seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf logits += adder else: adder = 0.0 attention_probs = tf.nn.softmax(logits, name="attention_probs") attention_probs = dropout(attention_probs, dropout_rate) return tf.matmul(attention_probs, v)
tensorflow.nn.softmax
9,800
import tensorflow as tf # which has `inputs` and `targets`. if text_preprocess_fns is not None: for text_preprocess_fn in text_preprocess_fns: dataset = text_preprocess_fn(dataset, training) # Print debugging examples if needed before tokenization. if debug_print_examples: def print_examples(x): if np.random.uniform() < debug_print_examples_rate: tf.print(x, output_stream=logging.info) return x dataset = dataset.map(print_examples) # Vocabulary for tokenization. extra_ids = 0 vocab = t5_data().SentencePieceVocabulary( sentencepiece_model_file=spm_path or t5_data().DEFAULT_SPM_PATH, extra_ids=extra_ids)
tensorflow.print
9,801
import tensorflow as tf offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0)) out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
tensorflow.sqrt
9,802
from tensorflow.python.framework import ops Raises: TypeError: If `x` cannot be cast to the `bfloat16`. """ return cast(x, types.bfloat16, name=name) ops.Tensor._override_operator("__neg__", neg) ops.Tensor._override_operator("__abs__", abs) # __invert__ corresponds to the ~ operator. Here we follow the numpy convention # ~ marks an elementwise bit-wise inverse. This is only implemented for boolean # tensors and will throw a TypeError if used on nonboolean arrays ops.Tensor._override_operator("__invert__", logical_not) def _OverrideBinaryOperatorHelper(func, op_name): """Register operators with different tensor and scalar versions. Args: func: the operator op_name: name of the operator being overridden """ def binary_op_wrapper(x, y):
tensorflow.python.framework.ops.Tensor._override_operator
9,803
import tensorflow as tf features["label_ids"] = create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64:
tensorflow.FixedLenFeature
9,804
import tensorflow as tf masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return { "masked_lm_accuracy": masked_lm_accuracy, "masked_lm_loss": masked_lm_mean_loss, "next_sentence_accuracy": next_sentence_accuracy, "next_sentence_loss": next_sentence_mean_loss, } eval_metrics = (metric_fn, [ masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss,
tensorflow.metrics.accuracy
9,805
import tensorflow as tf # sample mixture indicator from softmax sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform( tf.shape(logit_probs), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32) sel = tf.reshape(sel, xs[:-1] + [1, nr_mix]) # select logistic parameters means = tf.reduce_sum(l[:, :, :, :, :nr_mix] * sel, 4) log_scales = tf.maximum(tf.reduce_sum( l[:, :, :, :, nr_mix:2 * nr_mix] * sel, 4), -7.) coeffs = tf.reduce_sum(tf.nn.tanh( l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4) # sample from logistic & clip to interval # we don't actually round to the nearest 8bit value when sampling u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5) x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u)) x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.) x1 = tf.minimum(tf.maximum( x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.) x2 = tf.minimum(tf.maximum( x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.) return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
tensorflow.exp
9,806
import tensorflow as tf 'centers', [num_classes, num_features], dtype=tf.float32, initializer=tf.constant_initializer(0), trainable=False) label = tf.reshape(label, [-1]) centers_batch = tf.gather(centers, label) diff = (1 - alpha) * (centers_batch - features) centers = tf.scatter_sub(centers, label, diff) loss = tf.nn.l2_loss(features - centers_batch) return loss, centers def correlation_loss(source_samples, target_samples, weight, name='corr_loss'): """Adds a similarity loss term, the correlation between two representations.
tensorflow.scatter_sub
9,807
import tensorflow as tf parsed_tensors[k], default_value='') else: parsed_tensors[k] = tf.sparse.to_dense( parsed_tensors[k], default_value=0) image = self._decode_image(parsed_tensors) boxes = self._decode_boxes(parsed_tensors) areas = self._decode_areas(parsed_tensors) is_crowds = tf.cond( tf.greater(tf.shape(parsed_tensors['image/object/is_crowd'])[0], 0), lambda: tf.cast(parsed_tensors['image/object/is_crowd'], dtype=tf.bool), lambda: tf.zeros_like(parsed_tensors['image/object/class/label'], dtype=tf.bool)) # pylint: disable=line-too-long if self._include_mask: masks = self._decode_masks(parsed_tensors) decoded_tensors = { 'image': image, 'source_id': parsed_tensors['image/source_id'], 'height': parsed_tensors['image/height'], 'width': parsed_tensors['image/width'], 'groundtruth_classes': parsed_tensors['image/object/class/label'], 'groundtruth_is_crowd': is_crowds,
tensorflow.zeros_like
9,808
from tensorflow.python.framework import ops math_ops.mul(math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)), 'pearson_r') with ops.control_dependencies( [update_cov, update_var_predictions, update_var_labels]): update_op = _safe_div(update_cov, math_ops.mul( math_ops.sqrt(update_var_predictions), math_ops.sqrt(update_var_labels)), 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, pearson_r) if updates_collections: ops.add_to_collections(updates_collections, update_op) return pearson_r, update_op # TODO(nsilberman): add a 'normalized' flag so that the user can request
tensorflow.python.framework.ops.add_to_collections
9,809
import tensorflow as tf top_antecedent_scores = tf.concat([dummy_scores, top_antecedent_scores], 1) # [k, c + 1] top_antecedent_cluster_ids = tf.gather(top_span_cluster_ids, top_antecedents) # [k, c] top_antecedent_cluster_ids += tf.to_int32(tf.log(tf.to_float(top_antecedents_mask))) # [k, c] same_cluster_indicator = tf.equal(top_antecedent_cluster_ids, tf.expand_dims(top_span_cluster_ids, 1)) # [k, c] non_dummy_indicator = tf.expand_dims(top_span_cluster_ids > 0, 1) # [k, 1] pairwise_labels = tf.logical_and(same_cluster_indicator, non_dummy_indicator) # [k, c] dummy_labels = tf.logical_not(tf.reduce_any(pairwise_labels, 1, keepdims=True)) # [k, 1] top_antecedent_labels = tf.concat([dummy_labels, pairwise_labels], 1) # [k, c + 1] loss = self.softmax_loss(top_antecedent_scores, top_antecedent_labels) # [k] loss = tf.reduce_sum(loss) # []
tensorflow.expand_dims
9,810
import tensorflow as tf return objectives, cstr_pct def contra_step_lossV1(pred, tgt, temp=10.0): # Step-wise contrastive loss pred1, pred2 = tf.split(pred, 2, axis=0) tgt1, tgt2 = tf.split(tgt, 2, axis=0) soft_sign = tf.tanh((tgt1 - tgt2) * temp) loss = tf.maximum(0.0, soft_sign * ((tgt1 - tgt2) - (pred1 - pred2))) loss = tf.reduce_mean(loss) return loss def contra_step_lossV2(pred, tgt): # Step-wise contrastive loss pred1, pred2 = tf.split(pred, 2, axis=0)
tensorflow.maximum
9,811
import tensorflow as tf loss = tf.maximum(0., margin-pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss)
tensorflow.shape
9,812
from tensorflow.python.framework import ops for i, dim in enumerate(input_shape.dims): if i in reduction_indices: returned_dims.append(1) else: returned_dims.append(dim) else: for i, dim in enumerate(input_shape.dims): if i not in reduction_indices: returned_dims.append(dim) return [tensor_shape.TensorShape(returned_dims)] @ops.RegisterShape("SegmentMax") @ops.RegisterShape("SegmentMean") @ops.RegisterShape("SegmentMin") @ops.RegisterShape("SegmentProd") @ops.RegisterShape("SegmentSum") def _SegmentReductionShape(op): """Common shape function for segment reduction ops.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape() segment_ids_shape.assert_has_rank(1) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])] @ops.RegisterShape("SparseSegmentMean") @ops.RegisterShape("SparseSegmentSum") def _SparseSegmentReductionShape(op):
tensorflow.python.framework.ops.RegisterShape
9,813
import tensorflow as tf img_h4 = lrelu(linear(tf.nn.dropout(tf.reshape(img_h3, [self.batch_size, -1]), keep_prob), featsize, 'h4_lin')) img_z = lrelu(linear(tf.nn.dropout(img_h4, keep_prob), featsize, 'hz_lin')) return img_h0, img_h1, img_h2, img_h3, img_h4, img_z with tf.variable_scope("conv") as scope: srcimg_h0, srcimg_h1, srcimg_h2, srcimg_h3, srcimg_h4, srcimg_z = encode(srcimg) scope.reuse_variables() tgtimg_h0, tgtimg_h1, tgtimg_h2, tgtimg_h3, tgtimg_h4, tgtimg_z = encode(tgtimg)
tensorflow.variable_scope
9,814
import tensorflow as tf # Convolution when number of indices is larger than zero. def _conv_nonzero(): # Gather patches. p = tf.gather_nd(x_, blk_indices_) p_ = tf.reshape(p, [-1, ksize[0] * ksize[1] * ksize[2]]) # Convolution on patches. w_ = tf.reshape(w, [ksize[0] * ksize[1] * ksize[2], -1])
tensorflow.reshape
9,815
import tensorflow as tf with tf.Session() as sess: input0_tensor = tf.get_default_graph().get_tensor_by_name( "TENSOR_INPUT0:0") input1_tensor = tf.get_default_graph().get_tensor_by_name( "TENSOR_INPUT1:0") output0_tensor = tf.get_default_graph().get_tensor_by_name(
tensorflow.get_default_graph
9,816
import tensorflow as tf # Initialize parameters self.lambda_1 = tf.Variable([0.0], dtype=tf.float32) self.lambda_2 = tf.Variable([-6.0], dtype=tf.float32)
tensorflow.Variable
9,817
import tensorflow as tf def fc_layer(self, bottom, name): with tf.variable_scope(name): shape = bottom.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d x = tf.reshape(bottom, [-1, dim]) weights = self.get_fc_weight(name) biases = self.get_bias(name) # Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. fc = tf.nn.bias_add(tf.matmul(x, weights), biases) return fc def get_conv_filter(self, name): return tf.constant(self.data_dict[name][0], name="filter") def get_bias(self, name): return tf.constant(self.data_dict[name][1], name="biases") def get_fc_weight(self, name): return tf.constant(self.data_dict[name][0], name="weights")
tensorflow.matmul
9,818
import tensorflow as tf import tensorflow as tf import random from tensorflow.contrib import slim from npu_bridge.estimator import npu_ops from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig tf.app.flags.DEFINE_integer('input_size', 512, '') tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '') tf.app.flags.DEFINE_integer('num_readers', 16, '') tf.app.flags.DEFINE_float('learning_rate', 0.0001, '') tf.app.flags.DEFINE_integer('max_steps', 100000, '') tf.app.flags.DEFINE_integer('loss_scale', 1024, '') tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '') tf.app.flags.DEFINE_string('gpu_list', '1', '') tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '') tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint') tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '') tf.app.flags.DEFINE_integer('save_summary_steps', 100, '') tf.app.flags.DEFINE_string('pretrained_model_path', None, '') tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision') tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune') tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data') tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets') import model import icdar FLAGS = tf.app.flags.FLAGS
tensorflow.app.flags.DEFINE_string
9,819
import tensorflow as tf ) else: # vector vector -> concat dependencies_hidden.append(dependency_final_hidden) try: hidden = tf.concat([hidden] + dependencies_hidden, -1) except: raise ValueError( 'Shape mismatch while concatenating dependent features of ' '{}: {}. Concatenating the feature activations tensor {} ' 'with activation tensors of dependencies: {}. The error is '
tensorflow.concat
9,820
import tensorflow as tf os.makedirs('./mnist') with tf.Session() as sess: if args.model_path == '': tf.global_variables_initializer().run() else: saver.restore(sess, args.model_path)
tensorflow.global_variables_initializer
9,821
import tensorflow as tf def pointer(inputs, state, hidden, mask, scope="pointer"): with tf.variable_scope(scope): u = tf.concat([tf.tile(tf.expand_dims(state, axis=1), [1, tf.shape(inputs)[1], 1]), inputs], axis=2) #[N,PL,2d] s0 = tf.nn.tanh(dense(u, hidden, use_bias=False, scope="s0"))
tensorflow.variable_scope
9,822
import tensorflow as tf attack_carlini = attacks.carliniLi.CarliniLi(sess, model_carlini, largest_const=10 ** -3) elif FLAGS.attack_method == 'carliniL2': attack_carlini = attacks.carliniL2.CarliniL2(sess, model_carlini, batch_size=10, max_iterations=1000, confidence=0,binary_search_steps=3) adv_image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size, num_channel]) _, logits_nor = model_carlini.predict(images, tsne_logits=True)
tensorflow.placeholder
9,823
import tensorflow as tf def log_sum_exp(x): """numerically stable log_sum_exp implementation that prevents overflow.""" axis = len(x.get_shape()) - 1 m = tf.reduce_max(x, axis) m2 = tf.reduce_max(x, axis, keep_dims=True) return m + tf.log(tf.reduce_sum(tf.exp(x - m2), axis)) def log_prob_from_logits(x): """numerically stable log_softmax implementation that prevents overflow."""
tensorflow.exp
9,824
import tensorflow as tf entropy_bottleneck = EntropyBottleneck() conditional_entropy_model = SymmetricConditional() checkpoint = tf.train.Checkpoint(analysis_transform=analysis_transform, hyper_encoder=hyper_encoder, hyper_decoder=hyper_decoder, estimator=entropy_bottleneck) status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir)) x = tf.convert_to_tensor(x_color, "float32") x_coori = tf.convert_to_tensor(x_coori, "float32") def loop_analysis(element): x = tf.expand_dims(element[0], 0) x_coori = tf.expand_dims(element[1], 0) y = analysis_transform(x_coori,x) return tf.squeeze(y,axis=0)
tensorflow.convert_to_tensor
9,825
import tensorflow as tf with tf.variable_scope(name): return tf.nn.relu(x) - alpha * tf.nn.relu(-x) def instance_norm(x,name='instance_norm'): with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False epsilon = 1e-5 mean, var = tf.nn.moments(x, [1, 2], keep_dims=True) scale = tf.get_variable('scale',[x.get_shape()[-1]], initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02)) offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0)) out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset return out def common_conv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',norm=True,name='common_conv2d'): """Layers used during downsampling""" with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False
tensorflow.truncated_normal_initializer
9,826
import tensorflow as tf correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
tensorflow.cast
9,827
import tensorflow as tf def fwd_gradients_0(self, U, x): g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0] return tf.gradients(g, self.dummy_x0_tf)[0]
tensorflow.gradients
9,828
import tensorflow as tf self.mean_sq = tf.reduce_mean(tf.square(x), [0, 1, 2], keep_dims=True) self.batch_size = int(x.get_shape()[0]) assert x is not None assert self.mean is not None assert self.mean_sq is not None out = tf.nn.relu(self._normalize(x, self.mean, self.mean_sq, "reference")) self.reference_output = out def __call__(self, x, update=False): with tf.variable_scope(self.name) as scope: if not update: new_coeff = 1. / (self.batch_size + 1.) old_coeff = 1. - new_coeff new_mean = tf.reduce_mean(x, [1, 2], keep_dims=True) new_mean_sq = tf.reduce_mean(tf.square(x), [1, 2], keep_dims=True) mean = new_coeff * new_mean + old_coeff * self.mean mean_sq = new_coeff * new_mean_sq + old_coeff * self.mean_sq out = tf.nn.relu(self._normalize(x, mean, mean_sq, "live")) # Update the mean and mean_sq when passing the reference data else: self.mean = tf.reduce_mean(x, [0, 1, 2], keep_dims=True) self.mean_sq = tf.reduce_mean(tf.square(x), [0, 1, 2], keep_dims=True) out = tf.nn.relu(self._normalize(x, self.mean, self.mean_sq, "reference")) return out def _normalize(self, x, mean, mean_sq, message):
tensorflow.reduce_mean
9,829
import tensorflow as tf self.c = tf.slice(self.c, [0, 0], [N, self.c_maxlen]) self.q = tf.slice(self.q, [0, 0], [N, self.q_maxlen]) self.c_mask = tf.slice(self.c_mask, [0, 0], [N, self.c_maxlen]) self.q_mask = tf.slice(self.q_mask, [0, 0], [N, self.q_maxlen]) self.ch = tf.slice(self.ch, [0, 0, 0], [N, self.c_maxlen, CL]) self.qh = tf.slice(self.qh, [0, 0, 0], [N, self.q_maxlen, CL]) self.y1 = tf.argmax(tf.slice(self.y1, [0, 0], [N, self.c_maxlen]),axis=-1) self.y2 = tf.argmax(tf.slice(self.y2, [0, 0], [N, self.c_maxlen]),axis=-1) else: self.c_maxlen, self.q_maxlen = config.para_limit, config.ques_limit self.ch_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1]) self.qh_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1]) self.forward() total_params() if trainable: self.lr = tf.minimum(config.learning_rate, 0.001 / tf.log(999.) * tf.log(tf.cast(self.global_step, tf.float32) + 1)) self.opt = tf.train.AdamOptimizer(learning_rate = self.lr, beta1 = 0.8, beta2 = 0.999, epsilon = 1e-7) grads = self.opt.compute_gradients(self.loss) gradients, variables = zip(*grads) capped_grads, _ = tf.clip_by_global_norm( gradients, config.grad_clip) self.train_op = self.opt.apply_gradients( zip(capped_grads, variables), global_step=self.global_step)
tensorflow.cast
9,830
import tensorflow as tf if FLAGS.auto_recover: hooks.append(tf.data.experimental.CheckpointInputPipelineHook(estimator)) estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps, hooks=hooks) if FLAGS.do_eval: tf.logging.info("***** Running evaluation *****") tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_input_fn = input_fn_builder( input_files=validation_input_files, max_seq_length=FLAGS.max_seq_length,
tensorflow.logging.info
9,831
import tensorflow as tf num_attention_heads: number of attention head in attention layer. name: The name scope of this layer. Returns: float logits Tensor. """ del num_attention_heads # unused input_shape = get_shape_list(input_tensor) hidden_size = input_shape[2] with tf.variable_scope(name): w = tf.get_variable( name="kernel", shape=[hidden_size, output_size], initializer=initializer) b = tf.get_variable( name="bias", shape=[output_size], initializer=tf.zeros_initializer) ret = tf.einsum("BFH,HO->BFO", input_tensor, w) ret += b
tensorflow.variable_scope
9,832
import tensorflow as tf self.step_ops = [policy_loss, qf1_loss, qf2_loss, value_loss, qf1, qf2, value_fn, logp_pi, self.entropy,actor_for_priority,value_for_priority,imitation_for_priority,self.actor_loss_di, policy_train_op, train_values_op] # Add entropy coefficient optimization operation if needed if ent_coef_loss is not None: with tf.control_dependencies([train_values_op]): ent_coef_op = entropy_optimizer.minimize(ent_coef_loss, var_list=self.log_ent_coef) self.infos_names += ['ent_coef_loss', 'ent_coef'] self.step_ops += [ent_coef_op, ent_coef_loss, self.ent_coef] # Monitor losses and entropy in tensorboard tf.summary.scalar('policy_loss', policy_loss) tf.summary.scalar('qf1_loss', qf1_loss) tf.summary.scalar('qf2_loss', qf2_loss) tf.summary.scalar('value_loss', value_loss) tf.summary.scalar("Imitation_loss",self.actor_loss_di) tf.summary.scalar('entropy', self.entropy) tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph)) if ent_coef_loss is not None: tf.summary.scalar('ent_coef_loss', ent_coef_loss) tf.summary.scalar('ent_coef', self.ent_coef) tf.summary.scalar('learning_rate', tf.reduce_mean(self.learning_rate_ph)) # Retrieve parameters that must be saved self.params = tf_util.get_trainable_vars("model") self.target_params = tf_util.get_trainable_vars("target/values_fn/vf") # Initialize Variables and target network
tensorflow.summary.scalar
9,833
import tensorflow as tf self.assertTrue(endpoint_name in explicit_padding_end_points) self.assertListEqual( explicit_padding_end_points[endpoint_name].get_shape().as_list(), expected_shape) def testBuildAndCheckAllEndPointsApproximateFaceNet(self): batch_size = 5 height, width = 128, 128 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_13_pointwise', depth_multiplier=0.75) _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_13_pointwise', depth_multiplier=0.75, use_explicit_padding=True) # For the Conv2d_0 layer FaceNet has depth=16
tensorflow.random_uniform
9,834
import tensorflow as tf learning_rate: epoch_learning_rate, training_flag: False } loss_, acc_ = sess.run([Total_loss, accuracy], feed_dict=test_feed_dict) test_loss += loss_ test_acc += acc_ test_loss /= test_iteration # average loss test_acc /= test_iteration # average accuracy summary = tf.Summary(value=[tf.Summary.Value(tag='test_loss', simple_value=test_loss), tf.Summary.Value(tag='test_accuracy', simple_value=test_acc)]) return test_acc, test_loss, summary def resnet_model_fn(inputs, training): """Our model_fn for ResNet to be used with our Estimator.""" network = resnet_model.imagenet_resnet_v2( resnet_size=18, num_classes=class_num, mode='se', data_format=None) inputs= network(inputs=inputs, is_training=training) feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat')
tensorflow.Summary.Value
9,835
import tensorflow as tf `[num_nodes * count1]`, `[num_nodes * count1 * count2]`, ... weights: A list of `Tensor` of `float`, with shapes `[num_nodes * count1]`, `[num_nodes * count1 * count2]` ... types: A list of `Tensor` of `int32`, with shapes `[num_nodes * count1]`, `[num_nodes * count1 * count2]` ... """ neighbors_list = [tf.reshape(nodes, [-1])] weights_list = [] type_list = [] for hop_edge_types, count in zip(edge_types, counts): neighbors, weights, types = sample_neighbor( neighbors_list[-1], hop_edge_types, count, default_node=default_node) neighbors_list.append(tf.reshape(neighbors, [-1])) weights_list.append(tf.reshape(weights, [-1])) type_list.append(tf.reshape(weights, [-1])) return neighbors_list, weights_list, type_list def get_multi_hop_neighbor(nodes, edge_types): """ Get multi-hop neighbors with adjacent matrix. Args: nodes: A 1-D `tf.Tensor` of `int64`. edge_types: A list of 1-D `tf.Tensor` of `int32`. Specify edge types to filter outgoing edges in each hop. Return:
tensorflow.reshape
9,836
from tensorflow.python.ops import math_ops rank = array_ops.rank(top_k_predictions) check_rank_op = control_flow_ops.Assert( math_ops.greater_equal(rank, 2), ['top_k_predictions must have rank 2 or higher, e.g. [batch_size, k].'])
tensorflow.python.ops.math_ops.greater_equal
9,837
import tensorflow as tf # convolve w and input conv = tf.nn.conv2d( name='conv', input=X, filter=W, strides=[1, 1, 1, 1], padding='VALID') #add bias of size = out cannels b = tf.get_variable( name='b', shape=[num_filter], initializer=tf.constant_initializer(0.0)) H = tf.nn.bias_add( name='H', value=conv, bias=b) # Apply nonlinearity H = tf.nn.relu(H, name="relu") # max pool pooled = tf.nn.max_pool(H,
tensorflow.constant_initializer
9,838
import tensorflow as tf B1 = euclidean_norm_squared(X, axis=1)/(2+4*y) return 1/tf.sqrt(1+y) + A*tf.reduce_sum(__phi(A1)) - B*tf.reduce_sum(__phi(B1)) def cw(X, y=None): D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) K = 1/(2*D-3)
tensorflow.shape
9,839
import tensorflow as tf name='x') self.y = tf.placeholder(tf.float32, [batch_size, out_vocab_size], name='y') # The bidirectional rnn code requires seq_lens as int64 self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens') self.example_weights = tf.placeholder(tf.float32, [batch_size], name='example_weights')
tensorflow.placeholder
9,840
import tensorflow as tf def _smooth_l1_loss(y_true, y_pred): t = tf.abs(y_pred - y_true) return tf.where(t < 1, 0.5 * t ** 2, t - 0.5)
tensorflow.abs
9,841
import tensorflow as tf estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval:
tensorflow.logging.info
9,842
import tensorflow as tf with tf.variable_scope("polyak_model", reuse=True, custom_getter=custom_getter): self.polyak_model = polyak_model = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, self.n_steps + 1, self.n_envs * (self.n_steps + 1), reuse=True, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): self.done_ph = tf.placeholder(tf.float32, [self.n_batch]) # dones self.reward_ph = tf.placeholder(tf.float32, [self.n_batch]) # rewards, not returns self.mu_ph = tf.placeholder(tf.float32, [self.n_batch, self.n_act]) # mu's self.action_ph = train_model.pdtype.sample_placeholder([self.n_batch]) self.learning_rate_ph = tf.placeholder(tf.float32, []) eps = 1e-6 # Notation: (var) = batch variable, (var)s = sequence variable, # (var)_i = variable index by action at step i # shape is [n_envs * (n_steps + 1)] if continuous: value = train_model.value_flat else: value = tf.reduce_sum(train_model.policy_proba * train_model.q_value, axis=-1) rho, rho_i_ = None, None
tensorflow.placeholder
9,843
from tensorflow.python.platform import tf_logging as logging fail_on_nan_loss: `bool`, whether to raise exception when loss is NaN. """ super(NanLoss, self).__init__(every_n_steps=every_n_steps) self._loss_tensor = loss_tensor self._fail_on_nan_loss = fail_on_nan_loss def every_n_step_begin(self, step): super(NanLoss, self).every_n_step_begin(step) return [self._loss_tensor] def every_n_step_end(self, step, outputs): super(NanLoss, self).every_n_step_end(step, outputs) if np.isnan(_extract_output(outputs, self._loss_tensor)): failure_message = "Model diverged with loss = NaN." if self._fail_on_nan_loss: logging.error(failure_message) raise NanLossDuringTrainingError else: logging.warning(failure_message) # We don't raise an error but we return "should stop" so we stop, but # without an exception. return True class RunHookAdapterForMonitors(session_run_hook.SessionRunHook): """Wraps monitors into a SessionRunHook.""" def __init__(self, monitors): self._monitors = monitors
tensorflow.python.platform.tf_logging.error
9,844
import tensorflow as tf [1, 1]], dtype=tf.float32) mask4 = tf.constant([[0, 0], [0, 0]], dtype=tf.float32) mask5 = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) masks1 = tf.stack([mask0, mask1, mask2]) masks2 = tf.stack([mask3, mask4, mask5]) ious = isu.get_pairwise_iou_matrix(masks1, masks2) expected_ious = tf.constant([[0.5, 0.0, 1.0/3.0], [0.75, 0.0, 0.25],
tensorflow.stack
9,845
import tensorflow as tf multipliers. label_priors: A Tensor of shape [num_labels] consisting of the prior probability of each label learned by the loss, if not provided. true_positives_lower_bound: Lower bound on the number of true positives given `labels` and `logits`. This is the same lower bound which is used in the loss expression to be optimized. false_positives_upper_bound: Upper bound on the number of false positives given `labels` and `logits`. This is the same upper bound which is used in the loss expression to be optimized. Raises: ValueError: If `surrogate_type` is not `xent` or `hinge`. """ with tf.variable_scope(scope, 'tpr_at_fpr', [labels, logits, label_priors], reuse=reuse): labels, logits, weights, original_shape = _prepare_labels_logits_weights(labels, logits, weights) num_labels = losses_utils.get_num_labels(logits) # Convert other inputs to tensors and standardize dtypes. target_rate = losses_utils.convert_and_cast(target_rate, 'target_rate', logits.dtype) dual_rate_factor = losses_utils.convert_and_cast(dual_rate_factor, 'dual_rate_factor', logits.dtype) # Create lambdas. lambdas, lambdas_variable = _create_dual_variable( 'lambdas',
tensorflow.variable_scope
9,846
import tensorflow as tf use_image_if_no_bounding_boxes=True) is_bad = tf.reduce_sum(tf.cast(tf.equal(bbox_size, jpeg_shape), tf.int32)) >= 2
tensorflow.equal
9,847
import tensorflow as tf # generates random numbers at graph definition time. max_offset_height = control_flow_ops.with_dependencies( asserts, tf.reshape(image_height - crop_height + 1, [])) max_offset_width = control_flow_ops.with_dependencies( asserts, tf.reshape(image_width - crop_width + 1, [])) offset_height = tf.random_uniform( [], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random_uniform(
tensorflow.reshape
9,848
import tensorflow as tf # state and target self.state = tf.placeholder(tf.float32, [None,num_state], "state") self.target = tf.placeholder(tf.float32, [None,1], name="target") # layers l_c = tf.layers.dense(self.state, 100, tf.nn.relu6, kernel_initializer=w_init, name='lc') self.value_estimate = tf.layers.dense(l_c, 1, kernel_initializer=w_init, name='v') # estimated value for state # loss and optimizer self.loss = tf.reduce_mean(tf.square(tf.subtract(self.value_estimate, self.target))) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize(
tensorflow.layers.dense
9,849
from tensorflow.python.ops import math_ops return loss_ops.hinge_loss(logits, target) super(_BinarySvmTargetColumn, self).__init__( loss_fn=loss_fn, n_classes=2, label_name=label_name, weight_column_name=weight_column_name) def logits_to_predictions(self, logits, proba=False): if proba: raise ValueError( "logits to probabilities is not supported for _BinarySvmTargetColumn") logits = array_ops.concat([array_ops.zeros_like(logits), logits], 1) return math_ops.argmax(logits, 1) # TODO(zakaria): use contrib losses. def _mean_squared_loss(logits, target): # To prevent broadcasting inside "-". if len(target.get_shape()) == 1: target = array_ops.expand_dims(target, dim=[1]) logits.get_shape().assert_is_compatible_with(target.get_shape()) return math_ops.square(logits - math_ops.to_float(target)) def _log_loss_with_two_classes(logits, target):
tensorflow.python.ops.math_ops.argmax
9,850
import tensorflow as tf encoder_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in range(num_layers)]) encoder_out, encoder_state = tf.nn.dynamic_rnn( cell=encoder_cells, inputs=forward, sequence_length=seq_lens, dtype=tf.float32 ) encoder_state = tuple(encoder_state[-1] for _ in range(num_layers)) decoder_cell = attention(encoder_out, seq_lens) dense_layer = tf.layers.Dense(n_mels * resampled) training_helper = tf.contrib.seq2seq.TrainingHelper( inputs=self.decoder_inputs, sequence_length=seq_lens, time_major=False ) training_decoder = tf.contrib.seq2seq.BasicDecoder( cell=decoder_cell, helper=training_helper, initial_state=decoder_cell.zero_state(batch_size, tf.float32).clone( cell_state=encoder_state ), output_layer=dense_layer,
tensorflow.contrib.seq2seq.TrainingHelper
9,851
import tensorflow as tf _debug(self.conv2) with tf.variable_scope('conv3_x'): self.conv3 = self._residual_block('conv3_1', self.conv2, 128, pool_first=True, strides=2) _debug(self.conv3) self.conv3 = self._residual_block('conv3_2', self.conv3, 128) _debug(self.conv3) with tf.variable_scope('conv4_x'): self.conv4 = self._residual_block('conv4_1', self.conv3, 256, pool_first=True, strides=2) _debug(self.conv4) self.conv4 = self._residual_block('conv4_2', self.conv4, 256) _debug(self.conv4) with tf.variable_scope('conv5_x'): self.conv5 = self._residual_block('conv5_1', self.conv4, 512, pool_first=True, strides=2) _debug(self.conv5) self.conv5 = self._residual_block('conv5_2', self.conv5, 512) _debug(self.conv5) if self.test_classification: with tf.variable_scope('logits'): print('Building unit: logits') self.score = tf.reduce_mean(self.conv5, axis=[1, 2]) self.score = self._fc('logits_dense', self.score, output_dim=self.num_classes, l2_strength=self.wd) print('logits-shape: ' + str(self.score.shape.as_list())) self.feed1 = self.conv4
tensorflow.variable_scope
9,852
import tensorflow as tf if channels % 4 != 0: raise ValueError("Number of channels not divisible by 4.") res = tf.reshape(input_, [batch_size, height, width, channels // 4, 2, 2]) res = tf.transpose(res, [0, 1, 4, 2, 5, 3])
tensorflow.reshape
9,853
import tensorflow as tf b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s def _ln(x, g, b, e=1e-5, axes=[1]): u, s = tf.nn.moments(x, axes=axes, keep_dims=True) x = (x-u)/tf.sqrt(s+e) x = x*g+b return x def lnlstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()]
tensorflow.tanh
9,854
import tensorflow as tf src_logits, dst_logits = get_model_logits(src_features, finetune_features, mode, num_classes, target_num_classes) loss, _, _ = get_final_loss(src_logits, src_one_hot_labels, dst_logits, finetune_one_hot_labels, global_step, loss_weights, inst_weights) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): src_train_op, _ = get_src_train_op(loss) with tf.control_dependencies([src_train_op]): target_avg_pool = get_logits( target_features, mode, FLAGS.target_dataset, reuse=True) target_logits = do_cls( target_avg_pool, target_num_classes, name='final_target_dense') is_prediction_correct = tf.equal( tf.argmax(tf.identity(target_logits), axis=1), tf.argmax(target_one_hot_labels, axis=1)) acc = tf.reduce_mean(tf.cast(is_prediction_correct, tf.float32))
tensorflow.control_dependencies
9,855
import tensorflow as tf ranking_model_gradients = tf.gradients(self.rank_loss, ranking_model_params) if self.hparams.max_gradient_norm > 0: denoise_gradients, denoise_norm = tf.clip_by_global_norm(denoise_gradients, self.hparams.max_gradient_norm) ranking_model_gradients, ranking_model_norm = tf.clip_by_global_norm(ranking_model_gradients, self.hparams.max_gradient_norm * self.hparams.ranker_loss_weight) self.norm = tf.global_norm(denoise_gradients + ranking_model_gradients) opt_denoise = self.optimizer_func(self.hparams.learning_rate) opt_ranker = self.optimizer_func(self.ranker_learning_rate) denoise_updates = opt_denoise.apply_gradients(zip(denoise_gradients, denoise_params),
tensorflow.global_norm
9,856
import tensorflow as tf c = tf.matmul(a,b) c = tf.reshape(c, [-1]) with tf.device('/gpu:2'): d = tf.matmul(b,a) flat_d = tf.reshape(d, [-1])
tensorflow.device
9,857
import tensorflow as tf out_mask = attention_mask * a_mask else: ones = tf.ones_like(attention_mask[:1]) mask = (tf.matrix_band_part(ones, -1, 0))
tensorflow.ones_like
9,858
from tensorflow.python.ops import math_ops # sparse_softmax_cross_entropy_with_logits requires [batch_size] target. if len(target.get_shape()) == 2: target = array_ops.squeeze(target, squeeze_dims=[1]) loss_vec = nn.sparse_softmax_cross_entropy_with_logits( labels=target, logits=logits) return loss_vec def _run_metrics(predictions, labels, metrics, weights): result = {} labels = math_ops.cast(labels, predictions.dtype) for name, metric in six.iteritems(metrics or {}): if weights is not None: result[name] = metric(predictions, labels, weights=weights) else: result[name] = metric(predictions, labels) return result
tensorflow.python.ops.math_ops.cast
9,859
from tensorflow.python.framework import tensor_shape # NOTE(mrry): We could in principle work out the shape from the # gradients and the attrs, but if we do not know orig_input_shape # statically, then we are unlikely to know the shape of the # gradients either. return [tensor_shape.unknown_shape(ndims=4)] @ops.RegisterShape("Conv2DBackpropFilter")
tensorflow.python.framework.tensor_shape.unknown_shape
9,860
import tensorflow as tf # x is shaped [batch_size,time_steps,num_inputs] if is_dynamic_rnn: lstm_input = tf.transpose(x, perm=[1, 0, 2]) outputs, _ = tf.lite.experimental.nn.dynamic_rnn(
tensorflow.transpose
9,861
import tensorflow as tf Returns: A tensor with the clipped kappa log loss. """ with tf.name_scope(name): num_classes = labels.get_shape()[-1].value labels = tf.cast(labels, predictions.dtype) if label_smoothing > 0: smooth_positives = 1.0 - label_smoothing smooth_negatives = label_smoothing / num_classes labels = labels * smooth_positives + smooth_negatives log_loss_res = log_loss_tf(predictions, labels) kappa_loss_res = kappa_loss( predictions, labels, y_pow=y_pow, num_ratings=num_classes, batch_size=batch_size) return kappa_loss_res + log_scale * tf.clip_by_value(log_loss_res, log_cutoff, 10**3) def cross_entropy_loss(logits, labels, label_smoothing=0.0, weight=1.0, name='cross_entropy_loss'): """Define a cross entropy loss with label smoothing. Args: predictions: 2D tensor or array, [batch_size, num_classes] predictions of the network . labels: 2D tensor or array,[batch_size, num_classes] ground truth labels or target labels. label_smoothing: a float, used to smooth the labels for better generalization if greater than 0 then smooth the labels. weight: scale the loss by this factor. name: Optional scope/name for op_scope.
tensorflow.clip_by_value
9,862
import tensorflow as tf # localization loss (smooth L1) mask_pos_b = tf.broadcast_to(mask_pos, tf.shape(loc_true)) loss_loc = _smooth_l1_loss(tf.boolean_mask(loc_true, mask_pos_b), tf.boolean_mask(loc_pred, mask_pos_b)) loss_loc = tf.reduce_mean(loss_loc) # classification loss (crossentropy) # 1. compute max conf across batch for hard negative mining loss_class = tf.where(mask_neg, 1 - class_pred[:, 0][..., tf.newaxis], 0) # 2. hard negative mining loss_class = tf.reshape(loss_class, [num_batch, num_prior]) loss_class_idx = tf.argsort(loss_class, axis=1, direction='DESCENDING') loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1) mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior]) num_pos_per_batch = tf.reduce_sum( tf.cast(mask_pos_per_batch, tf.float32), 1, keepdims=True) num_pos_per_batch = tf.maximum(num_pos_per_batch, 1) num_neg_per_batch = tf.minimum(neg_pos_ratio * num_pos_per_batch, tf.cast(num_prior, tf.float32) - 1) mask_hard_neg = tf.reshape( tf.cast(loss_class_idx_rank, tf.float32) < num_neg_per_batch, [num_batch * num_prior, 1])
tensorflow.reshape
9,863
import tensorflow as tf if W_p is None: W_p = self._make_var('W_p', (1, 1, ch_mul * ch, ch)) X = tf.nn.relu(X) X = tf.nn.separable_conv2d(X, W_d, W_p, strides=(1, stride, stride, 1), padding='SAME') if not no_batch_norm: X = self._add_batch_norm(X, ch, is_train=is_train)
tensorflow.nn.separable_conv2d
9,864
from tensorflow.python.framework import ops the input rank (i.e. Conv ND, with N = input_rank - 2). Returns: A tensor representing the output of the operation. Raises: ValueError: If `data_format` is invalid. ValueError: Both 'rate' and `stride` are not uniformly 1. """ if data_format not in [None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW']: raise ValueError('Invalid data_format: %r' % (data_format,)) layer_variable_getter = _build_variable_getter({'bias': 'biases', 'kernel': 'weights'}) with variable_scope.variable_scope(scope, 'Conv', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) input_rank = inputs.get_shape().ndims if conv_dims is not None and conv_dims + 2 != input_rank: raise ValueError('Convolution expects input with rank %d, got %d' % (conv_dims + 2, input_rank)) if input_rank == 3: layer_class = convolutional_layers.Convolution1D elif input_rank == 4: layer_class = MyConv2D elif input_rank == 5: layer_class = convolutional_layers.Convolution3D else: raise ValueError('Convolution not supported for input with rank', input_rank)
tensorflow.python.framework.ops.convert_to_tensor
9,865
import tensorflow as tf for item in dataset: flat = tf.nest.flatten(item) flat = [el.numpy() for el in flat] yield tf.nest.pack_sequence_as(item, flat) def _train_and_eval_dataset_v1(problem_name, data_dir, train_shuffle_files, eval_shuffle_files): """Return train and evaluation datasets, feature info and supervised keys.""" with tf.device('cpu:0'): problem = t2t_problems().problem(problem_name) hparams = None if problem_name == 'video_bair_robot_pushing': hparams = problem.get_hparams() bair_robot_pushing_hparams(hparams) train_dataset = problem.dataset( tf_estimator.ModeKeys.TRAIN, data_dir,
tensorflow.device
9,866
from tensorflow.contrib.framework import tensor_util `false_positives`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`. """ predictions, labels = tensor_util.remove_squeezable_dimensions( predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) num_thresholds = len(thresholds)
tensorflow.contrib.framework.tensor_util.remove_squeezable_dimensions
9,867
import tensorflow as tf img = tf.expand_dims(img_batch[i], axis=0) pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_r = tf.py_func(backward_convert, inp=[gtboxes_and_label_batch[i]], Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) num_objects = num_objects_batch[i] num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32) img_h = img_h_batch[i] img_w = img_w_batch[i] inputs_list.append([img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects, img_h, img_w]) tower_grads = [] biases_regularizer = tf.no_regularizer weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY) with tf.variable_scope(tf.get_variable_scope()): for i in range(num_gpu): with tf.device('/gpu:%d' % i):
tensorflow.reshape
9,868
import tensorflow as tf x = tf.layers.conv2d(x, 32, (5, 5), strides=(2, 2), activation=tf.nn.relu, padding="same") flat_x = tf.layers.flatten(x) if self.use_epochs: epoch = features["epoch"] + tf.zeros([x_shape[0]], dtype=tf.int32) # Randomly set epoch to 0 in some cases as that's the inference value. rand = tf.random.uniform([x_shape[0]]) epoch = tf.where(rand < 0.1, tf.zeros_like(epoch), epoch) # Embed the epoch number. emb_epoch = common_layers.embedding(epoch, 32, 32) # [batch, 32] flat_x = tf.concat([flat_x, emb_epoch], axis=1) flat_x = tf.layers.dropout(flat_x, rate=dropout) x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu)
tensorflow.random.uniform
9,869
import tensorflow as tf config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") with sess.graph.device("/cpu:1"): v1 = tf.Variable(222, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True) tf.initialize_all_variables().run() self.assertEqual(111, v0.eval()) self.assertEqual(222, v1.eval()) save_path = os.path.join(self.get_temp_dir(), "sharded")
tensorflow.train.Saver
9,870
from tensorflow.contrib import slim ): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer): with slim.arg_scope(
tensorflow.contrib.slim.arg_scope
9,871
import tensorflow as tf last_layer = tf.nn.relu(projected) else: raise NotImplementedError() if mode == 'train' and dnn_keep_prob < 1.0: last_layer = tf.nn.dropout(last_layer, dnn_keep_prob) last_layer_size = layer_size print('{}: {}'.format(layer_name, last_layer.get_shape())) export_feat_tensors[layer_name] = last_layer dnn_output = last_layer dnn_output_size = last_layer_size # Logistic regression with tf.variable_scope('logit') as scope: logit_w = tf.get_variable('W', shape=[dnn_output_size, 1], initializer=tf.truncated_normal_initializer(stddev=1.0 / dnn_output_size, dtype=dtype), dtype=dtype) logit_b = tf.get_variable('b', shape=[1], initializer=tf.constant_initializer(0.0), dtype=dtype) logits = tf.squeeze(tf.nn.bias_add(tf.matmul(dnn_output, logit_w), logit_b), squeeze_dims=[1]) prediction = tf.nn.sigmoid(logits) prediction_inspect = tf.reshape(prediction, [batch_size, rnn_nunroll]) prediction_final = tf.squeeze(tf.slice(prediction_inspect, [0, rnn_nunroll - 1], [-1, 1]), squeeze_dims=[1]) print('logit: {}'.format(logits.get_shape())) # Compute loss if mode != 'gen': neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets) if target_weight_strategy == 'rect': avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods) else: neg_log_lhoods = tf.multiply(neg_log_lhoods, target_weights)
tensorflow.truncated_normal_initializer
9,872
import tensorflow as tf if __name__ == '__main__': import numpy as np bboxes = tf.placeholder(tf.float32) bboxes_val = [[10, 10, 20, 22]] gt_boxes = tf.placeholder(tf.float32) gt_boxes_val = [[11, 13, 34, 31]] imshape = tf.placeholder(tf.int32) imshape_val = (100, 100) deltas = encode(bboxes, gt_boxes) decoded_bboxes = decode(bboxes, deltas) final_decoded_bboxes = clip_boxes(decoded_bboxes, imshape) with tf.Session() as sess: final_decoded_bboxes = sess.run(final_decoded_bboxes, feed_dict={ bboxes: bboxes_val,
tensorflow.placeholder
9,873
import tensorflow as tf if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
tensorflow.train.init_from_checkpoint
9,874
import tensorflow as tf tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10) summary_op = tf.summary.merge_all() # Saving the model saver = tf.train.Saver() step = 0
tensorflow.summary.histogram
9,875
import tensorflow as tf def contra_traj_lossV1(pred, tgt, temp=10.0): # Trajectory-wise contrastive loss traj_pred = tf.reduce_mean(pred, axis=1) traj_tgt = tf.reduce_mean(tgt, axis=1) p1, p2 = tf.split(traj_pred, 2, axis=0) t1, t2 = tf.split(traj_tgt, 2, axis=0) soft_sign = tf.tanh((t1 - t2) * temp) loss = tf.maximum(0.0, soft_sign * ((t1 - t2) - (p1 - p2))) loss = tf.reduce_mean(loss) return loss def horizon_sumV1(input, horizon=12): bs, epi_len = input.shape[:2] new_w = epi_len - horizon + 1 weights = np.zeros([epi_len, new_w])
tensorflow.reduce_mean
9,876
import tensorflow as tf tower_metrics = self._gpu_tower(data, Mode.EVAL) with tf.device('/cpu:0'):
tensorflow.device
9,877
import tensorflow as tf Improved Regularization of Convolutional Neural Networks with Cutout https://arxiv.org/abs/1708.04552 Implementation inspired by: third_party/cloud_tpu/models/efficientnet/autoaugment.py Args: batch: A batch of images and labels. Returns: The same batch where cutout has been applied to the images. """ length, replace = FLAGS.cutout_length, 0.0 images, labels = batch['image'], batch['label'] num_channels = tf.shape(images)[3] image_height, image_width = tf.shape(images)[1], tf.shape(images)[2] cutout_center_height = tf.random.uniform( shape=[], minval=0, maxval=image_height, dtype=tf.int32) cutout_center_width = tf.random.uniform( shape=[], minval=0, maxval=image_width, dtype=tf.int32) lower_pad = tf.maximum(0, cutout_center_height - length // 2) upper_pad = tf.maximum(0, image_height - cutout_center_height - length // 2) left_pad = tf.maximum(0, cutout_center_width - length // 2) right_pad = tf.maximum(0, image_width - cutout_center_width - length // 2) cutout_shape = [image_height - (lower_pad + upper_pad),
tensorflow.shape
9,878
import tensorflow as tf eKff = expectation(pXnew, kern) # N (psi0) eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2) Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1]) # remove this line, once issue 216 is fixed Li_eKuffu = tf.matrix_triangular_solve(Luu_tiled, eKuffu, lower=True)
tensorflow.tile
9,879
import tensorflow as tf # Each entry on the list corresponds to one decoder step vocab_score_t = tf.nn.xw_plus_b(output_t, w, b) # apply the linear layer
tensorflow.nn.xw_plus_b
9,880
import tensorflow as tf # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss) return final_loss, cstr_pct
tensorflow.where
9,881
import tensorflow as tf # # This function gives us the ways to use # multiple devices (executors) in TensorFlow. import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # To find out where placement occurs, set 'log_device_placement' sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Runs the op. print(sess.run(c)) # If we load a graph and want device placement to be forgotten, # we set a parameter in our session: config = tf.ConfigProto()
tensorflow.constant
9,882
import tensorflow as tf checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True) else: logger.info("Loading latest model...") checkpoint_file = tf.train.latest_checkpoint(CPT_DIR) logger.info(checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=args.allow_soft_placement, log_device_placement=args.log_device_placement) session_conf.gpu_options.allow_growth = args.gpu_options_allow_growth sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
tensorflow.ConfigProto
9,883
import tensorflow as tf flags.DEFINE_integer( "iterations_per_loop", 1000, "How many steps to make in each estimator call." ) flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.", )
tensorflow.flags.DEFINE_string
9,884
from tensorflow.python.ops import math_ops true_negatives, math_ops.reduce_sum(is_true_negative, 1)) false_positives_update_op = state_ops.assign_add( false_positives, math_ops.reduce_sum(is_false_positive, 1))
tensorflow.python.ops.math_ops.reduce_sum
9,885
import tensorflow as tf # to the running average when ran. tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
tensorflow.add_to_collection
9,886
import tensorflow as tf kernel_initializer=self._kernel_initializer) c = self._activation(self._candidate_linear([inputs, r_state])) u = (1.0 - att_score) * u new_h = u * state + (1 - u) * c return new_h, new_h def prelu(_x, scope=''): """parametric ReLU activation""" with tf.variable_scope(name_or_scope=scope, default_name="prelu"): _alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1], dtype=_x.dtype, initializer=tf.constant_initializer(0.1)) _zero = tf.constant(0,dtype=_x.dtype) # return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x) return tf.maximum(_zero, _x) + _alpha * tf.minimum(_zero, _x) def calc_auc(raw_arr): """Summary Args: raw_arr (TYPE): Description Returns: TYPE: Description """ arr = sorted(raw_arr, key=lambda d:d[0], reverse=True)
tensorflow.maximum
9,887
import tensorflow as tf # create update operations var_bkup_update_op = var_bkup.assign(tf.where(mask > 0.5, var, var_bkup)) with tf.control_dependencies([var_bkup_update_op]): mask_thres = tf.contrib.distributions.percentile(tf.abs(var_bkup), prune_ratio * 100) mask_update_op = mask.assign(tf.cast(tf.abs(var_bkup) > mask_thres, tf.float32)) with tf.control_dependencies([mask_update_op]): prune_op = var.assign(var_bkup * mask)
tensorflow.abs
9,888
import tensorflow as tf # placeholder for current action act_t_ph = tf.placeholder(tf.int32, [None])
tensorflow.placeholder
9,889
import tensorflow as tf def do_cls(avg_pool, num_classes, name='dense'): """Applies classification.""" with tf.variable_scope('target_CLS', reuse=tf.AUTO_REUSE): logits = tf.layers.dense( inputs=avg_pool, units=num_classes, kernel_initializer=tf.random_normal_initializer(stddev=.05), name=name) return logits def get_model_logits(src_features, finetune_features, mode, num_classes, target_num_classes):
tensorflow.random_normal_initializer
9,890
import tensorflow as tf indices = helper.make_tensor("indices", TensorProto.INT64, [2, 2], x) a = helper.make_sparse_tensor(values, indices,[3, 4]) node_def = helper.make_node("Constant", [], ["Y"], sparse_value=a) output = run_node(node_def, []) b = tf.sparse_to_dense(output["Y"].indices, output["Y"].dense_shape, output["Y"].values) result = b.eval(session=tf.Session()) np.testing.assert_equal(result, expected)
tensorflow.sparse_to_dense
9,891
import tensorflow as tf if train: if single_file: dataset_path = os.path.join(dataset_path, 'train_annotated.json') else: dataset_path = os.path.join(dataset_path, 'dev_annotated.json') def load_dataset(): dataset = [] if single_file: # Opening with GFile allows to use remotely stored files, e.g. # in a gs bucket. dataset_handle = tf.io.gfile.GFile(dataset_path, 'r') for line in dataset_handle: dataset.append(json.loads(line)) else: all_files = tf.io.gfile.listdir(dataset_path) for filename in all_files: if 'json' in filename: print('Loading data from file {}'.format(filename)) with tf.io.gfile.GFile(os.path.join(dataset_path, filename)) as f: for line in f: dataset.append(json.loads(line))
tensorflow.io.gfile.GFile
9,892
import tensorflow as tf from tensorflow.python.ops import math_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.keras import backend as K def dice(_x, axis=-1, epsilon=0.000000001, name=''): with tf.variable_scope(name, reuse=tf.AUTO_REUSE): alphas = tf.get_variable('alpha'+name, _x.get_shape()[-1], initializer=tf.constant_initializer(0.0), dtype=_x.dtype) input_shape = list(_x.get_shape()) reduction_axes = list(range(len(input_shape))) del reduction_axes[axis] broadcast_shape = [1] * len(input_shape) broadcast_shape[axis] = input_shape[axis]
tensorflow.constant_initializer
9,893
import tensorflow as tf per_example_loss, logits, label_ids) estimator_spec = tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
tensorflow.estimator.EstimatorSpec
9,894
import tensorflow as tf config = tf.ConfigProto() custom_op = config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True # 在昇腾AI处理器执行训练 config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 关闭remap开关 if FLAGS.allow_mix_precision: custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") if FLAGS.auto_tune: custom_op.parameter_map["auto_tune_mode"].s = tf.compat.as_bytes("RL,GA") with tf.Session(config=config) as sess: if FLAGS.restore: print('continue training from previous checkpoint') ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path) saver.restore(sess, ckpt) else: sess.run(init) if FLAGS.pretrained_model_path is not None: variable_restore_op(sess) data_generator = icdar.get_batch(num_workers=FLAGS.num_readers, input_size=FLAGS.input_size, batch_size=FLAGS.batch_size_per_gpu * len(gpus)) start = time.time() avg_time_per_step1 = 0 performs = []
tensorflow.train.latest_checkpoint
9,895
import tensorflow as tf even = [2 * i for i in range(25)] odd = [2 * i + 1 for i in range(25)] pred1 = tf.gather(horizon_pred, even) pred2 = tf.gather(horizon_pred, odd) tgt1 = tf.gather(horizon_tgt, even) tgt2 = tf.gather(horizon_tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small))) loss = tf.reduce_mean(loss) return loss def apply_optimizers(objectives, trainer, config): # Make sure all losses are computed and apply loss scales. processed = [] values = [ob.value for ob in objectives]
tensorflow.where
9,896
import tensorflow as tf tf.reshape(pred_heatmap * 255., [-1, heatmap_size, heatmap_size]), tf.reshape(predictions, [-1, heatmap_size, heatmap_size]), config.left_right_group_map[category][0], config.left_right_group_map[category][1], config.left_right_group_map[category][2]], tf.int64, stateful=True) with tf.control_dependencies([save_image_op]): pred_x, pred_y = pred_x * 1., pred_y * 1. return pred_x, pred_y def gaussian_blur(inputs, inputs_filters, sigma, data_format, name=None): with tf.name_scope(name, "gaussian_blur", [inputs]): data_format_ = 'NHWC' if data_format=='channels_last' else 'NCHW' if data_format_ == 'NHWC': inputs = tf.transpose(inputs, [0, 2, 3, 1]) ksize = int(6 * sigma + 1.) x = tf.expand_dims(tf.range(ksize, delta=1, dtype=tf.float32), axis=1) y = tf.transpose(x, [1, 0]) kernel_matrix = tf.exp(- ((x - ksize/2.) ** 2 + (y - ksize/2.) ** 2) / (2 * sigma ** 2)) #print(kernel_matrix) kernel_filter = tf.reshape(kernel_matrix, [ksize, ksize, 1, 1]) kernel_filter = tf.tile(kernel_filter, [1, 1, inputs_filters, 1]) #kernel_filter = tf.transpose(kernel_filter, [1, 0, 2, 3]) outputs = tf.nn.depthwise_conv2d(inputs, kernel_filter, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format_, name='blur') if data_format_ == 'NHWC': outputs = tf.transpose(outputs, [0, 3, 1, 2]) return outputs
tensorflow.transpose
9,897
import tensorflow as tf horizon_tgt = tf.matmul(tgt, cur_weights) return horizon_pred, horizon_tgt def contra_traj_lossV2(pred, tgt, horizon=9): # Step-wise contrastive loss horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred1, pred2 = tf.split(horizon_pred, 2, axis=0) tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1)
tensorflow.split
9,898
from tensorflow.python.framework import ops return array_ops.unstack(values) else: with ops.device(tensors[0].device): sizes = array_ops.stack(
tensorflow.python.framework.ops.device
9,899