty-list l identity-list : {A : Set} → (l : List A) → filter (λ _ → true) l ≡ l identity-list [] = refl identity-list (x ∷ l) rewrite identity-list l = refl
{ "alphanum_fraction": 0.5597878496, "avg_line_length": 26.9350649351, "ext": "agda", "hexsha": "0ed03b0e3c0b242114cdef79a211fa8589861966", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "erwinkn/program-eq-proof", "max_forks_repo_path": "TD6/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "erwinkn/program-eq-proof", "max_issues_repo_path": "TD6/List.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "erwinkn/program-eq-proof", "max_stars_repo_path": "TD6/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 802, "size": 2074 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Definitions) -- Definition of the "Twisted Arrow" Category of a Category 𝒞 module Categories.Category.Construction.TwistedArrow {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Data.Product using (_,_; _×_; map; zip) open import Function.Base using (_$_; flip) open import Relation.Binary.Core using (Rel) import Categories.Morphism as M open M 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open Definitions 𝒞 open HomReasoning private variable A B C : Obj record Morphism : Set (o ⊔ ℓ) where field {dom} : Obj {cod} : Obj arr : dom ⇒ cod record Morphism⇒ (f g : Morphism) : Set (ℓ ⊔ e) where constructor mor⇒ private module f = Morphism f module g = Morphism g field {dom⇐} : g.dom ⇒ f.dom {cod⇒} : f.cod ⇒ g.cod square : cod⇒ ∘ f.arr ∘ dom⇐ ≈ g.arr TwistedArrow : Category (o ⊔ ℓ) (ℓ ⊔ e) e TwistedArrow = record { Obj = Morphism ; _⇒_ = Morphism⇒ ; _≈_ = λ f g → dom⇐ f ≈ dom⇐ g × cod⇒ f ≈ cod⇒ g ; id = mor⇒ (identityˡ ○ identityʳ) ; _∘_ = λ {A} {B} {C} m₁ m₂ → mor⇒ {A} {C} (∘′ m₁ m₂ ○ square m₁) ; assoc = sym-assoc , assoc ; sym-assoc = assoc , sym-assoc ; identityˡ = identityʳ , identityˡ ; identityʳ = identityˡ , identityʳ ; identity² = identity² , identity² ; equiv = record { refl = refl , refl ; sym = map sym sym ; trans = zip trans trans } ; ∘-resp-≈ = zip (flip ∘-resp-≈) ∘-resp-≈ } where open Morphism⇒ open Equiv open HomReasoning ∘′ : ∀ {A B C} (m₁ : Morphism⇒ B C) (m₂ : Morphism⇒ A B) → (cod⇒ m₁ ∘ cod⇒ m₂) ∘ Morphism.arr A ∘ (dom⇐ m₂ ∘ dom⇐ m₁) ≈ cod⇒ m₁ ∘ Morphism.arr B ∘ dom⇐ m₁ ∘′ {A} {B} {C} m₁ m₂ = begin (cod⇒ m₁ ∘ cod⇒ m₂) ∘ Morphism.arr A ∘ (dom⇐ m₂ ∘ dom⇐ m₁) ≈⟨ pullʳ sym-assoc ⟩ cod⇒ m₁ ∘ (cod⇒ m₂ ∘ Morphism.arr A) ∘ (dom⇐ m₂ ∘ dom⇐ m₁) ≈⟨ refl⟩∘⟨ (pullˡ assoc) ⟩ cod⇒ m₁ ∘ (cod⇒ m₂ ∘ Morphism.arr A ∘ dom⇐ m₂) ∘ dom⇐ m₁ ≈⟨ (refl⟩∘⟨ square m₂ ⟩∘⟨refl) ⟩ cod⇒ m₁ ∘ Morphism.arr B ∘ dom⇐ m₁ ∎
{ "alphanum_fraction": 0.5905030559, "avg_line_length": 29.9577464789, "ext": "agda", "hexsha": "01211c24734e0fa91fa6df27681fce15b06301fb", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/TwistedArrow.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/TwistedArrow.agda", "max_line_length": 99, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/TwistedArrow.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 930, "size": 2127 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --guardedness #-} open import Agda.Builtin.Equality open import Data.Product open import Data.Sum open import Level open import Relation.Unary using (_⊆_) module is-lib.InfSys.FlexCoinduction {𝓁} where private variable U : Set 𝓁 open import is-lib.InfSys.Base {𝓁} open import is-lib.InfSys.Induction {𝓁} open import is-lib.InfSys.Coinduction {𝓁} open MetaRule open IS {- Generalized inference systems -} FCoInd⟦_,_⟧ : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} → (I : IS {𝓁c} {𝓁p} {𝓁n} U) → (C : IS {𝓁c} {𝓁p} {𝓁n'} U) → U → Set _ FCoInd⟦ I , C ⟧ = CoInd⟦ I ⊓ Ind⟦ I ∪ C ⟧ ⟧ {- Bounded Coinduction Principle -} bdc-lem : ∀{𝓁c 𝓁p 𝓁n 𝓁' 𝓁''} → (I : IS {𝓁c} {𝓁p} {𝓁n} U) → (S : U → Set 𝓁') → (Q : U → Set 𝓁'') → S ⊆ Q → S ⊆ ISF[ I ] S → S ⊆ ISF[ I ⊓ Q ] S bdc-lem _ _ _ bd cn Su with cn Su ... | rn , c , refl , pr = rn , (c , bd Su) , refl , pr bounded-coind[_,_] : ∀{𝓁c 𝓁p 𝓁n 𝓁n' 𝓁'} → (I : IS {𝓁c} {𝓁p} {𝓁n} U) → (C : IS {𝓁c} {𝓁p} {𝓁n'} U) → (S : U → Set 𝓁') → S ⊆ Ind⟦ I ∪ C ⟧ -- S is bounded w.r.t. I ∪ C → S ⊆ ISF[ I ] S -- S is consistent w.r.t. I → S ⊆ FCoInd⟦ I , C ⟧ bounded-coind[ I , C ] S bd cn Su = coind[ I ⊓ Ind⟦ I ∪ C ⟧ ] S (bdc-lem I S Ind⟦ I ∪ C ⟧ bd cn) Su {- Get Ind from FCoInd -} fcoind-to-ind : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → FCoInd⟦ is , cois ⟧ ⊆ Ind⟦ is ∪ cois ⟧ fcoind-to-ind co with CoInd⟦_⟧.unfold co ... | _ , (_ , sd) , refl , _ = sd {- Apply Rule -} apply-fcoind : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → (rn : is .Names) → RClosed (is .rules rn) FCoInd⟦ is , cois ⟧ apply-fcoind rn c pr = apply-coind rn (c , apply-ind (inj₁ rn) c λ i → fcoind-to-ind (pr i)) pr {- Postfix - Prefix -} fcoind-postfix : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → FCoInd⟦ is , cois ⟧ ⊆ ISF[ is ] FCoInd⟦ is , cois ⟧ fcoind-postfix FCoInd with FCoInd .CoInd⟦_⟧.unfold ... | rn , (c , _) , refl , pr = rn , c , refl , pr fcoind-prefix : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → ISF[ is ] FCoInd⟦ is , cois ⟧ ⊆ FCoInd⟦ is , cois ⟧ fcoind-prefix (rn , c , refl , pr) = apply-fcoind rn c pr
{ "alphanum_fraction": 0.4911575563, "avg_line_length": 32.7368421053, "ext": "agda", "hexsha": "5f2a8713d1d716432863a55234301eec583fcfdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/is-lib/InfSys/FlexCoinduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/is-lib/InfSys/FlexCoinduction.agda", "max_line_length": 101, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/is-lib/InfSys/FlexCoinduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1228, "size": 2488 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Equalizer.Limit {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Nat.Base using (ℕ) open import Data.Fin.Base hiding (lift) open import Data.Fin.Patterns open import Categories.Category.Lift open import Categories.Category.Finite.Fin open import Categories.Category.Finite.Fin.Instance.Parallel open import Categories.Diagram.Equalizer C open import Categories.Diagram.Limit open import Categories.Functor.Core import Categories.Category.Construction.Cones as Co import Categories.Morphism.Reasoning as MR private module C = Category C open C open MR C open HomReasoning open Equiv module _ {o′ ℓ′ e′} {F : Functor (liftC o′ ℓ′ e′ Parallel) C} where private module F = Functor F open F limit⇒equalizer : Limit F → Equalizer {B = F₀ (lift 1F)} (F₁ (lift 0F)) (F₁ (lift 1F)) limit⇒equalizer L = record { obj = apex ; arr = proj (lift 0F) ; equality = limit-commute (lift 0F) ○ ⟺ (limit-commute (lift 1F)) ; equalize = λ {_} {h} eq → rep record { apex = record { ψ = λ { (lift 0F) → h ; (lift 1F) → F₁ (lift 1F) ∘ h } ; commute = λ { {lift 0F} {lift 0F} (lift 0F) → elimˡ identity ; {lift 0F} {lift 1F} (lift 0F) → eq ; {lift 0F} {lift 1F} (lift 1F) → refl ; {lift 1F} {lift 1F} (lift 0F) → elimˡ identity } } } ; universal = ⟺ commute ; unique = λ {_} {h i} eq → ⟺ (terminal.!-unique record { arr = i ; commute = λ { {lift 0F} → ⟺ eq ; {lift 1F} → begin proj (lift 1F) ∘ i ≈˘⟨ pullˡ (limit-commute (lift 1F)) ⟩ F₁ (lift 1F) ∘ proj (lift 0F) ∘ i ≈˘⟨ refl⟩∘⟨ eq ⟩ F₁ (lift 1F) ∘ h ∎ } }) } where open Limit L module _ o′ ℓ′ e′ {X Y} (f g : X ⇒ Y) where equalizer⇒limit-F : Functor (liftC o′ ℓ′ e′ Parallel) C equalizer⇒limit-F = record { F₀ = λ { (lift 0F) → X ; (lift 1F) → Y } ; F₁ = λ { {lift 0F} {lift 0F} (lift 0F) → C.id ; {lift 0F} {lift 1F} (lift 0F) → f ; {lift 0F} {lift 1F} (lift 1F) → g ; {lift 1F} {lift 1F} (lift 0F) → C.id } ; identity = λ { {lift 0F} → refl ; {lift 1F} → refl } ; homomorphism = λ { {lift 0F} {lift 0F} {lift 0F} {lift 0F} {lift 0F} → ⟺ identity² ; {lift 0F} {lift 0F} {lift 1F} {lift 0F} {lift 0F} → ⟺ identityʳ ; {lift 0F} {lift 0F} {lift 1F} {lift 0F} {lift 1F} → ⟺ identityʳ ; {lift 0F} {lift 1F} {lift 1F} {lift 0F} {lift 0F} → ⟺ identityˡ ; {lift 0F} {lift 1F} {lift 1F} {lift 1F} {lift 0F} → ⟺ identityˡ ; {lift 1F} {lift 1F} {lift 1F} {lift 0F} {lift 0F} → ⟺ identity² } ; F-resp-≈ = λ { {lift 0F} {lift 0F} {lift 0F} {lift 0F} _ → refl ; {lift 0F} {lift 1F} {lift 0F} {lift 0F} _ → refl ; {lift 0F} {lift 1F} {lift 1F} {lift 1F} _ → refl ; {lift 1F} {lift 1F} {lift 0F} {lift 0F} _ → refl } } module _ o′ ℓ′ e′ {X Y} {f g : X ⇒ Y} (e : Equalizer f g) where open Equalizer e private F = equalizer⇒limit-F o′ ℓ′ e′ f g equalizer⇒limit : Limit F equalizer⇒limit = record { terminal = record { ⊤ = record { N = obj ; apex = record { ψ = λ { (lift 0F) → arr ; (lift 1F) → g ∘ arr } ; commute = λ { {lift 0F} {lift 0F} (lift 0F) → identityˡ ; {lift 0F} {lift 1F} (lift 0F) → equality ; {lift 0F} {lift 1F} (lift 1F) → refl ; {lift 1F} {lift 1F} (lift 0F) → identityˡ } } } ; ! = λ {K} → let open Co.Cone F K in record { arr = equalize (commute (lift 0F) ○ ⟺ (commute (lift 1F))) ; commute = λ { {lift 0F} → ⟺ universal ; {lift 1F} → pullʳ (⟺ universal) ○ commute (lift 1F) } } ; !-unique = λ f → let open Co.Cone⇒ F f in ⟺ (unique (⟺ commute)) } }
{ "alphanum_fraction": 0.4812457377, "avg_line_length": 37.9224137931, "ext": "agda", "hexsha": "467306416335a537306781c64161567293d20a4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Equalizer/Limit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Equalizer/Limit.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Equalizer/Limit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1609, "size": 4399 }
module Main where -- Ensure that the entire library is compiled. import README open import Coinduction open import Data.String open import Data.Unit using (⊤) open import IO open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- Check that trustMe works. testTrustMe : IO ⊤ testTrustMe with "apa" ≟ "apa" ... | yes refl = putStrLn "Yes!" ... | no _ = putStrLn "No." -- Check that ∞ can be used as an "expression". testInf : Set → Set testInf = ∞ main = run testTrustMe
{ "alphanum_fraction": 0.7199211045, "avg_line_length": 19.5, "ext": "agda", "hexsha": "cc8b93fa0268d6c1e251cc6d51dcb43d069b3e2f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/compiler/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/compiler/Main.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/compiler/Main.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 136, "size": 507 }
-- Andreas, 2016-08-26, issue 2152 -- Option --allow-unsolved-metas is not --safe Unsolved : Set Unsolved = ?
{ "alphanum_fraction": 0.6846846847, "avg_line_length": 18.5, "ext": "agda", "hexsha": "f52dcfbb5a33c3ac083be7767c9805eb1c08e116", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2152.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2152.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2152.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 41, "size": 111 }
module Test.Factorial where open import Data.Nat factorial : ℕ -> ℕ factorial zero = 1 factorial n@(suc n') = n * factorial n'
{ "alphanum_fraction": 0.7054263566, "avg_line_length": 16.125, "ext": "agda", "hexsha": "822dc28ea61189244b5354cc00564fd191a2f7ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yanok/normalize-via-instances", "max_forks_repo_path": "test/Test/Factorial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yanok/normalize-via-instances", "max_issues_repo_path": "test/Test/Factorial.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yanok/normalize-via-instances", "max_stars_repo_path": "test/Test/Factorial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 41, "size": 129 }
-- Andreas, 2018-05-09, issue 2636, reported by nad -- {-# OPTIONS -v tc.pos:10 #-} id : (A : Set₁) → A → A id A x = x A : Set₁ A = Set where F : Set₁ → Set₁ F X = X data D : Set₁ where c : F D → D lemma : F (D → Set) → D → Set lemma fp d = id (F (D → Set)) fp d -- Problem was: -- Positivity checker for D complained when lemma was present.
{ "alphanum_fraction": 0.5549450549, "avg_line_length": 16.5454545455, "ext": "agda", "hexsha": "43d754f32d616b014889d1742f3524a0e80f325a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Bugs/Issue2636.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Bugs/Issue2636.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Bugs/Issue2636.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 139, "size": 364 }
module Inductive.Examples.Ord where open import Inductive open import Tuple open import Data.Fin open import Data.Product open import Data.List open import Data.Vec hiding (lookup) open import Inductive.Examples.Nat Ord : Set Ord = Inductive (([] , []) ∷ (([] , ((Nat ∷ []) ∷ [])) ∷ [])) zeroₒ : Ord zeroₒ = construct Fin.zero [] [] supₒ : (Nat → Ord) → Ord supₒ f = construct (Fin.suc Fin.zero) [] ((λ x → f (lookup Fin.zero x)) ∷ [])
{ "alphanum_fraction": 0.649321267, "avg_line_length": 21.0476190476, "ext": "agda", "hexsha": "4979fa426cd729675904120fd5d4d29c8190c029", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mr-ohman/general-induction", "max_forks_repo_path": "Inductive/Examples/Ord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mr-ohman/general-induction", "max_issues_repo_path": "Inductive/Examples/Ord.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mr-ohman/general-induction", "max_stars_repo_path": "Inductive/Examples/Ord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 137, "size": 442 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Change contexts -- -- This module specifies how a context of values is merged -- together with the corresponding context of changes. -- -- In the PLDI paper, instead of merging the contexts together, we just -- concatenate them. For example, in the "typing rule" for Derive -- in Sec. 3.2 of the paper, we write in the conclusion of the rule: -- "Γ, ΔΓ ⊢ Derive(t) : Δτ". Simple concatenation is possible because -- the paper uses named variables and assumes that no user variables -- start with "d". In this formalization, we use de Bruijn indices, so -- it is easier to alternate values and their changes in the context. ------------------------------------------------------------------------ module Base.Change.Context {Type : Set} (ΔType : Type → Type) where open import Base.Syntax.Context Type -- Transform a context of values into a context of values and -- changes. ΔContext : Context → Context ΔContext ∅ = ∅ ΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ -- like ΔContext, but ΔType τ and τ are swapped ΔContext′ : Context → Context ΔContext′ ∅ = ∅ ΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ -- This sub-context relationship explains how to go back from -- ΔContext Γ to Γ: You have to drop every other binding. Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ
{ "alphanum_fraction": 0.6274509804, "avg_line_length": 35.7, "ext": "agda", "hexsha": "f737caeb1edb0a10cfea74541fa53205c8878539", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Change/Context.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Change/Context.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Change/Context.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 402, "size": 1428 }
module GGT.Group.Bundles {a b ℓ} where open import Algebra.Bundles using (Group) open import Relation.Unary open import Relation.Binary open import Level open import GGT.Group.Structures record SubGroup (G : Group a ℓ) : Set (a ⊔ suc b ⊔ ℓ) where open Group G public field P : Pred Carrier b isSubGroup : IsSubGroup G P open IsSubGroup isSubGroup public -- imports ~ -- xy-1 ∈ H => xy-1 = h => h'xy-1 = h'' => h'x = h''y -- right cosets -- x ↦ ω · x = ω · yx-1 · x = ω · y cosetʳRel : {G : Group a ℓ} → (SubGroup G) → Setoid a b cosetʳRel {G} H = record { Carrier = Carrier; _≈_ = _∼_; isEquivalence = iseq} where open SubGroup H open import GGT.Group.Facts G iseq = record {refl = cosetRelRefl isSubGroup ; sym = cosetRelSym isSubGroup ; trans = cosetRelTrans isSubGroup } syntax cosetʳRel {G} H = H \\ G
{ "alphanum_fraction": 0.5478775913, "avg_line_length": 29.7941176471, "ext": "agda", "hexsha": "3326e2edfadc15903982718bcc248434c18e986a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/group/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/group/Bundles.agda", "max_line_length": 71, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/group/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 312, "size": 1013 }
------------------------------------------------------------------------ -- Code related to the paper "Compiling Programs with Erased -- Univalence" -- -- Nils Anders Danielsson -- -- The paper is coauthored with Andreas Abel and Andrea Vezzosi. ------------------------------------------------------------------------ -- Most of the code referenced below can be found in modules that are -- parametrised by a notion of equality. One can use them both with -- Cubical Agda paths and with the Cubical Agda identity type family. -- Note that the code does not follow the paper exactly. For instance, -- some definitions use bijections (functions with quasi-inverses) -- instead of equivalences. -- An attempt has been made to track uses of univalence by passing -- around explicit proofs of the univalence axiom (except in certain -- README modules). However, some library code that is used does not -- adhere to this convention (note that univalence is provable in -- Cubical Agda), so perhaps some use of univalence is not tracked in -- this way. On the other hand some library code that is not defined -- in Cubical Agda passes around explicit proofs of function -- extensionality. -- Some other differences are mentioned below. -- Note that there is a known problem with guarded corecursion in -- Agda. Due to "quantifier inversion" (see "Termination Checking in -- the Presence of Nested Inductive and Coinductive Types" by Thorsten -- Altenkirch and myself) certain types may not have the expected -- semantics when the option --guardedness is used. I expect that the -- results would still hold if this bug were fixed, but because I do -- not know what the rules of a fixed version of Agda would be I do -- not know if any changes to the code would be required. {-# OPTIONS --guardedness #-} module README.Compiling-Programs-with-Erased-Univalence where import Coherently-constant import Colimit.Sequential import Colimit.Sequential.Very-erased import Equality.Path import Equality.Path.Univalence import Equivalence import Equivalence.Erased import Equivalence.Erased.Basics import Equivalence.Erased.Contractible-preimages import Equivalence.Half-adjoint import Erased.Basics import Erased.Cubical import Erased.Level-1 import Erased.Stability import H-level.Truncation.Propositional import H-level.Truncation.Propositional.Completely-erased import H-level.Truncation.Propositional.Erased import H-level.Truncation.Propositional.Non-recursive import H-level.Truncation.Propositional.Non-recursive.Erased import H-level.Truncation.Propositional.One-step import Preimage import Univalence-axiom import Lens.Non-dependent.Higher import Lens.Non-dependent.Higher.Erased import Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant import Lens.Non-dependent.Higher.Coinductive import Lens.Non-dependent.Higher.Coinductive.Erased import Lens.Non-dependent.Higher.Coinductive.Small import Lens.Non-dependent.Higher.Coinductive.Small.Erased import README.Fst-snd ------------------------------------------------------------------------ -- 2: Cubical Agda -- The functions cong and ext. cong = Equality.Path.cong ext = Equality.Path.⟨ext⟩ -- The propositional truncation operator. -- -- The current module uses --erased-cubical, so this operator, which -- is defined using --cubical, can only be used in erased contexts. @0 ∥_∥ : _ ∥_∥ = H-level.Truncation.Propositional.∥_∥ -- The map function. This function is not defined in the same way as -- in the paper, it is defined using a non-dependent eliminator. @0 map : _ map = H-level.Truncation.Propositional.∥∥-map -- The propositional truncation operator with an erased truncation -- constructor. ∥_∥ᴱ = H-level.Truncation.Propositional.Erased.∥_∥ᴱ -- Half adjoint equivalences. Note that, unlike in the paper, _≃_ is -- defined as a record type. Is-equivalence = Equivalence.Half-adjoint.Is-equivalence _≃_ = Equivalence._≃_ -- Univalence. (This type family is not defined in exactly the same -- way as in the paper.) Univalence = Univalence-axiom.Univalence -- A proof of univalence. The proof uses glue. @0 univ : _ univ = Equality.Path.Univalence.univ ------------------------------------------------------------------------ -- 3: Postulating Erased Univalence -- Erased. Erased = Erased.Basics.Erased -- []-cong for paths. []-cong = Erased.Cubical.[]-cong-Path ------------------------------------------------------------------------ -- 6.1: Equivalences with Erased Proofs -- Equivalences with erased proofs. Note that, unlike in the paper, -- _≃ᴱ_ is defined as a record type. Is-equivalenceᴱ = Equivalence.Erased.Basics.Is-equivalenceᴱ _≃ᴱ_ = Equivalence.Erased.Basics._≃ᴱ_ to = Equivalence.Erased.Basics._≃ᴱ_.to from = Equivalence.Erased.Basics._≃ᴱ_.from @0 to-from : _ to-from = Equivalence.Erased.Basics._≃ᴱ_.right-inverse-of @0 from-to : _ from-to = Equivalence.Erased.Basics._≃ᴱ_.left-inverse-of -- Erased≃ is stated a little differently. Erased≃ = Erased.Level-1.Erased↔ -- Lemmas 41 and 42 are proved in modules parametrised by definitions -- of []-cong, in the latter case []-cong is also assumed to satisfy -- certain properties (that hold for the definition mentioned above). -- Some definitions below are also defined in such modules. Lemma-41 = Erased.Level-1.[]-cong₁.Erased-cong-≃ Lemma-42 = Equivalence.Erased.[]-cong.Σ-cong-≃ᴱ-Erased -- The functions substᴱ and subst. substᴱ = Erased.Level-1.[]-cong₁.substᴱ subst = Equality.Path.subst -- Lemmas 45–47. Lemma-45 = Equivalence.Erased.[]-cong.drop-⊤-left-Σ-≃ᴱ-Erased Lemma-46 = Equivalence.Erased.Σ-cong-≃ᴱ Lemma-47 = Equivalence.Erased.drop-⊤-left-Σ-≃ᴱ ------------------------------------------------------------------------ -- 6.2: A Non-recursive Definition of the Propositional Truncation -- Operator -- ∥_∥¹ and Colimit. @0 ∥_∥¹ : _ ∥_∥¹ = H-level.Truncation.Propositional.One-step.∥_∥¹ @0 Colimit : _ Colimit = Colimit.Sequential.Colimit -- Lemma 50. @0 Lemma-50 : _ Lemma-50 = Colimit.Sequential.universal-property -- ∥_∥¹-out and ∥_∥ᴺ. @0 ∥_∥¹-out : _ ∥_∥¹-out = H-level.Truncation.Propositional.One-step.∥_∥¹-out-^ @0 ∥_∥ᴺ : _ ∥_∥ᴺ = H-level.Truncation.Propositional.Non-recursive.∥_∥ -- ∥_∥ᴺ and ∥_∥ are pointwise equivalent. @0 ∥∥ᴺ≃∥∥ : _ ∥∥ᴺ≃∥∥ = H-level.Truncation.Propositional.Non-recursive.∥∥≃∥∥ -- Colimitᴱ. Colimitᴱ = Colimit.Sequential.Very-erased.Colimitᴱ -- Lemma 54. Lemma-54 = Colimit.Sequential.Very-erased.universal-property -- ∥_∥ᴺᴱ. ∥_∥ᴺᴱ = H-level.Truncation.Propositional.Non-recursive.Erased.∥_∥ᴱ -- Lemma 56 (or rather its inverse). Lemma-56 = H-level.Truncation.Propositional.Erased.∥∥ᴱ≃∥∥ᴱ ------------------------------------------------------------------------ -- 6.3: Higher Lenses with Erased Proofs -- Lensᴱ, get and set. @0 Lensᴱ : _ Lensᴱ = Lens.Non-dependent.Higher.Lens @0 get : _ get = Lens.Non-dependent.Higher.Lens.get @0 set : _ set = Lens.Non-dependent.Higher.Lens.set -- Lensᴱᴱ. Lensᴱᴱ = Lens.Non-dependent.Higher.Erased.Lens -- The function _⁻¹_. _⁻¹_ = Preimage._⁻¹_ -- Lens^C (defined using a record type). @0 Lens^C : _ Lens^C = Lens.Non-dependent.Higher.Coinductive.Small.Lens -- Coherently-constant^C. @0 Coherently-constant^C : _ Coherently-constant^C = Lens.Non-dependent.Higher.Coinductive.Small.Coherently-constant -- Lens^CE (with the field name get⁻¹-coherently-constant instead of -- cc). Lens^CE = Lens.Non-dependent.Higher.Coinductive.Small.Erased.Lens ------------------------------------------------------------------------ -- 6.4: The Definitions Are Equivalent -- Lemma 65 (or rather its inverse), and a proof (in an erased -- context) showing that Lemma 65 preserves getters and setters. -- -- Lemma 65 and some other lemmas use arguments of type Block s (for -- some string s). This type is equivalent to the unit type. These -- arguments are used to block definitions from being unfolded by the -- type-checker. Lemma-65 = Lens.Non-dependent.Higher.Coinductive.Small.Erased.Lens≃ᴱLensᴱ @0 Lemma-65-preserves-getters-and-setters : _ Lemma-65-preserves-getters-and-setters = Lens.Non-dependent.Higher.Coinductive.Small.Erased.Lens≃ᴱLensᴱ-preserves-getters-and-setters -- Lens₁ᴱ and Lens₂ᴱ. Lens₁ᴱ = Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant.Lens Lens₂ᴱ = Lens.Non-dependent.Higher.Coinductive.Erased.Lens -- The function _⁻¹ᴱ_. _⁻¹ᴱ_ = Equivalence.Erased.Contractible-preimages._⁻¹ᴱ_ -- Coherently-constant₁ᴱ, Coherently-constant, Coherently-constant₂ᴱ, -- Coherently-constant₂^C and constant. Coherently-constant₁ᴱ = Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant.Coherently-constant @0 Coherently-constant : _ Coherently-constant = Coherently-constant.Coherently-constant Coherently-constant₂ᴱ = Lens.Non-dependent.Higher.Coinductive.Erased.Coherently-constant @0 Coherently-constant₂^C : _ Coherently-constant₂^C = Lens.Non-dependent.Higher.Coinductive.Coherently-constant @0 constant : _ constant = Lens.Non-dependent.Higher.Coinductive.constant -- Lemmas 74–77. Lemma-74 = Erased.Stability.[]-cong.Erased-other-singleton≃ᴱ⊤ Lemma-75 = Lens.Non-dependent.Higher.Coinductive.Erased.∥∥ᴱ→≃ Lemma-76 = Equivalence.Erased.other-singleton-with-Π-≃ᴱ-≃ᴱ-⊤ Lemma-77 = H-level.Truncation.Propositional.Erased.Σ-Π-∥∥ᴱ-Erased-≡-≃ ------------------------------------------------------------------------ -- 6.5: Compilation of Lenses -- A slightly more general variant of sndᴱ. sndᴱ = Lens.Non-dependent.Higher.Erased.snd -- Lemma 79. Lemma-79 = H-level.Truncation.Propositional.Completely-erased.Erased-∥∥×≃ -- A slightly more general variant of snd^C. snd^C = README.Fst-snd.snd-with-space-leak -- Lemma 81. Lemma-81 = Lens.Non-dependent.Higher.Coinductive.Small.Erased.with-other-setter -- A slightly more general variant of the variant of snd^C with a -- changed setter. snd^C-with-changed-setter = README.Fst-snd.snd
{ "alphanum_fraction": 0.7043987086, "avg_line_length": 30.975, "ext": "agda", "hexsha": "ec8e4a5bb08bee4a548ea7465a44c43d3ab15df0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "README/Compiling-Programs-with-Erased-Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "README/Compiling-Programs-with-Erased-Univalence.agda", "max_line_length": 94, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "README/Compiling-Programs-with-Erased-Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 2946, "size": 9912 }
module ASN1.X509 where open import Data.Word8 using (Word8; _and_; _or_; _==_) renaming (primWord8fromNat to to𝕎; primWord8toNat to from𝕎) open import Data.ByteString using (ByteString; Strict; pack; fromChunks; toStrict) open import Data.ByteString.Utf8 using (packStrict) open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ; _+_; _*_) open import Data.List using (List; []; _∷_; foldl) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_) open import Data.String using (String) open import ASN1.Untyped import ASN1.BER as BER AlgorithmIdentifier : List ℕ → AST → AST AlgorithmIdentifier oid params = SEQUENCE (OBJECT-IDENTIFIER oid ∷ params ∷ []) AttributeTypeAndValue : List ℕ → AST → AST AttributeTypeAndValue type value = SEQUENCE (OBJECT-IDENTIFIER type ∷ value ∷ []) id-at-commonName : List ℕ id-at-commonName = 2 ∷ 5 ∷ 4 ∷ 3 ∷ [] CommonName : String → AST CommonName cn = AttributeTypeAndValue id-at-commonName (UTF8String cn) RDN : String → AST RDN cn = SET (CommonName cn ∷ []) RDNSequence : String → AST RDNSequence cn = SEQUENCE (RDN cn ∷ []) Name : String → AST Name cn = RDNSequence cn Validity : (from to : String) → AST Validity from to = SEQUENCE (GeneralizedTime from ∷ GeneralizedTime to ∷ []) bign-with-hbelt-oid : List ℕ bign-with-hbelt-oid = 1 ∷ 2 ∷ 112 ∷ 0 ∷ 2 ∷ 0 ∷ 34 ∷ 101 ∷ 45 ∷ 12 ∷ [] bign-pubkey-oid : List ℕ bign-pubkey-oid = 1 ∷ 2 ∷ 112 ∷ 0 ∷ 2 ∷ 0 ∷ 34 ∷ 101 ∷ 45 ∷ 2 ∷ 1 ∷ [] bign-curve256v1-oid : List ℕ bign-curve256v1-oid = 1 ∷ 2 ∷ 112 ∷ 0 ∷ 2 ∷ 0 ∷ 34 ∷ 101 ∷ 45 ∷ 3 ∷ 1 ∷ [] SubjectPublicKeyInfo : ByteString Strict → AST SubjectPublicKeyInfo pub = SEQUENCE ( AlgorithmIdentifier bign-pubkey-oid (OBJECT-IDENTIFIER bign-curve256v1-oid) ∷ BIT-STRING 0 pub ∷ []) Extension : OID → (critical : Bool) → ByteString Strict → AST Extension oid true value = SEQUENCE (OBJECT-IDENTIFIER oid ∷ BOOLEAN true ∷ OCTET-STRING value ∷ []) Extension oid false value = SEQUENCE (OBJECT-IDENTIFIER oid ∷ OCTET-STRING value ∷ []) module mkCert (issuer-cn : String) (subject-cn : String) (validity-from : String) (validity-to : String) (pub : ByteString Strict) (sign : ByteString Strict → ByteString Strict) -- tbs → sig where sa version serial issuer validity subject spki : AST sa = AlgorithmIdentifier bign-with-hbelt-oid NULL version = EXPLICIT (to𝕎 0) (INTEGER 2) -- v3 serial = INTEGER 1 issuer = Name issuer-cn validity = Validity validity-from validity-to subject = Name subject-cn spki = SubjectPublicKeyInfo pub {- ku eku skid ikid -- id-ce = 2 ∷ 5 ∷ 29 ∷ [] -} id-ce-arc : OID → OID id-ce-arc tail = 2 ∷ 5 ∷ 29 ∷ tail id-kp-arc : OID → OID id-kp-arc tail = 1 ∷ 3 ∷ 6 ∷ 1 ∷ 5 ∷ 5 ∷ 7 ∷ 3 ∷ tail ku-oid : OID ku-oid = id-ce-arc (15 ∷ []) data KeyUsage : Set where digitalSignature nonRepudation keyEncipherment dataEncipherment keyAgreement keyCertSign cRLSign encipherOnly decipherOnly : KeyUsage pattern contentCommitment = nonRepudation ku : List KeyUsage → AST ku kus = Extension ku-oid true (BER.encode″ (BIT-STRING 7 (pack (w₀ ∷ w₁ ∷ [])))) where kuIdx : KeyUsage → ℕ kuIdx digitalSignature = 0 kuIdx nonRepudation = 1 kuIdx keyEncipherment = 2 kuIdx dataEncipherment = 3 kuIdx keyAgreement = 4 kuIdx keyCertSign = 5 kuIdx cRLSign = 6 kuIdx encipherOnly = 7 kuIdx decipherOnly = 8 i₀ i₁ : KeyUsage → Word8 i₀ digitalSignature = to𝕎 0x80 i₀ nonRepudation = to𝕎 0x40 i₀ keyEncipherment = to𝕎 0x20 i₀ dataEncipherment = to𝕎 0x10 i₀ keyAgreement = to𝕎 0x08 i₀ keyCertSign = to𝕎 0x04 i₀ cRLSign = to𝕎 0x02 i₀ encipherOnly = to𝕎 0x01 i₀ decipherOnly = to𝕎 0 i₁ digitalSignature = to𝕎 0 i₁ nonRepudation = to𝕎 0 i₁ keyEncipherment = to𝕎 0 i₁ dataEncipherment = to𝕎 0 i₁ keyAgreement = to𝕎 0 i₁ keyCertSign = to𝕎 0 i₁ cRLSign = to𝕎 0 i₁ encipherOnly = to𝕎 0 i₁ decipherOnly = to𝕎 0x80 f₀ f₁ : Word8 → KeyUsage → Word8 f₀ w u = w or (i₀ u) f₁ w u = w or (i₁ u) w₀ w₁ : Word8 w₀ = foldl f₀ (to𝕎 0) kus w₁ = foldl f₁ (to𝕎 0) kus id-kp-serverAuth id-kp-clientAuth : OID id-kp-serverAuth = id-kp-arc (1 ∷ []) id-kp-clientAuth = id-kp-arc (2 ∷ []) eku-oid : OID eku-oid = id-ce-arc (37 ∷ []) eku : AST eku = Extension eku-oid false (BER.encode″ (SEQUENCE (OBJECT-IDENTIFIER id-kp-serverAuth ∷ OBJECT-IDENTIFIER id-kp-clientAuth ∷ []))) bc-oid : OID bc-oid = id-ce-arc (19 ∷ []) bc : AST bc = Extension bc-oid true (BER.encode″ (SEQUENCE (BOOLEAN is-ca-true ∷ []))) where is-ca-true : Bool is-ca-true = true exts : AST exts = EXPLICIT (tag 3) (SEQUENCE (bc ∷ ku (keyAgreement ∷ []) ∷ eku ∷ [])) tbs : AST tbs = SEQUENCE (version ∷ serial ∷ sa ∷ issuer ∷ validity ∷ subject ∷ spki ∷ exts ∷ []) tbs′ : ByteString Strict tbs′ = toStrict (fromChunks (BER.encode tbs)) sig : ByteString Strict sig = sign tbs′ sv : AST sv = BIT-STRING 0 sig cert : AST cert = SEQUENCE (tbs ∷ sa ∷ sv ∷ [])
{ "alphanum_fraction": 0.662850375, "avg_line_length": 30.5180722892, "ext": "agda", "hexsha": "f477d67b86bd08c94651221afa3791e30b988968", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/asn1-agda", "max_forks_repo_path": "src/ASN1/X509.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/asn1-agda", "max_issues_repo_path": "src/ASN1/X509.agda", "max_line_length": 135, "max_stars_count": null, "max_stars_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/asn1-agda", "max_stars_repo_path": "src/ASN1/X509.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1897, "size": 5066 }
{- Elementary transformation specific to coefficient ℤ -} {-# OPTIONS --safe #-} module Cubical.Algebra.IntegerMatrix.Elementaries where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Nat hiding (_+_ ; _·_) open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤ to Ringℤ) open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.Matrix.RowTransformation private variable ℓ : Level m n : ℕ -- It seems there are bugs when applying ring solver to integers. -- The following is a work-around. private module Helper {ℓ : Level}(𝓡 : CommRing ℓ) where open CommRingStr (𝓡 .snd) helper1 : (a b x y g : 𝓡 .fst) → (a · x - b · - y) · g ≡ a · (x · g) + b · (y · g) helper1 = solve 𝓡 helper2 : (a b : 𝓡 .fst) → a ≡ 1r · a + 0r · b helper2 = solve 𝓡 open Helper Ringℤ module ElemTransformationℤ where open import Cubical.Foundations.Powerset open import Cubical.Data.Int using (·rCancel) open import Cubical.Data.Int.Divisibility private ℤ = Ringℤ .fst open CommRingStr (Ringℤ .snd) open Sum (CommRing→Ring Ringℤ) open Coefficient Ringℤ open LinearTransformation Ringℤ open Bézout open SimRel open Sim open isLinear open isLinear2×2 -- The Bézout step to simplify one row module _ (x y : ℤ)(b : Bézout x y) where bézout2Mat : Mat 2 2 bézout2Mat zero zero = b .coef₁ bézout2Mat zero one = b .coef₂ bézout2Mat one zero = - (div₂ b) bézout2Mat one one = div₁ b module _ (p : ¬ x ≡ 0) where open Units Ringℤ private detEq : det2×2 bézout2Mat · b .gcd ≡ b .gcd detEq = helper1 (b .coef₁) (b .coef₂) _ _ _ ∙ (λ t → b .coef₁ · divideEq (b .isCD .fst) t + b .coef₂ · divideEq (b .isCD .snd) t) ∙ b .identity det≡1 : det2×2 bézout2Mat ≡ 1 det≡1 = ·rCancel _ _ _ (detEq ∙ sym (·Lid _)) (¬m≡0→¬gcd≡0 b p) isInvBézout2Mat : isInv bézout2Mat isInvBézout2Mat = isInvMat2x2 bézout2Mat (subst (λ r → r ∈ Rˣ) (sym det≡1) RˣContainsOne) module _ (M : Mat 2 (suc n)) where private b = bézout (M zero zero) (M one zero) bézout2Rows : Mat 2 (suc n) bézout2Rows zero i = b .coef₁ · M zero i + b .coef₂ · M one i bézout2Rows one i = - (div₂ b) · M zero i + div₁ b · M one i bézout2Rows-vanish : bézout2Rows one zero ≡ 0 bézout2Rows-vanish = div·- b bézout2Rows-div₁ : (n : ℤ) → M zero zero ∣ n → bézout2Rows zero zero ∣ n bézout2Rows-div₁ n p = subst (λ a → a ∣ n) (sym (b .identity)) (∣-trans (b .isCD .fst) p) bézout2Rows-div₂ : (n : ℤ) → M one zero ∣ n → bézout2Rows zero zero ∣ n bézout2Rows-div₂ n p = subst (λ a → a ∣ n) (sym (b .identity)) (∣-trans (b .isCD .snd) p) bézout2Rows-nonZero : ¬ M zero zero ≡ 0 → ¬ bézout2Rows zero zero ≡ 0 bézout2Rows-nonZero p r = p (sym (∣-zeroˡ (subst (λ a → a ∣ M zero zero) r (bézout2Rows-div₁ (M zero zero) (∣-refl refl))))) bézout2Rows-inv : ¬ M zero zero ≡ 0 → M zero zero ∣ M one zero → M zero ≡ bézout2Rows zero bézout2Rows-inv p q t j = let (c₁≡1 , c₂≡0) = bézout∣ _ _ p q in (helper2 (M zero j) (M one j) ∙ (λ t → c₁≡1 (~ t) · M zero j + c₂≡0 (~ t) · M one j)) t bézout2Rows-commonDiv : (a : ℤ) → ((j : Fin (suc n)) → a ∣ M zero j) → ((j : Fin (suc n)) → a ∣ M one j) → (i : Fin 2)(j : Fin (suc n)) → a ∣ bézout2Rows i j bézout2Rows-commonDiv a p q zero j = ∣-+ (∣-right· {n = b .coef₁} (p j)) (∣-right· {n = b .coef₂} (q j)) bézout2Rows-commonDiv a p q one j = ∣-+ (∣-right· {n = - (div₂ b)} (p j)) (∣-right· {n = div₁ b} (q j)) module _ (M : Mat (suc m) (suc n)) where bézoutRows : Mat (suc m) (suc n) bézoutRows = transRows bézout2Rows M bézoutRows-vanish : (i : Fin m) → bézoutRows (suc i) zero ≡ 0 bézoutRows-vanish = transRowsIndP' _ (λ v → v zero ≡ 0) bézout2Rows-vanish M bézoutRows-div₁-helper : (n : ℤ) → M zero zero ∣ n → bézoutRows zero zero ∣ n bézoutRows-div₁-helper n = transRowsIndP _ (λ v → v zero ∣ n) (λ M → bézout2Rows-div₁ M n) M bézoutRows-div₂-helper : (n : ℤ) → (i : Fin m) → M (suc i) zero ∣ n → bézoutRows zero zero ∣ n bézoutRows-div₂-helper n = transRowsIndPQ' _ (λ v → v zero ∣ n) (λ v → v zero ∣ n) (λ M → bézout2Rows-div₁ M n) (λ M → bézout2Rows-div₂ M n) M bézoutRows-div : (i : Fin (suc m)) → bézoutRows zero zero ∣ M i zero bézoutRows-div zero = bézoutRows-div₁-helper _ (∣-refl refl) bézoutRows-div (suc i) = bézoutRows-div₂-helper _ i (∣-refl refl) bézoutRows-nonZero : ¬ M zero zero ≡ 0 → ¬ bézoutRows zero zero ≡ 0 bézoutRows-nonZero p r = p (sym (∣-zeroˡ (subst (λ a → a ∣ M zero zero) r (bézoutRows-div zero)))) bézoutRows-inv : ¬ M zero zero ≡ 0 → ((i : Fin m) → M zero zero ∣ M (suc i) zero) → M zero ≡ bézoutRows zero bézoutRows-inv = transRowsIndPRelInv _ (λ V → ¬ V zero ≡ 0) (λ U V → U zero ∣ V zero) bézout2Rows-inv M bézoutRows-commonDiv₀ : (a : ℤ) → ((j : Fin (suc n)) → a ∣ M zero j) → ((i : Fin m)(j : Fin (suc n)) → a ∣ M (suc i) j) → (j : Fin (suc n)) → a ∣ bézoutRows zero j bézoutRows-commonDiv₀ a = transRowsIndP₀ _ (λ V → ((j : Fin (suc n)) → a ∣ V j)) (λ N s s' → bézout2Rows-commonDiv N a s s' zero) (λ N s s' → bézout2Rows-commonDiv N a s s' one) _ bézoutRows-commonDiv₁ : (a : ℤ) → ((j : Fin (suc n)) → a ∣ M zero j) → ((i : Fin m)(j : Fin (suc n)) → a ∣ M (suc i) j) → (i : Fin m)(j : Fin (suc n)) → a ∣ bézoutRows (suc i) j bézoutRows-commonDiv₁ a = transRowsIndP₁ _ (λ V → ((j : Fin (suc n)) → a ∣ V j)) (λ N s s' → bézout2Rows-commonDiv N a s s' zero) (λ N s s' → bézout2Rows-commonDiv N a s s' one) _ bézoutRows-commonDiv : ((i : Fin (suc m))(j : Fin (suc n)) → M zero zero ∣ M i j) → (i : Fin (suc m))(j : Fin (suc n)) → M zero zero ∣ bézoutRows i j bézoutRows-commonDiv p zero = bézoutRows-commonDiv₀ _ (p zero) (p ∘ suc) bézoutRows-commonDiv p (suc i) = bézoutRows-commonDiv₁ _ (p zero) (p ∘ suc) i bézoutRows-commonDivInv : ¬ M zero zero ≡ 0 → ((i : Fin (suc m))(j : Fin (suc n)) → M zero zero ∣ M i j) → (i : Fin (suc m))(j : Fin (suc n)) → bézoutRows zero zero ∣ bézoutRows i j bézoutRows-commonDivInv h p i j = let inv = (λ t → bézoutRows-inv h (λ i → p (suc i) zero) t zero) in subst (_∣ bézoutRows i j) inv (bézoutRows-commonDiv p i j) isLinear2Bézout2Rows : isLinear2×2 (bézout2Rows {n = n}) isLinear2Bézout2Rows .transMat M = bézout2Mat _ _ (bézout (M zero zero) (M one zero)) isLinear2Bézout2Rows .transEq M t zero j = mul2 (isLinear2Bézout2Rows .transMat M) M zero j (~ t) isLinear2Bézout2Rows .transEq M t one j = mul2 (isLinear2Bézout2Rows .transMat M) M one j (~ t) isLinearBézoutRows : isLinear (bézoutRows {m = m} {n = n}) isLinearBézoutRows = isLinearTransRows _ isLinear2Bézout2Rows _ isInv2Bézout2Rows : (M : Mat 2 (suc n))(p : ¬ M zero zero ≡ 0) → isInv (isLinear2Bézout2Rows .transMat M) isInv2Bézout2Rows _ p = isInvBézout2Mat _ _ _ p isInvBézout2Rows : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → isInv (isLinearBézoutRows .transMat M) isInvBézout2Rows = isInvTransRowsInd _ _ (λ V → ¬ V zero ≡ 0) bézout2Rows-nonZero isInv2Bézout2Rows -- Using Bézout identity to eliminate the first column/row record RowsImproved (M : Mat (suc m) (suc n)) : Type where field sim : Sim M div : (i : Fin (suc m)) → sim .result zero zero ∣ M i zero vanish : (i : Fin m) → sim .result (suc i) zero ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 record ColsImproved (M : Mat (suc m) (suc n)) : Type where field sim : Sim M div : (j : Fin (suc n)) → sim .result zero zero ∣ M zero j vanish : (j : Fin n) → sim .result zero (suc j) ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 open RowsImproved open ColsImproved improveRows : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → RowsImproved M improveRows M _ .sim .result = bézoutRows M improveRows M _ .sim .simrel .transMatL = isLinearBézoutRows .transMat M improveRows _ _ .sim .simrel .transMatR = 𝟙 improveRows _ _ .sim .simrel .transEq = isLinearBézoutRows .transEq _ ∙ sym (⋆rUnit _) improveRows _ p .sim .simrel .isInvTransL = isInvBézout2Rows _ p improveRows _ p .sim .simrel .isInvTransR = isInv𝟙 improveRows _ _ .div = bézoutRows-div _ improveRows _ _ .vanish = bézoutRows-vanish _ improveRows M p .nonZero = bézoutRows-nonZero M p improveCols : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → ColsImproved M improveCols M _ .sim .result = (bézoutRows (M ᵗ))ᵗ improveCols _ _ .sim .simrel .transMatL = 𝟙 improveCols M _ .sim .simrel .transMatR = (isLinearBézoutRows .transMat (M ᵗ))ᵗ improveCols M _ .sim .simrel .transEq = let P = isLinearBézoutRows .transMat (M ᵗ) in (λ t → (isLinearBézoutRows .transEq (M ᵗ) t)ᵗ) ∙ compᵗ P (M ᵗ) ∙ (λ t → idemᵗ M t ⋆ P ᵗ) ∙ (λ t → ⋆lUnit M (~ t) ⋆ P ᵗ) improveCols _ _ .sim .simrel .isInvTransL = isInv𝟙 improveCols M p .sim .simrel .isInvTransR = isInvᵗ {M = isLinearBézoutRows .transMat (M ᵗ)} (isInvBézout2Rows (M ᵗ) p) improveCols _ _ .div = bézoutRows-div _ improveCols _ _ .vanish = bézoutRows-vanish _ improveCols M p .nonZero = bézoutRows-nonZero (M ᵗ) p
{ "alphanum_fraction": 0.6135732648, "avg_line_length": 38.4387351779, "ext": "agda", "hexsha": "dc86af51e544944ab4d276babe9df100f95d64ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/IntegerMatrix/Elementaries.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/IntegerMatrix/Elementaries.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/IntegerMatrix/Elementaries.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3900, "size": 9725 }
postulate A : Set _+_ : A → A → A f₁ : A → A → A f₁ x y = {!_+ x!} -- ? + x f₂ : A → A → A f₂ x y = {!x +_!} -- x + ? f₃ : A → A → A f₃ x = {!_+ x!} -- λ section → section + x f₄ : A → A → A f₄ x y = {!λ z → z + x!} -- ? + x f₅ : A → A → A f₅ x y = {!λ a b → b + x!} -- ? + x f₆ : A → A → A f₆ x y = {!λ a → a + (a + x)!} -- (λ a → a + (a + x)) ? f₇ : A → A → A f₇ x y = {!λ a → x + (y + a)!} -- x + (y + ?) f₈ : A → A → A f₈ x = {!λ a b → a + b!} -- λ b → ? + b
{ "alphanum_fraction": 0.3064182195, "avg_line_length": 16.6551724138, "ext": "agda", "hexsha": "f192015acf7cadcbfcc3733f08b25fa6545e61b2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1541a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1541a.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1541a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 274, "size": 483 }
open import Relation.Binary hiding (_⇒_) module Experiments.Category {ℓ₁ ℓ₂ ℓ₃} (APO : Preorder ℓ₁ ℓ₂ ℓ₃) where open import Level open Preorder APO renaming (_∼_ to _≤_) open import Function as Fun using (flip) open import Relation.Unary using (Pred) open import Data.Product as Prod using (_,_; _×_) open import Relation.Binary.PropositionalEquality as PEq using (_≡_; cong) open PEq.≡-Reasoning open import Function.Inverse using (Inverse) open import Algebra.FunctionProperties record IsMP {ℓ}(P : Pred Carrier ℓ) : Set (ℓ ⊔ ℓ₁ ⊔ ℓ₃) where field monotone : ∀ {c c'} → c ≤ c' → P c → P c' monotone-refl : ∀ {c} p → monotone (refl {c}) p PEq.≡ p monotone-trans : ∀ {c c' c''} p (c~c' : c ≤ c')(c'~c'' : c' ≤ c'') → monotone (trans c~c' c'~c'') p PEq.≡ monotone c'~c'' (monotone c~c' p) -- monotone predicates over a fixed carrier record MP ℓ : Set (suc ℓ ⊔ ℓ₁ ⊔ ℓ₃) where constructor mp field pred : Pred Carrier ℓ is-mp : IsMP pred open IsMP is-mp public MP₀ = MP zero -- application _·_ : ∀ {ℓ} → MP ℓ → Carrier → Set _ (mp P _) · c = P c -- monotone-predicate equality _≗_ : ∀ {ℓ₁} → MP ℓ₁ → MP ℓ₁ → Set _ P ≗ Q = ∀ {c} → P · c PEq.≡ Q · c import Data.Unit as Unit Const : ∀ {ℓ}(P : Set ℓ) → MP ℓ Const P = mp (λ _ → P) (record { monotone = λ x p → p ; monotone-refl = λ p → PEq.refl ; monotone-trans = λ p c~c' c'~c'' → PEq.refl }) ⊤ : MP zero ⊤ = Const Unit.⊤ -- we package the Agda function that represents morphisms -- in this category in a record such that P ⇒ Q doesn't get -- reduced to the simple underlying type of `apply` infixl 30 _⇒_ record _⇒_ {p q}(P : MP p)(Q : MP q) : Set (p ⊔ q ⊔ ℓ₁ ⊔ ℓ₃) where constructor mk⇒ field apply : ∀ {c} → P · c → Q · c monotone-comm : ∀ {c c'}(c~c' : c ≤ c'){p : P · c} → apply {c'} (MP.monotone P c~c' p) PEq.≡ MP.monotone Q c~c' (apply p) open _⇒_ public -- Const identifies objects that are terminal for this category terminal : ∀ {ℓ a}{A : Set a}{P : MP ℓ} → A → P ⇒ Const A terminal x = mk⇒ (λ _ → x) λ c~c' → λ {p} → PEq.refl infixl 100 _∘_ _∘_ : ∀ {ℓ₁ ℓ₂ ℓ₃}{P : MP ℓ₁}{Q : MP ℓ₂}{R : MP ℓ₃} → Q ⇒ R → P ⇒ Q → P ⇒ R _∘_ {P = P}{Q}{R} F G = mk⇒ (λ p → apply F (apply G p)) (λ c~c' → begin _ ≡⟨ PEq.cong (λ e → apply F e) (monotone-comm G c~c') ⟩ apply F (MP.monotone Q c~c' (apply G _)) ≡⟨ monotone-comm F c~c' ⟩ _ ∎ ) id : ∀ {ℓ}(P : MP ℓ) → P ⇒ P id P = mk⇒ Fun.id (λ _ → PEq.refl) -- morphism equality infixl 20 _⇒≡_ _⇒≡_ : ∀ {ℓ₁ ℓ₂}{P : MP ℓ₁}{Q : MP ℓ₂}(F G : P ⇒ Q) → Set _ _⇒≡_ {P = P}{Q} F G = ∀ {c}(p : P · c) → apply F p PEq.≡ apply G p -- extensionality for morphisms -- This should be provable from proof-irrelevance + extensionality. ⇒-Ext : ∀ (ℓ₁ ℓ₂ : Level) → Set _ ⇒-Ext ℓ₁ ℓ₂ = ∀ {P : MP ℓ₁}{Q : MP ℓ₂}{F G : P ⇒ Q} → F ⇒≡ G → F PEq.≡ G -- isomorphism record _≅_ {ℓ}(P Q : MP ℓ) : Set (ℓ₁ ⊔ ℓ ⊔ ℓ₃) where field to : P ⇒ Q from : Q ⇒ P left-inv : to ∘ from ⇒≡ id Q right-inv : from ∘ to ⇒≡ id P ∘-assoc : ∀ {p q r s}{P : MP p}{Q : MP q}{R : MP r}{S : MP s} {F : R ⇒ S}{G : Q ⇒ R}{H : P ⇒ Q} → F ∘ (G ∘ H) ⇒≡ (F ∘ G) ∘ H ∘-assoc _ = PEq.refl ∘-left-id : ∀ {P Q : MP ℓ₁}{F : P ⇒ Q} → (id Q) ∘ F ⇒≡ F ∘-left-id _ = PEq.refl ∘-right-id : ∀ {P Q : MP ℓ₁}{F : P ⇒ Q} → F ∘ (id P) ⇒≡ F ∘-right-id p = PEq.refl module Product where -- within the category infixl 40 _⊗_ _⊗_ : ∀ {ℓ₁ ℓ₂} → MP ℓ₁ → MP ℓ₂ → MP (ℓ₁ ⊔ ℓ₂) P ⊗ Q = mp (λ c → (P · c) × (Q · c)) (record { monotone = λ{ c~c' (p , q) → MP.monotone P c~c' p , MP.monotone Q c~c' q }; monotone-refl = λ _ → PEq.cong₂ _,_ (MP.monotone-refl P _) (MP.monotone-refl Q _) ; monotone-trans = λ _ _ _ → PEq.cong₂ _,_ (MP.monotone-trans P _ _ _) (MP.monotone-trans Q _ _ _) }) ⟨_,_⟩ : ∀ {y p q}{Y : MP y}{P : MP p}{Q : MP q} → Y ⇒ P → Y ⇒ Q → Y ⇒ P ⊗ Q ⟨ F , G ⟩ = mk⇒ (λ x → apply F x , apply G x) (λ c~c' → PEq.cong₂ _,_ (monotone-comm F c~c') (monotone-comm G c~c')) π₁ : ∀ {ℓ₁ ℓ₂}{P : MP ℓ₁}{Q : MP ℓ₂} → P ⊗ Q ⇒ P π₁ = mk⇒ (λ{ (pc , qc) → pc}) (λ c~c' → PEq.refl) π₂ : ∀ {ℓ₁ ℓ₂}{P : MP ℓ₁}{Q : MP ℓ₂} → P ⊗ Q ⇒ Q π₂ = mk⇒ (λ{ (pc , qc) → qc}) (λ c~c' → PEq.refl) swap : ∀ {ℓ₁ ℓ₂}(P : MP ℓ₁)(Q : MP ℓ₂) → P ⊗ Q ⇒ Q ⊗ P swap _ _ = mk⇒ Prod.swap λ c~c' → PEq.refl comm : ∀ {ℓ₁ ℓ₂ ℓ₃}(P : MP ℓ₁)(Q : MP ℓ₂)(R : MP ℓ₃) → (P ⊗ Q) ⊗ R ⇒ P ⊗ (Q ⊗ R) comm _ _ _ = mk⇒ (λ{ ((p , q) , r) → p , (q , r) }) (λ c~c' → PEq.refl) xmap : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄}{P : MP ℓ₁}{Q : MP ℓ₂}{R : MP ℓ₃}{S : MP ℓ₄} → (F : P ⇒ R)(G : Q ⇒ S) → P ⊗ Q ⇒ R ⊗ S xmap F G = ⟨ F ∘ π₁ , G ∘ π₂ ⟩ uncurry₁ : ∀ {ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{P : MP ℓ₂}{Q : MP ℓ₃} → (A → P ⇒ Q) → (Const A ⊗ P ⇒ Q) uncurry₁ {A = A}{P}{Q} f = mk⇒ (λ{ (a , p) → apply (f a) p }) (λ{ c~c' {a , p} → monotone-comm (f a) c~c' }) module ⊗-Properties where π₁-comm : ∀ {y p q}{Y : MP y}{P : MP p}{Q : MP q}{F : Y ⇒ P}{G : Y ⇒ Q} → π₁ ∘ ⟨ F , G ⟩ ⇒≡ F π₁-comm _ = PEq.refl π₂-comm : ∀ {y p q}{Y : MP y}{P : MP p}{Q : MP q}{F : Y ⇒ P}{G : Y ⇒ Q} → π₂ ∘ ⟨ F , G ⟩ ⇒≡ G π₂-comm _ = PEq.refl unique : ∀ {y p q}{Y : MP y}{P : MP p}{Q : MP q}{g : Y ⇒ (P ⊗ Q)} → ⟨ π₁ ∘ g , π₂ ∘ g ⟩ ⇒≡ g unique _ = PEq.refl module Forall (funext : ∀ {a b} → PEq.Extensionality a b) where -- ∀-quantification over Set Forall : ∀ {ℓ₁ ℓ₂}{I : Set ℓ₁}(P : I → MP ℓ₂) → MP _ Forall {I = I} P = mp (λ c → ∀ (i : I) → P i · c) (record { monotone = λ x x₁ i → MP.monotone (P i) x (x₁ i) ; monotone-refl = λ p → funext λ i → MP.monotone-refl (P i) (p i) ; monotone-trans = λ p c~c' c'~c'' → funext λ i → MP.monotone-trans (P i) (p i) c~c' c'~c'' }) module ListAll where -- quantification over the elements in a list open import Data.Nat open import Data.List import Data.List.All as All open import Data.List.All.Properties open import Data.List.All.Properties.Extra module _ {a p} {A : Set a} {P : A → Set p} where map-id' : ∀ {xs} (pxs : All.All P xs) → All.map {P = P} {Q = P} (λ x → x) pxs ≡ pxs map-id' All.[] = PEq.refl map-id' (px All.∷ pxs) = cong (px All.∷_) (map-id' pxs) All : ∀ {ℓ₁}{I : Set ℓ₁}(P : I → MP ℓ₂) → List I → MP _ All P xs = mp (λ c → All.All (λ x → P x · c) xs) (record { monotone = λ c~c' ps → All.map (λ {i} x → MP.monotone (P i) c~c' x ) ps ; monotone-refl = λ p → (begin All.map (λ {i} x → MP.monotone (P i) refl x) p ≡⟨ map-cong p (λ {i} px → MP.monotone-refl (P i) px) ⟩ All.map (λ x → x) p ≡⟨ map-id' p ⟩ p ∎) ; monotone-trans = λ p c~c' c'~c'' → (begin All.map (λ {i} x → MP.monotone (P i) (trans c~c' c'~c'') x) p ≡⟨ map-cong p (λ {i} p → MP.monotone-trans (P i) p c~c' c'~c'') ⟩ All.map (λ {i} x → MP.monotone (P i) c'~c'' (MP.monotone (P i) c~c' x)) p ≡⟨ PEq.sym (map-map p) ⟩ All.map (λ {i} x → MP.monotone (P i) c'~c'' x) (All.map (λ {i} x → MP.monotone (P i) c~c' x) p) ∎) }) module Exists where -- ∃-quantification over Set Exists : ∀ {ℓ₁ ℓ₂}{I : Set ℓ₁}(P : I → MP ℓ₂) → MP _ Exists {I = I} P = mp (λ x → Prod.∃ λ (i : I) → P i · x) (record { monotone = λ{ c~c' (i , px) → i , MP.monotone (P i) c~c' px } ; monotone-refl = λ{ (i , px) → PEq.cong (λ u → i , u) (MP.monotone-refl (P i) px) }; monotone-trans = (λ { (i , px) p q → PEq.cong (λ u → i , u) (MP.monotone-trans (P i) px p q)}) }) elim : ∀ {ℓ₁ ℓ₂ ℓ₃}{I : Set ℓ₁}{P : I → MP ℓ₂}{Q : MP ℓ₃} → (∀ {i} → P i ⇒ Q) → Exists P ⇒ Q elim {P = P}{Q} F = mk⇒ (λ{ (i , pi) → apply F pi}) (λ{ c~c' {(i , pi)} → monotone-comm F c~c' }) open Product ∃-⊗-comm : ∀ {ℓ₁ ℓ₂ ℓ₃}{I : Set ℓ₁}(P : I → MP ℓ₂)(Q : MP ℓ₃) → Exists (λ i → P i) ⊗ Q ⇒ Exists (λ i → P i ⊗ Q) ∃-⊗-comm _ _ = mk⇒ (λ{ ((i , pi) , q) → (i , pi , q)}) (λ c~c' → PEq.refl) module Monoid where -- identifies _⊗_ as a tensor/monoidal product open Product -- associator assoc : ∀ {p q r}{P : MP p}{Q : MP q}{R : MP r} → (P ⊗ Q) ⊗ R ≅ P ⊗ (Q ⊗ R) assoc = record { to = mk⇒ (λ{ ((p , q) , r) → p , (q , r) }) (λ c~c' → PEq.refl) ; from = mk⇒ (λ{ (p , (q , r)) → (p , q) , r }) (λ c~c' → PEq.refl) ; left-inv = λ _ → PEq.refl ; right-inv = λ _ → PEq.refl } -- left unitor ⊗-left-id : ∀ {p}{P : MP p} → ⊤ ⊗ P ≅ P ⊗-left-id = record { to = π₂ {P = ⊤} ; from = ⟨ mk⇒ (λ x → Unit.tt) (λ c~c' → PEq.refl) , id _ ⟩ ; left-inv = λ p → PEq.refl ; right-inv = λ p → PEq.refl } -- right unitor ⊗-right-id : ∀ {p}{P : MP p} → P ⊗ ⊤ ≅ P ⊗-right-id = record { to = π₁ {Q = ⊤} ; from = ⟨ mk⇒ (λ {c} z → z) (λ c~c' → PEq.refl) , mk⇒ (λ {c} _ → Unit.tt) (λ c~c' → PEq.refl) ⟩ ; left-inv = λ p → PEq.refl ; right-inv = λ p → PEq.refl } -- TODO: coherence conditions module Exponential (trans-assoc : ∀ {c c' c'' c'''}{p : c ≤ c'}{q : c' ≤ c''}{r : c'' ≤ c'''} → trans (trans p q) r PEq.≡ trans p (trans q r)) (trans-refl₁ : ∀ {c c'}{p : c ≤ c'} → trans refl p PEq.≡ p) (trans-refl₂ : ∀ {c c'}{p : c ≤ c'} → trans p refl PEq.≡ p) where -- for convencience we assume extensionality for morphisms here for now postulate ⇒-ext : ∀ {ℓ₁ ℓ₂} → ⇒-Ext ℓ₁ ℓ₂ open Product -- the preorder that we have defined monotonicity by is itself -- a monotone predicate ≤mono : Carrier → MP _ ≤mono c = mp (λ c' → c ≤ c' ) (record { monotone = flip trans ; monotone-refl = λ _ → trans-refl₂ ; monotone-trans = λ _ _ _ → PEq.sym trans-assoc }) -- ... such that we can define the notion of a monotone function as follows: Mono⇒ : ∀ {ℓ ℓ₂}(P : MP ℓ)(Q : MP ℓ₂)(c : Carrier) → Set _ Mono⇒ P Q c = ≤mono c ⊗ P ⇒ Q -- the intuition here comes from the naive interpretation -- of the type of curry: (X ⊗ P ⇒ Q) → X ⇒ (Const (P ⇒ Q)). -- unfolding the return type you would get something like the following Agda type: -- ∀ c → X · c → (∀ c' → P · c' → Q · c') -- this is too weak, because c' and c are unrelated and thus we can't combine -- X · c and P · c' into a product (X ⊗ P) · c'. -- The above Mono⇒ fixes this by simply requiring the relation c ≤ c' as -- an additional argument. infixl 80 _^_ _^_ : ∀ {ℓ₁ ℓ₂}(Q : MP ℓ₁)(P : MP ℓ₂) → MP _ Q ^ P = mp (Mono⇒ P Q) (record { monotone = λ c~c' φ → mk⇒ (λ p → apply φ (trans c~c' (Prod.proj₁ p) , Prod.proj₂ p)) (λ{ c~c'' {w , p} → (begin apply φ (trans c~c' (MP.monotone (≤mono _) c~c'' w) , (MP.monotone P c~c'' p)) ≡⟨ PEq.cong (λ u → apply φ (u , MP.monotone P c~c'' p)) (PEq.sym trans-assoc) ⟩ apply φ (MP.monotone (≤mono _ ⊗ P) c~c'' (trans c~c' w , p)) ≡⟨ monotone-comm φ c~c'' ⟩ MP.monotone Q c~c'' (apply φ (trans c~c' w , p)) ∎)}); monotone-refl = λ φ → ⇒-ext (λ p → PEq.cong (λ u → apply φ (u , (Prod.proj₂ p))) trans-refl₁); monotone-trans = λ φ w₀ w₁ → ⇒-ext λ p → PEq.cong (λ u → apply φ (u , Prod.proj₂ p)) trans-assoc }) curry : ∀ {ℓ₁ ℓ₂ ℓ₃}{X : MP ℓ₁}{Y : MP ℓ₂}{Z : MP ℓ₃}(F : (X ⊗ Y) ⇒ Z) → X ⇒ (Z ^ Y) curry {X = X}{Y}{Z} F = mk⇒ (λ xc → mk⇒ (λ{ (w , yc) → apply F ((MP.monotone X w xc) , yc)}) (λ{ c~c' {w , yc} → (begin apply F (MP.monotone X (trans w c~c') xc , MP.monotone Y c~c' yc) ≡⟨ PEq.cong (λ u → apply F (u , _)) (MP.monotone-trans X xc w c~c') ⟩ apply F (MP.monotone X c~c' (MP.monotone X w xc) , MP.monotone Y c~c' yc) ≡⟨ monotone-comm F c~c' ⟩ MP.monotone Z c~c' (apply F (MP.monotone X w xc , yc)) ∎ )})) λ c~c' {xc} → ⇒-ext λ p → PEq.cong (λ u → apply F (u , _)) (PEq.sym (MP.monotone-trans X xc c~c' (Prod.proj₁ p))) ε : ∀ {ℓ₁ ℓ₂}{Y : MP ℓ₁}{Z : MP ℓ₂} → (Z ^ Y) ⊗ Y ⇒ Z ε {Y = Y}{Z} = mk⇒ (λ zʸ×y → apply (Prod.proj₁ zʸ×y) (refl , Prod.proj₂ zʸ×y) ) λ{ c~c' {φ@(F , p)} → (begin (apply F (trans c~c' refl , MP.monotone Y c~c' p)) ≡⟨ PEq.cong (λ u → apply F (u , _)) trans-refl₂ ⟩ (apply F (c~c' , MP.monotone Y c~c' p)) ≡⟨ PEq.sym (PEq.cong (λ u → apply F (u , _)) trans-refl₁) ⟩ (apply F (trans refl c~c' , MP.monotone Y c~c' p)) ≡⟨ PEq.refl ⟩ (apply F (MP.monotone (≤mono _ ⊗ Y) c~c' (refl , p))) ≡⟨ monotone-comm F c~c' ⟩ MP.monotone Z c~c' (apply F (refl , p)) ∎ )} uncurry : ∀ {ℓ₁ ℓ₂ ℓ₃}{X : MP ℓ₁}{Y : MP ℓ₂}{Z : MP ℓ₃}(F : X ⇒ (Z ^ Y)) → (X ⊗ Y) ⇒ Z uncurry {X = x}{Y}{Z} F = ε ∘ xmap F (id Y) module Sum where open import Data.Sum as Sum using (_⊎_) infixl 30 _⊕_ _⊕_ : ∀ {ℓ₁ ℓ₂} → MP ℓ₁ → MP ℓ₂ → MP (ℓ₁ ⊔ ℓ₂) P ⊕ Q = mp (λ c → (P · c) ⊎ (Q · c)) (record { monotone = λ{ c≤c' (Sum.inj₁ p) → Sum.inj₁ (MP.monotone P c≤c' p) ; c≤c' (Sum.inj₂ q) → Sum.inj₂ (MP.monotone Q c≤c' q) } ; monotone-refl = λ{ (Sum.inj₁ p) → PEq.cong Sum.inj₁ (MP.monotone-refl P p) ; (Sum.inj₂ q) → PEq.cong Sum.inj₂ (MP.monotone-refl Q q) }; monotone-trans = λ{ (Sum.inj₁ p) c≤c' c'≤c'' → PEq.cong Sum.inj₁ (MP.monotone-trans P p c≤c' c'≤c'') ; (Sum.inj₂ q) c≤c' c'≤c'' → PEq.cong Sum.inj₂ (MP.monotone-trans Q q c≤c' c'≤c'') } }) -- canonical injections inj₁ : ∀ {ℓ₁ ℓ₂}{P : MP ℓ₁}(Q : MP ℓ₂) → P ⇒ (P ⊕ Q) inj₁ Q = mk⇒ Sum.inj₁ λ c~c' → PEq.refl inj₂ : ∀ {ℓ₁ ℓ₂}(P : MP ℓ₁){Q : MP ℓ₂} → Q ⇒ (P ⊕ Q) inj₂ Q = mk⇒ Sum.inj₂ λ c~c' → PEq.refl [_,_] : ∀ {ℓ₁ ℓ₂ ℓ₃}{P : MP ℓ₁}{Q : MP ℓ₂}{R : MP ℓ₃} → P ⇒ R → Q ⇒ R → (P ⊕ Q) ⇒ R [_,_] F G = mk⇒ (λ{ (Sum.inj₁ x) → apply F x ; (Sum.inj₂ y) → apply G y}) (λ{ c~c' {Sum.inj₁ x} → monotone-comm F c~c' ; c~c' {Sum.inj₂ y} → monotone-comm G c~c' }) -- TODO [_,_] is unique [g,*]∘inj₁ : ∀ {ℓ₁ ℓ₂ ℓ₃}{P : MP ℓ₁}{Q : MP ℓ₂}{R : MP ℓ₃} → (F : P ⇒ R)(G : Q ⇒ R) → [ F , G ] ∘ inj₁ _ ⇒≡ F [g,*]∘inj₁ F G p = PEq.refl [*,g]∘inj₂ : ∀ {ℓ₁ ℓ₂ ℓ₃}{P : MP ℓ₁}{Q : MP ℓ₂}{R : MP ℓ₃} → (F : P ⇒ R)(G : Q ⇒ R) → [ F , G ] ∘ inj₂ _ ⇒≡ G [*,g]∘inj₂ F G p = PEq.refl
{ "alphanum_fraction": 0.4865680017, "avg_line_length": 35.4651741294, "ext": "agda", "hexsha": "09ac02cb65805cb4e5a240abc2d6204fb364aef7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Experiments/Category.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Experiments/Category.agda", "max_line_length": 111, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Experiments/Category.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 6524, "size": 14257 }
{-# OPTIONS --safe #-} {- Successor structures for spectra, chain complexes and fiber sequences. This is an idea from Floris van Doorn's phd thesis. -} module Cubical.Structures.Successor where open import Cubical.Foundations.Prelude open import Cubical.Data.Int open import Cubical.Data.Nat private variable ℓ : Level record SuccStr (ℓ : Level) : Type (ℓ-suc ℓ) where field Index : Type ℓ succ : Index → Index open SuccStr ℤ+ : SuccStr ℓ-zero ℤ+ .Index = ℤ ℤ+ .succ = sucℤ ℕ+ : SuccStr ℓ-zero ℕ+ .Index = ℕ ℕ+ .succ = suc
{ "alphanum_fraction": 0.6958105647, "avg_line_length": 18.3, "ext": "agda", "hexsha": "ce72551c60ae90926f65da9b61a3e195e9d5ca81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Structures/Successor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Structures/Successor.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Structures/Successor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 180, "size": 549 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sums (disjoint unions) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Base where open import Data.Bool.Base using (true; false) open import Function.Base using (_∘_; _-[_]-_ ; id) open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary using (Dec; yes; no; _because_; ¬_) open import Level using (Level; _⊔_) private variable a b c d : Level A : Set a B : Set b C : Set c D : Set d ------------------------------------------------------------------------ -- Definition infixr 1 _⊎_ data _⊎_ (A : Set a) (B : Set b) : Set (a ⊔ b) where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B ------------------------------------------------------------------------ -- Functions [_,_] : ∀ {C : A ⊎ B → Set c} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ] (inj₁ x) = f x [ f , g ] (inj₂ y) = g y [_,_]′ : (A → C) → (B → C) → (A ⊎ B → C) [_,_]′ = [_,_] fromInj₁ : (B → A) → A ⊎ B → A fromInj₁ = [ id ,_]′ fromInj₂ : (A → B) → A ⊎ B → B fromInj₂ = [_, id ]′ swap : A ⊎ B → B ⊎ A swap (inj₁ x) = inj₂ x swap (inj₂ x) = inj₁ x map : (A → C) → (B → D) → (A ⊎ B → C ⊎ D) map f g = [ inj₁ ∘ f , inj₂ ∘ g ] map₁ : (A → C) → (A ⊎ B → C ⊎ B) map₁ f = map f id map₂ : (B → D) → (A ⊎ B → A ⊎ D) map₂ = map id infixr 1 _-⊎-_ _-⊎-_ : (A → B → Set c) → (A → B → Set d) → (A → B → Set (c ⊔ d)) f -⊎- g = f -[ _⊎_ ]- g -- Conversion back and forth with Dec fromDec : Dec A → A ⊎ ¬ A fromDec ( true because [p]) = inj₁ (invert [p]) fromDec (false because [¬p]) = inj₂ (invert [¬p]) toDec : A ⊎ ¬ A → Dec A toDec (inj₁ p) = yes p toDec (inj₂ ¬p) = no ¬p
{ "alphanum_fraction": 0.4209378408, "avg_line_length": 23.5128205128, "ext": "agda", "hexsha": "3365c88653a898f917609b309b2adf805fd7d214", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Sum/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Sum/Base.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Sum/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 698, "size": 1834 }
------------------------------------------------------------------------ -- Localisation ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- Following "Modalities in Homotopy Type Theory" by Rijke, Shulman -- and Spitters. -- The module is parametrised by a notion of equality. The higher -- constructors of the HIT defining localisation use path equality, -- but the supplied notion of equality is used for many other things. import Equality.Path as P module Localisation {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Prelude as P open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq hiding (ext) open import Pushout eq as Pushout using (Pushout) private variable a b c p q r : Level A B C : Type a P Q R : A → Type p e f g x y : A ------------------------------------------------------------------------ -- Localisation -- A first approximation to localisation. -- -- This is a slight generalisation of the HIT that Rijke et al. call -- 𝓙: they require all types to live in the same universe. data Localisation′ {A : Type a} {P : A → Type p} {Q : A → Type q} (f : ∀ x → P x → Q x) (B : Type b) : Type (a ⊔ b ⊔ p ⊔ q) where [_] : B → Localisation′ f B ext : (P x → Localisation′ f B) → (Q x → Localisation′ f B) ext≡ᴾ : ext g (f x y) P.≡ g y -- A variant of ext≡ᴾ. ext≡ : {f : (x : A) → P x → Q x} {g : P x → Localisation′ f B} → ext g (f x y) ≡ g y ext≡ = _↔_.from ≡↔≡ ext≡ᴾ -- Localisation. Localisation : {A : Type a} {P : A → Type p} {Q : A → Type q} → (∀ x → P x → Q x) → Type b → Type (a ⊔ b ⊔ p ⊔ q) Localisation {p = p} {q = q} {A = A} {P = P} {Q = Q} f = Localisation′ f̂ where P̂ : A ⊎ A → Type (p ⊔ q) P̂ = P.[ ↑ q ∘ P , (λ x → Pushout (record { left = f x; right = f x })) ] Q̂ : A ⊎ A → Type q Q̂ = P.[ Q , Q ] f̂ : (x : A ⊎ A) → P̂ x → Q̂ x f̂ = P.[ (λ x → f x ∘ lower) , (λ x → Pushout.rec id id (refl ∘ f x)) ] ------------------------------------------------------------------------ -- Some eliminators for Localisation′ -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} {P : A → Type p} {Q : A → Type q} (f : ∀ x → P x → Q x) (B : Type b) (R : Localisation′ f B → Type r) : Type (a ⊔ b ⊔ p ⊔ q ⊔ r) where no-eta-equality field []ʳ : ∀ x → R [ x ] extʳ : (∀ y → R (g y)) → ∀ y → R (ext {x = x} g y) ext≡ʳ : (h : (y : P x) → R (g y)) → P.[ (λ i → R (ext≡ᴾ {g = g} {y = y} i)) ] extʳ h (f x y) ≡ h y open Elimᴾ public elimᴾ : Elimᴾ f B R → (x : Localisation′ f B) → R x elimᴾ {f = f} {B = B} {R = R} e = helper where module E = Elimᴾ e helper : (x : Localisation′ f B) → R x helper [ x ] = E.[]ʳ x helper (ext g y) = E.extʳ (λ y → helper (g y)) y helper (ext≡ᴾ {g = g} i) = E.ext≡ʳ (λ y → helper (g y)) i -- A non-dependent eliminator, expressed using paths. record Recᴾ {A : Type a} {P : A → Type p} {Q : A → Type q} (f : ∀ x → P x → Q x) (B : Type b) (C : Type c) : Type (a ⊔ b ⊔ p ⊔ q ⊔ c) where no-eta-equality field []ʳ : B → C extʳ : (P x → C) → Q x → C ext≡ʳ : (g : P x → C) → extʳ g (f x y) P.≡ g y open Recᴾ public recᴾ : Recᴾ f B C → Localisation′ f B → C recᴾ r = elimᴾ λ where .[]ʳ → R.[]ʳ .extʳ → R.extʳ .ext≡ʳ → R.ext≡ʳ where module R = Recᴾ r -- A dependent eliminator. record Elim {A : Type a} {P : A → Type p} {Q : A → Type q} (f : ∀ x → P x → Q x) (B : Type b) (R : Localisation′ f B → Type r) : Type (a ⊔ b ⊔ p ⊔ q ⊔ r) where no-eta-equality field []ʳ : ∀ x → R [ x ] extʳ : (∀ y → R (g y)) → ∀ y → R (ext {x = x} g y) ext≡ʳ : (h : (y : P x) → R (g y)) → subst R (ext≡ {y = y} {g = g}) (extʳ h (f x y)) ≡ h y open Elim public elim : Elim f B R → (x : Localisation′ f B) → R x elim e = elimᴾ λ where .[]ʳ → E.[]ʳ .extʳ → E.extʳ .ext≡ʳ → subst≡→[]≡ ∘ E.ext≡ʳ where module E = Elim e -- A "computation" rule. elim-ext≡ : dcong (elim e) (ext≡ {y = y} {g = g}) ≡ Elim.ext≡ʳ e (elim e ∘ g) elim-ext≡ = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. record Rec {A : Type a} {P : A → Type p} {Q : A → Type q} (f : ∀ x → P x → Q x) (B : Type b) (C : Type c) : Type (a ⊔ b ⊔ p ⊔ q ⊔ c) where no-eta-equality field []ʳ : B → C extʳ : (P x → C) → Q x → C ext≡ʳ : (g : P x → C) → extʳ g (f x y) ≡ g y open Rec public rec : Rec f B C → Localisation′ f B → C rec r = recᴾ λ where .[]ʳ → R.[]ʳ .extʳ → R.extʳ .ext≡ʳ → _↔_.to ≡↔≡ ∘ R.ext≡ʳ where module R = Rec r -- A "computation" rule. rec-ext≡ : {f : ∀ x → P x → Q x} {r : Rec f B C} {g : P x → Localisation′ f B} → cong (rec r) (ext≡ {y = y} {g = g}) ≡ Rec.ext≡ʳ r (rec r ∘ g) rec-ext≡ = cong-≡↔≡ (refl _)
{ "alphanum_fraction": 0.4679399727, "avg_line_length": 26.1785714286, "ext": "agda", "hexsha": "76008549b39be5412276a812ad2c94cf02613d56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Localisation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Localisation.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Localisation.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2059, "size": 5131 }
-- Andreas, 2015-03-17 open import Common.Size data ⊥ : Set where data D (i : Size) : Set where c : Size< i → D i -- This definition of size predecessor should be forbidden... module _ (i : Size) where postulate pred : Size< i -- ...otherwise the injectivity test loops here. iter : ∀ i → D i → ⊥ iter i (c j) = iter j (c (pred j)) loop : Size → ⊥ loop i = iter i (c (pred i)) absurd : ⊥ absurd = FIXME loop ∞ -- Testcase temporarily mutilated, original error -- -Issue1428c.agda:13,5-19 -- -We don't like postulated sizes in parametrized modules. -- +Issue1428c.agda:23,10-15 -- +Not in scope: -- + FIXME at Issue1428c.agda:23,10-15 -- +when scope checking FIXME
{ "alphanum_fraction": 0.6563876652, "avg_line_length": 21.28125, "ext": "agda", "hexsha": "88ac3f4549a56b9296e508f57ab301d06060e83f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1428c.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1428c.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1428c.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 228, "size": 681 }
module DeMorgan where open import Definitions deMorgan : {A B : Set} → ¬ A ∧ ¬ B → ¬ (A ∨ B) deMorgan = {!!}
{ "alphanum_fraction": 0.5803571429, "avg_line_length": 14, "ext": "agda", "hexsha": "cc90ca4b51dd94b27cbe3c53708aa5d32f3fbd29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/DeMorgan/DeMorgan.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/DeMorgan/DeMorgan.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/DeMorgan/DeMorgan.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 40, "size": 112 }