seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
return X
def conv(self, id, input, channels, size=3, stride=1, use_bias=True, padding="SAME", init_stddev=-1.0, dilation=1):
assert padding in ["SAME", "VALID", "REFLECT", "PARTIAL"], 'valid paddings: "SAME", "VALID", "REFLECT", "PARTIAL"'
if type(size) == int: size = [size, size]
if init_stddev <= 0.0:
init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
else:
init = tf.truncated_normal_initializer(stddev=init_stddev)
if padding == "PARTIAL":
with tf.variable_scope('mask'):
_, h, w, _ = input.get_shape().as_list()
|
tensorflow.contrib.layers.variance_scaling_initializer
| 9,700 |
import tensorflow as tf
loss_weights: tensor shape (batch_size, max_dec_steps) containing 1s and 0s.
Returns:
a scalar
"""
if loss_weights == None:
return tf.reduce_mean(tf.stack(values, axis=0))
dec_lens = tf.reduce_sum(loss_weights, axis=1) # shape batch_size. float32
values_per_step = [v * loss_weights[:,dec_step] for dec_step,v in enumerate(values)]
values_per_ex = sum(values_per_step)/dec_lens # shape (batch_size); normalized value for each batch member
return tf.reduce_mean(values_per_ex) # overall average
|
tensorflow.stack
| 9,701 |
import tensorflow as tf
'image/source_id':
tf.io.FixedLenFeature((), tf.string),
'image/height':
tf.io.FixedLenFeature((), tf.int64),
'image/width':
tf.io.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
tf.io.VarLenFeature(tf.int64),
'image/object/area':
tf.io.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.io.VarLenFeature(tf.int64),
}
if include_mask:
self._keys_to_features.update({
'image/object/mask':
tf.io.VarLenFeature(tf.string),
})
def _decode_image(self, parsed_tensors):
"""Decodes the image and set its static shape."""
image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
|
tensorflow.io.VarLenFeature
| 9,702 |
import tensorflow as tf
with tf.device("/cpu:0"):
val_summaries.append(self._add_image_summary(self._image, self._gt_boxes))
for key, var in self._event_summaries.items(): #添加self._losses
val_summaries.append(tf.summary.scalar(key, var))
for key, var in self._score_summaries.items(): #self._score_summaries.update(self._anchor_targets) self._score_summaries.update(self._proposal_targets)
self._add_score_summary(key, var)
|
tensorflow.summary.scalar
| 9,703 |
import tensorflow as tf
# have not been initialized either.
with self.test_session() as sess:
v0 = tf.Variable(-1.0, name="v0")
v1 = tf.Variable(-1.0, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1})
with self.assertRaisesWithPredicateMatch(
tf.OpError, lambda e: "uninitialized value v0" in e.message):
|
tensorflow.train.Saver
| 9,704 |
import tensorflow as tf
with tf.variable_scope(layer_name):
w = tf.get_variable(name='weight',
shape=[size, out_nodes],
initializer=tf.constant_initializer(0.0))
b = tf.get_variable(name='bias',
shape=[out_nodes],
initializer=tf.constant_initializer(0.0))
# batch?
flat_x = tf.reshape(x, [-1,size])
x = tf.nn.bias_add(tf.matmul(flat_x,w), b)
x = tf.nn.relu(x)
return x
def lstm():
'''
Build LSTM cell
'''
pass
|
tensorflow.matmul
| 9,705 |
import tensorflow as tf
'end_learning_rate': FLAGS.end_learning_rate,
'warmup_learning_rate': FLAGS.warmup_learning_rate,
'warmup_steps': FLAGS.warmup_steps,
'decay_boundaries': parse_comma_list(decay_boundaries),
'lr_decay_factors': parse_comma_list(lr_decay_factors),
})
tf.gfile.MakeDirs(model_dir)
tf.logging.info('Starting to train model {}.'.format(model_scope))
for _ in range(train_epochs // epochs_per_eval):
tensors_to_log = {
'lr': 'learning_rate',
'loss': 'total_loss',
'mse': 'mse_loss',
|
tensorflow.gfile.MakeDirs
| 9,706 |
import tensorflow as tf
flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
class_prediction = tf.contrib.layers.fully_connected(
|
tensorflow.contrib.layers.fully_connected
| 9,707 |
import tensorflow as tf
return output
@staticmethod
def lrelu(inputdata, name, alpha=0.2):
"""
:param inputdata:
:param alpha:
:param name:
:return:
"""
with tf.variable_scope(name):
return tf.nn.relu(inputdata) - alpha * tf.nn.relu(-inputdata)
|
tensorflow.nn.relu
| 9,708 |
from tensorflow.python.framework import constant_op
"""Tests only dense inputs.
"""
op = sparse_feature_cross_op.sparse_feature_cross([
constant_op.constant([['batch1-FC1-F1', 'batch1-FC1-F2'],
['batch2-FC1-F1', 'batch2-FC1-F2']],
dtypes.string),
|
tensorflow.python.framework.constant_op.constant
| 9,709 |
import tensorflow as tf
return cand_features, n_cands_per_sample, cand_choices, cand_scoress
def padding(output, n_vars_per_sample, fill=-1e8):
n_vars_max = tf.reduce_max(n_vars_per_sample)
output = tf.split(
value=output,
num_or_size_splits=n_vars_per_sample,
axis=1,
)
output = tf.concat([
tf.pad(
x,
paddings=[[0, 0], [0, n_vars_max - tf.shape(x)[1]]],
mode='CONSTANT',
constant_values=fill)
for x in output
], axis=0)
return output
def process(policy, dataloader, top_k):
mean_kacc = np.zeros(len(top_k))
n_samples_processed = 0
for batch in dataloader:
|
tensorflow.shape
| 9,710 |
import tensorflow as tf
else:
saver.restore(sess, args.model_path)
for i in range(max_train_step):
batch_x, batch_gt = mnist.train.next_batch(batch_size)
sess.run(train_op, feed_dict={x: batch_x, gt: batch_gt})
if i % 100 == 0:
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(gt, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('=> accuracy: {}'.format(sess.run(accuracy, feed_dict={x: mnist.test.images, gt: mnist.test.labels})))
saver.save(sess, 'mnist/mnist_{:02d}.ckpt'.format(int(i / 100) + 1))
|
tensorflow.cast
| 9,711 |
import tensorflow as tf
from model_io import model_io
from task_module import classifier
import tensorflow as tf
from metric import tf_metrics
from optimizer import distributed_optimizer as optimizer
from model_io import model_io
from distillation import knowledge_distillation as distill
def correlation(x, y):
x = x - tf.reduce_mean(x, axis=-1, keepdims=True)
y = y - tf.reduce_mean(y, axis=-1, keepdims=True)
x = tf.nn.l2_normalize(x, -1)
y = tf.nn.l2_normalize(y, -1)
return -tf.reduce_sum(x*y, axis=-1) # higher the better
def kd(x, y):
x_prob = tf.nn.softmax(x)
print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape())
return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better
def mse(x, y):
x = x - tf.reduce_mean(x, axis=-1, keepdims=True)
y = y - tf.reduce_mean(y, axis=-1, keepdims=True)
|
tensorflow.reduce_mean
| 9,712 |
import tensorflow as tf
with slim.arg_scope(self._conv_hyperparams):
net = slim.conv2d(net, self._depth, [1, 1], scope='reduce_depth')
# Location predictions.
location_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self.num_classes *
self._box_code_size)
location_feature_map = slim.conv2d(net, location_feature_map_depth,
[1, 1], activation_fn=None,
scope='refined_locations')
box_encodings = ops.position_sensitive_crop_regions(
location_feature_map,
boxes=tf.reshape(proposal_boxes, [-1, self._box_code_size]),
box_ind=get_box_indices(proposal_boxes),
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
box_encodings = tf.squeeze(box_encodings, squeeze_dims=[1, 2])
box_encodings = tf.reshape(box_encodings,
[batch_size * num_boxes, 1, self.num_classes,
self._box_code_size])
# Class predictions.
total_classes = self.num_classes + 1 # Account for background class.
|
tensorflow.reshape
| 9,713 |
import tensorflow as tf
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
|
tensorflow.reshape
| 9,714 |
import tensorflow as tf
normalized_grad = old_div(grad, avoid_nan_norm)
elif ord == 2:
red_ind = list(range(1, len(x.get_shape())))
avoid_zero_div = 1e-8
square = tf.maximum(avoid_zero_div,
reduce_sum(tf.square(grad),
reduction_indices=red_ind,
keepdims=True))
normalized_grad = old_div(grad, tf.sqrt(square))
else:
normalized_grad = tf.sign(grad)
normalized_grad = tf.stop_gradient(normalized_grad)
scaled_grad = eps * normalized_grad
#目标是让loss下降
adv_x = x - scaled_grad
if (clip_min is not None) and (clip_max is not None):
adv_x = tf.clip_by_value(adv_x, clip_min, clip_max)
|
tensorflow.sign
| 9,715 |
import tensorflow as tf
import tensorflow.contrib.layers as layers
import dqn
from dqn_utils import *
from atari_wrappers import *
def atari_model(img_in, num_actions, scope, reuse=False):
# as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
|
tensorflow.variable_scope
| 9,716 |
import tensorflow as tf
[FLAGS.learning_rate, FLAGS.learning_rate * 0.1])
optimizer = tf.train.MomentumOptimizer(
|
tensorflow.train.MomentumOptimizer
| 9,717 |
import tensorflow as tf
inputdata = tf.reshape(inputdata, [-1, group_size, c // group_size, h, w])
mean, var = tf.nn.moments(inputdata, [2, 3, 4], keep_dims=True)
inputdata = (inputdata - mean) / tf.sqrt(var + esp)
# 每个通道的gamma和beta
gamma = tf.Variable(tf.constant(1.0, shape=[c]), dtype=tf.float32, name='gamma')
beta = tf.Variable(tf.constant(0.0, shape=[c]), dtype=tf.float32, name='beta')
gamma = tf.reshape(gamma, [1, c, 1, 1])
beta = tf.reshape(beta, [1, c, 1, 1])
# 根据论文进行转换 [n, c, h, w, c] 到 [n, h, w, c]
output = tf.reshape(inputdata, [-1, c, h, w])
|
tensorflow.constant
| 9,718 |
import tensorflow as tf
if i > 0 and i % save_step == 0:
tf.train.Saver().save(sess, path)
tf.train.Saver().save(sess, path)
coord.request_stop()
coord.join(threads)
def test_and_valid(test_loop=1,valid_loop=1,test_num=64,valid_num=64):
feed_dict={
testnum: test_num,
validnum: valid_num
}
with tf.Session(config=config) as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
tf.train.Saver().restore(sess,path)
#test
test_acc_avg = 0.0
test_true_total=np.array([])
test_pre_total=np.array([])
for i in range(0, test_loop):
accuracy_np = sess.run([accuracy],feed_dict=feed_dict)
test_pre_1, test_true_1 = sess.run([test_pre, test_true],feed_dict=feed_dict)
|
tensorflow.Session
| 9,719 |
import tensorflow as tf
observations_ph = make_obs_ph("observation")
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
deterministic_actions = tf.argmax(q_values, axis=1)
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
|
tensorflow.argmax
| 9,720 |
import tensorflow as tf
encoder_outputs_, encoder_states_ = auto_reuse(tf.nn.dynamic_rnn)(cell=cell,
initial_state=initial_state,
**parameters)
if encoder.time_pooling:
for stride in encoder.time_pooling[:encoder.layers - 1]:
encoder_input_length_ = (encoder_input_length_ + stride - 1) // stride # rounding up
last_backward = encoder_outputs_[:, 0, cell_output_size:]
indices = tf.stack([tf.range(batch_size), encoder_input_length_ - 1], axis=1)
last_forward = tf.gather_nd(encoder_outputs_[:, :, :cell_output_size], indices)
last_forward.set_shape([None, cell_output_size])
if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states)
encoder_state_ = tf.concat(encoder_states_, axis=1)
elif encoder.final_state == 'average':
mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_outputs_)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, axis=2)
|
tensorflow.range
| 9,721 |
import tensorflow as tf
return in_length/stride + 1
def build(self, x):
"""Run the backprop version of the Circuit."""
self.prepare_tensors()
i0 = tf.constant(0)
# Calculate l2 hidden state size
x_shape = x.get_shape().as_list()
if self.include_pooling and len(self.ff_conv_k):
|
tensorflow.constant
| 9,722 |
import tensorflow as tf
with self.session():
tf.global_variables_initializer().run()
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
|
tensorflow.global_variables_initializer
| 9,723 |
import tensorflow as tf
scale = keep_prob
if mode == "recurrent" and len(args.get_shape().as_list()) == 3:
noise_shape = [shape[0], 1, shape[-1]]
args = tf.cond(is_train, lambda: tf.nn.dropout(
args, keep_prob, noise_shape=noise_shape) * scale, lambda: args)
return args
|
tensorflow.nn.dropout
| 9,724 |
import tensorflow as tf
print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
|
tensorflow.GPUOptions
| 9,725 |
import tensorflow as tf
def _decode_masks(self, parsed_tensors):
"""Decode a set of PNG masks to the tf.float32 tensors."""
def _decode_png_mask(png_bytes):
mask = tf.squeeze(
tf.io.decode_png(png_bytes, channels=1, dtype=tf.uint8), axis=-1)
mask = tf.cast(mask, dtype=tf.float32)
mask.set_shape([None, None])
return mask
height = parsed_tensors['image/height']
width = parsed_tensors['image/width']
masks = parsed_tensors['image/object/mask']
return tf.cond(
pred=tf.greater(tf.size(input=masks), 0),
true_fn=lambda: tf.map_fn(_decode_png_mask, masks, dtype=tf.float32),
false_fn=lambda: tf.zeros([0, height, width], dtype=tf.float32))
def _decode_areas(self, parsed_tensors):
xmin = parsed_tensors['image/object/bbox/xmin']
xmax = parsed_tensors['image/object/bbox/xmax']
ymin = parsed_tensors['image/object/bbox/ymin']
ymax = parsed_tensors['image/object/bbox/ymax']
return tf.cond(
tf.greater(tf.shape(parsed_tensors['image/object/area'])[0], 0),
lambda: parsed_tensors['image/object/area'],
lambda: (xmax - xmin) * (ymax - ymin))
|
tensorflow.size
| 9,726 |
import tensorflow as tf
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
|
tensorflow.nn.sigmoid
| 9,727 |
import tensorflow as tf
name="batch_norm_ss")
mean, variance = tf.nn.normalize_moments(counts,
shifted_sum_x,
|
tensorflow.nn.normalize_moments
| 9,728 |
import tensorflow as tf
@dynamic_batching.batch_fn
def f(a, b):
return a + b
outputs = []
for _ in xrange(1000):
outputs.append(f(tf.ones([1, 10]), tf.ones([1, 10])))
op_to_benchmark = tf.group(*outputs)
tf.train.start_queue_runners()
self.run_op_benchmark(
name='batching_many_small',
sess=session,
op_or_tensor=op_to_benchmark,
burn_iters=10,
min_iters=50)
|
tensorflow.train.start_queue_runners
| 9,729 |
import tensorflow as tf
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step)
with tf.variable_scope("summary"):
summary_loss_total = tf.summary.scalar("loss_total", loss_total)
summary_accuracy_test = tf.summary.scalar("accuracy_test", accuracy)
summary_accuracy_train = tf.summary.scalar("accuracy_train", accuracy)
# standardization
train_X_reshaped = train_X.reshape([train_X.shape[0], -1])
train_X_means = np.mean(train_X_reshaped, axis=0, keepdims=True)
|
tensorflow.summary.scalar
| 9,730 |
import tensorflow as tf
last_c = loop_outputs[-7]
last_h = loop_outputs[-6]
return arc_seq, entropy, log_prob, last_c, last_h
def build_trainer(self, child_model):
child_model.build_valid_rl()
self.valid_acc = (tf.to_float(child_model.valid_shuffle_acc) /
tf.to_float(child_model.batch_size))
self.reward = self.valid_acc
if self.entropy_weight is not None:
self.reward += self.entropy_weight * self.sample_entropy
self.sample_log_prob = tf.reduce_sum(self.sample_log_prob)
self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False)
|
tensorflow.to_float
| 9,731 |
import tensorflow as tf
tf.trainable_variables() +
tf.get_collection(tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
|
tensorflow.get_collection
| 9,732 |
import tensorflow as tf
q_tp1_best = tf.reduce_sum(target_policy.q_values * tf.one_hot(q_tp1_best_using_online_net, n_actions), axis=1)
else:
q_tp1_best = tf.reduce_max(target_policy.q_values, axis=1)
q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
errors = tf_util.huber_loss(td_error)
weighted_error = tf.reduce_mean(importance_weights_ph * errors)
tf.summary.scalar("td_error", tf.reduce_mean(td_error))
tf.summary.scalar("loss", weighted_error)
if full_tensorboard_log:
tf.summary.histogram("td_error", td_error)
# update_target_fn will be called periodically to copy Q network to target Q network
update_target_expr = []
for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name),
sorted(target_q_func_vars, key=lambda v: v.name)):
update_target_expr.append(var_target.assign(var))
update_target_expr = tf.group(*update_target_expr)
# compute optimization op (potentially with gradient clipping)
gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars)
|
tensorflow.summary.scalar
| 9,733 |
import tensorflow as tf
trainable_var = tf.trainable_variables()
if FLAGS.debug:
for var in trainable_var: utils.add_to_regularization_and_summary(var)
train_op = train(loss, trainable_var)
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
print("Setting up image reader...")
train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
print(len(train_records))
print(len(valid_records))
|
tensorflow.summary.merge_all
| 9,734 |
import tensorflow as tf
num_samples = self.num_samples.value()
deltas, perturbations = self.while_loop(
cond=util.tf_always_true, body=body, loop_vars=(deltas, previous_perturbations),
maximum_iterations=num_samples
)
with tf.control_dependencies(control_inputs=deltas):
num_samples = tf.dtypes.cast(x=num_samples, dtype=util.tf_dtype(dtype='float'))
deltas = [delta / num_samples for delta in deltas]
perturbation_deltas = [delta - pert for delta, pert in zip(deltas, perturbations)]
applied = self.apply_step(variables=variables, deltas=perturbation_deltas)
|
tensorflow.control_dependencies
| 9,735 |
import tensorflow as tf
variable_summaries(w)
if dilation > 1:
conv = tf.nn.atrous_conv2d(x, w, dilation, padding)
else:
if type(padding)==type(''):
conv = tf.nn.conv2d(x, w, stride, padding)
else:
conv = tf.pad(x, padding, "CONSTANT")
conv = tf.nn.conv2d(conv, w, stride, padding='VALID')
if bias != -1:
bias = tf.get_variable('biases', [num_filters], initializer=tf.constant_initializer(bias))
variable_summaries(bias)
|
tensorflow.pad
| 9,736 |
import tensorflow as tf
import datetime
import BatchDatsetReader as dataset
from six.moves import xrange
import os.path as osp
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "2", "batch size for training")
tf.flags.DEFINE_string("logs_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\logs", "path to logs directory")
tf.flags.DEFINE_string("data_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Data_zoo\STEM", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Model_zoo", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
|
tensorflow.flags.DEFINE_integer
| 9,737 |
import tensorflow as tf
def run(dataset_dir):
"""Runs the download and conversion operation.
Args:
dataset_dir: The dataset directory where the dataset is stored.
"""
if not tf.gfile.Exists(dataset_dir):
tf.gfile.MakeDirs(dataset_dir)
dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
# First, process the training data:
#with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
filenames = []
|
tensorflow.gfile.Exists
| 9,738 |
import tensorflow as tf
return x, regularization
def mlp_dropout(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None, dropout_rate=0):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def get_vars(scope):
return [x for x in tf.global_variables() if scope in x.name]
def count_vars(scope):
v = get_vars(scope)
return sum([np.prod(var.shape.as_list()) for var in v])
# """
# Random Network Distillation
# """
# def random_net_distill(x_ph, a_ph, hidden_sizes=(400,300), activation=tf.nn.relu,
# output_activation=tf.tanh, action_space=None):
# act_dim = a_ph.shape.as_list()[-1]
# act_limit = action_space.high[0]
# with tf.variable_scope('rnd_targ_act'):
# rnd_targ_act = act_limit * mlp(x_ph, list(hidden_sizes) + [act_dim], activation, output_activation)
|
tensorflow.global_variables
| 9,739 |
import tensorflow as tf
self.dlatent_variable = next(v for v in tf.global_variables() if 'learnable_dlatents' in v.name)
self.set_dlatents(self.initial_dlatents)
self.generator_output = self.graph.get_tensor_by_name('G_synthesis_1/_Run/concat/concat:0')
self.generated_image = tflib.convert_images_to_uint8(self.generator_output, nchw_to_nhwc=True, uint8_cast=False)
self.generated_image_uint8 = tf.saturate_cast(self.generated_image, tf.uint8)
def reset_dlatents(self):
self.set_dlatents(self.initial_dlatents)
def set_dlatents(self, dlatents):
assert (dlatents.shape == (self.batch_size, 18, 512))
self.sess.run(tf.assign(self.dlatent_variable, dlatents))
def get_dlatents(self):
return self.sess.run(self.dlatent_variable)
def generate_images(self, dlatents=None):
if dlatents:
self.set_dlatents(dlatents)
return self.sess.run(self.generated_image_uint8)
|
tensorflow.assign
| 9,740 |
import tensorflow as tf
with sess.graph.device("/gpu:0"):
v0_1 = tf.Variable(123.45)
|
tensorflow.Variable
| 9,741 |
import tensorflow as tf
K.zeros((self.nb_actions, self.nb_actions)),
K.zeros((self.nb_actions, self.nb_actions)),
]
def fn(a, x):
# Exponentiate everything. This is much easier than only exponentiating
# the diagonal elements, and, usually, the action space is relatively low.
x_ = K.exp(x) + K.epsilon()
# Only keep the diagonal elements.
x_ *= diag_mask
# Add the original, non-diagonal elements.
x_ += x * (1. - diag_mask)
# Finally, gather everything into a lower triangular matrix.
L_ = tf.gather(x_, tril_mask)
return [L_, tf.transpose(L_)]
tmp = tf.scan(fn, L_flat, initializer=init)
if isinstance(tmp, (list, tuple)):
# TensorFlow 0.10 now returns a tuple of tensors.
L, LT = tmp
else:
# Old TensorFlow < 0.10 returns a shared tensor.
L = tmp[:, 0, :, :]
LT = tmp[:, 1, :, :]
else:
raise RuntimeError('Unknown Keras backend "{}".'.format(K.backend()))
|
tensorflow.gather
| 9,742 |
import tensorflow as tf
# limitations under the License.
import time
import numpy as np
import tensorflow as tf
import random
from tensorflow.contrib import slim
from npu_bridge.estimator import npu_ops
from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
tf.app.flags.DEFINE_integer('input_size', 512, '')
tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '')
tf.app.flags.DEFINE_integer('num_readers', 16, '')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, '')
tf.app.flags.DEFINE_integer('max_steps', 100000, '')
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')
tf.app.flags.DEFINE_string('pretrained_model_path', None, '')
tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision')
tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune')
tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data')
tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets')
|
tensorflow.app.flags.DEFINE_float
| 9,743 |
import tensorflow as tf
optimize.get_variable_initializer(self.hparams))
with self._eager_var_store.as_default():
self._fill_problem_hparams_features(features)
sharded_features = self._shard_features(features)
sharded_logits, losses = self.model_fn_sharded(sharded_features)
if isinstance(sharded_logits, dict):
concat_logits = {}
for k, v in sharded_logits.iteritems():
concat_logits[k] = tf.concat(v, 0)
return concat_logits, losses
else:
return tf.concat(sharded_logits, 0), losses
@property
def use_body_sharded(self):
return False
|
tensorflow.concat
| 9,744 |
from tensorflow.python.framework import ops
range `[1,k]`, as documented above.
Returns:
`float64` `Tensor` of shape [D1, ... DN], where each value is the average
precision for that row.
Raises:
ValueError: if k is invalid.
"""
if k < 1:
raise ValueError('Invalid k=%s.' % k)
with ops.name_scope(
None, 'average_precision', (predictions, labels, k)) as scope:
# Calculate top k indices to produce [D1, ... DN, k] tensor.
_, predictions_idx = nn.top_k(predictions, k)
predictions_idx = math_ops.to_int64(predictions_idx, name='predictions_idx')
# Expand dims to produce [D1, ... DN, k, 1] tensor. This gives us a separate
# prediction for each k, so we can calculate separate true positive values
# for each k.
predictions_idx_per_k = array_ops.expand_dims(
predictions_idx, -1, name='predictions_idx_per_k')
|
tensorflow.python.framework.ops.name_scope
| 9,745 |
import tensorflow as tf
elif params.initializer == "uniform_unit_scaling":
return tf.variance_scaling_initializer(params.initializer_gain,
mode="fan_avg",
distribution="uniform")
else:
raise ValueError("Unrecognized initializer: %s" % params.initializer)
def get_learning_rate_decay(learning_rate, global_step, params):
if params.learning_rate_decay == "noam":
step = tf.to_float(global_step)
warmup_steps = tf.to_float(params.warmup_steps)
multiplier = params.hidden_size ** -0.5
decay = multiplier * tf.minimum((step + 1) * (warmup_steps ** -1.5),
(step + 1) ** -0.5)
return learning_rate * decay
elif params.learning_rate_decay == "new_warmup_rsqrt_decay":
step = tf.to_float(global_step)
warmup_steps = tf.to_float(params.warmup_steps)
multiplier = params.hidden_size ** -0.5
decay = params.r0 * multiplier * tf.minimum((step + 1) * (warmup_steps ** -1.0) * (warmup_steps ** -0.5),
|
tensorflow.to_float
| 9,746 |
import tensorflow as tf
accuracy_1 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_1, axis=-1),
tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1")
accuracy_2 = tf.reduce_mean(tf.cast(tf.equal(
tf.argmax(output_2, axis=-1),
tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2")
accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy")
with tf.variable_scope("train"):
global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False)
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step)
|
tensorflow.divide
| 9,747 |
import tensorflow as tf
if not is_training:
config.hidden_dropout_prob = 0.0
config.attention_probs_dropout_prob = 0.0
input_shape = get_shape_list(input_ids, expected_rank=2)
batch_size = input_shape[0]
seq_length = input_shape[1]
if input_mask is None:
input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
if token_type_ids is None:
token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
with tf.variable_scope(scope, default_name="bert"):
with tf.variable_scope("embeddings"):
# Perform embedding lookup on the word ids.
(self.word_embedding_output,
self.output_embedding_table) = embedding_lookup(
input_ids=input_ids,
vocab_size=config.vocab_size,
embedding_size=config.embedding_size,
initializer_range=config.initializer_range,
word_embedding_name="word_embeddings",
use_one_hot_embeddings=use_one_hot_embeddings)
# Add positional embeddings and token type embeddings, then layer
# normalize and perform dropout.
|
tensorflow.variable_scope
| 9,748 |
import tensorflow as tf
return update_mean_op, update_second_moment_op
def build_no_ops():
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
|
tensorflow.no_op
| 9,749 |
import tensorflow as tf
"""
batch_size = y_pred.shape[0]
num_of_joints = y_pred.shape[-1] # 有多少个关键点
y_pred = tf.reshape(y_pred, shape=(batch_size, -1, num_of_joints)) # 合并宽和高
heatmap_pred_list = tf.split(value=y_pred,
num_or_size_splits=num_of_joints,
axis=-1) # 拆分每一个关键点的特征图 [batch_size, -1, 1]
y_true = tf.reshape(y_true, shape=(batch_size, -1, num_of_joints))
heatmap_true_list = tf.split(value=y_true, # y_true执行与y_pred相同的操作
num_or_size_splits=num_of_joints,
axis=-1)
losses = [] # 计算每一个关键点的损失值,并累加求平均
for i in range(num_of_joints):
heatmap_pred = tf.squeeze(heatmap_pred_list[i])
|
tensorflow.reshape
| 9,750 |
import tensorflow as tf
else:
print(f'EPOCH: {epoch}, real_rot_loss: {round(epoch_real_rot_loss, 3)}, fake_rot_loss: {round(epoch_fake_rot_loss, 3)}, loss_d_rot: {round(epoch_loss_d, 3)}, loss_g_rot: {round(epoch_loss_g, 3)}, real_rot_acc: {round(real_rot_acc, 3)}, fake_rot_acc: {round(fake_rot_acc, 3)}')
return dict, duration
def _add_summaries(self, writer, names, values):
for name, value in zip(names, values):
summary = tf.Summary(value=[
tf.Summary.Value(tag=name, simple_value=value),
])
writer.add_summary(summary, self.step_count)
def eval_rot(self, batch_data):
feed_dict = {self.real_pc: batch_data, self.is_training_pl: False}
_, rot_loss = self.sess.run([self.opt_pred, self.real_pc_rot_loss], feed_dict=feed_dict)
return rot_loss
|
tensorflow.Summary.Value
| 9,751 |
import tensorflow as tf
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
|
tensorflow.contrib.cluster_resolver.TPUClusterResolver
| 9,752 |
import tensorflow as tf
#he_normal = tf.contrib.layers.variance_scaling_initializer()
regularizer = tf.contrib.layers.l2_regularizer(1e-4)
def Convolutional_Block(inputs, shortcut, num_filters, name, is_training):
print("-"*20)
print("Convolutional Block", str(num_filters), name)
print("-"*20)
with tf.variable_scope("conv_block_" + str(num_filters) + "_" + name):
for i in range(2):
with tf.variable_scope("conv1d_%s" % str(i)):
filter_shape = [3, inputs.get_shape()[2], num_filters]
W = tf.get_variable(name='W', shape=filter_shape,
initializer=he_normal,
regularizer=regularizer)
inputs = tf.nn.conv1d(inputs, W, stride=1, padding="SAME")
inputs = tf.layers.batch_normalization(inputs=inputs, momentum=0.997, epsilon=1e-5,
center=True, scale=True, training=is_training)
inputs = tf.nn.relu(inputs)
print("Conv1D:", inputs.get_shape())
print("-"*20)
if shortcut is not None:
print("-"*5)
print("Optional Shortcut:", shortcut.get_shape())
print("-"*5)
return inputs + shortcut
return inputs
# Three types of downsampling methods described by paper
def downsampling(inputs, downsampling_type, name, optional_shortcut=False, shortcut=None):
# k-maxpooling
|
tensorflow.layers.batch_normalization
| 9,753 |
import tensorflow as tf
N = tf.cast(tf.shape(X)[0], tf.float32)
D_int = tf.cast(D, tf.int32)
N_int = tf.cast(N, tf.int32)
if y is None:
y = silverman_rule_of_thumb(N)
YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32),
scale_diag=tf.ones(D_int, tf.float32))
Y = YDistr.sample(N_int)
T = 1.0/(2.0*N*tf.sqrt(m.pi*y))
A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
A = tf.reduce_sum(phi_sampling(A0/(4*y), D))
B0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(Y, 0), tf.expand_dims(Y, 1)), axis=2)
B = tf.reduce_sum(phi_sampling(B0/(4*y), D))
C0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(Y, 1)), axis=2)
C = tf.reduce_sum(phi_sampling(C0/(4*y), D))
return T*(A + B - 2*C)
|
tensorflow.expand_dims
| 9,754 |
import tensorflow as tf
name='H')
T = tf.layers.dense(
inputs,
units=depth,
activation=tf.nn.sigmoid,
name='T',
bias_initializer=tf.constant_initializer(-1.0))
return H * T + inputs * (1.0 - T)
def conv1d(inputs, kernel_size, channels, activation, is_training, scope):
with tf.variable_scope(scope):
|
tensorflow.constant_initializer
| 9,755 |
import tensorflow as tf
case where IoU of a box with any groundtruth box is greater than
`background_iou_low_threshold` and less than
`background_iou_low_threshold`.
ignored_matches: a bool tensor of shape of [batch, N], representing
whether each box is an ignored matches or not. An ignored matches is the
match that is neither positive or negative.
"""
matched_gt_boxes, matched_gt_classes, matched_gt_indices, matched_iou, _ = (
box_ops.box_matching(boxes, gt_boxes, gt_classes))
positive_matches = tf.greater(
matched_iou, self._config_dict['foreground_iou_threshold'])
negative_matches = tf.logical_and(
tf.greater_equal(
matched_iou, self._config_dict['background_iou_low_threshold']),
tf.less(
matched_iou, self._config_dict['background_iou_high_threshold']))
ignored_matches = tf.logical_and(
tf.less(matched_iou, 0.0),
tf.greater_equal(
matched_iou, self._config_dict['background_iou_high_threshold']))
ignored_matches = tf.logical_and(
ignored_matches,
tf.less(
matched_iou, self._config_dict['foreground_iou_threshold']))
|
tensorflow.greater_equal
| 9,756 |
import tensorflow as tf
# To find out where placement occurs, set 'log_device_placement'
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Runs the op.
print(sess.run(c))
# If we load a graph and want device placement to be forgotten,
# we set a parameter in our session:
config = tf.ConfigProto()
config.allow_soft_placement = True
sess_soft = tf.Session(config=config)
# GPUs
#---------------------------------
# Note that the GPU must have a compute capability > 3.5 for TF to use.
# http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability
# Careful with GPU memory allocation, TF never releases it. TF starts with almost
# all of the GPU memory allocated. We can slowly grow to that limit with an
# option setting:
config.gpu_options.allow_growth = True
sess_grow = tf.Session(config=config)
|
tensorflow.Session
| 9,757 |
import tensorflow as tf
" event_shape=()"
" dtype=float32>")
# There's no notion of partially known shapes in eager mode, so exit
# early.
if tf.executing_eagerly():
return
exp = tfd.Exponential(rate=tf.placeholder_with_default(
input=1., shape=None))
self.assertEqual(
repr(exp),
"<tfp.distributions.Exponential"
" 'Exponential/'"
" batch_shape=<unknown>"
" event_shape=()"
|
tensorflow.placeholder_with_default
| 9,758 |
from tensorflow.python.framework import ops
returned_shape.append(dim)
return [tensor_shape.TensorShape(returned_shape)]
else:
raise ValueError(
"dimension (%d) must be in the range [0, %d), where %d is the number "
"of dimensions in the input"
% (dimension, input_shape.ndims, input_shape.ndims))
@ops.RegisterShape("All")
@ops.RegisterShape("Any")
@ops.RegisterShape("Max")
@ops.RegisterShape("Mean")
@ops.RegisterShape("Min")
@ops.RegisterShape("Prod")
@ops.RegisterShape("Sum")
def _ReductionShape(op):
"""Common shape function for reduction ops."""
input_shape = op.inputs[0].get_shape()
reduction_indices = tensor_util.ConstantValue(op.inputs[1])
keep_dims = op.get_attr("keep_dims")
if reduction_indices is None or input_shape.ndims is None:
if keep_dims:
return [tensor_shape.unknown_shape(ndims=input_shape.ndims)]
else:
return [tensor_shape.unknown_shape()]
# Turn reduction_indices from scalar to vector if necessary
reduction_indices = np.ravel(reduction_indices)
|
tensorflow.python.framework.ops.RegisterShape
| 9,759 |
import tensorflow as tf
def main(args):
with tf.Graph().as_default():
config = tf.ConfigProto(inter_op_parallelism_threads=args.num_inter_threads,
intra_op_parallelism_threads=args.num_intra_threads)
with tf.Session(config = config) as sess:
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
|
tensorflow.Session
| 9,760 |
import tensorflow as tf
k = tf.to_int32(tf.ceil(time_steps / stride) * stride) - time_steps # TODO: simpler
pad = tf.zeros([batch_size, k, tf.shape(encoder_inputs_)[2]])
encoder_inputs_ = tf.concat([encoder_inputs_, pad], axis=1)
encoder_inputs_ = tf.nn.pool(encoder_inputs_, window_shape=[stride], pooling_type='MAX',
padding='VALID', strides=[stride])
encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / stride))
if encoder.highway_layers:
x = encoder_inputs_
for j in range(encoder.highway_layers):
size = x.shape[2].value
with tf.variable_scope('highway_{}'.format(j + 1)):
g = tf.layers.dense(x, size, activation=tf.nn.sigmoid, use_bias=True, name='g')
y = tf.layers.dense(x, size, activation=tf.nn.relu, use_bias=True, name='y')
x = g * y + (1 - g) * x
encoder_inputs_ = x
# Contrary to Theano's RNN implementation, states after the sequence length are zero
# (while Theano repeats last state)
inter_layer_keep_prob = None if not encoder.use_dropout else encoder.inter_layer_keep_prob
parameters = dict(
inputs=encoder_inputs_, sequence_length=encoder_input_length_,
dtype=tf.float32, parallel_iterations=encoder.parallel_iterations,
|
tensorflow.layers.dense
| 9,761 |
import tensorflow as tf
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.use_hvd:
hvd.init()
if FLAGS.reduce_log and (hvd.rank() != 0):
tf.logging.set_verbosity(tf.logging.ERROR)
FLAGS.output_dir = FLAGS.output_dir if hvd.rank() == 0 else os.path.join(FLAGS.output_dir, str(hvd.rank()))
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_train_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
tensorflow.logging.set_verbosity
| 9,762 |
import tensorflow as tf
log("Loading training data from: {}".format(metadat_fpath))
log("Using model: Tacotron")
log(hparams_debug_string())
# Start by setting a seed for repeatability
tf.set_random_seed(hparams.tacotron_random_seed)
# Set up data feeder
coord = tf.train.Coordinator()
with tf.variable_scope("datafeeder") as scope:
feeder = Feeder(coord, metadat_fpath, hparams)
# Set up model:
global_step = tf.Variable(0, name="global_step", trainable=False)
model, stats = model_train_mode(args, feeder, hparams, global_step)
eval_model = model_test_mode(args, feeder, hparams, global_step)
# Embeddings metadata
|
tensorflow.variable_scope
| 9,763 |
from tensorflow.python.ops import array_ops
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
def _compute_loss(self):
def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2):
logits = tf.nn.sigmoid(logits)
zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros)
neg_p_sub = array_ops.where(labels > zeros, zeros, logits)
cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \
- (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0))
return tf.reduce_sum(cross_ent, 1)
start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1)
end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1)
|
tensorflow.python.ops.array_ops.where
| 9,764 |
from tensorflow.python.framework import ops
# TODO(mrry): Move this to where it is used, so we can get rid of this op
# wrapper?
if set_shape:
ret.set_shape(shape)
return ret
# NOTE(mrry): Shapes are conditionally set in the Python wrapper.
ops.RegisterShape("Variable")(common_shapes.unknown_shape)
@ops.RegisterShape("TemporaryVariable")
def _TemporaryVariableShape(op):
"""Shape function for the TemporaryVariable op."""
shape = tensor_util.TensorShapeProtoToList(op.get_attr("shape"))
return [tensor_shape.TensorShape(shape)]
|
tensorflow.python.framework.ops.RegisterShape
| 9,765 |
import tensorflow as tf
processed_l2_h2 = self.ff_nl(processed_l2_h2)
if self.batch_norm:
with tf.variable_scope(
'l3_h2_bn_ff_%s' % idx,
reuse=self.scope_reuse) as scope:
processed_l2_h2 = tf.contrib.layers.batch_norm(
inputs=processed_l2_h2,
scale=True,
center=True,
fused=True,
|
tensorflow.contrib.layers.batch_norm
| 9,766 |
import tensorflow as tf
ret = ops
return ret
def _build_ops(self, lm_graph):
with tf.control_dependencies([lm_graph.update_state_op]):
# get the LM embeddings
token_embeddings = lm_graph.embedding
layers = [
tf.concat([token_embeddings, token_embeddings], axis=2)
]
n_lm_layers = len(lm_graph.lstm_outputs['forward'])
for i in range(n_lm_layers):
layers.append(
tf.concat(
[lm_graph.lstm_outputs['forward'][i],
lm_graph.lstm_outputs['backward'][i]],
|
tensorflow.concat
| 9,767 |
import tensorflow as tf
dc_g_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_g_fake), logits=d_g_fake))
dc_g_loss = dc_g_loss_fake + dc_g_loss_real
# Categorical Discrimminator Loss
dc_c_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_real), logits=d_c_real))
dc_c_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_c_fake), logits=d_c_fake))
dc_c_loss = dc_c_loss_fake + dc_c_loss_real
# Generator loss
generator_g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_g_fake), logits=d_g_fake))
generator_c_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_fake), logits=d_c_fake))
|
tensorflow.zeros_like
| 9,768 |
import tensorflow as tf
with tf.variable_scope('target_q'):
self.target_q = R + self.gamma * self.q_
with tf.variable_scope('abs_TD'):
self.abs_td = tf.abs(self.target_q - self.q)
self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
with tf.variable_scope('TD_error'):
self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q))
with tf.variable_scope('C_train'):
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP)
with tf.variable_scope('a_grad'):
self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim)
def _build_net(self, s, a, scope, trainable):
with tf.variable_scope(scope):
init_w = tf.random_normal_initializer(0., 0.01)
init_b = tf.constant_initializer(0.01)
with tf.variable_scope('l1'):
n_l1 = 700
# combine the action and states together in this way
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable)
|
tensorflow.variable_scope
| 9,769 |
import tensorflow as tf
def _testGraphExtensionRestore(self):
test_dir = os.path.join(self.get_temp_dir(), "graph_extension")
filename = os.path.join(test_dir, "metafile")
saver0_ckpt = os.path.join(test_dir, "saver0.ckpt")
with self.test_session(graph=tf.Graph()) as sess:
# Restores from MetaGraphDef.
new_saver = tf.train.import_meta_graph(filename)
# Generates a new MetaGraphDef.
new_saver.export_meta_graph()
|
tensorflow.Graph
| 9,770 |
import tensorflow as tf
gfile.MakeDirs(save_dir)
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v0 = tf.Variable(111, name="v0")
with sess.graph.device("/cpu:1"):
v1 = tf.Variable(222, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True, max_to_keep=2)
tf.initialize_all_variables().run()
self.assertEqual([], save.last_checkpoints)
s1 = save.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s1], save.last_checkpoints)
self.assertEqual(2, len(gfile.Glob(s1)))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
|
tensorflow.train.Saver
| 9,771 |
import tensorflow as tf
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
# sum mean over each batch by time steps
Omega = tf.square(bounded - 1.0)
Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems))
|
tensorflow.div
| 9,772 |
import tensorflow as tf
@classmethod
def from_tfrecord_files(cls, input_files, **kwargs) -> tf.data.Dataset:
dataset = utils.read_tfrecord_files(input_files, **kwargs)
d = cls(examples=None, **kwargs)
# parse example
features = {
d.input_ids: tf.io.VarLenFeature(tf.int64),
d.token_type_ids: tf.io.VarLenFeature(tf.int64),
d.attention_mask: tf.io.VarLenFeature(tf.int64),
d.labels: tf.io.VarLenFeature(tf.int64),
}
dataset = dataset.map(
lambda x: tf.io.parse_example(x, features),
num_parallel_calls=utils.AUTOTUNE,
|
tensorflow.io.VarLenFeature
| 9,773 |
import tensorflow as tf
observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0.0))
q_func_results = q_func(observations_ph.get(), num_actions, scope="q_func")
q_values = q_func_results['q']
|
tensorflow.constant_initializer
| 9,774 |
import tensorflow as tf
w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer())
b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0))
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer())
b3 = tf.get_variable('bias3', [10], initializer=tf.constant_initializer(0.0))
y = tf.matmul(h2, w3) + b3
# losses
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=gt, logits=y))
# optimizer
optimizer = tf.train.GradientDescentOptimizer(args.lr)
# define one-step train ops
|
tensorflow.matmul
| 9,775 |
import tensorflow as tf
with tf.name_scope('AccumGradOptimizer'):
ops = []
for s, gv in zip(slots, grads_and_vars):
g, v = gv
ops.append(s.assign_add(g))
update_counter = tf.assign_add(counter, 1, name='update_counter')
update_slot_op = tf.group(update_counter, *ops, name='update_slot')
def update_grad():
update_op = self._opt.apply_gradients(slots_and_vars)
|
tensorflow.assign_add
| 9,776 |
import tensorflow as tf
Returns:
Tensor with nearest element in mean encoded in one-hot notation.
"""
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keep_dims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keep_dims=True)
scalar_prod = tf.matmul(
tf.transpose(x, perm=[1, 0, 2]), tf.transpose(means, perm=[0, 2, 1]))
scalar_prod = tf.transpose(scalar_prod, perm=[1, 0, 2])
dist = x_norm_sq + tf.transpose(
means_norm_sq, perm=[2, 0, 1]) - 2 * scalar_prod
if self.hparams.soft_em:
nearest_idx = tf.stack(
[
tf.multinomial(
-dist[:, i, :], num_samples=self.hparams.num_samples)
for i in range(self.hparams.num_blocks)
|
tensorflow.transpose
| 9,777 |
import tensorflow as tf
target_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the MMD loss.
scope: optional name scope for summary tags.
Returns:
a scalar tensor representing the MMD loss value.
"""
with tf.name_scope(name):
sigmas = [
1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6
]
gaussian_kernel = partial(util.gaussian_kernel_matrix, sigmas=tf.constant(sigmas))
loss_value = maximum_mean_discrepancy(source_samples, target_samples, kernel=gaussian_kernel)
loss_value = tf.maximum(1e-4, loss_value) * weight
assert_op = tf.Assert(tf.is_finite(loss_value), [loss_value])
with tf.control_dependencies([assert_op]):
tag = 'MMD_Loss'
barrier = tf.no_op(tag)
return loss_value
|
tensorflow.constant
| 9,778 |
import tensorflow as tf
tf.split(1, max_sequence_len, embeddings)]
# Need to prepare a mask to zero out the padding symbols.
# Make a batch_size x max_sequence_len matrix where each
# row contains the length repeated max_sequence_len times.
lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1)
lengths_tiled = tf.tile(lengths_transposed, [1, max_sequence_len])
# Make a matrix where each row contains [0, 1, ..., max_sequence_len]
r = tf.range(0, max_sequence_len, 1)
range_row = tf.expand_dims(r, 0)
range_tiled = tf.tile(range_row, [batch_size, 1])
self.lengths_transposed = lengths_transposed
self.lengths_tiled = lengths_tiled
self.range_row = range_row
self.range_tiled = range_tiled
# Use the logical operations to create a mask
|
tensorflow.range
| 9,779 |
import tensorflow as tf
sliced_propensity = tf.unstack(propensity_weights, axis=1)
for i in range(len(sliced_output)):
for j in range(i+1, len(sliced_output)):
cur_label_weight = tf.math.sign(sliced_label[i] - sliced_label[j])
cur_propensity = sliced_propensity[i] * sliced_label[i] + sliced_propensity[j] * sliced_label[j]
cur_pair_loss = -tf.exp(sliced_output[i]) / (tf.exp(sliced_output[i]) + tf.exp(sliced_output[j]))
if loss == None:
loss = cur_label_weight * cur_pair_loss * cur_propensity
loss += cur_label_weight * cur_pair_loss * cur_propensity
batch_size = tf.shape(labels[0])[0]
return tf.reduce_sum(loss) / tf.cast(batch_size, dtypes.float32) #/ (tf.reduce_sum(propensity_weights)+1)
def click_weighted_log_loss(self, output, labels, propensity_weights, name=None):
"""Computes pointwise sigmoid loss with propensity weighting.
Args:
output: (tf.Tensor) A tensor with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a
|
tensorflow.cast
| 9,780 |
import tensorflow as tf
feature_loss = tf.reduce_mean(tf.abs(tf.subtract(real_data_mean, fake_data_mean)))
return feature_loss
def _tower_loss_semi_supervised(self, inputs, targets, gpu_idx=0, num_classes=11,
is_fm_loss=False):
with tf.variable_scope("train_specific"):
avg_error_rate = tf.get_variable(
'avg_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False)
num_error_rate = tf.get_variable(
'num_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False)
|
tensorflow.variable_scope
| 9,781 |
import tensorflow as tf
Returns:
a tensor with shape [N, M] representing pairwise iou scores.
"""
intersections = pairwise_intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = (
tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
@under_name_scope()
def pairwise_iou_batch(proposal_boxes, gt_boxes, orig_gt_counts, batch_size):
"""Computes pairwise intersection-over-union between box collections.
Args:
proposal_boxes: K x 5 (batch_index, x1, y1, x2, y2)
gt_boxes: BS x MaxNumGTs x 4
orig_gt_counts: BS
|
tensorflow.truediv
| 9,782 |
import tensorflow as tf
# Use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tf.reshape(im, tf.stack([-1, channels]))
im_flat = tf.to_float(im_flat)
i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0)
i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1)
|
tensorflow.to_float
| 9,783 |
import tensorflow as tf
with tf.control_dependencies(None):
slots = self._create_accum_slots(vs)
slots_and_vars = [(s, gv[1]) for s, gv in zip(slots, grads_and_vars)]
# Create the counter on the same device as the first variable.
with tf.variable_scope(self._name), \
vs[0].graph.colocate_with(vs[0]):
counter = tf.Variable(
0, name="counter", trainable=False, dtype=tf.int32)
with tf.name_scope('AccumGradOptimizer'):
|
tensorflow.variable_scope
| 9,784 |
import tensorflow as tf
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
|
tensorflow.reduce_mean
| 9,785 |
import tensorflow as tf
b1 = tf.get_variable('bias1', [1024], initializer=tf.constant_initializer(0.0))
h1 = tf.nn.relu(tf.matmul(x, w1) + b1)
with tf.variable_scope('layer2'):
w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer())
b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0))
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer())
|
tensorflow.constant_initializer
| 9,786 |
import tensorflow as tf
return tf.squeeze((y_max - y_min) * (x_max - x_min), [1])
@under_name_scope()
def pairwise_intersection(boxlist1, boxlist2):
"""Compute pairwise intersection areas between boxes.
Args:
boxlist1: Nx4 floatbox
boxlist2: Mx4
Returns:
a tensor with shape [N, M] representing pairwise intersections
"""
x_min1, y_min1, x_max1, y_max1 = tf.split(boxlist1, 4, axis=1)
x_min2, y_min2, x_max2, y_max2 = tf.split(boxlist2, 4, axis=1)
all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
@under_name_scope()
def pairwise_iou(boxlist1, boxlist2):
"""Computes pairwise intersection-over-union between box collections.
Args:
|
tensorflow.split
| 9,787 |
import tensorflow as tf
num_attention_heads= input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
|
tensorflow.get_variable
| 9,788 |
import tensorflow as tf
with tf.device(worker_device):
with tf.variable_scope("local"):
self.local_network = pi = LSTMPolicy(env.observation_space.shape, env.action_space.n)
pi.global_step = self.global_step
self.ac = tf.placeholder(tf.float32, [None, env.action_space.n], name="ac")
self.adv = tf.placeholder(tf.float32, [None], name="adv")
self.r = tf.placeholder(tf.float32, [None], name="r")
log_prob_tf = tf.nn.log_softmax(pi.logits)
prob_tf = tf.nn.softmax(pi.logits)
# the "policy gradients" loss: its derivative is precisely the policy gradient
|
tensorflow.placeholder
| 9,789 |
import tensorflow as tf
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy_loss')
tf.summary.scalar('cross_entropy_loss', cross_entropy)
loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred))
#loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1))
loc_loss = tf.identity(loc_loss, name='location_loss')
tf.summary.scalar('location_loss', loc_loss)
tf.losses.add_loss(loc_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = cross_entropy + loc_loss + params['weight_decay'] * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
|
tensorflow.identity
| 9,790 |
import tensorflow.contrib.layers as layers
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
def simple_model(img_in, num_actions, scope, reuse=False, num_filters=64):
|
tensorflow.contrib.layers.fully_connected
| 9,791 |
import tensorflow as tf
# Trainable variables:
# Weight matrices and bias weights
# ------------------------------------------------
# Input weight matrix:
# (uniform initialization as in pycog)
self.W_in = \
tf.get_variable('W_in', [N_rec, N_in],
initializer=W_in_initializer,
trainable=self.W_in_train)
# Recurrent weight matrix:
# (gamma (Dale) or normal (non-Dale) initialization)
self.W_rec = \
tf.get_variable(
'W_rec',
[N_rec, N_rec],
initializer=W_rec_initializer,
trainable=self.W_rec_train)
# Output weight matrix:
# (uniform initialization as in pycog)
self.W_out = tf.get_variable('W_out', [N_out, N_rec],
initializer=W_out_initializer,
trainable=self.W_out_train)
# Recurrent bias:
self.b_rec = tf.get_variable('b_rec', [N_rec], initializer=b_rec_initializer,
|
tensorflow.get_variable
| 9,792 |
import tensorflow as tf
regularizer=l2_regularizer, dtype=inpOp.dtype)
cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType)
if use_batch_norm:
conv_bn = batch_norm(cnv, phase_train)
else:
conv_bn = cnv
biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype)
bias = tf.nn.bias_add(conv_bn, biases)
conv1 = tf.nn.relu(bias)
return conv1
def convLinear(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0):
with tf.variable_scope(name):
l2_regularizer = lambda t: l2_loss(t, weight=weight_decay)
kernel = tf.get_variable("weights", [kH, kW, nIn, nOut],
|
tensorflow.nn.bias_add
| 9,793 |
import tensorflow as tf
# Bidaf style conv-highway encoder
ch_emb = conv(ch_emb, d,
bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = None)
qh_emb = conv(qh_emb, d,
bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = True)
ch_emb = tf.reduce_max(ch_emb, axis = 1)
qh_emb = tf.reduce_max(qh_emb, axis = 1)
ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]])
qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]])
c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
c_emb = tf.concat([c_emb, ch_emb], axis=2)
q_emb = tf.concat([q_emb, qh_emb], axis=2)
c_emb = highway(c_emb, size = d, scope = "highway", dropout = self.dropout, reuse = None)
q_emb = highway(q_emb, size = d, scope = "highway", dropout = self.dropout, reuse = True)
with tf.variable_scope("Embedding_Encoder_Layer"):
c = residual_block(c_emb,
num_blocks = 1,
num_conv_layers = 4,
kernel_size = 7,
|
tensorflow.nn.embedding_lookup
| 9,794 |
import tensorflow as tf
# Check that the parameter nodes have been initialized.
self.assertEqual(10.0, v0.eval())
self.assertEqual(20.0, v1.eval())
# Save the initialized values in the file at "save_path"
# Use a variable name map to set the saved tensor names
val = save.save(sess, save_path)
self.assertTrue(isinstance(val, six.string_types))
self.assertEqual(save_path, val)
# Verify that the original names are not in the Saved file
save = tf.train.Saver({"v0": v0, "v1": v1})
with self.assertRaisesOpError("not found in checkpoint"):
save.restore(sess, save_path)
# Verify that the mapped names are present in the Saved file and can be
# Restored using remapped names.
with self.test_session() as sess:
v0 = tf.Variable(-1.0, name="v0")
v1 = tf.Variable(-1.0, name="v1")
with self.assertRaisesOpError("uninitialized value v0"):
sess.run(v0)
|
tensorflow.train.Saver
| 9,795 |
from tensorflow.python.ops import variable_scope
Raises:
ValueError: If `predictions` and `labels` have mismatched shapes, or if
`weights` is not `None` and its shape doesn't match `predictions`, or if
either `metrics_collections` or `updates_collections` are not a list or
tuple.
"""
with variable_scope.variable_scope(name, 'precision_at_thresholds',
[predictions, labels]):
# TODO(nsilberman): Replace with only tp and fp, this results in unnecessary
# variable creation. b/30842882
(true_positives, _, _, false_positives, true_positives_compute_op, _, _,
|
tensorflow.python.ops.variable_scope.variable_scope
| 9,796 |
import tensorflow as tf
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
h = o*tf.tanh(_ln(c, gc, bc))
xs[idx] = h
s = tf.concat(axis=1, values=[c, h])
return xs, s
def conv_to_fc(x):
nh = np.prod([v.value for v in x.get_shape()[1:]])
x = tf.reshape(x, [-1, nh])
|
tensorflow.concat
| 9,797 |
import tensorflow as tf
def pad_or_clip_tensor(t, length):
"""Pad or clip the input tensor along the first dimension.
Args:
t: the input tensor, assuming the rank is at least 1.
length: a tensor of shape [1] or an integer, indicating the first dimension
of the input tensor t after processing.
Returns:
processed_t: the processed tensor, whose first dimension is length. If the
length is an integer, the first dimension of the processed tensor is set
to length statically.
"""
processed_t = tf.cond(
tf.greater(tf.shape(t)[0], length),
lambda: clip_tensor(t, length),
lambda: pad_tensor(t, length))
if not _is_tensor(length):
processed_t = _set_dim_0(processed_t, length)
return processed_t
def combined_static_and_dynamic_shape(tensor):
"""Returns a list containing static and dynamic values for the dimensions.
Returns a list of static and dynamic values for shape dimensions. This is
useful to preserve static shapes when available in reshape operation.
Args:
|
tensorflow.shape
| 9,798 |
import tensorflow as tf
maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
maybe_log2 = tf.cast(maybe_log2, logits.dtype.base_dtype)
|
tensorflow.cast
| 9,799 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.