seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf keep_prob, is_train, wd, activation ) # [bs,bn,vec] block_ct_res_tile = tf.tile(tf.expand_dims(block_ct_res, 2), [1, 1, bl, 1])#[bs,bn,vec]->[bs,bn,bl,vec] with tf.variable_scope('combination'): # input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec] rep_tensor_with_ct = tf.concat([rep_map, self_attn_result, block_ct_res_tile], -1) # [bs,bn,bl,3vec] new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True, 0., 'linear_new_context_and_gate', False, wd, keep_prob, is_train) # [bs,bn,bl,2vec] new_context, gate = tf.split(new_context_and_gate, 2, 3) # bs,bn,bl,vec if activation == "relu": new_context_act = tf.nn.relu(new_context) elif activation == "elu":
tensorflow.concat
9,900
from tensorflow.examples.tutorials.mnist import input_data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/")
tensorflow.examples.tutorials.mnist.input_data.read_data_sets
9,901
import tensorflow as tf """ # tvar = tf.trainable_variables() if train_only else tf.all_variables() if train_only: t_vars = tf.trainable_variables() logging.info(" [*] printing trainable variables") else:
tensorflow.trainable_variables
9,902
import tensorflow as tf out_entry_count = np.prod(out_sizes) * max_density bias = np.zeros([filter_in_sizes[-1]], dtype=np.float32) no_strides = [1, 1, 1, 1, 1] [t1ind, t1val, t1sh] = sp.createRandomSparseTensor(rho_data, tensor_in_sizes, -3, 3) s1 = tf.SparseTensor(indices=t1ind, values=t1val, dense_shape=t1sh) d1 = sp.sparse_to_dense(t1ind, t1val, t1sh) [t2ind, t2val, t2sh] = sp.createRandomSparseTensor(rho_filter, filter_in_sizes) s2 = tf.SparseTensor(indices=t2ind, values=t2val, dense_shape=t2sh)
tensorflow.SparseTensor
9,903
import tensorflow as tf # implement one step of the RNN def rnn_step(self, rnn_in, state): if self.dale_ratio: new_state = (1-self.alpha) * state \ + self.alpha * ( tf.matmul( tf.nn.relu(state), tf.matmul( tf.abs(self.W_rec) * self.rec_Connectivity, self.Dale_rec, name="in_1"), transpose_b=True, name="1") + tf.matmul( rnn_in, tf.abs(self.W_in) * self.input_Connectivity, transpose_b=True, name="2") + self.b_rec)\ + np.sqrt(2.0 * self.alpha * self.rec_noise * self.rec_noise)\ * tf.random_normal(state.get_shape(), mean=0.0, stddev=1.0)
tensorflow.abs
9,904
import tensorflow as tf return x def discount_with_dones(rewards, dones, gamma): discounted = [] r = 0 for reward, done in zip(rewards[::-1], dones[::-1]): r = reward + gamma*r*(1.-done) # fixed off by one bug discounted.append(r) return discounted[::-1] def find_trainable_variables(key): return tf.trainable_variables(key) def make_path(f): return os.makedirs(f, exist_ok=True) def constant(p): return 1 def linear(p): return 1-p
tensorflow.trainable_variables
9,905
import tensorflow as tf """Steps after which learning rate decays.""") tf.flags.DEFINE_float('learning_rate_decay_factor', 0.94, """Learning rate decay factor.""") tf.flags.DEFINE_float('momentum', 0.9, """Momentum for training.""") tf.flags.DEFINE_float('rmsprop_decay', 0.9, """Decay term for RMSProp.""") tf.flags.DEFINE_float('rmsprop_momentum', 0.9, """Momentum in RMSProp.""") tf.flags.DEFINE_float('rmsprop_epsilon', 1.0, """Epsilon term for RMSProp.""") tf.flags.DEFINE_float('gradient_clip', None, """Gradient clipping magnitude. Disabled by default.""") tf.flags.DEFINE_float('weight_decay', 0.00004, """Weight decay factor for training.""") # Performance tuning flags. tf.flags.DEFINE_boolean('winograd_nonfused', True, """Enable/disable using the Winograd non-fused algorithms.""") tf.flags.DEFINE_boolean('sync_on_finish', False, """Enable/disable whether the devices are synced after
tensorflow.flags.DEFINE_float
9,906
import tensorflow as tf def test_instance_non_maximum_suppression_1d_scores(self): mask0 = tf.constant([[1, 0], [0, 1]], dtype=tf.float32) mask1 = tf.constant([[1, 1], [0, 1]], dtype=tf.float32) mask2 = tf.constant([[1, 0], [1, 1]], dtype=tf.float32) mask3 = tf.constant([[1, 1], [1, 1]], dtype=tf.float32) mask4 = tf.constant([[0, 0], [0, 0]], dtype=tf.float32)
tensorflow.constant
9,907
import tensorflow as tf def _relu(name, x): """ Applies ReLU function. :param name: [string] Name of the op. :param x: [Tensor] Input to the function. :return: [Tensor] Output of the function. """ return tf.nn.relu(x, name=name) # log.warning('Not using ReLU to test performance at inference time') # return x def _stride_arr(n, data_format='NHWC'): """Makes strides array for downsampling convolution.""" if data_format == 'NHWC': return [1, n, n, 1] elif data_format == 'NCHW':
tensorflow.nn.relu
9,908
import tensorflow as tf conv = tf.nn.conv2d(x, w, stride, padding) else: conv = tf.pad(x, padding, "CONSTANT") conv = tf.nn.conv2d(conv, w, stride, padding='VALID') if bias != -1:
tensorflow.nn.conv2d
9,909
import tensorflow as tf f_i_), axis=1) # IMP: This is sum, as expectation wrt f loss_bc = -tf.reduce_mean(gain_bc) loss_policy = loss_f + loss_bc # Value/Q function loss, and explained variance check_shape([qret, q_i], [[self.n_envs * self.n_steps]] * 2) explained_variance = q_explained_variance(tf.reshape(q_i, [self.n_envs, self.n_steps]), tf.reshape(qret, [self.n_envs, self.n_steps])) loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i) * 0.5) # Net loss check_shape([loss_policy, loss_q, entropy], [[]] * 3) loss = loss_policy + self.q_coef * loss_q - self.ent_coef * entropy tf.summary.scalar('entropy_loss', entropy)
tensorflow.reshape
9,910
import tensorflow as tf widths, x_centers = tf.meshgrid(widths, x_centers) heights, y_centers = tf.meshgrid(heights, y_centers) anchor_centers = tf.stack([x_centers, y_centers], axis=2) anchor_centers = tf.reshape(anchor_centers, [-1, 2]) anchor_sizes = tf.stack([widths, heights], axis=2) anchor_sizes = tf.reshape(anchor_sizes, [-1, 2]) anchors = tf.concat([anchor_centers - .5 * anchor_sizes, anchor_centers + .5 * anchor_sizes], 1) # anchors = box_utils.convert_yxyx_to_xyxy_format(anchors)
tensorflow.reshape
9,911
import tensorflow as tf # clip gradients clipped_grads_and_vars = self._clip_gradients(self.grads_and_vars, self._grad_clipping_tuple) # compute norms in case they need to be logged self.gradient_norms = [tf.norm(g) + NUMTOL for (g, v) in clipped_grads_and_vars] self.weight_norms = [tf.norm(v) + NUMTOL for (g, v) in clipped_grads_and_vars] # check that gradients are finite grads = [tf.check_numerics(g, "grads is not finite") for (g, v) in clipped_grads_and_vars] variables = [tf.check_numerics(v, "grads is not finite") for (g, v) in clipped_grads_and_vars] self.gradient_weight_global_norms = [tf.global_norm(grads), tf.global_norm(variables)] # 2nd part of minimize: apply_gradient optimizer_step = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step) update_ops = tf.group(*self.update_ops) self.training_op = tf.group(update_ops, optimizer_step) def set_check_ops(self): self._check_ops = 1 # TODO argo2 This is not working anymore with the new session #with self.sess.graph.as_default(): self._numerics_ops = tf.add_check_numerics_ops() def release(self): super().release() self.sess.close() tf.reset_default_graph()
tensorflow.group
9,912
import tensorflow as tf # Concatenate the cell_output (= decoder state) and the context vector, and pass them through a linear layer # This is V[s_t, h*_t] + b in the paper with variable_scope.variable_scope("AttnOutputProjection"): output_t = linear([cell_output] + [context_t], options.gen_hidden_size, True) with tf.variable_scope('output_projection'): w = tf.get_variable('w', [options.gen_hidden_size, vocab.vocab_size+1], dtype=tf.float32) b = tf.get_variable('b', [vocab.vocab_size +1], dtype=tf.float32) # vocab_scores is the vocabulary distribution before applying softmax. # Each entry on the list corresponds to one decoder step vocab_score_t = tf.nn.xw_plus_b(output_t, w, b) # apply the linear layer
tensorflow.variable_scope
9,913
import tensorflow as tf assert typ == Nonlinearity.GAUSSIAN return lambda arg: tf.exp(-arg * arg)
tensorflow.exp
9,914
import tensorflow as tf ) # Decrement episode count. with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign_sub(ref=self.episode_count, value=num_episodes) # Assign new observations. with tf.control_dependencies(control_inputs=(assignment,)):
tensorflow.assign_sub
9,915
import tensorflow as tf kernel_initializer=self._kernel_initializer) c = self._activation(self._candidate_linear([inputs, r_state])) u = (1.0 - att_score) * u new_h = u * state + (1 - u) * c return new_h, new_h def prelu(_x, scope=''): """parametric ReLU activation""" with tf.variable_scope(name_or_scope=scope, default_name="prelu"): _alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1], dtype=_x.dtype, initializer=tf.constant_initializer(0.1)) _zero = tf.constant(0,dtype=_x.dtype) # return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x) return tf.maximum(_zero, _x) + _alpha * tf.minimum(_zero, _x) def calc_auc(raw_arr):
tensorflow.variable_scope
9,916
from tensorflow.python.framework import ops if metrics_collections: ops.add_to_collections(metrics_collections, root_mean_squared_error)
tensorflow.python.framework.ops.add_to_collections
9,917
import tensorflow as tf ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # 同上 # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu,nameScope="layerTest1") # add output layer prediction = add_layer(l1, 10, 1, activation_function=None,nameScope="layerTest2") sess = tf.Session() # 上面的wtih或者是name都是可选的,可以选择添加,也可以选择不添加,but下面的这一行是一定要写的。 # 这个表明了 在当前的目录下面创建以恶搞logs的文件家,然后把图的信息保存进去 # 这样运行完这段代码之后,就会有一个logs的文件夹被创建 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: # tensorflow version < 0.12 writer = tf.train.SummaryWriter('logs/', sess.graph) else: # tensorflow version >= 0.12
tensorflow.Session
9,918
from tensorflow.contrib.eager.python import tfe """Trains model on train_data using optimizer.""" tf.train.get_or_create_global_step() def model_loss(labels, chars, sequence_length): predictions = model((chars, sequence_length), training=True) loss_value = loss(labels, predictions) tf.contrib.summary.scalar("loss", loss_value) return loss_value for (batch, (labels, chars, sequence_length)) in enumerate( tfe.Iterator(train_data)): with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval): batch_model_loss = functools.partial(model_loss, labels, chars, sequence_length) optimizer.minimize( batch_model_loss, global_step=tf.train.get_global_step()) if log_interval and batch % log_interval == 0: print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss())) SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/train.csv"
tensorflow.contrib.eager.python.tfe.Iterator
9,919
from tensorflow.python.framework import ops epsilon=1e-8, use_locking=False, name="Adamirror"): super(OptimisticAdamOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._beta1 = beta1 self._beta2 = beta2 # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._beta1_t = None self._beta2_t = None def _prepare(self): self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate") self._beta1_t = ops.convert_to_tensor(self._beta1, name="beta1") self._beta2_t = ops.convert_to_tensor(self._beta2, name="beta2") def _create_slots(self, var_list): # Create slots for the first and second moments. for v in var_list: self._zeros_slot(v, "m", self._name) self._zeros_slot(v, "v", self._name) self._zeros_slot(v, "g", self._name) def _apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
tensorflow.python.framework.ops.convert_to_tensor
9,920
import tensorflow as tf def _add_act_summary(self, tensor): tf.summary.histogram('ACT/' + tensor.op.name + '/activations', tensor) tf.summary.scalar('ACT/' + tensor.op.name + '/zero_fraction', tf.nn.zero_fraction(tensor)) def _add_score_summary(self, key, tensor): tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor) def _add_train_summary(self, var): tf.summary.histogram('TRAIN/' + var.op.name, var) # Custom Layers # def _reshape_layer(self, bottom, num_dim, name): input_shape = tf.shape(bottom) with tf.variable_scope(name): # change the channel to the caffe format # 18个通道[,18,none,none],分别显示得分,前9个为前景得分,后9个为背景得分 # 第二次[1,2,none,none] to_caffe = tf.transpose(bottom, [0, 3, 1, 2]) # then force it to have channel 2 #[1,2,none.none],将9个anchor的前景得分和背景得分分开 # 第二次[1,18,none,none] reshaped = tf.reshape(to_caffe, tf.concat(axis=0, values=[[self._batch_size], [num_dim, -1], [input_shape[2]]])) # then swap the channel back # [1,none,none,2], 第一个none应该为(行*9) # 第二次[1,none,none,18] to_tf = tf.transpose(reshaped, [0, 2, 3, 1])
tensorflow.shape
9,921
import tensorflow as tf reverse_targets_encoded = tf.reverse_sequence( targets_encoded, seq_lengths, seq_axis=0, batch_axis=1) # Compute the reverse rnn over the targets. reverse_rnn_out, _ = tf.nn.dynamic_rnn(self.rev_rnn_cell, reverse_targets_encoded, time_major=True, dtype=tf.float32) reverse_rnn_out = tf.reverse_sequence(reverse_rnn_out, seq_lengths, seq_axis=0, batch_axis=1) self.reverse_rnn_ta = base.ta_for_tensor(reverse_rnn_out, clear_after_read=False) def _filtering_proposal(self, rnn_out, prior, t): """Computes the filtering proposal distribution."""
tensorflow.reverse_sequence
9,922
import tensorflow as tf shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u
tensorflow.constant_initializer
9,923
import tensorflow as tf # ============================================================================== """Model helper for creating a ResNet model for the CIFAR-10 dataset.""" import tensorflow as tf from nets.abstract_model_helper import AbstractModelHelper from datasets.cifar10_dataset import Cifar10Dataset from utils.external import resnet_model as ResNet from utils.lrn_rate_utils import setup_lrn_rate_piecewise_constant from utils.multi_gpu_wrapper import MultiGpuWrapper as mgw FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('resnet_size', 20, '# of layers in the ResNet model') tf.app.flags.DEFINE_float('nb_epochs_rat', 1.0, '# of training epochs\'s ratio') tf.app.flags.DEFINE_float('lrn_rate_init', 1e-1, 'initial learning rate') tf.app.flags.DEFINE_float('batch_size_norm', 128, 'normalization factor of batch size') tf.app.flags.DEFINE_float('momentum', 0.9, 'momentum coefficient') tf.app.flags.DEFINE_float('loss_w_dcy', 2e-4, 'weight decaying loss\'s coefficient') def forward_fn(inputs, is_train, data_format): """Forward pass function. Args: * inputs: inputs to the network's forward pass * is_train: whether to use the forward pass with training operations inserted * data_format: data format ('channels_last' OR 'channels_first')
tensorflow.app.flags.DEFINE_float
9,924
import tensorflow as tf decoded = tf.cast(tf.argmax(inputs, axis=-1), tf.int32) # Adjust event vals according to representation decoded = tf.where(tf.not_equal(decoded, 0), decoded+shift, decoded) # Set default vals decoded = tf.where(tf.equal(decoded, 0), def_val, decoded) return decoded, None @tf.function def ctc_decode(inputs, batch_size, seq_length, blank_index, def_val, shift, beam_width=10): """Perform ctc decoding""" # Decode uses time major inputs = tf.transpose(a=inputs, perm=[1, 0, 2]) seq_lengths = tf.fill([batch_size], seq_length) # Perform beam search indices, values, shape, indices_u, values_u, shape_u, log_probs = ctc_ext_beam_search_decoder( inputs=inputs, sequence_length=seq_lengths, beam_width=beam_width, blank_index=blank_index, top_paths=1, blank_label=0) decoded = tf.sparse.SparseTensor(indices[0], values[0], shape[0]) decoded = tf.cast(tf.sparse.to_dense(decoded), tf.int32) decoded_u = tf.sparse.SparseTensor(indices_u[0], values_u[0], shape_u[0]) decoded_u = tf.cast(tf.sparse.to_dense(decoded_u), tf.int32)
tensorflow.transpose
9,925
import tensorflow as tf # compute optimization op (potentially with gradient clipping) if grad_norm_clipping is not None: optimize_expr = U.minimize_and_clip(optimizer, weighted_error, var_list=q_func_vars, clip_val=grad_norm_clipping) else: optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars) # update_target_fn will be called periodically to copy Q network to target Q network update_target_expr = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name), sorted(target_q_func_vars, key=lambda v: v.name)): update_target_expr.append(var_target.assign(var)) update_target_expr = tf.group(*update_target_expr) # Create callable functions train = U.function( inputs=[ obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, importance_weights_ph ], outputs=td_error, updates=[optimize_expr] )
tensorflow.group
9,926
import tensorflow as tf batch_size = tf.shape(targets)[0] time_steps = tf.shape(targets)[1] logits_ = tf.reshape(logits, tf.stack([time_steps * batch_size, logits.get_shape()[2].value])) targets_ = tf.reshape(targets, tf.stack([time_steps * batch_size])) crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_, labels=targets_) crossent = tf.reshape(crossent, tf.stack([batch_size, time_steps])) if rewards is not None: crossent *= tf.stop_gradient(rewards) log_perp = tf.reduce_sum(crossent * weights, axis=1)
tensorflow.stack
9,927
import tensorflow as tf # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts))
tensorflow.matmul
9,928
import tensorflow as tf scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy(label_ids, predictions) loss = tf.metrics.mean(per_example_loss) return { "eval_accuracy": accuracy, "eval_loss": loss, }
tensorflow.metrics.mean
9,929
from tensorflow.python.framework import ops else: for i, dim in enumerate(input_shape.dims): if i not in reduction_indices: returned_dims.append(dim) return [tensor_shape.TensorShape(returned_dims)] @ops.RegisterShape("SegmentMax") @ops.RegisterShape("SegmentMean") @ops.RegisterShape("SegmentMin") @ops.RegisterShape("SegmentProd") @ops.RegisterShape("SegmentSum") def _SegmentReductionShape(op): """Common shape function for segment reduction ops.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape()
tensorflow.python.framework.ops.RegisterShape
9,930
import tensorflow as tf f_i_ = distribution_f.prob(action_) f_polyak_i = f_polyak.prob(self.action_ph) phi_i = strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps) q_value = strip(train_model.value_fn, self.n_envs, self.n_steps) q_i = q_value[:, 0] rho_i = tf.reshape(f_i, [-1, 1]) / (self.mu_ph + eps) rho_i_ = tf.reshape(f_i_, [-1, 1]) / (self.mu_ph + eps) qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, tf.pow(rho_i, 1 / self.n_act), self.n_envs, self.n_steps, self.gamma) else: # strip off last step # f is a distribution, chosen to be Gaussian distributions # with fixed diagonal covariance and mean \phi(x) # in the paper distribution_f, f_polyak, q_value = \ map(lambda variables: strip(variables, self.n_envs, self.n_steps), [train_model.policy_proba, polyak_model.policy_proba, train_model.q_value])
tensorflow.pow
9,931
import tensorflow as tf @dynamic_batching.batch_fn_with_options(maximum_batch_size=2) def f(a, b): batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) outputs = [ f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), f(tf.constant([1]), tf.constant([2])), ] tf.train.start_queue_runners()
tensorflow.constant
9,932
import tensorflow as tf size. Also randomly apply horizontal flip. Args: example: An example dict containing an image and a label. random_crop_pad: By how many pixels should the image be padded on each side before cropping. Returns: An example with the same label and an augmented version of the image. """ image, label = example['image'], example['label'] image = tf.image.random_flip_left_right(image) image_shape = tf.shape(image) image = tf.pad( image, [[random_crop_pad, random_crop_pad], [random_crop_pad, random_crop_pad], [0, 0]], mode='REFLECT') image = tf.image.random_crop(image, image_shape) return {'image': image, 'label': label} def auto_augmentation(example,
tensorflow.image.random_flip_left_right
9,933
import tensorflow as tf state_prob = tf.placeholder(tf.float32,name='state_prob') output_prob = tf.placeholder(tf.float32,name='output_prob') rnn_inputs = x """Define a single cell with variational dropout""" def get_a_cell(state_size,input_prob,state_prob,num_input): if cell_type == 'LSTM': if activation == 'linear': lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.identity, state_is_tuple=True) cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob) elif activation == 'relu': lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.nn.relu, state_is_tuple=True) cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob) else: #tanh by default lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, state_is_tuple=True) cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
tensorflow.contrib.rnn.DropoutWrapper
9,934
import tensorflow as tf def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
tensorflow.reshape
9,935
import tensorflow as tf def GetCell(): """Creates an LSTM cell with dropout.""" c = tf.nn.rnn_cell.LSTMCell(hidden_size, use_peepholes=model_params['peepholes'], num_proj=proj_size)
tensorflow.nn.rnn_cell.LSTMCell
9,936
import tensorflow as tf num_objects = num_objects_batch[i] num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
tensorflow.reshape
9,937
import tensorflow as tf output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
tensorflow.one_hot
9,938
import tensorflow as tf pad_id = tf.constant(pad_id, dtype=tf.int32) # fmt: off padded_shapes = kwargs.get("padded_shapes", ([maxlen, ], [maxlen, ], [maxlen, ], [maxlen, ])) padding_values = kwargs.get("padding_values", (pad_id, pad_id, pad_id, pad_id)) # fmt: on dataset = utils.batching_and_padding(dataset, padded_shapes, padding_values, **kwargs) return dataset def _batch_padding(self, dataset: tf.data.Dataset, pad_id=0, **kwargs) -> tf.data.Dataset: pad_id = tf.constant(pad_id, dtype=tf.int32) # fmt: off padded_shapes = kwargs.get("padded_shapes", ([None, ], [None, ], [None, ], [None, ])) padding_values = kwargs.get("padding_values", (pad_id, pad_id, pad_id, pad_id)) # fmt: on dataset = utils.batching_and_padding(dataset, padded_shapes, padding_values, **kwargs) return dataset def _bucket_padding(self, dataset: tf.data.Dataset, pad_id=0, **kwargs) -> tf.data.Dataset:
tensorflow.constant
9,939
from tensorflow.python.framework import ops update_op = compute_sensitivity_at_specificity('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, sensitivity) if updates_collections:
tensorflow.python.framework.ops.add_to_collections
9,940
from tensorflow.python.ops import array_ops max_var = contrib_variables.local_variable( array_ops.zeros([], dtype=dtypes.float64), name=max_scope)
tensorflow.python.ops.array_ops.zeros
9,941
import tensorflow as tf validnum: valid_num } with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) tf.train.Saver().restore(sess,path) #test
tensorflow.train.Coordinator
9,942
import tensorflow as tf return [train]+ops def mgpu_predict(*xs): gpu_ops = [] xs = (tf.split(x, n_gpu, 0) for x in xs) for i, xs in enumerate(zip(*xs)): with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=True): clf_logits, clf_losses, lm_losses = model(*xs, train=False, reuse=True)
tensorflow.split
9,943
from tensorflow.contrib.eager.python.examples.spinn import data # 1. Create and load a fake SNLI data file and a fake GloVe embedding file. snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0") fake_train_file = self._create_test_data(snli_1_0_dir) vocab = data.load_vocabulary(self._temp_data_dir) word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab) train_data = data.SnliData(fake_train_file, word2index) dev_data = data.SnliData(fake_train_file, word2index) test_data = data.SnliData(fake_train_file, word2index) # 2. Create a fake config. config = _test_spinn_config( data.WORD_VECTOR_LEN, 4, logdir=os.path.join(self._temp_data_dir, "logdir")) # 3. Test training of a SPINN model. trainer = spinn.train_or_infer_spinn(
tensorflow.contrib.eager.python.examples.spinn.data.SnliData
9,944
import tensorflow as tf 'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).') # checkpoint related configuration tf.app.flags.DEFINE_string( 'checkpoint_path', './model', 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string( 'checkpoint_model_scope', '', 'Model scope in the checkpoint. None if the same as the trained model.') tf.app.flags.DEFINE_string( #'blouse', 'dress', 'outwear', 'skirt', 'trousers', 'all' 'model_scope', None, 'Model scope name used to replace the name_scope in checkpoint.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', None, 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', True, 'When restoring a checkpoint would ignore missing variables.') tf.app.flags.DEFINE_boolean( 'run_on_cloud', False, 'Wether we will train on cloud.') tf.app.flags.DEFINE_boolean( 'seq_train', False, 'Wether we will train a sequence model.') tf.app.flags.DEFINE_string(# 'model_to_train', 'blouse, dress, outwear, skirt, trousers', #'all, blouse, dress, outwear, skirt, trousers', 'skirt, dress, outwear, trousers', 'The sub-model to train (comma-separated list).') FLAGS = tf.app.flags.FLAGS #--model_scope=blouse --checkpoint_path=./logs/all --data_format=channels_last --batch_size=1
tensorflow.app.flags.DEFINE_boolean
9,945
from tensorflow.python.ops import math_ops batch_dims: `Tensor` (1D, `int32`). event_dims: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): def make_dims(start_sum, size, name): """Closure to make dims range.""" start_sum = start_sum if start_sum else ( array_ops.zeros((), dtype=dtypes.int32, name="zero"),) if self._is_all_constant_helper(size, *start_sum): start = sum(tensor_util.constant_value(s) for s in start_sum) stop = start + tensor_util.constant_value(size) return ops.convert_to_tensor( list(range(start, stop)), dtype=dtypes.int32, name=name) else: start = sum(start_sum) return math_ops.range(start, start + size) sample_ndims = self.get_sample_ndims(x, name=name) return (make_dims((), sample_ndims, name="sample_dims"), make_dims((sample_ndims,), self.batch_ndims, name="batch_dims"), make_dims((sample_ndims, self.batch_ndims), self.event_ndims, name="event_dims")) def get_shape(self, x, name="get_shape"): """Returns `Tensor`'s shape partitioned into `sample`, `batch`, `event`. Args: x: `Tensor`. name: `String`. The name to give this op. Returns:
tensorflow.python.ops.math_ops.range
9,946
from tensorflow.python.ops import array_ops # Sparse. if isinstance(tensor, ops.SparseTensorValue): tensor = ops.SparseTensor.from_value(tensor) if isinstance(tensor, ops.SparseTensor): if dim < 0: expand_dims = array_ops.reshape( array_ops.size(tensor.shape) + dim, [1]) else: expand_dims = [dim] expanded_shape = array_ops.concat( 0, (array_ops.slice(tensor.shape, [0], expand_dims), [1], array_ops.slice(tensor.shape, expand_dims, [-1])),
tensorflow.python.ops.array_ops.size
9,947
import tensorflow as tf u = tf.string_join(z_t[i:i + self._p], '') vz_keys, r = tf.cond( tf.greater(vz.lookup(u), -1), true_fn=lambda: (vz_keys, tf.add(vz.lookup(u), 1)), false_fn=lambda: ( tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64)) ) vz.insert(u, r) kk = tf.Variable(0, dtype=tf.int64) for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'): for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'): to_add = tf.cond( tf.greater(vz.lookup(vx_keys[i]), -1), true_fn=lambda: tf.math.multiply(vx.lookup(vx_keys[i]), vz.lookup(vz_keys[j])), false_fn=lambda: tf.constant(0, dtype=tf.int64) ) kk = tf.math.add(kk, to_add)
tensorflow.Variable
9,948
import tensorflow as tf return tf.squeeze(y,axis=0) element = [x,x_coori] ys = tf.map_fn(loop_analysis, element, dtype=tf.float32, parallel_iterations=1, back_prop=False) print("Analysis Transform") def loop_hyper_encoder(y): y = tf.expand_dims(y, 0) z = hyper_encoder(y) return tf.squeeze(z,axis=0) zs = tf.map_fn(loop_hyper_encoder, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False) print("Hyper Encoder")
tensorflow.expand_dims
9,949
import tensorflow as tf pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) loss = tf.reduce_mean(loss) return loss def contra_step_lossV3(pred, tgt, margin=1.0): # Step-wise contrastive loss pred1, pred2 = tf.split(pred, 2, axis=0) tgt1, tgt2 = tf.split(tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin) loss = tf.reduce_mean(loss) return loss def contra_step_lossV4(pred, tgt): # 50*50 # Step-wise contrastive loss
tensorflow.where
9,950
import tensorflow as tf _, h, w, _ = input.get_shape().as_list() slide_window = size[0] * size[1] mask = tf.ones(shape=[1, h, w, 1]) update_mask = tf.layers.conv2d(mask, filters=1, dilation_rate=(dilation, dilation), name='mask' + id, kernel_size=size, kernel_initializer=tf.constant_initializer(1.0), strides=stride, padding="SAME", use_bias=False, trainable=False) mask_ratio = slide_window / (update_mask + 1e-8) update_mask = tf.clip_by_value(update_mask, 0.0, 1.0) mask_ratio = mask_ratio * update_mask with tf.variable_scope('parconv'): x = tf.layers.conv2d(input, filters=channels, name='conv' + id, kernel_size=size, kernel_initializer=init, strides=stride, padding="SAME", use_bias=False) x = x * mask_ratio if use_bias:
tensorflow.clip_by_value
9,951
import tensorflow as tf # logit of the start position with tf.variable_scope("start_logits"): start_logits = tf.layers.dense( output, 1, kernel_initializer=initializer) start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0]) start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask start_log_probs = tf.nn.log_softmax(start_logits_masked, -1) # logit of the end position with tf.variable_scope("end_logits"): if is_training: # during training, compute the end logits based on the # ground truth of the start position start_positions = tf.reshape(features["start_positions"], [-1]) start_index = tf.one_hot(start_positions, depth=seq_len, axis=-1, dtype=tf.float32) start_features = tf.einsum("lbh,bl->bh", output, start_index) start_features = tf.tile(start_features[None], [seq_len, 1, 1]) end_logits = tf.layers.dense(
tensorflow.variable_scope
9,952
import tensorflow as tf if is_dilated: layer = tf.nn.atrous_conv2d(img, w, rate=2, padding='SAME') + b else: layer = tf.nn.conv2d(img, w, strides=strides, padding='SAME') + b return layer
tensorflow.nn.conv2d
9,953
import tensorflow as tf # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.test_session() as sess: v0_2 = tf.Variable(1000.0, name="v0") v1_2 = tf.Variable(2000.0, name="v1") save2 = tf.train.Saver({"v0": v0_2, "v1": v1_2}) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(1000.0, v0_2.eval()) self.assertEqual(2000.0, v1_2.eval()) # Restore the values saved earlier in the parameter nodes. save2.restore(sess, save_path) # Check that the parameter nodes have been restored.
tensorflow.train.Saver
9,954
import tensorflow as tf OUTPUT_GRAPH = False ENV_NAME = 'BipedalWalker-v2' GLOBAL_STEP = tf.Variable(0, trainable=False) INCREASE_GS = GLOBAL_STEP.assign(tf.add(GLOBAL_STEP, 1)) LR_A = tf.train.exponential_decay(LR_A, GLOBAL_STEP, 10000, .97, staircase=True) LR_C = tf.train.exponential_decay(LR_C, GLOBAL_STEP, 10000, .97, staircase=True) END_POINT = (200 - 10) * (14/30) # from game env = gym.make(ENV_NAME)
tensorflow.train.exponential_decay
9,955
import tensorflow as tf value = self.data_dict[name][idx] else: value = initial_value if self.trainable: var = tf.get_variable(name = var_name, initializer=value, trainable=True) # tf.Variable(value, name=var_name) else: var = tf.constant(value, dtype=tf.float32, name=var_name) self.var_dict[(name, idx)] = var # print var_name, var.get_shape().as_list() assert var.get_shape() == initial_value.get_shape() return var
tensorflow.constant
9,956
from tensorflow.python.framework import ops ops.RegisterShape("LogicalNot")(common_shapes.unchanged_shape) ops.RegisterShape("Neg")(common_shapes.unchanged_shape)
tensorflow.python.framework.ops.RegisterShape
9,957
import tensorflow as tf else: encoder_outputs.append(encoder_outputs_) encoder_states.append(encoder_state_) new_encoder_input_length.append(encoder_input_length_) encoder_state = tf.concat(encoder_states, 1) return encoder_outputs, encoder_state, new_encoder_input_length def compute_energy(hidden, state, encoder, time=None, input_length=None, prev_weights=None, **kwargs): batch_size = tf.shape(hidden)[0] time_steps = tf.shape(hidden)[1] if encoder.attn_keep_prob is not None: state_noise_shape = [1, tf.shape(state)[1]] if encoder.pervasive_dropout else None state = tf.nn.dropout(state, keep_prob=encoder.attn_keep_prob, noise_shape=state_noise_shape) hidden_noise_shape = [1, 1, tf.shape(hidden)[2]] if encoder.pervasive_dropout else None hidden = tf.nn.dropout(hidden, keep_prob=encoder.attn_keep_prob, noise_shape=hidden_noise_shape) if encoder.mult_attn: state = dense(state, encoder.attn_size, use_bias=False, name='state')
tensorflow.shape
9,958
from tensorflow.python.framework import constant_op # Although the last 10 bits of 359 and 1024+359 are identical. # As a result, all the crosses shouldn't collide. t1 = constant_op.constant([[359], [359 + 1024]]) t2 = constant_op.constant([list(range(10)), list(range(10))])
tensorflow.python.framework.constant_op.constant
9,959
from tensorflow.python.ops import array_ops logits.get_shape().assert_is_compatible_with(target.get_shape()) return math_ops.square(logits - math_ops.to_float(target)) def _log_loss_with_two_classes(logits, target): # sigmoid_cross_entropy_with_logits requires [batch_size, 1] target. if len(target.get_shape()) == 1: target = array_ops.expand_dims(target, dim=[1]) loss_vec = nn.sigmoid_cross_entropy_with_logits( labels=math_ops.to_float(target), logits=logits) return loss_vec def _softmax_cross_entropy_loss(logits, target):
tensorflow.python.ops.array_ops.expand_dims
9,960
import tensorflow as tf """LSTM layer.""" words, nwords = tensors t = tf.transpose(words, perm=[1, 0, 2]) lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) outputs_fw, (hidden_fw, output_fw) = lstm_cell_fw(t, dtype=tf.float32, sequence_length=nwords) if bidirectional: lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw) outputs_bw, (hidden_bw, output_bw) = lstm_cell_bw(t, dtype=tf.float32, sequence_length=nwords) outputs = tf.concat([outputs_fw, outputs_bw], axis=-1) hidden = tf.concat([hidden_fw, hidden_bw], axis=-1) output = tf.concat([output_fw, output_bw], axis=-1) else: outputs = outputs_fw hidden = hidden_fw output = output_fw outputs = tf.transpose(outputs, perm=[1, 0, 2]) return (outputs, hidden, output)
tensorflow.concat
9,961
from tensorflow.python.ops import array_ops result.update(_run_metrics(class_predictions, targets, class_metrics, self.get_weight_tensor(features))) if proba_metrics: predictions = self.logits_to_predictions(logits, proba=True) result.update(_run_metrics(predictions, targets, proba_metrics, self.get_weight_tensor(features))) return result class _BinarySvmTargetColumn(_MultiClassTargetColumn): """_TargetColumn for binary classification using SVMs.""" def __init__(self, label_name, weight_column_name): def loss_fn(logits, target): check_shape_op = logging_ops.Assert( math_ops.less_equal(array_ops.rank(target), 2), ["target's shape should be either [batch_size, 1] or [batch_size]"]) with ops.control_dependencies([check_shape_op]): target = array_ops.reshape( target, shape=[array_ops.shape(target)[0], 1]) return losses.hinge_loss(logits, target) super(_BinarySvmTargetColumn, self).__init__( loss_fn=loss_fn, n_classes=2, label_name=label_name, weight_column_name=weight_column_name) def logits_to_predictions(self, logits, proba=False): if proba:
tensorflow.python.ops.array_ops.rank
9,962
import tensorflow as tf nms_classes2, _) = isu.instance_non_maximum_suppression_1d_scores( masks, scores, classes, min_score_thresh=0.65, min_iou_thresh=0.5, is_class_agnostic=False) nms_masks_expected2 = tf.stack([mask0, mask1, mask4, mask2]) nms_scores_expected2 = tf.constant([1.0, 0.9, 0.85, 0.8], dtype=tf.float32) nms_classes_expected2 = tf.constant([1, 2, 2, 3], dtype=tf.int32) self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy()) self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy()) self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy()) self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy()) self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy()) self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy()) def test_instance_non_maximum_suppression_1d_scores_empty_inputs(self): masks = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32)
tensorflow.constant
9,963
from tensorflow.python.ops import variable_scope Returns: A tensor representing the output of the operation. Raises: ValueError: If `data_format` is invalid. ValueError: Both 'rate' and `stride` are not uniformly 1. """ if data_format not in [None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW']: raise ValueError('Invalid data_format: %r' % (data_format,)) layer_variable_getter = _build_variable_getter({'bias': 'biases', 'kernel': 'weights'}) with variable_scope.variable_scope(scope, 'Conv', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc: inputs = ops.convert_to_tensor(inputs) input_rank = inputs.get_shape().ndims if conv_dims is not None and conv_dims + 2 != input_rank: raise ValueError('Convolution expects input with rank %d, got %d' % (conv_dims + 2, input_rank)) if input_rank == 3: layer_class = convolutional_layers.Convolution1D elif input_rank == 4: layer_class = MyConv2D elif input_rank == 5:
tensorflow.python.ops.variable_scope.variable_scope
9,964
import tensorflow as tf return host_call_fn, [global_step_tensor] + other_tensors def two_stream_loss(FLAGS, features, labels, mems, is_training): """Pretraining loss with two-stream attention Transformer-XL.""" #### Unpack input mem_name = "mems" mems = mems.get(mem_name, None) inp_k = tf.transpose(features["input_k"], [1, 0]) inp_q = tf.transpose(features["input_q"], [1, 0]) seg_id = tf.transpose(features["seg_id"], [1, 0]) inp_mask = None perm_mask = tf.transpose(features["perm_mask"], [1, 2, 0]) if FLAGS.num_predict is not None: # [num_predict x tgt_len x bsz]
tensorflow.transpose
9,965
import tensorflow as tf gsum = tf.reduce_sum(gstack, axis=1) phi = tf.get_variable("phi", (self.g_dim, self.k)) w = tf.matmul(gsum, phi) w = tf.expand_dims(w, [2]) # Calculate policy and sample logits = tf.reshape(tf.matmul(U, w), [-1, num_acts]) self.pi = tf.nn.softmax(logits) self.log_pi = tf.nn.log_softmax(logits) self.sample = policy_utils.categorical_sample( tf.reshape(logits, [-1, num_acts]), num_acts)[0, :] def build_value(self, _input): with tf.variable_scope('VF'): hidden = tf.layers.dense(inputs=_input, units=self.vf_hidden_size, activation=tf.nn.elu) w = tf.get_variable("weights", (self.vf_hidden_size, 1)) return tf.matmul(hidden, w) def build_loss(self): cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1]) dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1) gcut = tf.stop_gradient(self.g)
tensorflow.variable_scope
9,966
import tensorflow as tf # Create clones. for i in range(0, config.num_clones): with tf.name_scope(config.clone_scope(i)) as clone_scope: clone_device = config.clone_device(i) with tf.device(clone_device): with tf.variable_scope(tf.get_variable_scope(), reuse=True if i > 0 else None): outputs = model_fn(*args, **kwargs)
tensorflow.device
9,967
import tensorflow as tf saver.save(sess, checkpoint_path, global_step=step) def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) train()
tensorflow.gfile.Exists
9,968
import tensorflow as tf if not from_logits: # transform back to logits epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype) output = tf.clip_by_value(output, epsilon, 1 - epsilon) output = tf.log(output / (1 - output)) try: return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) except TypeError: return tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=target) def sum(x, axis=None, keepdims=False):
tensorflow.nn.sigmoid_cross_entropy_with_logits
9,969
import tensorflow as tf with tf.Session() as sess:
tensorflow.Session
9,970
import tensorflow as tf def create_variable_for_generator(name, batch_size): return tf.get_variable('learnable_dlatents', shape=(batch_size, 18, 512), dtype='float32', initializer=tf.initializers.random_normal()) class Generator:
tensorflow.initializers.random_normal
9,971
from tensorflow.python.framework import ops Returns: A 2-D Tensor computing matmul(x, weights) + biases. Dimensions typically: batch, out_units. """ with ops.op_scope([x, weights, biases], name, "xw_plus_b") as name: x = ops.convert_to_tensor(x, name="x") weights = ops.convert_to_tensor(weights, name="weights") biases = ops.convert_to_tensor(biases, name="biases")
tensorflow.python.framework.ops.op_scope
9,972
from tensorflow.python.framework import ops softmax cross entropy loss. """ # The second output tensor contains the gradients. We use it in # _CrossEntropyGrad() in nn_grad but not here. cost, unused_backprop = gen_nn_ops._sparse_softmax_cross_entropy_with_logits( logits, labels, name=name) return cost @ops.RegisterShape("SparseSoftmaxCrossEntropyWithLogits") def _SparseSoftmaxCrossEntropyWithLogitsShape(op): """Shape function for SparseSoftmaxCrossEntropyWithLogits op.""" logits_shape = op.inputs[0].get_shape() input_shape = logits_shape.with_rank(2) batch_size = input_shape[0] # labels_shape op.inputs[1].get_shape().merge_with(tensor_shape.vector(batch_size)) return [tensor_shape.vector(batch_size.value), input_shape]
tensorflow.python.framework.ops.RegisterShape
9,973
import tensorflow as tf x = self.__conv2d( name="{}2c".format(conv_name_base), inputs=x, filter_depth=filter_depth3, kernel_size=1, padding="same", stride=1 ) x = self.__batch_norm("{}2c".format(bn_name_base), x) x = tf.add(x, shortcut) return tf.nn.relu(x) def __identity_block(self, stage, block, inputs, filter_depths, kernel_size): filter_depth1, filter_depth2, filter_depth3 = filter_depths
tensorflow.add
9,974
import tensorflow as tf diag_indeces = [0] for row in range(1, self.nb_actions): diag_indeces.append(diag_indeces[-1] + (row + 1)) diag_mask = np.zeros(1 + nb_elems) # +1 for the leading zero diag_mask[np.array(diag_indeces) + 1] = 1 diag_mask = K.variable(diag_mask) # Add leading zero element to each element in the L_flat. We use this zero # element when gathering L_flat into a lower triangular matrix L. nb_rows = tf.shape(L_flat)[0] zeros = tf.expand_dims(tf.tile(K.zeros((1,)), [nb_rows]), 1) try: # Old TF behavior. L_flat = tf.concat(1, [zeros, L_flat]) except TypeError: # New TF behavior L_flat = tf.concat([zeros, L_flat], 1)
tensorflow.shape
9,975
from tensorflow.python.training import moving_averages mean: The mean value to update with. variance: The variance value to update with. is_training: Boolean Tensor to indicate if we're currently in training mode. """ def build_update_ops(): """Builds the exponential moving average update ops.""" update_mean_op = moving_averages.assign_moving_average( variable=self._moving_mean, value=mean, decay=self._decay_rate, name="update_moving_mean").op update_variance_op = moving_averages.assign_moving_average( variable=self._moving_variance, value=variance, decay=self._decay_rate, name="update_moving_variance").op return update_mean_op, update_variance_op def build_no_ops(): return (tf.no_op(), tf.no_op()) # Only make the ops if we know that `is_training=True`, or the value of # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const:
tensorflow.python.training.moving_averages.assign_moving_average
9,976
from tensorflow.contrib.rnn.python.ops.core_rnn_cell import _Linear True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer) value = math_ops.sigmoid(self._gate_linear([inputs, state])) r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1) r_state = r * state if self._candidate_linear is None: with vs.variable_scope("candidate"): self._candidate_linear = _Linear( [inputs, r_state], self._num_units, True, bias_initializer=self._bias_initializer, kernel_initializer=self._kernel_initializer) c = self._activation(self._candidate_linear([inputs, r_state])) new_h = (1. - att_score) * state + att_score * c return new_h, new_h
tensorflow.contrib.rnn.python.ops.core_rnn_cell._Linear
9,977
import tensorflow as tf if context is not None and encoder.use_context: state = tf.concat([state, context], axis=1) state_size = state.get_shape()[1].value with tf.variable_scope(scope or 'attention_{}'.format(encoder.name)): encoder_input_length = tf.to_float(tf.expand_dims(encoder_input_length, axis=1)) if pos is not None: pos = tf.reshape(pos, [-1, 1]) pos = tf.minimum(pos, encoder_input_length - 1) if pos is not None and encoder.attn_window_size > 0: # `pred_edits` scenario, where we know the aligned pos # when the windows size is non-zero, we concatenate consecutive encoder states # and map it to the right attention vector size. weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length)) weighted_average = [] for offset in range(-encoder.attn_window_size, encoder.attn_window_size + 1):
tensorflow.minimum
9,978
import tensorflow as tf def loss(self, logits, forward_only=None): cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.cast(self.y, tf.float32)) mean_cost = tf.reduce_mean(cost) y_pred = tf.argmax(logits, 1) correct_pred = tf.equal(y_pred, tf.argmax(self.y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) if forward_only: str_summary_type = 'eval' loss_summ = tf.summary.scalar("{0}_loss".format(str_summary_type), mean_cost) acc_summ = tf.summary.scalar("{0}_accuracy".format(str_summary_type), accuracy) merged = tf.summary.merge([loss_summ, acc_summ]) return mean_cost, accuracy, y_pred, merged else: return mean_cost, accuracy, y_pred def training(self, cost): optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) # train_op = optimizer.minimize(cost) trainables = tf.trainable_variables()
tensorflow.summary.merge
9,979
import tensorflow as tf if FLAGS.new_blur: net = net[..., :self.batch_shape[-1]] net = tf.nn.relu(net) net = tf.cast(net <= 1, net.dtype) * net * 255
tensorflow.nn.relu
9,980
import tensorflow as tf staging_delta_ops += gpu_grad_stage_ops if staging_delta_ops: enqueue_ops.append(tf.group(*(staging_delta_ops)))
tensorflow.group
9,981
import tensorflow as tf # the output state_size = lstm_cell.state_size # the LSTMs are stateful. To support multiple batch sizes, # we'll allocate size for states up to max_batch_size, # then use the first batch_size entries for each batch init_states = [ tf.Variable( tf.zeros([self._max_batch_size, dim]), trainable=False ) for dim in lstm_cell.state_size ] batch_init_states = [ state[:batch_size, :] for state in init_states
tensorflow.zeros
9,982
import tensorflow as tf w = tf.get_variable("w", [nx, ny], initializer=w_init) b = tf.get_variable("b", [ny], initializer=b_init) return tf.matmul(x, w)+b def model(X, M, Y, train=False, reuse=False): with tf.variable_scope('model', reuse=reuse): we = tf.get_variable("we", [n_vocab+n_special+n_ctx, n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) we = dropout(we, embd_pdrop, train) #X:[n_batch_train, 2, n_ctx, 2] -> [n_batch_train*2,n_ctx,2] X = tf.reshape(X, [-1, n_ctx, 2]) M = tf.reshape(M, [-1, n_ctx]) h = embed(X, we) #h=[-1,n_ctx,emb] for layer in range(n_layer): h = block(h, 'h%d'%layer, train=train, scale=True) #h=[-1,n_ctx,emb] lm_h [-1,emb] lm_h = tf.reshape(h[:, :-1], [-1, n_embd])
tensorflow.reshape
9,983
import tensorflow as tf 'execution_barrier_', []) global_step = tf.contrib.framework.get_global_step() with tf.device(self.global_step_device):
tensorflow.contrib.framework.get_global_step
9,984
from tensorflow.python.ops import math_ops tuple. """ predictions, labels = tensor_util.remove_squeezable_dimensions( predictions, labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) radial_diffs = math_ops.mul(predictions, labels) radial_diffs = math_ops.reduce_sum(radial_diffs, reduction_indices=[dim,], keep_dims=True) mean_distance, update_op = streaming_mean(radial_diffs, weights, None, None, name or 'mean_cosine_distance') mean_distance = math_ops.sub(1.0, mean_distance) update_op = math_ops.sub(1.0, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op @deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask') def streaming_percentage_less(values, threshold, ignore_mask=None, weights=None, metrics_collections=None,
tensorflow.python.ops.math_ops.sub
9,985
import tensorflow as tf # Under the benchmarking mode, user can specify whether nor not to use # the forward-only option, which will only compute the loss function. # forward-only cannot be enabled with eval at the same time. tf.flags.DEFINE_boolean('eval', False, 'whether use eval or benchmarking') tf.flags.DEFINE_boolean('forward_only', False, """whether use forward-only or training for benchmarking""") tf.flags.DEFINE_integer('batch_size', 0, 'batch size per compute device') tf.flags.DEFINE_integer('num_batches', 100, 'number of batches to run, excluding warmup') tf.flags.DEFINE_integer('num_warmup_batches', None, 'number of batches to run before timing') tf.flags.DEFINE_integer('autotune_threshold', None,
tensorflow.flags.DEFINE_integer
9,986
import tensorflow as tf checkpoint = tf.train.Checkpoint(synthesis_transform=synthesis_transform,
tensorflow.train.Checkpoint
9,987
import tensorflow as tf Virtual Batch Normalization """ def __init__(self, x, name, epsilon=1e-5): """ x is the reference batch """ assert isinstance(epsilon, float) shape = x.get_shape().as_list() with tf.variable_scope(name) as scope: self.epsilon = epsilon self.name = name self.mean = tf.reduce_mean(x, [0, 1, 2], keep_dims=True) self.mean_sq = tf.reduce_mean(tf.square(x), [0, 1, 2], keep_dims=True) self.batch_size = int(x.get_shape()[0]) assert x is not None assert self.mean is not None assert self.mean_sq is not None out = tf.nn.relu(self._normalize(x, self.mean, self.mean_sq, "reference"))
tensorflow.variable_scope
9,988
import tensorflow as tf 'backbone', 'seresnext50',#or seresnext50 seresnet50 'The backbone network to use for feature pyramid.') tf.app.flags.DEFINE_float( 'heatmap_sigma', 1., 'The sigma of Gaussian which generate the target heatmap.') tf.app.flags.DEFINE_float( 'bbox_border', 25., 'The nearest distance of the crop border to al keypoints.') tf.app.flags.DEFINE_integer( 'train_epochs', 50,
tensorflow.app.flags.DEFINE_float
9,989
import tensorflow as tf ret = tf.image.resize_bicubic([image], shape) return tf.cast(tf.clip_by_value(ret, 0, 255), tf.uint8)[0] def resize_shortest_edge(image, image_shape, size): shape = tf.cast(image_shape, tf.float32) w_greater = tf.greater(image_shape[0], image_shape[1]) shape = tf.cond(w_greater, lambda: tf.cast([shape[0] / shape[1] * size, size], tf.int32), lambda: tf.cast([size, shape[1] / shape[0] * size], tf.int32)) return uint8_resize_bicubic(image, shape) def center_crop(image, size): image_height = tf.shape(image)[0]
tensorflow.cast
9,990
import tensorflow as tf 1. / model_options.output_stride) image_feature = slim.avg_pool2d( features, [pool_height, pool_width], model_options.image_pooling_stride, padding='VALID') resize_height = scale_dimension( model_options.crop_size[0], 1. / model_options.output_stride) resize_width = scale_dimension( model_options.crop_size[1], 1. / model_options.output_stride) else: # If crop_size is None, we simply do global pooling. pool_height = tf.shape(features)[1] pool_width = tf.shape(features)[2] image_feature = tf.reduce_mean( features, axis=[1, 2], keepdims=True) resize_height = pool_height resize_width = pool_width image_feature_activation_fn = tf.nn.relu image_feature_normalizer_fn = batch_norm if model_options.aspp_with_squeeze_and_excitation: image_feature_activation_fn = tf.nn.sigmoid if model_options.image_se_uses_qsigmoid: image_feature_activation_fn = utils.q_sigmoid image_feature_normalizer_fn = None image_feature = slim.conv2d( image_feature, depth, 1, activation_fn=image_feature_activation_fn,
tensorflow.shape
9,991
import tensorflow as tf if encoder.attn_keep_prob is not None: state_noise_shape = [1, tf.shape(state)[1]] if encoder.pervasive_dropout else None state = tf.nn.dropout(state, keep_prob=encoder.attn_keep_prob, noise_shape=state_noise_shape) hidden_noise_shape = [1, 1, tf.shape(hidden)[2]] if encoder.pervasive_dropout else None hidden = tf.nn.dropout(hidden, keep_prob=encoder.attn_keep_prob, noise_shape=hidden_noise_shape) if encoder.mult_attn: state = dense(state, encoder.attn_size, use_bias=False, name='state') hidden = dense(hidden, encoder.attn_size, use_bias=False, name='hidden') return tf.einsum('ijk,ik->ij', hidden, state) y = dense(state, encoder.attn_size, use_bias=not encoder.layer_norm, name='W_a') y = tf.expand_dims(y, axis=1) if encoder.layer_norm: y = tf.contrib.layers.layer_norm(y, scope='layer_norm_state') hidden = tf.contrib.layers.layer_norm(hidden, center=False, scope='layer_norm_hidden')
tensorflow.einsum
9,992
import tensorflow as tf fetches, feeds = subgraphs['default'] self.assertTrue('wav' in feeds) for name in ['hypotheses', 'scores', 'src_frames', 'encoder_frames']: self.assertTrue(name in fetches) with open( test_helper.test_src_dir_path('tools/testdata/gan_or_vae.16k.wav'), 'rb') as f: wav = f.read() sess.run(tf.global_variables_initializer()) fetches = sess.run(fetches, {feeds['wav']: wav}) self.assertAllEqual((1, p.decoder.beam_search.num_hyps_per_beam), fetches['hypotheses'].shape) self.assertAllEqual((1, p.decoder.beam_search.num_hyps_per_beam), fetches['scores'].shape) self.assertAllEqual((1, 314, p.encoder.input_shape[2], 1), fetches['src_frames'].shape) self.assertAllEqual((80, 1, 2 * p.encoder.lstm_cell_size),
tensorflow.global_variables_initializer
9,993
import tensorflow as tf true_image_shapes = [inputs.shape[:-1].as_list() for _ in range(inputs.shape[-1])] return tf.image.resize_images(inputs, [28, 28]), true_image_shapes
tensorflow.image.resize_images
9,994
from tensorflow.python.training import saver as saver_lib # Check that we are not running evaluation on the same checkpoint. latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
tensorflow.python.training.saver.latest_checkpoint
9,995
import tensorflow as tf with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True)
tensorflow.nn.dropout
9,996
import tensorflow as tf cell = tf.contrib.rnn.BasicRNNCell(num_units=state_size) rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state) '''预测,损失,优化''' with tf.variable_scope('softmax'): W = tf.get_variable('W', [state_size, num_classes]) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0)) '''因为rnn_outputs是三维的,这里需要将其转成2维的, 矩阵运算后再转换回来[batch_size, num_steps, num_classes]''' logits = tf.reshape(tf.matmul(tf.reshape(rnn_outputs, [-1, state_size]), W) +b, \ shape=[batch_size, num_steps, num_classes]) predictions = tf.nn.softmax(logits) y_as_list = tf.unstack(y, num=num_steps, axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits) total_loss = tf.reduce_mean(losses) train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss) '''训练网络''' def train_rnn(num_epochs, num_steps, state_size=4, verbose=True): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) #sess = tf_debug.LocalCLIDebugWrapperSession(sess) training_losses = [] for idx, epoch in enumerate(gen_epochs(num_epochs, num_steps)): training_loss = 0 training_state = np.zeros((batch_size, state_size)) # ->(200, 4) if verbose: print('\nepoch', idx)
tensorflow.reduce_mean
9,997
import tensorflow as tf def _evaluate_spherical_harmonics_branch(degree, order, theta, phi, sign_order, var_type=tf.float64): sqrt_2 = tf.constant(1.41421356237, dtype=var_type) order_float = tf.cast(order, dtype=var_type) tmp = sqrt_2 * _spherical_harmonics_normalization( degree, order, var_type) * evaluate_legendre_polynomial( degree, order, tf.cos(theta)) positive = tmp * tf.cos(order_float * phi) negative = tmp * tf.sin(order_float * phi) return tf.where(tf.greater(sign_order, 0), positive, negative)
tensorflow.cast
9,998
import tensorflow as tf if model_io_config.fix_lm == True: scope = model_config.scope + "_finetuning" else: scope = model_config.scope with tf.variable_scope(scope, reuse=model_reuse): (loss, per_example_loss, logits) = classifier.classifier(model_config, model.get_pooled_output(), num_labels,
tensorflow.variable_scope
9,999