seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf with tf.variable_scope(name) as scope: bn = tf.contrib.layers.batch_norm(
tensorflow.contrib.layers.batch_norm
9,600
from tensorflow.python.framework import ops as _ops _ops.RegisterShape("KernelLabel")(None) _old_outputs = [""]
tensorflow.python.framework.ops.RegisterShape
9,601
import tensorflow as tf with tf.variable_scope("Model_Encoder_Layer"): inputs = tf.concat(attention_outputs, axis = -1) self.enc = [conv(inputs, d, name = "input_projection")] for i in range(3): if i % 2 == 0: # dropout every 2 blocks self.enc[i] = tf.nn.dropout(self.enc[i], 1.0 - self.dropout) self.enc.append( residual_block(self.enc[i], num_blocks = 7, num_conv_layers = 2, kernel_size = 5,
tensorflow.nn.dropout
9,602
import tensorflow as tf with tf.Session() as sess: sess.run(tf.global_variables_initializer())
tensorflow.global_variables_initializer
9,603
import tensorflow as tf action_dtype = self._parse_dtype(self._batch_env.action_space) print(action_dtype) with tf.variable_scope('env_temporary'): self._observ = tf.Variable( lambda: tf.zeros(batch_dims + observ_shape, observ_dtype), name='observ', trainable=False) self._action = tf.Variable( lambda: tf.zeros(batch_dims + action_shape, action_dtype), name='action', trainable=False) self._reward = tf.Variable( lambda: tf.zeros(batch_dims, tf.float32), name='reward', trainable=False) self._done = tf.Variable( lambda: tf.cast(tf.ones(batch_dims), tf.bool), name='done', trainable=False) def __getattr__(self, name): """Forward unimplemented attributes to one of the original environments. Args:
tensorflow.zeros
9,604
import tensorflow as tf _validate_input_parameters(is_tensor=True, shape=shape) num_dims = shape.size tt_rank = np.ones(num_dims + 1) tt_cores = num_dims * [None] with tf.name_scope(name): for i in range(num_dims): curr_core_shape = (1, shape[i], 1) tt_cores[i] = tf.zeros(curr_core_shape, dtype=dtype) return TensorTrain(tt_cores, shape, tt_rank) def eye(shape, dtype=tf.float32, name='t3f_eye'): """Creates an identity TT-matrix.
tensorflow.zeros
9,605
import tensorflow as tf Args: y: matrix of true probabilities same size as probs probs: matrix of probabilities for the minibatch eps: value to clip the probabilities at class_weights: vector of relative weights to be assigned to each class sumd: dimensions along which to sum the x-ent matrix Returns: cross entropy loss for each example in the minibatch """ adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps) xent_mat = -y * tf.log(adjusted_probs) if class_weights is not None: xent_mat *= class_weights return tf.reduce_sum(xent_mat, sumd) def _SafeNegEntropy(probs, batch_size, eps=0.0001): """Computes negative entropy in a way that will not overflow."""
tensorflow.clip_by_value
9,606
import tensorflow as tf queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
tensorflow.layers.dense
9,607
import tensorflow as tf >>> samples.dtype dtype('float32') """ mu, var = self.build_posterior_mean_var(X, Y, test_points, True) jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06 L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter) V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples] V = tf.random_normal(V_shape, dtype=L.dtype) samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V) return tf.transpose(samples) #samples = [] #for i in range(self.num_latent_functions): # L = tf.cholesky(var[:, :, i] + jitter) # V = tf.random_normal([tf.shape(L)[0], num_samples], dtype=L.dtype) # samples.append(mu[:, i:i + 1] + tf.matmul(L, V)) # broadcast #return tf.transpose(tf.pack(samples))
tensorflow.batch_matmul
9,608
import tensorflow as tf { "step": global_step, "loss": loss, "chars": tf.shape(features["chars"]), "source": tf.shape(features["source"]), #"bert": tf.shape(features["bert"]),
tensorflow.shape
9,609
import tensorflow as tf tf.expand_dims(tf.nn.softmax(logits_reversed), 4)) for output in sorted(outputs_to_predictions): predictions = outputs_to_predictions[output] # Compute average prediction across different scales and flipped images. predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4) outputs_to_predictions[output] = tf.argmax(predictions, 3) return outputs_to_predictions def predict_labels(images, model_options, image_pyramid=None):
tensorflow.argmax
9,610
import tensorflow as tf Returns ------- act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ if param_noise_filter_func is None: param_noise_filter_func = default_param_noise_filter with tf.variable_scope(scope, reuse=reuse): observations_ph = U.ensure_tf_input(make_obs_ph("observation")) stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale") reset_ph = tf.placeholder(tf.bool, (), name="reset") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False) param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False) # Unmodified Q. q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
tensorflow.placeholder
9,611
from tensorflow.python.ops import nn self._num_label_columns(), weight_collections=[self._dnn_weight_collection], bias_collections=[self._dnn_weight_collection], name="dnn_logit") self._add_hidden_layer_summary(logit, "dnn_logit") return logit def _add_hidden_layer_summary(self, value, tag): # TODO(zakaria): Move this code to tf.learn and add test. logging_ops.scalar_summary("%s:fraction_of_zero_values" % tag, nn.zero_fraction(value)) logging_ops.histogram_summary("%s:activation" % tag, value) def _linear_logits(self, features): logits, _, _ = layers.weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=self._get_linear_feature_columns(), num_outputs=self._num_label_columns(), weight_collections=[self._linear_weight_collection], name="linear")
tensorflow.python.ops.nn.zero_fraction
9,612
import tensorflow as tf self.r = tf.placeholder(tf.float32, (None,1)) self.ac = tf.placeholder(tf.float32, (None, self.act_space))
tensorflow.placeholder
9,613
import tensorflow as tf for i in range(num_enc_timesteps)] dec_inp_fp_true = [tf.constant(i, tf.int32, shape=[batch_size]) for i in range(num_dec_timesteps)] dec_inp_holder_fp_false = [tf.placeholder(tf.int32, shape=[batch_size]) for _ in range(num_dec_timesteps)] targets = [tf.constant(i + 1, tf.int32, shape=[batch_size]) for i in range(num_dec_timesteps)] weights = [tf.constant(1.0, shape=[batch_size]) for i in range(num_dec_timesteps)] def ForwardBackward(enc_inp, dec_inp, feed_previous): scope_name = "fp_{}".format(feed_previous) with tf.variable_scope(scope_name): dec_op, _ = seq2seq(enc_inp, dec_inp, feed_previous=feed_previous) net_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope_name) optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5) update_op = optimizer.minimize( tf.nn.seq2seq.sequence_loss(dec_op, targets, weights), var_list=net_variables) return dec_op, update_op, net_variables dec_op_fp_true, update_fp_true, variables_fp_true = ForwardBackward( enc_inp, dec_inp_fp_true, feed_previous=True)
tensorflow.variable_scope
9,614
import tensorflow as tf class Model(object): def __init__(self, config, batch, word_mat=None, char_mat=None, trainable=True, opt=True, demo = False, graph = None): self.config = config self.demo = demo self.graph = graph if graph is not None else tf.Graph() with self.graph.as_default(): self.global_step = tf.get_variable('global_step', shape=[], dtype=tf.int32, initializer=tf.constant_initializer(0), trainable=False) self.dropout = tf.placeholder_with_default(0.0, (), name="dropout") if self.demo: self.c = tf.placeholder(tf.int32, [None, config.test_para_limit],"context") self.q = tf.placeholder(tf.int32, [None, config.test_ques_limit],"question") self.ch = tf.placeholder(tf.int32, [None, config.test_para_limit, config.char_limit],"context_char") self.qh = tf.placeholder(tf.int32, [None, config.test_ques_limit, config.char_limit],"question_char") self.y1 = tf.placeholder(tf.int32, [None, config.test_para_limit],"answer_index1") self.y2 = tf.placeholder(tf.int32, [None, config.test_para_limit],"answer_index2") else: self.c, self.q, self.ch, self.qh, self.y1, self.y2, self.qa_id = batch.get_next() # self.word_unk = tf.get_variable("word_unk", shape = [config.glove_dim], initializer=initializer()) self.word_mat = tf.get_variable("word_mat", initializer=tf.constant( word_mat, dtype=tf.float32), trainable=False) self.char_mat = tf.get_variable( "char_mat", initializer=tf.constant(char_mat, dtype=tf.float32)) self.c_mask = tf.cast(self.c, tf.bool) self.q_mask = tf.cast(self.q, tf.bool) self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
tensorflow.placeholder
9,615
import tensorflow as tf vec row, should agree with vecs in shape[0] Output: A tensor of shape (vec_dim) """ if reduction_mode == 'max': print('USING MAX POOLING FOR REDUCTION!') vecs_reduced = tf.segment_max(vecs, segment_inds) elif reduction_mode == 'mean': print('USING AVG POOLING FOR REDUCTION!') vecs_reduced = tf.segment_mean(vecs, segment_inds) vecs_reduced.set_shape([num_segments, vecs.get_shape()[1]]) return vecs_reduced
tensorflow.segment_mean
9,616
import tensorflow as tf dec_op, _ = seq2seq(enc_inp, dec_inp, feed_previous=feed_previous) net_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope_name) optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5) update_op = optimizer.minimize( tf.nn.seq2seq.sequence_loss(dec_op, targets, weights), var_list=net_variables) return dec_op, update_op, net_variables dec_op_fp_true, update_fp_true, variables_fp_true = ForwardBackward( enc_inp, dec_inp_fp_true, feed_previous=True) _, update_fp_false, variables_fp_false = ForwardBackward( enc_inp, dec_inp_holder_fp_false, feed_previous=False) sess.run(tf.global_variables_initializer()) # We only check consistencies between the variables existing in both # the models with True and False feed_previous. Variables created by # the loop_function in the model with True feed_previous are ignored. v_false_name_dict = {v.name.split("/", 1)[-1]: v for v in variables_fp_false} matched_variables = [(v, v_false_name_dict[v.name.split("/", 1)[-1]]) for v in variables_fp_true] for v_true, v_false in matched_variables: sess.run(tf.assign(v_false, v_true)) # Take the symbols generated by the decoder with feed_previous=True as # the true input symbols for the decoder with feed_previous=False.
tensorflow.global_variables_initializer
9,617
import tensorflow as tf util.export_state_tuples(self._initial_state, self._initial_state_name) util.export_state_tuples(self._final_state, self._final_state_name) def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(
tensorflow.contrib.cudnn_rnn.RNNParamsSaveable
9,618
from tensorflow.python.framework import ops # Gradients registration. @ops.RegisterGradient("SparseGather") def _sparse_gather_grad(op, grad): # x is shaped like full tensor [NHWC]
tensorflow.python.framework.ops.RegisterGradient
9,619
import tensorflow as tf q = tf.transpose(q, [0, 2, 1, 3]) k = tf.transpose(k, [0, 2, 1, 3]) v = tf.transpose(v, [0, 2, 1, 3]) if attention_mask is not None:
tensorflow.transpose
9,620
import tensorflow as tf return tf.constant(0, dtype=y.dtype) def _forward_log_det_jacobian(self, x): return tf.constant(0, dtype=x.dtype) def _transpose(self, x, perm): sample_batch_ndims = tf.rank(x) - self.rightmost_transposed_ndims perm = tf.concat([ tf.range(sample_batch_ndims), sample_batch_ndims + perm, ], axis=0) return tf.transpose(a=x, perm=perm) def _maybe_validate_rightmost_transposed_ndims( rightmost_transposed_ndims, validate_args, name=None):
tensorflow.range
9,621
from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined gradient_multipliers=( dnn_linear_combined._extract_embedding_lr_multipliers( # pylint: disable=protected-access
tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined._extract_embedding_lr_multipliers
9,622
from tensorflow.python.framework import ops predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fp, fp_update = _streaming_sparse_false_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fp), name=name) update = math_ops.div( tp_update, math_ops.add(tp_update, fp_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update # TODO(ptucker): Validate range of values in labels? @deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask') def streaming_sparse_precision_at_k(predictions, labels, k, class_id=None, ignore_mask=None, weights=None,
tensorflow.python.framework.ops.add_to_collections
9,623
import tensorflow as tf # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
tensorflow.layers.dense
9,624
import tensorflow as tf return sampled with argscope([Conv2D, FullyConnected], nl=tf.nn.relu): with tf.variable_scope('STN1'): sampled1 = get_stn(image) with tf.variable_scope('STN2'): sampled2 = get_stn(image) # For visualization in tensorboard with tf.name_scope('visualization'): padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]]) padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]]) img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1) # b x 2h x w transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1) transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1) stacked = tf.concat([img_orig, transform1, transform2], 2, 'viz') tf.summary.image('visualize', tf.expand_dims(stacked, -1), max_outputs=30) sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat') logits = (LinearWrap(sampled) .FullyConnected('fc1', out_dim=256, nl=tf.nn.relu) .FullyConnected('fc2', out_dim=128, nl=tf.nn.relu) .FullyConnected('fct', out_dim=19, nl=tf.identity)()) tf.nn.softmax(logits, name='prob') cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label) cost = tf.reduce_mean(cost, name='cross_entropy_loss')
tensorflow.concat
9,625
import tensorflow as tf # segment. # # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss)
tensorflow.variable_scope
9,626
import tensorflow as tf >>> samples.dtype dtype('float32') """ mu, var = self.build_prior_mean_var(test_points, num_latent, True) jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06 L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter) V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples] V = tf.random_normal(V_shape, dtype=L.dtype) samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V) return tf.transpose(samples)
tensorflow.transpose
9,627
import tensorflow as tf self.end_points_D_val = self.model.discriminator( inputs, False, True, num_classes=num_classes, batch_size=batch_size_val) # For printing layers shape self.training_end_points = self.end_points_D self.training_end_points.update(self.end_points_G) tf.summary.histogram("d", self.end_points_D['D_on_data']) tf.summary.histogram("d_", self.end_points_D['D_on_G']) tf.summary.image("G", G) d_label_smooth = self.cnf['d_label_smooth'] # 0.25 self.d_loss_real = self._sigmoid_kl_with_logits(self.end_points_D['D_on_data_logits'], 1. - d_label_smooth) class_loss_weight = 1. self.d_loss_class = class_loss_weight * tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.end_points_D['class_logits'], labels=tf.to_int64(targets)) self.test_loss = 1. - \
tensorflow.summary.image
9,628
import tensorflow as tf obs_tp1_input = U.ensure_tf_input(make_obs_ph("obs_tp1")) done_mask_ph = tf.placeholder(tf.float32, [None], name="done") importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight") # q network evaluation q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act q_func_vars = U.scope_vars(U.absolute_scope_name("q_func")) # target q network evalution q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func") target_q_func_vars = U.scope_vars(U.absolute_scope_name("target_q_func")) # q scores for actions which we know were selected in the given state. q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1) # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True) q_tp1_best_using_online_net = tf.arg_max(q_tp1_using_online_net, 1) q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1) else: q_tp1_best = tf.reduce_max(q_tp1, 1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked
tensorflow.one_hot
9,629
import tensorflow as tf boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4)))
tensorflow.reshape
9,630
import tensorflow as tf 'Directory to keep training outputs.') tf.app.flags.DEFINE_string('eval_dir', '', 'Directory to keep eval outputs.') tf.app.flags.DEFINE_integer('eval_batch_count', 10, 'Number of batches to eval.') tf.app.flags.DEFINE_bool('eval_once', False, 'Whether evaluate the model only once.') tf.app.flags.DEFINE_string('log_root', '', 'Directory to keep the checkpoints. Should be a ' 'parent directory of FLAGS.train_dir/eval_dir.') tf.app.flags.DEFINE_integer('num_gpus', 0, 'Number of gpus used for training. (0 or 1)') tf.app.flags.DEFINE_integer('num_residual_units', 5, 'num of residual units') tf.app.flags.DEFINE_string('Optimizer', 'mom', 'The optimizer used to train the model.') tf.app.flags.DEFINE_bool('RCE_train', False, 'Whether use RCE to train the model.') tf.app.flags.DEFINE_string('attack_method', 'fgsm', 'The attacking method used') tf.app.flags.DEFINE_float('eps', 0.01, 'The eps in attacking methods.') tf.app.flags.DEFINE_string('save_pwd', None, '') epoch_jsma = 100
tensorflow.app.flags.DEFINE_string
9,631
import tensorflow as tf # Project the embeddings to space dimensions for visualization tf.contrib.tensorboard.plugins.projector.visualize_embeddings(summary_writer, config) def add_train_stats(model, hparams): with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i]) tf.summary.scalar("regularization_loss", model.regularization_loss) tf.summary.scalar("stop_token_loss", model.stop_token_loss) tf.summary.scalar("loss", model.loss)
tensorflow.summary.scalar
9,632
import tensorflow as tf translation = tf.reshape([labeled_translations[i][0], labeled_translations[i][2]], [2, 1]) pt_0 = rot @ tf.reshape([min_x, min_z], [2, 1]) + translation pt_1 = rot @ tf.reshape([min_x, max_z], [2, 1]) + translation pt_2 = rot @ tf.reshape([max_x, min_z], [2, 1]) + translation pt_3 = rot @ tf.reshape([max_x, max_z], [2, 1]) + translation for pt in [pt_0, pt_1, pt_2, pt_3]: if pt[0] < box_limits_x[0]:
tensorflow.reshape
9,633
import tensorflow as tf [tf.reduce_mean(inputs_means), tf.reduce_mean(inputs_vars)], "image mean and average var", first_n=1) joint = tf.concat([inputs, G], 0) log.info('Input size of unlabelled and generated %s' % (joint.get_shape())) self.end_points_D = self.model.discriminator( joint, True, None, num_classes=num_classes, batch_size=batch_size_train)
tensorflow.concat
9,634
import tensorflow as tf def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines
tensorflow.gfile.Open
9,635
import tensorflow as tf improvement = (mean_dist-mean_pred_error)/mean_dist pairwise_improvement = tf.nn.relu(dists[1:] - pred_error) pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype) self.pairwise_improvement_bool = pairwise_improvement_bool metrics.append(tf.summary.scalar('training/avg_dist', mean_dist)) metrics.append(tf.summary.scalar('training/pred_dist', mean_pred_error)) metrics.append(tf.summary.scalar('training/improvement', improvement)) metrics.append(tf.summary.scalar('training/improvement_abs', tf.nn.relu(improvement))) metrics.append(tf.summary.histogram('training/improvement_abs_hist', nut.nan_to_zero(improvement))) metrics.append(tf.summary.scalar('training/improvement_pairwise', tf.reduce_mean(pairwise_improvement_bool))) metrics.append(tf.summary.histogram('training/improvement_pairwise_hist', pairwise_improvement_bool)) self.eval_summs = tf.summary.merge(metrics) def _build_embedding_saver(self, sess): """To use embedding visualizer data has to be stored in variable since we would like to visualize TEST_SET, this variable should not affect common checkpoint of the model. Hence, we build a separate variable with a separate saver.""" embedding_shape = [int(len(self.test_set) / FLAGS.batch_size) * FLAGS.batch_size, self.encode.get_shape().as_list()[1]] tsv_path = os.path.join(FLAGS.logdir, 'metadata.tsv') self.embedding_test_ph = tf.placeholder(tf.float32, embedding_shape, name='embedding')
tensorflow.summary.merge
9,636
import tensorflow as tf with tf.variable_scope('branch4_pool'):
tensorflow.variable_scope
9,637
from tensorflow.contrib.boosted_trees.proto import learner_pb2 "f1": constant_op.constant([[3.], [2], [1.]]), "f2": constant_op.constant([[0.1], [3.], [1.]]) } return features, None class BoostedTreeEstimatorTest(test_util.TensorFlowTestCase): def setUp(self): self._export_dir_base = tempfile.mkdtemp() + "export/" gfile.MkDir(self._export_dir_base) def testFitAndEvaluateDontThrowException(self): learner_config = learner_pb2.LearnerConfig() learner_config.num_classes = 2 learner_config.constraints.max_tree_depth = 1 model_dir = tempfile.mkdtemp() config = run_config.RunConfig() classifier = estimator.GradientBoostedDecisionTreeClassifier( learner_config=learner_config, num_trees=1, examples_per_layer=3, model_dir=model_dir, config=config, feature_columns=[contrib_feature_column.real_valued_column("x")])
tensorflow.contrib.boosted_trees.proto.learner_pb2.LearnerConfig
9,638
import tensorflow as tf opt_momentum = knobs['opt_momentum'] # Momentum optimizer momentum grad_clip_norm = knobs['grad_clip_norm'] # L2 norm to clip gradients by # Compute learning rate, gradients tf_trainable_vars = tf.trainable_variables() lr = self._get_learning_rate(step, **knobs) grads = tf.gradients(loss, tf_trainable_vars) self._mark_for_monitoring('lr', lr) # Clip gradients if grad_clip_norm > 0: grads = [tf.clip_by_norm(x, grad_clip_norm) for x in grads] # Init optimizer opt = tf.train.MomentumOptimizer(lr, opt_momentum, use_locking=True, use_nesterov=True) train_op = opt.apply_gradients(zip(grads, tf_trainable_vars), global_step=step) return train_op def _preprocess(self, images, classes, is_train=False, **knobs): batch_size = knobs['batch_size'] cutout_size = knobs['cutout_size']
tensorflow.clip_by_norm
9,639
import tensorflow as tf def _fuse(self): with tf.variable_scope("Context_to_Query_Attention_Layer"): C = tf.tile(tf.expand_dims(self.c_embed_encoding, 2), [1, 1, self.max_q_len, 1]) Q = tf.tile(tf.expand_dims(self.q_embed_encoding, 1), [1, self.max_p_len, 1, 1]) S = trilinear([C, Q, C * Q], input_keep_prob=1.0 - self.dropout)
tensorflow.expand_dims
9,640
import tensorflow as tf new_w = epi_len - h + 1 weights = np.zeros([epi_len, epi_len]) for i in range(new_w): weights[i:i + h, i] = 1.0 weights_list += [weights] weights_tensors = tf.stack([tf.convert_to_tensor(weights, dtype=tf.float32) for weights in weights_list]) rand_horizon = tf.random_uniform((), 0, horizon, dtype=tf.int32) new_w = epi_len - rand_horizon cur_weights = tf.slice(weights_tensors[tf.cast(rand_horizon, tf.int32)], [0, 0], [epi_len, new_w]) # cur_weights = tf.slice(weights_tensors, [tf.cast(rand_horizon, tf.int32), 0, 0], [1, epi_len, new_w]) horizon_pred = tf.matmul(pred, cur_weights) horizon_tgt = tf.matmul(tgt, cur_weights) return horizon_pred, horizon_tgt
tensorflow.random_uniform
9,641
import tensorflow as tf tf.set_random_seed(111) random.seed(111) np.random.seed(111) enc_inp = [tf.constant(i + 1, tf.int32, shape=[batch_size]) for i in range(num_enc_timesteps)] dec_inp_fp_true = [tf.constant(i, tf.int32, shape=[batch_size]) for i in range(num_dec_timesteps)] dec_inp_holder_fp_false = [tf.placeholder(tf.int32, shape=[batch_size]) for _ in range(num_dec_timesteps)] targets = [tf.constant(i + 1, tf.int32, shape=[batch_size]) for i in range(num_dec_timesteps)] weights = [tf.constant(1.0, shape=[batch_size]) for i in range(num_dec_timesteps)] def ForwardBackward(enc_inp, dec_inp, feed_previous): scope_name = "fp_{}".format(feed_previous) with tf.variable_scope(scope_name): dec_op, _ = seq2seq(enc_inp, dec_inp, feed_previous=feed_previous) net_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
tensorflow.constant
9,642
import tensorflow as tf self.lr = learning_rate self.gamma = gamma self.t_replace_iter = t_replace_iter self.t_replace_counter = 0 with tf.variable_scope('Critic'): # Input (s, a), output q self.a = a self.q = self._build_net(S, self.a, 'eval_net', trainable=True) # Input (s_, a_), output q_ for q_target self.q_ = self._build_net(S_, a_, 'target_net', trainable=False) # target_q is based on a_ from Actor's target_net self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net') with tf.variable_scope('target_q'): self.target_q = R + self.gamma * self.q_ with tf.variable_scope('abs_TD'): self.abs_td = tf.abs(self.target_q - self.q) self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights') with tf.variable_scope('TD_error'): self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q)) with tf.variable_scope('C_train'):
tensorflow.get_collection
9,643
import tensorflow as tf truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3), [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1')) truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3), [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2')) truthoutput_h3 = lrelu(deconv2d(tf.concat([truthoutput_h2, tgtctx_h1], 3), [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) truthoutput_h4 = deconv2d(tf.concat([truthoutput_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3
tensorflow.concat
9,644
import tensorflow as tf gpu_copy_stage_ops = [] gpu_compute_stage_ops = [] gpu_grad_stage_ops = [] use_synthetic_gpu_images = (self.dataset is None) with tf.device(self.global_step_device): global_step = tf.contrib.framework.get_or_create_global_step() # Build the processing and model for the worker. with tf.device(self.cpu_device): nclass, images_splits, labels_splits = add_image_preprocessing( self.dataset, input_nchan, image_size, self.batch_size, len(self.devices), input_data_type, self.resize_method, not FLAGS.eval) update_ops = None staging_delta_ops = [] for device_num in range(len(self.devices)):
tensorflow.device
9,645
import tensorflow as tf if return_alphas: return output, scores return output def self_attention(facts, ATTENTION_SIZE, mask, stag='null'): if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) def cond(batch, output, i): return tf.less(i, tf.shape(batch)[1]) def body(batch, output, i): self_attention_tmp = din_fcn_attention(batch[:, i, :], batch[:, 0:i+1, :], ATTENTION_SIZE, mask[:, 0:i+1], softmax_stag=1, stag=stag, mode='LIST') self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1) output = output.write(i, self_attention_tmp) return batch, output, i + 1
tensorflow.shape
9,646
import tensorflow as tf def get_deconv_dim(dim_size, stride_size, kernel_size, padding): dim_size *= stride_size if padding == 'VALID' and dim_size is not None: dim_size += max(kernel_size - stride_size, 0) return dim_size # caculate output shape batch_size = tf.shape(inputs)[0] height = tf.shape(inputs)[1] width = tf.shape(inputs)[2] out_height = get_deconv_dim(height, stride_h, kernel_h, padding) out_width = get_deconv_dim(width, stride_w, kernel_w, padding) output_shape = tf.stack([batch_size, out_height, out_width, num_output_channels], axis=0) outputs = tf.nn.conv2d_transpose(inputs, kernel, output_shape, [1, stride_h, stride_w, 1], padding=padding) biases = _variable_on_cpu('biases', [num_output_channels], tf.constant_initializer(0.0)) outputs = tf.nn.bias_add(outputs, biases) if bn: # outputs = batch_norm_for_conv2d(outputs, is_training, # bn_decay=bn_decay, scope='bn') outputs = tf.layers.batch_normalization(outputs, momentum=0.99, epsilon=1e-6, training=is_training) if activation_fn is not None: # outputs = activation_fn(outputs) outputs = tf.nn.leaky_relu(outputs, alpha=0.2) return outputs
tensorflow.nn.conv2d_transpose
9,647
import tensorflow as tf is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None
tensorflow.contrib.tpu.TPUConfig
9,648
import tensorflow as tf tf.add_to_collection("string_collection", "hello") tf.add_to_collection("variable_collection", v0)
tensorflow.add_to_collection
9,649
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc # To be defunnable, the function cannot return an Operation, so the above # function is used for defun or eager, and this function is used in graph to be # able to run the gradient updates. def graph_step(dynamics, optimizer, samples): loss, grads, samples, _ = l2hmc.loss_and_grads( dynamics, samples, loss_fn=l2hmc.compute_loss) train_op = optimizer.apply_gradients(zip(grads, dynamics.variables)) return train_op, loss, samples
tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.loss_and_grads
9,650
import tensorflow as tf # return np.random.choice(range(probs.shape[1]), p=probs.ravel()) # 从probs中按概率选取出某一个动作 def value(self, ob, g, cw, hw, cm, hm): sess = tf.get_default_session() return sess.run(self.manager_vf, {self.obs: [ob], self.state_in[0]: cw, self.state_in[1]: hw,
tensorflow.get_default_session
9,651
import tensorflow as tf Arguments: - *indicator*: a 1-dimensional boolean tensor indicating which elements are allowed to be sampled and which are not. - *num_samples*: int32 scalar tensor Returns: A boolean tensor with the same shape as input (indicator) tensor """ indices = tf.where(indicator) indices = tf.random.shuffle(indices) indices = tf.reshape(indices, [-1]) num_samples = tf.minimum(tf.size(indices), num_samples) selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1])) selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0]) return tf.equal(selected_indicator, 1)
tensorflow.where
9,652
import tensorflow as tf # normalize res = (input_ - used_mean) / tf.sqrt(used_var + epsilon) # de-normalize if scale: res *= gamma res += beta # update variables if train: with tf.name_scope(name, "AssignMovingAvg", [mean, cur_mean, decay]): with ops.colocate_with(mean): new_mean = tf.assign_sub( mean, tf.check_numerics(decay * (mean - cur_mean), "NaN in moving mean.")) with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]): with ops.colocate_with(var): new_var = tf.assign_sub( var, tf.check_numerics(decay * (var - cur_var), "NaN in moving variance.")) with tf.name_scope(name, "IncrementTime", [step]): with ops.colocate_with(step): new_step = tf.assign_add(step, 1.) res += 0. * new_mean * new_var * new_step return res
tensorflow.check_numerics
9,653
import tensorflow as tf # Used for input shapes of the prediction network if self.data_shape is None: self.data_shape = output_shapes # Handle for the feedable iterator self.handle = tf.placeholder(tf.string, shape=[]) iterator = tf.data.Iterator.from_string_handle( self.handle, output_types, output_shapes) data = iterator.get_next() # Build the actual training and evaluation models self._train_graph(data) self._eval_graph(data) self.summaries = tf.summary.merge_all() # Prediction network with feed_dict self.pred_in = {i: tf.placeholder(self.input_spec[i]['type'], shape=s, name=i) for i, s in self.data_shape.items()} self._pred_graph(self.pred_in) # Start session sess_config = tf.ConfigProto(device_count={'GPU': self.n_gpus}) sess_config.gpu_options.allow_growth = True self.sess = tf.Session(config=sess_config) # Register tf dataset handles if self.datasets:
tensorflow.summary.merge_all
9,654
import tensorflow as tf _TRAIN_FEATURE_MAP = { movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string), movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string), rconst.MASK_START_INDEX: tf.FixedLenFeature([1], dtype=tf.string), "labels": tf.FixedLenFeature([], dtype=tf.string), }
tensorflow.FixedLenFeature
9,655
import tensorflow as tf b = tf.get_variable("b", [nf], initializer=b_init) if rf == 1: #faster 1x1 conv c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf]))+b, shape_list(x)[:-1]+[nf]) else: #was used to train LM
tensorflow.reshape
9,656
import tensorflow as tf input_files.extend(tf.gfile.Glob(input_pattern)) if FLAGS.input_dir is not None: for filename in tf.gfile.ListDirectory(FLAGS.input_dir): input_files.extend(tf.gfile.Glob(os.path.join(FLAGS.input_dir, filename))) tf.logging.info("*** Input Files ***") for input_file in input_files: tf.logging.info(" %s" % input_file) validation_input_files = [] if FLAGS.validation_input_file is None and FLAGS.validation_input_dir is None: validation_input_files = input_files else: if FLAGS.validation_input_file is not None: for input_pattern in FLAGS.validation_input_file.split(","): validation_input_files.extend(tf.gfile.Glob(input_pattern)) if FLAGS.validation_input_dir is not None: for filename in tf.gfile.ListDirectory(FLAGS.validation_input_dir): validation_input_files.extend(tf.gfile.Glob(os.path.join(FLAGS.validation_input_dir, filename))) tf.logging.info("*** Input Validation Files ***") for input_file in validation_input_files: tf.logging.info(" %s" % input_file) config = tf.ConfigProto() if FLAGS.xla: config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 if FLAGS.use_hvd: config.gpu_options.visible_device_list = str(hvd.local_rank()) config.gpu_options.allow_growth=True
tensorflow.gfile.Glob
9,657
import tensorflow as tf tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10) summary_op = tf.summary.merge_all() # Saving the model saver = tf.train.Saver() step = 0 with tf.Session() as sess: if train_model: tensorboard_path, saved_model_path, log_path = form_results() sess.run(init) writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph) x_l, y_l = mnist.test.next_batch(n_labeled) for i in range(n_epochs): n_batches = int(n_labeled / batch_size) print("------------------Epoch {}/{}------------------".format(i, n_epochs)) for b in range(1, n_batches + 1): z_real_dist = np.random.randn(batch_size, z_dim) * 5. real_cat_dist = np.random.randint(low=0, high=10, size=batch_size)
tensorflow.Session
9,658
import tensorflow as tf horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) horizon_pred1, horizon_pred2 = tf.split(horizon_pred, 2, axis=0) horizon_tgt1, horizon_tgt2 = tf.split(horizon_tgt, 2, axis=0) pred_flat1, pred_flat2 = tf.reshape(horizon_pred1, [-1, 1]), tf.reshape(horizon_pred2, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt1, [-1, 1]), tf.reshape(horizon_tgt2, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss) return final_loss, cstr_pct def contra_traj_lossV9(pred, tgt, horizon=12, margin=1): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tensorflow.maximum
9,659
import tensorflow as tf return tf.cast(tf.clip_by_value(ret, 0, 255), tf.uint8)[0] def resize_shortest_edge(image, image_shape, size): shape = tf.cast(image_shape, tf.float32) w_greater = tf.greater(image_shape[0], image_shape[1]) shape = tf.cond(w_greater,
tensorflow.cast
9,660
import tensorflow as tf with tf.variable_scope(name): w = tf.get_variable( name="kernel",
tensorflow.get_variable
9,661
import tensorflow as tf def testTiedRNNSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 cell = tf.nn.rnn_cell.OutputProjectionWrapper( tf.nn.rnn_cell.GRUCell(2), 4) dec, mem = tf.nn.seq2seq.tied_rnn_seq2seq(inp, dec_inp, cell) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual(1, len(res))
tensorflow.nn.seq2seq.tied_rnn_seq2seq
9,662
import tensorflow as tf with tf.variable_scope('abs_TD'): self.abs_td = tf.abs(self.target_q - self.q) self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights') with tf.variable_scope('TD_error'): self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q)) with tf.variable_scope('C_train'): self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP) with tf.variable_scope('a_grad'): self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim) def _build_net(self, s, a, scope, trainable): with tf.variable_scope(scope): init_w = tf.random_normal_initializer(0., 0.01) init_b = tf.constant_initializer(0.01) with tf.variable_scope('l1'): n_l1 = 700 # combine the action and states together in this way w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable) w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable) b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable) net = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1) with tf.variable_scope('l2'): net = tf.layers.dense(net, 20, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable) with tf.variable_scope('q'): q = tf.layers.dense(net, 1, kernel_initializer=init_w, bias_initializer=init_b, trainable=trainable) # Q(s,a)
tensorflow.random_normal_initializer
9,663
import tensorflow as tf f_score, f_geometry = model.model(images, is_training=True) model_loss = model.loss(score_maps, f_score, geo_maps, f_geometry, training_masks) total_loss = tf.add_n([model_loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) # add summary if reuse_variables is None: tf.summary.image('input', images) tf.summary.image('score_map', score_maps) tf.summary.image('score_map_pred', f_score * 255) tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1]) tf.summary.image('geo_map_0_pred', f_geometry[:, :, :, 0:1]) tf.summary.image('training_masks', training_masks) tf.summary.scalar('model_loss', model_loss) tf.summary.scalar('total_loss', total_loss) return total_loss, model_loss
tensorflow.summary.image
9,664
import tensorflow as tf # Reshape x_discrete shape_x = common_layers.shape_list(x) shape_discrete = shape_x[:-1] x_discrete = tf.reshape(x_discrete, shape_discrete) x_means = tf.reshape(x_means, shape=shape_x) h1 = x + tf.stop_gradient(x_means - x) h2 = tf.layers.dense(tf.nn.relu(h1), self.hparams.filter_size, name="vch2") res = tf.layers.dense( tf.nn.relu(h2), self.hparams.hidden_size, name="vcfin") embed_fn = partial(self.embed) return { "dense": res, "discrete": x_discrete,
tensorflow.nn.relu
9,665
import tensorflow as tf alpha_std = tf.exp(alpha_logstd) # Compute epsilon from {n_samples} standard Gaussian # epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out]) epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out]) hyp_params = tf.get_variable('hyp_params_layer'+str(h), shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer else: F = tf.squeeze(tf.layers.dense(Z, n_out), [2]) return F, KL
tensorflow.cos
9,666
import tensorflow as tf out_blocks = tf.transpose(out_blocks, (1, 2, 3, 0, 4)) # Combine to constant channels with tf.variable_scope('combine'): W = self._make_var('W', (ni, block_ch * block_ch)) W = tf.gather(W, unused_indices, axis=0) W = tf.reshape(W, (1, 1, num_out_blocks * block_ch, block_ch)) X = tf.reshape(out_blocks, (-1, w, h, num_out_blocks * block_ch)) X = tf.nn.relu(X) X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME')
tensorflow.gather
9,667
import tensorflow as tf x_means = tf.reshape(x_means, shape=shape_x) h1 = x + tf.stop_gradient(x_means - x)
tensorflow.stop_gradient
9,668
import tensorflow as tf predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
tensorflow.logging.info
9,669
import tensorflow as tf is_training = False with tf.variable_scope('RGB'): self.feature, _ = InceptionI3d(
tensorflow.variable_scope
9,670
import tensorflow as tf ''' # Value FC value = Dense(units=1, kernel_initializer=normalized_columns_initializer(1.0), bias_initializer=None, activation=None)(inputs=self.rnn_out) # rnn_out_frozen = tf.stop_gradient(self.rnn_out) next_loc_mean = Dense(units=2, kernel_initializer=normalized_columns_initializer(1.0), bias_initializer=None, activation=tf.math.tanh)(inputs=self.rnn_out) # was rnn_out_frozen loc_std = Dense(units=1, kernel_initializer=normalized_columns_initializer(1.0), activation=tf.nn.softplus)(inputs = self.rnn_out) # Policy FC next_loc = tf.clip_by_value(next_loc_mean + tf.random_normal([1,2], 0, loc_std), -1, 1) # next_loc = tf.stop_gradient(next_loc) return value, next_loc_mean, loc_std, next_loc, state_out, state_in, state_init
tensorflow.random_normal
9,671
import tensorflow as tf merged = tf.merge_all_summaries() if not os.path.exists('tensorboard_logs/'): os.makedirs('tensorboard_logs/') my_writer = tf.train.SummaryWriter('tensorboard_logs/', sess.graph)
tensorflow.train.SummaryWriter
9,672
import tensorflow as tf if train: with tf.name_scope(name, "AssignMovingAvg", [mean, cur_mean, decay]): with ops.colocate_with(mean): new_mean = tf.assign_sub( mean, tf.check_numerics(decay * (mean - cur_mean), "NaN in moving mean.")) with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]): with ops.colocate_with(var): new_var = tf.assign_sub( var, tf.check_numerics(decay * (var - cur_var), "NaN in moving variance.")) with tf.name_scope(name, "IncrementTime", [step]): with ops.colocate_with(step): new_step = tf.assign_add(step, 1.) res += 0. * new_mean * new_var * new_step return res # batch normalization taking into account the volume transformation def batch_norm_log_diff(input_, dim, name, train=True, epsilon=1e-8, decay=.1, axes=[0],
tensorflow.assign_add
9,673
import tensorflow as tf l = batch_norm_conv(l, b_train=bn_phaze, scope='bn') l = act_func(l) l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], dilation=dilation, non_linear_fn=None, bias=use_bias) l = tf.concat([l, layer], 3) return l def add_residual_layer(layer, filter_dims, act_func=tf.nn.relu, scope='residual_layer', use_bn=True, bn_phaze=False, use_bias=False, dilation=[1, 1, 1, 1]): with tf.variable_scope(scope): l = layer if use_bn: l = batch_norm_conv(l, b_train=bn_phaze, scope='bn') l = act_func(l) l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], dilation=dilation, non_linear_fn=act_func, bias=use_bias) return l
tensorflow.variable_scope
9,674
from tensorflow.python.ops import control_flow_ops [cell() for _ in range(num_layers)]) outputs, final_state = core_rnn.static_rnn( multi_cell, inputs, dtype=dtypes.float32) trainable_variables = ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state], trainable_variables) training_op = control_flow_ops.group(*gradients) self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" % (config_name, self._GetConfigDesc(config))) if __name__ == "__main__": test.main()
tensorflow.python.ops.control_flow_ops.group
9,675
import tensorflow as tf def LSGAN_losses(real, fake): d_real = tf.reduce_mean(tf.squared_difference(real, 1), name='d_real') d_fake = tf.reduce_mean(tf.square(fake), name='d_fake') d_loss = tf.multiply(d_real + d_fake, 0.5, name='d_loss') g_loss = tf.reduce_mean(tf.squared_difference(fake, 1), name='g_loss') add_moving_summary(g_loss, d_loss) return g_loss, d_loss with tf.name_scope('losses'): with tf.name_scope('LossA'): # reconstruction loss recon_loss_A = tf.reduce_mean(tf.abs(A - ABA), name='recon_loss') # gan loss G_loss_A, D_loss_A = LSGAN_losses(A_dis_real, A_dis_fake) with tf.name_scope('LossB'): recon_loss_B = tf.reduce_mean(tf.abs(B - BAB), name='recon_loss') G_loss_B, D_loss_B = LSGAN_losses(B_dis_real, B_dis_fake)
tensorflow.name_scope
9,676
import tensorflow as tf extra_zeros = tf.zeros((batch_size, self.max_phrase_size)) vocab_dist = tf.concat(values=[vocab_dist, extra_zeros], axis=1) # [batch_size, extended_vsize] if self.options.add_first_word_prob_for_phrase: # add prob of the first word to each phrase attn_dist = add_first_word_prob_to_atten_dists(self.in_passage_words, self.phrase_starts, vocab_dist, attn_dist) # match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, extended_vsize] batch_nums = tf.range(0, limit=batch_size) # shape (batch_size) batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1) batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length) step_nums = tf.range(0, limit=passage_length) # [passage_length] step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length) step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length) indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3) indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3] indices = tf.cast(indices, tf.int64) shape = [batch_size, passage_length, extended_vsize] shape = tf.cast(shape, tf.int64) attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length] one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize] if passage_mask is not None: passage_mask = tf.expand_dims(passage_mask, axis=-1) one_hot_spare_rep = one_hot_spare_rep * passage_mask one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize] vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
tensorflow.cast
9,677
import tensorflow as tf tensors = { 'a': tf.compat.v1.placeholder(tf.float32, ()), } with self.assertRaises(ValueError): schema_inference.infer_feature_schema(tensors, graph) def test_bucketization_annotation(self): # TODO(b/132098015): Schema annotations aren't yet supported in OSS builds. # pylint: disable=g-import-not-at-top try: from tensorflow_transform import annotations_pb2 except ImportError: return # pylint: enable=g-import-not-at-top with tf.compat.v1.Graph().as_default() as graph: inputs = { 'foo': tf.convert_to_tensor([0, 1, 2, 3]), 'bar': tf.convert_to_tensor([0, 2, 0, 2]), } boundaries_foo = tf.expand_dims(tf.convert_to_tensor([.5, 1.5]), axis=0) boundaries_bar = tf.expand_dims(tf.convert_to_tensor([.1, .2]), axis=0) outputs = {} # tft.apply_buckets will annotate the feature in the output schema to # indicate the bucket boundaries that were applied. outputs['Bucketized_foo'] = mappers.apply_buckets(inputs['foo'], boundaries_foo) outputs['Bucketized_bar'] = mappers.apply_buckets(inputs['bar'],
tensorflow.compat.v1.Graph
9,678
import tensorflow as tf # Reshape x_discrete shape_x = common_layers.shape_list(x) shape_discrete = shape_x[:-1] x_discrete = tf.reshape(x_discrete, shape_discrete) x_means = tf.reshape(x_means, shape=shape_x) h1 = x + tf.stop_gradient(x_means - x)
tensorflow.reshape
9,679
import tensorflow as tf "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training:
tensorflow.to_int32
9,680
import tensorflow as tf p = self._testParams() tp = p.train tp.lr_schedule.boundaries = [300000, 400000, 500000] tp.lr_schedule.values = [1.0, 0.1, 0.01, 0.001] lrs = tp.lr_schedule.Instantiate() steps = [299999, 300001, 399999, 400001, 499999, 500001] fetches = [lrs.Value(_) for _ in steps] values = sess.run(fetches) self.assertAllClose([1.0, 0.1, 0.1, 0.01, 0.01, 0.001], values) def testBatchSplit(self): def Run(num_splits): p = self._testParams() with self.session(use_gpu=False, graph=tf.Graph()) as sess: tf.set_random_seed(93820981) p.is_eval = True p.input.cur_iter_in_seed = False p.input.bucket_batch_limit = [ b * 2 / num_splits for b in p.input.bucket_batch_limit ] with cluster_factory.ForTestingWorker(gpus=num_splits): mdl = p.Instantiate() metrics = mdl.FPropDefaultTheta()[0] tf.global_variables_initializer().run() return sess.run(metrics['loss']) res1, res2 = Run(1), Run(2) self.assertAllClose(res1[0], res2[0]) self.assertAllEqual(res1[1], res2[1])
tensorflow.set_random_seed
9,681
import tensorflow as tf activation=tf.nn.relu, padding="same") x = tf.layers.conv2d(x, 32, (5, 5), strides=(2, 2),
tensorflow.layers.conv2d
9,682
import tensorflow as tf "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator."""
tensorflow.reduce_sum
9,683
import tensorflow as tf axis=1) # IMP: This is sum, as expectation wrt f loss_bc = -tf.reduce_mean(gain_bc) loss_policy = loss_f + loss_bc # Value/Q function loss, and explained variance check_shape([qret, q_i], [[self.n_envs * self.n_steps]] * 2) explained_variance = q_explained_variance(tf.reshape(q_i, [self.n_envs, self.n_steps]), tf.reshape(qret, [self.n_envs, self.n_steps])) loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i) * 0.5) # Net loss check_shape([loss_policy, loss_q, entropy], [[]] * 3) loss = loss_policy + self.q_coef * loss_q - self.ent_coef * entropy tf.summary.scalar('entropy_loss', entropy) tf.summary.scalar('policy_gradient_loss', loss_policy) tf.summary.scalar('value_function_loss', loss_q) tf.summary.scalar('loss', loss)
tensorflow.stop_gradient
9,684
import tensorflow as tf def add_dense_transition_layer(layer, filter_dims, stride_dims=[1, 1], act_func=tf.nn.relu, scope='transition', use_bn=True, bn_phaze=False, use_pool=True, use_bias=False, dilation=[1, 1, 1, 1]): with tf.variable_scope(scope): if use_bn: l = batch_norm_conv(layer, b_train=bn_phaze, scope='bn')
tensorflow.variable_scope
9,685
import tensorflow as tf if lengths is None: if input_ids is not None: lengths = tf.reduce_sum(tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=tf.int32), axis=1) else: lengths = tf.convert_to_tensor([slen] * bs, tf.int32) # mask = input_ids != self.pad_index # check inputs # assert shape_list(lengths)[0] == bs
tensorflow.convert_to_tensor
9,686
from tensorflow.python.ops import variable_scope Returns: value_tensor: A tensor representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_negatives', [predictions, labels]): predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_false_negative = math_ops.logical_and(math_ops.equal(labels, 1), math_ops.equal(predictions, 0)) return _count_condition(is_false_negative, weights, metrics_collections, updates_collections)
tensorflow.python.ops.variable_scope.variable_scope
9,687
from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils self._assertCommonMetrics(metrics) def _assertCommonMetrics(self, metrics): estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics)
tensorflow.contrib.learn.python.learn.estimators.estimator_test_utils.assert_in_range
9,688
import tensorflow as tf with tf.Session(config=sess_config) as sess: input_image = tf.constant(input_image, dtype=tf.float32) output = MODEL.build_server_graph(FLAGS, input_image) output = (output + 1.) * 127.5 output = tf.reverse(output, [-1]) output = tf.saturate_cast(output, tf.uint8) # load pretrained model vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) assign_ops = [] for var in vars_list: vname = var.name from_name = vname var_value = tf.contrib.framework.load_variable(MODEL_DIR, from_name) assign_ops.append(tf.assign(var, var_value))
tensorflow.get_collection
9,689
import tensorflow as tf from alpharotate.utils.pretrain_zoo import PretrainModelZoo os.environ["CUDA_VISIBLE_DEVICES"] = cfgs.GPU_GROUP class TrainR3DetDCL(Train): def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects): return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \ gtboxes_and_label_r[:int(num_objects), :].astype(np.float32) def main(self): with tf.Graph().as_default() as graph, tf.device('/cpu:0'): num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step() lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu) tf.summary.scalar('lr', lr) optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM) r3det_dcl = build_whole_network.DetectionNetworkR3DetDCL(cfgs=self.cfgs, is_training=True) with tf.name_scope('get_batch'):
tensorflow.Graph
9,690
import tensorflow as tf return {f: example[f] for f in feature_list if f in example} def _eager_dataset_iterator(dataset): for item in dataset: flat = tf.nest.flatten(item) flat = [el.numpy() for el in flat] yield tf.nest.pack_sequence_as(item, flat) def _train_and_eval_dataset_v1(problem_name, data_dir, train_shuffle_files, eval_shuffle_files): """Return train and evaluation datasets, feature info and supervised keys.""" with tf.device('cpu:0'):
tensorflow.nest.pack_sequence_as
9,691
import tensorflow as tf import tensorflow as tf import numpy as np import time from tensorflow.contrib.rnn import GRUCell from util.infolog import log def prenet(inputs, is_training, layer_sizes, scope=None): x = inputs drop_rate = 0.5 if is_training else 0.0 with tf.variable_scope(scope or 'prenet'): for i, size in enumerate(layer_sizes): dense = tf.layers.dense(x, units=size, activation=tf.nn.relu, name='dense_%d' % (i + 1)) x = tf.layers.dropout(dense, rate=drop_rate, training=is_training, name='dropout_%d' % (i + 1)) return x def encoder_cbhg(inputs, input_lengths, is_training, depth): input_channels = inputs.get_shape()[2] return cbhg( inputs, input_lengths, is_training, scope='encoder_cbhg', K=16, projections=[128, input_channels], depth=depth)
tensorflow.layers.dropout
9,692
import tensorflow as tf 'is_training': is_training and fine_tune_batch_norm, 'decay': 0.9997, 'epsilon': 1e-5, 'scale': True, } with slim.arg_scope( [slim.conv2d, slim.separable_conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, padding='SAME', stride=1, reuse=reuse): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with tf.variable_scope(_DECODER_SCOPE, _DECODER_SCOPE, [features]): feature_list = feature_extractor.networks_to_feature_maps[ model_variant][feature_extractor.DECODER_END_POINTS] if feature_list is None: tf.logging.info('Not found any decoder end points.') return features else: decoder_features = features for i, name in enumerate(feature_list): decoder_features_list = [decoder_features] feature_name = '{}/{}'.format( feature_extractor.name_scope[model_variant], name) decoder_features_list.append( slim.conv2d( # end_points["refinement_net/" + feature_name],
tensorflow.variable_scope
9,693
import tensorflow as tf truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
tensorflow.reshape
9,694
import tensorflow as tf wrong = tf.to_float(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), name='incorrect_vector') summary.add_moving_summary(tf.reduce_mean(wrong, name='train_error'))
tensorflow.reduce_mean
9,695
import tensorflow as tf def augment(features, targets): features['image'] = _cifar_augment_image(features['image']) return features, targets def cast_image(features, targets): features['image'] = tf.cast(features['image'], tf.float32) / 255.0 return features, targets if training: dataset = dataset.map(augment) dataset = dataset.map(cast_image)
tensorflow.cast
9,696
import tensorflow as tf is_training=True) # data processing inputs_list = [] for i in range(num_gpu): img = tf.expand_dims(img_batch[i], axis=0) pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_r = tf.py_func(backward_convert, inp=[gtboxes_and_label_batch[i]], Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) num_objects = num_objects_batch[i] num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
tensorflow.py_func
9,697
import tensorflow as tf x_ = K.exp(x) + K.epsilon() # Only keep the diagonal elements. x_ *= diag_mask # Add the original, non-diagonal elements. x_ += x * (1. - diag_mask) # Finally, gather everything into a lower triangular matrix. L_ = tf.gather(x_, tril_mask) return [L_, tf.transpose(L_)] tmp = tf.scan(fn, L_flat, initializer=init) if isinstance(tmp, (list, tuple)): # TensorFlow 0.10 now returns a tuple of tensors. L, LT = tmp else:
tensorflow.transpose
9,698
import tensorflow as tf def hgru_ops(self, i0, x, h2, layer, layer_idx): """hGRU body.""" var_scope = '%s_hgru_weights' % layer # Circuit input receives recurrent output h2 c1, g1 = self.circuit_input( h2=h2, layer=layer, var_scope=var_scope, layer_idx=layer_idx) with tf.variable_scope( '%s/c1_bn' % var_scope, reuse=self.scope_reuse) as scope: c1 = tf.contrib.layers.batch_norm( inputs=c1, scale=True, center=False, fused=True, renorm=False, param_initializers=self.param_initializer, updates_collections=None, scope=scope, reuse=self.reuse, is_training=self.train)
tensorflow.contrib.layers.batch_norm
9,699