code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
"http://laurentszyster.be/blog/async_server/" import socket, time try: SOCKET_FAMILIES = (socket.AF_INET, socket.AF_UNIX) except: SOCKET_FAMILIES = (socket.AF_INET, ) from allegra import async_loop, async_core, async_limits class Listen (async_core.Dispatcher): server_when = 0.0 ac_in_meter = ac_out_meter = server_dispatched = 0 def __init__ ( self, Dispatcher, addr, precision, max, family=socket.AF_INET ): assert ( type (precision) == int and precision > 0 and type (max) == int and max > 0 and family in SOCKET_FAMILIES ) self.server_dispatchers = [] self.server_named = {} self.Server_dispatcher = Dispatcher self.server_precision = precision self.create_socket (family, socket.SOCK_STREAM) self.set_reuse_addr () self.bind (addr) self.listen (max) anonymous (self) accept_all (self) metered (self) self.log ('listen %r' % (addr,), 'info') def __repr__ (self): return 'async-server id="%x"' % id (self) def readable (self): return self.accepting def writable (self): return False def handle_accept (self): try: conn, addr = self.accept () except socket.error: assert None == self.log ( 'accept-bogus-socket', 'error' ) return # # Medusa original comments from Sam Rushing: # # linux: on rare occasions we get a bogus socket back # from accept. socketmodule.c:makesockaddr complains # that the address family is unknown. We don't want # the whole server to shut down because of this. except TypeError: assert None == self.log ( 'accept-would-block', 'error' ) return # # Medusa original comments from Sam Rushing: # # unpack non-sequence. this can happen when a read # event fires on a listening socket, but when we call # accept() we get EWOULDBLOCK, so dispatcher.accept() # returns None. Seen on FreeBSD3. name = self.server_resolved (addr) if name != None: try: self.server_named[name] += 1 except KeyError: self.server_named[name] = 1 if self.server_accepted (conn, addr, name): self.server_accept ( conn, addr, name ) else: conn.close () return if self.server_resolve == None: self.server_unresolved (conn, addr) conn.close () return def resolve (name): try: self.server_named[name] += 1 except KeyError: self.server_named[name] = 1 if ( name == None and self.server_unresolved (conn, addr) ): conn.close () elif self.server_accepted (conn, addr, name): self.server_accept ( conn, addr, name ) self.server_resolve (addr, resolve) def handle_close (self): "close all dispatchers, close the server and finalize it" for dispatcher in tuple (self.server_dispatchers): dispatcher.handle_close () self.server_stop (time.time ()) self.close () self.__dict__ = {} # # Breaks any circular reference through attributes, by # clearing them all. Note that this prevents finalizations # to be used with listeners, but anyway subclassing the # stop and shutdown methods provides enough leverage to # gracefully come to closure: the listener is most probably # in the highest level of the application's instance tree. # # ... and sometimes damn hard to finalize ;-) def server_unresolved (self, conn, addr): assert None == self.log ('unresolved %r' % (addr,), 'debug') return False # don't care! def server_accept (self, conn, addr, name): assert None == self.log ('accepted %r' % (addr,), 'debug') now = time.time () dispatcher = self.Server_dispatcher () dispatcher.set_connection (conn, addr) dispatcher.server_name = name dispatcher.server_when = now dispatcher.async_server = self self.server_decorate (dispatcher, now) if self.server_when == 0: self.server_start (now) self.server_dispatchers.append (dispatcher) return dispatcher def server_start (self, when): "handle the client management startup" self.server_when = when async_loop.schedule ( when + self.server_precision, self.server_manage ) assert None == self.log ('start', 'debug') def server_manage (self, when): if not self.server_dispatchers: if self.accepting: self.server_stop (when) else: self.handle_close () return if self.server_limit != None: for dispatcher in tuple (self.server_dispatchers): if self.server_limit (dispatcher, when): self.server_overflow (dispatcher) return (when + self.server_precision, self.server_manage) def server_overflow (self, dispatcher): "assert debug log and close an overflowed dispatcher" assert None == dispatcher.log ('limit overflow', 'debug') dispatcher.handle_close () def server_meter (self, dispatcher): "assert debug log and account I/O meters of a dispatcher" assert None == dispatcher.log ( 'in="%d" out="%d"' % ( dispatcher.ac_in_meter, dispatcher.ac_out_meter ), 'debug' ) self.ac_in_meter += dispatcher.ac_in_meter self.ac_out_meter += dispatcher.ac_out_meter self.server_dispatched += 1 def server_close (self, dispatcher): "remove the dispatcher from list and meter dispatched" name = dispatcher.server_name if self.server_named[name] > 1: self.server_named[name] -= 1 else: del self.server_named[name] self.server_dispatchers.remove (dispatcher) self.server_meter (dispatcher) dispatcher.async_server = None def server_stop (self, when): "handle the server scheduled or inpromptu stop" if self.server_when: self.log ( 'stop dispatched="%d"' ' seconds="%f" in="%d" out="%d"' % ( self.server_dispatched, (when - self.server_when), self.ac_in_meter, self.ac_out_meter ), 'info') self.server_when = 0.0 self.server_dispatched = \ self.ac_in_meter = self.ac_out_meter = 0 def server_shutdown (self): "stop accepting connections, close all current when done" self.log ('shutdown', 'info') if self.server_when: self.accepting = False for dispatcher in tuple (self.server_dispatchers): dispatcher.close_when_done () else: self.handle_close () return True def anonymous (listen): "allways resolved to the empty string" listen.server_resolved = (lambda addr: '') listen.server_resolve = None return listen def accept_all (listen): listen.server_accepted = (lambda conn, addr, name: True) return listen def accept_named (listen, limit): def accepted (conn, addr, name): if listen.server_named[name] <= limit: return True if listen.server_named[name] > 1: listen.server_named[name] -= 1 else: del listen.server_named[name] assert None == listen.log ( 'accept-limit ip="%s"' % name, 'error' ) return False listen.server_accepted = accepted return listen def meter (dispatcher, when): "decorate a server dispatcher with stream meters" async_limits.meter_recv (dispatcher, when) async_limits.meter_send (dispatcher, when) def close (): del ( dispatcher.recv, dispatcher.send, dispatcher.close ) dispatcher.close () dispatcher.async_server.server_close (dispatcher) dispatcher.close = close def metered (listen, timeout=1<<32): "meter I/O for server streams" def decorate (dispatcher, when): meter (dispatcher, when) dispatcher.limit_inactive = timeout listen.server_decorate = decorate listen.server_inactive = timeout listen.server_limit = None return listen def inactive (listen, timeout): "meter I/O and limit inactivity for server streams" assert type (timeout) == int and timeout > 0 def decorate (dispatcher, when): meter (dispatcher, when) dispatcher.limit_inactive = listen.server_inactive listen.server_decorate = decorate listen.server_inactive = timeout listen.server_limit = async_limits.inactive return listen def limited (listen, timeout, inBps, outBps): "throttle I/O and limit inactivity for managed client streams" assert ( type (timeout) == int and timeout > 0 and type (inBps ()) == int and inBps () > 0 and type (outBps ()) == int and outBps () > 0 ) def throttle (dispatcher, when): "decorate a client dispatcher with stream limits" async_limits.meter_recv (dispatcher, when) async_limits.meter_send (dispatcher, when) dispatcher.limit_inactive = timeout async_limits.throttle_readable ( dispatcher, when, listen.ac_in_throttle_Bps ) async_limits.throttle_writable ( dispatcher, when, listen.ac_out_throttle_Bps ) def close (): del ( dispatcher.recv, dispatcher.send, dispatcher.readable, dispatcher.writable, dispatcher.close ) dispatcher.close () dispatcher.async_server.server_close (dispatcher) dispatcher.close = close listen.server_decorate = throttle listen.ac_in_throttle_Bps = inBps listen.ac_out_throttle_Bps = outBps listen.server_limit = async_limits.limit return listen def rationed (listen, timeout, inBps, outBps): "ration I/O and limit inactivity for managed client streams" assert ( type (timeout) == int and timeout > 0 and type (inBps) == int and inBps > 0 and type (outBps) == int and outBps > 0 ) listen.ac_in_ration_Bps = inBps listen.ac_out_ration_Bps = outBps def throttle_in (): return int (listen.ac_in_ration_Bps / max (len ( listen.server_dispatchers ), 1)) def throttle_out (): return int (listen.ac_out_ration_Bps / max (len ( listen.server_dispatchers ), 1)) limited (listen, timeout, throttle_in, throttle_out) return listen
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_server.py
async_server.py
"http://laurentszyster.be/blog/collector/" from allegra import async_chat, loginfo class Null (object): # collect data to /dev/null collector_is_simple = True def collect_incoming_data (self, data): return def found_terminator (self): return True DEVNULL = Null () class Loginfo (object): # collect data to loginfo collector_is_simple = True def __init__ (self, info=None): self.info = info def collect_incoming_data (self, data): loginfo.log (data, self.info) def found_terminator (self): return True # final! LOGINFO = Loginfo () class File (object): collector_is_simple = True def __init__ (self, file): self.file = file self.collect_incoming_data = self.file.write def found_terminator (self): self.file.close () self.collect_incoming_data = None return True def devnull (data): pass class Limited (object): collector_is_simple = True def __init__ (self, limit): self.data = '' self.limit = limit def collect_incoming_data (self, data): self.limit -= len (data) if self.limit > 0: self.data += data else: self.collect_incoming_data = devnull # # just don't do anything after the limit, not even # testing for it ;-) def found_terminator (self): return True class Codec_decoder (object): # Decode collected data using the codecs' decode interface: # # import codecs # Codec_decoder (collector, codecs.lookup ('zlib')[1]) # # Note that the decode function *must* decode byte strings, not # UNICODE strings. collector_is_simple = True def __init__ (self, collector, decode): assert collector.collector_is_simple self.collector = collector self.decode = decode self.buffer = '' def collect_incoming_data (self, data): if self.buffer: decoded, consumed = self.decode (self.buffer + data) consumed -= len (self.buffer) else: decoded, consumed = self.decode (data) self.collector.collect_incoming_data (decoded) if consumed < len (data) + 1: self.buffer = data[consumed:] def found_terminator (self, data): if self.buffer: decoded, consumed = self.decode (self.buffer) if decoded: self.collector.collect_incoming_data (decoded) return self.collector.found_terminator () class Padded_decoder (object): # Collect padded blocks to decode, for instance: # # import base64 # Padded_decoder (collector, 20, base64.b64decode) # # because padding does matter to the base binascii implementation, # and is not handled by the codecs module, a shame when a large # XML string is encoded in base64 and should be decoded and parsed # asynchronously. Padding is also probably a requirement from block # cypher protocols and the likes. collector_is_simple = True def __init__ (self, collector, padding, decode): assert collector.collector_is_simple self.collector = collector self.padding = padding self.decode = decode self.buffer = '' def collect_incoming_data (self, data): lb = len (self.buffer) + len (data) if lb < self.padding: self.buffer += data return tail = lb % self.padding if self.buffer: if tail: self.buffer = data[-tail:] self.collector.collect_incoming_data ( self.decode ( self.buffer + data[:-tail] ) ) else: self.collector.collect_incoming_data ( self.decode (self.buffer + data) ) elif tail: self.buffer = data[-tail:] self.collector.collect_incoming_data ( self.decode (data[:-tail]) ) else: self.collector.collect_incoming_data ( self.decode (data) ) def found_terminator (self): if self.buffer: self.collector.collect_incoming_data ( self.decode (self.buffer) ) self.buffer = '' return self.collector.found_terminator () class Simple (object): collector_is_simple = True terminator = None buffer = '' def get_terminator (self): return self.terminator def set_terminator (self, terminator): self.terminator = terminator def collect_incoming_data (self, data): self.buffer = async_chat.collect_chat ( self.collector, self.buffer + data ) def found_terminator (self): if self.buffer: async_chat.collect_chat (self.collector, self.buffer) return True # allways final def bind_simple (cin, cout): "bind to a simple collector until found_terminator is True" def found_terminator (): if cout.found_terminator (): del ( cin.collect_incoming_data, cin.found_terminator ) return cin.found_terminator () return False cin.collect_incoming_data = cout.collect_incoming_data cin.found_terminator = found_terminator return cin def bind_complex (cin, cout): "bind to a complex collector until found_terminator is True" cout.set_terminator = cin.set_terminator cout.get_terminator = cin.get_terminator cout.collector = cin cin.set_terminator (cout.get_terminator ()) cin.collect_incoming_data = cout.collect_incoming_data def found_terminator (): if cout.found_terminator (): del ( cout.set_terminator, cout.get_terminator, cout.collector, cin.collect_incoming_data, cin.found_terminator ) return cin.found_terminator () return False cin.found_terminator = found_terminator return cin def bind (cin, cout): "bind a complex to a collector until found_terminator is True" assert not cin.collector_is_simple if cout.collector_is_simple: return bind_simple (cin, cout) return bind_complex (cin, cout) def simplify (cin, cout): couple = Simple () bind_complex (couple, cout) return bind_simple (cin, couple) def simple (collected): return bind_simple (Simple (), collected)
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/collector.py
collector.py
# Copyright (C) 2005 Laurent A.V. Szyster # # This library is free software; you can redistribute it and/or modify # it under the terms of version 2.1 of the GNU Lesser General Public # License as published by the Free Software Foundation. # # This library is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA "http://laurentszyster.be/blog/select_trigger/" import sys, os, socket, thread from allegra import ( netstring, prompt, loginfo, async_loop, finalization, async_core ) class Trigger (async_core.Dispatcher): "Thunk back safely from threads into the asynchronous loop" def __repr__ (self): return 'trigger id="%x"' % id (self) def readable (self): "a Trigger is allways readable" return True def writable (self): "a Trigger is never writable" return False def handle_connect (self): "pass on connect" pass def handle_read (self): "try to call all thunked, log all exceptions' traceback" try: self.recv (8192) except socket.error: return self.lock.acquire () try: thunks = self.thunks self.thunks = [] finally: self.lock.release () for thunk in thunks: try: thunk[0] (*thunk[1]) except: self.loginfo_traceback () if os.name == 'posix': def posix_trigger_init (self): "use a POSIX pipe to connect a pair of file descriptors" self.select_triggers = 0 fd, self.trigger = os.pipe () self.set_file (fd) self.lock = thread.allocate_lock () self.thunks = [] assert None == self.log ('open', 'debug') def posix_trigger_pull (self, thunk): "acquire the trigger's lock, thunk and pull" self.lock.acquire () try: self.thunks.append (thunk) finally: self.lock.release () os.write (self.trigger, 'x') def posix_trigger_close (self): "close the trigger" async_core.Dispatcher.close (self) os.close (self.trigger) Trigger.__init__ = posix_trigger_init Trigger.__call__ = posix_trigger_pull Trigger.close = posix_trigger_close elif os.name == 'nt': def win32_trigger_init (self): "get a pair of Win32 connected sockets" self.select_triggers = 0 a = socket.socket (socket.AF_INET, socket.SOCK_STREAM) w = socket.socket (socket.AF_INET, socket.SOCK_STREAM) a.bind (('127.9.9.9', 19999)) a.listen (1) w.setblocking (0) try: w.connect (('127.9.9.9', 19999)) except: pass conn, addr = a.accept () a.close () w.setblocking (1) self.trigger = w self.set_connection (conn, addr) self.lock = thread.allocate_lock () self.thunks = [] assert None == self.log ('open', 'debug') def win32_trigger_pull (self, thunk): "acquire the trigger's lock, thunk and pull" self.lock.acquire () try: self.thunks.append (thunk) finally: self.lock.release () self.trigger.send ('x') def win32_trigger_close (self): "close the trigger" async_core.Dispatcher.close (self) self.trigger.close () Trigger.__init__ = win32_trigger_init Trigger.__call__ = win32_trigger_pull Trigger.close = win32_trigger_close else: raise ImportError ('OS "%s" not supported, sorry :-(' % os.name) class Select_trigger (loginfo.Loginfo, finalization.Finalization): """A base class that implements the select_trigger interface select_trigger ((function, args)) to thunk function and method calls from one thread into the main asynchronous loop. Select_trigger implements thread-safe and practical loginfo interfaces: select_trigger_log (data, info=None) to log information, and select_trigger_traceback () to log traceback asynchronously from a distinct thread.""" select_trigger = None def __init__ (self): "maybe open a new Trigger, increase its reference count" if self.select_trigger == None: Select_trigger.select_trigger = Trigger () self.select_trigger.select_triggers += 1 def __repr__ (self): return 'select-trigger id="%x"' % id (self) def select_trigger_log (self, data, info=None): "log asynchronously via the select trigger" self.select_trigger ((self.log, (data, info))) def select_trigger_traceback (self): "return a compact traceback tuple and log asynchronously" ctb = prompt.compact_traceback () self.select_trigger (( self.loginfo_log, loginfo.traceback_encode (ctb) )) return ctb def finalization (self, finalized): "decrease the Trigger's reference count, maybe close it" trigger = self.select_trigger trigger.select_triggers -= 1 if trigger.select_triggers == 0: trigger ((trigger.handle_close, ())) Select_trigger.select_trigger = None self.select_trigger = None
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/select_trigger.py
select_trigger.py
"http://laurentszyster.be/blog/timeouts/" import time, collections from allegra import async_loop class Timeouts (object): def __init__ (self, period, precision=None): # self.timeouts_timeout = timeout self.timeouts_period = max (period, async_loop.precision) self.timeouts_precision = precision or async_loop.precision self.timeouts_deque = collections.deque () def timeouts_push (self, reference): when = time.time () if not self.timeouts_deque: self.timeouts_start (when) self.timeouts_deque.append ((when, reference)) return reference def timeouts_start (self, when): async_loop.schedule ( when + self.timeouts_precision, self.timeouts_poll ) def timeouts_poll (self, now): then = now - self.timeouts_precision - self.timeouts_period while self.timeouts_deque: when, reference = self.timeouts_deque[0] if when < then: self.timeouts_deque.popleft () self.timeouts_timeout (reference) else: break if self.timeouts_deque: return ( now + self.timeouts_precision, self.timeouts_poll ) self.timeouts_stop () def timeouts_stop (self): pass # self.timeouts_timeout = None # The first, simplest and probably most interesting application of Timeouts def cached (cache, timeout, precision): def timedout (reference): try: del cache[reference] except KeyError: pass t = Timeouts (timeout, precision) t.timeouts_timeout = timedout def push (key, value): cache[key] = value t.timeouts_push (key) return push # push, stop = timeouts.cached ({}, 60, 6) # ... # push (key, value) # ... # stop () # Note about this implementation # # Time out # # In order to scale up and handle very large number of timeouts scheduled # asynchronously at fixed intervals, this module provides a simple deque # interface that for a fifo of timeout events to poll from. # # Polling a timeouts queue should be scheduled recurrently at more or less # precise intervals depending on the volume expected and the time it takes # to handle each timeout. Your mileage may vary, but this design will scale # up in the case of long intervals, when for each time poll only a few first # events at the left of the deque have timed-out. # # The timouts interface is applied by pns_udp to manage the 3 second timeout # set on each statement relayed or routed by a PNS/UDP circle. There might # be other applications, RTP protocols for instance.
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/timeouts.py
timeouts.py
import os import configparser import logging import signal import subprocess from asyncio import get_event_loop from sanic import Sanic from sanic.response import json from sanic.config import Config from sanic.response import text from .controller import BaseView class Allegro(object): def __init__(self, name): self.log = logging.getLogger('allegro') formatter = logging.Formatter( "%(asctime)s: %(levelname)s: %(message)s") handler = logging.StreamHandler() handler.setFormatter(formatter) self.log.addHandler(handler) self.log.setLevel(logging.INFO) self.app = Sanic(name) def initialize(self, config_path): try: self.cf = configparser.ConfigParser() self.cf.read(config_path) self.host = self.cf["basic"]["bind_host"] self.port = int(self.cf["basic"]["bind_port"]) self.root_path = self.cf["basic"]["root_path"] self.api_worker = int(self.cf["basic"]["api_worker"]) self.pid_path = self.cf["basic"]["pid_path"] self.timeout = int(self.cf["basic"]["timeout"]) self.app.config.REQUEST_TIMEOUT=self.timeout except Exception as e: self.log.exception("Error ocurred when trying to the config file Info: %s" % str(e)) raise def init_route(self): services = self.cf["service"]["keys"].replace(' ', '').split(',') for service in services: uri = self.cf[service]["uri"] module = self.cf[service]["module"] file_upload = eval(self.cf[service]["file_upload_enabled"]) files_save_path = "" if file_upload: files_save_path = self.cf[service]["files_save_path"] method = self.cf[service]["method"].lower().replace(' ','').split(',') self.app.add_route(BaseView.as_view(method, module, self.root_path, self.timeout, file_upload, files_save_path), uri) def start(self): try: self.init_route() with open(self.pid_path, "a") as f: f.write(str(os.getpid())+"\n") services = self.cf["service"]["keys"].split(',') os.system('cd %s' % self.root_path) for service in services: module = self.cf[service]["module"] eventlet_enabled = eval(self.cf[service]['eventlet_enabled']) if eventlet_enabled: eventlet_pool = int(self.cf[service]["eventlet_pool"]) subprocess.call('celery worker -A %s --concurrency 1 -l info -P eventlet -c %s -n %s &' % (module, eventlet_pool, module), shell=True) else: workers = int(self.cf[service]["workers"]) for i in range(workers): subprocess.call('celery worker -A %s --concurrency %s -l info -n %s%s &' % (module, workers, module, i), shell=True) self.log.info("Starting Consumer service...") self.app.add_task(self.save_pid()) self.app.run(host=self.host, port=self.port, workers=self.api_worker) except Exception as e: self.log.exception("Error ocurred when trying to the config file Info: %s" % str(e)) raise async def save_pid(self): with open(self.pid_path, "a") as f: f.write(str(os.getpid())+"\n") def stop(self): try: self.log.info("Staring to termina the processes...") with open(self.pid_path, "r") as f: processes = f.readlines() for p in processes: try: a = os.kill(int(p[:-1]), signal.SIGKILL) except Exception as e: self.log.error(e) open(self.pid_path, "w+") os.system("pkill -9 -f 'celery worker'") self.log.info("All the processes are terminated.") except Exception as e: log.exception("Error ocurred when trying to kill the processes Info: %s" % str(e)) raise
Allegro
/Allegro-1.2.2.tar.gz/Allegro-1.2.2/allegro/app.py
app.py
import time import imp import asyncio import aiofiles from sanic.views import HTTPMethodView from sanic.response import text from sanic.response import json from sanic.exceptions import ServerError class BaseView(HTTPMethodView): def __init__(self, method, module, path, timeout, file_upload, file_save_path): self.method = method self.file_upload = file_upload self.file_save_path = file_save_path try: file, pathname, desc = imp.find_module(module,[path]) self.moduleobj = imp.load_module(module, file, pathname, desc) except Exception as e: raise def request_to_message(self, request): message = dict() try: message["url_content"] = request.args message["form_content"] = request.form message["json_content"] = request.json except Exception: pass return message def return_check(self, response): if isinstance(response, dict): return json(response) else: raise ServerError("The `dict` is expected. Please check the type of the callback", status_code=401) async def get(self, request): if 'get' not in self.method: return ServerError("Not support", status_code=400) message = self.request_to_message(request) handler = "self.moduleobj.get.delay" callback = eval(handler)(message) while(not callback.ready()): await asyncio.sleep(1) response = callback.result return self.return_check(response) async def post(self, request): if 'post' not in self.method: return ServerError("Not support", status_code=400) if self.file_upload: try: file = request.files.get('file') if not file: raise ServerError('Not file found', status_code=400) async with aiofiles.open(self.file_save_path + file.name, 'wb+') as f: await f.write(file.body) return self.return_check({"info":"Upload file successfully", "state":1}) except Exception as e: print(e) return self.retuen_check({"info":str(e),"state":0}) else: message = self.request_to_message(request) if self.file_upload: message = request handler = "self.moduleobj.post.delay" callback = eval(handler)(message) while(not callback.ready()): await asyncio.sleep(1) response = callback.result return self.return_check(response) async def put(self, request): if 'put' not in self.method: return ServerError("Not support", status_code=400) message = self.request_to_message(request) handler = "self.moduleobj.put.delay" callback = eval(handler)(message) while(not callback.ready()): await asyncio.sleep(1) response = callback.result return self.return_check(response) async def patch(self, request): if 'patch' not in self.method: return ServerError("Not support", status_code=400) message = self.request_to_message(request) handler = "self.moduleobj.patch.delay" callback = eval(handler)(message) while(not callback.ready()): await asyncio.sleep(1) response = callback.result return self.return_check(response) async def delete(self, request): if 'delete' not in self.method: return ServerError("Not support", status_code=400) message = self.request_to_message(request) handler = "self.moduleobj.delete.delay" callback = eval(handler)(message) while(not callback.ready()): await asyncio.sleep(1) response = callback.result return self.return_check(response)
Allegro
/Allegro-1.2.2.tar.gz/Allegro-1.2.2/allegro/controller.py
controller.py
# AlleleFinder [![CircleCI](https://circleci.com/gh/OLC-Bioinformatics/AlleleFinder/tree/main.svg?style=shield)](https://circleci.com/gh/OLC-LOC-Bioinformatics/AzureStorage/tree/main) [![codecov](https://codecov.io/gh/OLC-Bioinformatics/AlleleFinder/branch/main/graph/badge.svg?token=Z6SSEJV9GU)](https://codecov.io/gh/OLC-Bioinformatics/AlleleFinder) [![Anaconda-Server Badge](https://img.shields.io/badge/install%20with-conda-brightgreen)](https://anaconda.org/olcbioinformatics/allelefinder) [![GitHub version](https://badge.fury.io/gh/olc-bioinformatics%2Fallelefinder.svg)](https://badge.fury.io/gh/olc-bioinformatics%2Fallelefinder) [![GitHub issues](https://img.shields.io/github/issues/OLC-Bioinformatics/AlleleFinder)](https://github.com/OLC-LOC-Bioinformatics/AzureStorage/issues) [![Documentation Status](https://readthedocs.org/projects/pip/badge/?version=stable)](https://OLC-Bioinformatics.github.io/AlleleFinder/?badge=stable) [![license](https://img.shields.io/badge/license-MIT-brightgreen)](https://github.com/OLC-Bioinformatics/AlleleFinder/blob/main/LICENSE) ### STEC AlleleFinder A suite of tools, written in Python, designed for the discovery, sequence typing, and profiling the _stx_ alleles in Shiga toxin-producing _Escherichia coli_ ## Scripts There is a single STEC script with six separate functionalities: 1. [`profile_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/profile_reduce) 2. [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce) 3. [`allele_find`](https://olc-bioinformatics.github.io/AlleleFinder/allele_find) 4. [`aa_allele_find`](https://olc-bioinformatics.github.io/AlleleFinder/aa_allele_find) 5. [`allele_split`](https://olc-bioinformatics.github.io/AlleleFinder/allele_split) 6. [`allele_concatenate`](https://olc-bioinformatics.github.io/AlleleFinder/allele_concatenate) Full documentation is available at the [AlleleFinder GitHub pages site](https://olc-bioinformatics.github.io/AlleleFinder/) ## Quick Start [`Conda`](https://docs.conda.io/en/latest/) is required to install AlleleFinder. See the [documentation](http://bioconda.github.io/) or [AlleleFinder installation](https://olc-bioinformatics.github.io/AlleleFinder/install/) for instructions of getting conda installed on your system Create a new conda environment: ``` conda create -n allele_finder -c olcbioinformatics allelefinder=0.1.2=py_0 ``` Additional documentation is available [here](https://olc-bioinformatics.github.io/AlleleFinder/installation) ## Reduce profiles This script reduces full wgMLST profile from Enterobase using genes of interest. The two _stx_ genes, _stx1_ and _stx2_, have the following identifiers in Enterobase: * stx1 subunit A: **ECs2974** * stx1 subunit B: **ECs2973** * stx2 subunit A: **ECs1205** * stx2 subunit B: **ECs1206** #### Inputs In order to extract all the unique profiles from a full Enterobase wgMLST profile for both _stx1_ subunits, create a text file containing the two identifiers (one per row) e.g.: `genes.txt` ``` ECs2974 ECs2973 ``` A full _Escherichia_ wgMLST profile file from Enterobase is also required #### Running the script ``` stec.py profile_reduce -p /path/to/profile_file -g /path/to/genes_file -o /path/to/output_folder ``` Additional information regarding this functionality is available in the [`profile_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/profile_reduce) documentation. ## Translate and reduce alleles This script translates allele files from Enterobase in nucleotide format to amino acid, performs content and length checks, and removes duplicates. In order for a translated allele to pass content and length checks, it must: 1. Start with a `Methionine` residue 2. Pass a minimum length threshold after trimming: * The length thresholds are: * ECs2973: 90 amino acid residues * ECs2974: 316 amino acid residues * ECs1205: 320 amino acid residues * ECs1206: 88 amino acid residues 3. Not be a duplicate of an allele already in the reduced database #### Inputs 1. nucleotide allele files from Enterobase in FASTA format. 2. reduced profile file prepared by [`profile_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/profile_reduce). Note that the allele files must contain sequence for the same genes that were used for the reduction of the profile, e.g.: * ECs2973 * ECs2974 #### Running the script ``` stec.py allele_translate_reduce -a /path/to/allele_folder -p /path/to/profile_file -r /path/to/output/folder/aa_profile -t /path/to/output/folder/aa_alleles ``` Additional information regarding this functionality is available in the [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce) documentation ## Find alleles This script performs BLAST analyses on a nucleotide allele database prepared by [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce) against nucleotide query sequences to discover their sequence types. Updates nucleotide and amino acid profiles and allele databases #### Inputs 1. nucleotide query files in FASTA format 2. all outputs from [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce) #### Running the script ``` stec.py allele_find --nt_profile /path/to/nt_profile_file --aa_profile /path/to_aa_profile_file --nt_alleles /path/to/nt_allele_folder --aa_alleles /path/to/aa_allele_folder -r /path/to/output_folder -q /path/to/query_folder ``` Additional information regarding this functionality is available in the [`allele_find`](https://olc-bioinformatics.github.io/AlleleFinder/allele_find) documentation ## Find alleles from amino query files This script performs BLAST analyses on an amino acid database prepared by [`allele_find`](https://olc-bioinformatics.github.io/AlleleFinder/allele_find) against amino acid query sequences to find matching alleles. Updates allele database. #### Inputs 1. amino acid query files in FASTA format. One query allele per file. Note that the allele naming scheme must match the outputs from the previous scripts 2. amino acid allele database prepared by [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce) or [`allele_find`](https://olc-bioinformatics.github.io/AlleleFinder/allele_find) #### Running the script ``` stec.py aa_allele_find --aa_alleles /path/to/aa_allele_folder -r /path/to/output_folder -q /path/to/query_folder ``` Additional information regarding this functionality is available in the [`aa_allele_find`](https://olc-bioinformatics.github.io/AlleleFinder/aa_allele_find) documentation ## Split allele database This script splits a single allele database file into multiple files; one sequence per file #### Inputs 1. allele database file #### Running the script ``` stec.py allele_split -q /path/to/query_folder -o /path/to_output_folder ``` Additional information regarding this functionality is available in the [`allele_split`](https://olc-bioinformatics.github.io/AlleleFinder/allele_split) documentation ## Concatenate allele database This script concatenates alleles of the _stx_ A and B subunits into a single sequence with a linker 1. nucleotide and amino acid allele files prepare by [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce) 2. nucleotide and amino acid profile files prepared by [`allele_translate_reduce`](https://olc-bioinformatics.github.io/AlleleFinder/allele_translate_reduce). Note that the allele files must contain sequence for the same genes that were used for the reduction of the profile, e.g.: #### Running the script ``` stec.py allele_concatenate --nt_profile /path/to/nt_profile/profile.txt --aa_profile /path/to/aa_profile/profile.txt --nt_alleles /path/to/nt_alleles --aa_alleles /path/to/aa_alleles -c /path/to/outputs ``` ## Feedback If you encounter any issues installing or running AlleleFinder, have feature requests, or need assistance, please [open an issue on GitHub](https://github.com/OLC-Bioinformatics/AlleleFinder/issues/new/choose) ## License MIT License Copyright (c) Government of Canada 2023 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/README.md
README.md
# Standard imports from csv import DictReader from glob import glob import logging import json import os # Third party imports from Bio.Seq import Seq from Bio import SeqIO # Local imports from allele_tools.methods import \ extract_novel_alleles from olctools.accessoryFunctions.accessoryFunctions import combinetargets from genemethods.geneseekr.geneseekr import GeneSeekr __author__ = 'adamkoziol' def allele_prep(allele_path, gene_names, combined_targets, amino_acid): """ Create a 'combinedtargets.fasta' file :param allele_path: Name and absolute path to folder containing allele database files :param gene_names: List of all gene names in the analysis :param combined_targets: String of absolute path to the combinedtargets.fasta file :param amino_acid: Boolean of whether the query sequences are amino acid or nucleotide :return: records: Dictionary of allele_header:allele_sequence :return: gene_names: List of all gene names extracted from allele headers :return: data: String of header including all gene names. To be used in creating final report """ logging.info('Reading allele files') custom_targets = os.path.join(allele_path, 'custom.tfa') combined_targets_db = glob(os.path.join(allele_path, 'combinedtargets*')) records = {} # Clear out any previously created combinedtargets files (and associated BLAST databases) clear_alleles(combined_targets_db=combined_targets_db, custom_targets=custom_targets) alleles = glob(os.path.join(allele_path, '*.*fa*')) # If the dictionary hasn't already been populated by a previous iteration, remove the path and # the extension from each of the allele files to determine gene names if not gene_names: for allele in alleles: gene_names.append(os.path.splitext(os.path.basename(allele))[0].replace('_alleles', '')) # Populate the header string for the final report genes = '\t'.join(sorted(gene_names)) data = f'ST\t{genes}\n' # Create the combinedtargets file if not os.path.isfile(combined_targets): if amino_acid: combinetargets( targets=alleles, targetpath=allele_path, mol_type='prot' ) else: combinetargets( targets=alleles, targetpath=allele_path ) # Create BLAST databases GeneSeekr.makeblastdb( fasta=combined_targets, program='blastn' if not amino_acid else 'blastp' ) # Load all the FASTA records from the combinedtargets file for allele_file in alleles: for record in SeqIO.parse(allele_file, 'fasta'): records[record.id] = str(record.seq) return records, gene_names, data def clear_alleles(combined_targets_db, custom_targets): """ Remove any combinedtargets.fasta or custom.tfa files present in the allele path :param combined_targets_db: List of combinedtargets files, including BLAST database files :param custom_targets: Name and absolute path to custom.tfa target file :return: """ # Iterate through all the combinedtargets files for combined_target in combined_targets_db: # Remove each file os.remove(combined_target) # Attempt to remove the targets.tfa file try: os.remove(custom_targets) except FileNotFoundError: pass def read_profile(profile_file): """ Load any previously created profiles for this analysis :param profile_file: Name and absolute path to a profile file """ # Initialise the dictionary profile_data = {} # Only load the profile file if it exists if os.path.isfile(profile_file): logging.info('Extracting profiles from profile file') # Open an Excel-formatted sequence profile file as a dictionary profile = DictReader(open(profile_file, encoding='utf-8'), dialect='excel-tab') # Iterate through the rows for row in profile: # Populate the profile dictionary with profile number: {gene: allele}. allele_comprehension = {gene: allele for gene, allele in row.items() if gene != 'ST'} # Extract the sequence type number from the first field name seq_type = row[profile.fieldnames[0]] # Update the profile data dictionary profile_data[seq_type] = allele_comprehension return profile_data def parseable_blast_outputs(runmetadata, fieldnames, extended_fieldnames, records, cutoff=90): """ Add a header to the BLAST report, so that it is easier to figure out what is in each column :param runmetadata: Metadata object containing a list of all metadata objects :param fieldnames: String of all the field names in the BLAST report :param extended_fieldnames: String of the BLAST field names plus the calculated percent identity :param records: Dictionary of allele name: allele sequence :param cutoff: Integer of the minimum percent identity between query and subject sequence. Default is 90 """ logging.info('Adding headers to BLAST outputs') for sample in runmetadata.samples: data = [] # Load the first line of the report with open(sample.alleles.blast_report, 'r', encoding='utf-8') as report: header_line = report.readline().strip() # Split the header on tabs header_list = header_line.split('\t') # Check to see if the header has already been added. Skip this step if it has been added. if header_list[0] != fieldnames[0]: with open(sample.alleles.blast_report, 'r', encoding='utf-8') as report: header = list(report.readline().split('\t')) if len(header) == len(fieldnames): current_fieldnames = fieldnames else: current_fieldnames = extended_fieldnames blastdict = DictReader(open(sample.alleles.blast_report, encoding='utf-8'), fieldnames=current_fieldnames, dialect='excel-tab' ) # Go through each BLAST result for row in blastdict: # Calculate the percent identity and extract the bit score from the row # Percent identity is the (length of the alignment - num mismatches) / # total query length percent_identity = float( '{:0.2f}'.format((float(row['identical']) - float(row['gaps'])) / len(records[row['subject_id']]) * 100) ) # Filter the results based on the cutoff value if percent_identity < cutoff: continue # Create a percent match entry based on the calculated percent identity match row['percent_match'] = str(percent_identity) # Add the updated row to the list data.append(row) # Overwrite the original BLAST outputs to include headers, and the percent match with open(sample.alleles.blast_report, 'w', encoding='utf-8') as updated_report: # Add the header headers = '\t'.join(extended_fieldnames) updated_report.write(f'{headers}\n') # Add the results for row in data: for header in extended_fieldnames: # Write the value from the row with the header as the key try: updated_report.write('{value}\t'.format(value=row[header])) except KeyError: # noinspection PyTypeChecker updated_report.write('{value}\t'.format(value=''.join(row[None]))) # Add a newline for each result updated_report.write('\n') def parse_results(runmetadata, fieldnames, extended_fieldnames, amino_acid, genome_query=False): """ Parse the BLAST results, and populate GenObjects :param runmetadata: Metadata object containing list of all metadata objects :param fieldnames: String of all the field names in the BLAST report :param extended_fieldnames: String of the BLAST field names plus the calculated percent identity :param amino_acid: Variable on whether targets are protein :param genome_query: Boolean of whether the query is a genome, and the subject is the allele :return: Updated runmetadata """ logging.info('Parsing BLAST outputs') for sample in runmetadata.samples: # Initialise GenObjects as required sample.alleles.blastlist = [] sample.alleles.targetsequence = {} # Open the sequence profile file as a dictionary blastdict = DictReader(open(sample.alleles.blast_report, encoding='utf-8'), fieldnames=extended_fieldnames, dialect='excel-tab') resultdict = {} # Go through each BLAST result for row in blastdict: # Ignore the headers if row['query_id'].startswith(fieldnames[0]): pass else: target_id = row['query_id'] if not genome_query else row['subject_id'] target_start = row['subject_start'] target_end = row['subject_end'] target_seq = row['query_sequence'] # Remove unwanted pipes added to the name target = target_id.lstrip('gb|').rstrip('|') if '|' in target_id else \ target_id # If the percent identity is equal to the cutoff if float(row['percent_match']) == 100: # Append the hit dictionary to the list sample.alleles.blastlist.append(row) # Update the dictionary with the target and percent identity resultdict.update({target: row['percent_match']}) # Determine if the orientation of the sequence is reversed compared to # the reference sequence if int(target_end) < int(target_start) and not amino_acid: # Create a sequence object using BioPython seq = Seq(target_seq) # Calculate the reverse complement of the sequence querysequence = str(seq.reverse_complement()) # If the sequence is not reversed, use the sequence as it is in the output else: querysequence = target_seq # Add the sequence in the correct orientation to the sample try: sample.alleles.targetsequence[target].append(querysequence) except (AttributeError, KeyError): sample.alleles.targetsequence[target] = [] sample.alleles.targetsequence[target].append(querysequence) # Add the percent identity to the object sample.alleles.blastresults = resultdict # Populate missing results with 'NA' values if len(resultdict) == 0: sample.alleles.blastresults = 'NA' return runmetadata def profile_alleles(runmetadata, profile_dict, profile_set, records, amino_acid=False, novel_alleles=False, genome_query=False, allele_path=None, report_path=None, cutoff=75): """ Create the gene:allele profile from the BLAST outputs from each sample :param runmetadata: Metadata object containing a list of all metadata objects :param profile_dict: Dictionary to store gene:allele profile for each sample :param profile_set: List of all unique profiles :param records: List of all gene names :param novel_alleles: Boolean of whether novel alleles should be extracted from BLAST hit if there is no 100% match :param genome_query: Boolean of whether the query is a genome, and the subject is the allele :param amino_acid: Variable on whether targets are protein :param allele_path: Name and absolute path to folder containing allele database files :param report_path: Name and absolute path to folder in which reports are to be created :param cutoff: Integer of the minimum percent identity between query and subject sequence. Default is 75 :return: Updated profile_dict and profile_set """ logging.info('Determining allele profiles') # Iterate through all the samples for sample in runmetadata.samples: # Initialise a dictionary to store the profile information for each samples profile_dict[sample.name] = {} # Initialise a dictionary to store the gene:allele combinations for each sample allele_comprehension = {} # Each gene in the analysis is stored in the list of genes created in allele_finder for gene in records: # Create a variable to track whether the current gene is present in the current sample present = False # Iterate through all the BLAST outputs for the sample for allele in sample.alleles.blastresults: # If the gene name is present as a substring of the allele e.g. adk in adk_1, # then the gene is present in the BLAST outputs if gene in allele: # Strip off the allele number from the allele e.g. adk_1 yields 1 allele_id = allele.split('_')[-1] # Update the dictionary with the new gene: allele number for the sample allele_comprehension.update({gene: allele_id}) # Update the gene presence variable present = True # If, after iterating through all the BLAST outputs, the gene is not present in the # sample, update the gene: allele to reflect this absence if not present: if novel_alleles: sample, novel_allele, query_sequence = extract_novel_alleles( sample=sample, gene=gene, genome_query=genome_query, amino_acid=amino_acid, allele_path=allele_path, report_path=report_path, cutoff=cutoff, ) try: sample.alleles.targetsequence[novel_allele].append(query_sequence) except KeyError: sample.alleles.targetsequence[novel_allele] = [query_sequence] if novel_allele: allele_comprehension.update({gene: novel_allele.split('_')[-1]}) else: allele_comprehension.update({gene: '0'}) else: # Set missing alleles to 'ND' allele_comprehension.update({gene: '0'}) # In order to hash the dictionary, use JSON, with sorted keys to freeze it frozen_allele_comprehension = json.dumps(allele_comprehension, sort_keys=True) # Update the dictionary of profiles with the hash of the frozen dictionary: list of # samples with that hash if hash(frozen_allele_comprehension) not in profile_dict: profile_dict[hash(frozen_allele_comprehension)] = [sample.name] else: profile_dict[hash(frozen_allele_comprehension)].append(sample.name) # Add the 'regular' dictionary to the list of all profiles as required if allele_comprehension not in profile_set: profile_set.append(allele_comprehension) return profile_dict, profile_set def match_profile(profile_data, profile_dict, profile_matches): """ Match current profiles to any previously created profiles :param profile_data: Dictionary of seq_type: {gene name:allele ID} :param profile_dict: Dictionary of gene:allele profile for each sample :param profile_matches: Dictionary of seq_type: matching profile :return: profile_matches: Updated dictionary of seq_type: matching profiles """ # If the profile_data dictionary was not populated in the read_profiles methods, # there is nothing to match if profile_data: logging.info('Matching new profiles against profile file') # Extract the sequence type and allele dictionary from the profile file for seq_type, allele_comprehension in profile_data.items(): # Freeze the allele comprehension as above frozen_allele_comprehension = json.dumps(allele_comprehension, sort_keys=True) try: # Extract the samples that match this profile matches = profile_dict[hash(frozen_allele_comprehension)] # Update the dictionary with the matching samples profile_matches[seq_type] = matches # The profile will not necessarily match any of the profiles found in the analysis except KeyError: pass return profile_matches def create_profile(profile_data, profile_set, new_profiles, profile_dict, profile_matches): """ Create new profiles for novel profiles as required :param profile_data: Dictionary of seq_type: {gene name:allele ID} :param profile_set: List of all unique profiles :param new_profiles: List of novel profiles :param profile_dict: Dictionary of gene:allele profile for each sample :param profile_matches: Dictionary of seq_type: matching profile :return: profile_matches: Updated dictionary of seq_type: matching profiles :return: profile_data: Updated dictionary of seq_type: {gene name: allele ID} :return: new_profiles: Updated list of novel profiles """ # Initialise the sequence type to be 1 seq_type = 1 # If the profile_data dictionary exists, set the sequence type to be the last of the entries # in the dictionary plus one, as that corresponds to the next sequence type if profile_data: # seq_type = len(profile_data) + 1 seq_type = sorted(int(st) for st in profile_data.keys())[-1] + 1 # Initialise a list to store the matched samples matched = [] # Iterate through all the profiles in the analysis for allele_comprehension in profile_set: # Ensure that the allele comprehension (profile) is not already in the profile file if allele_comprehension not in [profiled_alleles for st, profiled_alleles in profile_data.items()]: # Add the new profile to the list of new profiles alleles = '\t'.join( allele_num.split('_')[-1] for gene, allele_num in sorted( allele_comprehension.items() ) ) new_profiles.append( f'{seq_type}\t{alleles.rstrip()}' ) # Freeze the comprehension in order to be used as the key in the profile dictionary frozen_allele_comprehension = json.dumps(allele_comprehension, sort_keys=True) matches = profile_dict[hash(frozen_allele_comprehension)] # Check to see if this sequence type hasn't already been found in the current analysis if matches not in matched: # Update the dictionary with the new sequence type: list of samples profile_matches[seq_type] = matches profile_data[seq_type] = allele_comprehension # Add the matches to the list of matches matched.append(matches) # Increment the sequence type number of the next entry seq_type += 1 return profile_matches, profile_data, new_profiles def sequence_typer(profile_report, data, runmetadata, profile_matches, profile_data, update=False, amino_acid=False): """ Perform the final sequence typing, and create the report :param profile_report: String of absolute path to report file :param data: String of header including all gene names. To be used in creating final report :param runmetadata: Metadata object containing a list of all metadata objects :param profile_matches: Dictionary of seq_type: matching profile :param profile_data: Dictionary of seq_type: {gene name:allele ID} :param update: Boolean of whether the report is to be created or updated. Default is False (created) :param amino_acid: Boolean of whether the query sequences are amino acid. Default is False """ # Open the report mode = 'w' if not update else 'a+' if not update: # Initialise the header with an extra 'Sample' column plus the comma-separate list # of gene names data = 'Sample\t' + data else: if not os.path.isfile(profile_report): # Initialise the header with an extra 'Sample' column plus the comma-separate list # of gene names data = 'Sample\t' + data else: data = str() with open(profile_report, mode, encoding='utf-8') as report: for sample in runmetadata.samples: # Iterate through all the matches to sequence profiles in the analysis for seq_type, sample_names in profile_matches.items(): # Check if the sample name is in the list of samples names with the current # sequence type if sample.name in sample_names: # Add the sample name, sequence type, and all the allele numbers to the # report string complement = '\t'.join(allele_num.split('_')[-1] for gene, allele_num in sorted( profile_data[seq_type].items()) ) data += f'{sample.name}\t{seq_type}\t{complement.rstrip()}\n' # Update the appropriate GenObject based on the current molecule # (DNA or amino acid) if not amino_acid: sample.alleles.nt_st = seq_type sample.alleles.nt_profile = profile_data[seq_type] else: sample.alleles.aa_st = seq_type sample.alleles.aa_profile = profile_data[seq_type] # Write the report report.write(data) return runmetadata def append_profiles(new_profiles, profile_file, data, novel_profiles=False, profile_path=None, gene_names=None): """ Add new profiles to the profile file :param new_profiles: List of all novel profiles in this analysis :param profile_file: Name and absolute path to a profile file :param data: String of header including all gene names. To be used in creating final report :param novel_profiles: Boolean of whether the novel_profiles.txt file is to be populated. Default is False :param profile_path: String of absolute path of folder in which profiles are located :param gene_names: List of all genes in the analysis """ # Only try to add new profiles if there are new profiles in the analysis if new_profiles: # Initialise the string to store the new profile new_data = str() # If the profile file does not exist, add the string of 'ST', comma-separated gene names # to the headers if not os.path.isfile(profile_file): new_data = data # Iterate through all the new profiles, and add them to the new profile string for profile in new_profiles: new_data += f'{profile}\n' # Open the report with a+ to either create, or append the profile string to it with open(profile_file, 'a+', encoding='utf-8') as profile: profile.write(new_data) if novel_profiles: novel_profile_file = os.path.join(profile_path, 'novel_profiles.txt') if not os.path.isfile(novel_profile_file): with open(novel_profile_file, 'w', encoding='utf-8') as novel: novel.write('ST\t{names}\n'.format(names='\t'.join(gene_names))) with open(novel_profile_file, 'a+', encoding='utf-8') as novel: novel.write(new_data)
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/allele_tools/allele_profiler.py
allele_profiler.py
# Standard imports from argparse import ArgumentParser from glob import glob import logging import shutil import sys import os # Third-party imports from olctools.accessoryFunctions.accessoryFunctions import make_path, SetupLogging from Bio.SeqRecord import SeqRecord from Bio import SeqIO # Local imports from allele_tools.allele_profiler import read_profile from allele_tools.profile_reduce import ProfileReduce from allele_tools.methods import \ evaluate_translated_length, \ generic_evaluate_translated_length, \ remove_combined_db_files, \ pathfinder class Translate: """ Translate and reduce alleles """ def main(self): """ Run the appropriate methods in the correct order """ # Read in all the allele files self.load_alleles() # Parse the alleles self.parse_alleles(length_dict=self.length_dict) # If a profile file has been provided, run the profiling methods if self.profile_file: # Extract seq_type:allele comprehensions from the nucleotide profile file self.profile_data = read_profile(profile_file=self.profile_file) # Create the amino acid profiles self.aa_profile() # Remove duplicate profiles reduce = ProfileReduce( profile=self.aa_profile_file, names=self.gene_name_file ) reduce.main() # Read in the profile data again now that the profile file has been updated self.aa_profile_data = read_profile(profile_file=self.aa_profile_file) # Find linkages between nucleotide and amino acid profiles self.profile_link() # Write profile links to file self.link_file() # Copy and rename the reduced profile file self.copy_profile() def load_alleles(self): """ Use SeqIO to read in all the gene sequences """ for allele_file in self.sequence_files: gene_name = os.path.splitext(os.path.basename(allele_file))[0] # Add the gene name to the set of names self.gene_names.add(gene_name) self.allele_dict[gene_name] = SeqIO.to_dict(SeqIO.parse(allele_file, 'fasta')) def parse_alleles(self, length_dict=None): """ Parse the allele files to translate the amino acid sequence using BioPython. Write the amino acid sequence to file. Store the allele name in the notes. Find duplicates, and link the nucleotide allele name to the amino acid allele name :param length_dict: Dictionary of gene name: minimum acceptable length of translated sequence """ logging.info('Translating and parsing alleles') for gene_name, allele_dict in self.allele_dict.items(): # Initialise the dictionary to store the links between the nt alleles and the aa # alleles with the name of the gene self.allele_links[gene_name] = {} # Initialise a set of allele that do not pass the required filters, and # must be removed from the database remove_list = set() logging.info('Processing %s', gene_name) # Initialise a dictionary to store the translated allele sequence: allele name seq_allele = {} # Set the name and path of the allele and notes files allele_file = os.path.join(self.translated_path, f'{gene_name}.fasta') notes_file = os.path.join(self.notes_path, f'{gene_name}_notes.txt') # Open the file to store the translated alleles with open(allele_file, 'w', encoding='utf-8') as aa_alleles: # Open the notes file with open(notes_file, 'w', encoding='utf-8') as notes: # Create the header for the notes file notes.write('nt_allele\taa_allele\tnote\n') # Iterate through all the alleles in the dictionary for allele, details in allele_dict.items(): # Create a list to store notes note = [] # Create a boolean to track whether the sequence is filtered filtered = False # Create a string to store the untrimmed nucleotide sequence original_nt_sequence = str(details.seq) # Calculate the translated sequence translated_allele = details.seq.translate() # Remove all sequence after a stop codon (*) split_allele = translated_allele.split('*') # Create a string to hold the trimmed sequence trimmed_seq = str() # If there are multiple stop codons in the sequence, trim to the first one if len(split_allele) > 2: if split_allele[1]: for trimmed in split_allele[1:]: trimmed_seq += f'*{trimmed}' else: for trimmed in split_allele[2:]: trimmed_seq += f'*{trimmed}' note.append(f'Trimmed {trimmed_seq} from end') elif len(split_allele) == 1: pass else: if split_allele[-1] and not str(translated_allele).endswith('*'): trimmed_seq += split_allele[-1] note.append(f'Trimmed {trimmed_seq} from end') # Create a dictionary to store the allele nt sequences to check to see if # any are duplicates following trimming nt_sequences = {} filtered, note, nt_sequences, translated_allele = Translate.trim_alleles( note=note, allele=allele, sequence=details, gene_name=gene_name, nt_allele_path=self.path, trim_length=len(trimmed_seq), length_dict=length_dict, filtered=filtered, nt_sequences=nt_sequences, original_nt_sequence=original_nt_sequence ) # If the allele has not been filtered through the trim_alleles if not filtered: # Determine if this amino acid allele is new if str(translated_allele) not in seq_allele: # Add the string of the amino acid sequence to the dictionary seq_allele[str(translated_allele)] = allele # Create a SeqRecord of the translated allele seq_record = SeqRecord( seq=translated_allele, id=allele, name=str(), description=str() ) # Write the SeqRecord to file SeqIO.write( sequences=seq_record, handle=aa_alleles, format='fasta' ) # Update the notes with the allele naming information notes.write(f'{allele}\t{allele}\t{";".join(note)}\n') # Populate the linking dictionary with the nt allele: aa allele self.allele_links[gene_name][allele.split('_')[-1]] = \ allele.split('_')[-1] # Amino acid allele already exists else: # Extract the allele name corresponding to the translated sequence aa_allele = seq_allele[str(translated_allele)] # Update the notes, including that this allele is a duplicate, and a # pointer to the original notes.write( f'{allele}\t{aa_allele}\tDuplicate' ) if not note: notes.write('\n') else: notes.write(f'; {";".join(note)}\n') # Populate the linking dictionary with the nt allele: aa allele self.allele_links[gene_name][allele.split('_')[-1]] = \ aa_allele.split('_')[-1] self.allele_links[gene_name]['0'] = '0' # Filtered alleles must be removed from the database else: Translate.write_filtered_allele_notes( notes=notes, allele=allele, note=note, ) remove_list.add(allele) # Create a SeqRecord of the translated allele seq_record = SeqRecord( seq=translated_allele, id=allele, name=str(), description=str() ) # Write the filtered alleles to the filtered alleles file Translate.create_or_update_filtered_files( gene=gene_name, allele_path=self.translated_path, records_filter=[seq_record] ) # Remove the filtered sequences from the database Translate.remove_filtered_alleles_from_db( gene_name=gene_name, allele_list=remove_list, nt_allele_path=self.path, ) self.load_alleles() @staticmethod def trim_alleles(note, allele, sequence, gene_name, nt_allele_path, trim_length, length_dict, filtered, nt_sequences, original_nt_sequence): """ Trim the alleles based on location of stop codons and whether the sequence is a multiple of three nucleotides. Evaluate the trimmed sequence based on length and contents. :param note: List of sequence-specific notes :param allele: String of the allele identifier :param sequence: SeqIO sequence object of nucleotide sequence :param gene_name: String of the gene name to which the allele corresponds :param nt_allele_path: String of the absolute path to the folder in which the nucleotide alleles are located :param trim_length: Integer of the number of nucleotides to be trimmed (due to internal stop codons) :param length_dict: Dictionary of minimum acceptable length for each gene in the analysis :param filtered: Boolean to track whether the sequence fails the quality/length checks :param nt_sequences: Dictionary of allele: sequence :param original_nt_sequence: String of the untrimmed nucleotide sequence of the allele :return: filtered: Updated boolean of whether the sequence fails quality/length checks :return: note: Update list of sequence-specific notes :return: nt_sequences: Updated dictionary of allele: sequence :return: translated_allele: SeqIO sequence object of trimmed, translated allele """ # Determine the length of sequence to trim from the end of the sequence # Multiply the number of amino acid residues to trim by three to get the number of nucleotides # Add the modulo three of the sequence to yield a final length divisible by three nt_to_trim = 3 * trim_length + len(sequence) % 3 # Check if trimming is required if nt_to_trim: # Slice the string by the number of required bases at the end sequence = sequence[:-nt_to_trim] # Update the nucleotide sequence in the database with the trimmed version Translate.update_allele_db( nt_allele_path=nt_allele_path, gene=gene_name, allele=allele, nt_sequence=sequence ) # Translate the sequence to amino acid translated_allele = sequence.seq.translate() # Perform content and length checks of the protein sequence if length_dict: filtered, note = evaluate_translated_length( aa_seq=str(translated_allele), length_dict=length_dict, gene=gene_name, notes=note, filtered=filtered ) else: filtered, note = generic_evaluate_translated_length( aa_seq=str(translated_allele), sequence=original_nt_sequence, gene=gene_name, notes=note, filtered=filtered, cutoff=0.95 ) # Search the amino acid database for matches filtered, note, nt_sequences = Translate.find_duplicates( nt_sequences=nt_sequences, nt_sequence=sequence, allele=allele, filtered=filtered, note=note ) # Update the notes if the sequence does not end with a stop codon if not str(translated_allele).endswith('*'): note.append('Trimmed sequence did not end with a stop codon') return filtered, note, nt_sequences, translated_allele @staticmethod def update_allele_db(nt_allele_path, gene, allele, nt_sequence): """ Update nucleotide allele files with newly trimmed sequences :param nt_allele_path: String of the absolute path to the folder containing the nucleotide allele database :param gene: String of the name of the current gene :param allele: String of the allele header (geneName_alleleID) :param nt_sequence: SeqIO object of the nucleotide sequence """ # Set the name of the allele database file to update by joining the allele path and the gene name nt_allele_file = os.path.join(nt_allele_path, f'{gene}.fasta') # Create a list to store all database records (including modified ones) updated_records = [] # Iterate over all the sequences in the nucleotide allele file for record in SeqIO.parse(handle=nt_allele_file, format='fasta'): # Check if the header of the database sequence matches the header of the query sequence if record.id == allele: # Update the record to be the query allele sequence object record = nt_sequence # Append the record to the list of records updated_records.append(record) # Overwrite the allele file with the records SeqIO.write(updated_records, handle=nt_allele_file, format='fasta') @staticmethod def find_duplicates(nt_sequences, nt_sequence, allele, filtered, note): """ Match a query amino acid sequence against the protein allele database file :param nt_sequences: Dictionary of allele: sequence :param nt_sequence: SeqIO sequence object of the trimmed nucleotide sequence :param allele: String of the allele header (geneName_alleleID) :param filtered: Boolean of whether the sequence passes content/length filters :param note: List of sequence-specific notes :return: filtered: Updated boolean of sequence-specific content/length filtering results :return: note: Updated list of sequence-specific notes :return: nt_sequences: Updated list of allele: sequence """ # Initialise a list to store any matches matches = [] # Iterate over allele header, sequence in the dictionary for prev_allele, nt_seq in nt_sequences.items(): # Check if the current nucleotide sequence matches a previous entry if nt_sequence == nt_seq: # Append matches to the list matches.append(prev_allele) # Check if the list has been populated with matches if not matches: # If no matches, update the dictionary with the novel sequence nt_sequences[allele] = nt_sequences return filtered, note, nt_sequences # If there are matches for match in matches: # Set the filtering boolean to True (this is not a novel sequence, so do not update the database) filtered = True # Update the note note.append(f'Trimmed nt sequence matches previous allele sequence: {match}') return filtered, note, nt_sequences @staticmethod def write_filtered_allele_notes(notes, allele, note): """ Write notes for filtered sequences to file :param notes: Filehandle for notes file :param allele: String of the allele header (geneName_alleleID) :param note: List of sequence-specific notes """ # Write the allele \t ND (because the sequence is filtered,there is no amino acid allele) \t notes.write(f'{allele}\tND\tFiltered: {"; ".join(note)}\n') @staticmethod def remove_filtered_alleles_from_db(gene_name, allele_list, nt_allele_path): """ Remove filtered sequences from the allele database file :param gene_name: String of the gene name currently being analysed :param allele_list: List of alleles to be removed from the database :param nt_allele_path: String of the absolute path to the folder containing the nucleotide allele database """ # Remove the combinedtargets.fasta and BLAST database files from the folder remove_combined_db_files( allele_path=nt_allele_path ) # Set the name and path of the allele file nt_allele_file = os.path.join(nt_allele_path, f'{gene_name}.fasta') # Create a list of all the records in the database file using SeqIO records = SeqIO.parse(nt_allele_file, 'fasta') # Initialise a list to store unfiltered records records_keep = [] # Initialise a list to store filtered records records_filter = [] # Iterate over all the records in the database for record in records: # Check if the allele header matches any of the headers of alleles to be filtered if record.id not in allele_list: # If the record is not to be filtered, add it to the keep list records_keep.append(record) # If the record header matches any of the alleles to be filtered, add it to the filtered list else: records_filter.append(record) # Overwrite the nucleotide allele database file with all the unfiltered records with open(nt_allele_file, 'w', encoding='utf-8') as allele_file: for record in records_keep: SeqIO.write( sequences=record, handle=allele_file, format='fasta' ) # Write the filtered records to the filtered records file if records_filter: Translate.create_or_update_filtered_files( gene=gene_name, allele_path=nt_allele_path, records_filter=records_filter ) @staticmethod def create_or_update_filtered_files(gene, allele_path, records_filter): """ Write the filtered alleles to the filtered alleles file :param gene: String of the gene name currently being analysed :param allele_path: String of the absolute path to the folder containing the allele database :param records_filter: List of SeqIO sequence objects for alleles to be added to the filtered alleles file """ # Set the name and path of the filtered alleles file filtered_allele_file = os.path.join(allele_path, f'{gene}_filtered.txt') # Append the filtered alleles to the file with open(filtered_allele_file, 'a+', encoding='utf-8') as filtered_alleles: for record in records_filter: SeqIO.write( sequences=record, handle=filtered_alleles, format='fasta' ) def aa_profile(self): """ Create the amino acid profile """ # Create a list to store profiles containing alleles that have been quality filtered filtered_list = set() # Initialise a dictionary to store sequenceType:geneName_alleleID filtered_dict = {} # Initialise a string to hold the profile profile_str = '' # Iterate through all the sequence types in the profile_data dictionary for seq_type in sorted(int(st) for st in self.profile_data): # Create a string to store the allele information allele_string = str() # Iterate through all the gene: allele entries in the nested dictionary for gene_name, allele in self.profile_data[str(seq_type)].items(): try: # Extract the linked amino acid allele from the dictionary allele_string += self.allele_links[gene_name][str(allele)] + '\t' # If the gene name + allele ID is not in the allele link dictionary, add the sequence type to the set except KeyError: filtered_list.add(seq_type) # Initialise the sequence type key in the filtered dictionary as required if seq_type not in filtered_dict: filtered_dict[seq_type] = [] # Update the dictionary with the filtered geneName_alleleIdentifier filtered_dict[seq_type].append(f'{gene_name}_{allele}') if allele_string: # Add the sequence type to the profile string profile_str += f'{str(seq_type)}\t{allele_string}' # Remove trailing whitespace and add a newline for proper formatting profile_str = profile_str.rstrip() profile_str += '\n' # Create the amino acid profile file with open(self.aa_profile_file, 'w', encoding='utf-8') as aa_profile: # Create a string of tab-delimited gene names to be used in the header names = '\t'.join(sorted(list(self.gene_names))) # Write the header string aa_profile.write(f'ST\t{names.rstrip()}\n') # Write the tab-delimited profile string aa_profile.write(profile_str) # Create the names file with open(self.gene_name_file, 'w', encoding='utf-8') as gene_file: # Write the names to file gene_file.write('\n'.join(sorted(list(self.gene_names)))) if filtered_list: filtered_list = sorted(list(filtered_list)) # Remove the filtered profiles from the profile files Translate.filter_profiles( filtered_list=filtered_list, profile_file=self.profile_file, ) # Write the notes to file Translate.filter_notes( filtered_list=filtered_list, filtered_dict=filtered_dict, profile_path=os.path.dirname(self.profile_file) ) self.profile_data = read_profile(profile_file=self.profile_file) @staticmethod def filter_profiles(filtered_list, profile_file): """ Remove filtered profiles from the profile file. Write them to the filtered profile file :param filtered_list: Set of filtered sequence types :param profile_file: String of the absolute path to the profile file """ # Initialise a list to store the filtered sequence types filtered_rows = [] # Initialise a list to store the unfiltered sequence types keep_rows = [] # Read in the profile files with open(profile_file, 'r', encoding='utf-8') as profiles: # Iterate over all the profiles in the profile files for row in profiles: # Extract the sequence type from the row seq_type = row.split('\t')[0] # Check if it is the header, which starts with 'ST' if seq_type == 'ST': # Filter the header filtered_rows.append(row) # Check to see if the sequence type of the row is present in the list of filtered sequence types if str(seq_type) in [str(filtered) for filtered in filtered_list]: # Add the row to the list of filtered rows filtered_rows.append(row) # Unfiltered rows are added to the list of unfiltered rows else: keep_rows.append(row) # Extract the absolute path of the folder in which the profile file is located profile_path = os.path.dirname(profile_file) # Overwrite the profile file with the unfiltered profiles with open(os.path.join(profile_path, 'profile.txt'), 'w', encoding='utf-8') as updated_profile: updated_profile.write(''.join(keep_rows)) # Overwrite the filtered profile file with the filtered profiles with open(os.path.join(profile_path, 'filtered_profiles.txt'), 'w', encoding='utf-8') as filtered_profiles: filtered_profiles.write(''.join(filtered_rows)) @staticmethod def filter_notes(filtered_list, filtered_dict, profile_path): """ Write the notes regarding profile filtering to file :param filtered_list: Set of filtered sequence types :param filtered_dict: Dictionary of sequenceType:geneName_alleleID :param profile_path: String of the absolute path to the folder containing the profile file :return: """ # Set the absolute path of the file containing the profile filtering notes filtered_notes = os.path.join(profile_path, 'filtering_notes.txt') # Write the notes to file with open(filtered_notes, 'w', encoding='utf-8') as notes: # Create the header notes.write('SequenceType\tFilteringNote\n') # Create a new line for each filtered profile for seq_type in filtered_list: # Create a sting of the list of filtered alleles present in this profile gene_allele = ';'.join(filtered_dict[seq_type]) # Write the sequence type and all the missing alleles to the note notes.write(f'{seq_type}\t{gene_allele} missing\n') def profile_link(self): """ Link nucleotide and amino profiles """ # Initialise a dictionary to store to number of matches between a query profile and the profiles in the database match_score = {} # Iterate over all the profiles in the profile file for seq_type, gene_dict in self.profile_data.items(): # Initialise the seq_type key in the dictionary self.profile_matches[seq_type] = set() match_score[seq_type] = {} # Iterate over all the gene name, allele ID combinations in the profile dictionary for gene, allele in gene_dict.items(): # Iterate over all the profiles in the amino acid profile file for aa_st, aa_gene_dict in self.aa_profile_data.items(): # Use the gene name to extract the amino acid allele ID from the profile file. # Also extract the amino acid allele ID from the linking dictionary with the gene name and # nucleotide allele ID. Check if they match if aa_gene_dict[gene] == self.allele_links[gene][allele]: # Initialise the amino acid sequence type in the dictionary if aa_st not in match_score[seq_type]: match_score[seq_type][aa_st] = 0 # Increment the number of matches to the profile match_score[seq_type][aa_st] += 1 # Iterate over all the matches to the profiles in the profile file for seq_type, aa_st_dict in match_score.items(): # Iterate over the amino acid sequence type matches for aa_st, matches, in aa_st_dict.items(): # Check if the number of matches observed is equal to the required number of matches (one for each gene) if matches == len(self.gene_names): # Update the dictionary of matches with the amino acid sequence type: nucleotide sequence type self.profile_matches[aa_st].add(seq_type) def link_file(self): """ Write linking details between nucleotide and amino acid profiles to file """ # with open(self.aa_nt_profile_link_file, 'w', encoding='utf-8') as link: # Write the header information link.write('aa_seq_type\tnt_seq_types\n') # Iterate over all the profile matches in the dictionary for seq_type, match_set in self.profile_matches.items(): # Check the length of the match if len(match_set) == 1: # With a single match, convert the set to a string nt_st = ''.join(match_set) link.write(f'{seq_type}\t{nt_st}\n') # Multiple profile matches else: # Semicolon-join the set of matches. Since they are strings, first typecase to int for proper # sorting before converting back to strings nt_st = ';'.join(str(nt_st) for nt_st in sorted(int(nt_st) for nt_st in match_set)) link.write(f'{seq_type}\t{nt_st}\n') def copy_profile(self): """ Copy the reduced profile file from the profile folder to the base aa_profile folder """ # Use shutil to copy and rename the profile file to the root of the report path shutil.copyfile( src=os.path.join(self.report_path, 'profile', 'profile.txt'), dst=os.path.join(self.report_path, 'profile.txt') ) def __init__(self, path, profile, report_path=os.path.join(os.getcwd(), 'aa_profile'), translated_path=os.path.join(os.getcwd(), 'aa_alleles'), length_dict=None): logging.info('Welcome to the allele translator!') self.path = pathfinder(path=path) if profile: if not os.path.isfile(profile): self.profile_file = os.path.join(self.path, 'nt_profile', 'profile.txt') else: self.profile_file = profile try: assert os.path.isfile(self.profile_file) except AssertionError as exc: logging.error( 'Cannot locate the required profile file: %s. Please ensure that ' 'the file name and path of your file is correct', self.profile_file ) raise SystemExit from exc else: self.profile_file = None self.sequence_files = glob(os.path.join(self.path, '*.fasta')) try: assert self.sequence_files except AssertionError as exc: logging.error('Could not locate alleles in provided allele path: %s', self.path) raise SystemExit from exc self.report_path = pathfinder(path=report_path) make_path(inpath=self.report_path) self.translated_path = pathfinder(path=translated_path) make_path(inpath=self.translated_path) self.notes_path = os.path.join(self.translated_path, 'notes') make_path(inpath=self.notes_path) self.length_dict = length_dict self.allele_dict = {} self.profile_data = {} self.allele_links = {} self.aa_profile_file = os.path.join(self.report_path, 'aa_full_profile.txt') self.gene_names = set() self.gene_name_file = os.path.join(self.report_path, 'gene_names.txt') self.aa_profile_data = {} self.profile_matches = {} self.aa_nt_profile_link_file = os.path.join( self.report_path, 'aa_nt_profile_links.tsv' ) def cli(): """ Collect the arguments, create an object, and run the script """ # Parser for arguments parser = ArgumentParser( description='Translate allele files in nucleotide format to amino acid. ' 'Remove duplicates. Keep notes.' ) parser.add_argument( '-p', '--path', required=True, help='Specify path containing allele files.' ) parser.add_argument( '--profile', action='store_true', help='Optionally parse the nucleic acid profile, and create the corresponding reduced ' 'amino acid profile. The profile must be named profile.txt and be located in nt_profile folder in the path' ) parser.add_argument( '--report_path', default=os.path.join(os.getcwd(), 'aa_profile'), help='Optionally provide the name (and path, if desired) of the folder into which the amino acid profile ' 'and related files are to be written. Default folder is "aa_profile" in your current working directory' ) parser.add_argument( '--translated_path', default=os.path.join(os.getcwd(), 'aa_alleles'), help='Optionally provide the name (and path, if desired) of the folder into which the amino acid alleles ' 'and notes are to be written. Default folder is "aa_alleles" in your current working directory' ) # Get the arguments into an object arguments = parser.parse_args() SetupLogging(debug=True) translate = Translate( path=arguments.path, profile=arguments.profile, report_path=arguments.report_path, translated_path=arguments.translated_path ) translate.main() logging.info('Allele translation complete!') # Prevent the arguments being printed to the console (they are returned in order for the tests to work) sys.stderr = open(os.devnull, 'w', encoding='utf-8') return arguments if __name__ == '__main__': cli()
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/allele_tools/allele_translate_reduce.py
allele_translate_reduce.py
# Standard imports from argparse import ArgumentParser from csv import DictReader import logging import sys import os # Third-party imports from olctools.accessoryFunctions.accessoryFunctions import \ make_path, \ SetupLogging from allele_tools.methods import pathfinder class ProfileReduce: """ Reduce Enterobase wgMLST profiles """ def main(self): """ Run the required methods in the appropriate order """ self.read_names() self.read_profile() def read_names(self): """ Read in all the names of the genes of interest """ logging.info('Reading names file') with open(self.name_file, 'r', encoding='utf-8') as names: self.names = sorted([name.rstrip() for name in names.readlines()]) logging.debug('Genes used to reduce profile are: %s', '\t'.join(self.names)) def read_profile(self): """ Load, parse, and reduce the profile information """ logging.info('Reducing profiles') with open(self.profile, 'r', encoding='utf-8') as profile: with open(self.reduced_profile, 'w', encoding='utf-8') as reduced: with open(self.notes_file, 'w', encoding='utf-8') as notes: # Write the header for the notes field notes.write('OriginalSequenceType\tReducedSequenceType\tNotes\n') # Create the header for the reduced profile gene_names = '\t'.join(self.names) reduced_data = f'ST\t{gene_names}\n' logging.info('Loading profile into memory') # Use to DictReader to load the profile file profile_dict = DictReader(profile, dialect='excel-tab') # Initialise a dictionary to store the string of allele numbers: sequence type profile_st = {} logging.info('Parsing profile') # Iterate through all the sequence types in the profile for allele_dict in profile_dict: # Extract the sequence type from the 'ST' column seq_type = allele_dict['ST'] # Initialise variables to store the allele numbering information allele_list = [] allele_str = '' # Iterate through all the genes of interest for gene in self.names: try: allele_str += allele_dict[gene] # If an allele has been filtered based on length, the sequence type needs to be removed except TypeError: continue # Add the allele number to the list, and to the string allele_list.append(allele_dict[gene]) # Check if the string of allele numbers is already in the dictionary if allele_str not in profile_st: # Update the dictionary with the string of alleles: sequence type profile_st[allele_str] = allele_dict[self.names[0]] alleles = '\t'.join(allele_list) # Add the sequence type allele numbers for this sequence to the string reduced_data += f'{seq_type}\t{alleles.rstrip()}\n' # Updated the notes with the sequence type linking information notes.write(f'{seq_type}\t{seq_type}\n') # Reduced profile already exists else: # Extract the original sequence type with this string of allele numbers original_seq_type = profile_st[allele_str] # Write the sequence type linking information, making note of the fact # that this is a duplicate notes.write(f'{seq_type}\t{original_seq_type}\tduplicate\n') # Write the reduced profile information to file reduced.write(reduced_data) def __init__(self, profile, names, output='profile'): logging.info('Welcome to profile reducer!') self.profile = pathfinder(path=profile) try: assert os.path.isfile(self.profile) except AssertionError as exc: logging.error('Cannot locate the specified profile file: %s', self.profile) raise SystemExit from exc # Create the folder into which the reduced profile and notes are to be placed self.report_path = os.path.join(os.path.dirname(self.profile), output) make_path(self.report_path) self.reduced_profile = os.path.join(self.report_path, 'profile.txt') self.notes_file = os.path.join(self.report_path, 'reducing_notes.txt') self.name_file = pathfinder(path=names) try: assert os.path.isfile(self.name_file) except AssertionError as exc: logging.error('Cannot find the supplied file with gene names: %s', self.name_file) raise SystemExit from exc self.names = [] self.profile_dict = {} self.allele_dict = {} def cli(): """ Collect the arguments, create an object, and run the script """ # Parser for arguments parser = ArgumentParser(description='Extract the genes of interest from a profile file') parser.add_argument( '-p', '--profile', metavar='profile', required=True, help='Name and path of profile file.') parser.add_argument( '-n', '--names', metavar='names', required=True, help='Name and path to a file containing the gene names (one per line) to be extracted ' 'from the profile') # Get the arguments into an object arguments = parser.parse_args() SetupLogging(debug=True) reduce = ProfileReduce( profile=arguments.profile, names=arguments.names ) reduce.main() logging.info('Profile reduction complete!') # Prevent the arguments being printed to the console (they are returned in order for the tests to work) sys.stderr = open(os.devnull, 'w', encoding='utf-8') return arguments if __name__ == '__main__': cli()
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/allele_tools/profile_reduce.py
profile_reduce.py
# Standard imports from argparse import ArgumentParser from csv import DictReader from glob import glob import json import logging import math import os # Third party inputs from olctools.accessoryFunctions.accessoryFunctions import ( GenObject, make_path, MetadataObject, relative_symlink ) from Bio.Blast.Applications import NcbiblastnCommandline, NcbiblastpCommandline from Bio.Data.CodonTable import TranslationError from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq from Bio import SeqIO import coloredlogs def setup_logging(arguments): """ Set the custom colour scheme and message format to used by coloredlogs :param arguments: type parsed ArgumentParser object """ # Set up a dictionary of the default colour scheme, and font styles coloredlogs.DEFAULT_LEVEL_STYLES = { 'debug': { 'bold': True, 'color': 'green'}, 'info': { 'bold': True, 'color': 'blue'}, 'warning': { 'bold': True, 'color': 'yellow'}, 'error': { 'bold': True, 'color': 'red'}, 'critical': { 'bold': True, 'background': 'red'} } # Change the default log format to be the time prepended to the appropriately formatted # message string coloredlogs.DEFAULT_LOG_FORMAT = '%(asctime)s %(message)s' # Set the logging level coloredlogs.install(level=arguments.verbosity.upper()) def setup_arguments(parser: ArgumentParser): """ Finalise setting up the ArgumentParser arguments into an object, and running subparser functions, or displaying the help message :param parser: type: ArgumentParser object :return: parsed ArgumentParser object """ # Get the arguments into an object arguments = parser.parse_args() # Run the appropriate function for each sub-parser. if hasattr(arguments, 'func'): # Set up logging setup_logging(arguments=arguments) arguments.func(arguments) # If the 'func' attribute doesn't exist, display the basic help for the appropriate subparser # (if any) else: try: # Determine which subparser was called by extracting it from the arguments. # Note that this requires the use of the desc keyword when creating subparsers command = list(vars(arguments).keys())[0] # If the extracted command exists, use the command-specific subparser help if command: parser.parse_args([command, '-h']) # Otherwise, use the basic help else: parser.parse_args(['-h']) # If there were no subparsers specified (the list of keys in the arguments is empty), # use the basic help except IndexError: parser.parse_args(['-h']) return arguments def common_allele_find_errors( args: ArgumentParser.parse_args, errors: list, amino_acid: bool): """ Perform checks for arguments shared between allele finding scripts :param args: type ArgumentParser arguments :param errors: List of errors with supplied arguments :param amino_acid: Boolean of whether the query sequence is amino acid or nucleotide :return: Updated list of errors """ # Query folder checks if not os.path.isdir(args.query_path): errors.append(f'Could not find supplied query folder: {args.query_path}') else: if not glob(os.path.join(args.query_path, '*.fasta')): errors.append( f'Could not locate sequence files in supplied query folder: {args.query_path}' ) else: if amino_acid: errors = detect_protein( query_path=args.query_path, errors=errors ) # Nucleotide and amino acid checks errors = profile_allele_check( args=args, errors=errors ) return errors def profile_allele_check( args: ArgumentParser.parse_args, errors: list): """ Perform checks for arguments pertaining to profile and allele files :param args: type ArgumentParser arguments :param errors: List of errors with supplied arguments :return: Updated list of errors """ # Nucleotide checks try: if not os.path.isdir(args.nt_alleles): errors.append(f'Could not find supplied nucleic acid allele folder: {args.nt_alleles}') else: if not glob(os.path.join(args.nt_alleles, '*.fasta')): errors.append( f'Could not locate sequence files in supplied nucleic acid allele folder: {args.nt_alleles}' ) # Allows for checks in analyses without nucleotide sequences except AttributeError: pass try: if not os.path.isfile(args.nt_profile): errors.append(f'Could not locate supplied nucleic acid profile file: {args.nt_profile}') except AttributeError: pass # Amino acid checks try: if not os.path.isdir(args.aa_alleles): errors.append(f'Could not find supplied amino acid allele folder: {args.aa_alleles}') else: if not glob(os.path.join(args.aa_alleles, '*.fasta')): errors.append( f'Could not locate sequence files in supplied amino acid allele folder: {args.aa_alleles}' ) except AttributeError: pass try: if not os.path.isfile(args.aa_profile): errors.append(f'Could not locate supplied amino acid profile file: {args.aa_profile}') except AttributeError: pass return errors def error_print( errors: list): """ Log grammatically correct error messages and exit :param errors: List of errors with supplied arguments """ # Create variables to allow for grammatically correct error messages error_string = '\n'.join(errors) was_were = 'was' if len(errors) == 1 else 'were' correct = 'error' if len(errors) == 1 else 'errors' logging.error( 'There %s %s %s when attempting to run your command: \n%s', was_were, len(errors), correct, error_string) raise SystemExit def detect_protein( query_path: str, errors: list): """ Attempt to determine whether a supplied file contains protein sequence :param query_path: String of absolute path to folder containing sequence files :param errors: List of errors with supplied arguments :return: Updated list of errors """ # Create a list of all the FASTA files in the query path seq_files = glob(os.path.join(query_path, '*.fasta')) # Iterate through all the files for seq_file in seq_files: # Initialise a boolean to track whether the sequences appear to be amino acid or nucleotide aa = False for record in SeqIO.parse(seq_file, format='fasta'): # Convert the sequence object to a string seq = str(record.seq) # Create a set of all the characters in the string of the sequence seq_set = set(seq) # Since there are only 4(5 with N, 6 with N and -) possible characters in DNA, but 20 in protein, I chose # a length of 10 to allow for relatively low complexity protein sequences to pass, but DNA to fail if len(seq_set) > 10: # Update the boolean - note that only a single sequence in the file needs to be considered protein for # the entire file to pass aa = True # Update the errors if the file appears to be DNA if not aa: errors.append(f'Query file {seq_file} does not appear to be protein') return errors def pathfinder(path: str): """ Create absolute path user-supplied path. Allows for tilde expansion from :param path: String of path supplied by user. Could be relative, tilde expansion, or absolute :return: out_path: String of absolute path provided by user. """ # Determine if the path requires path expansion if path.startswith('~'): # Create the absolute path of the tilde expanded path out_path = os.path.abspath(os.path.expanduser(os.path.join(path))) else: # Create the absolute path from the path out_path = os.path.abspath(os.path.join(path)) return out_path def query_prep( query_path: str, runmetadata: MetadataObject, clear_report=True): """ Create MetadataObjects for each sample :param query_path: String of absolute path to folder containing sequence files :param runmetadata: MetadataObject with list of GenObjects for each query :param clear_report: Boolean of whether to clear previous iterations of BLAST reports. Default is True :return runmetadata: MetadataObject updated with query information """ logging.info('Preparing query files') # Find all the sequence files in the path fasta_files = sorted(glob(os.path.join(query_path, '*.fasta'))) for fasta in fasta_files: name = os.path.splitext(os.path.basename(fasta))[0] if name != 'combinedtargets': # Create a MetadataObject for each sample metadata = MetadataObject() metadata.samples = [] # Populate the MetadataObject with the required attributes metadata.name = name metadata.general = GenObject() metadata.commands = GenObject() metadata.alleles = GenObject() metadata.alleles.outputdirectory = os.path.join(query_path, metadata.name) # Set the name of the BLAST output file metadata.alleles.blast_report = os.path.join( metadata.alleles.outputdirectory, f'{metadata.name}.tsv' ) # As the name and number of alleles can change over multiple iterations of the # program, it's best to clear out any old reports before running again if clear_report: try: os.remove(metadata.alleles.blast_report) except FileNotFoundError: pass make_path(metadata.alleles.outputdirectory) # Create a symlink of the sequence file in its own subdirectory metadata.general.bestassemblyfile = relative_symlink( src_file=fasta, output_dir=metadata.alleles.outputdirectory, export_output=True ) metadata.samples.append(metadata) runmetadata.samples.append(metadata) return runmetadata def blast_alleles( runmetadata: MetadataObject, amino_acid: bool, combined_targets: str, cpus: int, outfmt: str): """ Run the BLAST analyses on the query :param runmetadata: MetadataObject with list of GenObjects for each query :param amino_acid: Boolean of whether the query sequence is amino acid or nucleotide :param combined_targets: String of absolute path to file containing all sequences in other files in folder :param cpus: Integer of number of threads to use for BLAST analyses :param outfmt: String of BLAST fields to include in the report """ logging.info('Running BLAST analyses') # Iterate through the samples for sample in runmetadata.samples: # Run the appropriate BLAST command BLASTN for nucleotide, BLASTP for protein if not amino_acid: blast = NcbiblastnCommandline( db=os.path.splitext(combined_targets)[0], query=sample.general.bestassemblyfile, num_alignments=100000000, evalue=0.001, num_threads=cpus, task='blastn', outfmt=outfmt, out=sample.alleles.blast_report ) else: blast = NcbiblastpCommandline( query=sample.general.bestassemblyfile, db=os.path.splitext(combined_targets)[0], evalue=0.001, num_alignments=100000000, num_threads=cpus, outfmt=outfmt, out=sample.alleles.blast_report ) blast() def create_gene_names( path=os.getcwd(), name='genes.txt'): """ Create a file with gene names to use in reducing a wgMLST profile by finding any .fasta files in a folder and adding them to the file (one per line) :param path: type: String of the path in which the genes file is to be created :param name: type: String of the name of the gene file """ # Find all the .fasta files in the path fasta_files = glob(os.path.join(path, '*.fasta')) # Set the name and path of the gene file gene_file = os.path.join(path, name) # Open the gene file to write with open(gene_file, 'w', encoding='utf-8') as genes_file: for fasta in fasta_files: # Remove the path information and the file extension. Print to file genes_file.write(os.path.basename(os.path.splitext(fasta)[0]) + '\n') logging.debug( 'Adding %s to %s', os.path.basename(os.path.splitext(fasta)[0]), gene_file ) # Check to see if the file is empty if os.stat(gene_file).st_size == 0: # Log an error stating that the file could not be properly populated logging.error( 'Created gene file, %s, is empty. Please ensure that directory %s has files with ' '.fasta extensions', gene_file, path ) raise SystemExit def create_blast_dict( sample: MetadataObject, extended_fieldnames: list): """ Use DictReader to open and read a BLAST report into a dictionary :param sample: MetadataObject with list of GenObjects for each query :param extended_fieldnames: List of the BLAST fields used, as well as the additional percent match in index 14 """ # Open the BLAST report as a dictionary blastdict = DictReader( open(sample.alleles.blast_report, encoding='utf-8'), fieldnames=extended_fieldnames, dialect='excel-tab' ) return blastdict def parse_colocated_results( runmetadata: MetadataObject, fieldnames: list, extended_fieldnames: list, amino_acid: bool, gene_names: list, nt_allele_path: str, aa_allele_path: str, report_path: str, overlap_range=50, cutoff=90): """ Parse BLAST outputs. Ensure co-location of genes that must be co-located :param runmetadata: MetadataObject with list of GenObjects for each query :param fieldnames: List of the BLAST fields used :param extended_fieldnames: List of the BLAST fields used, as well as the additional percent match in index 14 :param amino_acid: Boolean of whether targets are protein :param gene_names: List of all gene names in the analysis :param nt_allele_path: String of the absolute path to the folder containing nucleotide allele files :param aa_allele_path: String of the absolute path to the folder containing amino acid allele files :param report_path: String of the absolute path to the folder into which reports are to be written :param overlap_range: Integer of the maximum distance allowed between two genes in order for them to be considered co-located. Default is 50 bp :param cutoff: Integer of the minimum percent identity between query and subject sequence. Default is 100% :return: runmetadata: Updated MetadataObjects :return: notes: List of contig:query_range-specific notes """ logging.info('Parsing BLAST outputs') notes = {} for sample in runmetadata.samples: # Initialise GenObjects as required sample.alleles.blastlist = [] sample.alleles.targetsequence = {} # Read the BLAST outputs into a dictionary blastdict = create_blast_dict( sample=sample, extended_fieldnames=extended_fieldnames ) # Initialise dictionaries to store parsed outputs resultdict = {} colocation_dict = {} processed_range_dict = {} # Go through each BLAST result for row in blastdict: # Ignore the headers if row['query_id'].startswith(fieldnames[0]): continue target_id = row['subject_id'] target_start = row['subject_start'] target_end = row['subject_end'] target_seq = row['query_sequence'] high = max([int(row['query_start']), int(row['query_end'])]) low = min([int(row['query_start']), int(row['query_end'])]) # Create a list of the properly ordered start and stop points of the match query_range = [low, high] # Remove unwanted pipes added to the name nt_allele = target_id.lstrip('gb|').rstrip('|') if '|' in target_id else \ target_id # If the percent identity is equal to the cutoff if float(row['percent_match']) >= cutoff: # Append the hit dictionary to the list sample.alleles.blastlist.append(row) # Determine if the orientation of the sequence is reversed compared to # the reference sequence if int(target_end) < int(target_start) and not amino_acid: seq = Seq(target_seq) # Calculate the reverse complement of the sequence nt_querysequence = str(seq.reverse_complement()) # If the sequence is not reversed, use the sequence as it is in the output else: nt_querysequence = target_seq # Create a variable to avoid unnecessary typing contig = row['query_id'] # Create a boolean to track whether this contig:range combination has already been processed processed = False # Add the contig key to the dictionary as required if contig not in processed_range_dict: processed_range_dict[contig] = set() # Check the processed range dictionary to see if the current range is present if processed_range_dict[contig]: for previous_range in processed_range_dict[contig]: # Allow a small overlap of five bases in case the range of one query is slightly different overlap = query_range[1] + 5 >= previous_range[0] and \ previous_range[1] + 5 >= query_range[0] # If the range is already present in the dictionary, update the tracking boolean if overlap: processed = True # Add the range to the set if it is empty else: processed_range_dict[contig].add(tuple(query_range)) # If range has already been processed, we can skip this iteration of it if processed: continue # Update the processed ranges dictionary with the current range processed_range_dict[contig].add(tuple(query_range)) # Create a tuple of the query range list to allow it to be used as a dictionary key query_range_tuple = tuple(query_range) # Add keys to the targetsequence dictionary as required if contig not in sample.alleles.targetsequence: sample.alleles.targetsequence[contig] = {} if query_range_tuple not in sample.alleles.targetsequence[contig]: sample.alleles.targetsequence[contig][query_range_tuple] = {} # Populate the percent match dictionary if contig not in resultdict: resultdict[contig] = {} if query_range_tuple not in resultdict[contig]: resultdict[contig][query_range_tuple] = {nt_allele: row['percent_match']} # Populate the notes dictionary if contig not in notes: notes[contig] = {} if query_range_tuple not in notes[contig]: notes[contig][query_range_tuple] = [] # Determine the name of the gene corresponding to the allele e.g. if the allele # ECs1206_138, the corresponding gene is ECs1206_ base_gene = [gene_name for gene_name in gene_names if gene_name in nt_allele][0] # Translate the query sequence to protein aa_querysequence = translate_sequence( nt_seq=nt_querysequence ) # Find the amino acid allele corresponding to this sequence returned = aa_allele_lookup( aa_seq=aa_querysequence, gene=base_gene, aa_allele_path=aa_allele_path, notes=notes[contig][query_range_tuple] ) # Initialise a string to hold the amino acid allele identifier aa_allele = str() # Create a boolean to track whether the amino acid sequence fails the screen criteria filtered = False # If a perfect match to a previous allele was found, a string is returned if isinstance(returned, str): aa_allele = returned # If not perfect match was found to a previous allele, a tuple of the updated filtered boolean, and # notes on the sequence are returned else: filtered, notes[contig][query_range_tuple] = returned # Add unfiltered imperfect nt alleles to the database if float(row['percent_match']) < 100 and not filtered: # Find the next allele identifier for the database nt_allele_id = find_next_allele( gene=base_gene, allele_path=nt_allele_path ) # Add the base gene name to the allele identifier nt_allele = f'{base_gene}_{nt_allele_id}' # Update the allele database with the new allele notes[contig][query_range_tuple], nt_allele = update_allele_databases( query_sequence=nt_querysequence, header=nt_allele, filtered=filtered, gene=base_gene, report_path=report_path, allele_path=nt_allele_path, notes=notes[contig][query_range_tuple], molecule='Nucleotide' ) # Add unfiltered novel aa alleles to the database if not aa_allele and not filtered: aa_allele_id = find_next_allele( gene=base_gene, allele_path=aa_allele_path ) aa_allele = f'{base_gene}_{aa_allele_id}' notes[contig][query_range_tuple], aa_allele = update_allele_databases( query_sequence=aa_querysequence, header=aa_allele, filtered=filtered, gene=base_gene, report_path=report_path, allele_path=aa_allele_path, notes=notes[contig][query_range_tuple], molecule='Amino acid' ) # Populate the targetsequence dictionary with information on the nt and aa alleles if base_gene not in sample.alleles.targetsequence[contig][query_range_tuple]: sample.alleles.targetsequence[contig][query_range_tuple][base_gene] = { 'nt': { 'allele': nt_allele, 'sequence': nt_querysequence }, 'aa': { 'allele': aa_allele, 'sequence': aa_querysequence } } # Populate the co-location dictionary with the required keys as necessary if contig not in colocation_dict: colocation_dict[contig] = {} # The query_ranges and target keys both correspond to lists of values if 'query_ranges' not in colocation_dict[contig]: colocation_dict[contig] = { 'query_ranges': [query_range], 'target': [nt_allele] } # If the keys already exist, append to the lists else: colocation_dict[contig]['query_ranges'].append(query_range) colocation_dict[contig]['target'].append(nt_allele) # Store the BLAST outputs in the MetadataObject sample.alleles.blastresults = resultdict # Populate missing results with 'NA' values if len(resultdict) == 0: sample.alleles.blastresults = 'NA' sample.alleles.overlap_dict = colocation_calculation( colocation_dict=colocation_dict, gene_names=gene_names, overlap_range=overlap_range ) return runmetadata, notes def translate_sequence(nt_seq: str): """ Uses BioPython to translate a nucleotide sequence to protein, and trims it to the first stop codon :param nt_seq: String of the nucleotide sequence :return aa_seq: String of the trimmed amino acid sequence """ # Create a sequence object from the nucleotide sequence nt_seq_object = Seq(nt_seq) # Translate the sequence to protein try: # Translate the sequence aa_seq_object = nt_seq_object.translate() # BioPython cannot translate a sequence with gaps (-) except TranslationError: allele_seq = str(nt_seq_object).replace('-', '') seq = Seq(allele_seq) aa_seq_object = str(seq.translate()) # Split the sting on stop codons, keep only the first part of the split aa_seq = str(aa_seq_object).split('*', maxsplit=1)[0] + '*' return str(aa_seq) def aa_allele_lookup( aa_seq: str, gene: str, aa_allele_path: str, notes: list): """ Read in the amino acid allele file. Search for exact matches to the current sequence :param aa_seq: String of the amino acid sequence :param gene: Sting of the gene name :param aa_allele_path: String of the absolute path to the folder containing the amino acid allele files :param notes: List of notes for the current contig: query_range :return record.id: Allele identifier corresponding to the sequence matching the aa_seq if no matches: :return filtered: Boolean of whether the amino acid sequence passes length thresholds :return notes: Populated notes """ # Set the name of the amino acid allele file by joining the allele folder path to the gene name aa_allele_file = os.path.join(aa_allele_path, f'{gene}.fasta') # Iterate through all the alleles in the file for record in SeqIO.parse(aa_allele_file, 'fasta'): # If the sequence in the file matches the current sequence, return the allele identifier if aa_seq == str(record.seq): return record.id # If no records match, evaluate whether the aa allele passes necessary length thresholds filtered, notes = evaluate_translated_allele( aa_seq=aa_seq, gene=gene, notes=notes ) return filtered, notes def evaluate_translated_allele( aa_seq: str, gene: str, notes: list, aa=False): """ Evaluate whether an aa sequence passes the necessary length thresholds after trimming of an interior stop codons :param aa_seq: String of the amino acid sequence to evaluate :param gene: String of the name of the gene (no allele information) being evaluated :param notes: List of notes for the current contig: query_range :param aa: Boolean of whether the query sequence is amino acid. Triggers filtering if sequence doesn't end with a stop codon :return filtered: Boolean of whether the amino acid sequence passes length thresholds :return notes: Populated notes """ # Dictionary of minimum acceptable lengths for each of the STEC genes length_dict = { 'ECs2973': 90, 'ECs2974': 316, 'ECs1205': 316, 'ECs1206': 88 } filtered = False if not aa_seq.endswith('*'): notes.append(f'{gene} trimmed sequence did not end with a stop codon') if aa: filtered = True # Remove all sequence after a stop codon (*) aa_seq = aa_seq.split('*', maxsplit=1)[0] + '*' # Evaluate the translated length of the sequence filtered, notes = evaluate_translated_length( aa_seq=aa_seq, length_dict=length_dict, gene=gene, notes=notes, filtered=filtered ) return filtered, notes def update_allele_databases( query_sequence: SeqIO.parse, header: str, filtered: bool, gene: str, report_path: str, allele_path: str, notes: list, molecule: str): """ Update the appropriate allele file depending on quality filter status and molecule :param query_sequence: SEQIO sequence object of the novel allele :param header: String of the allele name (gene_allele ID) :param filtered: Boolean of whether the allele has been quality filtered :param gene: String of the name of the gene :param report_path: String of the absolute path to the folder into which the reports are to be written :param allele_path: String of the absolute path to the folder containing the allele database :param notes: List of notes on the alleles :param molecule: String of the current molecule. Options are Nucleotide and Amino acid :return: notes: Updated list of notes """ # Create a SeqRecord of the allele using the novel allele name and sequence new_record = SeqRecord( seq=Seq(query_sequence), id=header, name='', description='' ) # Create a string to prepend to allele file names molecule_str = 'nt' if molecule == 'Nucleotide' else 'aa' # Set the correct files depending on the filtering status if not filtered: new_alleles = os.path.join(report_path, f'{molecule_str}_{gene}_novel_alleles.fasta') allele_file = os.path.join(allele_path, f'{gene}.fasta') else: new_alleles = os.path.join(report_path, f'{molecule_str}_{gene}_filtered_alleles.fasta') allele_file = os.path.join(allele_path, f'{gene}_filtered.txt') records = [] # Iterate through all the records in the allele database if os.path.isfile(allele_file): for record in SeqIO.parse(allele_file, 'fasta'): # Append all the records to the list records.append(record) # Check to see if the query sequence is novel in the database if query_sequence not in [str(seq.seq) for seq in records]: # Append the SeqRecord to the novel alleles file with open(new_alleles, 'a+', encoding='utf-8') as novel: SeqIO.write( sequences=new_record, handle=novel, format='fasta' ) records.append(new_record) # Overwrite the existing allele database file with the updated list of records with open(allele_file, 'w', encoding='utf-8') as alleles: SeqIO.write( sequences=records, handle=alleles, format='fasta' ) remove_combined_db_files(allele_path=allele_path) notes.append(f'{molecule} allele {header} is novel') # Non-novel sequences will have updated notes with the match else: for record in records: if str(query_sequence) == record.seq: # Append the previous finding to the notes notes.append(f'{molecule} matches previous result: {record.id}') # Set the header to the corresponding record.id on a match header = record.id return notes, header def colocation_calculation( colocation_dict: dict, gene_names: list, overlap_range: int): """ Determine if gene results are co-located on a contig :param colocation_dict: Dictionary of contig: {'query_ranges': [query_range], 'target': [allele_id]} :param gene_names: List of all genes in the analysis :param overlap_range: Integer of the maximum distance allowed between two separate hits before they can no longer be considered co-located on a contig :return overlap_dict: Dictionary of contig:full_range:gene_pair: {'overlap': overlap, 'allele': [allele_identifiers]} """ # Initialise a dictionary to store the details of any co-located sequences overlap_dict = {} # Iterate over all the contigs with hits for contig, info_dict in colocation_dict.items(): # Update the overlap dictionary with the contig name as required if contig not in overlap_dict: overlap_dict[contig] = {} # Extract the query range and the allele identifiers from info_dict query_ranges = info_dict['query_ranges'] targets = info_dict['target'] # Iterate over all the query ranges with hits on the current contig for query_iterator, query_range in enumerate(query_ranges): # Create a variable to track whether the current contig:query range combination has # been added to the overlap dictionary processed = False # Extract the name of the current allele from the list of all alleles in the range current_allele = targets[query_iterator] # Create a dictionary of tuple of other ranges present in the list of ranges: iterator other_ranges = { tuple(other): j for j, other in enumerate(query_ranges) if other != query_range } # Iterate over these other ranges for other_range, other_iterator in other_ranges.items(): # Calculate whether the current range overlaps with this other range # e.g. query_range = (100, 500), other_range = (525, 1000), overlap_range = 50 # Check if 500 + 50 >= 525 and 1000 + 50 >= 100 overlap = query_range[1] + overlap_range >= other_range[0] and \ other_range[1] + overlap_range >= query_range[0] # If these ranges overlap, populate the overlap dictionary if overlap: overlap_dict, processed = positive_overlap( info_dict=info_dict, other_iterator=other_iterator, query_range=query_range, other_range=other_range, overlap_dict=overlap_dict, current_allele=current_allele, contig=contig, gene_names=gene_names, overlap=overlap ) # If the current contig: range was not entered into the overlap dictionary, there were # either no other hits, or the hits did not overlap if not processed: # Create a tuple containing only the current range tuple_range = tuple(query_range) # Update the dictionary as required if tuple_range not in overlap_dict[contig]: overlap_dict[contig][tuple_range] = {} # Extract the gene name corresponding to the allele identifier # e.g. gene = ECs1206 allele = ECs1206_138 will create ECs1206 gene = [gene_name for gene_name in gene_names if gene_name in current_allele][0] # Add the gene name to the dictionary, and update create the overlap and allele keys if gene not in overlap_dict[contig][tuple_range]: overlap_dict[contig][tuple_range][gene] = { 'overlap': False, 'allele': [] } # Append the current allele identifier to the list of alleles overlap_dict[contig][tuple_range][gene]['allele'].append(current_allele) return overlap_dict def positive_overlap( info_dict: dict, other_iterator: int, query_range: range, other_range: range, overlap_dict: dict, current_allele: str, contig: str, gene_names: list, overlap: bool): """ Determine the combined range of two overlapping ranges, extract gene names corresponding to allele names, populate dictionary of range overlaps :param info_dict: Dictionary of {'query_ranges': [query_range], 'target': [allele_id]} :param other_iterator: Integer of the iterator corresponding to the current other_range from the dictionary of other_range: iterator :param query_range: Range of hit corresponding to current_allele in info_dict e.g. info_dict['query_ranges'][query_iterator] and info_dict['target'][query_iterator] :param other_range: Range of hit corresponding to non-current allele in info_dict e.g. info_dict['query_ranges'][other_iterator] and info_dict['target'][other_iterator] :param overlap_dict: Dictionary of to be populated with overlap information e.g. contig:full_range:gene_pair: {'overlap': overlap, 'allele': [allele_identifiers]} :param current_allele: String of the name of the allele extracted from info_dict e.g. info_dict['target'][query_iterator] :param contig: Name of the contig within which the BLAST hits are located :param gene_names: List of all gene names in the analysis :param overlap: Boolean of whether query_range overlaps with other_range """ # Extract the name of the other allele from info_dict using the iterator of the other range other_allele = info_dict['target'][other_iterator] full_range = calculate_full_range( query_range=query_range, other_range=other_range ) # Update the overlap dictionary with the full range as required if full_range not in overlap_dict[contig]: overlap_dict[contig][full_range] = {} # Create a sorted tuple of the allele names alleles = tuple(sorted([current_allele, other_allele])) # Create a set of all the genes with hits in the current overlap genes = set() # Iterate over all the alleles for allele in alleles: # Add the gene from the list of genes if it is present in the allele # identifier e.g. gene = ECs1206 allele = ECs1206_138 will add ECs1206 genes.add([gene for gene in gene_names if gene in allele][0]) # Create a tuple of the sorted list of genes present in the set gene_pair = tuple(sorted(list(genes))) # Update the dictionary as required if gene_pair not in overlap_dict[contig][full_range]: overlap_dict[contig][full_range][gene_pair] = { 'overlap': overlap, 'allele': [] } # Append the current allele to the overlap dictionary overlap_dict[contig][full_range][gene_pair]['allele'].append(current_allele) # Set processed to True to indicate that there was an overlap and that the # dictionary was populated processed = True return overlap_dict, processed def calculate_full_range( query_range: range, other_range: range): """ Determine if two ranges overlap :param query_range: Range of hit corresponding to current_allele :param other_range: Range of hit corresponding to non-current allele :return full_range: Tuple of minimum coordinate from both ranges, maximum coordinate from both ranges """ # Determine in the minimum and maximum coordinates of the two ranges # e.g. query_range = (100, 500), other_range = (525, 1000) # min_range = 100 min_range = (min(query_range[0], other_range[0])) # max_range = 1000 max_range = (max(query_range[1], other_range[1])) # The full range is a tuple of (min_range, max_range) # full_range = (100, 1000) full_range = tuple(sorted([min_range, max_range])) return full_range def evaluate_translated_length( aa_seq: str, length_dict: dict, gene: str, notes: list, filtered: bool): """ Evaluate whether a translated sequence passes a length filter and starts with a methionine residue :param aa_seq: String of the amino acid sequence to evaluate :param length_dict: Dictionary of minimum acceptable length for each gene in the analysis :param gene: String of the name of the gene :param notes: List of notes on the alleles :param filtered: Boolean of whether the allele has been filtered based on length or content :return: filtered: Updated filtering boolean :return: notes: Updated list of notes """ # Proper protein sequences must start with a methionine (M) if not aa_seq.startswith('M'): filtered = True notes.append(f'{gene} amino acid sequence does not start with M') # The length of the sequence must also be greater than the minimum gene-specific length if len(aa_seq) < length_dict[gene]: filtered = True notes.append( f'{gene} amino acid sequence was {len(aa_seq)} amino acid residues. Minimum allowed ' f'length is {length_dict[gene]} amino acid residues') return filtered, notes def generic_evaluate_translated_length( aa_seq: str, sequence: str, gene: str, notes: list, filtered: bool, cutoff=0.95): """ Evaluate whether a translated sequence passes a generic length filter and starts with a methionine residue :param aa_seq: String of the amino acid sequence to evaluate :param sequence: String of untrimmed nucleotide sequence :param gene: String of the name of the gene :param notes: List of notes on the alleles :param filtered: Boolean of whether the allele has been filtered based on length or content :param cutoff: Float of minimum cutoff value to be used for filtering trimmed sequences. Default is 0.95 :return: filtered: Updated filtering boolean :return: notes: Updated list of notes """ # Proper protein sequences must start with a methionine (M) if not aa_seq.startswith('M'): filtered = True notes.append(f'{gene} amino acid sequence does not start with M') # Minimum length of a trimmed amino acid allele permitted is 95% the length of the theoretical length of # the translated nucleotide sequence e.g. a 99 bp nt sequence would be 33 amino acid residues, and 95% of # that is 31.35 -> 31 (rounded down) minimum_length = math.floor(len(sequence) / 3 * cutoff) aa_seq_length = len(aa_seq) if aa_seq_length < minimum_length: filtered = True notes.append( f'{gene} amino acid sequence was trimmed to {aa_seq_length} residues ' f'the minimum length allowed is {minimum_length} residues') return filtered, notes def find_next_allele( gene: str, allele_path: str, extension='.fasta'): """ Update the allele database with the novel allele extracted above :param gene: Name of the current gene being examined :param allele_path: Name and absolute path to folder containing allele files :param extension: String of the file extension. Default is .fasta :return: last_id: Number of the last alleles in the current database """ # Find the allele database file allele_file = os.path.join(allele_path, f'{gene}{extension}') # Initialise a variable to store the name of the last allele in the database file last_id = int() records = [] if os.path.isfile(allele_file): # Iterate through all the records in the allele database for record in SeqIO.parse(allele_file, 'fasta'): # Update the last_id variable last_id = int(record.id.split('_')[-1]) records.append(record) else: last_id = 0 # Make it clear that these are novel profiles by starting at 1000000 if last_id < 1000000: last_id = 999999 return last_id + 1 def remove_combined_db_files(allele_path: str): """ Remove all the combined gene files used in BLAST analyses :param allele_path: String of the absolute path to the folder containing the alleles """ # Find all the files in the directory with the word combined in the name combined_files = glob(os.path.join(allele_path, 'combined*')) # Remove each of the files for file in combined_files: os.remove(file) def create_nt_allele_comprehension( runmetadata: MetadataObject, gene_names: list): """ Create gene: nucleotide allele ID comprehensions for each contig: range combination with hits :param runmetadata: MetadataObject with list of GenObjects for each query :param gene_names: List of all gene names in the analysis :return: allele_comprehension: nucleotide allele comprehension. allele_comprehension[contig][full_range] = {gene:allele} """ logging.info('Determining nucleotide allele profiles') # Initialise an empty allele comprehension dictionary allele_comprehension = {} # Iterate through all the samples for sample in runmetadata.samples: # Extract hit information from the overlap dictionary for contig, range_dict in sample.alleles.overlap_dict.items(): # Update the allele comprehension dictionary with the contig key as required if contig not in allele_comprehension: allele_comprehension[contig] = {} # Iterate through each query range with a hit in the current contig for query_range, gene_dict in range_dict.items(): # Update the dictionary with the query range key as required if query_range not in allele_comprehension[contig]: allele_comprehension[contig][query_range] = {} # Iterate over each gene with a hit within this contig:query_range combination for gene_pair, info_dict in gene_dict.items(): # If the gene_pair variable is a string (instead of a tuple), there is only a single gene present if isinstance(gene_pair, str): # Extract the gene_allele ID from the dictionary corresponding_allele = info_dict['allele'][0] # Remove the gene name (and an underscore) from the corresponding_allele variable # (leaving only the allele ID) allele_number = corresponding_allele.replace(f'{gene_pair}_', '') # Update the allele comprehension dictionary with the gene name: alleleID allele_comprehension[contig][query_range].update( {gene_pair: allele_number} ) # Determine which gene(s) are missing from this contig:query_range missing = [other_gene for other_gene in gene_names if other_gene != gene_pair] # Populate the allele comprehension dictionary with the missing genes for missing_gene in missing: allele_comprehension[contig][query_range].update({missing_gene: '0'}) # A tuple of gene names indicates that multiple co-located genes are present in this # contig:query_range combination else: # Iterate over each gene in the gene_pair tuple for i, gene_name in enumerate(gene_pair): # Extract the gene_alleleID from the dictionary for this gene corresponding_allele = info_dict['allele'][i] # Remove the gene name information from the corresponding_allele variable if gene_name in corresponding_allele: allele_number = corresponding_allele.replace(f'{gene_name}_', '') # Update the dictionary with the new gene: allele number for the sample allele_comprehension[contig][query_range].update( {gene_name: allele_number} ) else: # Determine which gene(s) are not currently being examined corresponding_gene = [ other_gene for other_gene in gene_names if other_gene != gene_name ][0] allele_number = corresponding_allele.replace(f'{corresponding_gene}_', '') # Update the dictionary with the new gene: allele number for the sample allele_comprehension[contig][query_range].update( {corresponding_gene: allele_number} ) # If the allele_comprehension dictionary exists, it doesn't need to be further populated if allele_comprehension: continue # Otherwise iterate through the targetsequence dictionary for contig, range_dict in sample.alleles.targetsequence.items(): # Update the allele comprehension dictionary as required if contig not in allele_comprehension: allele_comprehension[contig] = {} # Iterate through all genes in the analysis for gene in gene_names: # Set an 'empty' range as (0, 0) full_range = (0, 0) # Add the range to the dictionary as required if full_range not in allele_comprehension[contig]: allele_comprehension[contig][full_range] = {} # Update the dictionary with the negative result allele_comprehension[contig][full_range].update( {gene: '0'} ) return allele_comprehension def create_aa_allele_comprehension( runmetadata: MetadataObject, gene_names: list): """ Create gene: amino acid allele ID comprehensions for each contig: range combination with hits :param runmetadata: MetadataObject with list of GenObjects for each query :param gene_names: List of all gene names in the analysis :return: allele_comprehension: amino acid allele comprehension. allele_comprehension[contig][full_range] = {gene:allele} """ logging.info('Determining amino acid allele profiles') # Initialise a dictionary to store contig:query_range gene:alleleID results allele_comprehension = {} # Iterate through all the samples for sample in runmetadata.samples: # Iterate through all the contigs in the targetsequence dictionary for contig, range_dict in sample.alleles.targetsequence.items(): # Update the dictionary as required if contig not in allele_comprehension: allele_comprehension[contig] = {} # If the current contig is not in the overlap dictionary, populate the allele comprehension with # negative values if contig not in sample.alleles.overlap_dict: # Iterate over every gene in the analysis for gene in gene_names: # Set the 'empty' value to (0, 0) full_range = (0, 0) # Update the dictionary with the negative values if full_range not in allele_comprehension[contig]: allele_comprehension[contig][full_range] = {} allele_comprehension[contig][full_range].update( {gene: '0'} ) # The dictionary has been populated, so continue continue # Extract all the ranges with hits in the overlap dictionary for full_range in sample.alleles.overlap_dict[contig]: # Extract the query ranges with hits on the current contig in the targetsequence dictionary for query_range, gene_dict in range_dict.items(): # Determine if these two ranges have an overlap overlap = query_range[1] >= full_range[0] and full_range[1] >= query_range[0] # If they do not overlap, they are not the same if not overlap: continue # Update the dictionary as required if full_range not in allele_comprehension[contig]: allele_comprehension[contig][full_range] = {} # Create a list to store all genes in the analysis that do not have hits in the range missing_genes = [] # Iterate over all genes in the analysis for gene in gene_names: # If the gene is not in the gene dictionary contained in the targetsequence dictionary, # add it to the list of missing genes if gene not in gene_dict: missing_genes.append(gene) # Otherwise, update the dictionary else: # Extract the name of the gene:alleleID from gene_dict in the targetsequence dictionary full_allele = gene_dict[gene]['aa']['allele'] # Remove the gene name information from the full_allele variable allele_number = full_allele.replace(f'{gene}_', '') # Add the gene:alleleID to the dictionary allele_comprehension[contig][full_range].update( {gene: allele_number} ) # Add any missing genes to the dictionary with negative values for gene in missing_genes: # Ensure that the gene isn't already present in the dictionary if gene not in allele_comprehension[contig][full_range]: allele_comprehension[contig][full_range].update( {gene: '0'} ) return allele_comprehension def create_frozen_allele_comprehension(allele_comprehension: dict): """ Freeze allele comprehension dictionaries :param allele_comprehension: Dictionary of contig:full_range: {gene:allele} :return: frozen_allele_comprehension: Dictionary of contig:query_range: json.dumps({gene:allele}, sort_keys=True) """ # Initialise a dictionary to store the frozen allele comprehensions frozen_allele_comprehension = {} # Iterate over all the contigs with hits for contig, query_dict in allele_comprehension.items(): # Update the frozen allele dictionary as required if contig not in frozen_allele_comprehension: frozen_allele_comprehension[contig] = {} # Iterate over all the ranges and allele comprehensions on the current contig with hits for query_range, allele_dict in query_dict.items(): # Freeze the allele comprehension frozen_allele_dict = json.dumps(allele_dict, sort_keys=True) # Update the dictionary with the range and the frozen allele string if query_range not in frozen_allele_comprehension[contig]: frozen_allele_comprehension[contig][query_range] = frozen_allele_dict return frozen_allele_comprehension def extract_novel_alleles( sample: MetadataObject, gene: str, genome_query: bool, amino_acid: bool, allele_path: str, report_path: str, cutoff=75): """ Extract the sequence of novel alleles from samples that do not have a 100% match :param sample: MetadataObject with list of GenObjects for each query :param gene: Name of current gene :param genome_query: Boolean of whether the allele or the genome are the query :param amino_acid: Variable indicating whether the current analyses are on DNA or amino acid sequences :param allele_path: Name and absolute path to folder containing allele files :param report_path: Name and absolute path to folder in which reports are to be created :param cutoff: The minimum percent identity cutoff to allow when considering the presence of a sequence in a query :return: sample: Updated sample :return: novel_allele: Name of novel alleles discovered :return: query_sequence: Sequence of novel alleles discovered """ # Open the sequence profile file as a dictionary blastdict = DictReader(open(sample.alleles.blast_report, encoding='utf-8'), dialect='excel-tab') # Initialise the best hit value of 0 best_hit = 0 # Initialise strings to store the name and the sequence of novel alleles query_sequence = str() novel_allele = str() # Iterate through all the BLAST hits for row in blastdict: # Extract the target id with the appropriate key depending on whether genome files # are the query or the subject target_id = row['query_id'] if not genome_query else row['subject_id'] # Ensure that the gene name is present in the gene name + allele combination if gene in target_id: # Create a variable to store the value for percent identity, so it is easier to call perc_id = float(row['percent_match']) # See if the percent identity for the current match is better than the previous best # match, and is above the # minimum cutoff threshold if perc_id > best_hit and perc_id >= cutoff: # Set the start and end variables depending on whether genomes are the query target_start = row['query_start'] if not genome_query else row['subject_start'] target_end = row['query_end'] if not genome_query else row['subject_end'] target_seq = row['query_sequence'] # Determine if the orientation of the sequence is reversed compared to the reference if int(target_end) < int(target_start) and not amino_acid: # Create a sequence object using BioPython seq = Seq(target_seq) # Calculate the reverse complement of the sequence query_sequence = str(seq.reverse_complement()) # If the sequence is not reversed, use the sequence as it is in the output else: query_sequence = target_seq best_hit = perc_id # If a query sequence was extracted, use it to update the allele database if query_sequence: novel_allele = update_allele_database( gene=gene, query_sequence=query_sequence, allele_path=allele_path, report_path=report_path, amino_acid=amino_acid, ) return sample, novel_allele, query_sequence def update_allele_database( gene: str, query_sequence: str, allele_path: str, report_path: str, amino_acid: bool): """ Update the allele database with the novel allele extracted above :param gene: Name of the current gene being examined :param query_sequence: Sequence of the novel allele :param allele_path: Name and absolute path to folder containing allele files :param report_path: Name and absolute path to folder in which reports are to be created :param amino_acid: Variable indicating whether the current analyses are on DNA or amino acid sequences :return: novel_allele: Name of the novel allele entered into the database """ # Find the allele database file allele_file = glob(os.path.join(allele_path, f'{gene}*.*fa*'))[0] # Set the appropriate molecule type based on the current analysis molecule = 'nt' if not amino_acid else 'aa' # Set the name of the novel allele file in the report path new_alleles = os.path.join(report_path, f'{molecule}_{gene}_novel_alleles.fasta') # Initialise a variable to store the name of the last allele in the database file last_id = str() # Create a list to store all the allele records in the database records = [] # Iterate through all the records in the allele database for record in SeqIO.parse(allele_file, 'fasta'): # Add the records to the list records.append(record) # Update the last_id variable last_id = record.id # Try to separate the gene name from the allele e.g. MutS_1 try: _, allele = last_id.rsplit('_', 1) # If there is no allele, set the allele to 1 except ValueError: allele = 1 # Typecase the variable to an integer allele = int(allele) # If the sequence type corresponds to an Enterobase number, use our local numbering scheme instead if allele < 1000000: allele = 999999 # Name the novel allele as the gene name _ allele number + 1 novel_allele = f'{gene}_{int(allele) + 1}' # Create a SeqRecord of the allele using the novel allele name and sequence new_record = SeqRecord( seq=Seq(query_sequence), id=novel_allele, name='', description='' ) # Append the SeqRecord to the novel alleles file with open(new_alleles, 'a+', encoding='utf-8') as novel: SeqIO.write( sequences=new_record, handle=novel, format='fasta' ) # Add the novel allele record to the list of all records records.append(new_record) # Overwrite the existing allele database file with the updated list of records with open(allele_file, 'w', encoding='utf-8') as alleles: SeqIO.write( sequences=records, handle=alleles, format='fasta' ) return novel_allele def translate(runmetadata: MetadataObject): """ Use BioPython to translate DNA to amino acid :param runmetadata: MetadataObject with list of GenObjects for each query :return: Updated MetadataObject """ logging.info('Translating allele sequences to amino acid') for sample in runmetadata.samples: # Initialise the dictionary to store the translated sequence sample.alleles.nt_alleles_translated = {} for allele, allele_sequence_list in sample.alleles.targetsequence.items(): for allele_sequence in allele_sequence_list: # Create a sequence object using BioPython seq = Seq(allele_sequence) try: # Translate the sequence aa_seq = str(seq.translate()) # BioPython cannot translate sequences with gaps (-) except TranslationError: # Remove all - from the sequence allele_seq = allele_sequence.replace('-', '') seq = Seq(allele_seq) aa_seq = str(seq.translate()) # Ensure that the allele name exists (isn't an empty string) before adding # allele name: translated sequence to the dictionary if allele: sample.alleles.nt_alleles_translated[allele] = aa_seq return runmetadata def match_profile( profile_data: dict, frozen_allele_comprehension: dict, report_path: str, profile_file: str, genes: list, allele_comprehension: dict, molecule: str): """ Match current profiles to any previously created profiles :param profile_data: Dictionary of seq_type: {gene name: allele ID} :param frozen_allele_comprehension: Dictionary of json.dumps({gene name: allele ID}, sort_keys=True): seq_type :param report_path: Name and absolute path to folder in which reports are to be created :param profile_file: Name and path of file containing reduced profiles :param genes: List of all genes in the analysis :param allele_comprehension: Dictionary of contig:full_range: {gene:allele} :param molecule: String of the current molecule being processed. Options are "aa" and "nt" :return: profile_matches: Dictionary of contig:query_range:seq_type_match """ # If the profile_data dictionary was not populated in the read_profiles methods, # there is nothing to match if not profile_data: return logging.info('Matching new %s profiles against profile file', molecule) profile_matches = {} # Extract all the profiles from the profile file (as a frozen string) frozen_profiles = freeze_profiles( profile_data=profile_data ) # Iterate over all the contigs with hits for contig, query_dict in frozen_allele_comprehension.items(): # Iterate over the query ranges with hits on the current contig for query_range, frozen_allele_dict in query_dict.items(): try: # Extract the samples that match this profile seq_type_match = frozen_profiles[frozen_allele_dict] # Update the dictionary with the matching samples if contig not in profile_matches: profile_matches[contig] = {} if query_range not in profile_matches[contig]: profile_matches[contig][query_range] = seq_type_match # The profile will not necessarily match any of the profiles found in the analysis except KeyError: if contig not in profile_matches: profile_matches[contig] = {} # Update the profile file with this novel profile profile_matches[contig][query_range] = update_profiles( profile_file=profile_file, report_path=report_path, genes=genes, allele_dict=allele_comprehension[contig][query_range], molecule=molecule ) # Update the profile_data dictionary with the new sequence type profile_data[profile_matches[contig][query_range]] = allele_comprehension[contig][query_range] frozen_profiles = freeze_profiles( profile_data=profile_data ) return profile_matches, frozen_profiles def freeze_profiles(profile_data: dict): """ Freeze profiles, so that the frozen {gene:allele} dictionary can be used as the key and the corresponding sequence type as the value :param profile_data: Dictionary of all profiles in seq_type: {gene name: allele ID} format :return: frozen_profiles: Dictionary of json.dumps({gene name: allele ID}, sort_keys=True): seq_type """ # Initialise a dictionary to store the frozen profiles information frozen_profiles = {} # Iterate over all the sequence type: {gene name: allele ID} pairs in the dictionary for seq_type, allele_comprehension in profile_data.items(): # Freeze the allele comprehension frozen_allele_comprehension = json.dumps(allele_comprehension, sort_keys=True) # Populate the dictionary with frozen_allele_comprehension: seq_type frozen_profiles[frozen_allele_comprehension] = seq_type return frozen_profiles def update_profiles( profile_file: str, report_path: str, genes: list, allele_dict: dict, molecule: str): """ Run methods to add novel profiles to the profile file. Determine the sequence type to use, and update the file :param profile_file: Name and path of file containing reduced profiles :param report_path: Name and absolute path to folder in which reports are to be created :param genes: List of all genes in the analysis :param allele_dict: Dictionary of a single allele comprehension. Extracted from allele_comprehension[contig][query_range] = {gene: allele} :param molecule: String of the current molecule being processed. Options are "aa" and "nt" :return: next_seq_type: Integer of the sequence type assigned to the novel profile """ # Extract the sequence type to use for the novel profile next_seq_type = return_next_seq_type( profile_file=profile_file ) # Update the profile file created = update_profile_file( profile_file=profile_file, next_seq_type=next_seq_type, allele_dict=allele_dict, genes=genes, report_path=report_path, molecule=molecule ) if not created: next_seq_type = 'N/A' return next_seq_type def return_next_seq_type(profile_file: str): """ Parse the profile file, and return the value for the next sequence type to be used. Local profiles will start at 1000000 in order to be distinct from Enterobase profiles :param profile_file: Name and path of file containing reduced profiles :return: last_seq_type + 1: Integer of the sequence type to be assigned to the novel profile """ # Open the profile file with open(profile_file, 'r', encoding='utf-8') as profile: # Create a list of all the lines in the file lines = profile.read().splitlines() # Extract the last value from the list of lines last_line = lines[-1] # Split the line on tabs, and set the last_seq_type variable to the first entry e.g. 22\t3\t2\n yields a # sequence type of 22 last_seq_type = last_line.split('\t')[0] # Typecase the variable to an integer int_last_seq_type = int(last_seq_type) # If the sequence type corresponds to an Enterobase number, use our local numbering scheme instead if int_last_seq_type < 1000000: int_last_seq_type = 999999 # Return the last sequence type + 1 to give the next sequence type return int_last_seq_type + 1 def update_profile_file( profile_file: str, next_seq_type: int, allele_dict: dict, genes: list, report_path: str, molecule: str): """ Update the profile file with novel profile. Additionally, either create or update the novel_profiles.txt file with the same profile :param profile_file: Name and path of file containing reduced profiles :param next_seq_type: Integer of the sequence type to be assigned to the novel profile :param allele_dict: Dictionary of a single allele comprehension. Extracted from allele_comprehension[contig][query_range] = {gene: allele} :param genes: List of all genes in the analysis :param report_path: Name and absolute path to folder in which reports are to be created :param molecule: String of the current molecule being processed. Options are "aa" and "nt" :return bool: Boolean of whether the profile could be created or not """ # Initialise a string to store the profile information with the novel sequence type seq_type_str = f'{next_seq_type}' # Initialise a header to store 'ST gene1 gene2.......geneX\n' header = 'ST' # Iterate over all the genes in the analysis for gene in genes: # Extract the allele ID for each gene in the analysis allele = allele_dict[gene] # If the allele has been filtered return False, as a sequence type should not exist for filtered alleles if not allele: return False # Check if the gene name is in the allele if gene in allele: # Extract the allele number allele = allele.split('_')[-1] # Update the header with the gene header += f'\t{gene}' # Update the profile string with the allele ID seq_type_str += f'\t{allele}' # Open the profile file (to update) and write the novel profile with open(profile_file, 'a+', encoding='utf-8') as profile: profile.write(seq_type_str + '\n') # Set the name of the file containing novel profiles using the molecule variable ('aa' or 'nt') novel_profile_file = os.path.join(report_path, f'{molecule}_novel_profiles.txt') # Check to see if the novel profile file exists if not os.path.isfile(novel_profile_file): # If it does not exist, create it, and write the header line before the novel profile with open(novel_profile_file, 'w', encoding='utf-8') as novel_profile: novel_profile.write(header + '\n') novel_profile.write(seq_type_str + '\n') # Otherwise, update the existing file with the novel profile else: with open(novel_profile_file, 'a+', encoding='utf-8') as novel_profile: novel_profile.write(seq_type_str + '\n') return True def create_stec_report( runmetadata: MetadataObject, nt_profile_matches: dict, nt_alleles: dict, aa_profile_matches: dict, aa_alleles: dict, report_file: str, gene_names: list, aa_profile_path: str, notes: list): """ Create a STEC-specific report including the allele matches for each gene and sequence type for both nucleotide and amino acid sequence information :param runmetadata: MetadataObject with list of GenObjects for each query :param nt_profile_matches: Dictionary of contig:query_range:nucleotide seq_type_match :param nt_alleles: Dictionary of nucleotide contig:full_range:nucleotide seq_type_match :param aa_profile_matches: Dictionary of contig:query_range:amino acid seq_type_match :param aa_alleles: Dictionary of amino acid contig:full_range: {gene:allele} :param report_file: String of the name and path of the report file :param gene_names: List of all gene names in the analysis :param aa_profile_path: String of the absolute path of the folder in which the amino acid profile file is located :param notes: List of notes on the alleles """ logging.info('Creating report') # Set the appropriate order for the genes in the report (stx1 genes are not in numerical order) gene_order = { 'stx1': ['ECs2974', 'ECs2973'], 'stx2': ['ECs1205', 'ECs1206'] } # Create a list to store the ordered genes ordered_genes = [] # Set the ordered genes according to the genes used in the current analysis (stx1 or stx2) for _, gene_list in gene_order.items(): # If the sorted list matches the list of genes in the analysis, use the unsorted list as the gene order if sorted(gene_list) == gene_names: ordered_genes = gene_list # Create a header for the report. Includes which alleles are present and the sequence type for both the nucleotide # and amino acid sequences of the query and notes header = f'Sample\tnt_{ordered_genes[0]}\tnt_{ordered_genes[1]}\tnt_seq_type\t' \ f'aa_{ordered_genes[0]}\taa_{ordered_genes[1]}\taa_seq_type\tnotes\n' # Create a string to store the query information data = str() # Iterate over the samples for sample in runmetadata.samples: # Iterate over all the contigs that had hits for contig, range_dict in nt_profile_matches.items(): # Iterate over the ranges: nucleotide profiles that had hits on this contig for query_range, nt_profile in range_dict.items(): # Update the data string with the sample name data += f'{sample.name}\t' # Extract the corresponding amino acid profile from aa_profile_matches aa_profile = aa_profile_matches[contig][query_range] # Extract the allele dictionaries ({gene name: allele ID}) using the contig and query range nt_allele_dict = nt_alleles[contig][query_range] aa_allele_dict = aa_alleles[contig][query_range] # Iterate over the genes in the analysis to extract their corresponding nucleotide alleles for gene in ordered_genes: # Update the string with the nucleotide allele ID data += f'{nt_allele_dict[gene]}\t' # Update the string with the nucleotide sequence type data += f'{nt_profile}\t' # Iterate over the genes in the analysis to extract their corresponding amino acid alleles for gene in ordered_genes: # Update the string with the amino acid allele ID data += f'{aa_allele_dict[gene]}\t' # Update the string with the amino acid sequence type data += f'{aa_profile}\t' # Create a list to store sample:contig:query_range-specific notes note_list = [] # Determine if there are already notes for this contig in the notes dictionary if contig in notes: # Determine if there are already notes for this contig: range in the notes dictionary if query_range in notes[contig]: # Update the profile linking file. Use notes in the notes dictionary note_list = update_profile_link_file( nt_seq_type=nt_profile, aa_seq_type=aa_profile, aa_profile_path=aa_profile_path, note=notes[contig][query_range] ) # If there are no notes for the contig:range, create notes from scratch else: # Update the profile linking file. Use notes in the notes_list list note_list = update_profile_link_file( nt_seq_type=nt_profile, aa_seq_type=aa_profile, aa_profile_path=aa_profile_path, note=note_list ) # If there are no notes for the contig, create notes from scratch else: # Update the profile linking file. Use notes in the notes_list list note_list = update_profile_link_file( nt_seq_type=nt_profile, aa_seq_type=aa_profile, aa_profile_path=aa_profile_path, note=note_list ) # Join all the notes from the list with semicolons note_str = '; '.join(note_list) # Update the data string with the notes data += f'{note_str}' # Add a newline to the data string data += '\n' # If there were no hits for the sample, add negative values to the data string if not data: data = f'{sample.name}\t0\t0\t1\t0\t0\t1\n' # If the report file does not already exist, write the header and data strings if not os.path.isfile(report_file): with open(report_file, 'w', encoding='utf-8') as report: report.write(header) report.write(data) # If the report already exists, write only the data string else: with open(report_file, 'a+', encoding='utf-8') as report: report.write(data) def update_profile_link_file( nt_seq_type: str, aa_seq_type: str, note: list, aa_profile_path: str): """ Update the file linking amino acid sequence type to the (multiple) corresponding nucleotide sequence type(s) :param nt_seq_type: String of the nucleotide sequence type :param aa_seq_type: String of the amino acid sequence type :param note: List of notes on the alleles :param aa_profile_path: String of the absolute path of the folder in which the amino acid profile file is located :return: note: Update list of notes """ # Set the name of the link file link_file = os.path.join(aa_profile_path, 'aa_nt_profile_links.tsv') # Create a dictionary of nucleotide sequence type matches nt_match = {} # Initialise a boolean to track whether the amino acid sequence type is already present in the profile link file aa_match = False # Initialise a dictionary to store the aa_seq_type: nt_seq_type(s) links = {} # Initialise a list of all amino acid sequence types present the file records = [] # Open the profile link file to read in the contents with open(link_file, 'r', encoding='utf-8') as profile_link: for line in profile_link: # Split the amino acid sequence type from the nucleotide sequence type(s) # e.g 1 1 or 116 116;125;187;39973;92286;1000005 aa_seq, nt_seq = line.split('\t') # Check to see if the extracted amino acid sequence type matches the sequence type of the sample if aa_seq_type == aa_seq: # Set the match boolean to True (there is a match) aa_match = True # Check to see if the nucleotide sequence type of sample is in the semicolon-separated list of # nucleotide sequence types corresponding to the amino acid sequence type if nt_seq_type in nt_seq.rstrip().split(';'): # Update the nucleotide sequence type match dictionary nt_match[aa_seq] = nt_seq.rstrip() # Update the link dictionary links[aa_seq] = nt_seq.rstrip() # Add the amino acid sequence type to the list records.append(aa_seq) # Check if the amino acid of the sample matched a previous sequence type if aa_match: # Check if there was a match of the sample's nucleotide sequence type if not nt_match: # Append the nucleotide sequence type to the string of nucleotide sequence type matches links[aa_seq_type] += f';{nt_seq_type}' # Update the note note.append(f'Novel nt_seq_type {nt_seq_type} links to aa_seq type {aa_seq_type}') # If no match, this is a novel amino acid sequence type else: # Update the link dictionary novel amino acid sequence type: novel nucleotide sequence type links[aa_seq_type] = nt_seq_type # Add the novel sequence type to the list records.append(aa_seq_type) # Update the notes note.append(f'Novel nt_seq_type {nt_seq_type}, and aa_seq_type {aa_seq_type}') # Overwrite the profile link file with the updated links with open(link_file, 'w', encoding='utf-8') as profile_link: for record in records: profile_link.write(f'{record}\t{links[record]}\n') return note def split_alleles( allele_files: list, output_path: str): """ Split FASTA files into individual sequences :param allele_files: List of absolute path to FASTA-formatted allele sequence files :param output_path: String of the absolute path into which the individual sequence files are to be written """ # Create the output path if it doesn't already exist make_path(inpath=output_path) # Ensure that the path could be created if not os.path.isdir(output_path): logging.error('Could not create desired output folder: %s', output_path) raise SystemExit # Iterate over all the allele files for allele_file in allele_files: # Use SeqIO to load all the records in the file for record in SeqIO.parse(allele_file, 'fasta'): # Set the name of the file to be the FASTA header output_file = os.path.join(output_path, f'{record.id}.fasta') # Write the record to the new file with open(output_file, 'w', encoding='utf-8') as output: SeqIO.write(record, output, 'fasta') def parse_aa_blast( runmetadata: MetadataObject, extended_fieldnames: list, fieldnames: list, gene_names: list, notes: list, aa_allele_path: str, report_path: str, cutoff: int): """ Parse amino acid BLAST results :param runmetadata: MetadataObject with list of GenObjects for each query :param extended_fieldnames: List of the BLAST fields used, as well as the additional percent match in index 14 :param fieldnames: List of the BLAST fields used :param gene_names: List of all gene names in the analysis :param notes: List of sample-specific notes :param aa_allele_path: String of the absolute path to the folder containing amino acid allele files :param report_path: String of the absolute path to the folder into which reports are to be written them to be considered co-located. Default is 50 bp :param cutoff: Integer of the minimum percent identity between query and subject sequence. Default is 90 :return: runmetadata: Updated MetadataObject :return: filtered: Boolean of whether the sample fails quality/length checks :return: notes: Updated list of sample-specific notes """ logging.info('Parsing BLAST outputs') # Initialise a boolean to track if the sequence fails checks filtered = False for sample in runmetadata.samples: # Initialise GenObjects as required sample.alleles.blastlist = [] sample.alleles.targetsequence = {} # Read the BLAST outputs into a dictionary blastdict = create_blast_dict( sample=sample, extended_fieldnames=extended_fieldnames ) # Initialise a boolean to track whether this contig:query_range has already been processed processed = False # Go through each BLAST result for row in blastdict: # Ignore the headers if row['query_id'].startswith(fieldnames[0]): continue # Create variables to reduce extra typing and for extra clarity target_id = row['subject_id'] percent_id = float(row['percent_match']) # If the match is perfect if percent_id == 100: # Add the name of the matching allele to the list sample.alleles.blastlist.append(target_id) # Update the processed boolean to indicate that this region has been processed processed = True # If the match is imperfect, but greater than the cutoff elif cutoff < percent_id < 100 and not processed: # Determine which gene is being processed by finding the match of the genes against the allele gene = [gene for gene in gene_names if gene in target_id][0] query_seq = row['query_sequence'] # Evaluate the sequence for length, as well as required start/stop codons filtered, notes = evaluate_translated_allele( aa_seq=query_seq, gene=gene, notes=notes, aa=True ) # Find the next available allele identifier in the database aa_allele_id = find_next_allele( gene=gene, allele_path=aa_allele_path ) # Set the name of the allele as gene_alleleID aa_allele = f'{gene}_{aa_allele_id}' # Update the allele database with the novel allele notes, aa_allele = update_allele_databases( query_sequence=query_seq, header=aa_allele, filtered=filtered, gene=gene, report_path=report_path, allele_path=aa_allele_path, notes=notes, molecule='Amino acid' ) # If the allele passes the necessary checks, update the list of results if not filtered: sample.alleles.blastlist.append(aa_allele) # Update the processed boolean processed = True return runmetadata, filtered, notes def analyse_aa_alleles( runmetadata: MetadataObject, gene_names: list, notes: list): """ Analyse supplied amino acid alleles to ensure that they pass quality checks :param runmetadata: MetadataObject with list of GenObjects for each query :param gene_names: List of all gene names in the analysis :param notes: List of sample-specific notes :return: runmetadata: Updated MetadataObject :return: notes: Updated list of sample-specific notes """ # Iterate through all the samples for sample in runmetadata.samples: # Iterate over all the records in the file (should only be one, as these files must be split with the # split_alleles function) for record in SeqIO.parse(sample.general.bestassemblyfile, 'fasta'): # Determine to which gene the allele corresponds gene = [gene for gene in gene_names if gene in record.id][0] # Perform content/length checks filtered, notes = evaluate_translated_allele( aa_seq=record.seq, gene=gene, notes=notes, aa=True ) return runmetadata, notes def report_aa_alleles( runmetadata: MetadataObject, report_file: str, notes: list): """ Create an amino acid query-specific report with sample name, allele match, and notes :param runmetadata: MetadataObject with list of GenObjects for each query :param report_file: String of absolute path to the report file :param notes: List of sample-specific notes """ # Initialise the header string header = 'Sample\tMatch\tNotes\n' # Create an empty string to store the sample-specific results data = str() # Iterate over all the samples for sample in runmetadata.samples: # Extract the list of hits from the MetadataObject, and join with semicolons matches = ';'.join(sample.alleles.blastlist) # Join the list of notes with note = ';'.join(notes) # Populate the data string with the matches and notes data += f'{sample.name}\t{matches}\t{note}\n' # If the report doesn't already exist write the header and data string if not os.path.isfile(report_file): with open(report_file, 'w', encoding='utf-8') as report: report.write(header) report.write(data) # Otherwise write only the data string else: with open(report_file, 'a+', encoding='utf-8') as report: report.write(data) def load_alleles( allele_path: str, allele_order: dict): """ Use SeqIO to read in allele files :param str allele_path: Name and path of folder containing allele files :param dict allele_order: Dictionary of stx gene name: allele order to use :return: str stx_gene: Name of stx gene (stx1 or stx2) being concatenated :return: dict allele_dict: Dictionary of stx gene name: allele name: allele sequence """ # Initialise variable to store the stx gene name being analysed and the sequence of the alleles stx_gene = None allele_dict = {} # Find all the allele files in the folder allele_files = glob(os.path.join(allele_path, '*.fasta')) for allele_file in allele_files: # Set the name of the subunit by splitting off the path information and the file extension from the file allele_name = os.path.splitext(os.path.basename(allele_file))[0] # Determine which stx gene is being processed for gene_name, alleles in allele_order.items(): # The name of the current subunit is present in the list of subunits linked to the stx gene if allele_name in alleles: stx_gene = gene_name # Initialise the subunit name in the dictionary as required if allele_name not in allele_dict: allele_dict[allele_name] = {} # Use SeqIO to read in the allele file for record in SeqIO.parse(handle=allele_file, format='fasta'): # Add the name of the allele and its sequence to the dictionary allele_dict[allele_name][record.id] = str(record.seq) return stx_gene, allele_dict def concatenate_alleles( profile_data: dict, allele_dict: dict, allele_order: dict, stx_gene: str, linker_length_dict: dict, molecule: str): """ :param profile_data: Dictionary of all profiles in seq_type: {gene name: allele ID} format :param allele_dict: Dictionary of stx gene name: allele name: allele sequence :param dict allele_order: Dictionary of stx gene name: allele order to use :param str stx_gene: Name of stx gene (stx1 or stx2) being concatenated :param dict linker_length_dict: Dictionary of gene name: length of linker sequence to use :param str molecule: String of the current molecule. Options are "nt" (nucleotide) and "aa" (amino acid) :return: concatenated_sequences: List of SeqRecords for all concatenated sequences """ # Create a list to store SeqRecords of the concatenated sequences concatenated_sequences = [] # Iterate over all the sequence type: profile pairs in profile_data for seq_type, profile in profile_data.items(): # Initialise a string to store the concatenated sequences concatenated_seq = str() # Create a boolean to store if one (or both) of the allele subunits is missing complete = True # Create a variable to store the name of the concatenated allele concatenated_name = str() # Iterate over the subunits in order from the allele_order dictionary for subunit in allele_order[stx_gene]: # Extract the allele number from the profile dictionary using the subunit as the key allele_number = profile[subunit] # If the allele number is 0, the subunit is absent, and the concatenated sequence will not be created if allele_number == '0': complete = False continue # Set the full allele name by joining the subunit with the allele number full_allele_name = f'{subunit}_{allele_number}' # Extract the string of the allele sequence from the allele dictionary allele_seq = allele_dict[subunit][full_allele_name] # If the first subunit is already present, simply append the second subunit to the string if concatenated_seq: concatenated_seq += allele_seq # Otherwise the linker sequence must be created else: # Extract the gene-specific linker length from the dictionary linker_length = linker_length_dict[stx_gene] # Nucleotide sequences will use N as the linker sequence if molecule == 'nt': linker = 'N' * linker_length # Amino acid sequences will use X as the linker sequence, and will be reduced by a factor of three else: linker = 'X' * int(linker_length / 3) concatenated_seq += f'{allele_seq}{linker}' # Update the name of the concatenated sequence if concatenated_name: concatenated_name += f'_{allele_number}' else: concatenated_name = allele_number # Do not add incomplete sequences to the list if not complete: continue # Create a SeqRecord of the allele using the novel allele name and sequence concatenated_sequences.append( SeqRecord( seq=Seq(concatenated_seq), id=concatenated_name, name='', description='' ) ) return concatenated_sequences def write_concatenated_sequences( concatenated_sequences: list, concatenate_path: str, file_name: str, molecule: str): """ Write the concatenated sequences to file :param list concatenated_sequences: List of all SeqRecord objects for the concatenated sequences :param str concatenate_path: Name and absolute path of the folder into which the FASTA files of the concatenated sequences are to be written :param str file_name: File name to use. 'ECs2974_ECs2973' (stx1) and 'ECs1205_ECs1206' (stx2) :param str molecule: String of the current molecule. Options are "nt" (nucleotide) and "aa" (amino acid) """ # Set the name of the output path by adding the molecule to the supplied path output_path = os.path.join(concatenate_path, molecule) make_path(inpath=output_path) # Clear out any previous iterations of this script previous_fastas = glob(os.path.join(output_path, '*.fasta')) for fasta in previous_fastas: os.remove(fasta) # Set the name of the file to use concatenated_file = os.path.join(output_path, f'{file_name}.fasta') # Iterate over all the concatenated sequences for concatenated_seq in concatenated_sequences: with open(concatenated_file, 'a+', encoding='utf-8') as output_file: SeqIO.write( sequences=concatenated_seq, handle=output_file, format='fasta' )
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/allele_tools/methods.py
methods.py
# Standard imports from argparse import ( ArgumentParser, RawTextHelpFormatter ) from glob import glob import logging import multiprocessing import sys import os # Third party inputs from olctools.accessoryFunctions.accessoryFunctions import ( make_path, MetadataObject, ) # Local imports from allele_tools.allele_profiler import ( allele_prep, parseable_blast_outputs, read_profile ) from allele_tools.allele_translate_reduce import Translate from allele_tools.profile_reduce import ProfileReduce from allele_tools.version import __version__ from allele_tools.methods import ( analyse_aa_alleles, blast_alleles, common_allele_find_errors, concatenate_alleles, create_aa_allele_comprehension, create_frozen_allele_comprehension, create_gene_names, create_nt_allele_comprehension, create_stec_report, error_print, load_alleles, match_profile, parse_aa_blast, parse_colocated_results, pathfinder, profile_allele_check, query_prep, report_aa_alleles, setup_arguments, split_alleles, write_concatenated_sequences ) __author__ = 'adamkoziol' class STEC: """ Perform the STEC-specific allele finding """ def main(self): """ Run the appropriate methods in the correct order """ # Create metadata objects for all files in the query folder self.runmetadata = query_prep( query_path=self.query_path, runmetadata=self.runmetadata ) for sample in self.runmetadata.samples: logging.debug('Processing sample %s', sample.name) records, gene_names, self.data = \ allele_prep( allele_path=self.nt_allele_path, gene_names=self.gene_names, combined_targets=self.combined_targets, amino_acid=self.amino_acid ) gene_names = sorted(gene_names) logging.info('Loading profile') nt_profile_data = read_profile(profile_file=self.nt_profile_file) aa_profile_data = read_profile(profile_file=self.aa_profile_file) # Extract the sequence type and allele dictionary from the profile file blast_alleles( runmetadata=sample, amino_acid=self.amino_acid, combined_targets=self.combined_targets, cpus=self.cpus, outfmt=self.outfmt ) # Add the header to the BLAST outputs, and filter results based on cutoff parseable_blast_outputs( runmetadata=sample, fieldnames=self.fieldnames, extended_fieldnames=self.extended_fieldnames, records=records, cutoff=90 ) # Parse the BLAST results sample, notes = parse_colocated_results( runmetadata=sample, fieldnames=self.fieldnames, extended_fieldnames=self.extended_fieldnames, amino_acid=self.amino_acid, gene_names=gene_names, nt_allele_path=self.nt_allele_path, aa_allele_path=self.aa_allele_path, report_path=self.report_path ) # Create nucleotide allele comprehensions from the BLAST outputs nt_allele_comprehension = create_nt_allele_comprehension( runmetadata=sample, gene_names=gene_names ) # Create an amino acid allele comprehensions from the translated BLAST outputs aa_allele_comprehension = create_aa_allele_comprehension( runmetadata=sample, gene_names=gene_names, ) # Freeze the nucleotide allele comprehension nt_frozen_allele_comprehension = create_frozen_allele_comprehension( allele_comprehension=nt_allele_comprehension ) # Freeze the amino acid allele comprehension aa_frozen_allele_comprehension = create_frozen_allele_comprehension( allele_comprehension=aa_allele_comprehension ) # Find nucleotide profile matches nt_profile_matches, nt_frozen_profiles = match_profile( profile_data=nt_profile_data, frozen_allele_comprehension=nt_frozen_allele_comprehension, report_path=self.report_path, profile_file=self.nt_profile_file, genes=gene_names, allele_comprehension=nt_allele_comprehension, molecule='nt' ) # Find amino acid profile matches aa_profile_matches, aa_frozen_profiles = match_profile( profile_data=aa_profile_data, frozen_allele_comprehension=aa_frozen_allele_comprehension, report_path=self.report_path, profile_file=self.aa_profile_file, genes=gene_names, allele_comprehension=aa_allele_comprehension, molecule='aa' ) # Create the STEC-specific report create_stec_report( runmetadata=sample, nt_profile_matches=nt_profile_matches, nt_alleles=nt_allele_comprehension, aa_profile_matches=aa_profile_matches, aa_alleles=aa_allele_comprehension, report_file=self.report_file, gene_names=gene_names, aa_profile_path=self.aa_profile_path, notes=notes ) def __init__(self, allele_path, aa_allele_path, profile_file, aa_profile_file, query_path, report_path, amino_acid=False): self.nt_allele_path = pathfinder(path=allele_path) self.aa_allele_path = pathfinder(path=aa_allele_path) self.nt_profile_file = pathfinder(path=profile_file) self.aa_profile_file = pathfinder(path=aa_profile_file) self.profile_path = os.path.dirname(self.nt_profile_file) self.aa_profile_path = os.path.dirname(self.aa_profile_file) self.query_path = pathfinder(path=query_path) self.report_path = pathfinder(path=report_path) self.aa_report_path = self.report_path make_path(inpath=self.report_path) novel_alleles = glob(os.path.join(self.report_path, '*.fasta')) for novel_allele in novel_alleles: os.remove(novel_allele) self.amino_acid = amino_acid if not self.amino_acid: self.combined_targets = os.path.join(self.nt_allele_path, 'combinedtargets.fasta') else: self.combined_targets = os.path.join(self.aa_allele_path, 'combinedtargets.fasta') self.gene_names = [] self.runmetadata = MetadataObject() self.runmetadata.samples = [] self.cpus = multiprocessing.cpu_count() - 1 self.profile_report = os.path.join(self.report_path, 'nt_profiles.tsv') self.aa_profile_report = os.path.join(self.aa_report_path, 'aa_profiles.tsv') try: os.remove(self.profile_report) except FileNotFoundError: pass self.report_file = os.path.join(self.report_path, 'stec_report.tsv') reports = glob(os.path.join(self.report_path, '*.tsv')) for report in reports: os.remove(report) # Fields used for custom outfmt 6 BLAST output: self.fieldnames = [ 'query_id', 'subject_id', 'identical', 'mismatches', 'gaps', 'evalue', 'bit_score', 'query_length', 'subject_length', 'alignment_length', 'query_start', 'query_end', 'subject_start', 'subject_end', 'query_sequence', 'subject_sequence' ] self.extended_fieldnames = self.fieldnames.copy() self.extended_fieldnames.insert(14, 'percent_match') self.outfmt = '6 qseqid sseqid nident mismatch gaps evalue bitscore qlen slen length ' \ 'qstart qend sstart send qseq sseq' # A string of the header to use for formatting the profile file, and the report headers self.data = str() self.aa_allele_dict = {} self.aa_nt_allele_link_dict = {} class AASTEC: def main(self): """ Run the necessary methods in the correct order """ # Create metadata objects for all files in the query folder self.runmetadata = query_prep( query_path=self.query_path, runmetadata=self.runmetadata, clear_report=True ) for sample in self.runmetadata.samples: logging.debug('Processing sample %s', sample.name) notes = [] records, gene_names, self.data = \ allele_prep( allele_path=self.aa_allele_path, gene_names=self.gene_names, combined_targets=self.combined_targets, amino_acid=self.amino_acid ) gene_names = sorted(gene_names) logging.info('Loading profile') if not os.path.isfile(sample.alleles.blast_report): # blast_alleles( runmetadata=sample, amino_acid=self.amino_acid, combined_targets=self.combined_targets, cpus=self.cpus, outfmt=self.outfmt ) # Add headers to the BLAST outputs, and filter based on cutoff value parseable_blast_outputs( runmetadata=sample, fieldnames=self.fieldnames, extended_fieldnames=self.extended_fieldnames, records=records, cutoff=self.cutoff ) # Parse the amino acid BLAST results sample, filtered, notes = parse_aa_blast( runmetadata=sample, extended_fieldnames=self.extended_fieldnames, fieldnames=self.fieldnames, gene_names=gene_names, notes=notes, aa_allele_path=self.aa_allele_path, report_path=self.report_path, cutoff=self.cutoff ) # Perform content/length checks of the supplied alleles sample, notes = analyse_aa_alleles( runmetadata=sample, gene_names=gene_names, notes=notes) # Create an amino acid query report report_aa_alleles( runmetadata=sample, report_file=self.report_file, notes=notes ) def __init__(self, aa_allele_path, query_path, report_path, cutoff, amino_acid=True): self.aa_allele_path = pathfinder(path=aa_allele_path) self.query_path = pathfinder(path=query_path) self.report_path = pathfinder(path=report_path) self.aa_report_path = self.report_path make_path(inpath=self.report_path) novel_alleles = glob(os.path.join(self.report_path, '*.fasta')) for novel_allele in novel_alleles: os.remove(novel_allele) self.cutoff = cutoff self.amino_acid = amino_acid self.combined_targets = os.path.join(self.aa_allele_path, 'combinedtargets.fasta') self.gene_names = [] self.runmetadata = MetadataObject() self.runmetadata.samples = [] self.cpus = multiprocessing.cpu_count() - 1 self.report_file = os.path.join(self.report_path, 'allele_report.tsv') try: os.remove(self.report_file) except FileNotFoundError: pass # Fields used for custom outfmt 6 BLAST output: self.fieldnames = [ 'query_id', 'subject_id', 'identical', 'mismatches', 'gaps', 'evalue', 'bit_score', 'query_length', 'subject_length', 'alignment_length', 'query_start', 'query_end', 'subject_start', 'subject_end', 'query_sequence', 'subject_sequence' ] self.extended_fieldnames = self.fieldnames.copy() self.extended_fieldnames.insert(14, 'percent_match') self.outfmt = '6 qseqid sseqid nident mismatch gaps evalue bitscore qlen slen length ' \ 'qstart qend sstart send qseq sseq' # A string of the header to use for formatting the profile file, and the report headers self.data = str() class AlleleConcatenate: """ Concatenate stx subunits. Read in profile files. Load alleles. Concatenate alleles with appropriate linker """ def main(self): """ Run the necessary methods for AlleleConcatenate """ self.gene, self.nt_alleles = load_alleles( allele_path=self.nt_allele_path, allele_order=self.allele_order ) self.gene, self.aa_alleles = load_alleles( allele_path=self.aa_allele_path, allele_order=self.allele_order ) logging.info('Concatenating allele sequences') self.concatenated_nt_seq = concatenate_alleles( profile_data=self.nt_profile_data, allele_dict=self.nt_alleles, allele_order=self.allele_order, stx_gene=self.gene, linker_length_dict=self.linker_length_dict, molecule='nt' ) self.concatenated_aa_seq = concatenate_alleles( profile_data=self.aa_profile_data, allele_dict=self.aa_alleles, allele_order=self.allele_order, stx_gene=self.gene, linker_length_dict=self.linker_length_dict, molecule='aa' ) logging.info('Writing concatenated allele sequences to file') write_concatenated_sequences( concatenated_sequences=self.concatenated_nt_seq, concatenate_path=self.concatenate_path, file_name=self.gene_allele[self.gene], molecule='nt' ) write_concatenated_sequences( concatenated_sequences=self.concatenated_aa_seq, concatenate_path=self.concatenate_path, file_name=self.gene_allele[self.gene], molecule='aa' ) def __init__( self, nt_allele_path, aa_allele_path, nt_profile_file, aa_profile_file, concatenate_path): self.nt_allele_path = pathfinder(path=nt_allele_path) self.aa_allele_path = pathfinder(path=aa_allele_path) self.nt_profile_file = pathfinder(path=nt_profile_file) self.aa_profile_file = pathfinder(path=aa_profile_file) self.nt_profile_path = os.path.dirname(self.nt_profile_file) self.aa_profile_path = os.path.dirname(self.aa_profile_file) self.concatenate_path = pathfinder(path=concatenate_path) self.linker_length_dict = { 'stx1': 9, 'stx2': 12, } # Set the appropriate order for the genes in the report (stx1 genes are not in numerical order) self.allele_order = { 'stx1': ['ECs2974', 'ECs2973'], 'stx2': ['ECs1205', 'ECs1206'] } self.gene_allele = { 'stx1': 'ECs2974_ECs2973', 'stx2': 'ECs1205_ECs1206' } self.nt_profile_data = read_profile(profile_file=self.nt_profile_file) self.aa_profile_data = read_profile(profile_file=self.aa_profile_file) self.gene = str() self.nt_alleles = {} self.aa_alleles = {} self.concatenated_nt_seq = [] self.concatenated_aa_seq = [] def profile_reduce(args): """ Reduce the Enterobase profile to only the genes of interest :param args: type ArgumentParser arguments """ # Create the gene names file if it doesn't exist or is empty genes_path = os.path.dirname(args.gene_names) genes_file = os.path.basename(args.gene_names) logging.info(genes_path) logging.info(genes_file) if not os.path.isfile(args.gene_names): # Ensure that the path exists if not os.path.isdir(genes_path): logging.error( 'Could not locate the supplied path, %s, for the gene file. Please ensure that it' ' exists, and that it either contains the gene file, or files with ' '.fasta extensions', genes_path ) raise SystemExit logging.warning( 'Could not locate the supplied gene file: %s. Will now attempt to create it in ' 'directory %s', args.gene_names, genes_path ) # Attempt to create the file create_gene_names( path=genes_path, name=genes_file ) else: # Ensure that the file isn't empty if os.stat(args.gene_names).st_size == 0: logging.warning( 'The supplied gene file, %s, is empty. Will now attempt to populate it in ' 'directory %s', args.gene_names, genes_path ) # Attempt to repopulate the file create_gene_names( path=genes_path, name=genes_file ) logging.info( 'Reducing profile file %s to include only the genes found in %s', args.profile_file, args.gene_names ) # Create a ProfileReduce object profile_reduction = ProfileReduce( profile=args.profile_file, names=args.gene_names, output=args.output_folder ) profile_reduction.main() logging.info('Profile reduction complete!') def translate_reduce(args): """ Translate nucleotide alleles to amino acid, and remove duplicates :param args: type ArgumentParser arguments """ log_str = f'Translating and reducing alleles in: {args.allele_path}' if args.profile_file: log_str += f'. Parsing {args.profile_file} nucleotide profile to create corresponding,'\ ' reduced amino acid profile' logging.info(log_str) length_dict = { 'ECs2973': 90, 'ECs2974': 316, 'ECs1205': 316, 'ECs1206': 88 } allele_translate_reduce = Translate( path=args.allele_path, profile=args.profile_file, report_path=args.report_path, translated_path=args.translated_path, length_dict=length_dict, ) allele_translate_reduce.main() logging.info('Allele translation and reduction complete!') def allele_find(args): """ Perform allele discovery analyses :param args: type ArgumentParser arguments """ log_str = f'Performing STEC allele discovery on sequences in {args.query_path} using ' \ f'nucleotide alleles in {args.nt_alleles}, nucleotide profile in {args.nt_profile}, amino' \ f' acid alleles in {args.aa_alleles}, and amino acid profile in {args.aa_profile}' logging.info(log_str) errors = [] # Nucleotide allele checks if not os.path.isdir(args.nt_alleles): errors.append(f'Could not find supplied nucleotide allele folder: {args.nt_alleles}') else: if not glob(os.path.join(args.nt_alleles, '*.fasta')): errors.append( f'Could not locate sequence files in supplied nucleotide allele folder: {args.nt_alleles}' ) # Find errors for amino acid and query checks errors = common_allele_find_errors( args=args, errors=errors, amino_acid=False ) if not os.path.isfile(args.nt_profile): errors.append(f'Could not locate supplied nucleotide profile file: {args.nt_profile}') if errors: error_print(errors=errors) stec = STEC( allele_path=args.nt_alleles, aa_allele_path=args.aa_alleles, profile_file=args.nt_profile, aa_profile_file=args.aa_profile, query_path=args.query_path, report_path=args.report_path ) stec.main() def aa_allele_find(args): """ Perform allele discovery analyses on amino acid query files :param args: type ArgumentParser arguments """ log_str = f'Performing STEC allele discovery on amino acid sequences in {args.query_path} using amino' \ f' acid alleles in {args.aa_alleles}' logging.info(log_str) errors = [] # Find errors for amino acid and query checks errors = common_allele_find_errors( args=args, errors=errors, amino_acid=True ) if errors: error_print(errors=errors) aa_stec = AASTEC( aa_allele_path=args.aa_alleles, query_path=args.query_path, report_path=args.report_path, cutoff=args.cutoff ) aa_stec.main() def allele_split(args): """ Split files containing multiple alleles into individual files :param args: type ArgumentParser arguments """ logging.info('Splitting allele files in %s into individual files', args.query_path) errors = [] allele_files = glob(os.path.join(args.query_path, '*.fasta')) # Query checks if not os.path.isdir(args.query_path): errors.append(f'Could not find supplied nucleotide allele folder: {args.query_path}') else: if not allele_files: errors.append( f'Could not locate sequence files in supplied allele folder: {args.query_path}' ) if errors: error_print(errors=errors) split_alleles( allele_files=allele_files, output_path=args.output_path ) def allele_concatenate(args): """ Concatenate subunit files with linkers. Provide linkages between nucleotide and amino acid files :param args: type ArgumentParser arguments """ logging.info('Concatenating allele subunits') errors = [] # Determine if the profile file, the allele folder, and the alleles all exist errors = profile_allele_check( args=args, errors=errors ) # If there were any errors with the supplied arguments, print them, and exit if errors: error_print(errors=errors) concatenate = AlleleConcatenate( nt_allele_path=args.nt_alleles, aa_allele_path=args.aa_alleles, nt_profile_file=args.nt_profile, aa_profile_file=args.aa_profile, concatenate_path=args.concatenate_path ) concatenate.main() def cli(): """ Collect the arguments, create an object, and run the script """ # Parser for arguments parser = ArgumentParser( description='Determines STEC subunit profiles' ) subparsers = parser.add_subparsers(title='Available analyses') # Create a parental parser from subparsers can inherit arguments parent_parser = ArgumentParser(add_help=False) # Add arguments common to all subparsers to the parent parser parent_parser.add_argument( '-version', '--version', action='version', version=f'%(prog)s commit {__version__}' ) parent_parser.add_argument( '-v', '--verbosity', choices=['debug', 'info', 'warning', 'error', 'critical'], metavar='verbosity', default='info', help='Set the logging level. Options are debug, info, warning, error, and critical. ' 'Default is info.' ) profile_reduce_subparser = subparsers.add_parser( parents=[parent_parser], name='profile_reduce', description='Reduce full wgMLST profile from Enterobase using genes of interest', formatter_class=RawTextHelpFormatter, help='Reduce full wgMLST profile from Enterobase using genes of interest' ) profile_reduce_subparser.add_argument( '-p', '--profile_file', metavar='profile_file', default='profiles.list', help='Specify name and path of profile file. If not provided, the default ' '"profiles.list" in the current working directory will be used' ) profile_reduce_subparser.add_argument( '-g', '--gene_names', metavar='gene_names', default='genes.txt', help='Name and path of text file containing gene names to use to filter the profile file ' '(one per line). If not provided, the default "genes.txt" in the current working ' 'directory will be used. If the file does not exist, the program will attempt to ' 'create a file using the .fasta files in the current working directory' ) profile_reduce_subparser.add_argument( '-o', '--output_folder', metavar='output_folder', default='nt_profile', help='Name and path of folder into which the reduced profile and notes are to be placed. ' 'If not provided, the default "nt_profile" folder in the current working directory ' 'will be used' ) profile_reduce_subparser.set_defaults(func=profile_reduce) # Create a subparser for allele translation and reduction allele_translate_reduce_subparser = subparsers.add_parser( parents=[parent_parser], name='allele_translate_reduce', description='Translate allele files in nucleotide format to amino acid. Remove duplicates. Keep notes', formatter_class=RawTextHelpFormatter, help='Translate allele files in nucleotide format to amino acid. ' 'Remove duplicates. Keep notes' ) allele_translate_reduce_subparser.add_argument( '-a', '--allele_path', metavar='allele_path', default=os.path.join(os.getcwd(), 'nt_alleles'), help='Specify name and path of folder containing allele files. If not provided, the ' 'nt_alleles folder in the current working directory will be used by default' ) allele_translate_reduce_subparser.add_argument( '-p', '--profile_file', metavar='profile_file', help='Optionally specify name and path of profile file. ' 'Parse the nucleic acid profile, and create the corresponding reduced amino acid profile' ) allele_translate_reduce_subparser.add_argument( '-r', '--report_path', metavar='report_path', default=os.path.join(os.getcwd(), 'aa_profile'), help='Specify the name and path of the folder into which outputs are to be placed. If not ' 'provided, the aa_profile folder in the current working directory will be used' ) allele_translate_reduce_subparser.add_argument( '-t', '--translated_path', metavar='translated_path', default=os.path.join(os.getcwd(), 'aa_alleles'), help='Specify the name and path of the folder into which alleles are to be placed. If not ' 'provided, the aa_alleles folder in the current working directory will be used' ) allele_translate_reduce_subparser.set_defaults(func=translate_reduce) # Create a subparser for allele discovery allele_find_subparser = subparsers.add_parser( parents=[parent_parser], name='allele_find', description='Analyse sequences to determine allele complement. Update profiles and ' 'databases. Keep notes', formatter_class=RawTextHelpFormatter, help='Analyse sequences to determine allele complement. Update profiles and databases. ' 'Keep notes' ) allele_find_subparser.add_argument( '--nt_profile', metavar='nt_profile', default=os.path.join(os.getcwd(), 'nt_profile', 'profile.txt'), help='Specify name and path of nucleotide profile file. If not provided, profile.txt in ' 'the nt_profile folder in the current working directory will be used by default' ) allele_find_subparser.add_argument( '--aa_profile', metavar='aa_profile', default=os.path.join(os.getcwd(), 'aa_profile', 'profile.txt'), help='Specify name and path of amino acid profile file. If not provided, profile.txt in ' 'the aa_profile folder in the current working directory will be used by default' ) allele_find_subparser.add_argument( '--nt_alleles', metavar='nt_alleles', default=os.path.join(os.getcwd(), 'nt_alleles'), help='Specify name and path of folder containing nucleotide alleles. If not provided, the ' 'nt_allele folder in the current working directory will be used by default' ) allele_find_subparser.add_argument( '--aa_alleles', metavar='aa_alleles', default=os.path.join(os.getcwd(), 'aa_alleles'), help='Specify name and path of folder containing amino acid alleles. If not provided, the ' 'aa_allele folder in the current working directory will be used by default' ) allele_find_subparser.add_argument( '-r', '--report_path', metavar='report_path', default=os.path.join(os.getcwd(), 'reports'), help='Specify name and path of folder into which reports are to be placed. If not ' 'provided, the reports folder in the current working directory will be used' ) allele_find_subparser.add_argument( '-q', '--query_path', metavar='query_path', default=os.path.join(os.getcwd(), 'query'), help='Specify name and path of folder containing query files in FASTA format. ' 'If not provided, the query folder in the current working directory will be used' ) allele_find_subparser.set_defaults(func=allele_find) # Create a subparser for allele discovery aa_allele_find_subparser = subparsers.add_parser( parents=[parent_parser], name='aa_allele_find', description='Analyse amino acid sequences to determine allele complement. Update profiles and ' 'databases. Keep notes', formatter_class=RawTextHelpFormatter, help='Analyse amino acid sequences to determine allele complement. Update profiles and databases. ' 'Keep notes' ) aa_allele_find_subparser.add_argument( '--aa_alleles', metavar='aa_alleles', default=os.path.join(os.getcwd(), 'aa_alleles'), help='Specify name and path of folder containing amino acid alleles. If not provided, the ' 'aa_allele folder in the current working directory will be used by default' ) aa_allele_find_subparser.add_argument( '-r', '--report_path', metavar='report_path', default=os.path.join(os.getcwd(), 'reports'), help='Specify name and path of folder into which reports are to be placed. If not ' 'provided, the reports folder in the current working directory will be used' ) aa_allele_find_subparser.add_argument( '-q', '--query_path', metavar='query_path', default=os.path.join(os.getcwd(), 'query'), help='Specify name and path of folder containing query files in FASTA format. ' 'If not provided, the query folder in the current working directory will be used' ) aa_allele_find_subparser.add_argument( '-c', '--cutoff', metavar='cutoff', default=90, choices=[percent for percent in range(90, 101)], help='Specify the percent identity cutoff for matches. Allowed values are between 90 and 100. Default is 100' ) aa_allele_find_subparser.set_defaults(func=aa_allele_find) # Create a subparser for splitting multi-FASTA files of alleles allele_split_subparser = subparsers.add_parser( parents=[parent_parser], name='allele_split', description='Split combined allele files into individual files', formatter_class=RawTextHelpFormatter, help='Split combined allele files into individual files' ) allele_split_subparser.add_argument( '-q', '--query_path', metavar='query_path', default=os.path.join(os.getcwd(), 'query'), help='Specify name and path of folder containing query files in FASTA format. ' 'If not provided, the query folder in the current working directory will be used' ) allele_split_subparser.add_argument( '-o', '--output_path', metavar='output_path', default=os.path.join(os.getcwd(), 'split_alleles'), help='Specify name and path of folder into which the split allele files are to be written. ' 'If not provided, the split_alleles folder in the current working directory will be used' ) allele_split_subparser.set_defaults(func=allele_split) # Create a subparser for concatenating stx subunits allele_concatenate_subparser = subparsers.add_parser( parents=[parent_parser], name='allele_concatenate', description='Concatenate stx toxin subunit alleles with linkers', formatter_class=RawTextHelpFormatter, help='Concatenate stx toxin subunit alleles with linkers' ) allele_concatenate_subparser.add_argument( '--nt_profile', metavar='nt_profile', default=os.path.join(os.getcwd(), 'nt_profile', 'profile.txt'), help='Specify name and path of nucleotide profile file. If not provided, profile.txt in ' 'the nt_profile folder in the current working directory will be used by default' ) allele_concatenate_subparser.add_argument( '--aa_profile', metavar='aa_profile', default=os.path.join(os.getcwd(), 'aa_profile', 'profile.txt'), help='Specify name and path of amino acid profile file. If not provided, profile.txt in ' 'the aa_profile folder in the current working directory will be used by default' ) allele_concatenate_subparser.add_argument( '--nt_alleles', metavar='nt_alleles', default=os.path.join(os.getcwd(), 'nt_alleles'), help='Specify name and path of folder containing nucleotide alleles. If not provided, the ' 'nt_allele folder in the current working directory will be used by default' ) allele_concatenate_subparser.add_argument( '--aa_alleles', metavar='aa_alleles', default=os.path.join(os.getcwd(), 'aa_alleles'), help='Specify name and path of folder containing amino acid alleles. If not provided, the ' 'aa_allele folder in the current working directory will be used by default' ) allele_concatenate_subparser.add_argument( '-c', '--concatenate_path', metavar='concatenate_path', default=os.path.join(os.getcwd(), 'concatenated_alleles'), help='Specify name and path of folder into which concatenated subunit files are to be placed. If not ' 'provided, the concatenated_alleles folder in the current working directory will be used' ) allele_concatenate_subparser.set_defaults(func=allele_concatenate) # Get the arguments into an object arguments = setup_arguments(parser=parser) # Prevent the arguments being printed to the console (they are returned in order for the tests to work) sys.stderr = open(os.devnull, 'w', encoding='utf-8') return arguments if __name__ == '__main__': cli()
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/allele_tools/stec.py
stec.py
# Standard imports from argparse import ArgumentParser import multiprocessing from glob import glob import logging import json import os # Third-party imports from olctools.accessoryFunctions.accessoryFunctions import \ make_path, \ MetadataObject, \ SetupLogging from Bio import SeqIO # Local imports from allele_tools.allele_profiler import \ allele_prep, \ append_profiles, \ clear_alleles, \ create_profile, \ match_profile, \ parse_results, \ parseable_blast_outputs, \ profile_alleles, \ read_profile, \ sequence_typer from allele_tools.methods import \ update_allele_database, \ translate, \ query_prep, \ blast_alleles, \ pathfinder __author__ = 'adamkoziol' class Updater: """ Determine allele complement and profile of sequences. Update profiles and databases as necessary """ # pylint: disable=too-many-instance-attributes def main(self): """ Run the appropriate methods in the correct order """ # Create metadata objects for all files in the query folder self.runmetadata = query_prep( query_path=self.query_path, runmetadata=self.runmetadata ) for sample in self.runmetadata.samples: logging.debug('Processing sample %s', sample.name) # Perform necessary prep on the alleles if not self.amino_acid: records, gene_names, self.data = \ allele_prep( allele_path=self.allele_path, gene_names=self.gene_names, combined_targets=self.combined_targets, amino_acid=self.amino_acid ) else: records, gene_names, self.data = \ allele_prep( allele_path=self.aa_allele_path, gene_names=self.gene_names, combined_targets=self.combined_targets, amino_acid=self.amino_acid ) logging.info('Loading profile') if not self.amino_acid: profile_data = read_profile(profile_file=self.profile_file) else: profile_data = read_profile(profile_file=self.aa_profile_file) # BLAST the query against the allele database blast_alleles( runmetadata=sample, amino_acid=self.amino_acid, combined_targets=self.combined_targets, cpus=self.cpus, outfmt=self.outfmt ) # Add a user-friendly header to the BLAST outputs parseable_blast_outputs( runmetadata=sample, fieldnames=self.fieldnames, extended_fieldnames=self.extended_fieldnames, records=records ) # Parse the BLAST outputs sample = parse_results( runmetadata=sample, fieldnames=self.fieldnames, extended_fieldnames=self.extended_fieldnames, amino_acid=self.amino_acid, genome_query=True ) # Perform sequence typing of the parsed results if not self.amino_acid: profile_dict, profile_set = profile_alleles( runmetadata=sample, profile_dict={}, profile_set=[], records=self.gene_names, novel_alleles=True, genome_query=True, allele_path=self.allele_path, report_path=self.report_path ) else: profile_dict, profile_set = profile_alleles( runmetadata=sample, profile_dict={}, profile_set=[], records=self.gene_names, amino_acid=True, novel_alleles=True, genome_query=True, allele_path=self.aa_allele_path, report_path=self.report_path ) # Match the query profile against the profile database profile_matches = match_profile( profile_data=profile_data, profile_dict=profile_dict, profile_matches={} ) # Create new profiles as required profile_matches, profile_data, new_profiles = \ create_profile( profile_data=profile_data, profile_set=profile_set, new_profiles=[], profile_dict=profile_dict, profile_matches=profile_matches ) # Perform final sequence typing, and create final report if not self.amino_acid: sample = sequence_typer( profile_report=self.profile_report, data=self.data, runmetadata=sample, profile_matches=profile_matches, profile_data=profile_data, update=True ) # Write the novel profiles to file append_profiles( new_profiles=new_profiles, profile_file=self.profile_file, data=self.data, novel_profiles=True, profile_path=self.profile_path, gene_names=self.gene_names ) else: sample = sequence_typer( profile_report=self.aa_profile_report, data=self.data, runmetadata=sample, profile_matches=profile_matches, profile_data=profile_data, update=True ) append_profiles( new_profiles=new_profiles, profile_file=self.aa_profile_file, data=self.data, novel_profiles=True, profile_path=self.aa_profile_path, gene_names=self.gene_names ) if not self.amino_acid: # AA sample = translate(runmetadata=sample) self.aa_allele_prep() aa_profile_dict, aa_profile_set = self.aa_allele_match( runmetadata=sample, profile_dict={}, profile_set=[], gene_names=gene_names, amino_acid=True ) aa_profile_data = read_profile(profile_file=self.aa_profile_file) aa_profile_matches = match_profile( profile_data=aa_profile_data, profile_dict=aa_profile_dict, profile_matches={} ) aa_profile_matches, aa_profile_data, aa_new_profiles = \ create_profile( profile_data=aa_profile_data, profile_set=aa_profile_set, new_profiles=[], profile_dict=aa_profile_dict, profile_matches=aa_profile_matches ) sample = sequence_typer( profile_report=self.aa_profile_report, data=self.data, runmetadata=sample, profile_matches=aa_profile_matches, profile_data=aa_profile_data, update=True, amino_acid=True ) make_path(self.aa_profile_path) append_profiles( new_profiles=aa_new_profiles, profile_file=self.aa_profile_file, data=self.data, novel_profiles=True, profile_path=self.aa_profile_path, gene_names=self.gene_names ) self.aa_notes(runmetadata=sample) clear_alleles( combined_targets_db=glob(os.path.join(self.allele_path, 'combinedtargets*')), custom_targets=os.path.join(self.allele_path, 'custom.tfa') ) def aa_allele_prep(self): """ Create (first time only) and read the amino acid allele database file """ # Create the amino acid allele database file path as required make_path(self.aa_allele_path) # Iterate through all the gene in the analysis for gene in self.gene_names: # Attempt to find the database file try: allele_file = glob(os.path.join(self.aa_allele_path, f'{gene}*.*fa*'))[0] # Create the file if it doesn't exist except IndexError: allele_file = self.initialise_aa_alleles(gene=gene) # Read in and store all the amino acid records in the allele database file for record in SeqIO.parse(allele_file, 'fasta'): self.aa_allele_dict[record.id] = str(record.seq) def initialise_aa_alleles(self, gene): """ Create a gene-specific amino acid allele database file :param gene: Name of current gene being analysed :return: Name and absolute path to the created database file """ # Find the corresponding gene-specific nucleotide database file nt_allele_file = glob(os.path.join(self.allele_path, f'{gene}*.*fa*'))[0] # Set the name of the amino acid database file aa_allele_file = os.path.join(self.aa_allele_path, f'{gene}_alleles.fasta') # Initialise a dictionary to store str(amino acid sequence): allele name to be used # in finding duplicate # translated alleles allele_dict = {} for record in SeqIO.parse(nt_allele_file, 'fasta'): # Replace and dashes in the record.id with underscores record.id = record.id.replace('-', '_') record_id = record.id # Translate the sequence to amino acid record = record.translate() record.id = record_id record.description = str() # Extract the gene name from the allele number gene, allele_id = record.id.rsplit('_', 1) # Initialise the gene key in the dictionary as required if gene not in self.aa_nt_allele_link_dict: self.aa_nt_allele_link_dict[gene] = dict() # Check if the translated sequence is not present in the dictionary if str(record.seq) not in allele_dict: # Update the dictionary with the sequence: allele allele_dict[str(record.seq)] = record.id # Update the dictionary with gene: allele if not self.aa_nt_allele_link_dict[gene]: self.aa_nt_allele_link_dict[gene][record.id] = record.id if allele_id == '1': # Write the translated target sequence to file with open(aa_allele_file, 'a+', encoding='utf-8') as aa_targets: SeqIO.write(record, aa_targets, 'fasta') else: if not self.aa_nt_allele_link_dict[gene]: self.aa_nt_allele_link_dict[gene][record.id] = allele_dict[str(record.seq)] return aa_allele_file def aa_allele_match(self, runmetadata, profile_dict, profile_set, gene_names, amino_acid): """ Find match the alleles in the current sample to alleles in the database :param runmetadata: List of metadata objects for the current sample :param profile_dict: Dictionary to store gene:allele profile for each sample :param profile_set: List of all unique profiles :param gene_names: List of all gene names in the analysis :param amino_acid: Variable indicating whether the current analyses are on DNA or amino acid sequences :return: profile_dict and profile_set updated with the results from the current sample """ for sample in runmetadata.samples: # Initialise a dictionary to store the gene:allele combinations for each sample allele_comprehension = {} for allele, allele_seq in sorted(sample.alleles.nt_alleles_translated.items()): present = False # Strip off the allele number from the allele e.g. adk_1 yields adk, while EC042_RS26480_2 yields # EC042_RS26480 try: gene, _ = allele.rsplit('_', 1) except ValueError: gene = str() for record_id, record_seq in sorted(self.aa_allele_dict.items()): if allele_seq == record_seq: # Update the dictionary with the new gene: allele number for the sample allele_comprehension.update({gene: record_id.split('_')[-1]}) present = True # If, after iterating through all the BLAST outputs, the gene is not present in the sample, update # the gene: allele to reflect this absence if not present: novel_allele = update_allele_database( gene=gene, query_sequence=allele_seq, allele_path=self.aa_allele_path, report_path=self.report_path, amino_acid=amino_acid ) if novel_allele: allele_comprehension.update({gene: novel_allele.split('_')[-1]}) else: allele_comprehension.update({gene: '0'}) profile_dict, profile_set, allele_comprehension = self.profile_dict_set_populate( gene_names=gene_names, allele_comprehension=allele_comprehension, profile_dict=profile_dict, sample=sample, profile_set=profile_set ) return profile_dict, profile_set @staticmethod def profile_dict_set_populate(gene_names, allele_comprehension, profile_dict, sample, profile_set): """ Update the profile dictionary, profile set, and allele comprehension for each gene :param gene_names: List of all gene names in the analysis :param allele_comprehension: Dictionary of the gene:allele combinations for each sample :param profile_dict: Dictionary to store gene:allele profile for each sample :param sample: Metadata objects of current genome :param profile_set: List of all unique profiles """ # Iterate through all the genes for gene_name in gene_names: if gene_name not in allele_comprehension: allele_comprehension.update({gene_name: '0'}) # In order to hash the dictionary, use JSON, with sorted keys to freeze it frozen_allele_comprehension = json.dumps(allele_comprehension, sort_keys=True) # Update the dictionary of profiles with the hash of the # frozen dictionary: list of samples with that hash if hash(frozen_allele_comprehension) not in profile_dict: profile_dict[hash(frozen_allele_comprehension)] = [sample.name] else: profile_dict[hash(frozen_allele_comprehension)].append(sample.name) # Add the 'regular' dictionary to the list of all profiles as required if allele_comprehension not in profile_set: profile_set.append(allele_comprehension) return profile_dict, profile_set, allele_comprehension def aa_notes(self, runmetadata): """ Create (first time only), and update the profile and alleles notes files. These files link amino acid profile(s) and allele(s), respectively, to the corresponding nucleotide profile, and allele :param runmetadata: List of metadata objects for the current sample """ logging.info('Creating/Updating notes') # Read in the profile notes file allele_profile_dict = self.read_aa_profile_notes() for sample in runmetadata.samples: # Check if the nucleotide sequence type has previously been encountered try: # Extract all the previously encountered amino acid sequence types corresponding # to the nucleotide st known_allele_profiles = allele_profile_dict[sample.alleles.nt_st] # Determine whether the current amino acid st is already in the list of aa # sequence types if sample.alleles.aa_st not in known_allele_profiles: # If the current st is novel, update the list of profiles, and use the # list to update the # notes file allele_profile_dict[sample.alleles.nt_st].append(sample.alleles.aa_st) self.update_aa_profile_notes(aa_profile_dict=allele_profile_dict) # If the current nucleotide sequence type is novel, add it to the dictionary except KeyError: allele_profile_dict[sample.alleles.nt_st] = [sample.alleles.aa_st] # Use the dictionary to update the notes file self.update_aa_profile_notes(aa_profile_dict=allele_profile_dict) # Process the allele file for gene, allele in sample.alleles.nt_profile.items(): # Attempt to read in the previous allele notes file allele_notes_dict = self.read_aa_allele_notes(gene=gene) # Check if the nucleotide allele is present in the dictionary try: # Extract the list of all amino acid alleles corresponding # to the nucleotide allele try: known_aa_alleles = allele_notes_dict[int(allele)] # Initialise an empty list if allele_notes_dict is empty except ValueError: known_aa_alleles = list() # Set the aa_allele variable to save typing the long attribute aa_allele = sample.alleles.aa_profile[gene] # Check to see if the amino acid allele has already been encountered if aa_allele not in known_aa_alleles: # Make sure that the allele isn't missing 'ND' if aa_allele != '0': # Add the allele to the list allele_notes_dict[int(allele)].append(aa_allele) # Update the notes file with the self.update_aa_allele_notes( gene=gene, allele_notes_dict=allele_notes_dict ) # If the nucleotide allele is novel, add it to the dictionary except KeyError: aa_allele = sample.alleles.aa_profile[gene] if aa_allele != '0': allele_notes_dict[int(allele)] = [aa_allele] self.update_aa_allele_notes( gene=gene, allele_notes_dict=allele_notes_dict ) def read_aa_profile_notes(self): """ Read in all the notes from the profile file (if it exists) :return: aa_profile_dict: Dictionary of nucleotide seq type: amino acid sequence type(s) """ aa_profile_dict = dict() try: with open(self.aa_profile_notes, 'r', encoding='utf-8') as profile: # Ignore the header _ = profile.readline() # Read in all the lines for line in profile: # Split the nucleotide sequence type from the amino acid sequence type(s) nt_profile, aa_profiles = line.rstrip().split('\t') # Create a list of all the amino acid sequence types aa_profile_dict[nt_profile] = aa_profiles.split(';') except FileNotFoundError: pass return aa_profile_dict def update_aa_profile_notes(self, aa_profile_dict): """ Update the profile file with a novel entry :param aa_profile_dict: Dictionary of nucleotide sequence type: amino acid sequence type(s) """ # Overwrite the previous notes file with open(self.aa_profile_notes, 'w', encoding='utf-8') as profile: # Create the header for the profile file profile.write('nt_profile\taa_profile(s)\n') # Iterate through all the sequence type entries in the dictionary for nt_profile, aa_profiles in aa_profile_dict.items(): aa_profiles = ';'.join([str(profile) for profile in aa_profiles]) # Write each nucleotide profile: aa_profile link profile.write(f'{nt_profile}\t{aa_profiles}\n') def read_aa_allele_notes(self, gene): """ Read in the allele notes file. If it doesn't exist, create it :param gene: Name of the current gene being analysed :return: Dictionary of nucleotide allele: list of corresponding amino acid alleles """ allele_notes_dict = {} # Set the name of the notes file notes_file = os.path.join(self.aa_notes_path, f'{gene}_allele_notes.tsv') # Attempt to read the notes file try: with open(notes_file, 'r', encoding='utf-8') as notes: # Ignore the header _ = notes.readline() # Extract the nt allele, ';'-separated list of amino acid alleles from the line for line in notes: nt_allele, aa_alleles = line.rstrip().split('\t') # Create a list of all the amino acid alleles allele_notes_dict[int(nt_allele)] = aa_alleles.split(';') # Create the file if it doesn't exist except FileNotFoundError: # Iterate through all the entries in the dictionary of gene name: nt allele: aa allele for _, allele_dict in self.aa_nt_allele_link_dict.items(): for nt_allele, aa_allele in allele_dict.items(): # Split the entries on underscores _, nt_allele_number = nt_allele.rsplit('_', 1) _, aa_allele_number = aa_allele.rsplit('_', 1) # Update the notes dictionary with int(nt allele): list(aa allele) allele_notes_dict[int(nt_allele_number)] = [aa_allele_number] return allele_notes_dict def update_aa_allele_notes(self, gene, allele_notes_dict): """ Update the amino acid allele notes file with the novel alleles :param gene: Current gene being analysed :param allele_notes_dict: Dictionary of nucleotide allele: list of corresponding amino acid alleles """ # Set the name and path of the notes file notes_file = os.path.join(self.aa_notes_path, f'{gene}_allele_notes.tsv') with open(notes_file, 'w', encoding='utf-8') as notes: # Create the header for the notes file notes.write('nt_allele\taa_alleles\n') for nt_allele, aa_alleles in sorted(allele_notes_dict.items()): # Write the nucleotide allele and list of corresponding amino acid alleles aa_alleles = ';'.join(str(allele) for allele in aa_alleles) notes.write(f'{str(nt_allele)}\t{aa_alleles}\n') def __init__(self, path, amino_acid): self.path = pathfinder(path=path) self.allele_path = os.path.join(self.path, 'nt_alleles') self.aa_allele_path = os.path.join(self.path, 'aa_alleles') self.profile_path = os.path.join(self.path, 'nt_profile') self.aa_profile_path = os.path.join(self.path, 'aa_profile') make_path(self.profile_path) self.profile_file = os.path.join(self.profile_path, 'profile.txt') self.aa_profile_file = os.path.join(self.aa_profile_path, 'profile.txt') self.query_path = os.path.join(self.path, 'query') self.report_path = os.path.join(self.path, 'reports') make_path(self.report_path) novel_alleles = glob(os.path.join(self.report_path, '*.fasta')) for novel_allele in novel_alleles: os.remove(novel_allele) self.aa_notes_path = os.path.join(self.path, 'aa_notes') make_path(self.aa_notes_path) self.aa_profile_notes = os.path.join(self.aa_notes_path, 'aa_profile_notes.tsv') self.amino_acid = amino_acid if not self.amino_acid: self.combined_targets = os.path.join(self.allele_path, 'combinedtargets.fasta') else: self.combined_targets = os.path.join(self.aa_allele_path, 'combinedtargets.fasta') self.gene_names = [] self.runmetadata = MetadataObject() self.runmetadata.samples = [] self.cpus = multiprocessing.cpu_count() - 1 self.profile_report = os.path.join(self.report_path, 'nt_profiles.tsv') self.aa_profile_report = os.path.join(self.report_path, 'aa_profiles.tsv') try: os.remove(self.profile_report) except FileNotFoundError: pass # Fields used for custom outfmt 6 BLAST output: self.fieldnames = ['query_id', 'subject_id', 'identical', 'mismatches', 'gaps', 'evalue', 'bit_score', 'query_length', 'subject_length', 'alignment_length', 'query_start', 'query_end', 'subject_start', 'subject_end', 'query_sequence', 'subject_sequence'] self.extended_fieldnames = self.fieldnames.copy() self.extended_fieldnames.insert(14, 'percent_match') self.outfmt = '6 qseqid sseqid nident mismatch gaps evalue bitscore qlen slen length ' \ 'qstart qend sstart send qseq sseq' # A string of the header to use for formatting the profile file, and the report headers self.data = str() self.aa_allele_dict = {} self.aa_nt_allele_link_dict = {} def cli(): """ Collect the arguments, create an object, and run the script """ # Parser for arguments parser = ArgumentParser( description='Determines profiles of strains against previously calculated allele database ' 'and profile. Creates and/or updates both the database of allele definitions ' 'and the profile based on novel alleles and/or profiles discovered' ) parser.add_argument( '-p', '--path', required=True, help='Specify path. Note that due to code reuse, the query sequence files must be in the ' '"query" sub-folder, nucleotide alleles must be in the "nt_alleles" sub-folder, the nucleotide profile ' 'must be named profile.txt and be located in the "nt_profile" sub-folder, amino acid alleles must be in ' 'the "aa_allele" sub-folder, and the amino acid profile must be named profile.txt and be located in the' '"aa_profile" sub-folder ' ) parser.add_argument( '-aa', '--amino_acid', action='store_true', help='The query sequences are protein.' ) # Get the arguments into an object arguments = parser.parse_args() SetupLogging(debug=True) # Run the profiling pipeline updater = Updater( path=arguments.path, amino_acid=arguments.amino_acid ) updater.main() logging.info('Allele Updating complete') if __name__ == '__main__': cli()
AlleleFinder
/AlleleFinder-0.1.4.tar.gz/AlleleFinder-0.1.4/allele_tools/allele_updater.py
allele_updater.py
# allelica-lib Documentation. The Source Code of The Library. [Source-Code](https://github.com/4DIngenieria/allelica-lib). For The Example Using The Class. [Source-Code](https://github.com/4DIngenieria/Allelica). ```diff For The Installation of This Library: "pip install Allelica-pkg-Nico.4D" ``` ```python #Example Without Dask from allelica_lib import parse parse.process("source.xlsx", "out.tsv") ``` ```python #Example Using The Library Dask from allelica_lib import parse parse.process_dask("source.xlsx", "out.tsv", 4) #'4' Is The Number of Partitions That The Dask Library Will Use When Running The Process. ``` ```diff Other Requirements (Auto-Install With The Library): ``` - pip install dask - pip install pandas - pip install openpyxl
Allelica-pkg-Nico.4D
/Allelica-pkg-Nico.4D-1.0.3.tar.gz/Allelica-pkg-Nico.4D-1.0.3/README.md
README.md
from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from itsdangerous import BadSignature import rsa import base64 def generate_key(pubkey_file, privkey_file): """ 生成密钥对 :return: (公钥对象, 私钥对象) """ # 生成密钥 pubkey, privkey = rsa.newkeys(1024) # 保存密钥 with open(pubkey_file,'w+') as f: f.write(pubkey.save_pkcs1().decode()) with open(privkey_file,'w+') as f: f.write(privkey.save_pkcs1().decode()) return pubkey, privkey def signature(msg, privkey): """ 签名生成 :param msg: 签名内容 :param privkey: 私钥字符串 :return: 签名字符串 """ privkey = rsa.PrivateKey.load_pkcs1(privkey) return rsa.sign(msg.encode(), privkey, 'SHA-1') def verify(msg, sign, pubkey, decode_base64=False): """ 签名验证 request中传递sign是经过base64编码的,使用decode_base64选项解码 :return: """ if decode_base64: sign = base64.b64decode(sign.encode()) if isinstance(sign, str): sign = bytes(sign, encoding='utf-8') if not isinstance(msg, bytes): msg = msg.encode('utf-8') try: rsa.verify(msg, sign, rsa.PublicKey.load_pkcs1(pubkey)) return True except rsa.pkcs1.VerificationError: return False def gen_token(secret_key, salt=None, payload=None, expires=3600): s = Serializer( secret_key=secret_key, salt=salt, expires_in=expires ) return s.dumps(payload) class payloadIllegalError(Exception): def __init__(self, err="illegal payload inside. Secrete key may have been disclosed!"): Exception.__init__(self, err) def token_verify(token, secret_key, salt=None): # token decoding s = Serializer( secret_key=secret_key, salt=salt ) try: data = s.loads(token) # 触发SignatureExpired token过期 except BadSignature as e: encoded_payload = e.payload if encoded_payload: s.load_payload(encoded_payload) # 触发BadData token被篡改 raise BadSignature('BadSignature') # payload不完整 return data
AllenTools
/AllenTools-0.1.1-py3-none-any.whl/allentools/security.py
security.py
import json import operator import copy import sys import os def _auto_update(func): """ 自动更新装饰器 """ def wrapper(self, *args, **kwargs): func(self, *args, **kwargs) if self.auto_update \ and not operator.eq(self._info_bak, self.info): self.update_() self._info_bak = copy.deepcopy(self.info) return wrapper class JSONKeeper: def __init__(self, json_path, data=None, auto_update=True, section=None, update=False): """ :param json_path: 保存位置 :param data: 附加信息。如果key已经存在,不会覆盖,如果不存在则添加 :param auto_update: 修改值后自动更新文件 :param section: 选择json中的一个section :param update: 如果已有内容是否使用data刷新数据 """ # self.config_path = self._relative_to_abs(json_path) self.config_path = json_path self.auto_update = auto_update # print(path) try: with open(self.config_path, 'r') as f: self.info = json.load(f) except FileNotFoundError: print('create {} in {}'.format(self.config_path, os.getcwd())) with open(self.config_path, 'w', encoding='utf-8') as f: self.info = {} json.dump(self.info, f, ensure_ascii=False, indent=4) if section: try: self.info = self.info[section] except KeyError: raise ValueError('section {} is not defined'.format(section)) self._info_bak = copy.deepcopy(self.info) # 做深拷贝作为修改快照 if data: if type(data) is list and type(self.info) is not list: raise ValueError('can not append a list to json') for i in data: if not self.info.get(i) \ or self.info.get(i) and update: self[i] = data[i] @staticmethod def _relative_to_abs(path): filename = sys._getframe(2).f_code.co_filename # 保护方法,外界调用源栈中索引为2 file_dir = os.path.split(os.path.abspath(filename))[0] # 实现相对目录导入 if path[0] != '/' or '\\': # 处理同目录文件的情况 path = os.sep + path.replace('/', '\\') path = file_dir + path return path def update_(self): with open(self.config_path, 'w') as f: json.dump(self.info, f, indent=4) def __str__(self): return str(self.info) def keys(self): return self.info.keys() def values(self): return self.info.values() @_auto_update def __setitem__(self, key, value): self.info[key] = value def __getitem__(self, item): return self.info[item] def find(self, key, default=None, return_list=True): """ 查找一个key的value 使用这个方法查找数据可以保证在数据结构修改时不存在异常 :param return_list: :param key: :param default: :return: List """ value = self._find(self.info, key) if value is None: return default return value def _find(self, dic: dict, key): """ find递归方法 :param dic: :param key: :return: """ value = dic.get(key) if not value: for d in dic.values(): if type(d) is dict: return self._find(d, key) return value def set(self, pos, value): """ 在指定位置插入/覆盖value pos形如 layer1.layer2.layer3 将实现 this[layer1][layer2][layer3] = value """ pos = pos.split('.') if len(pos) == 1: self[pos[0]] = value return temp = value for i in range(1, len(pos)): temp = {pos[-i]: temp} self[pos[0]] = {**(self[pos[0]] or {}), **temp} # python>3.5 required def get(self, key, default=None): return self.info.get(key, default) class Config: def to_json(self, indent=None): s = {} for i in self.__dir__(): if not hasattr(self.__getattribute__(i), '__call__') and i[0] != '_' and i[-1] != '_': s[i] = self.__getattribute__(i) return json.dumps(s, indent=indent) def get(self, k, default=None): if k.upper() in self.__dir__(): return self.__getattribute__(k.upper()) return default def __setitem__(self, key, value): self.__setattr__(key.upper(), value) def __getitem__(self, item): return self.__getattribute__(item.upper())
AllenTools
/AllenTools-0.1.1-py3-none-any.whl/allentools/config.py
config.py
# AllyInvest.py A blackbox Ally Invest/TradeKing API interface for application developers. AllyInvest.py is a part of the PyPi repository and can be installed via ``` pip install AllyInvestPy ``` AllyAPI.py A Python3 class that allows access to all of the functionality in the Ally/TradeKing API. This package attempts to stay on top of changes to the API and allow an easy to user interface with the Ally Invest API. The API does no formatting for the user. A response format of 'xml' or 'json' can be specified and the API responses will be returned as the raw XML or JSON, respectively. This API was built with the developer in mind and should allow a developer to build applications around the Ally Invest API without having to deal with accessing and managing the requests and responses. # Documentation Doxygen was used to generate documentation for this interface. The generated documentation can be found [here](http://www.anthonymorast.com/allyinvestapi/). Perhaps the most useful documentation is of the [AllyAPI class](http://www.anthonymorast.com/allyinvestapi/classally_1_1_ally_a_p_i.html) as this documentation shows which functionality is available and describes how to use each function. # Usage Details coming soon. Some basic usage can be found in example.py until then. # TODO + Documentation + URLs.py and examples.py + Implement missing functionality + Right now, the API implements many of the calls listed on [Ally's documentation page](https://www.ally.com/api/invest/documentation/) but there are many not yet implemented (due to time constraints). Below is a list. + Adding the functionality is pretty straight forward, some more details are below. + Test + Everything + Add unit tests ## Adding New API Functionality To add a new API function the API URL has to be added to the URLs class in URLs.py. Note that the request endpoint is already stored in the class e.g. > https://api.tradeking.com/v1/ Therefore, only anything after */v1/* needs to be added as a URL. A method to obtain the full URL must be implemented as well, examples abound in the URLs class. After the URL is added, implementing the POST or GET is very simple. There are two private methods in the *AllyAPI* class that allow easily retrieving data provided only the URL. these are *__get_data(self, url)* and *__to_format(self, response)*. To add the new functionality, just create a method call in the *AllyAPI* class that uses your new URL and returns/calls the *__get_date(...)* method. This will return the raw XML or JSON response from the user depending on the format set up when creating the *AllyAPI* class instance. ## Missing Functionality + MARKET + GET market/options/search + GET market/options/strikes + GET market/options/expirations + GET market/timesales + WATCHLIST + GET watchlists + POST watchlists + GET watchlists/:id + DELETE watchlists/:id + POST watchlists/:id/symbols + DELETE watchlists/:id/symbols + STREAMING OPERATIONS + MARKET + GET market/quotes
AllyInvestPy
/AllyInvestPy-1.0.16.tar.gz/AllyInvestPy-1.0.16/README.md
README.md
class URLs: """ The URLs class will handle all of the URLs. The purpose of this class is to essentially store and serve all of the URL strings useful to the Ally Invest API. There is no processing of the URLs or the URL parameters done in this class all of that logic is handled in the AllyAPI class. """ def __init__(self, response_format="json"): """The URLs class constructor which defines all of the URLs used by the API. When adding new API functionality the URL needs to be added here. Examples abound of the format used by this implementation of the API. @param self - the object pointer @param response_format - format of the response. Valid values are 'xml' and 'json'. Specifying 'xml' will return an ElementTree containing the response XML while 'json' will return the response in the JSON format. """ self.format = response_format self.base_url = "https://api.tradeking.com/v1/" # self.request_token = "https://developers.tradeking.com/oauth/request_token" # self.user_auth = "https://developers.tradeking.com/oauth/authorize" # self.resource_owner_key = "https://developers.tradeking.com/oauth/resource_owner_key" # account self.accounts = "accounts.{format}".format(format=self.format) self.accounts_balances = "accounts/balances.{format}".format(format=self.format) self.account = "accounts/{id}.{format}".format(format=self.format, id="{id}") self.account_balances = "accounts/{id}/balances.{format}".format(format=self.format, id="{id}") self.account_history = "accounts/{id}/history.{format}".format(format=self.format, id="{id}") self.account_holdings = "accounts/{id}/holdings.{format}".format(format=self.format, id="{id}") # orders self.orders = "accounts/{id}/orders.{format}".format(format=self.format, id="{id}") self.order_preview = "accounts/{id}/orders/preview.{format}".format(format=self.format, id="{id}") self.post_order = "accounts/{id}/orders.{format}".format(format="xml", id="{id}") # market self.clock = "market/clock.{format}".format(format=self.format) self.quote = "market/ext/quotes.{format}".format(format=self.format) self.news_search = "/market/news/search.{format}".format(format=self.format) self.news_article = "market/news/{article_id}.{format}".format(format=self.format, article_id="{article_id}") self.toplists = "market/toplists/{listtype}.{format}".format(format=self.format, listtype="{listtype}") self.options_search = "market/options/search.{format}".format(format=self.format) self.options_strikes = "market/options/strikes.{format}".format(format=self.format) self.options_exps = "market/options/expirations.{format}".format(format=self.format) # member self.member_profile = "member/profile.{format}".format(format=self.format) # Utilities self.status = "utility/status.{format}".format(format=self.format) self.version = "utility/version.{format}".format(format=self.format) # watchlists self.watchlists = "watchlists.{format}".format(format=self.format) def base_url(self): """Returns the API request endpoint. @param self - the object pointer """ return self.base_url # def request_token(self): # """ # @param self - the object pointer # """ # return self.request_token # # def user_auth(self): # """ # @param self - the object pointer # """ # return self.user_auth # # def resource_owner_key(self): # """ # @param self - the object pointer # """ # return self.resource_owner_key """ Accounts """ def accounts_url(self): """Combines the request endpoint and accounts API URLs @param self - the object pointer """ return self.base_url + self.accounts def accounts_balances_url(self): """Combines the request endpoint and accounts balances API URLs @param self - the object pointer """ return self.base_url + self.accounts_balances def account_url(self): """Combines the request endpoint and account API URLs @param self - the object pointer """ return self.base_url + self.account def account_balances_url(self): """Combines the request endpoint and account balances API URLs @param self - the object pointer """ return self.base_url + self.account_balances def account_history_url(self): """Combines the request endpoint and account history API URLs @param self - the object pointer """ return self.base_url + self.account_history def account_holdings_url(self): """Combines the request endpoint and account holding API URLs @param self - the object pointer """ return self.base_url + self.account_holdings """ ORDER/TRADE TODO: GET accounts/:id/orders POST accounts/:id/orders POST accounts/:id/orders/preview """ def get_orders(self): return self.base_url + self.orders def post_order_preview(self): return self.base_url + self.order_preview def get_post_order(self): return self.base_url + self.post_order """ Market TODO: GET market/options/search GET market/options/strikes GET market/options/expirations GET market/timesales """ def clock_url(self): """Combines the request endpoint and market clock API URLs @param self - the object pointer """ return self.base_url + self.clock def quote_url(self): """Combines the request endpoint and quote API URLs @param self - the object pointer """ return self.base_url + self.quote def news_search_url(self): """Combines the request endpoint and news search API URLs @param self - the object pointer """ return self.base_url + self.news_search def news_article_url(self): """Combines the request endpoint and news article API URLs @param self - the object pointer """ return self.base_url + self.news_article def toplists_url(self): """Combines the request endpoint and toplists API URLs @param self - the object pointer """ return self.base_url + self.toplists def options_search_url(self): return self.base_url + self.options_search def options_strikes_url(self): return self.base_url + self.options_strikes def options_exps_url(self): return self.base_url + self.options_exps """ Member """ def member_profile_url(self): """Combines the request endpoint and member profile API URLs @param self - the object pointer """ return self.base_url + self.member_profile """ Utilities """ def status_url(self): """Combines the request endpoint and server status API URLs @param self - the object pointer """ return self.base_url + self.status def version_url(self): """Combines the request endpoint and API version API URLs @param self - the object pointer """ return self.base_url + self.version """ WATCHLIST TODO: GET watchlists/:id DELETE watchlists/:id POST watchlists/:id/symbols DELETE watchlists/:id/symbols """ def get_watchlists_url(self): """Combines the request endpoint and watchlist get URLs. Note this is the same URL as the POST call (URLs.post_watchlist_url()). """ return self.base_url + self.watchlists def post_watchlist_url(self): """Combines the request endpoint and watchlist post URLs""" return self.base_url + self.watchlists """ STREAMING OPERATIONS MARKET TODO: GET market/quotes """
AllyInvestPy
/AllyInvestPy-1.0.16.tar.gz/AllyInvestPy-1.0.16/ally/URLs.py
URLs.py
from requests_oauthlib import OAuth1 from xml.etree import ElementTree import datetime import requests import json from collections import defaultdict import re import copy from .URLs import URLs class AllyAPI: """The AllyAPI class providing blackbox use of the Ally Invest API. This is the main class of the API module. This should be the only class used in applictions built around the API. The AllyAPI class allows access to the GET and POST requests supported by Ally Invest. Missing Functionality: MARKET GET market/options/search GET market/options/strikes GET market/options/expirations GET market/timesales WATCHLIST GET watchlists/:id DELETE watchlists/:id POST watchlists/:id/symbols DELETE watchlists/:id/symbols STREAMING OPERATIONS MARKET GET market/quotes """ def __init__(self, oauth_secret, oauth_token, client_key, response_format="json"): """AllyAPI constructor. Sets the response format on all of the URLs and the oauth/client keys required to access the API. Parameters @param self - the object pointer @param oauth_secret - secret oauth key from Ally @param oauth_token - oauth token from Ally @param client_key - client key from Ally @param response_format - format of the response. Valid values are 'xml' and 'json'. Specifying 'xml' will return an ElementTree containing the response XML while 'json' will return the response in the JSON format. """ self.format = response_format self.url = URLs(response_format=response_format) self.oauth_secret = oauth_secret self.oauth_token = oauth_token self.client_key = client_key self.client_secret = client_key self.auth_time = None self.auth = None self.valid_auth_dt = datetime.timedelta(seconds=10) def __create_auth(self): """A private method to create the OAuth1 object, if necessary.""" now = datetime.datetime.now() if self.auth == None or self.auth_time + self.valid_auth_dt < now: self.auth_time = now self.auth = OAuth1(self.client_key, self.client_secret, self.oauth_token, self.oauth_secret, signature_type='auth_header') def __get_symbol_string(self, symbols): """Returns a string that is either a single quote or a comma-separated list of quotes depending on the type of quotes. @param self - the object pointer @param symbols - single ticker or list of ticker to get quotes for """ if not isinstance(symbols, str): # list symbols = ",".join(symbols) return symbols def __convert_fixml_json(self, json_data): """Takes the order data and converts it to a consistent format. The FIXML message is also expanded, with the original intact. @param self - the object pointer @param json_data - original data to be converted. """ # If there's no orders, there's nothing to do. if not json_data["response"]["orderstatus"]["order"]: return json_data # Copy the data to keep from overwriting the input. data = copy.deepcopy(json_data) # A single order will be a dict, and multiple a list. # Convert order to always be a list of dicts. if isinstance(data["response"]["orderstatus"]["order"], dict): data["response"]["orderstatus"]["order"] = \ [data["response"]["orderstatus"]["order"]] # Convert the FIXML message in each order. # Add the keys to order itself, but preserve fixmlmessage. for order in data["response"]["orderstatus"]["order"]: order_xml = ElementTree.fromstring(order["fixmlmessage"]) order.update(self.__fixml_to_dict(order_xml)) # Return the converted data. return data def __convert_fixml_xml(self, xml_data): """Takes the order data and expands the FIXML message. The original message is left intact. @param self - the object pointer @param xml_data - original data to be converted. """ # Register the FIXML namespace. ElementTree.register_namespace("", "http://www.fixprotocol.org/FIXML-5-0-SP2") # Copy the data to keep from overwriting the input. data = copy.deepcopy(xml_data) # Each order will have a "fixmlmessage" to convert. for order in data.find("orderstatus").findall("order"): fixml_text = order.find("fixmlmessage").text fixml = ElementTree.fromstring(fixml_text) order.append(fixml) # Return the converted data. return data def __fixml_to_dict(self, fixml): """Recursively convert FIXML to a dictionary. @param self - the object pointer @param fixml - FIXML Element to be converted. """ # Remove the Namespace from the tag. tag = re.sub(r"\{[^}]*\} *", "", fixml.tag) # Establish the final dictionary to return. ret = {tag: {} if fixml.attrib else None} # Recursively convert each subelement. # Each subelement becomes a tag key with a dict value. children = list(fixml) if children: defdict = defaultdict(list) for childdict in map(self.__fixml_to_dict, children): for key, val in childdict.items(): defdict[key].append(val) ret = {tag: {k: v[0] if len(v) == 1 else v for k, v in defdict.items()}} # Set each attribute as a tag key. if fixml.attrib: ret[tag].update(("@" + k, v) for k, v in fixml.attrib.items()) # Set the value of each attribute key to the text. if fixml.text: text = fixml.text.strip() if children or fixml.attrib: if text: ret[tag]["#text"] = text else: ret[tag] = text # Return the final dictionary. return ret def __get_fixml(self, ticker, amount, type, account, side, tif, price, sectype): fixml = "<FIXML xmlns=\"http://www.fixprotocol.org/FIXML-5-0-SP2\">" fixml += "<Order" if type != ORDER_TYPE.MARKET and tif is not None: fixml += " TmInForce=\"{}\"".format(tif) if type != ORDER_TYPE.MARKET: fixml += " Px=\"{}\"".format(price) fixml += " Typ=\"{}\" Side=\"{}\" Acct=\"{}\">".format(type, side, account) fixml += "<Instrmt SecTyp=\"{}\" Sym=\"{}\"/>".format(sectype, ticker) fixml += "<OrdQty Qty=\"{}\"/></Order></FIXML>".format(amount) return fixml def __to_format(self, response, xml=False): """A private method to return the API response in the desired format @param self - the object pointer @param response - response from the Ally Invest API """ if response.status_code != 200: if response.status_code == 429: print("Too many requests.") exit() elif response.status_code == 414: print("URI too long, please chunk ticker symbols.") exit() if self.format == "json" and not xml: return response.json() else: return ElementTree.fromstring(response.content) def __get_data(self, url): """A private method to return the requested data in the requested format for a given URL. @param self - the object pointer @param url - API URL to access """ self.__create_auth() return self.__to_format(requests.get(url, auth=self.auth)) def __submit_post(self, url, data, headers={}, usexml=False): """A private method to submit a post request to the Ally Invest server @param self - the object pointer @param url - API URL to access @param data - payload for the HTTP request """ self.__create_auth() res = requests.post(url, headers=headers, data=data, auth=self.auth) return self.__to_format(res, usexml) def get_accounts(self): """Returns all of the user's accounts.""" return self.__get_data(self.url.accounts_url()) def get_accounts_balances(self): """Returns the balances of all of the user's accounts.""" return self.__get_data(self.url.accounts_balances_url()) def get_account(self, id): """Returns a specific account provided the account ID (account number) @param self - the object pointer @param id - account number """ return self.__get_data(self.url.account_url().format(id=str(id))) def get_account_balances(self, id): """Returns the balances of a specific account (ID = account number) @param self - the object pointer @param id - account number """ return self.__get_data(self.url.account_balances_url().format(id=str(id))) def get_account_history(self, id): """Returns the history of a specific account (ID = account number) @param self - the object pointer @param id - account number """ return self.__get_data(self.url.account_history_url().format(id=str(id))) def get_account_holdings(self, id): """Returns the holdings of a specific account (ID = account number) @param self - the object pointer @param id - account number """ return self.__get_data(self.url.account_holdings_url().format(id=str(id))) def get_orders(self, id): """Returns the orders of a specific account (ID = account number) @param self - the object pointer @param id - account number """ data = self.__get_data(self.url.get_orders().format(id=str(id))) if self.format == "json": return self.__convert_fixml_json(data) return self.__convert_fixml_xml(data) def post_order(self, id, fixml): """Posts an order and returns the response. @param self - the object pointer @param id - account number @param fixml - FIXML string to send. """ headers = { 'TKI_OVERRIDE': 'true', 'Content-Type': 'application/xml', } # The GET and POST have the same URL. url = self.url.get_orders().format(id=str(id)) return self.__submit_post(url, fixml, headers, self.format=='xml') def post_order_preview(self, id, fixml): """Posts an order for preview and returns the response. @param self - the object pointer @param id - account number @param fixml - FIXML string to send. """ headers = { 'TKI_OVERRIDE': 'true', 'Content-Type': 'application/xml', } url = self.url.post_order_preview().format(id=str(id)) return self.__submit_post(url, fixml, headers, self.format=='xml') def get_market_clock(self): """Returns the state of the market, the time until next state change, and current server timestamp. @param self - the object pointer """ return self.__get_data(self.url.clock_url()) def get_quote(self, symbols): """Returns quote information for a single ticker or list of tickers. Note: this function does not implement selecting customer FIDs as described in the API documentation. These can be filtered from the return if need be. @param self - the object pointer @param symbols - single ticker or list of ticker to get quotes for """ url = self.url.quote_url()+"?symbols={symbols}" symbols = self.__get_symbol_string(symbols) return self.__get_data(url.format(symbols=symbols)) def __get_option_quote_symbol(self, symbol, exp_date, strike, put_call): sym = "{sym}{year}{month:02d}{day:02d}{putcall}{strike}" strike = str(int(strike*1000)).zfill(8) return sym.format(sym=symbol.upper(), year=str(exp_date.year)[-2:], month=exp_date.month, day=exp_date.day, putcall=put_call.upper(), strike=strike) def get_option_quote(self, symbol, expiration_date, strike_price, put_call): """Returns a quote for an option for the symbol, expiration date, strike price and put/call specifier. @param self - object pointer @param symbol - underlying stock's ticker symbol @param expiration_date - options expiration date @param strike_price - option's strike price @param put_call - c=call, p=put """ url = self.url.quote_url() + "?symbols={sym}" if isinstance(symbol, str): # single ticker if not isinstance(expiration_date, datetime.datetime): print("In 'get_option_quote': datetime.datetime expected for expiration date.") return None sym = self.__get_option_quote_symbol(symbol, expiration_date, strike_price, put_call) elif isinstance(symbol, list) and isinstance(expiration_date, list) \ and isinstance(strike_price, list) and isinstance(put_call, list): if not isinstance(expiration_date[0], datetime.datetime): print("In 'get_option_quote': datetime.datetime expected for expiration date.") return None request_sym = [] for i in range(len(symbol)): request_sym.append(self.__get_option_quote_symbol(symbol[i], expiration_date[i], strike_price[i], put_call[i])) sym = self.__get_symbol_string(request_sym) else: print("In 'get_option_quote': symbol, expiration_date, strike_price, and put_call \ must all be single values or lists.") return None return self.__get_data(url.format(sym=sym)) def news_search(self, symbols, startdate=None, enddate=None, maxhits=10): """Retrieves a listing of news headlines based on symbols. @param self - the object pointer @param symbols - single ticker or list of ticker to get quotes for @param startdate - search for articles between this date and enddate @param enddate - search for articles between this date and startdate @param maxhits - number of articles to return """ if startdate is None or enddate is None: print("news_search: either enddate or startdate is not specified, ignoring both.") if (startdate is not None and enddate is not None) and (enddate < startdate): print("news_search: start date is after end date.") raise Exception("Start date is after end date in news search.") url = self.url.news_search_url() + "?symbols={syms}&maxhits={mxhits}".format(mxhits=maxhits, syms="{syms}") if startdate is not None and enddate is not None: url += "&startdate={sdate}&enddate={edate}" \ .format(sdate=startdate.strftime("%m/%d/%Y"), edate=enddate.strftime("%m/%d/%Y")) return self.__get_data(url.format(syms=self.__get_symbol_string(symbols))) def get_news_article(self, article_id): """Gets a single news article based on the article ID. This ID can be retrieved from the news_search() function. @param self - the object pointer @param article_id - ID of the article to retrieve """ return self.__get_data(self.url.news_article_url().format(article_id=article_id)) def get_toplists(self, listtype="topgainers", exchange="N"): """Returns a ranked list depending on listtype and exchange. @param listtype - type of list to be queried, accepted values are: 'toplosers': top losers by dollar amount 'toppctlosers': top percentage losers 'topvolume': top volume 'topactive': top active 'topgainers': top gainers by dollar amount (default) 'toppctgainers': top percentage gainers @param exchange - exchange to be queried, accepted values are: 'A': American Stock Exchange 'N': New York Stock Exchange (default) 'Q': NASDAQ 'U': NASDAQ Bulletin Board 'V': NASDAQ OTC Other """ url = self.url.toplists_url().format(listtype=listtype) url += "?exchange={ex}".format(ex=exchange) return self.__get_data(url) def get_options(self, symbol): url = self.url.options_search_url() + ("?symbol={}".format(symbol)) return self.__get_data(url) def get_options_strikes(self, symbol): url = self.url.options_strikes_url() + ("?symbol={}".format(symbol)) return self.__get_data(url) def get_options_expirations(self, symbol): url = self.url.options_exps_url() + ("?symbol={}".format(symbol)) return self.__get_data(url) def get_member_profile(self): """Returns general information associated with the user including account numbers and account information. @param self - the object pointer """ return self.__get_data(self.url.member_profile_url()) def get_status(self): """Returns an error if the API endpoint/server is unavailable. Otherwise returns the current server timestamp. @param self - the object pointer """ return self.__get_data(self.url.status_url()) def get_version(self): """Gets the current version of the API of the endpoint called. @param self - the object pointer """ return self.__get_data(self.url.version_url()) def get_watchlists(self): """Retrieves all watchlists belonging to the member. @param self - the object pointer """ return self.__get_data(self.url.get_watchlists_url()) def create_watchlist(self, watchlist_name, symbols=""): """Creates a watchlist and adds a symbol or list of symbols to a watchlist. WARNING: There appears to be an issue when adding a list of symbols. It is recommended that one ticker symbol is added at a time. @param self - the object pointer @param watchist_id - name of the watchlist @param symbols - single ticker or list of tickers to add to the watchlist """ print("WARNING create_watchlist(): There appears to be an issue when adding a list of symbols. It is recommended that one ticker symbol is added at a time.") payload = {"id": watchlist_name} if not symbols == "": payload["symbols"] = symbols return self.__submit_post(self.url.post_watchlist_url(), payload) def order_common_stock(self, ticker, shares, type, account_nbr, side, time_in_force=None, price=None): """Creates an order for common stock (as opposed to options). @param self - object pointer @param ticker - ticker symbol of the security to purchase @param shares - the number of shares to purchase @param type - the order type: Market, Limit, Stop, or Stop Limit - use the provided enum for these values @param account_nbr - the account number for which the shares are to be purchased @param side - the side of the trade: Buy or Sell - use the provided enum for these values @param time_in_force - not applicable for market orders: Day Order, Good til Cancelled, Market on Close - use the provided enum for these values @param price - the price to purchase the security (only for limit and stop limit orders) """ if price == None and type != ORDER_TYPE.MARKET: raise("Price is required for non-market order types.") payload = self.__get_fixml(ticker, shares, type, account_nbr, side, time_in_force, price, "CS") headers = { 'TKI_OVERRIDE': 'true', 'Content-Type': 'application/xml', } url = self.url.get_post_order().format(id=account_nbr) return self.__submit_post(url, payload, headers, True) class TIME_IN_FORCE: DAY = "0" GTC = "1" MARKET_ON_CLOSE = "7" class ORDER_TYPE: MARKET = "1" LIMIT = "2" STOP = "3" STOP_LIMIT = "4" class SIDE: BUY = "1" SELL = "2" SELL_SHORT = "5"
AllyInvestPy
/AllyInvestPy-1.0.16.tar.gz/AllyInvestPy-1.0.16/ally/ally.py
ally.py
class Quote(): def __init__(self): pass def from_xml(self, xml): pass def from_json(self, json): if 'adp_100' in json: self.adp_100 = json['adp_100'] if 'adp_200' in json: self.adp_200 = json['adp_200'] if 'adp_50' in json: self.adp_50 = json['adp_50'] if 'adv_21' in json: self.adv_21 = json['adv_21'] if 'adv_30' in json: self.adv_30 = json['adv_30'] if 'adv_90' in json: self.adv_90 = json['adv_90'] if 'ask' in json: self.ask = json['ask'] if 'ask_time' in json: self.ask_time = json['ask_time'] if 'asksz' in json: self.asksz = json['asksz'] if 'basis' in json: self.basis = json['basis'] if 'beta' in json: self.beta = json['beta'] if 'bid' in json: self.bid = json['bid'] if 'bid_time' in json: self.bid_time = json['bid_time'] if 'bidsz' in json: self.bidsz = json['bidsz'] if 'bidtick' in json: self.bidtick = json['bidtick'] if 'chg' in json: self.chg = json['chg'] if 'chg_sign' in json: self.chg_sign = json['chg_sign'] if 'chg_t' in json: self.chg_t = json['chg_t'] if 'cl' in json: self.cl = json['cl'] if 'contract_size' in json: self.contract_size = json['contract_size'] if 'cusip' in json: self.cusip = json['cusip'] if 'date' in json: self.date = json['date'] if 'datetime' in json: self.datetime = json['datetime'] if 'days_to_expiration' in json: self.days_to_expiration = json['days_to_expiration'] if 'div' in json: self.div = json['div'] if 'divexdate' in json: self.divexdate = json['divexdate'] if 'divfreq' in json: self.divfreq = json['divfreq'] if 'divpaydt' in json: self.divpaydt = json['divpaydt'] if 'dollar_value' in json: self.dollar_value = json['dollar_value'] if 'eps' in json: self.eps = json['eps'] if 'exch' in json: self.exch = json['exch'] if 'exch_desc' in json: self.exch_desc = json['exch_desc'] if 'hi' in json: self.hi = json['hi'] if 'iad' in json: self.iad = json['iad'] if 'idelta' in json: self.idelta = json['idelta'] if 'igamma' in json: self.igamma = json['igamma'] if 'imp_volatility' in json: self.imp_volatility = json['imp_volatility'] if 'incr_vl' in json: self.incr_vl = json['incr_vl'] if 'irho' in json: self.irho = json['irho'] if 'issue_desc' in json: self.issue_desc = json['issue_desc'] if 'itheta' in json: self.itheta = json['itheta'] if 'ivega' in json: self.ivega = json['ivega'] if 'last' in json: self.last = json['last'] if 'lo' in json: self.lo = json['lo'] if 'name' in json: self.name = json['name'] if 'op_delivery' in json: self.op_delivery = json['op_delivery'] if 'op_flag' in json: self.op_flag = json['op_flag'] if 'op_style' in json: self.op_style = json['op_style'] if 'op_subclass' in json: self.op_subclass = json['op_subclass'] if 'openinterest' in json: self.openinterest = json['openinterest'] if 'opn' in json: self.opn = json['opn'] if 'opt_val' in json: self.opt_val = json['opt_val'] if 'pchg' in json: self.pchg = json['pchg'] if 'pchg_sign' in json: self.pchg_sign = json['pchg_sign'] if 'pcls' in json: self.pcls = json['pcls'] if 'pe' in json: self.pe = json['pe'] if 'phi' in json: self.phi = json['phi'] if 'plo' in json: self.plo = json['plo'] if 'popn' in json: self.popn = json['popn'] if 'pr_adp_100' in json: self.pr_adp_100 = json['pr_adp_100'] if 'pr_adp_200' in json: self.pr_adp_200 = json['pr_adp_200'] if 'pr_adp_50' in json: self.pr_adp_50 = json['pr_adp_50'] if 'pr_date' in json: self.pr_date = json['pr_date'] if 'pr_openinterest' in json: self.pr_openinterest = json['pr_openinterest'] if 'prbook' in json: self.prbook = json['prbook'] if 'prchg' in json: self.prchg = json['prchg'] if 'prem_mult' in json: self.prem_mult = json['prem_mult'] if 'put_call' in json: self.put_call = json['put_call'] if 'pvol' in json: self.pvol = json['pvol'] if 'qcond' in json: self.qcond = json['qcond'] if 'rootsymbol' in json: self.rootsymbol = json['rootsymbol'] if 'secclass' in json: self.secclass = json['secclass'] if 'sesn' in json: self.sesn = json['sesn'] if 'sho' in json: self.sho = json['sho'] if 'strikeprice' in json: self.strikeprice = json['strikeprice'] if 'symbol' in json: self.symbol = json['symbol'] if 'tcond' in json: self.tcond = json['tcond'] if 'timestamp' in json: self.timestamp = json['timestamp'] if 'tr_num' in json: self.tr_num = json['tr_num'] if 'tradetick' in json: self.tradetick = json['tradetick'] if 'trend' in json: self.trend = json['trend'] if 'under_cusip' in json: self.under_cusip = json['under_cusip'] if 'undersymbol' in json: self.undersymbol = json['undersymbol'] if 'vl' in json: self.vl = json['vl'] if 'volatility12' in json: self.volatility12 = json['volatility12'] if 'vwap' in json: self.vwap = json['vwap'] if 'wk52hi' in json: self.wk52hi = json['wk52hi'] if 'wk52hidate' in json: self.wk52hidate = json['wk52hidate'] if 'wk52lo' in json: self.wk52lo = json['wk52lo'] if 'wk52lodate' in json: self.wk52lodate = json['wk52lodate'] if 'xdate' in json: self.xdate = json['xdate'] if 'xday' in json: self.xday = json['xday'] if 'xmonth' in json: self.xmonth = json['xmonth'] if 'xyear' in json: self.xyear = json['xyear'] if 'yield' in json: self.yld = json['yield']
AllyInvestPy
/AllyInvestPy-1.0.16.tar.gz/AllyInvestPy-1.0.16/ally/responses/quote.py
quote.py
from xml.etree import ElementTree def get_class_vars(class_type): return [v for k, v in vars(class_type).items() if \ not k.startswith('_')] class Order(): def __init__(self, **data): # From Request Object. self.acct = data.get('acct') # Stock Symbol. self.sym = data.get('sym') # Number of Shares. if data.get('qty'): self.qty = str(int(data.get('qty', '0'))) # use class SECURITY_TYPE self.sec_typ = str(data.get('sec_typ', '')) # use class SIDE self.side = str(data.get('side', '')) # use class ORDER_TYPE self.typ = str(data.get('typ', '')) # For Changes and Cancels self.ord_id = data.get('ord_id') # For Buying to Cover a Short Position. self.acct_typ = data.get('acct_typ') # For Limit Orders # Limit Price. self.px = f"{data.get('px', 0.0):.2f}" # use class TIME_IN_FORCE self.tm_in_force = str(data.get('tm_in_force', '')) # For Options # use class OPTION_POSITION self.pos_efct = str(data.get('pos_efct', '')) # Strike Price. self.strk_px = f"{data.get('strk_px', 0.0):.2f}" # use class OPTION_CLASS self.cfi = str(data.get('cfi', '')) # Date of Maturity. self.mat_dt = data.get('mat_dt') # Option Expiration. self.mmy = data.get('mmy') def validate(self): """Verify all required information is in the order. """ # Account must exist. assert self.acct # Symbol must exist. assert self.sym # Quantity must exist and be an integer greater than zero. # Partials are sold when # shares held is less than one. assert int(self.qty) > 0 # Order type must exist and be in ORDER_TYPE. assert self.typ assert self.typ in get_class_vars(ORDER_TYPE) # Side must exist and be in SIDE. assert self.side assert self.side in get_class_vars(SIDE) # Security type must exist and be in SECURITY_TYPE. assert self.sec_typ assert self.sec_typ in get_class_vars(SECURITY_TYPE) # If Account Type is used, it must be in ACCOUNT_TYPE. if self.acct_typ: assert self.acct_type in get_class_vars(ACCOUNT_TYPE) if self.typ != ORDER_TYPE.MARKET: # Time in Force must exist and be in TIME_IN_FORCE. assert self.tm_in_force assert self.tm_in_force in get_class_vars(TIME_IN_FORCE) if self.typ in [ORDER_TYPE.LIMIT, ORDER_TYPE.STOP_LIMIT]: # Price must exist and be a float greater than zero. assert self.px assert float(self.px) > 0.0 if self.sec_typ == SECURITY_TYPE.OPTION: # Position must exist and be in OPTION_POSITION. assert self.pos_efct assert self.pos_efct in get_class_vars(OPTION_POSITION) # Strike Price must exist & be a float greater than zero. assert self.strk_px assert float(self.strk_px) > 0.0 # CFI must exist and be in OPTION_CLASS. assert self.cfi assert self.cfi in get_class_vars(OPTION_CLASS) # Date of Maturity must exist. assert self.mat_dt # Option Expiration must exist. assert self.mmy return True def from_xml(self, xml): nsp = {'': 'http://www.fixprotocol.org/FIXML-5-0-SP2'} exec_rpt = xml.find('FIXML', nsp).find('ExecRpt', nsp) if not exec_rpt: return self.ord_id = exec_rpt.attrib.get('OrdID') self.id = exec_rpt.attrib.get('ID') self.stat = exec_rpt.attrib.get('Stat') self.acct = exec_rpt.attrib.get('Acct') self.acct_typ = exec_rpt.attrib.get('AcctTyp') self.side = exec_rpt.attrib.get('Side') self.typ = exec_rpt.attrib.get('Typ') self.px = exec_rpt.attrib.get('Px') self.tm_in_force = exec_rpt.attrib.get('TmInForce') self.leaves_qty = exec_rpt.attrib.get('LeavesQty') self.trd_dt = exec_rpt.attrib.get('TrdDt') self.txn_tm = exec_rpt.attrib.get('TxnTm') instrmt = exec_rpt.find('Instrmt', nsp) if instrmt: self.sym = instrmt.attrib.get('Sym') self.sec_typ = instrmt.attrib.get('SecTyp') self.desc = instrmt.attrib.get('Desc') ordqty = exec_rpt.find('OrdQty', nsp) if ordqty: self.qty = ordqty.attrib.get('Qty') comm = exec_rpt.find('Comm', nsp) if comm: self.comm = comm.attrib.get('Comm') def from_json(self, json): exec_rpt = json.get('FIXML', {}).get('ExecRpt') if not exec_rpt: return self.ord_id = exec_rpt.get('@OrdID') self.id = exec_rpt.get('@ID') self.stat = exec_rpt.get('@Stat') self.acct = exec_rpt.get('@Acct') self.acct_typ = exec_rpt.get('@AcctTyp') self.side = exec_rpt.get('@Side') self.typ = exec_rpt.get('@Typ') self.px = exec_rpt.get('@Px') self.tm_in_force = exec_rpt.get('@TmInForce') self.leaves_qty = exec_rpt.get('@LeavesQty') self.trd_dt = exec_rpt.get('@TrdDt') self.txn_tm = exec_rpt.get('@TxnTm') instrmt = exec_rpt.get('Instrmt') if instrmt: self.sym = instrmt.get('@Sym') self.sec_typ = instrmt.get('@SecTyp') self.desc = instrmt.get('@Desc') ordqty = exec_rpt.get('OrdQty') if ordqty: self.qty = ordqty.get('@Qty') comm = exec_rpt.get('Comm') if comm: self.comm = comm.get('@Comm') def to_fixml(self, cancel=False): """Convert the contents of the order to FIXML. This is only for common stock and single-leg options. @param self - the object pointer @param cancel - should this order be cancelled only? """ nsp = {'xmlns': 'http://www.fixprotocol.org/FIXML-5-0-SP2'} order_tag = "Order" if self.ord_id and cancel: order_tag = "OrdCxlReq" elif self.ord_id: order_tag = "OrdCxlRplcReq" # Now Build the FIXML. # First get the attributes always required. base_xml = ElementTree.Element("FIXML", nsp) order = ElementTree.SubElement(base_xml, order_tag) order.set('Acct', self.acct) order.set('Typ', self.typ) order.set('Side', self.side) instrmt = ElementTree.SubElement(order, 'Instrmt') instrmt.set('SecTyp', self.sec_typ) instrmt.set('Sym', self.sym) ordqty = ElementTree.SubElement(order, 'OrdQty') ordqty.set('Qty', self.qty) # Add field-dependent attributes. if self.ord_id: order.set('OrigID', self.ord_id) if self.side == SIDE.BUY and \ self.acct_typ == ACCOUNT_TYPE.SHORT: order.set('AcctTyp', self.acct_typ) if self.typ != ORDER_TYPE.MARKET: order.set('TmInForce', self.tm_in_force) if self.typ != ORDER_TYPE.STOP: order.set('Px', self.px) if self.sec_typ == SECURITY_TYPE.OPTION: order.set('PosEfct', self.pos_efct) instrmt.set('CFI', self.cfi) instrmt.set('StrkPx', self.strk_px) instrmt.set('MMY', self.mmy) instrmt.set('MatDt', self.mat_dt.isoformat()) return base_xml def get_multileg_fixml(orders, cancel=False): """Create FIXML for a multi-leg option chain using multiple orders. @param orders - A list of the orders. @param cancel - should this order be cancelled only? """ if not orders: return None # Validate all the orders have the same basic info. orders[0].validate() chk_dict = dict(ord_id=orders[0].ord_id, typ=orders[0].typ, tm_in_force=orders[0].tm_in_force, px=orders[0].px, acct=orders[0].acct, sym=orders[0].sym, ) for order in orders[1:]: # Along with validation, all basic data must match. order.validate() assert order.ord_id == chk_dict['ord_id'] assert order.typ == chk_dict['typ'] assert order.tm_in_force == chk_dict['tm_in_force'] assert order.px == chk_dict['px'] assert order.acct == chk_dict['acct'] assert order.sym == chk_dict['sym'] # Set the Namespace and base tag name. nsp = {'xmlns': 'http://www.fixprotocol.org/FIXML-5-0-SP2'} order_tag = "NewOrdMLeg" if chk_dict['ord_id'] and cancel: order_tag = "OrdCxlReq" elif chk_dict['ord_id']: order_tag = "MLegOrdCxlRplc" # Now Build the FIXML. # First get the attributes always required. base_xml = ElementTree.Element("FIXML", nsp) mleg = ElementTree.SubElement(base_xml, order_tag) mleg.set('Acct', str(chk_dict['acct'])) if chk_dict['ord_id']: # For a replace or cancel, the original ID is needed. mleg.set('OrigCIOrdID', chk_dict['ord_id']) if chk_dict['ord_id'] and cancel: # For a cancel, the FIXML is much simpler. instrmt = ElementTree.SubElement(mleg, 'Instrmt') instrmt.set('SecTyp', SECURITY_TYPE.MLEG) instrmt.set('Sym', chk_dict['sym']) else: # For all others, fill in the rest of the info for each leg. mleg.set('OrdTyp', chk_dict['typ']) if chk_dict['typ'] == ORDER_TYPE.LIMIT: mleg.set('TmInForce', chk_dict['tm_in_force']) mleg.set('Px', str(chk_dict['px'])) for order in orders: # Cycle through each order and add it. ord_el = ElementTree.SubElement(mleg, 'Ord') ord_el.set('OrdQty', str(order.qty)) ord_el.set('PosEfct', str(order.pos_efct)) leg = ElementTree.SubElement(ord_el, 'Leg') leg.set('Side', str(order.side)) leg.set('Strk', str(order.strk_px)) leg.set('Mat', str(order.mat_dt.isoformat())) leg.set('MMY', str(order.mmy)) leg.set('SecTyp', str(order.sec_typ)) leg.set('CFI', str(order.cfi)) leg.set('Sym', order.sym) return base_xml class TIME_IN_FORCE: DAY = "0" GTC = "1" MARKET_ON_CLOSE = "7" class ACCOUNT_TYPE: SHORT = "5" class ORDER_TYPE: MARKET = "1" LIMIT = "2" STOP = "3" STOP_LIMIT = "4" class SIDE: BUY = "1" SELL = "2" SELL_SHORT = "5" class SECURITY_TYPE: COMMON_STOCK = "CS" OPTION = "OPT" MULTI_LEG = "MLEG" class OPTION_POSITION: OPEN = "O" CLOSE = "C" class OPTION_CLASS: CALL = "OC" PUT = "OP"
AllyInvestPy
/AllyInvestPy-1.0.16.tar.gz/AllyInvestPy-1.0.16/ally/responses/order.py
order.py
class Holding(): def __init__(self): pass def from_xml(self, xml): pass def from_json(self, json): # Feeling thankful for Notepad++ macros... if 'accounttype' in json: self.accounttype = json['accounttype'] if 'assetclass' in json: self.assetclass = json['assetclass'] if 'cfi' in json: self.cfi = json['cfi'] if 'change' in json['quote']: self.change = json['quote']['change'] if 'costbasis' in json: self.costbasis = json['costbasis'] if 'cusip' in json['instrument']: self.cusip = json['instrument']['cusip'] if 'desc' in json['instrument']: self.desc = json['instrument']['desc'] if 'factor' in json['instrument']: self.factor = json['instrument']['factor'] if 'gainloss' in json: self.gainloss = json['gainloss'] if 'lastprice' in json['quote']: self.lastprice = json['quote']['lastprice'] if 'marketvalue' in json: self.marketvalue = json['marketvalue'] if 'marketvaluechange' in json: self.marketvaluechange = json['marketvaluechange'] if 'matdt' in json['instrument']: # simplex options use matdt self.matdt = json['instrument']['matdt'] if 'mat' in json['instrument']: # multilegs use mat self.matdt = json['instrument']['mat'] if 'mmy' in json: self.mmy = json['mmy'] if 'mult' in json: self.mult = json['mult'] if 'price' in json: self.price = json['price'] if 'purchaseprice' in json: self.purchaseprice = json['purchaseprice'] if 'putcall' in json['instrument']: self.putcall = json['instrument']['putcall'] if 'qty' in json: self.qty = json['qty'] if 'sectyp' in json['instrument']: self.sectyp = json['instrument']['sectyp'] if 'strkpx' in json['instrument']: self.strkpx = json['instrument']['strkpx'] if 'sym' in json['instrument']: self.sym = json['instrument']['sym'] if 'totalsecurities' in json: self.totalsecurities = json['totalsecurities']
AllyInvestPy
/AllyInvestPy-1.0.16.tar.gz/AllyInvestPy-1.0.16/ally/responses/holding.py
holding.py
# Arnaud Legoux Moving Average (ALMA) in Python This is a small Technical Analysis library for the calculation of Arnaud Legoux Moving Average (ALMA). It is built in Pandas and Numpy and uses [TA](https://github.com/bukosabino/ta). ## Description The Arnaud Legoux Moving Average (ALMA) indicator is a superior moving average as compared to the Exponential Moving and Simple Moving Averages. Arnaud Legoux and Dimitrios Kouzis Loukas developed the indicator in the year 2009. The objective of ALMA is to minimize the noise and produce a more reliable signal than the conventional moving averages. The indicator (ALMA) removes small price fluctuations and also enhances the trend by applying a moving average (MA) twice, once from left to right, and once from right to left. ## Key Points on ALMA Indicator - ALMA indicator works on the principle of the Moving Average (MA), but the calculation formula is more perfect. - The main difference in regards to conventional moving averages is its minimal lag. - The classic EMA, SMA, SMMA and other Moving Average lines have a significant minus – signal lag. - The MA ALMA in this regard is more perfect. In a volatile market, this tool shows very good trading results, even without the use of auxiliary filters. The Arnaud Legoux moving average attempts to bridge the gap and thus is expected to show both responsiveness and smoothness at the same time. Generally, the Arnaud Legoux Moving Average indicator applies the moving average twice, once from left to right and the other from right from left with the process said to eliminate price lag or phase shift significantly, a problem that is common to the traditional moving averages. Source: Read more on [Stock Maniacs](https://www.stockmaniacs.net/arnaud-legoux-moving-average-indicator/) ## How to Use ```python # import the package from AlmaIndicator import ALMAIndicator # define a Pandas dataframe which should contain closing price of the stocks df = ... # initialize the indicator # you only need to provide a Pandas series of the closing price of the stock alma_indicator = ALMAIndicator(close=df['close']) # add alma to dataframe by calling the alma function df['alma'] = alma_indicator.alma() ``` ## Sample Result ![spy - data](https://user-images.githubusercontent.com/29625844/92999031-54f8c600-f550-11ea-974c-ae96fdb8e623.png) Note that there will be `NaN` values at the beginning of the ALMA series since there is a window of analysis which is set to 9. In other words, your dataset must at least contain 9 entries. ## Sample Figure ![spy - alma](https://user-images.githubusercontent.com/29625844/92998867-1d3d4e80-f54f-11ea-919c-dd48c8927172.png)
AlmaIndicator
/AlmaIndicator-0.0.4.tar.gz/AlmaIndicator-0.0.4/README.md
README.md
# practicaUUF4 Codigo de ejemplo para utilizar el paquete: import self as self from Almacen import Almacen from Clases.Bebida import Bebida class Main: a = Almacen bebida = Bebida bebida = [[1, 1, 'Bezoya', 2, 2, 'Guadarrama', '', ''], [2, 1, 'Fanta', 1.5, 1.5, '', 'True', 'Free'], [3, 1, 'Coca-Cola', 1.75, 2, '', 'False', '5%'], [4, 1, 'Viladrau', 1.5, 1.5, 'Fontalegre', '', ''], [5, 1, 'Pepsi', 1.85, 1, '', 'True', '6%'], [6, 2, 'Fontvella', 2.5, 2, 'Girona', '', ''], [7, 2, 'Bezoya', 2, 1, 'Guadarrama', '', ''], [8, 2, 'Viladrau', 1.5, 2, 'Fontalegre', '', ''], [9, 2, 'Trina', 1.75, 1.5, '', 'False', '6%'], [10, 2, 'Coca-Cola', 1.75, 1.5, '', 'False', 'Free']] Almacen().afegirBeguda(bebida) print("¡Bebidas añadidas!") a.mostrarEstanteria(self) print("El precio total de todas las bebidas es: " + a.calcularPrecioTotal(self)) print("El precio total de las bebidas de la marca Bezoya es: " + a.calcularPrecioMarca(self, "Fanta")) print("El precio total de la columna 1: " + a.calcularPrecioColumna(self, 1)) print("Se va a eliminar una bebida") a.eliminarBebida(self, 3) a.mostrarEstanteria(self) print("El precio total de todas las bebidas es: " + a.calcularPrecioTotal(self)) print("El precio total de las bebidas de la marca Bezoya es: " + a.calcularPrecioMarca(self, "Bezoya")) print("El precio total de la columna 2: " + a.calcularPrecioColumna(self, 2))
AlmacenBebidasAlba1
/AlmacenBebidasAlba1-1.1.5.tar.gz/AlmacenBebidasAlba1-1.1.5/README.md
README.md
"""Colored custom logger module by ahmetkkn07 (Python3.6+ Compatible)""" # ============================================================================= # Imports # ============================================================================= import os import datetime import inspect class LogLevel: FATAL = 900 ERROR = 800 WARNING = 700 INFO = 600 DEBUG = 500 TRACE = 400 TEST = 300 ALL = 100 class Term: BOLD = '\033[1m' REVERSE = "\033[;7m" CLEAR = '\033[0m' RED = '\033[91m' YELLOW = '\033[93m' GREEN = '\033[92m' PURPLE = '\033[95m' BLUE = '\033[94m' # unused CYAN = '\033[96m' class Alogger: def __init__( self, path="", log_level=LogLevel.ALL, log_to_file=True, log_name=None, log_file_type="txt" ) -> None: """Constructor of Alogger class. Args: log_level (LogLevel, optional): Set level to log. Defaults to ALL log_to_file (bool, optional): Set True if you want to save logs to file. Defaults to False. log_name (str, optional): Custom file name for log file. Defaults to caller filename. log_file_type (str, optional): Type of file that saved logs. Defaults to 'txt', can set to 'html'. """ self.log_level = log_level self.log_to_file = log_to_file self.log_file_type = log_file_type self.caller_filename = f"{inspect.stack()[1].filename.split('.py')[0]}" if os.name == "nt": self.caller_filename = self.caller_filename.split("\\")[-1] elif os.name == "posix": self.caller_filename = self.caller_filename.split("/")[-1] if path != "": self.path = path else: self.path = os.curdir if log_to_file: if log_name is not None: self.log_name = log_name else: if log_file_type == "html": self.log_name = f"{self.caller_filename}_log.html" if os.name == "nt": self.log_name = self.log_name.split("\\")[-1] elif os.name == "posix": self.log_name = self.log_name.split("/")[-1] elif log_file_type == "txt": self.log_name = f"{self.caller_filename}.log" if os.name == "nt": self.log_name = self.log_name.split("\\")[-1] elif os.name == "posix": self.log_name = self.log_name.split("/")[-1] def fatal(self, *messages) -> None: if self.log_level <= LogLevel.FATAL: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.REVERSE}{Term.RED}FATAL: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "FATAL") self._write_to_file(message) def error(self, *messages) -> None: if self.log_level <= LogLevel.ERROR: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.RED}{Term.BOLD}ERROR: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "ERROR") self._write_to_file(message) def warning(self, *messages) -> None: if self.log_level <= LogLevel.WARNING: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.YELLOW}{Term.BOLD}WARNING: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "WARNING") self._write_to_file(message) def info(self, *messages) -> None: if self.log_level <= LogLevel.INFO: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.GREEN}{Term.BOLD}INFO: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "INFO") self._write_to_file(message) def debug(self, *messages) -> None: if self.log_level <= LogLevel.DEBUG: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.BLUE}{Term.BOLD}DEBUG: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "DEBUG") self._write_to_file(message) def trace(self, *messages) -> None: if self.log_level <= LogLevel.TRACE: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.PURPLE}{Term.BOLD}TRACE: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "TRACE") self._write_to_file(message) def test(self, *messages) -> None: if self.log_level <= LogLevel.TEST: caller = inspect.stack()[1] # 0 represents this line frame = caller[0] info = inspect.getframeinfo(frame) caller = f"@{self.caller_filename}.{inspect.stack()[1][3]}:"\ + f"{info.lineno}" caller = caller.replace("<module>", "_") messages = [str(message) for message in messages] print( f"{Term.REVERSE}{Term.BOLD}TEST: {' '.join(messages)}. " + f"{caller}{Term.CLEAR}") message = self._create_message(messages, caller, "TEST") self._write_to_file(message) def _write_to_file(self, message: str): if self.log_to_file: os.chdir(self.path) with open(self.log_name, "a+") as file: file.write(f"{message}\n\n") def _create_message(self, messages, caller, log_type): now = datetime.datetime.now() message = "" if self.log_file_type == "html": message = '<div style="background-color:#FF5C57; '\ + f'color: #282A36;">{now} {log_type}: {" ".join(messages)}. '\ + f'{caller} < /div >' elif self.log_file_type == "txt": message = f'{now} {log_type}: {" ".join(messages)}. {caller}' return message
AloggerPy
/AloggerPy-1.1.tar.gz/AloggerPy-1.1/src/Alogger/Alogger.py
Alogger.py
# Alp software: Alp time tools # Copyright (C) 2010 Niels Serup # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # Version:...... 0.1.0 # Maintainer:... Niels Serup <[email protected]> # Website:...... http://metanohi.org/projects/alp/ # Development:.. http://gitorious.org/Alp version = (0, 1, 0) __doc__ = """\ alp """ import sys from datetime import datetime, timedelta import re import time as time_module try: import curses _has_curses = True except ImportError: _has_curses = False try: import termcolor _has_termcolor = True colored_orig = termcolor.colored _normal_esc_seq = colored_orig('>', 'grey').split('>')[1] def _colored(color, typ): if color == 'black': color = 'grey' if typ == 'bg': fg_color = None bg_color = 'on_' + color elif typ == 'fg': fg_color = color bg_color = None return colored_orig('>', fg_color, bg_color).split('>')[0] def _formatted(typ): try: return colored_orig('>', attrs=[typ]).split('>')[0] except KeyError: if typ == 'normal': return _normal_esc_seq else: return '' except ImportError: _has_termcolor = False _colored = lambda color, typ: '' _formatted = lambda typ: '' ###################################################################### # Basic constants _epoch = datetime(2010, 10, 15, 12, 00, 00) _one_alp = 2 ** 18 _hexalp_divide = 2 ** 14 _qvalp_divide = 2 ** 12 _salp_divide = 2 ** 8 _talp_divide = 2 ** 4 class AlpTime(object): """The Alp time object""" seconds_since_epoch=None seconds=None alp=None hexalp=None qvalp=None salp=None talp=None second=None def __init__(self): self.speed = 1 self.set_start_date() def set_start_date(self, date=None): """Set the start date (using Python's datetime module)""" now = datetime.utcnow() if date is None: date = now self.start_date = date self.start_diff = self.start_date - _epoch self.now_diff = self.start_date - now self.update() def get_start_date(self): """Get the start date""" return self.start_date def set_speed(self, speed=1): """Set the debug speed""" self.speed = speed def get_speed(self): """Get the debug speed""" return self.speed def get_seconds_since_epoch(self, date=None): """Get the number of seconds since epoch""" if date is None: date = datetime.utcnow() + self.now_diff diff = self.start_diff + (date - self.start_date) * self.speed return diff.days * 86400 + diff.seconds, diff def update(self, date=None): """Update the internal time""" passed, diff = self.get_seconds_since_epoch(date) self.date = self.start_date + diff self.real_date = self.start_date + diff - self.start_diff seconds_total = passed % _one_alp alp = passed / _one_alp seconds_left = seconds_total hexalp = seconds_left / _hexalp_divide seconds_left -= hexalp * _hexalp_divide qvalp = seconds_left / _qvalp_divide seconds_left -= qvalp * _qvalp_divide salp = seconds_left / _salp_divide seconds_left -= salp * _salp_divide talp = seconds_left / _talp_divide seconds_left -= talp * _talp_divide second = seconds_left self.seconds_since_epoch = passed self.alp = int(alp) self.seconds = int(seconds_total) self.hexalp = int(hexalp) self.qvalp = int(qvalp) self.salp = int(salp) self.talp = int(talp) self.second = int(second) def __str__(self): return 'AlpTime{alp: %d, hexalp: %d, qvalp: %d, \ salp: %d, talp: %d, second: %d}' % \ (self.alp, self.hexalp, self.qvalp, self.salp, self.talp, self.second) time = AlpTime() def update(date=None): """Update the internal time""" time.update(date) def set_start_date(date=None): """Set the start date (using Python's datetime module)""" time.set_start_date(date) def set_speed(speed=1): """Set the debug speed""" time.set_speed(speed) def get_seconds_since_epoch(date=None): """Get the number of seconds since epoch""" return time.get_seconds_since_epoch(date) def alp_to_datetime(alp, hexalp, qvalp, salp, talp, second): """Return a datetime object of the given Alp date""" date = [alp, hexalp, qvalp, salp, talp, second] date[0] = int(date[0]) try: for i in range(len(date) - 1): date[i + 1] = int(date[i + 1], 16) except TypeError: pass secs = date[0] * _one_alp + date[1] * _hexalp_divide + \ date[2] * _qvalp_divide + date[3] * _salp_divide + \ date[4] * _talp_divide + date[5] return _epoch + timedelta(seconds=secs) ###################################################################### # Using curses without initscr _curses_colors = ('BLUE', 'GREEN', 'CYAN', 'RED', 'MAGENTA', 'YELLOW', 'WHITE', 'BLACK') _curses_controls = { 'up': 'cuu1', 'down': 'cud1', 'left': 'cub1', 'right': 'cuf1', 'clear_screen': 'clear', 'clear_line': 'el', 'bold': 'bold', 'blink': 'blink', 'dim': 'dim', 'reverse': 'rev', 'underline': 'smul', 'normal': 'sgr0', 'hide_cursor': 'civis', 'show_cursor': 'cnorm' } _formatter_control_regex = re.compile(r'!\((.+?)\)') _formatter_bg_color_regex = re.compile(r'#\((.+?)\)') _formatter_fg_color_regex = re.compile(r'\$\((.+?)\)') _formatter_codes_regex = re.compile(r'[!#\$]\(.+?\)') _formatter_not_all_codes_regex = re.compile( r'([#\$]\(.+?\)|!\((bold|underline|blink|reverse)\))') def unformat(text, also_controls=True): """Remove formatting codes from text""" if also_controls: return _formatter_codes_regex.sub('', text) else: return _formatter_not_all_codes_regex.sub('', text) def _textlen(text): return len(unformat(text).decode('utf-8')) class BaseFormatter(object): """A generic text formatting generator""" def _generate_part(self, attr, obj): return '' def generate(self, text, put=False): """ Generate formatted text according to these codes: Foreground color codes: $(color) (e.g. $(green)) Background color codes: #(color) (e.g. #(red)) Formatting codes: !(code) (e.g. !(up)) You can use blue, green, cyan, red, magenta, yellow, white and black as colors. These are the formatting codes with their actions and curses equivalents: code | description | in curses -------------+----------------------+---------- up | one line up | cuu1 down | one line down | cud1 left | one char left | cub1 right | one char right | cuf1 clear_screen | clear screen | clear clear_line | clear line | el bold | bold text | bold blink | blinking text | blink dim | dim text | dim reverse | reverse text | rev underline | underline text | smul normal | reset all formatting | sgr0 hide_cursor | hide cursor | civis show_cursor | show cursor | cnorm """ text = _formatter_control_regex.sub( lambda obj: self._generate_part('controls', obj), text) text = _formatter_bg_color_regex.sub( lambda obj: self._generate_part('bg_colors', obj), text) text = _formatter_fg_color_regex.sub( lambda obj: self._generate_part('fg_colors', obj), text) if put: sys.stdout.write(text) return text def clear(self): """Clear line""" self.generate('!(clear_line)', True) def _end(self): pass class _CursesControls(BaseFormatter): """ A text formatting generator and a container of curses escape sequences """ def __init__(self): self.bg_colors = {} self.fg_colors = {} self.controls = {} self.cols = 0 self.lines = 0 if not sys.stdout.isatty(): return try: curses.setupterm() except Exception, e: return bg_seq = curses.tigetstr('setab') or curses.tigetstr('setb') or '' fg_seq = curses.tigetstr('setaf') or curses.tigetstr('setf') or '' # Get escape sequences for color in _curses_colors: index = getattr(curses, 'COLOR_%s' % color) color = color.lower() self.bg_colors[color] = curses.tparm(bg_seq, index) self.fg_colors[color] = curses.tparm(fg_seq, index) for control in _curses_controls: self.controls[control] = curses.tigetstr(_curses_controls[control]) or '' self.cols = curses.tigetnum('cols') self.lines = curses.tigetnum('lines') def _generate_part(self, attr, obj): return self.__getattribute__(attr)[obj.groups(1)[0]] def _end(self): print formatter.generate('!(normal)!(show_cursor)!(up)') class _FakeCursesControls(BaseFormatter): """A text formatting generator without curses""" def _generate_part(self, attr, obj): obj = obj.groups(1)[0] if attr == 'bg_colors': return _colored(obj, 'bg') elif attr == 'fg_colors': return _colored(obj, 'fg') elif attr == 'controls': return _formatted(obj) # Else return '' def _end(self): print formatter.generate('!(normal)') formatter = None def start_formatter(use_curses=True): """ Start the formatter, making the global formatter variable into an instance of a class related with the BaseFormatter class """ global formatter, start_formatter, _using_curses if not _has_curses or not use_curses: _using_curses = False formatter = _FakeCursesControls() else: formatter = _CursesControls() _using_curses = True start_formatter = lambda *arg: True return formatter ###################################################################### # Date formats ## a '#' in the end returns the number in hex ## an '_' in the end followed by a number prepends # (<number> - len(str(number)) zeroes to the number ## Available "units": ### seconds, seconds_since_epoch, alp, hexalp, qvalp, salp, talp, second _default_hex_date_format = '\ !(bold)#(black)$(yellow)ALP\ #(cyan)$(yellow)&(alp_4)\ #(blue)$(white)/\ #(black)$(green)&(hexalp#)\ $(cyan)&(qvalp)\ $(red)&(salp#)\ &(talp#)\ $(white)&(second#)' # e.g. 2403/93EC2 _date_format_unit_regex = re.compile(r'&\((.+?)\)') def _format_replace(obj): unit = obj.groups(1)[0] zero_prepend = '_' in unit as_hex = unit.endswith('#') if zero_prepend: spl = unit.split('_') unit = spl[0] z_num = spl[1] elif as_hex: unit = unit[:-1] value = time.__dict__[unit] if zero_prepend: return ('%0' + z_num + 'd') % value elif as_hex: return hex(value)[2:].upper() else: return str(value) def get_date_text(date_format=None): """Get the Alp date in date_format""" if date_format is None: date_format = _default_hex_date_format return _date_format_unit_regex.sub(_format_replace, date_format) ###################################################################### # Virtual LEDs creating a clock _clock_letters = 'abcdefghijklmnopqrs' _default_clock_layout = '''\ a b c d e g h i j f k l m n o p q r s\ ''' _default_clock_controls = '#(yellow)' class _Container(object): pass class _Lamp(object): """A simulation of a simple lamp""" def __init__(self, **kwds): self.items = { True: _Container(), False: _Container()} for key, val in kwds.iteritems(): if key[-1] in ('0', '1'): key_vals = bool(int(key[-1])), key = key[:-1] else: key_vals = True, False for x in key_vals: self.items[x].__setattr__(key, val) for x in self.items.values(): d = x.__dict__ if not 'letter' in d: x.letter = 'o' if not 'fg' in d: x.fg = None if not 'bg' in d: x.bg = None if not 'controls' in d: x.controls = None def generate(self, state): info = self.items[state] text = info.letter pre_esc = '' if info.bg: pre_esc += '#(%s)' % info.bg if info.fg: pre_esc += '$(%s)' % info.fg if info.controls: for x in info.controls: pre_esc += '!(' + x + ')' text = pre_esc + text if pre_esc: text += '!(normal)' return text _clock_formatting = { 'a': _Lamp(bg='yellow', fg='green', letter0='·', letter1='O', controls=['bold']), 'b': _Lamp(bg='yellow', fg='green', letter0='·', letter1='O', controls=['bold']), 'c': _Lamp(bg='yellow', fg='green', letter0='·', letter1='O', controls=['bold']), 'd': _Lamp(bg='yellow', fg='green', letter0='·', letter1='O', controls=['bold']), 'e': _Lamp(bg='magenta', fg='cyan', letter0='·', letter1='#', controls=['bold']), 'f': _Lamp(bg='magenta', fg='cyan', letter0='·', letter1='#', controls=['bold']), 'g': _Lamp(bg='black', fg='red', letter0='·', letter1='o', controls=['bold']), 'h': _Lamp(bg='black', fg='red', letter0='·', letter1='o', controls=['bold']), 'i': _Lamp(bg='black', fg='red', letter0='·', letter1='o', controls=['bold']), 'j': _Lamp(bg='black', fg='red', letter0='·', letter1='o', controls=['bold']), 'k': _Lamp(bg='blue', fg='red', letter0='·', letter1='o', controls=['bold']), 'l': _Lamp(bg='blue', fg='red', letter0='·', letter1='o', controls=['bold']), 'm': _Lamp(bg='blue', fg='red', letter0='·', letter1='o', controls=['bold']), 'n': _Lamp(bg='blue', fg='red', letter0='·', letter1='o', controls=['bold']), 'o': _Lamp(bg='yellow', fg='white', letter0='·', letter1='>', controls=['bold']), 'p': _Lamp(bg='yellow', fg='white', letter0='·', letter1='>', controls=['bold']), 'q': _Lamp(bg='yellow', fg='white', letter0='·', letter1='>', controls=['bold']), 'r': _Lamp(bg='yellow', fg='white', letter0='·', letter1='>', controls=['bold']), 's': _Lamp(bg='yellow', fg='white', letter0='·', letter1='>', controls=['bold']), '*': _Lamp(letter0='.', letter1='o') # For eventual non-defined letters } _clock_states = {} def _set_states_from_hex(unit_time, *var): global _clock_states for i in range(len(var) - 1, -1, -1): t = unit_time / 2**i unit_time -= t * 2**i _clock_states[var[i]] = bool(t) def _get_states_from_hex(unit_time, w=4): num = [] for i in range(w - 1, -1, -1): t = unit_time / 2**i unit_time -= t * 2**i num.append(bool(t)) num.reverse() return num def update_clock(): """Update the internal representation of a physical Alp clock""" global _clock_states _set_states_from_hex(time.hexalp, 'a', 'b', 'c', 'd') _set_states_from_hex(time.qvalp, 'e', 'f') _set_states_from_hex(time.salp, 'g', 'h', 'i', 'j') _set_states_from_hex(time.talp, 'k', 'l', 'm', 'n') Q = _get_states_from_hex(time.second) O = Q[0] or Q[1] P = Q[2] ^ Q[3] R = not Q[2] and not Q[3] val_e = (not Q[0] and Q[1] and P) or (Q[0] and \ ((Q[2] and Q[3]) or (not Q[1] and not Q[2] and not Q[3]))) val_d = Q[1] and ((not Q[0] and not P) or (Q[0] \ and ((not Q[2] and Q[3]) or Q[2]))) val_c = (Q[3] and (Q[2] or not O)) or (Q[0] and Q[1] and R) val_b = (not O and Q[2] and not Q[3]) or (Q[3] and (O or Q[2])) val_a = Q[3] or (Q[2] and O) _clock_states['o'] = val_e _clock_states['p'] = val_d _clock_states['q'] = val_c _clock_states['r'] = val_b _clock_states['s'] = val_a def _get_clock_formatting(obj): obj = obj.groups(1)[0] try: return _clock_formatting[obj].generate(_clock_states[obj]) except KeyError: return _clock_formatting['*'].generate(_clock_states[obj]) def get_clock_text(clock_layout=None): """Get a representation of a physical Alp clock""" if clock_layout is None: clock_layout = _default_clock_layout clock_layout = re.sub(r'([' + _clock_letters + '])', lambda obj: _get_clock_formatting(obj) \ + _default_clock_controls, clock_layout) text = _default_clock_controls + clock_layout.replace( '\n', '!(normal)\n' + _default_clock_controls) + '!(normal)' return text update_clock() ###################################################################### # Gregorian calendar compatibility # Format (using strftime) _default_gregorian_date_format = '\ !(bold)#(red)$(white)GR\ #(yellow) \ !(bold)#(cyan)$(yellow)%Y\ #(blue)$(white)-\ #(cyan)$(yellow)%m\ #(blue)$(white)-\ #(cyan)$(yellow)%d\n\ !(bold)#(red)$(white)EGOR\ #(yellow) \ #(black)$(cyan)%H\ #(blue)$(white):\ #(black)$(green)%M\ #(blue)$(white):\ #(black)$(red)%S' def get_gregorian_date_text(date_format=None): """Get the Gregorian date in date_format""" if date_format is None: date_format = _default_gregorian_date_format return time.real_date.strftime(date_format) ###################################################################### # Convenience functions def update_all(date=None): """Update both internal time and clock representation""" update(date) update_clock() def print_time(date_format=None, greg_date_format=None, clock_layout=None, date=None, show=None, formatting=False, continous=None, **kwds): """ Print the time in different ways. All arguments can be given as keyword arguments instead of ordinary arguments. """ date_format = date_format or kwds.get('date_format') greg_date_format = greg_date_format or kwds.get('greg_date_format') clock_layout = clock_layout or kwds.get('clock_layout') date = date or kwds.get('date') or datetime.utcnow() show = show or kwds.get('show') or ['datetime'] use_formatting = formatting if use_formatting is None: use_formatting = kwds.get('formatting') if use_formatting is None: use_formatting = True be_continous = continous or kwds.get('continous') or False def _print_part(): t = '' for x in show: if x == 'datetime': date_text = get_date_text(date_format) t += '\n\n' + date_text elif x == 'gregdatetime': greg_date_text = get_gregorian_date_text(greg_date_format) t += '\n\n' + greg_date_text elif x == 'clock': update_clock() clock_text = get_clock_text(clock_layout) t += '\n\n' + clock_text t = t.strip() return t + '!(normal)' start_formatter() formatter.generate('!(hide_cursor)', True) update() prev = time.seconds_since_epoch if not be_continous: text = _print_part() text = text.replace('\n', '!(normal)\n') + '!(normal)' if not use_formatting: text = unformat(text, False) text = formatter.generate(text) if _using_curses: print text else: print text, return go_up = 0 try: while True: update() now = time.seconds_since_epoch if now > prev: prev = now if _using_curses: text = '!(up)' * go_up + '!(up)\n' + \ _print_part() + '!(up)!(down)' else: text = _print_part() + '\n\n' text = text.replace('\n', '!(normal)\n') + '!(normal)' go_up = text.count('\n') - 1 if not use_formatting: text = unformat(text, False) formatter.generate(text, True) sleep_time = 0.5 / time.speed if sleep_time < 0.01: sleep_time = 0.01 time_module.sleep(sleep_time) except KeyboardInterrupt: formatter.generate('\n!(up)' + '!(clear_line)!(up)' * go_up, True) raise KeyboardInterrupt() ###################################################################### if __name__ == '__main__': from optparse import OptionParser class XParser(OptionParser): def format_epilog(self, formatter): return self.epilog parser = XParser( usage='Usage: %prog [options] [date]', description='Alp time tools', version='''Alp software %s Copyright (C) 2010 Niels Serup License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.''' % '.'.join(map(str, version)), epilog=''' The date format is "GRE:year,month,day,hour,minute,second" if you specify a date from the Gregorian calendar, or "ALP:alp,hexalp,qvalp,salp,talp,second" if you specify a date using the Alp units. If no date is given, it defaults to "now". Examples: Show both the Alp time, the gregorian time, and an Alp clock alp -s all -c Show only the Alp time: alp -c Show once, then exit alp Continously show a clock with no formatting: alp -c -F -s clock ''') parser.add_option('-s', '--show', dest='show', metavar='TYPE', action='append', help='choose which types of displays to show. You \ can choose between "datetime" (or "1"), "clock" (or "2"), and \ "gregdatetime" (or "3"). You can also set it to "all". This setting can \ be specified more than once, but if it isn\'t given at all, only \ "datetime" is shown') parser.add_option('-c', '--continous', dest='continous', action='store_true', default=False, help='Instead of printing the date just once, \ print it again and again until you interrupt it') parser.add_option('-F', '--no-formatting', dest='formatting', action='store_false', default=True, help='don\'t attempt to format strings (i.e. using \ colors and making the text bold)') parser.add_option('--no-curses', dest='use_curses', action='store_false', default=True, help='do not attempt to use the curses library') parser.add_option('--debug-speed', dest='debug_speed', metavar='SPEED', type='int', help='change the speed (default is 1; setting it to \ a higher value makes it go faster).') options, args = parser.parse_args() try: date = args[0].lower().split(':') typ = date[0] date = date[1].split(',') if typ == 'alp': date = alp_to_datetime(*date) elif typ == 'gre': date = datetime(*map(int, date)) except IndexError: date = datetime.utcnow() if options.show is None: options.show = ['datetime'] elif 'all' in options.show: options.show = ['datetime', 'clock', 'gregdatetime'] else: for i in range(len(options.show)): if options.show[i] == '1': options.show[i] = 'datetime' elif options.show[i] == '2': options.show[i] = 'clock' elif options.show[i] == '3': options.show[i] = 'gregdatetime' if options.debug_speed is not None: set_speed(options.debug_speed) try: from setproctitle import setproctitle setproctitle('alp') except ImportError: pass start_formatter(options.use_curses) set_start_date(date) try: print_time(date=date, show=options.show, formatting=options.formatting, continous=options.continous) except (KeyboardInterrupt, EOFError): pass finally: formatter._end()
Alp
/Alp-0.1.1.tar.gz/Alp-0.1.1/alp.py
alp.py
============ Alp software ============ The Alp is a new unit meant for measuring time. To understand and use this unit, the program included in this distribution has been created. It's both a command-line tool, named "alp", and a Python module. You can learn about the Alp unit and download documentation about it at http://metanohi.org/projects/alp/ License ======= Alp software is free software under the terms of the GNU General Public License version 3 (or any later version). The author of Alp software is Niels Serup, contactable at [email protected]. This is version 0.1.1 of the program. The libraries used by Alp software are GPL-compatible. Installing ========== The Alp program and module is contained in a single file, ``alp.py``. It is not necessary to install it, but it can make it easier to use the Alp software. Way #1 ------ Just run this (requires that you have python-setuptools installed):: # easy_install Alp Way #2 ------ Get the newest version of Alp at http://metanohi.org/projects/alp/ or at http://pypi.python.org/pypi/Alp Extract the downloaded file and run this in a terminal:: # python setup.py install Dependencies ============ Python 2.5+ is probably a requirement. For formatting and control codes, Alp will attempt to use ncurses. If that fails, Alp will try to use the Python termcolor module, available at http://pypi.python.org/pypi/termcolor/, installable using ``$ sudo easy_install termcolor`` (released under the GPLv3+). If present, Alp will also use the ``setproctitle`` Python module, available at http://pypi.python.org/pypi/setproctitle/, installable using ``$ sudo easy_install setproctitle`` (released under the New BSD License). Using ===== When using the Alp software as a command-line tool, simply run ``alp``. Run ``alp --help`` to see what options you can specify. When using it as a module, just use ``import alp`` in your Python program. To learn how the Alp module works, run ``pydoc alp`` or ``python -c 'import alp; help(alp)'``. There are also a couple of tests in the ``tests`` directory. Developing ========== Alp software is written in Python and uses Git for branches. To get the latest branch, get it from gitorious.org like this:: $ git clone git://gitorious.org/Alp/alp.git This document ============= Copyright (C) 2010 Niels Serup Copying and distribution of this file, with or without modification, are permitted in any medium without royalty provided the copyright notice and this notice are preserved. This file is offered as-is, without any warranty.
Alp
/Alp-0.1.1.tar.gz/Alp-0.1.1/README.txt
README.txt
# Alpha - Mind <table> <tr> <td>Python version</td> <td><img src="https://img.shields.io/badge/python-3.6-blue.svg"/> </td> </tr> <tr> <tr> <td>Build Status</td> <td> <img src="https://travis-ci.org/alpha-miner/alpha-mind.svg" alt="travis build status" /> </td> </tr> <tr> <td>Coverage</td> <td><img src="https://coveralls.io/repos/github/alpha-miner/alpha-mind/badge.svg?branch=master" alt="coverage" /></td> </tr> </table> **Alpha - Mind** 是基于 **Python** 开发的股票多因子研究框架。 ## TODO list **alpha-mind**的开发经过长期的暂停之后,将重启。下面的列表会给出一组现在规划中的功能或者改进: - [x] 增加对于数据后端MySQL的支持; - [ ] 增加对于数据后端CSV文件的支持,并且提供一份样例文件供用户测试使用; - [x] 删除所有的c++相关代码,方便alpha-mind的安装; - [x] 在windows以及linux平台提供可以直接pip安装的安装包; - [ ] 完整的文档; - [ ] alpha模型增加超参数调优的功能; - [ ] alpha模型增加多期预测能力; - [ ] 优化器增加多期优化的能力。 ## 依赖 该项目主要有两个主要的github外部依赖: * [Finance-Python](https://github.com/alpha-miner/finance-python) * [portfolio - optimizer](https://github.com/alpha-miner/portfolio-optimizer):该项目是相同作者编写的用于资产组合配置的优化器工具包; 这两个库都可以直接使用pip进行安装。 ## 功能 alpha - mind 提供了多因子研究中常用的工具链,包括: * 数据清洗 * alpha 模型 * 风险模型 * 组合优化 * 执行器 所有的模块都设计了完整的测试用例以尽可能保证正确性。同时,所有的数值模型开发中都对性能给予了足够高的关注,参考了优秀的第三方工具以保证性能: * numpy * numba * cvxopt * cvxpy * pandas * scipy ## 安装 安装需要直接clone或者下载源代码安装,具体流程为: 克隆项目到本地 ```shell $ git clone https://github.com/alpha-miner/alpha-mind.git ``` 然后直接使用一下命令安装 ```shell $ python setup.py install ``` ### 使用Docker运行 1. `docker build -t alpha-mind:latest -f Dockerfile .` 2. `docker run -it -p 8080:8080 --name alpha-mind alpha-mind` #### 提示 环境变量的配置在`./entrypoint.sh`中,包括: * `DB_VENDOR`: 如果使用mysql,请设置为`rl`; * `DB_URI`: 数据库的连接串。 * `FACTOR_TABLES`: 使用的因子表
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/README.md
README.md
from alphamind.data.engines.sqlengine import SqlEngine from alphamind.data.engines.sqlengine import risk_styles from alphamind.data.engines.sqlengine import industry_styles from alphamind.data.engines.sqlengine import macro_styles from alphamind.analysis.factoranalysis import er_portfolio_analysis from alphamind.analysis.factoranalysis import factor_analysis from alphamind.analysis.quantileanalysis import er_quantile_analysis from alphamind.analysis.quantileanalysis import quantile_analysis from alphamind.data.engines.universe import Universe from alphamind.data.engines.utilities import industry_list from alphamind.data.neutralize import neutralize from alphamind.data.processing import factor_processing from alphamind.data.rank import percentile from alphamind.data.rank import rank from alphamind.data.standardize import Standardizer from alphamind.data.standardize import projection from alphamind.data.standardize import standardize from alphamind.data.winsorize import NormalWinsorizer from alphamind.data.winsorize import winsorize_normal from alphamind.execution.naiveexecutor import NaiveExecutor from alphamind.execution.pipeline import ExecutionPipeline from alphamind.execution.targetvolexecutor import TargetVolExecutor from alphamind.execution.thresholdexecutor import ThresholdExecutor from alphamind.model import ConstLinearModel from alphamind.model import LassoRegression from alphamind.model import LinearRegression from alphamind.model import LogisticRegression from alphamind.model import NvSVRModel from alphamind.model import RandomForestClassifier from alphamind.model import RandomForestRegressor from alphamind.model import XGBClassifier from alphamind.model import XGBRegressor from alphamind.model import XGBTrainer from alphamind.model import load_model from alphamind.model.composer import Composer from alphamind.model.composer import DataMeta from alphamind.model.composer import predict_by_model from alphamind.model.composer import train_model from alphamind.model.data_preparing import fetch_data_package from alphamind.model.data_preparing import fetch_predict_phase from alphamind.model.data_preparing import fetch_train_phase from alphamind.portfolio.constraints import BoundaryDirection from alphamind.portfolio.constraints import BoundaryType from alphamind.portfolio.constraints import Constraints from alphamind.portfolio.constraints import LinearConstraints from alphamind.portfolio.constraints import create_box_bounds from alphamind.portfolio.evolver import evolve_positions from alphamind.utilities import alpha_logger from alphamind.utilities import map_freq __all__ = [ 'SqlEngine', 'factor_analysis', 'er_portfolio_analysis', 'quantile_analysis', 'er_quantile_analysis', 'Universe', 'factor_processing', 'Constraints', 'LinearConstraints', 'BoundaryType', 'BoundaryDirection', 'create_box_bounds', 'evolve_positions', 'risk_styles', 'industry_styles', 'macro_styles', 'winsorize_normal', 'NormalWinsorizer', 'standardize', 'Standardizer', 'projection', 'neutralize', 'rank', 'percentile', 'industry_list', 'fetch_data_package', 'fetch_train_phase', 'fetch_predict_phase', 'Composer', 'DataMeta', 'train_model', 'predict_by_model', 'LinearRegression', 'LassoRegression', 'ConstLinearModel', 'LogisticRegression', 'RandomForestRegressor', 'RandomForestClassifier', 'XGBRegressor', 'XGBClassifier', 'XGBTrainer', 'NvSVRModel', 'load_model', 'NaiveExecutor', 'ThresholdExecutor', 'TargetVolExecutor', 'ExecutionPipeline', 'alpha_logger', 'map_freq' ]
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/api.py
api.py
import base64 import math import pickle import numba as nb import numpy as np from simpleutils import CustomLogger alpha_logger = CustomLogger('ALPHA_MIND', 'info') def map_freq(freq): if freq == '1m': horizon = 21 elif freq == '1w': horizon = 4 elif freq == '2w': horizon = 9 elif freq == '3w': horizon = 14 elif freq == '4w': horizon = 19 elif freq == '1d': horizon = 0 elif freq[-1] == "b": horizon = int(freq[:-1]) - 1 else: raise ValueError("Unrecognized freq: {0}".format(freq)) return horizon def groupby(groups): order = groups.argsort() t = groups[order] index_diff = np.where(np.diff(t))[0] return np.concatenate([index_diff, [len(groups)]]), order @nb.njit(nogil=True, cache=True) def set_value(mat, used_level, to_fill): length, width = used_level.shape for i in range(length): for j in range(width): k = used_level[i, j] mat[k, j] = to_fill @nb.njit(nogil=True, cache=True) def group_mapping(groups: np.ndarray) -> np.ndarray: length = groups.shape[0] order = groups.argsort() res = np.zeros(length, dtype=order.dtype) start = 0 res[order[0]] = start previous = groups[order[0]] for i in range(1, length): curr_idx = order[i] curr_val = groups[curr_idx] if curr_val != previous: start += 1 res[curr_idx] = start else: res[curr_idx] = start previous = curr_val return res @nb.njit(nogil=True, cache=True) def simple_sum(x, axis=0): length, width = x.shape if axis == 0: res = np.zeros(width) for i in range(length): for j in range(width): res[j] += x[i, j] elif axis == 1: res = np.zeros(length) for i in range(length): for j in range(width): res[i] += x[i, j] else: raise ValueError("axis value is not supported") return res @nb.njit(nogil=True, cache=True) def simple_abssum(x, axis=0): length, width = x.shape if axis == 0: res = np.zeros(width) for i in range(length): for j in range(width): res[j] += abs(x[i, j]) elif axis == 1: res = np.zeros(length) for i in range(length): for j in range(width): res[i] += abs(x[i, j]) else: raise ValueError("axis value is not supported") return res @nb.njit(nogil=True, cache=True) def simple_sqrsum(x, axis=0): length, width = x.shape if axis == 0: res = np.zeros(width) for i in range(length): for j in range(width): res[j] += x[i, j] * x[i, j] elif axis == 1: res = np.zeros(length) for i in range(length): for j in range(width): res[i] += x[i, j] * x[i, j] else: raise ValueError("axis value is not supported") res = np.sqrt(res) return res @nb.njit(nogil=True, cache=True) def simple_mean(x, axis=0): length, width = x.shape if axis == 0: res = np.zeros(width) for j in range(width): for i in range(length): res[j] += x[i, j] res[j] /= length elif axis == 1: res = np.zeros(length) for i in range(length): for j in range(width): res[i] += x[i, j] res[i] /= width else: raise ValueError("axis value is not supported") return res @nb.njit(nogil=True, cache=True) def simple_std(x, axis=0, ddof=1): length, width = x.shape if axis == 0: res = np.zeros(width) sum_mat = np.zeros(width) for j in range(width): for i in range(length): res[j] += x[i, j] * x[i, j] sum_mat[j] += x[i, j] res[j] = math.sqrt((res[j] - sum_mat[j] * sum_mat[j] / length) / (length - ddof)) elif axis == 1: res = np.zeros(length) sum_mat = np.zeros(width) for i in range(length): for j in range(width): res[i] += x[i, j] * x[i, j] sum_mat[i] += x[i, j] res[i] = math.sqrt((res[i] - sum_mat[i] * sum_mat[i] / width) / (width - ddof)) else: raise ValueError("axis value is not supported") return res @nb.njit(nogil=True, cache=True) def agg_sum(groups, x): max_g = groups.max() length, width = x.shape res = np.zeros((max_g + 1, width), dtype=np.float64) for i in range(length): for j in range(width): res[groups[i], j] += x[i, j] return res @nb.njit(nogil=True, cache=True) def agg_sqrsum(groups, x): max_g = groups.max() length, width = x.shape res = np.zeros((max_g + 1, width), dtype=np.float64) for i in range(length): for j in range(width): res[groups[i], j] += x[i, j] * x[i, j] res = np.sqrt(res) return res @nb.njit(nogil=True, cache=True) def agg_abssum(groups, x): max_g = groups.max() length, width = x.shape res = np.zeros((max_g + 1, width), dtype=np.float64) for i in range(length): for j in range(width): res[groups[i], j] += abs(x[i, j]) return res @nb.njit(nogil=True, cache=True) def agg_mean(groups, x): max_g = groups.max() length, width = x.shape res = np.zeros((max_g + 1, width), dtype=np.float64) bin_count = np.zeros(max_g + 1, dtype=np.int32) for i in range(length): for j in range(width): res[groups[i], j] += x[i, j] bin_count[groups[i]] += 1 for i in range(max_g + 1): curr = bin_count[i] for j in range(width): res[i, j] /= curr return res @nb.njit(nogil=True, cache=True) def agg_std(groups, x, ddof=1): max_g = groups.max() length, width = x.shape res = np.zeros((max_g + 1, width), dtype=np.float64) sumsq = np.zeros((max_g + 1, width), dtype=np.float64) bin_count = np.zeros(max_g + 1, dtype=np.int32) for i in range(length): for j in range(width): res[groups[i], j] += x[i, j] sumsq[groups[i], j] += x[i, j] * x[i, j] bin_count[groups[i]] += 1 for i in range(max_g + 1): curr = bin_count[i] for j in range(width): res[i, j] = math.sqrt((sumsq[i, j] - res[i, j] * res[i, j] / curr) / (curr - ddof)) return res @nb.njit(nogil=True, cache=True) def copy_value(groups, source): length = groups.shape[0] width = source.shape[1] destination = np.zeros((length, width)) for i in range(length): k = groups[i] for j in range(width): destination[i, j] = source[k, j] return destination @nb.njit(nogil=True, cache=True) def scale_value(groups, source, x, scale): length, width = x.shape destination = x.copy() for i in range(length): k = groups[i] for j in range(width): destination[i, j] /= source[k, j] / scale return destination @nb.njit(nogil=True, cache=True) def array_index(array, items): to_look_length = items.shape[0] arr_length = array.shape[0] res = np.zeros(to_look_length, dtype=array.dtype) for i in range(to_look_length): for j in range(arr_length): if items[i] == array[j]: res[i] = j break return res def transform(groups: np.ndarray, x: np.ndarray, func: str, ddof: int = 1, scale: float = 1.) -> np.ndarray: if func == 'mean': value_data = agg_mean(groups, x) elif func == 'std': value_data = agg_std(groups, x, ddof=ddof) elif func == 'sum': value_data = agg_sum(groups, x) elif func == 'abssum' or func == 'scale': value_data = agg_abssum(groups, x) elif func == 'sqrsum' or func == 'project': value_data = agg_sqrsum(groups, x) else: raise ValueError('({0}) is not recognized as valid functor'.format(func)) if func == 'scale' or func == 'project': return scale_value(groups, value_data, x, scale) else: return copy_value(groups, value_data) def aggregate(groups, x, func, ddof=1): if func == 'mean': value_data = agg_mean(groups, x) elif func == 'std': value_data = agg_std(groups, x, ddof=ddof) elif func == 'sum': value_data = agg_sum(groups, x) elif func == 'abssum' or func == 'scale': value_data = agg_abssum(groups, x) elif func == 'sqrsum' or func == 'project': value_data = agg_sqrsum(groups, x) else: raise ValueError('({0}) is not recognized as valid functor'.format(func)) return value_data def encode(obj: object) -> str: encoded = base64.encodebytes(pickle.dumps(obj)) return encoded.decode('ascii') def decode(str_repr: str): encoded = str_repr.encode('ascii') return pickle.loads(base64.decodebytes(encoded))
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/utilities.py
utilities.py
from typing import Optional from typing import Tuple from typing import Union import numpy as np import pandas as pd from alphamind.data.processing import factor_processing from alphamind.data.standardize import standardize from alphamind.data.winsorize import winsorize_normal from alphamind.portfolio.constraints import Constraints from alphamind.portfolio.constraints import LinearConstraints from alphamind.portfolio.linearbuilder import linear_builder from alphamind.portfolio.longshortbulder import long_short_builder from alphamind.portfolio.meanvariancebuilder import mean_variance_builder from alphamind.portfolio.meanvariancebuilder import target_vol_builder from alphamind.portfolio.rankbuilder import rank_build from alphamind.settlement.simplesettle import simple_settle def factor_analysis(factors: pd.DataFrame, factor_weights: np.ndarray, industry: np.ndarray, d1returns: np.ndarray = None, detail_analysis=True, benchmark: Optional[np.ndarray] = None, risk_exp: Optional[np.ndarray] = None, is_tradable: Optional[np.ndarray] = None, constraints: Optional[Constraints] = None, method='risk_neutral', **kwargs) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: if 'pre_process' in kwargs: pre_process = kwargs['pre_process'] del kwargs['pre_process'] else: pre_process = [winsorize_normal, standardize] if 'post_process' in kwargs: post_process = kwargs['post_process'] del kwargs['post_process'] else: post_process = [winsorize_normal, standardize] er = factor_processing(factors.values, pre_process, risk_exp, post_process) @ factor_weights return er_portfolio_analysis(er, industry, d1returns, constraints, detail_analysis, benchmark, is_tradable, method, **kwargs) def er_portfolio_analysis(er: np.ndarray, industry: np.ndarray, dx_return: np.ndarray, constraints: Optional[Union[LinearConstraints, Constraints]] = None, detail_analysis=True, benchmark: Optional[np.ndarray] = None, is_tradable: Optional[np.ndarray] = None, method='risk_neutral', **kwargs) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: er = er.flatten() def create_constraints(benchmark, **kwargs): if 'lbound' in kwargs: lbound = kwargs['lbound'].copy() del kwargs['lbound'] else: lbound = np.maximum(0., benchmark - 0.01) if 'ubound' in kwargs: ubound = kwargs['ubound'].copy() del kwargs['ubound'] else: ubound = 0.01 + benchmark if is_tradable is not None: ubound[~is_tradable] = np.minimum(lbound, ubound)[~is_tradable] risk_lbound, risk_ubound = constraints.risk_targets() cons_exp = constraints.risk_exp return lbound, ubound, cons_exp, risk_lbound, risk_ubound if method == 'risk_neutral': lbound, ubound, cons_exp, risk_lbound, risk_ubound = create_constraints(benchmark, **kwargs) turn_over_target = kwargs.get('turn_over_target') current_position = kwargs.get('current_position') status, _, weights = linear_builder(er, risk_constraints=cons_exp, lbound=lbound, ubound=ubound, risk_target=(risk_lbound, risk_ubound), turn_over_target=turn_over_target, current_position=current_position) if status not in ("optimal", "optimal_inaccurate"): raise ValueError('linear programming optimizer in status: {0}'.format(status)) elif method == 'rank': weights = rank_build(er, use_rank=kwargs['use_rank'], masks=is_tradable).flatten() * benchmark.sum() / kwargs[ 'use_rank'] elif method == 'ls' or method == 'long_short': weights = long_short_builder(er).flatten() elif method == 'mv' or method == 'mean_variance': lbound, ubound, cons_exp, risk_lbound, risk_ubound = create_constraints(benchmark, **kwargs) risk_model = kwargs['risk_model'] if 'lam' in kwargs: lam = kwargs['lam'] else: lam = 1. status, _, weights = mean_variance_builder(er, risk_model=risk_model, bm=benchmark, lbound=lbound, ubound=ubound, risk_exposure=cons_exp, risk_target=(risk_lbound, risk_ubound), lam=lam) if status != 'optimal': raise ValueError('mean variance optimizer in status: {0}'.format(status)) elif method == 'tv' or method == 'target_vol': lbound, ubound, cons_exp, risk_lbound, risk_ubound = create_constraints(benchmark, **kwargs) risk_model = kwargs['risk_model'] if 'target_vol' in kwargs: target_vol = kwargs['target_vol'] else: target_vol = 1. status, _, weights = target_vol_builder(er, risk_model=risk_model, bm=benchmark, lbound=lbound, ubound=ubound, risk_exposure=cons_exp, risk_target=(risk_lbound, risk_ubound), vol_target=target_vol) else: raise ValueError("Unknown building type ({0})".format(method)) if detail_analysis: analysis = simple_settle(weights, dx_return, industry, benchmark) else: analysis = None return pd.DataFrame({'weight': weights, 'industry': industry, 'er': er}), \ analysis
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/analysis/factoranalysis.py
factoranalysis.py
import numpy as np import pandas as pd import statsmodels.api as sm from alphamind.data.processing import factor_processing from alphamind.data.standardize import standardize from alphamind.data.winsorize import winsorize_normal from alphamind.utilities import alpha_logger def cs_impl(ref_date, factor_data, factor_name, risk_exposure, constraint_risk, industry_matrix, dx_returns): total_data = pd.merge(factor_data, risk_exposure, on='code') total_data = pd.merge(total_data, industry_matrix, on='code') total_data = total_data.replace([np.inf, -np.inf], np.nan).dropna() if len(total_data) < 0.33 * len(factor_data): alpha_logger.warning(f"valid data point({len(total_data)}) " f"is less than 33% of the total sample ({len(factor_data)}). Omit this run") return np.nan, np.nan, np.nan total_risk_exp = total_data[constraint_risk] er = total_data[[factor_name]].values.astype(float) er = factor_processing(er, [winsorize_normal, standardize], total_risk_exp.values, [standardize]).flatten() industry = total_data.industry_name.values codes = total_data.code.tolist() target_pos = pd.DataFrame({'code': codes, 'weight': er, 'industry': industry}) target_pos['weight'] = target_pos['weight'] / target_pos['weight'].abs().sum() target_pos = pd.merge(target_pos, dx_returns, on=['code']) target_pos = pd.merge(target_pos, total_data[['code'] + constraint_risk], on=['code']) total_risk_exp = target_pos[constraint_risk] activate_weight = target_pos['weight'].values excess_return = np.exp(target_pos[['dx']].values) - 1. excess_return = factor_processing(excess_return, [winsorize_normal, standardize], total_risk_exp.values, [winsorize_normal, standardize]).flatten() port_ret = np.log(activate_weight @ excess_return + 1.) ic = np.corrcoef(excess_return, activate_weight)[0, 1] x = sm.add_constant(activate_weight) results = sm.OLS(excess_return, x).fit() t_stats = results.tvalues[1] alpha_logger.info(f"{ref_date} is finished with {len(target_pos)} stocks for {factor_name}") alpha_logger.info(f"{ref_date} risk_exposure: " f"{np.sum(np.square(target_pos.weight.values @ target_pos[constraint_risk].values))}") return port_ret, ic, t_stats def cross_section_analysis(ref_date, factor_name, universe, horizon, constraint_risk, engine): codes = engine.fetch_codes(ref_date, universe) risk_exposure = engine.fetch_risk_model(ref_date, codes)[1][['code'] + constraint_risk] factor_data = engine.fetch_factor(ref_date, factor_name, codes) industry_matrix = engine.fetch_industry_matrix(ref_date, codes, 'sw_adj', 1) dx_returns = engine.fetch_dx_return(ref_date, codes, horizon=horizon, offset=1) return cs_impl(ref_date, factor_data, factor_name, risk_exposure, constraint_risk, industry_matrix, dx_returns) if __name__ == '__main__': from alphamind.api import SqlEngine, Universe, risk_styles, industry_styles factor_name = 'SIZE' data_source = 'postgres+psycopg2://postgres:[email protected]/alpha' engine = SqlEngine(data_source) risk_names = list(set(risk_styles).difference({factor_name})) industry_names = list(set(industry_styles).difference({factor_name})) constraint_risk = risk_names + industry_names universe = Universe('custom', ['ashare_ex']) horizon = 9 x = cross_section_analysis('2018-02-08', factor_name, universe, horizon, constraint_risk, engine=engine) print(x)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/analysis/crosssetctions.py
crosssetctions.py
from typing import Optional import numpy as np import pandas as pd from alphamind.data.processing import factor_processing from alphamind.data.quantile import quantile from alphamind.data.standardize import standardize from alphamind.data.winsorize import winsorize_normal from alphamind.utilities import agg_mean def quantile_analysis(factors: pd.DataFrame, factor_weights: np.ndarray, dx_return: np.ndarray, n_bins: int = 5, risk_exp: Optional[np.ndarray] = None, **kwargs): if 'pre_process' in kwargs: pre_process = kwargs['pre_process'] del kwargs['pre_process'] else: pre_process = [winsorize_normal, standardize] if 'post_process' in kwargs: post_process = kwargs['post_process'] del kwargs['post_process'] else: post_process = [standardize] er = factor_processing(factors.values, pre_process, risk_exp, post_process) @ factor_weights return er_quantile_analysis(er, n_bins, dx_return, **kwargs) def er_quantile_analysis(er: np.ndarray, n_bins: int, dx_return: np.ndarray, de_trend=False) -> np.ndarray: er = er.flatten() q_groups = quantile(er, n_bins) if dx_return.ndim < 2: dx_return.shape = -1, 1 group_return = agg_mean(q_groups, dx_return).flatten() total_return = group_return.sum() ret = group_return.copy() if de_trend: resid = n_bins - 1 res_weight = 1. / resid for i, value in enumerate(ret): ret[i] = (1. + res_weight) * value - res_weight * total_return return ret if __name__ == '__main__': n = 5000 n_f = 5 n_bins = 5 x = np.random.randn(n, 5) risk_exp = np.random.randn(n, 3) x_w = np.random.randn(n_f) r = np.random.randn(n) f_df = pd.DataFrame(x) calculated = quantile_analysis(f_df, x_w, r, risk_exp=None, n_bins=n_bins, pre_process=[], # [winsorize_normal, standardize], post_process=[]) # [standardize]) er = x_w @ f_df.values.T expected = er_quantile_analysis(er, n_bins, r) print(calculated) print(expected)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/analysis/quantileanalysis.py
quantileanalysis.py
import copy import numpy as np import pandas as pd from PyFin.api import advanceDateByCalendar from PyFin.api import makeSchedule from alphamind.analysis.factoranalysis import er_portfolio_analysis from alphamind.data.engines.sqlengine import SqlEngine from alphamind.data.engines.sqlengine import industry_styles from alphamind.data.engines.sqlengine import macro_styles from alphamind.data.engines.sqlengine import risk_styles from alphamind.data.processing import factor_processing from alphamind.exceptions.exceptions import PortfolioBuilderException from alphamind.execution.naiveexecutor import NaiveExecutor from alphamind.model.composer import train_model from alphamind.portfolio.constraints import BoundaryType from alphamind.portfolio.constraints import LinearConstraints from alphamind.portfolio.constraints import create_box_bounds from alphamind.utilities import alpha_logger from alphamind.utilities import map_freq all_styles = risk_styles + industry_styles + macro_styles class RunningSetting(object): def __init__(self, lbound=None, ubound=None, weights_bandwidth=None, rebalance_method='risk_neutral', bounds=None, **kwargs): self.lbound = lbound self.ubound = ubound self.weights_bandwidth = weights_bandwidth self.executor = NaiveExecutor() self.rebalance_method = rebalance_method self.bounds = bounds self.more_opts = kwargs class Strategy(object): def __init__(self, alpha_model, data_meta, universe, start_date, end_date, freq, benchmark=905, industry_cat='sw_adj', industry_level=1, dask_client=None): self.alpha_model = alpha_model self.data_meta = data_meta self.universe = universe self.benchmark = benchmark self.dates = makeSchedule(start_date, end_date, freq, 'china.sse') self.dates = [d.strftime('%Y-%m-%d') for d in self.dates] self.industry_cat = industry_cat self.industry_level = industry_level self.freq = freq self.horizon = map_freq(freq) self.engine = SqlEngine(self.data_meta.data_source) self.dask_client = dask_client self.total_data = None self.index_return = None self.risk_models = None self.alpha_models = None def prepare_backtest_data(self): total_factors = self.engine.fetch_factor_range(self.universe, self.alpha_model.formulas, dates=self.dates) alpha_logger.info("alpha factor data loading finished ...") total_industry = self.engine.fetch_industry_matrix_range(self.universe, dates=self.dates, category=self.industry_cat, level=self.industry_level) alpha_logger.info("industry data loading finished ...") total_benchmark = self.engine.fetch_benchmark_range(dates=self.dates, benchmark=self.benchmark) alpha_logger.info("benchmark data loading finished ...") self.risk_models, _, total_risk_exp = self.engine.fetch_risk_model_range( self.universe, dates=self.dates, risk_model=self.data_meta.risk_model, model_type='factor' ) alpha_logger.info("risk_model data loading finished ...") total_returns = self.engine.fetch_dx_return_range(self.universe, dates=self.dates, horizon=self.horizon, offset=1) alpha_logger.info("returns data loading finished ...") total_data = pd.merge(total_factors, total_industry, on=['trade_date', 'code']) total_data = pd.merge(total_data, total_benchmark, on=['trade_date', 'code'], how='left') total_data.fillna({'weight': 0.}, inplace=True) total_data = pd.merge(total_data, total_returns, on=['trade_date', 'code']) total_data = pd.merge(total_data, total_risk_exp, on=['trade_date', 'code']) is_in_benchmark = (total_data.weight > 0.).astype(float).values.reshape((-1, 1)) total_data.loc[:, 'benchmark'] = is_in_benchmark total_data.loc[:, 'total'] = np.ones_like(is_in_benchmark) total_data.sort_values(['trade_date', 'code'], inplace=True) self.index_return = self.engine.fetch_dx_return_index_range(self.benchmark, dates=self.dates, horizon=self.horizon, offset=1).set_index( 'trade_date') self.total_data = total_data def prepare_backtest_models(self): if self.total_data is None: self.prepare_backtest_data() total_data_groups = self.total_data.groupby('trade_date') if self.dask_client is None: models = {} for ref_date, _ in total_data_groups: models[ref_date], _, _ = train_model(ref_date.strftime('%Y-%m-%d'), self.alpha_model, self.data_meta) else: def worker(parameters): new_model, _, _ = train_model(parameters[0].strftime('%Y-%m-%d'), parameters[1], parameters[2]) return parameters[0], new_model l = self.dask_client.map(worker, [(d[0], self.alpha_model, self.data_meta) for d in total_data_groups]) results = self.dask_client.gather(l) models = dict(results) self.alpha_models = models alpha_logger.info("alpha models training finished ...") @staticmethod def _create_lu_bounds(running_setting, codes, benchmark_w): codes = np.array(codes) if running_setting.weights_bandwidth: lbound = np.maximum(0., benchmark_w - running_setting.weights_bandwidth) ubound = running_setting.weights_bandwidth + benchmark_w lb = running_setting.lbound ub = running_setting.ubound if lb or ub: if not isinstance(lb, dict): lbound = np.ones_like(benchmark_w) * lb else: lbound = np.zeros_like(benchmark_w) for c in lb: lbound[codes == c] = lb[c] if 'other' in lb: for i, c in enumerate(codes): if c not in lb: lbound[i] = lb['other'] if not isinstance(ub, dict): ubound = np.ones_like(benchmark_w) * ub else: ubound = np.ones_like(benchmark_w) for c in ub: ubound[codes == c] = ub[c] if 'other' in ub: for i, c in enumerate(codes): if c not in ub: ubound[i] = ub['other'] return lbound, ubound def run(self, running_setting): alpha_logger.info("starting backting ...") total_data_groups = self.total_data.groupby('trade_date') rets = [] turn_overs = [] leverags = [] previous_pos = pd.DataFrame() executor = copy.deepcopy(running_setting.executor) positions = pd.DataFrame() if self.alpha_models is None: self.prepare_backtest_models() for ref_date, this_data in total_data_groups: risk_model = self.risk_models[ref_date] new_model = self.alpha_models[ref_date] codes = this_data.code.values.tolist() if previous_pos.empty: current_position = None else: previous_pos.set_index('code', inplace=True) remained_pos = previous_pos.reindex(codes) remained_pos.fillna(0., inplace=True) current_position = remained_pos.weight.values benchmark_w = this_data.weight.values constraints = LinearConstraints(running_setting.bounds, this_data, benchmark_w) lbound, ubound = self._create_lu_bounds(running_setting, codes, benchmark_w) this_data.fillna(0, inplace=True) new_factors = factor_processing(this_data[new_model.features].values, pre_process=self.data_meta.pre_process, risk_factors=this_data[ self.data_meta.neutralized_risk].values.astype( float) if self.data_meta.neutralized_risk else None, post_process=self.data_meta.post_process) new_factors = pd.DataFrame(new_factors, columns=new_model.features, index=codes) er = new_model.predict(new_factors).astype(float) alpha_logger.info('{0} re-balance: {1} codes'.format(ref_date, len(er))) target_pos = self._calculate_pos(running_setting, er, this_data, constraints, benchmark_w, lbound, ubound, risk_model=risk_model.get_risk_profile(codes), current_position=current_position) target_pos['code'] = codes target_pos['trade_date'] = ref_date turn_over, executed_pos = executor.execute(target_pos=target_pos) leverage = executed_pos.weight.abs().sum() ret = executed_pos.weight.values @ (np.exp(this_data.dx.values) - 1.) rets.append(np.log(1. + ret)) executor.set_current(executed_pos) turn_overs.append(turn_over) leverags.append(leverage) positions = positions.append(executed_pos) previous_pos = executed_pos positions['benchmark_weight'] = self.total_data['weight'].values positions['dx'] = self.total_data.dx.values trade_dates = positions.trade_date.unique() ret_df = pd.DataFrame({'returns': rets, 'turn_over': turn_overs, 'leverage': leverags}, index=trade_dates) ret_df['benchmark_returns'] = self.index_return['dx'] ret_df.loc[advanceDateByCalendar('china.sse', ret_df.index[-1], self.freq)] = 0. ret_df = ret_df.shift(1) ret_df.iloc[0] = 0. ret_df['excess_return'] = ret_df['returns'] - ret_df['benchmark_returns'] * ret_df[ 'leverage'] return ret_df, positions def _calculate_pos(self, running_setting, er, data, constraints, benchmark_w, lbound, ubound, risk_model, current_position): more_opts = running_setting.more_opts try: target_pos, _ = er_portfolio_analysis(er, industry=data.industry_name.values, dx_return=None, constraints=constraints, detail_analysis=False, benchmark=benchmark_w, method=running_setting.rebalance_method, lbound=lbound, ubound=ubound, current_position=current_position, target_vol=more_opts.get('target_vol'), risk_model=risk_model, turn_over_target=more_opts.get( 'turn_over_target')) except PortfolioBuilderException: alpha_logger.warning("Not able to fit the constraints. Using full re-balance.") target_pos, _ = er_portfolio_analysis(er, industry=data.industry_name.values, dx_return=None, constraints=constraints, detail_analysis=False, benchmark=benchmark_w, method=running_setting.rebalance_method, lbound=lbound, ubound=ubound, target_vol=more_opts.get('target_vol'), risk_model=risk_model) return target_pos if __name__ == '__main__': import os from matplotlib import pyplot as plt from PyFin.api import CSQuantiles from PyFin.api import LAST from alphamind.api import Universe from alphamind.api import ConstLinearModel from alphamind.api import DataMeta from alphamind.api import industry_list from matplotlib import pyplot as plt from matplotlib.pylab import mpl plt.style.use('seaborn-whitegrid') mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False """ Back test parameter settings """ benchmark_code = 905 universe = Universe('zz800') + Universe('cyb') start_date = '2011-01-01' end_date = '2011-05-04' freq = '10b' neutralized_risk = None alpha_factors = { 'ep_q_cs': CSQuantiles(LAST('ep_q'), groups='sw1_adj') } weights = dict(ep_q_cs=1.) alpha_model = ConstLinearModel(features=alpha_factors, weights=weights) data_meta = DataMeta(freq=freq, universe=universe, batch=1, neutralized_risk=None, pre_process=None, post_process=None, data_source=os.environ['DB_URI']) strategy = Strategy(alpha_model, data_meta, universe=universe, start_date=start_date, end_date=end_date, freq=freq, benchmark=benchmark_code) strategy.prepare_backtest_data() def create_scenario(weights_bandwidth=0.02, target_vol=0.01, method='risk_neutral'): industry_names = industry_list('sw_adj', 1) constraint_risk = ['EARNYILD', 'LIQUIDTY', 'GROWTH', 'SIZE', 'BETA', 'MOMENTUM'] total_risk_names = constraint_risk + industry_names + ['benchmark', 'total'] b_type = [] l_val = [] u_val = [] for name in total_risk_names: if name == 'benchmark': b_type.append(BoundaryType.RELATIVE) l_val.append(0.8) u_val.append(1.001) elif name == 'total': b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.001) u_val.append(.001) elif name == 'EARNYILD': b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.001) u_val.append(0.60) elif name == 'GROWTH': b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.20) u_val.append(0.20) elif name == 'MOMENTUM': b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.10) u_val.append(0.20) elif name == 'SIZE': b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.20) u_val.append(0.20) elif name == 'LIQUIDTY': b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.25) u_val.append(0.25) else: b_type.append(BoundaryType.ABSOLUTE) l_val.append(-0.01) u_val.append(0.01) bounds = create_box_bounds(total_risk_names, b_type, l_val, u_val) running_setting = RunningSetting(weights_bandwidth=weights_bandwidth, rebalance_method=method, bounds=bounds, target_vol=target_vol, turn_over_target=0.4) ret_df, positions = strategy.run(running_setting) return ret_df create_scenario(0.01, target_vol=0.01, method='tv')
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/strategy/strategy.py
strategy.py
import numba as nb import numpy as np from alphamind.utilities import aggregate from alphamind.utilities import array_index from alphamind.utilities import group_mapping from alphamind.utilities import simple_mean from alphamind.utilities import simple_std from alphamind.utilities import transform @nb.njit(nogil=True, cache=True) def mask_values_2d(x: np.ndarray, mean_values: np.ndarray, std_values: np.ndarray, num_stds: int = 3) -> np.ndarray: res = x.copy() length, width = x.shape for i in range(length): for j in range(width): ubound = mean_values[i, j] + num_stds * std_values[i, j] lbound = mean_values[i, j] - num_stds * std_values[i, j] if x[i, j] > ubound: res[i, j] = ubound elif x[i, j] < lbound: res[i, j] = lbound return res @nb.njit(nogil=True, cache=True) def interp_values_2d(x: np.ndarray, groups: np.ndarray, mean_values: np.ndarray, std_values: np.ndarray, num_stds: int = 3, interval: float = 0.5) -> np.ndarray: res = x.copy() length, width = x.shape max_cat = np.max(groups) for k in range(max_cat + 1): target_idx = np.where(groups == k)[0].flatten() for j in range(width): target_x = x[target_idx, j] target_res = target_x.copy() mean = mean_values[target_idx[0], j] std = std_values[target_idx[0], j] ubound = mean + num_stds * std lbound = mean - num_stds * std # upper bound abnormal values idx = target_x > ubound n = np.sum(idx) if n > 0: u_values = target_res[idx] q_values = u_values.argsort().argsort() target_res[idx] = ubound + q_values / n * interval * std # lower bound abnormal values idx = target_x < lbound n = np.sum(idx) if n > 0: l_values = target_res[idx] q_values = (-l_values).argsort().argsort() target_res[idx] = lbound - q_values / n * interval * std res[target_idx, j] = target_res return res @nb.njit(nogil=True, cache=True) def mask_values_1d(x: np.ndarray, mean_values: np.ndarray, std_values: np.ndarray, num_stds: int = 3) -> np.ndarray: res = x.copy() length, width = x.shape for j in range(width): ubound = mean_values[j] + num_stds * std_values[j] lbound = mean_values[j] - num_stds * std_values[j] res[x[:, j] > ubound, j] = ubound res[x[:, j] < lbound, j] = lbound return res @nb.njit(nogil=True, cache=True) def interp_values_1d(x: np.ndarray, mean_values: np.ndarray, std_values: np.ndarray, num_stds: int = 3, interval: float = 0.5) -> np.ndarray: res = x.copy() length, width = x.shape for j in range(width): ubound = mean_values[j] + num_stds * std_values[j] lbound = mean_values[j] - num_stds * std_values[j] # upper bound abnormal values idx = x[:, j] > ubound n = np.sum(idx) if n > 0: u_values = res[idx, j] q_values = u_values.argsort().argsort() res[idx, j] = ubound + q_values / n * interval * std_values[j] # lower bound abnormal values idx = x[:, j] < lbound n = np.sum(idx) if n > 0: l_values = res[idx, j] q_values = (-l_values).argsort().argsort() res[idx, j] = lbound - q_values / n * interval * std_values[j] return res def winsorize_normal(x: np.ndarray, num_stds: int = 3, ddof=1, groups: np.ndarray = None, method: str = 'flat', interval: float = 0.5) -> np.ndarray: if groups is not None: groups = group_mapping(groups) mean_values = transform(groups, x, 'mean') std_values = transform(groups, x, 'std', ddof) if method == 'flat': res = mask_values_2d(x, mean_values, std_values, num_stds) else: res = interp_values_2d(x, groups, mean_values, std_values, num_stds, interval) else: std_values = simple_std(x, axis=0, ddof=ddof) mean_values = simple_mean(x, axis=0) if method == 'flat': res = mask_values_1d(x, mean_values, std_values, num_stds) else: res = interp_values_1d(x, mean_values, std_values, num_stds, interval) return res class NormalWinsorizer(object): def __init__(self, num_stds: int = 3, ddof: int =1, method: str = 'flat', interval: float = 0.5): self.num_stds = num_stds self.ddof = ddof self.mean = None self.std = None self.labels = None self.method = method self.interval = interval def fit(self, x: np.ndarray, groups: np.ndarray = None): if groups is not None: group_index = group_mapping(groups) self.mean = aggregate(group_index, x, 'mean') self.std = aggregate(group_index, x, 'std', self.ddof) self.labels = np.unique(groups) else: self.mean = simple_mean(x, axis=0) self.std = simple_std(x, axis=0, ddof=self.ddof) def transform(self, x: np.ndarray, groups: np.ndarray = None) -> np.ndarray: if groups is not None: index = array_index(self.labels, groups) if self.method == 'flat': res = mask_values_2d(x, self.mean[index], self.std[index], self.num_stds) else: res = interp_values_2d(x, groups, self.mean[index], self.std[index], self.num_stds, self.interval) else: if self.method == 'flat': res = mask_values_1d(x, self.mean, self.std, self.num_stds) else: res = interp_values_1d(x, self.mean, self.std, self.num_stds, self.interval) return res def __call__(self, x: np.ndarray, groups: np.ndarray = None) -> np.ndarray: return winsorize_normal(x, self.num_stds, self.ddof, groups, self.method, self.interval) if __name__ == '__main__': x = np.random.randn(10000, 1) groups = np.random.randint(0, 3, 10000) import datetime as dt start = dt.datetime.now() for i in range(1000): winsorize_normal(x, method='flat') print(dt.datetime.now() - start) start = dt.datetime.now() for i in range(1000): winsorize_normal(x, method='interp') print(dt.datetime.now() - start)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/winsorize.py
winsorize.py
import copy import pandas as pd from simpleutils.asserts import require from PyFin.Analysis.SecurityValueHolders import SecurityValueHolder from PyFin.api import transform as transform_impl def factor_translator(factor_pool): if not factor_pool: return None, None if isinstance(factor_pool, str): return {factor_pool: factor_pool}, [factor_pool] elif isinstance(factor_pool, SecurityValueHolder): return {str(factor_pool): factor_pool}, sorted(factor_pool.fields) elif isinstance(factor_pool, dict): dependency = set() for k, v in factor_pool.items(): require(isinstance(k, str), ValueError, 'factor_name {0} should be string.'.format(k)) require(isinstance(v, SecurityValueHolder) or isinstance(v, str), ValueError, 'expression {0} should be a value hodler or a string.'.format(v)) if isinstance(v, str): dependency = dependency.union([v]) else: dependency = dependency.union(v.fields) return factor_pool, sorted(dependency) elif isinstance(factor_pool, list): factor_dict = {} dependency = set() k = 1 for i, f in enumerate(factor_pool): if isinstance(f, str): factor_dict[f] = f dependency = dependency.union([f]) elif isinstance(f, SecurityValueHolder): factor_dict[str(f)] = f dependency = dependency.union(f.fields) k += 1 return factor_dict, sorted(dependency) else: raise ValueError('{0} is not in valid format as factors'.format(factor_pool)) class Transformer: def __init__(self, expressions): expression_dict, expression_dependency = \ factor_translator(copy.deepcopy(expressions)) if expression_dict: self.names = sorted(expression_dict.keys()) self.expressions = [expression_dict[n] for n in self.names] self.dependency = expression_dependency else: self.names = [] self.expressions = [] self.dependency = [] def transform(self, group_name, data): if len(data) > 0: transformed_data = transform_impl(data, self.expressions, self.names, group_name, dropna=False) return transformed_data else: return pd.DataFrame() if __name__ == '__main__': transformer = Transformer(['c', 'a'])
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/transformer.py
transformer.py
from typing import Dict from typing import Tuple from typing import Union import numba as nb import numpy as np import alphamind.utilities as utils def neutralize(x: np.ndarray, y: np.ndarray, groups: np.ndarray = None, detail: bool = False, weights: np.ndarray = None) \ -> Union[np.ndarray, Tuple[np.ndarray, Dict]]: if y.ndim == 1: y = y.reshape((-1, 1)) if weights is None: weights = np.ones(len(y), dtype=float) output_dict = {} if detail: exposure = np.zeros(x.shape + (y.shape[1],)) explained = np.zeros(x.shape + (y.shape[1],)) output_dict['exposure'] = exposure output_dict['explained'] = explained if groups is not None: res = np.zeros(y.shape) index_diff, order = utils.groupby(groups) start = 0 if detail: for diff_loc in index_diff: curr_idx = order[start:diff_loc + 1] curr_x, b = _sub_step(x, y, weights, curr_idx, res) exposure[curr_idx, :, :] = b explained[curr_idx] = ls_explain(curr_x, b) start = diff_loc + 1 else: for diff_loc in index_diff: curr_idx = order[start:diff_loc + 1] _sub_step(x, y, weights, curr_idx, res) start = diff_loc + 1 else: try: b = ls_fit(x, y, weights) except np.linalg.linalg.LinAlgError: b = ls_fit_pinv(x, y, weights) res = ls_res(x, y, b) if detail: explained[:, :, :] = ls_explain(x, b) exposure[:] = b if output_dict: return res, output_dict else: return res def _sub_step(x, y, w, curr_idx, res) -> Tuple[np.ndarray, np.ndarray]: curr_x, curr_y, curr_w = x[curr_idx], y[curr_idx], w[curr_idx] try: b = ls_fit(curr_x, curr_y, curr_w) except np.linalg.linalg.LinAlgError: b = ls_fit_pinv(curr_x, curr_y, curr_w) res[curr_idx] = ls_res(curr_x, curr_y, b) return curr_x, b @nb.njit(nogil=True, cache=True) def ls_fit(x: np.ndarray, y: np.ndarray, w: np.ndarray) -> np.ndarray: x_bar = x.T * w b = np.linalg.solve(x_bar @ x, x_bar @ y) return b @nb.njit(nogil=True, cache=True) def ls_fit_pinv(x: np.ndarray, y: np.ndarray, w: np.ndarray) -> np.ndarray: x_bar = x.T * w b = np.linalg.pinv(x_bar @ x) @ x_bar @ y return b @nb.njit(nogil=True, cache=True) def ls_res(x: np.ndarray, y: np.ndarray, b: np.ndarray) -> np.ndarray: return y - x @ b @nb.njit(nogil=True, cache=True) def ls_explain(x: np.ndarray, b: np.ndarray) -> np.ndarray: m, n = b.shape return b.reshape((1, m, n)) * x.reshape((-1, m, 1)) if __name__ == '__main__': x = np.random.randn(50000, 10) y = np.random.randn(50000, 1) w = np.ones(50000) import datetime as dt start = dt.datetime.now() for _ in range(1000): ls_fit(x, y, w) print(dt.datetime.now() - start)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/neutralize.py
neutralize.py
import numpy as np from alphamind.utilities import aggregate from alphamind.utilities import array_index from alphamind.utilities import group_mapping from alphamind.utilities import simple_mean from alphamind.utilities import simple_sqrsum from alphamind.utilities import simple_std from alphamind.utilities import transform def standardize(x: np.ndarray, groups: np.ndarray = None, ddof=1) -> np.ndarray: if groups is not None: groups = group_mapping(groups) mean_values = transform(groups, x, 'mean') std_values = transform(groups, x, 'std', ddof) return (x - mean_values) / np.maximum(std_values, 1e-8) else: return (x - simple_mean(x, axis=0)) / np.maximum(simple_std(x, axis=0, ddof=ddof), 1e-8) def projection(x: np.ndarray, groups: np.ndarray = None, axis=1) -> np.ndarray: if groups is not None and axis == 0: groups = group_mapping(groups) projected = transform(groups, x, 'project') return projected else: return x / simple_sqrsum(x, axis=axis).reshape((-1, 1)) class Standardizer(object): def __init__(self, ddof: int = 1): self.ddof = ddof self.mean = None self.std = None self.labels = None def fit(self, x: np.ndarray, groups: np.ndarray = None): if groups is not None: group_index = group_mapping(groups) self.mean = aggregate(group_index, x, 'mean') self.std = aggregate(group_index, x, 'std', self.ddof) self.labels = np.unique(groups) else: self.mean = simple_mean(x, axis=0) self.std = simple_std(x, axis=0, ddof=self.ddof) def transform(self, x: np.ndarray, groups: np.ndarray = None) -> np.ndarray: if groups is not None: index = array_index(self.labels, groups) return (x - self.mean[index]) / np.maximum(self.std[index], 1e-8) else: return (x - self.mean) / np.maximum(self.std, 1e-8) def __call__(self, x: np.ndarray, groups: np.ndarray = None) -> np.ndarray: return standardize(x, groups, self.ddof)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/standardize.py
standardize.py
import abc import sys import pandas as pd from sqlalchemy import and_ from sqlalchemy import not_ from sqlalchemy import or_ from sqlalchemy import select from alphamind.data.dbmodel.models import Universe as UniverseTable class BaseUniverse(metaclass=abc.ABCMeta): @abc.abstractmethod def condition(self): pass def __add__(self, rhs): return OrUniverse(self, rhs) def __sub__(self, rhs): return XorUniverse(self, rhs) def __and__(self, rhs): return AndUniverse(self, rhs) def __or__(self, rhs): return OrUniverse(self, rhs) def isin(self, rhs): return AndUniverse(self, rhs) @abc.abstractmethod def save(self): pass @classmethod def load(cls, u_desc: dict): pass def query(self, engine, start_date: str = None, end_date: str = None, dates=None): if hasattr(UniverseTable, "flag"): more_conditions = [UniverseTable.flag == 1] else: more_conditions = [] query = select([UniverseTable.trade_date, UniverseTable.code.label("code")]).where( and_( self._query_statements(start_date, end_date, dates), *more_conditions ) ).order_by(UniverseTable.trade_date, UniverseTable.code) df = pd.read_sql(query, engine.engine) df["trade_date"] = pd.to_datetime(df["trade_date"]) return df def _query_statements(self, start_date: str = None, end_date: str = None, dates=None): return and_( self.condition(), UniverseTable.trade_date.in_(dates) if dates else UniverseTable.trade_date.between( start_date, end_date) ) class Universe(BaseUniverse): def __init__(self, u_name: str): self.u_name = u_name.lower() def condition(self): return getattr(UniverseTable, self.u_name) == 1 def save(self): return dict( u_type=self.__class__.__name__, u_name=self.u_name ) @classmethod def load(cls, u_desc: dict): return cls(u_name=u_desc['u_name']) def __eq__(self, other): return self.u_name == other.u_name class OrUniverse(BaseUniverse): def __init__(self, lhs: BaseUniverse, rhs: BaseUniverse): self.lhs = lhs self.rhs = rhs def condition(self): return or_(self.lhs.condition(), self.rhs.condition()) def save(self): return dict( u_type=self.__class__.__name__, lhs=self.lhs.save(), rhs=self.rhs.save() ) @classmethod def load(cls, u_desc: dict): lhs = u_desc['lhs'] rhs = u_desc['rhs'] return cls( lhs=getattr(sys.modules[__name__], lhs['u_type']).load(lhs), rhs=getattr(sys.modules[__name__], rhs['u_type']).load(rhs), ) def __eq__(self, other): return self.lhs == other.lhs and self.rhs == other.rhs and isinstance(other, OrUniverse) class AndUniverse(BaseUniverse): def __init__(self, lhs: BaseUniverse, rhs: BaseUniverse): self.lhs = lhs self.rhs = rhs def condition(self): return and_(self.lhs.condition(), self.rhs.condition()) def save(self): return dict( u_type=self.__class__.__name__, lhs=self.lhs.save(), rhs=self.rhs.save() ) @classmethod def load(cls, u_desc: dict): lhs = u_desc['lhs'] rhs = u_desc['rhs'] return cls( lhs=getattr(sys.modules[__name__], lhs['u_type']).load(lhs), rhs=getattr(sys.modules[__name__], rhs['u_type']).load(rhs), ) def __eq__(self, other): return self.lhs == other.lhs and self.rhs == other.rhs and isinstance(other, AndUniverse) class XorUniverse(BaseUniverse): def __init__(self, lhs: BaseUniverse, rhs: BaseUniverse): self.lhs = lhs self.rhs = rhs def condition(self): return and_(self.lhs.condition(), not_(self.rhs.condition())) def save(self): return dict( u_type=self.__class__.__name__, lhs=self.lhs.save(), rhs=self.rhs.save() ) @classmethod def load(cls, u_desc: dict): lhs = u_desc['lhs'] rhs = u_desc['rhs'] return cls( lhs=getattr(sys.modules[__name__], lhs['u_type']).load(lhs), rhs=getattr(sys.modules[__name__], rhs['u_type']).load(rhs), ) def __eq__(self, other): return self.lhs == other.lhs and self.rhs == other.rhs and isinstance(other, XorUniverse) def load_universe(u_desc: dict): u_name = u_desc['u_type'] if u_name == 'Universe': return Universe.load(u_desc) elif u_name == 'OrUniverse': return OrUniverse.load(u_desc) elif u_name == 'AndUniverse': return AndUniverse.load(u_desc) elif u_name == 'XorUniverse': return XorUniverse.load(u_desc) if __name__ == '__main__': from alphamind.data.engines.sqlengine import SqlEngine engine = SqlEngine() universe = Universe('custom', ['zz800'], exclude_universe=['Bank']) print(universe.query(engine, start_date='2018-04-26', end_date='2018-04-26')) print(universe.query(engine, dates=['2017-12-21', '2017-12-25']))
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/engines/universe.py
universe.py
import os from typing import Dict from typing import Iterable from alphamind.data.dbmodel.models import Market from alphamind.data.dbmodel.models import RiskCovDay from alphamind.data.dbmodel.models import RiskCovLong from alphamind.data.dbmodel.models import RiskCovShort from alphamind.data.dbmodel.models import RiskExposure from alphamind.data.dbmodel.models import SpecificRiskDay from alphamind.data.dbmodel.models import SpecificRiskLong from alphamind.data.dbmodel.models import SpecificRiskShort from alphamind.data.engines.industries import INDUSTRY_MAPPING def _map_risk_model_table(risk_model: str) -> tuple: if risk_model == 'day': return RiskCovDay, SpecificRiskDay elif risk_model == 'short': return RiskCovShort, SpecificRiskShort elif risk_model == 'long': return RiskCovLong, SpecificRiskLong else: raise ValueError("risk model name {0} is not recognized".format(risk_model)) def _map_factors(factors: Iterable[str], used_factor_tables) -> Dict: factor_cols = {} factors = set(factors).difference({'trade_date', 'code', 'isOpen'}) to_keep = factors.copy() for f in factors: for t in used_factor_tables: if f in t.columns: factor_cols[t.columns[f].name] = t to_keep.remove(f) break if to_keep: raise ValueError("factors in <{0}> can't be find".format(to_keep)) return factor_cols if "DB_VENDOR" in os.environ and os.environ["DB_VENDOR"].lower() == "mysql": def _map_industry_category(category: str) -> str: if category == 'sw': return '申万行业分类(2014)' elif category == 'zz': return '中证行业分类' elif category == 'zx': return '中信标普行业分类' elif category == 'zjh': return '证监会行业分类(2012)-证监会' else: raise ValueError("No other industry is supported at the current time") else: def _map_industry_category(category: str) -> str: if category == 'sw': return '申万行业分类' elif category == 'sw_adj': return '申万行业分类修订' elif category == 'zz': return '中证行业分类' elif category == 'dx': return '东兴行业分类' elif category == 'zjh': return '证监会行业V2012' else: raise ValueError("No other industry is supported at the current time") def industry_list(category: str, level: int = 1) -> list: return INDUSTRY_MAPPING[category][level]
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/engines/utilities.py
utilities.py
INDUSTRY_MAPPING = { 'sw': { 1: ["采掘", "传媒", "电气设备", "电子", "房地产", "纺织服装", "非银金融", "钢铁", "公用事业", "国防军工", "化工", "机械设备", "计算机", "家用电器", "建筑材料", "建筑装饰", "交通运输", "农林牧渔", "汽车", "轻工制造", "商业贸易", "食品饮料", "通信", "休闲服务", "医药生物", "银行", "有色金属", "综合"], 2: ["白色家电", "半导体", "包装印刷", "保险", "玻璃制造", "采掘服务", "餐饮", "畜禽养殖", "船舶制造", "地面兵装", "电机", "电力", "电气自动化设备", "电源设备", "电子制造", "动物保健", "多元金融", "房地产开发", "房屋建设", "纺织制造", "服装家纺", "钢铁", "港口", "高低压设备", "高速公路", "工业金属", "公交", "光学光电子", "航空运输", "航空装备", "航天装备", "航运", "互联网传媒", "化学纤维", "化学原料", "化学制品", "化学制药", "环保工程及服务", "黄金", "机场", "基础建设", "计算机设备", "计算机应用", "家用轻工", "金属非金属新材料", "金属制品", "景点", "酒店", "林业", "旅游综合", "贸易", "煤炭开采", "农产品加工", "农业综合", "其他采掘", "其他电子", "其他建材", "其他交运设备", "其他轻工制造", "其他休闲服务", "汽车服务", "汽车零部件", "汽车整车", "燃气", "商业物业经营", "生物制品", "石油化工", "石油开采", "食品加工", "视听器材", "水泥制造", "水务", "饲料", "塑料", "铁路运输", "通信设备", "通信运营", "通用机械", "文化传媒", "物流", "稀有金属", "橡胶", "一般零售", "医疗服务", "医疗器械", "医药商业", "仪器仪表", "银行", "饮料制造", "营销传播", "渔业", "元件", "园林工程", "园区开发", "运输设备", "造纸", "证券", "中药", "种植业", "专业工程", "专业零售", "专用设备", "装修装饰", "综合"], 3: ["IT服务", "LED", "氨纶", "白酒", "百货", "半导体材料", "包装印刷", "保险", "被动元件", "冰箱", "玻璃制造", "玻纤", "彩电", "餐饮", "超市", "城轨建设", "乘用车", "储能设备", "畜禽养殖", "船舶制造", "纯碱", "磁性材料", "氮肥", "低压设备", "涤纶", "地面兵装", "电机", "电网自动化", "电子零部件制造", "电子系统组装", "动物保健", "多业态零售", "多元金融", "房地产开发", "房屋建设", "纺织服装设备", "纺织化学用品", "非金属新材料", "分立器件", "风电设备", "氟化工及制冷剂", "辅料", "复合肥", "改性塑料", "钢结构", "港口", "高速公路", "高压设备", "工程机械", "工控自动化", "公交", "管材", "光伏设备", "光学元件", "国际工程承包", "果蔬加工", "海洋捕捞", "航空运输", "航空装备", "航天装备", "航运", "合成革", "互联网信息服务", "化学工程", "化学原料药", "化学制剂", "环保工程及服务", "环保设备", "黄金", "黄酒", "火电", "火电设备", "机场", "机床工具", "机械基础件", "集成电路", "计量仪表", "计算机设备", "家电零部件", "家纺", "家具", "钾肥", "焦炭加工", "金属新材料", "金属制品", "酒店", "聚氨酯", "空调", "锂", "粮食种植", "粮油加工", "林业", "磷肥", "磷化工及磷酸盐", "楼宇设备", "路桥施工", "轮胎", "旅游综合", "铝", "氯碱", "毛纺", "贸易", "煤炭开采", "棉纺", "民爆用品", "磨具磨料", "耐火材料", "男装", "内燃机", "农药", "农业综合", "农用机械", "女装", "啤酒", "平面媒体", "葡萄酒", "普钢", "其他采掘", "其他采掘服务", "其他电子", "其他纺织", "其他服装", "其他互联网服务", "其他化学原料", "其他化学制品", "其他基础建设", "其他家用轻工", "其他建材", "其他交运设备", "其他酒类", "其他农产品加工", "其他轻工制造", "其他塑料制品", "其他文化传媒", "其他稀有小金属", "其他纤维", "其他橡胶制品", "其他休闲服务", "其他种植业", "其他专业工程", "其它电源设备", "其它视听器材", "其它通用机械", "其它专用机械", "汽车服务", "汽车零部件", "铅锌", "燃机发电", "燃气", "热电", "人工景点", "日用化学产品", "肉制品", "乳品", "软件开发", "软饮料", "商用载货车", "商用载客车", "生物制品", "石油加工", "石油开采", "石油贸易", "食品综合", "水产养殖", "水电", "水利工程", "水泥制造", "水务", "丝绸", "饲料", "炭黑", "特钢", "调味发酵品", "铁路建设", "铁路设备", "铁路运输", "通信传输设备", "通信配套服务", "通信运营", "铜", "涂料油漆油墨制造", "维纶", "文娱用品", "钨", "无机盐", "物流", "稀土", "洗衣机", "显示器件", "线缆部件及其他", "小家电", "鞋帽", "新能源发电", "休闲服装", "冶金矿采化工设备", "一般物业经营", "医疗服务", "医疗器械", "医药商业", "仪器仪表", "移动互联网服务", "银行", "印染", "印刷包装机械", "印制电路板", "营销服务", "影视动漫", "油气钻采服务", "有线电视网络", "园林工程", "园区开发", "造纸", "粘胶", "证券", "制冷空调设备", "中压设备", "中药", "终端设备", "种子生产", "重型机械", "珠宝首饰", "专业连锁", "专业市场", "装修装饰", "自然景点", "综合", "综合电力设备商"] }, 'sw_adj': { 1: ["建筑材料", "机械设备", "家用电器", "交通运输", "化工", "纺织服装", "电气设备", "多元金融", "通信", "传媒", "信息服务", "银行", "农林牧渔", "建筑装饰", "计算机", "轻工制造", "交运设备", "信息设备", "钢铁", "采掘", "建筑建材", "商业贸易", "房地产", "有色金属", "国防军工", "医药生物", "汽车", "公用事业", "保险", "休闲服务", "证券", "电子", "综合", "食品饮料"] }, 'zz': { 1: ["电信业务", "工业", "公用事业", "金融地产", "可选消费", "能源", "信息技术", "医药卫生", "原材料", "主要消费"], 2: ["半导体", "保险", "传媒", "电信服务", "房地产", "公用事业", "计算机及电子设备", "计算机运用", "家庭与个人用品", "交通运输", "零售业", "耐用消费品与服装", "能源", "其他金融", "汽车与汽车零部件", "商业服务与用品", "食品、饮料与烟草", "食品与主要用品零售", "通信设备", "消费者服务", "医疗器械与服务", "医药生物", "银行", "原材料", "资本品", "资本市场"], 3: ["半导体", "包装食品与肉类", "保险", "传媒", "道路运输", "电力", "电脑与外围设备", "电气设备", "电网", "电信运营服务", "电信增值服务", "电子设备", "多元化零售", "房地产管理与服务", "房地产开发与园区", "纺织服装", "非金属采矿及制品", "钢铁", "个人用品", "工业集团企业", "供热或其他公用事业", "航空公司", "航空航天与国防", "航空货运与物流", "航运", "互联网服务", "互联网零售", "化学原料", "化学制品", "环保设备、工程与服务", "机械制造", "家常用品", "家庭耐用消费品", "建筑材料", "建筑产品", "建筑与工程", "交通基本设施", "酒店、餐馆与休闲", "煤炭", "能源开采设备与服务", "农牧渔产品", "其他金融服务", "其他零售", "汽车零配件与轮胎", "汽车与摩托车", "燃气", "日用品经销商", "容器与包装", "软件开发", "商业服务与用品", "商业银行", "生物科技", "石油与天然气", "食品与主要用品零售", "水务", "通信设备", "消费信贷", "信息技术服务", "休闲设备与用品", "医疗器械", "医疗用品与服务提供商", "饮料", "有色金属", "纸类与林业产品", "制药", "制药与生物科技服务", "珠宝与奢侈品", "资本市场", "综合消费者服务"] }, 'zjh': { 1: ["采矿业", "电力、热力、燃气及水生产和供应业", "房地产业", "建筑业", "交通运输、仓储和邮政业", "教育", "金融业", "居民服务、修理和其他服务业", "科学研究和技术服务业", "农、林、牧、渔业", "批发和零售业", "水利、环境和公共设施管理业", "卫生和社会工作", "文化、体育和娱乐业", "信息传输、软件和信息技术服务业", "制造业", "住宿和餐饮业", "综合", "租赁和商务服务业"], 2: ["保险业", "餐饮业", "仓储业", "畜牧业", "道路运输业", "电力、热力生产和供应业", "电气机械和器材制造业", "电信、广播电视和卫星传输服务", "房地产业", "房屋建筑业", "纺织服装、服饰业", "纺织业", "非金属矿采选业", "非金属矿物制品业", "废弃资源综合利用业", "公共设施管理业", "广播、电视、电影和影视录音制作业", "航空运输业", "黑色金属矿采选业", "黑色金属冶炼和压延加工业", "互联网和相关服务", "化学纤维制造业", "化学原料和化学制品制造业", "货币金融服务", "机动车、电子产品和日用产品修理业", "计算机、通信和其他电子设备制造业", "家具制造业", "建筑安装业", "建筑装饰和其他建筑业", "教育", "金属制品业", "酒、饮料和精制茶制造业", "开采辅助活动", "林业", "零售业", "煤炭开采和洗选业", "木材加工和木、竹、藤、棕、草制品业", "农、林、牧、渔服务业", "农副食品加工业", "农业", "批发业", "皮革、毛皮、羽毛及其制品和制鞋业", "其他金融业", "其他制造业", "汽车制造业", "燃气生产和供应业", "软件和信息技术服务业", "商务服务业", "生态保护和环境治理业", "石油和天然气开采业", "石油加工、炼焦和核燃料加工业", "食品制造业", "水的生产和供应业", "水利管理业", "水上运输业", "体育", "铁路、船舶、航空航天和其它运输设备制造业", "铁路运输业", "通用设备制造业", "土木工程建筑业", "卫生", "文化艺术业", "文教、工美、体育和娱乐用品制造业", "橡胶和塑料制品业", "新闻和出版业", "研究和试验发展", "医药制造业", "仪器仪表制造业", "印刷和记录媒介复制业", "邮政业", "有色金属矿采选业", "有色金属冶炼和压延加工业", "渔业", "造纸和纸制品业", "住宿业", "专业技术服务业", "专用设备制造业", "装卸搬运和运输代理业", "资本市场服务", "综合", "租赁业"], }, 'dx': { 1: ["Cyclical", "Defensive", "Sensitive"], 2: ["ConsumerDiscretionary", "ConsumerStaples", "Financials", "HealthCare", "Industrials", "IT", "Materials", "RealEstate", "Utilities"] } }
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/engines/industries.py
industries.py
import os from typing import Dict from typing import Iterable from typing import List from typing import Tuple from typing import Union import numpy as np import pandas as pd import sqlalchemy as sa import sqlalchemy.orm as orm from sqlalchemy import select, and_, outerjoin, join, column, Table from sqlalchemy.sql import func from PyFin.api import advanceDateByCalendar from alphamind.data.dbmodel.models.postgres import metadata from alphamind.data.dbmodel.models.postgres import FactorMaster from alphamind.data.dbmodel.models.postgres import IndexComponent from alphamind.data.dbmodel.models.postgres import IndexMarket from alphamind.data.dbmodel.models.postgres import Industry from alphamind.data.dbmodel.models.postgres import Market from alphamind.data.dbmodel.models.postgres import RiskExposure from alphamind.data.dbmodel.models.postgres import RiskMaster from alphamind.data.dbmodel.models.postgres import Universe as UniverseTable from alphamind.data.engines.universe import Universe from alphamind.data.engines.utilities import _map_factors from alphamind.data.engines.utilities import _map_industry_category from alphamind.data.engines.utilities import _map_risk_model_table from alphamind.data.processing import factor_processing from alphamind.data.transformer import Transformer from alphamind.portfolio.riskmodel import FactorRiskModel risk_styles = ['BETA', 'MOMENTUM', 'SIZE', 'EARNYILD', 'RESVOL', 'GROWTH', 'BTOP', 'LEVERAGE', 'LIQUIDTY', 'SIZENL'] industry_styles = [ 'Bank', 'RealEstate', 'Health', 'Transportation', 'Mining', 'NonFerMetal', 'HouseApp', 'LeiService', 'MachiEquip', 'BuildDeco', 'CommeTrade', 'CONMAT', 'Auto', 'Textile', 'FoodBever', 'Electronics', 'Computer', 'LightIndus', 'Utilities', 'Telecom', 'AgriForest', 'CHEM', 'Media', 'IronSteel', 'NonBankFinan', 'ELECEQP', 'AERODEF', 'Conglomerates' ] macro_styles = ['COUNTRY'] total_risk_factors = risk_styles + industry_styles + macro_styles DAILY_RETURN_OFFSET = 0 class SqlEngine: def __init__(self, db_url: str, factor_tables: List[str] = None): self._engine = sa.create_engine(db_url) self._session = self.create_session() if factor_tables: self._factor_tables = [Table(name, metadata, autoload=True, autoload_with=self._engine) for name in factor_tables] else: try: factor_tables = os.environ["FACTOR_TABLES"] self._factor_tables = [Table(name.strip(), metadata, autoload=True, autoload_with=self._engine) for name in factor_tables.split(",")] except KeyError: self._factor_tables = [] self._factor_tables += [Table(name, metadata, autoload=True, autoload_with=self._engine) for name in ["stk_daily_price_pro", "risk_exposure"] if name not in factor_tables] self.ln_func = func.ln def __del__(self): if self._session: self._session.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if self._session: self._session.close() @property def engine(self): return self._engine @property def session(self): return self._session def create_session(self): db_session = orm.sessionmaker(bind=self.engine) return db_session() def fetch_factors_meta(self) -> pd.DataFrame: query = self.session.query(FactorMaster) return pd.read_sql(query.statement, query.session.bind) def fetch_risk_meta(self) -> pd.DataFrame: query = self.session.query(RiskMaster) return pd.read_sql(query.statement, query.session.bind) def fetch_codes(self, ref_date: str, universe: Universe) -> List[int]: df = universe.query(self, ref_date, ref_date) return sorted(df.code.tolist()) def fetch_codes_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None) -> pd.DataFrame: return universe.query(self, start_date, end_date, dates) def _create_stats(self, table, horizon, offset, code_attr='code'): stats = func.sum(self.ln_func(1. + table.chgPct)).over( partition_by=getattr(table, code_attr), order_by=table.trade_date, rows=( 1 + DAILY_RETURN_OFFSET + offset, 1 + horizon + DAILY_RETURN_OFFSET + offset)).label( 'dx') return stats def fetch_dx_return(self, ref_date: str, codes: Iterable[int], expiry_date: str = None, horizon: int = 0, offset: int = 0, neutralized_risks: list = None, pre_process=None, post_process=None, benchmark: int = None) -> pd.DataFrame: start_date = ref_date if not expiry_date: end_date = advanceDateByCalendar('china.sse', ref_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y%m%d') else: end_date = expiry_date stats = self._create_stats(Market, horizon, offset) query = select([Market.trade_date, Market.code, stats]).where( and_( Market.trade_date.between(start_date, end_date), Market.code.in_(codes) ) ) df = pd.read_sql(query, self.session.bind).dropna() df = df[df.trade_date == ref_date] if benchmark: stats = self._create_stats(IndexMarket, horizon, offset, code_attr='indexCode') query = select([IndexMarket.trade_date, stats]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == benchmark ) ) df2 = pd.read_sql(query, self.session.bind).dropna() ind_ret = df2[df2.trade_date == ref_date]['dx'].values[0] df['dx'] = df['dx'] - ind_ret if neutralized_risks: _, risk_exp = self.fetch_risk_model(ref_date, codes) df = pd.merge(df, risk_exp, on='code').dropna() df[['dx']] = factor_processing(df[['dx']].values, pre_process=pre_process, risk_factors=df[neutralized_risks].values, post_process=post_process) return df[['code', 'dx']] def fetch_dx_return_range(self, universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, horizon: int = 0, offset: int = 0, benchmark: int = None) -> pd.DataFrame: if dates: start_date = dates[0] end_date = dates[-1] end_date = advanceDateByCalendar('china.sse', end_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y-%m-%d') stats = self._create_stats(Market, horizon, offset) codes = universe.query(self.engine, start_date, end_date, dates) t = select([Market.trade_date, Market.code, stats]).where( and_( Market.trade_date.between(start_date, end_date), Market.code.in_(codes.code.unique().tolist()) ) ).cte('t') cond = universe._query_statements(start_date, end_date, dates) query = select([t]).where( and_(t.columns['trade_date'] == UniverseTable.trade_date, t.columns['code'] == UniverseTable.code, cond) ) df = pd.read_sql(query, self.session.bind).dropna().set_index('trade_date') if benchmark: stats = self._create_stats(IndexMarket, horizon, offset, code_attr='indexCode') query = select([IndexMarket.trade_date, stats]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == benchmark ) ) df2 = pd.read_sql(query, self.session.bind).dropna().set_index('trade_date') df['dx'] = df['dx'].values - df2.loc[df.index]['dx'].values return df.reset_index().sort_values(['trade_date', 'code']) def fetch_dx_return_index(self, ref_date: str, index_code: int, expiry_date: str = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: start_date = ref_date if not expiry_date: end_date = advanceDateByCalendar('china.sse', ref_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y%m%d') else: end_date = expiry_date stats = self._create_stats(IndexMarket, horizon, offset, code_attr='indexCode') query = select([IndexMarket.trade_date, IndexMarket.indexCode.label('code'), stats]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == index_code ) ) df = pd.read_sql(query, self.session.bind).dropna() df = df[df.trade_date == ref_date] return df[['code', 'dx']] def fetch_dx_return_index_range(self, index_code, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: if dates: start_date = dates[0] end_date = dates[-1] end_date = advanceDateByCalendar('china.sse', end_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y-%m-%d') stats = self._create_stats(IndexMarket, horizon, offset, code_attr='indexCode') query = select([IndexMarket.trade_date, IndexMarket.indexCode.label('code'), stats]) \ .where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == index_code ) ) df = pd.read_sql(query, self.session.bind).dropna() if dates: df = df[df.trade_date.isin(dates)] return df def fetch_factor(self, ref_date: str, factors: Iterable[object], codes: Iterable[int], warm_start: int = 0) -> pd.DataFrame: if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency factor_cols = _map_factors(dependency, self._factor_tables) start_date = advanceDateByCalendar('china.sse', ref_date, str(-warm_start) + 'b').strftime( '%Y-%m-%d') end_date = ref_date big_table = Market joined_tables = set() joined_tables.add(Market.__table__.name) for t in set(factor_cols.values()): if t.name not in joined_tables: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["code"])) joined_tables.add(t.name) query = select( [Market.trade_date, Market.code, Market.chgPct, Market.secShortName] + list( column(k) for k in factor_cols.keys())) \ .select_from(big_table).where(and_(Market.trade_date.between(start_date, end_date), Market.code.in_(codes))) df = pd.read_sql(query, self.engine) \ .replace([-np.inf, np.inf], np.nan) \ .sort_values(['trade_date', 'code']) \ .set_index('trade_date') res = transformer.transform('code', df).replace([-np.inf, np.inf], np.nan) res['chgPct'] = df.chgPct res['secShortName'] = df['secShortName'] res = res.loc[ref_date:ref_date, :] res.index = list(range(len(res))) return res def fetch_factor_range(self, universe: Universe, factors: Union[Transformer, Iterable[object]], start_date: str = None, end_date: str = None, dates: Iterable[str] = None, external_data: pd.DataFrame = None) -> pd.DataFrame: if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency factor_cols = _map_factors(dependency, self._factor_tables) big_table = Market joined_tables = set() joined_tables.add(Market.__table__.name) for t in set(factor_cols.values()): if t.name not in joined_tables: if dates is not None: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["code"], Market.trade_date.in_(dates))) else: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["code"], Market.trade_date.between(start_date, end_date))) joined_tables.add(t.name) universe_df = universe.query(self, start_date, end_date, dates) query = select( [Market.trade_date, Market.code, Market.chgPct, Market.secShortName] + list( column(k) for k in factor_cols.keys())) \ .select_from(big_table).where( and_( Market.code.in_(universe_df.code.unique().tolist()), Market.trade_date.in_(dates) if dates is not None else Market.trade_date.between( start_date, end_date) ) ).distinct() df = pd.read_sql(query, self.engine).replace([-np.inf, np.inf], np.nan) if external_data is not None: df = pd.merge(df, external_data, on=['trade_date', 'code']).dropna() df.sort_values(['trade_date', 'code'], inplace=True) df.set_index('trade_date', inplace=True) res = transformer.transform('code', df).replace([-np.inf, np.inf], np.nan) res['chgPct'] = df.chgPct res['secShortName'] = df['secShortName'] res = res.reset_index() return pd.merge(res, universe_df[['trade_date', 'code']], how='inner').drop_duplicates( ['trade_date', 'code']) def fetch_factor_range_forward(self, universe: Universe, factors: Union[Transformer, object], start_date: str = None, end_date: str = None, dates: Iterable[str] = None): if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency factor_cols = _map_factors(dependency, self._factor_tables) codes = universe.query(self, start_date, end_date, dates) total_codes = codes.code.unique().tolist() total_dates = codes.trade_date.astype(str).unique().tolist() big_table = Market joined_tables = set() joined_tables.add(Market.__table__.name) for t in set(factor_cols.values()): if t.name not in joined_tables: if dates is not None: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["code"], Market.trade_date.in_(dates))) else: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["code"], Market.trade_date.between(start_date, end_date))) joined_tables.add(t.name) stats = func.lag(list(factor_cols.keys())[0], -1).over( partition_by=Market.code, order_by=Market.trade_date).label('dx') query = select([Market.trade_date, Market.code, Market.chgPct, stats]).select_from( big_table).where( and_( Market.trade_date.in_(total_dates), Market.code.in_(total_codes) ) ) df = pd.read_sql(query, self.engine) \ .replace([-np.inf, np.inf], np.nan) \ .sort_values(['trade_date', 'code']) return pd.merge(df, codes[['trade_date', 'code']], how='inner').drop_duplicates( ['trade_date', 'code']) def fetch_benchmark(self, ref_date: str, benchmark: int, codes: Iterable[int] = None) -> pd.DataFrame: query = select([IndexComponent.code, (IndexComponent.weight / 100.).label('weight')]).where( and_( IndexComponent.trade_date == ref_date, IndexComponent.indexCode == benchmark ) ) df = pd.read_sql(query, self.engine) if codes: df.set_index(['code'], inplace=True) df = df.reindex(codes).fillna(0.) df.reset_index(inplace=True) return df def fetch_benchmark_range(self, benchmark: int, start_date: str = None, end_date: str = None, dates: Iterable[str] = None) -> pd.DataFrame: cond = IndexComponent.trade_date.in_(dates) if dates else IndexComponent.trade_date.between( start_date, end_date) query = select( [IndexComponent.trade_date, IndexComponent.code, (IndexComponent.weight / 100.).label('weight')]).where( and_( cond, IndexComponent.indexCode == benchmark ) ) return pd.read_sql(query, self.engine) def fetch_risk_model(self, ref_date: str, codes: Iterable[int], risk_model: str = 'short', excluded: Iterable[str] = None, model_type: str = None) -> Union[ FactorRiskModel, Tuple[pd.DataFrame, pd.DataFrame]]: risk_cov_table, special_risk_table = _map_risk_model_table(risk_model) cov_risk_cols = [risk_cov_table.__table__.columns[f] for f in total_risk_factors] query = select([risk_cov_table.FactorID, risk_cov_table.Factor] + cov_risk_cols).where( risk_cov_table.trade_date == ref_date ) risk_cov = pd.read_sql(query, self.engine).sort_values('FactorID') if excluded: risk_exposure_cols = [RiskExposure.__table__.columns[f] for f in total_risk_factors if f not in set(excluded)] else: risk_exposure_cols = [RiskExposure.__table__.columns[f] for f in total_risk_factors] big_table = join(RiskExposure, special_risk_table, and_( RiskExposure.code == special_risk_table.code, RiskExposure.trade_date == special_risk_table.trade_date )) query = select( [RiskExposure.code, special_risk_table.SRISK.label('srisk')] + risk_exposure_cols) \ .select_from(big_table).where( and_(RiskExposure.trade_date == ref_date, RiskExposure.code.in_(codes) )) risk_exp = pd.read_sql(query, self.engine).dropna() if not model_type: return risk_cov, risk_exp elif model_type == 'factor': factor_names = risk_cov.Factor.tolist() new_risk_cov = risk_cov.set_index('Factor') factor_cov = new_risk_cov.loc[factor_names, factor_names] / 10000. new_risk_exp = risk_exp.set_index('code') factor_loading = new_risk_exp.loc[:, factor_names] idsync = new_risk_exp['srisk'] * new_risk_exp['srisk'] / 10000 return FactorRiskModel(factor_cov, factor_loading, idsync), risk_cov, risk_exp def fetch_risk_model_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, risk_model: str = 'short', excluded: Iterable[str] = None, model_type: str = None) -> Tuple[pd.DataFrame, pd.DataFrame]: risk_cov_table, special_risk_table = _map_risk_model_table(risk_model) cov_risk_cols = [risk_cov_table.__table__.columns[f] for f in total_risk_factors] cond = risk_cov_table.trade_date.in_(dates) if dates else risk_cov_table.trade_date.between( start_date, end_date) query = select([risk_cov_table.trade_date, risk_cov_table.FactorID, risk_cov_table.Factor] + cov_risk_cols).where( cond ) risk_cov = pd.read_sql(query, self.engine).sort_values(['trade_date', 'FactorID']) if not excluded: excluded = [] risk_exposure_cols = [RiskExposure.__table__.columns[f] for f in total_risk_factors if f not in set(excluded)] cond = universe._query_statements(start_date, end_date, dates) big_table = join(RiskExposure, UniverseTable, and_( RiskExposure.trade_date == UniverseTable.trade_date, RiskExposure.code == UniverseTable.code, cond ) ) big_table = join(special_risk_table, big_table, and_( RiskExposure.code == special_risk_table.code, RiskExposure.trade_date == special_risk_table.trade_date, )) query = select( [RiskExposure.trade_date, RiskExposure.code, special_risk_table.SRISK.label('srisk')] + risk_exposure_cols).select_from(big_table) \ .distinct() risk_exp = pd.read_sql(query, self.engine).sort_values(['trade_date', 'code']).dropna() if not model_type: return risk_cov, risk_exp elif model_type == 'factor': new_risk_cov = risk_cov.set_index('Factor') new_risk_exp = risk_exp.set_index('code') risk_cov_groups = new_risk_cov.groupby('trade_date') risk_exp_groups = new_risk_exp.groupby('trade_date') models = dict() for ref_date, cov_g in risk_cov_groups: exp_g = risk_exp_groups.get_group(ref_date) factor_names = cov_g.index.tolist() factor_cov = cov_g.loc[factor_names, factor_names] / 10000. factor_loading = exp_g.loc[:, factor_names] idsync = exp_g['srisk'] * exp_g['srisk'] / 10000 models[ref_date] = FactorRiskModel(factor_cov, factor_loading, idsync) return pd.Series(models), risk_cov, risk_exp def fetch_industry(self, ref_date: str, codes: Iterable[int] = None, category: str = 'sw', level: int = 1): industry_category_name = _map_industry_category(category) code_name = 'industryID' + str(level) category_name = 'industryName' + str(level) cond = and_( Industry.trade_date == ref_date, Industry.code.in_(codes), Industry.industry == industry_category_name ) if codes else and_( Industry.trade_date == ref_date, Industry.industry == industry_category_name ) query = select([Industry.code, getattr(Industry, code_name).label('industry_code'), getattr(Industry, category_name).label('industry')]).where( cond ).distinct() return pd.read_sql(query, self.engine).dropna().drop_duplicates(['code']) def fetch_industry_matrix(self, ref_date: str, codes: Iterable[int] = None, category: str = 'sw', level: int = 1): df = self.fetch_industry(ref_date, codes, category, level) df['industry_name'] = df['industry'] df = pd.get_dummies(df, columns=['industry'], prefix="", prefix_sep="") return df.drop('industry_code', axis=1) def fetch_industry_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, category: str = 'sw', level: int = 1): industry_category_name = _map_industry_category(category) cond = universe._query_statements(start_date, end_date, dates) big_table = join(Industry, UniverseTable, and_( Industry.trade_date == UniverseTable.trade_date, Industry.code == UniverseTable.code, Industry.industry == industry_category_name, cond )) code_name = 'industryID' + str(level) category_name = 'industryName' + str(level) query = select([Industry.trade_date, Industry.code, getattr(Industry, code_name).label('industry_code'), getattr(Industry, category_name).label('industry')]).select_from(big_table) \ .order_by(Industry.trade_date, Industry.code) return pd.read_sql(query, self.engine).dropna() def fetch_industry_matrix_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, category: str = 'sw', level: int = 1): df = self.fetch_industry_range(universe, start_date, end_date, dates, category, level) df['industry_name'] = df['industry'] df = pd.get_dummies(df, columns=['industry'], prefix="", prefix_sep="") return df.drop('industry_code', axis=1).drop_duplicates(['trade_date', 'code']) def fetch_trade_status(self, ref_date: str, codes: Iterable[int], offset=0): target_date = advanceDateByCalendar('china.sse', ref_date, str(offset) + 'b').strftime('%Y%m%d') stats = func.lead(Market.isOpen, 1).over( partition_by=Market.code, order_by=Market.trade_date).label('is_open') cte = select([Market.trade_date, Market.code, stats]).where( and_( Market.trade_date.in_([ref_date, target_date]), Market.code.in_(codes) ) ).cte('cte') query = select([column('code'), column('is_open')]).select_from(cte).where( column('trade_date') == ref_date ).order_by(column('code')) return pd.read_sql(query, self.engine).sort_values(['code']) def fetch_trade_status_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, offset=0): codes = universe.query(self, start_date, end_date, dates) if dates: start_date = dates[0] end_date = dates[-1] end_date = advanceDateByCalendar('china.sse', end_date, str(offset) + 'b').strftime('%Y-%m-%d') stats = func.lead(Market.isOpen, offset).over( partition_by=Market.code, order_by=Market.trade_date).label('is_open') cte = select([Market.trade_date, Market.code, stats]).where( and_( Market.trade_date.between(start_date, end_date), Market.code.in_(codes.code.unique().tolist()) ) ).cte('cte') query = select([cte]).select_from(cte).order_by(cte.columns['trade_date'], cte.columns['code']) df = pd.read_sql(query, self.engine) return pd.merge(df, codes[['trade_date', 'code']], on=['trade_date', 'code']) def fetch_data(self, ref_date: str, factors: Iterable[str], codes: Iterable[int], benchmark: int = None, risk_model: str = 'short', industry: str = 'sw') -> Dict[str, pd.DataFrame]: total_data = {} transformer = Transformer(factors) factor_data = self.fetch_factor(ref_date, transformer, codes) if benchmark: benchmark_data = self.fetch_benchmark(ref_date, benchmark) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model(ref_date, codes, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry(ref_date=ref_date, codes=codes, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['code']) total_data['factor'] = factor_data return total_data def fetch_data_range(self, universe: Universe, factors: Iterable[str], start_date: str = None, end_date: str = None, dates: Iterable[str] = None, benchmark: int = None, risk_model: str = 'short', industry: str = 'sw', external_data: pd.DataFrame = None) -> Dict[str, pd.DataFrame]: total_data = {} transformer = Transformer(factors) factor_data = self.fetch_factor_range(universe, transformer, start_date, end_date, dates, external_data=external_data) if benchmark: benchmark_data = self.fetch_benchmark_range(benchmark, start_date, end_date, dates) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['trade_date', 'code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model_range(universe, start_date, end_date, dates, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['trade_date', 'code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry_range(universe, start_date=start_date, end_date=end_date, dates=dates, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['trade_date', 'code']) total_data['factor'] = factor_data return total_data
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/engines/sqlengine/postgres.py
postgres.py
import os from typing import Iterable from typing import List from typing import Tuple from typing import Union from typing import Dict import numpy as np import pandas as pd import sqlalchemy as sa import sqlalchemy.orm as orm from sqlalchemy import ( and_, column, join, select, outerjoin, Table ) from PyFin.api import advanceDateByCalendar from alphamind.data.dbmodel.models.mysql import ( metadata, Market, IndexMarket, Industry, RiskExposure, Universe as UniverseTable, IndexComponent, IndexWeight, ) from alphamind.data.engines.utilities import _map_factors from alphamind.data.engines.universe import Universe from alphamind.data.processing import factor_processing from alphamind.data.engines.utilities import _map_risk_model_table from alphamind.portfolio.riskmodel import FactorRiskModel from alphamind.data.transformer import Transformer risk_styles = ['BETA', 'MOMENTUM', 'SIZE', 'EARNYILD', 'RESVOL', 'GROWTH', 'BTOP', 'LEVERAGE', 'LIQUIDTY', 'SIZENL'] industry_styles = [ 'Bank', 'RealEstate', 'Health', 'Transportation', 'Mining', 'NonFerMetal', 'HouseApp', 'LeiService', 'MachiEquip', 'BuildDeco', 'CommeTrade', 'CONMAT', 'Auto', 'Textile', 'FoodBever', 'Electronics', 'Computer', 'LightIndus', 'Utilities', 'Telecom', 'AgriForest', 'CHEM', 'Media', 'IronSteel', 'NonBankFinan', 'ELECEQP', 'AERODEF', 'Conglomerates' ] macro_styles = ['COUNTRY'] total_risk_factors = risk_styles + industry_styles + macro_styles _map_index_codes = { 300: "2070000060", 905: "2070000187", } DAILY_RETURN_OFFSET = 0 class SqlEngine: def __init__(self, db_url: str, factor_tables: List[str] = None): self._engine = sa.create_engine(db_url) self._session = self.create_session() if factor_tables: self._factor_tables = [Table(name, metadata, autoload=True, autoload_with=self._engine) for name in factor_tables] else: try: factor_tables = os.environ["FACTOR_TABLES"] self._factor_tables = [Table(name.strip(), metadata, autoload=True, autoload_with=self._engine) for name in factor_tables.split(",")] except KeyError: self._factor_tables = [] self._factor_tables += [Table(name, metadata, autoload=True, autoload_with=self._engine) for name in ["stk_daily_price_pro", "risk_exposure"] if name not in factor_tables] def __del__(self): if self._session: self._session.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if self._session: self._session.close() @property def engine(self): return self._engine @property def session(self): return self._session def create_session(self): db_session = orm.sessionmaker(bind=self._engine) return db_session() def _create_stats(self, df, horizon, offset, no_code=False): df["trade_date"] = pd.to_datetime(df["trade_date"]) df.set_index("trade_date", inplace=True) df["dx"] = np.log(1. + df["chgPct"] / 100.) if not no_code: df = df.groupby("code").rolling(window=horizon + 1)['dx'].sum() \ .groupby(level=0).shift(-(horizon + offset + 1)).dropna().reset_index() else: df = df.rolling(window=horizon + 1)['dx'].sum().shift(-(horizon + offset + 1)).dropna().reset_index() return df def fetch_dx_return(self, ref_date: str, codes: Iterable[int], expiry_date: str = None, horizon: int = 0, offset: int = 0, neutralized_risks: list = None, pre_process=None, post_process=None, benchmark: int = None) -> pd.DataFrame: start_date = ref_date if not expiry_date: end_date = advanceDateByCalendar('china.sse', ref_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y-%m-%d') else: end_date = expiry_date query = select([Market.trade_date, Market.code.label("code"), Market.chgPct.label("chgPct")]).where( and_( Market.trade_date.between(start_date, end_date), Market.code.in_(codes), Market.flag == 1 ) ).order_by(Market.trade_date, Market.code) df = pd.read_sql(query, self.session.bind).dropna() df = self._create_stats(df, horizon, offset) df = df[df.trade_date == ref_date] if benchmark: benchmark = _map_index_codes[benchmark] query = select([IndexMarket.trade_date, IndexMarket.chgPct.label("chgPct")]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == benchmark, IndexMarket.flag == 1 ) ) df2 = pd.read_sql(query, self.session.bind).dropna() df2 = self._create_stats(df2, horizon, offset, no_code=True) ind_ret = df2[df2.trade_date == ref_date]['dx'].values[0] df['dx'] = df['dx'] - ind_ret if neutralized_risks: _, risk_exp = self.fetch_risk_model(ref_date, codes) df = pd.merge(df, risk_exp, on='code').dropna() df[['dx']] = factor_processing(df[['dx']].values, pre_process=pre_process, risk_factors=df[neutralized_risks].values, post_process=post_process) return df[['code', 'dx']] def fetch_dx_return_index(self, ref_date: str, index_code: int, expiry_date: str = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: start_date = ref_date index_code = _map_index_codes[index_code] if not expiry_date: end_date = advanceDateByCalendar('china.sse', ref_date, str(1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y%m%d') else: end_date = expiry_date query = select([IndexMarket.trade_date, IndexMarket.indexCode.label('code'), IndexMarket.chgPct.label("chgPct")]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == index_code, IndexMarket.flag == 1 ) ).order_by(IndexMarket.trade_date, IndexMarket.indexCode) df = pd.read_sql(query, self.session.bind).dropna() df = self._create_stats(df, horizon, offset) df = df[df.trade_date == ref_date] return df[['code', 'dx']] def fetch_dx_return_range(self, universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, horizon: int = 0, offset: int = 0, benchmark: int = None) -> pd.DataFrame: if dates: start_date = dates[0] end_date = dates[-1] end_date = advanceDateByCalendar('china.sse', end_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y-%m-%d') codes = universe.query(self.engine, start_date, end_date, dates) t1 = select([Market.trade_date, Market.code.label("code"), Market.chgPct.label("chgPct")]).where( and_( Market.trade_date.between(start_date, end_date), Market.code.in_(codes.code.unique().tolist()), Market.flag == 1 ) ) df1 = pd.read_sql(t1, self.session.bind).dropna() df1 = self._create_stats(df1, horizon, offset) df2 = self.fetch_codes_range(universe, start_date, end_date, dates) df2["trade_date"] = pd.to_datetime(df2["trade_date"]) df = pd.merge(df1, df2, on=["trade_date", "code"]) df = df.set_index("trade_date") if benchmark: benchmark = _map_index_codes[benchmark] query = select([IndexMarket.trade_date, IndexMarket.chgPct.label("chgPct")]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == benchmark, IndexMarket.flag == 1 ) ) df2 = pd.read_sql(query, self.session.bind).dropna().drop_duplicates(["trade_date"]) df2 = self._create_stats(df2, horizon, offset, no_code=True).set_index("trade_date") df['dx'] = df['dx'].values - df2.loc[df.index]['dx'].values if dates: df = df[df.index.isin(dates)] return df.reset_index().sort_values(['trade_date', 'code']) def fetch_dx_return_index_range(self, index_code, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: if dates: start_date = dates[0] end_date = dates[-1] index_code = _map_index_codes[index_code] end_date = advanceDateByCalendar('china.sse', end_date, str( 1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime( '%Y-%m-%d') query = select([IndexMarket.trade_date, IndexMarket.indexCode.label('code'), IndexMarket.chgPct.label("chgPct")]) \ .where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == index_code, IndexMarket.flag == 1 ) ) df = pd.read_sql(query, self.session.bind).dropna().drop_duplicates(["trade_date", "code"]) df = self._create_stats(df, horizon, offset) if dates: df = df[df.trade_date.isin(dates)] return df def fetch_codes(self, ref_date: str, universe: Universe) -> List[int]: df = universe.query(self, ref_date, ref_date) return sorted(df.code.tolist()) def fetch_codes_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None) -> pd.DataFrame: return universe.query(self, start_date, end_date, dates) def fetch_factor(self, ref_date: str, factors: Iterable[object], codes: Iterable[int], warm_start: int = 0) -> pd.DataFrame: if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency factor_cols = _map_factors(dependency, self._factor_tables) start_date = advanceDateByCalendar('china.sse', ref_date, str(-warm_start) + 'b').strftime( '%Y-%m-%d') end_date = ref_date big_table = Market joined_tables = set() joined_tables.add(Market.__table__.name) for t in set(factor_cols.values()): if t.name not in joined_tables: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["security_code"], Market.flag == 1, t.columns["flag"] == 1)) joined_tables.add(t.name) query = select( [Market.trade_date, Market.code.label("code"), Market.chgPct.label("chgPct"), Market.secShortName.label("secShortName")] + list( column(k) for k in factor_cols.keys())) \ .select_from(big_table).where(and_(Market.trade_date.between(start_date, end_date), Market.code.in_(codes), Market.flag == 1)) df = pd.read_sql(query, self.engine) \ .replace([-np.inf, np.inf], np.nan) \ .sort_values(['trade_date', 'code']) \ .drop_duplicates(["trade_date", "code"]) \ .set_index('trade_date') res = transformer.transform('code', df).replace([-np.inf, np.inf], np.nan) res['chgPct'] = df.chgPct res['secShortName'] = df['secShortName'] res.index = pd.to_datetime(res.index) res = res.loc[ref_date:ref_date, :] res.index = list(range(len(res))) return res def fetch_factor_range(self, universe: Universe, factors: Union[Transformer, Iterable[object]], start_date: str = None, end_date: str = None, dates: Iterable[str] = None, external_data: pd.DataFrame = None) -> pd.DataFrame: if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency factor_cols = _map_factors(dependency, self._factor_tables) big_table = Market joined_tables = set() joined_tables.add(Market.__table__.name) for t in set(factor_cols.values()): if t.name not in joined_tables: if dates is not None: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["security_code"], Market.trade_date.in_(dates), Market.flag == 1, t.columns["flag"] == 1)) else: big_table = outerjoin(big_table, t, and_(Market.trade_date == t.columns["trade_date"], Market.code == t.columns["security_code"], Market.trade_date.between(start_date, end_date), Market.flag == 1, t.columns["flag"] == 1)) joined_tables.add(t.name) universe_df = universe.query(self, start_date, end_date, dates) query = select( [Market.trade_date, Market.code.label("code"), Market.chgPct.label("chgPct"), Market.secShortName.label("secShortName")] + list( column(k) for k in factor_cols.keys())) \ .select_from(big_table).where( and_( Market.code.in_(universe_df.code.unique().tolist()), Market.trade_date.in_(dates) if dates is not None else Market.trade_date.between( start_date, end_date), Market.flag == 1 ) ).distinct() df = pd.read_sql(query, self.engine).replace([-np.inf, np.inf], np.nan).drop_duplicates(["trade_date", "code"]) if external_data is not None: df = pd.merge(df, external_data, on=['trade_date', 'code']).dropna() df = df.sort_values(["trade_date", "code"]).drop_duplicates(subset=["trade_date", "code"]) df.set_index('trade_date', inplace=True) res = transformer.transform('code', df).replace([-np.inf, np.inf], np.nan) res['chgPct'] = df.chgPct res['secShortName'] = df['secShortName'] res = res.reset_index() res["trade_date"] = pd.to_datetime(res["trade_date"]) return pd.merge(res, universe_df[['trade_date', 'code']], how='inner').drop_duplicates( ['trade_date', 'code']) def fetch_industry(self, ref_date: str, codes: Iterable[int] = None, category: str = 'sw', level: int = 1): code_name = 'industry_code' + str(level) category_name = 'industry_name' + str(level) cond = and_( Industry.trade_date == ref_date, Industry.code.in_(codes), Industry.flag == 1 ) if codes else and_( Industry.trade_date == ref_date, Industry.flag == 1 ) query = select([Industry.code.label("code"), getattr(Industry, code_name).label('industry_code'), getattr(Industry, category_name).label('industry')]).where( cond ).distinct() return pd.read_sql(query, self.engine).dropna().drop_duplicates(['code']) def fetch_industry_matrix(self, ref_date: str, codes: Iterable[int] = None, category: str = 'sw', level: int = 1): df = self.fetch_industry(ref_date, codes, category, level) df['industry_name'] = df['industry'] df = pd.get_dummies(df, columns=['industry'], prefix="", prefix_sep="") return df.drop('industry_code', axis=1) def fetch_industry_matrix_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, category: str = 'sw', level: int = 1): df = self.fetch_industry_range(universe, start_date, end_date, dates, category, level) df['industry_name'] = df['industry'] df = pd.get_dummies(df, columns=['industry'], prefix="", prefix_sep="") return df.drop('industry_code', axis=1).drop_duplicates(['trade_date', 'code']) def fetch_industry_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, category: str = 'sw', level: int = 1): code_name = 'industry_code' + str(level) category_name = 'industry_name' + str(level) cond = universe._query_statements(start_date, end_date, dates) query = select([Industry.code.label("code"), Industry.trade_date, getattr(Industry, code_name).label('industry_code'), getattr(Industry, category_name).label('industry')]).where( and_( *cond, Industry.code == UniverseTable.code, Industry.trade_date == UniverseTable.trade_date, Industry.flag == 1 ) ).distinct() df = pd.read_sql(query, self.session.bind) df["trade_date"] = pd.to_datetime(df["trade_date"]) return df def fetch_risk_model(self, ref_date: str, codes: Iterable[int], risk_model: str = 'short', excluded: Iterable[str] = None, model_type: str = None) -> Union[ FactorRiskModel, Tuple[pd.DataFrame, pd.DataFrame]]: risk_cov_table, special_risk_table = _map_risk_model_table(risk_model) cov_risk_cols = [risk_cov_table.__table__.columns[f] for f in total_risk_factors] query = select([risk_cov_table.FactorID, risk_cov_table.Factor] + cov_risk_cols).where( risk_cov_table.trade_date == ref_date ) risk_cov = pd.read_sql(query, self.engine).sort_values('FactorID') if excluded: risk_exposure_cols = [RiskExposure.__table__.columns[f] for f in total_risk_factors if f not in set(excluded)] else: risk_exposure_cols = [RiskExposure.__table__.columns[f] for f in total_risk_factors] big_table = join(RiskExposure, special_risk_table, and_( RiskExposure.code == special_risk_table.code, RiskExposure.trade_date == special_risk_table.trade_date )) query = select( [RiskExposure.code.label("code"), special_risk_table.SRISK.label('srisk')] + risk_exposure_cols) \ .select_from(big_table).where( and_(RiskExposure.trade_date == ref_date, RiskExposure.code.in_(codes), RiskExposure.flag == 1 )) risk_exp = pd.read_sql(query, self.engine).dropna().drop_duplicates(subset=["code"]) if not model_type: return risk_cov, risk_exp elif model_type == 'factor': factor_names = risk_cov.Factor.tolist() new_risk_cov = risk_cov.set_index('Factor') factor_cov = new_risk_cov.loc[factor_names, factor_names] / 10000. new_risk_exp = risk_exp.set_index('code') factor_loading = new_risk_exp.loc[:, factor_names] idsync = new_risk_exp['srisk'] * new_risk_exp['srisk'] / 10000 return FactorRiskModel(factor_cov, factor_loading, idsync), risk_cov, risk_exp def fetch_risk_model_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, risk_model: str = 'short', excluded: Iterable[str] = None, model_type: str = None) -> Tuple[pd.DataFrame, pd.DataFrame]: risk_cov_table, special_risk_table = _map_risk_model_table(risk_model) cov_risk_cols = [risk_cov_table.__table__.columns[f] for f in total_risk_factors] cond = risk_cov_table.trade_date.in_(dates) if dates else risk_cov_table.trade_date.between( start_date, end_date) query = select([risk_cov_table.trade_date, risk_cov_table.FactorID, risk_cov_table.Factor] + cov_risk_cols).where( cond ) risk_cov = pd.read_sql(query, self.engine).sort_values(['trade_date', 'FactorID']) risk_cov["trade_date"] = pd.to_datetime(risk_cov["trade_date"]) if not excluded: excluded = [] risk_exposure_cols = [RiskExposure.__table__.columns[f] for f in total_risk_factors if f not in set(excluded)] cond = universe._query_statements(start_date, end_date, dates) big_table = join(RiskExposure, UniverseTable, and_( RiskExposure.trade_date == UniverseTable.trade_date, RiskExposure.code == UniverseTable.code, RiskExposure.flag == 1, cond ) ) big_table = join(special_risk_table, big_table, and_( RiskExposure.code == special_risk_table.code, RiskExposure.trade_date == special_risk_table.trade_date, )) query = select( [RiskExposure.trade_date, RiskExposure.code.label("code"), special_risk_table.SRISK.label('srisk')] + risk_exposure_cols).select_from(big_table) \ .distinct() risk_exp = pd.read_sql(query, self.engine).sort_values(['trade_date', 'code']) \ .dropna().drop_duplicates(["trade_date", "code"]) risk_exp["trade_date"] = pd.to_datetime(risk_exp["trade_date"]) if not model_type: return risk_cov, risk_exp elif model_type == 'factor': new_risk_cov = risk_cov.set_index('Factor') new_risk_exp = risk_exp.set_index('code') risk_cov_groups = new_risk_cov.groupby('trade_date') risk_exp_groups = new_risk_exp.groupby('trade_date') models = dict() for ref_date, cov_g in risk_cov_groups: exp_g = risk_exp_groups.get_group(ref_date) factor_names = cov_g.index.tolist() factor_cov = cov_g.loc[factor_names, factor_names] / 10000. factor_loading = exp_g.loc[:, factor_names] idsync = exp_g['srisk'] * exp_g['srisk'] / 10000 models[ref_date] = FactorRiskModel(factor_cov, factor_loading, idsync) return pd.Series(models), risk_cov, risk_exp def fetch_data(self, ref_date: str, factors: Iterable[str], codes: Iterable[int], benchmark: int = None, risk_model: str = 'short', industry: str = 'sw') -> Dict[str, pd.DataFrame]: total_data = dict() transformer = Transformer(factors) factor_data = self.fetch_factor(ref_date, transformer, codes, used_factor_tables=factor_tables) if benchmark: benchmark_data = self.fetch_benchmark(ref_date, benchmark) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model(ref_date, codes, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry(ref_date=ref_date, codes=codes, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['code']) total_data['factor'] = factor_data return total_data def fetch_benchmark(self, ref_date: str, benchmark: int, codes: Iterable[int] = None) -> pd.DataFrame: benchmark = _map_index_codes[benchmark] big_table = join(IndexComponent, IndexWeight, and_( IndexComponent.trade_date == IndexWeight.trade_date, IndexComponent.indexSymbol == IndexWeight.indexSymbol, IndexComponent.symbol == IndexWeight.symbol, IndexComponent.flag == 1, IndexWeight.flag == 1 ) ) query = select( [IndexComponent.code.label("code"), (IndexWeight.weight / 100.).label('weight')]).select_from(big_table). \ where( and_( IndexComponent.trade_date == ref_date, IndexComponent.indexCode == benchmark, ) ).distinct() df = pd.read_sql(query, self.engine).drop_duplicates(subset=["code"]) if codes: df.set_index(['code'], inplace=True) df = df.reindex(codes).fillna(0.) df.reset_index(inplace=True) return df def fetch_benchmark_range(self, benchmark: int, start_date: str = None, end_date: str = None, dates: Iterable[str] = None) -> pd.DataFrame: cond = IndexComponent.trade_date.in_(dates) if dates else IndexComponent.trade_date.between( start_date, end_date) benchmark = _map_index_codes[benchmark] big_table = join(IndexComponent, IndexWeight, and_( IndexComponent.trade_date == IndexWeight.trade_date, IndexComponent.indexSymbol == IndexWeight.indexSymbol, IndexComponent.symbol == IndexWeight.symbol, IndexComponent.flag == 1, IndexWeight.flag == 1 ) ) query = select( [IndexComponent.trade_date, IndexComponent.code.label("code"), (IndexWeight.weight / 100.).label('weight')]).select_from(big_table). \ where( and_( cond, IndexComponent.indexCode == benchmark, ) ).distinct() df = pd.read_sql(query, self.engine).drop_duplicates(["trade_date", "code"]) df["trade_date"] = pd.to_datetime(df["trade_date"]) return df def fetch_data(self, ref_date: str, factors: Iterable[str], codes: Iterable[int], benchmark: int = None, risk_model: str = 'short', industry: str = 'sw') -> Dict[str, pd.DataFrame]: total_data = dict() transformer = Transformer(factors) factor_data = self.fetch_factor(ref_date, transformer, codes) if benchmark: benchmark_data = self.fetch_benchmark(ref_date, benchmark) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model(ref_date, codes, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry(ref_date=ref_date, codes=codes, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['code']) total_data['factor'] = factor_data return total_data def fetch_data_range(self, universe: Universe, factors: Iterable[str], start_date: str = None, end_date: str = None, dates: Iterable[str] = None, benchmark: int = None, risk_model: str = 'short', industry: str = 'sw', external_data: pd.DataFrame = None) -> Dict[str, pd.DataFrame]: total_data = {} transformer = Transformer(factors) factor_data = self.fetch_factor_range(universe, transformer, start_date, end_date, dates, external_data=external_data) if benchmark: benchmark_data = self.fetch_benchmark_range(benchmark, start_date, end_date, dates) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['trade_date', 'code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model_range(universe, start_date, end_date, dates, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['trade_date', 'code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry_range(universe, start_date=start_date, end_date=end_date, dates=dates, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['trade_date', 'code']) total_data['factor'] = factor_data return total_data if __name__ == "__main__": from PyFin.api import makeSchedule # db_url = "mysql+mysqldb://reader:Reader#[email protected]:13317/vision?charset=utf8" db_url = "mysql+mysqldb://dxrw:[email protected]:13317/dxtest?charset=utf8" sql_engine = SqlEngine(db_url=db_url, factor_tables=["factor_momentum"]) universe = Universe("hs300") start_date = '2020-01-02' end_date = '2020-02-21' frequency = "10b" benchmark = 300 factors = ["EMA5D", "EMV6D"] ref_dates = makeSchedule(start_date, end_date, frequency, 'china.sse') print(ref_dates) df = sql_engine.fetch_factor("2020-02-21", factors=factors, codes=["2010031963"]) print(df) df = sql_engine.fetch_factor_range(universe=universe, dates=ref_dates, factors=factors) print(df) df = sql_engine.fetch_codes_range(start_date=start_date, end_date=end_date, universe=Universe("hs300")) print(df) df = sql_engine.fetch_dx_return("2020-10-09", codes=["2010031963"], benchmark=benchmark) print(df) df = sql_engine.fetch_dx_return_range(universe, dates=ref_dates, horizon=9, offset=1, benchmark=benchmark) print(df) df = sql_engine.fetch_dx_return_index("2020-10-09", index_code=benchmark) print(df) df = sql_engine.fetch_dx_return_index_range(start_date=start_date, end_date=end_date, index_code=benchmark, horizon=9, offset=1) print(df) df = sql_engine.fetch_benchmark("2020-10-09", benchmark=benchmark) print(df) df = sql_engine.fetch_benchmark_range(start_date=start_date, end_date=end_date, benchmark=benchmark) print(df) df = sql_engine.fetch_industry(ref_date="2020-10-09", codes=["2010031963"]) print(df) df = sql_engine.fetch_industry_matrix(ref_date="2020-10-09", codes=["2010031963"]) print(df) df = sql_engine.fetch_industry_matrix_range(universe=universe, start_date=start_date, end_date=end_date) print(df) df = sql_engine.fetch_industry_range(start_date=start_date, end_date=end_date, universe=Universe("hs300")) print(df) df = sql_engine.fetch_risk_model("2020-02-21", codes=["2010031963"]) print(df) df = sql_engine.fetch_risk_model("2020-02-21", codes=["2010031963"], model_type="factor") print(df) df = sql_engine.fetch_risk_model_range(universe=universe, start_date=start_date, end_date=end_date) print(df) df = sql_engine.fetch_risk_model_range(universe=universe, start_date=start_date, end_date=end_date, model_type="factor") print(df) df = sql_engine.fetch_data("2020-02-11", factors=factors, codes=["2010031963"], benchmark=300) print(df) df = sql_engine.fetch_data_range(universe, factors=factors, dates=ref_dates, benchmark=benchmark)["factor"] print(df)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/engines/sqlengine/mysql.py
mysql.py
from sqlalchemy import BigInteger, Column, DateTime, Float, Index, Integer, String, Text from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() metadata = Base.metadata class Categories(Base): __tablename__ = 'categories' __table_args__ = ( Index('categories_pk', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(BigInteger, primary_key=True, nullable=False) sw1 = Column(Integer) sw1_adj = Column(Integer) class FactorMaster(Base): __tablename__ = 'factor_master' __table_args__ = ( Index('factor_master_idx', 'factor', 'source', unique=True), ) factor = Column(String(30), primary_key=True, nullable=False) source = Column(String(30), primary_key=True, nullable=False) alias = Column(String(50), nullable=False) updateTime = Column(DateTime) description = Column(Text) class HaltList(Base): __tablename__ = 'halt_list' __table_args__ = ( Index('halt_list_Date_Code_haltBeginTime_uindex', 'trade_date', 'code', 'haltBeginTime', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) haltBeginTime = Column(DateTime, primary_key=True, nullable=False) haltEndTime = Column(DateTime) secShortName = Column(String(20)) exchangeCD = Column(String(4)) listStatusCD = Column(String(4)) delistDate = Column(DateTime) assetClass = Column(String(4)) class IndexComponent(Base): __tablename__ = 'index_components' __table_args__ = ( Index('index_comp_idx', 'trade_date', 'indexCode', 'code', 'weight'), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) effDate = Column(DateTime) indexShortName = Column(String(20)) indexCode = Column(Integer, primary_key=True, nullable=False) secShortName = Column(String(20)) exchangeCD = Column(String(4)) weight = Column(Float(53)) class Industry(Base): __tablename__ = 'industry' __table_args__ = ( Index('industry_idx', 'trade_date', 'code', 'industryID', 'industryName1', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) industry = Column(String(30), nullable=False) industryID = Column(BigInteger, primary_key=True, nullable=False) industrySymbol = Column(String(20)) industryID1 = Column(BigInteger, nullable=False) industryName1 = Column(String(50)) industryID2 = Column(BigInteger) industryName2 = Column(String(50)) industryID3 = Column(BigInteger) industryName3 = Column(String(50)) IndustryID4 = Column(BigInteger) IndustryName4 = Column(String(50)) class Market(Base): __tablename__ = 'market' __table_args__ = ( Index('market_idx', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) secShortName = Column(String(10)) exchangeCD = Column(String(4)) preClosePrice = Column(Float(53)) actPreClosePrice = Column(Float(53)) openPrice = Column(Float(53)) highestPrice = Column(Float(53)) lowestPrice = Column(Float(53)) closePrice = Column(Float(53)) turnoverVol = Column(BigInteger) turnoverValue = Column(Float(53)) dealAmount = Column(BigInteger) turnoverRate = Column(Float(53)) accumAdjFactor = Column(Float(53)) negMarketValue = Column(Float(53)) marketValue = Column(Float(53)) chgPct = Column(Float(53)) PE = Column(Float(53)) PE1 = Column(Float(53)) PB = Column(Float(53)) isOpen = Column(Integer) vwap = Column(Float(53)) class RiskCovDay(Base): __tablename__ = 'risk_cov_day' __table_args__ = ( Index('risk_cov_day_idx', 'trade_date', 'FactorID', 'Factor', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) FactorID = Column(Integer, nullable=False) Factor = Column(String(50), primary_key=True, nullable=False) BETA = Column(Float(53)) MOMENTUM = Column(Float(53)) SIZE = Column(Float(53)) EARNYILD = Column(Float(53)) RESVOL = Column(Float(53)) GROWTH = Column(Float(53)) BTOP = Column(Float(53)) LEVERAGE = Column(Float(53)) LIQUIDTY = Column(Float(53)) SIZENL = Column(Float(53)) Bank = Column(Float(53)) RealEstate = Column(Float(53)) Health = Column(Float(53)) Transportation = Column(Float(53)) Mining = Column(Float(53)) NonFerMetal = Column(Float(53)) HouseApp = Column(Float(53)) LeiService = Column(Float(53)) MachiEquip = Column(Float(53)) BuildDeco = Column(Float(53)) CommeTrade = Column(Float(53)) CONMAT = Column(Float(53)) Auto = Column(Float(53)) Textile = Column(Float(53)) FoodBever = Column(Float(53)) Electronics = Column(Float(53)) Computer = Column(Float(53)) LightIndus = Column(Float(53)) Utilities = Column(Float(53)) Telecom = Column(Float(53)) AgriForest = Column(Float(53)) CHEM = Column(Float(53)) Media = Column(Float(53)) IronSteel = Column(Float(53)) NonBankFinan = Column(Float(53)) ELECEQP = Column(Float(53)) AERODEF = Column(Float(53)) Conglomerates = Column(Float(53)) COUNTRY = Column(Float(53)) updateTime = Column(DateTime) class RiskCovLong(Base): __tablename__ = 'risk_cov_long' __table_args__ = ( Index('risk_cov_long_Date_Factor_uindex', 'trade_date', 'Factor', unique=True), Index('risk_cov_long_Date_FactorID_uindex', 'trade_date', 'FactorID', unique=True) ) trade_date = Column(DateTime, primary_key=True, nullable=False) FactorID = Column(Integer) Factor = Column(String(50), primary_key=True, nullable=False) BETA = Column(Float(53)) MOMENTUM = Column(Float(53)) SIZE = Column(Float(53)) EARNYILD = Column(Float(53)) RESVOL = Column(Float(53)) GROWTH = Column(Float(53)) BTOP = Column(Float(53)) LEVERAGE = Column(Float(53)) LIQUIDTY = Column(Float(53)) SIZENL = Column(Float(53)) Bank = Column(Float(53)) RealEstate = Column(Float(53)) Health = Column(Float(53)) Transportation = Column(Float(53)) Mining = Column(Float(53)) NonFerMetal = Column(Float(53)) HouseApp = Column(Float(53)) LeiService = Column(Float(53)) MachiEquip = Column(Float(53)) BuildDeco = Column(Float(53)) CommeTrade = Column(Float(53)) CONMAT = Column(Float(53)) Auto = Column(Float(53)) Textile = Column(Float(53)) FoodBever = Column(Float(53)) Electronics = Column(Float(53)) Computer = Column(Float(53)) LightIndus = Column(Float(53)) Utilities = Column(Float(53)) Telecom = Column(Float(53)) AgriForest = Column(Float(53)) CHEM = Column(Float(53)) Media = Column(Float(53)) IronSteel = Column(Float(53)) NonBankFinan = Column(Float(53)) ELECEQP = Column(Float(53)) AERODEF = Column(Float(53)) Conglomerates = Column(Float(53)) COUNTRY = Column(Float(53)) updateTime = Column(DateTime) class RiskCovShort(Base): __tablename__ = 'risk_cov_short' __table_args__ = ( Index('risk_cov_short_Date_FactorID_uindex', 'trade_date', 'FactorID', unique=True), Index('risk_cov_short_Date_Factor_uindex', 'trade_date', 'Factor', unique=True) ) trade_date = Column(DateTime, primary_key=True, nullable=False) FactorID = Column(Integer) Factor = Column(String(50), primary_key=True, nullable=False) BETA = Column(Float(53)) MOMENTUM = Column(Float(53)) SIZE = Column(Float(53)) EARNYILD = Column(Float(53)) RESVOL = Column(Float(53)) GROWTH = Column(Float(53)) BTOP = Column(Float(53)) LEVERAGE = Column(Float(53)) LIQUIDTY = Column(Float(53)) SIZENL = Column(Float(53)) Bank = Column(Float(53)) RealEstate = Column(Float(53)) Health = Column(Float(53)) Transportation = Column(Float(53)) Mining = Column(Float(53)) NonFerMetal = Column(Float(53)) HouseApp = Column(Float(53)) LeiService = Column(Float(53)) MachiEquip = Column(Float(53)) BuildDeco = Column(Float(53)) CommeTrade = Column(Float(53)) CONMAT = Column(Float(53)) Auto = Column(Float(53)) Textile = Column(Float(53)) FoodBever = Column(Float(53)) Electronics = Column(Float(53)) Computer = Column(Float(53)) LightIndus = Column(Float(53)) Utilities = Column(Float(53)) Telecom = Column(Float(53)) AgriForest = Column(Float(53)) CHEM = Column(Float(53)) Media = Column(Float(53)) IronSteel = Column(Float(53)) NonBankFinan = Column(Float(53)) ELECEQP = Column(Float(53)) AERODEF = Column(Float(53)) Conglomerates = Column(Float(53)) COUNTRY = Column(Float(53)) updateTime = Column(DateTime) class RiskExposure(Base): __tablename__ = 'risk_exposure' __table_args__ = ( Index('risk_exposure_idx', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) BETA = Column(Float(53)) MOMENTUM = Column(Float(53)) SIZE = Column(Float(53)) EARNYILD = Column(Float(53)) RESVOL = Column(Float(53)) GROWTH = Column(Float(53)) BTOP = Column(Float(53)) LEVERAGE = Column(Float(53)) LIQUIDTY = Column(Float(53)) SIZENL = Column(Float(53)) Bank = Column(BigInteger) RealEstate = Column(BigInteger) Health = Column(BigInteger) Transportation = Column(BigInteger) Mining = Column(BigInteger) NonFerMetal = Column(BigInteger) HouseApp = Column(BigInteger) LeiService = Column(BigInteger) MachiEquip = Column(BigInteger) BuildDeco = Column(BigInteger) CommeTrade = Column(BigInteger) CONMAT = Column(BigInteger) Auto = Column(BigInteger) Textile = Column(BigInteger) FoodBever = Column(BigInteger) Electronics = Column(BigInteger) Computer = Column(BigInteger) LightIndus = Column(BigInteger) Utilities = Column(BigInteger) Telecom = Column(BigInteger) AgriForest = Column(BigInteger) CHEM = Column(BigInteger) Media = Column(BigInteger) IronSteel = Column(BigInteger) NonBankFinan = Column(BigInteger) ELECEQP = Column(BigInteger) AERODEF = Column(BigInteger) Conglomerates = Column(BigInteger) COUNTRY = Column(BigInteger) class RiskMaster(Base): __tablename__ = 'risk_master' factor = Column(String(30), nullable=False, unique=True) source = Column(String(30), nullable=False) alias = Column(String(30), nullable=False) type = Column(String(30)) updateTime = Column(DateTime) description = Column(Text) FactorID = Column(Integer, primary_key=True, unique=True) vendor = Column(String(30)) class RiskReturn(Base): __tablename__ = 'risk_return' trade_date = Column(DateTime, primary_key=True, unique=True) BETA = Column(Float(53)) MOMENTUM = Column(Float(53)) SIZE = Column(Float(53)) EARNYILD = Column(Float(53)) RESVOL = Column(Float(53)) GROWTH = Column(Float(53)) BTOP = Column(Float(53)) LEVERAGE = Column(Float(53)) LIQUIDTY = Column(Float(53)) SIZENL = Column(Float(53)) Bank = Column(Float(53)) RealEstate = Column(Float(53)) Health = Column(Float(53)) Transportation = Column(Float(53)) Mining = Column(Float(53)) NonFerMetal = Column(Float(53)) HouseApp = Column(Float(53)) LeiService = Column(Float(53)) MachiEquip = Column(Float(53)) BuildDeco = Column(Float(53)) CommeTrade = Column(Float(53)) CONMAT = Column(Float(53)) Auto = Column(Float(53)) Textile = Column(Float(53)) FoodBever = Column(Float(53)) Electronics = Column(Float(53)) Computer = Column(Float(53)) LightIndus = Column(Float(53)) Utilities = Column(Float(53)) Telecom = Column(Float(53)) AgriForest = Column(Float(53)) CHEM = Column(Float(53)) Media = Column(Float(53)) IronSteel = Column(Float(53)) NonBankFinan = Column(Float(53)) ELECEQP = Column(Float(53)) AERODEF = Column(Float(53)) Conglomerates = Column(Float(53)) COUNTRY = Column(Float(53)) updateTime = Column(DateTime) class SecurityMaster(Base): __tablename__ = 'security_master' exchangeCD = Column(String(4)) ListSectorCD = Column(BigInteger) ListSector = Column(String(6)) transCurrCD = Column(Text) secShortName = Column(String(10)) secFullName = Column(Text) listStatusCD = Column(String(2)) listDate = Column(DateTime) delistDate = Column(DateTime) equTypeCD = Column(String(4)) equType = Column(String(10)) exCountryCD = Column(String(3)) partyID = Column(BigInteger) totalShares = Column(Float(53)) nonrestFloatShares = Column(Float(53)) nonrestfloatA = Column(Float(53)) officeAddr = Column(Text) primeOperating = Column(Text) endDate = Column(DateTime) TShEquity = Column(Float(53)) code = Column(Integer, primary_key=True, unique=True) class SpecificReturn(Base): __tablename__ = 'specific_return' __table_args__ = ( Index('specific_return_Date_Code_uindex', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) exchangeCD = Column(String(4)) secShortName = Column(String(20)) spret = Column(Float(53)) updateTime = Column(DateTime) class SpecificRiskDay(Base): __tablename__ = 'specific_risk_day' __table_args__ = ( Index('specific_risk_day_Date_Code_uindex', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) exchangeCD = Column(String(4)) secShortName = Column(String(20)) SRISK = Column(Float(53)) updateTime = Column(DateTime) class SpecificRiskLong(Base): __tablename__ = 'specific_risk_long' __table_args__ = ( Index('specific_risk_long_Date_Code_uindex', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) exchangeCD = Column(String(4)) secShortName = Column(String(20)) updateTime = Column(DateTime) SRISK = Column(Float(53)) class SpecificRiskShort(Base): __tablename__ = 'specific_risk_short' __table_args__ = ( Index('specific_risk_short_Date_Code_uindex', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(Integer, primary_key=True, nullable=False) exchangeCD = Column(String(4)) secShortName = Column(String(20)) SRISK = Column(Float(53)) updateTime = Column(DateTime) class Universe(Base): __tablename__ = 'universe' __table_args__ = ( Index('universe_trade_date_code_uindex', 'trade_date', 'code', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) code = Column(BigInteger, primary_key=True, nullable=False) aerodef = Column(Integer) agriforest = Column(Integer) auto = Column(Integer) bank = Column(Integer) builddeco = Column(Integer) chem = Column(Integer) conmat = Column(Integer) commetrade = Column(Integer) computer = Column(Integer) conglomerates = Column(Integer) eleceqp = Column(Integer) electronics = Column(Integer) foodbever = Column(Integer) health = Column(Integer) houseapp = Column(Integer) ironsteel = Column(Integer) leiservice = Column(Integer) lightindus = Column(Integer) machiequip = Column(Integer) media = Column(Integer) mining = Column(Integer) nonbankfinan = Column(Integer) nonfermetal = Column(Integer) realestate = Column(Integer) telecom = Column(Integer) textile = Column(Integer) transportation = Column(Integer) utilities = Column(Integer) ashare = Column(Integer) ashare_ex = Column(Integer) cyb = Column(Integer) hs300 = Column(Integer) sh50 = Column(Integer) zxb = Column(Integer) zz1000 = Column(Integer) zz500 = Column(Integer) zz800 = Column(Integer) hs300_adj = Column(Integer) zz500_adj = Column(Integer) class IndexMarket(Base): __tablename__ = 'index_market' __table_args__ = ( Index('index_market_idx', 'trade_date', 'indexCode', unique=True), ) trade_date = Column(DateTime, primary_key=True, nullable=False) indexCode = Column(Integer, primary_key=True, nullable=False) preCloseIndex = Column(Float(53)) openIndex = Column(Float(53)) highestIndex = Column(Float(53)) lowestIndex = Column(Float(53)) closeIndex = Column(Float(53)) turnoverVol = Column(Float(53)) turnoverValue = Column(Float(53)) chgPct = Column(Float(53)) if __name__ == '__main__': from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://alpha:[email protected]:8890/alpha') Base.metadata.create_all(engine)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/dbmodel/models/postgres.py
postgres.py
from sqlalchemy import ( Column, INT, FLOAT, Date, Index, Text, text ) from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() metadata = Base.metadata class _StkDailyPricePro(Base): __tablename__ = 'stk_daily_price_pro' __table_args__ = ( Index('unique_stk_daily_price_pro_index', 'trade_date', 'security_code', 'flag', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date) code = Column("security_code", Text) chgPct = Column("change_pct", FLOAT) secShortName = Column("name", Text) is_valid = Column(INT, nullable=False) flag = Column(INT) is_verify = Column(INT) class _IndexDailyPrice(Base): __tablename__ = 'index_daily_price' __table_args__ = ( Index('unique_index_daily_price_index', 'trade_date', 'security_code', 'flag', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date) indexCode = Column("security_code", Text) chgPct = Column("change_pct", FLOAT) secShortName = Column("name", Text) is_valid = Column(INT, nullable=False) flag = Column(INT) is_verify = Column(INT) class _Index(Base): __tablename__ = "index" __table_args__ = ( Index('unique_index_index', 'trade_date', 'isymbol', 'symbol', 'flag', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date) indexSymbol = Column("isymbol", Text) symbol = Column(Text) weight = Column("weighing", FLOAT) flag = Column(INT) class _IndexComponent(Base): __tablename__ = "index_component" __table_args__ = ( Index('unique_index_index', 'trade_date', 'isecurity_code', 'security_code', 'flag', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date) indexSymbol = Column("isymbol", Text) symbol = Column(Text) indexCode = Column("isecurity_code", Text) code = Column("security_code", Text) flag = Column(INT) class _StkUniverse(Base): __tablename__ = 'stk_universe' __table_args__ = ( Index('unique_stk_universe_index', 'trade_date', 'security_code', 'flag', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) code = Column("security_code", Text, nullable=False) aerodef = Column(INT, server_default=text("'0'")) agriforest = Column(INT, server_default=text("'0'")) auto = Column(INT, server_default=text("'0'")) bank = Column(INT, server_default=text("'0'")) builddeco = Column(INT, server_default=text("'0'")) chem = Column(INT, server_default=text("'0'")) conmat = Column(INT, server_default=text("'0'")) commetrade = Column(INT, server_default=text("'0'")) computer = Column(INT, server_default=text("'0'")) conglomerates = Column(INT, server_default=text("'0'")) eleceqp = Column(INT, server_default=text("'0'")) electronics = Column(INT, server_default=text("'0'")) foodbever = Column(INT, server_default=text("'0'")) health = Column(INT, server_default=text("'0'")) houseapp = Column(INT, server_default=text("'0'")) ironsteel = Column(INT, server_default=text("'0'")) leiservice = Column(INT, server_default=text("'0'")) lightindus = Column(INT, server_default=text("'0'")) machiequip = Column(INT, server_default=text("'0'")) media = Column(INT, server_default=text("'0'")) mining = Column(INT, server_default=text("'0'")) nonbankfinan = Column(INT, server_default=text("'0'")) nonfermetal = Column(INT, server_default=text("'0'")) realestate = Column(INT, server_default=text("'0'")) telecom = Column(INT, server_default=text("'0'")) textile = Column(INT, server_default=text("'0'")) transportation = Column(INT, server_default=text("'0'")) utilities = Column(INT, server_default=text("'0'")) ashare = Column(INT, server_default=text("'0'")) ashare_ex = Column(INT, server_default=text("'0'")) cyb = Column(INT, server_default=text("'0'")) hs300 = Column(INT, server_default=text("'0'")) sh50 = Column(INT, server_default=text("'0'")) zxb = Column(INT, server_default=text("'0'")) zz1000 = Column(INT, server_default=text("'0'")) zz500 = Column(INT, server_default=text("'0'")) zz800 = Column(INT, server_default=text("'0'")) flag = Column(INT) is_verify = Column(INT) class _SwIndustryDaily(Base): __tablename__ = 'sw_industry_daily' __table_args__ = ( Index('sw_industry_daily_uindex', 'trade_date', 'industry_code1', 'symbol', 'flag', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) symbol = Column(Text, nullable=False) company_id = Column(Text, nullable=False) code = Column("security_code", Text, nullable=False) sname = Column(Text, nullable=False) industry_code1 = Column(Text, nullable=False) industry_name1 = Column(Text) industry_code2 = Column(Text) industry_name2 = Column(Text) industry_code3 = Column(Text) industry_name3 = Column(Text) Industry_code4 = Column(Text) Industry_name4 = Column(Text) flag = Column(INT) is_verify = Column(INT) class _RiskExposure(Base): __tablename__ = 'risk_exposure' __table_args__ = ( Index('risk_exposure_idx', 'trade_date', 'security_code', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) code = Column("security_code", Text) BETA = Column(FLOAT) MOMENTUM = Column(FLOAT) SIZE = Column(FLOAT) EARNYILD = Column(FLOAT) RESVOL = Column(FLOAT) GROWTH = Column(FLOAT) BTOP = Column(FLOAT) LEVERAGE = Column(FLOAT) LIQUIDTY = Column(FLOAT) SIZENL = Column(FLOAT) Bank = Column(INT) RealEstate = Column(INT) Health = Column(INT) Transportation = Column(INT) Mining = Column(INT) NonFerMetal = Column(INT) HouseApp = Column(INT) LeiService = Column(INT) MachiEquip = Column(INT) BuildDeco = Column(INT) CommeTrade = Column(INT) CONMAT = Column(INT) Auto = Column(INT) Textile = Column(INT) FoodBever = Column(INT) Electronics = Column(INT) Computer = Column(INT) LightIndus = Column(INT) Utilities = Column(INT) Telecom = Column(INT) AgriForest = Column(INT) CHEM = Column(INT) Media = Column(INT) IronSteel = Column(INT) NonBankFinan = Column(INT) ELECEQP = Column(INT) AERODEF = Column(INT) Conglomerates = Column(INT) COUNTRY = Column(INT) flag = Column(INT) class _RiskCovDay(Base): __tablename__ = 'risk_cov_day' __table_args__ = ( Index('risk_cov_day_idx', 'trade_date', 'FactorID', 'Factor', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) FactorID = Column(INT, nullable=False) Factor = Column(Text, nullable=False) BETA = Column(FLOAT) MOMENTUM = Column(FLOAT) SIZE = Column(FLOAT) EARNYILD = Column(FLOAT) RESVOL = Column(FLOAT) GROWTH = Column(FLOAT) BTOP = Column(FLOAT) LEVERAGE = Column(FLOAT) LIQUIDTY = Column(FLOAT) SIZENL = Column(FLOAT) Bank = Column(FLOAT) RealEstate = Column(FLOAT) Health = Column(FLOAT) Transportation = Column(FLOAT) Mining = Column(FLOAT) NonFerMetal = Column(FLOAT) HouseApp = Column(FLOAT) LeiService = Column(FLOAT) MachiEquip = Column(FLOAT) BuildDeco = Column(FLOAT) CommeTrade = Column(FLOAT) CONMAT = Column(FLOAT) Auto = Column(FLOAT) Textile = Column(FLOAT) FoodBever = Column(FLOAT) Electronics = Column(FLOAT) Computer = Column(FLOAT) LightIndus = Column(FLOAT) Utilities = Column(FLOAT) Telecom = Column(FLOAT) AgriForest = Column(FLOAT) CHEM = Column(FLOAT) Media = Column(FLOAT) IronSteel = Column(FLOAT) NonBankFinan = Column(FLOAT) ELECEQP = Column(FLOAT) AERODEF = Column(FLOAT) Conglomerates = Column(FLOAT) COUNTRY = Column(FLOAT) class _RiskCovLong(Base): __tablename__ = 'risk_cov_long' __table_args__ = ( Index('risk_cov_long_Date_Factor_uindex', 'trade_date', 'Factor', unique=True), Index('risk_cov_long_Date_FactorID_uindex', 'trade_date', 'FactorID', unique=True) ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) FactorID = Column(INT) Factor = Column(Text, nullable=False) BETA = Column(FLOAT) MOMENTUM = Column(FLOAT) SIZE = Column(FLOAT) EARNYILD = Column(FLOAT) RESVOL = Column(FLOAT) GROWTH = Column(FLOAT) BTOP = Column(FLOAT) LEVERAGE = Column(FLOAT) LIQUIDTY = Column(FLOAT) SIZENL = Column(FLOAT) Bank = Column(FLOAT) RealEstate = Column(FLOAT) Health = Column(FLOAT) Transportation = Column(FLOAT) Mining = Column(FLOAT) NonFerMetal = Column(FLOAT) HouseApp = Column(FLOAT) LeiService = Column(FLOAT) MachiEquip = Column(FLOAT) BuildDeco = Column(FLOAT) CommeTrade = Column(FLOAT) CONMAT = Column(FLOAT) Auto = Column(FLOAT) Textile = Column(FLOAT) FoodBever = Column(FLOAT) Electronics = Column(FLOAT) Computer = Column(FLOAT) LightIndus = Column(FLOAT) Utilities = Column(FLOAT) Telecom = Column(FLOAT) AgriForest = Column(FLOAT) CHEM = Column(FLOAT) Media = Column(FLOAT) IronSteel = Column(FLOAT) NonBankFinan = Column(FLOAT) ELECEQP = Column(FLOAT) AERODEF = Column(FLOAT) Conglomerates = Column(FLOAT) COUNTRY = Column(FLOAT) class _RiskCovShort(Base): __tablename__ = 'risk_cov_short' __table_args__ = ( Index('risk_cov_short_Date_FactorID_uindex', 'trade_date', 'FactorID', unique=True), Index('risk_cov_short_Date_Factor_uindex', 'trade_date', 'Factor', unique=True) ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) FactorID = Column(INT) Factor = Column(Text, nullable=False) BETA = Column(FLOAT) MOMENTUM = Column(FLOAT) SIZE = Column(FLOAT) EARNYILD = Column(FLOAT) RESVOL = Column(FLOAT) GROWTH = Column(FLOAT) BTOP = Column(FLOAT) LEVERAGE = Column(FLOAT) LIQUIDTY = Column(FLOAT) SIZENL = Column(FLOAT) Bank = Column(FLOAT) RealEstate = Column(FLOAT) Health = Column(FLOAT) Transportation = Column(FLOAT) Mining = Column(FLOAT) NonFerMetal = Column(FLOAT) HouseApp = Column(FLOAT) LeiService = Column(FLOAT) MachiEquip = Column(FLOAT) BuildDeco = Column(FLOAT) CommeTrade = Column(FLOAT) CONMAT = Column(FLOAT) Auto = Column(FLOAT) Textile = Column(FLOAT) FoodBever = Column(FLOAT) Electronics = Column(FLOAT) Computer = Column(FLOAT) LightIndus = Column(FLOAT) Utilities = Column(FLOAT) Telecom = Column(FLOAT) AgriForest = Column(FLOAT) CHEM = Column(FLOAT) Media = Column(FLOAT) IronSteel = Column(FLOAT) NonBankFinan = Column(FLOAT) ELECEQP = Column(FLOAT) AERODEF = Column(FLOAT) Conglomerates = Column(FLOAT) COUNTRY = Column(FLOAT) class _SpecificRiskDay(Base): __tablename__ = 'specific_risk_day' __table_args__ = ( Index('specific_risk_day_Date_Code_uindex', 'trade_date', 'security_code', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) code = Column("security_code", Text, nullable=False) exchangeCD = Column(Text) secShortName = Column(Text) SRISK = Column(FLOAT) class _SpecificRiskLong(Base): __tablename__ = 'specific_risk_long' __table_args__ = ( Index('specific_risk_long_Date_Code_uindex', 'trade_date', 'security_code', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) code = Column("security_code", Text, nullable=False) exchangeCD = Column(Text) secShortName = Column(Text) SRISK = Column(FLOAT) class _SpecificRiskShort(Base): __tablename__ = 'specific_risk_short' __table_args__ = ( Index('specific_risk_short_Date_Code_uindex', 'trade_date', 'security_code', unique=True), ) id = Column(INT, primary_key=True) trade_date = Column(Date, nullable=False) code = Column("security_code", Text, nullable=False) exchangeCD = Column(Text) secShortName = Column(Text) SRISK = Column(FLOAT) # Factor tables class _FactorMomentum(Base): __tablename__ = 'factor_momentum' __table_args__ = ( Index('factor_momentum_uindex', 'trade_date', 'security_code', 'flag', unique=True), ) id = Column(INT, primary_key=True) code = Column("security_code", Text, nullable=False) trade_date = Column(Date, nullable=False) ADX14D = Column(FLOAT) ADXR14D = Column(FLOAT) APBMA5D = Column(FLOAT) ARC50D = Column(FLOAT) BBI = Column(FLOAT) BIAS10D = Column(FLOAT) BIAS20D = Column(FLOAT) BIAS5D = Column(FLOAT) BIAS60D = Column(FLOAT) CCI10D = Column(FLOAT) CCI20D = Column(FLOAT) CCI5D = Column(FLOAT) CCI88D = Column(FLOAT) ChgTo1MAvg = Column(FLOAT) ChgTo1YAvg = Column(FLOAT) ChgTo3MAvg = Column(FLOAT) ChkOsci3D10D = Column(FLOAT) ChkVol10D = Column(FLOAT) DEA = Column(FLOAT) EMA10D = Column(FLOAT) EMA120D = Column(FLOAT) EMA12D = Column(FLOAT) EMA20D = Column(FLOAT) EMA26D = Column(FLOAT) EMA5D = Column(FLOAT) EMA60D = Column(FLOAT) EMV14D = Column(FLOAT) EMV6D = Column(FLOAT) Fiftytwoweekhigh = Column(FLOAT) HT_TRENDLINE = Column(FLOAT) KAMA10D = Column(FLOAT) MA10Close = Column(FLOAT) MA10D = Column(FLOAT) MA10RegressCoeff12 = Column(FLOAT) MA10RegressCoeff6 = Column(FLOAT) MA120D = Column(FLOAT) MA20D = Column(FLOAT) MA5D = Column(FLOAT) MA60D = Column(FLOAT) MACD12D26D = Column(FLOAT) MIDPOINT10D = Column(FLOAT) MIDPRICE10D = Column(FLOAT) MTM10D = Column(FLOAT) PLRC12D = Column(FLOAT) PLRC6D = Column(FLOAT) PM10D = Column(FLOAT) PM120D = Column(FLOAT) PM20D = Column(FLOAT) PM250D = Column(FLOAT) PM5D = Column(FLOAT) PM60D = Column(FLOAT) PMDif5D20D = Column(FLOAT) PMDif5D60D = Column(FLOAT) RCI12D = Column(FLOAT) RCI24D = Column(FLOAT) SAR = Column(FLOAT) SAREXT = Column(FLOAT) SMA15D = Column(FLOAT) TEMA10D = Column(FLOAT) TEMA5D = Column(FLOAT) TRIMA10D = Column(FLOAT) TRIX10D = Column(FLOAT) TRIX5D = Column(FLOAT) UOS7D14D28D = Column(FLOAT) WMA10D = Column(FLOAT) flag = Column(INT) class _FactorValuationEstimation(Base): __tablename__ = 'factor_valuation_estimation' id = Column(INT, primary_key=True) code = Column("security_code", Text, nullable=False) trade_date = Column(Date, nullable=False) BMInduAvgOnSW1 = Column(FLOAT) BMInduSTDOnSW1 = Column(FLOAT) BookValueToIndu = Column(FLOAT) CEToPTTM = Column(FLOAT) DivYieldTTM = Column(FLOAT) EPTTM = Column(FLOAT) LogTotalAssets = Column(FLOAT) LogofMktValue = Column(FLOAT) LogofNegMktValue = Column(FLOAT) MktValue = Column(FLOAT) MrktCapToCorFreeCashFlow = Column(FLOAT) OptIncToEnterpriseValueTTM = Column(FLOAT) PBAvgOnSW1 = Column(FLOAT) PBIndu = Column(FLOAT) PBStdOnSW1 = Column(FLOAT) PCFAvgOnSW1 = Column(FLOAT) PCFIndu = Column(FLOAT) PCFStdOnSW1 = Column(FLOAT) PCFToNetCashflowTTM = Column(FLOAT) PCFToOptCashflowTTM = Column(FLOAT) PEAvgOnSW1 = Column(FLOAT) PECutTTM = Column(FLOAT) PEG3YTTM = Column(FLOAT) PEG5YTTM = Column(FLOAT) PEIndu = Column(FLOAT) PEStdOnSW1 = Column(FLOAT) PETTM = Column(FLOAT) PEToAvg1M = Column(FLOAT) PEToAvg1Y = Column(FLOAT) PEToAvg3M = Column(FLOAT) PEToAvg6M = Column(FLOAT) PSAvgOnSW1 = Column(FLOAT) PSIndu = Column(FLOAT) PSStdOnSW1 = Column(FLOAT) PSTTM = Column(FLOAT) RevToMrktRatioTTM = Column(FLOAT) TotalAssetsToEnterpriseValue = Column(FLOAT) TotalMrktToEBIDAOnSW1 = Column(FLOAT) TotalMrktToEBIDAOnSW1TTM = Column(FLOAT) TotalMrktToEBIDATTM = Column(FLOAT) TotalMrktToEBIDATTMRev = Column(FLOAT) flag = Column(INT) class _FactorVolatilityValue(Base): __tablename__ = 'factor_volatility_value' id = Column(INT, primary_key=True) code = Column("security_code", Text, nullable=False) trade_date = Column(Date, nullable=False) Alpha120D = Column(FLOAT) Alpha20D = Column(FLOAT) Alpha60D = Column(FLOAT) Beta120D = Column(FLOAT) Beta20D = Column(FLOAT) Beta252D = Column(FLOAT) Beta60D = Column(FLOAT) DDNCR12M = Column(FLOAT) DDNSR12M = Column(FLOAT) DVRAT = Column(FLOAT) DailyReturnSTD252D = Column(FLOAT) GainLossVarianceRatio120D = Column(FLOAT) GainLossVarianceRatio20D = Column(FLOAT) GainLossVarianceRatio60D = Column(FLOAT) GainVariance120D = Column(FLOAT) GainVariance20D = Column(FLOAT) GainVariance60D = Column(FLOAT) IR120D = Column(FLOAT) IR20D = Column(FLOAT) IR60D = Column(FLOAT) Kurtosis120D = Column(FLOAT) Kurtosis20D = Column(FLOAT) Kurtosis60D = Column(FLOAT) LossVariance120D = Column(FLOAT) LossVariance20D = Column(FLOAT) LossVariance60D = Column(FLOAT) Sharpe120D = Column(FLOAT) Sharpe20D = Column(FLOAT) Sharpe60D = Column(FLOAT) TreynorRatio120D = Column(FLOAT) TreynorRatio20D = Column(FLOAT) TreynorRatio60D = Column(FLOAT) Variance120D = Column(FLOAT) Variance20D = Column(FLOAT) Variance60D = Column(FLOAT) flag = Column(INT) Market = _StkDailyPricePro IndexMarket = _IndexDailyPrice Universe = _StkUniverse Industry = _SwIndustryDaily RiskExposure = _RiskExposure RiskCovDay = _RiskCovDay RiskCovShort = _RiskCovShort RiskCovLong = _RiskCovLong SpecificRiskDay = _SpecificRiskDay SpecificRiskShort = _SpecificRiskShort SpecificRiskLong = _SpecificRiskLong IndexComponent = _IndexComponent IndexWeight = _Index FactorMomentum = _FactorMomentum FactorValuationEstimation = _FactorValuationEstimation FactorVolatilityValue = _FactorVolatilityValue
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/data/dbmodel/models/mysql.py
mysql.py
from alphamind.benchmarks.data.neutralize import benchmark_neutralize from alphamind.benchmarks.data.neutralize import benchmark_neutralize_with_groups from alphamind.benchmarks.data.standardize import benchmark_standardize from alphamind.benchmarks.data.standardize import benchmark_standardize_with_group from alphamind.benchmarks.data.winsorize import benchmark_winsorize_normal from alphamind.benchmarks.data.winsorize import benchmark_winsorize_normal_with_group from alphamind.benchmarks.portfolio.linearbuild import benchmark_build_linear from alphamind.benchmarks.portfolio.percentbuild import benchmark_build_percent from alphamind.benchmarks.portfolio.percentbuild import benchmark_build_percent_with_group from alphamind.benchmarks.portfolio.rankbuild import benchmark_build_rank from alphamind.benchmarks.portfolio.rankbuild import benchmark_build_rank_with_group from alphamind.benchmarks.settlement.simplesettle import benchmark_simple_settle from alphamind.benchmarks.settlement.simplesettle import benchmark_simple_settle_with_group if __name__ == '__main__': benchmark_neutralize(3000, 10, 1000) benchmark_neutralize_with_groups(3000, 10, 1000, 30) benchmark_neutralize(30, 3, 50000) benchmark_neutralize_with_groups(30, 3, 50000, 3) benchmark_neutralize(50000, 50, 20) benchmark_neutralize_with_groups(50000, 50, 20, 50) benchmark_standardize(3000, 10, 1000) benchmark_standardize_with_group(3000, 10, 1000, 30) benchmark_standardize(100, 10, 50000) benchmark_standardize_with_group(100, 10, 5000, 4) benchmark_standardize(50000, 50, 20) benchmark_standardize_with_group(50000, 50, 20, 50) benchmark_winsorize_normal(3000, 10, 1000) benchmark_winsorize_normal_with_group(3000, 10, 1000, 30) benchmark_winsorize_normal(30, 10, 50000) benchmark_winsorize_normal_with_group(30, 10, 5000, 5) benchmark_winsorize_normal(50000, 50, 20) benchmark_winsorize_normal_with_group(50000, 50, 20, 50) benchmark_build_rank(3000, 1000, 300) benchmark_build_rank_with_group(3000, 1000, 10, 30) benchmark_build_rank(30, 50000, 3) benchmark_build_rank_with_group(30, 50000, 1, 3) benchmark_build_rank(50000, 20, 3000) benchmark_build_rank_with_group(50000, 20, 10, 300) benchmark_build_percent(3000, 1000, 0.1) benchmark_build_percent_with_group(3000, 1000, 0.1, 30) benchmark_build_percent(30, 50000, 0.1) benchmark_build_percent_with_group(30, 50000, 0.1, 3) benchmark_build_percent(50000, 20, 0.1) benchmark_build_percent_with_group(50000, 20, 0.1, 300) benchmark_build_linear(100, 3, 100) benchmark_build_linear(1000, 30, 10) benchmark_simple_settle(3000, 10, 1000) benchmark_simple_settle_with_group(3000, 10, 1000, 30) benchmark_simple_settle(30, 10, 50000) benchmark_simple_settle_with_group(30, 10, 50000, 5) benchmark_simple_settle(50000, 50, 20) benchmark_simple_settle_with_group(50000, 50, 20, 50)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/benchmarks.py
benchmarks.py
import datetime as dt import numpy as np import pandas as pd from alphamind.settlement.simplesettle import simple_settle def benchmark_simple_settle(n_samples: int, n_portfolios: int, n_loops: int) -> None: print("-" * 60) print("Starting simple settle benchmarking") print("Parameters(n_samples: {0}, n_portfolios: {1}, n_loops: {2})".format(n_samples, n_portfolios, n_loops)) weights = np.random.randn(n_samples, n_portfolios) ret_series = np.random.randn(n_samples) start = dt.datetime.now() for _ in range(n_loops): calc_ret = simple_settle(weights, ret_series) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() ret_series.shape = -1, 1 for _ in range(n_loops): exp_ret = (weights * ret_series).sum(axis=0) benchmark_model_time = dt.datetime.now() - start np.testing.assert_array_almost_equal(calc_ret, exp_ret) print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) def benchmark_simple_settle_with_group(n_samples: int, n_portfolios: int, n_loops: int, n_groups: int) -> None: print("-" * 60) print("Starting simple settle with group-by values benchmarking") print("Parameters(n_samples: {0}, n_portfolios: {1}, n_loops: {2}, n_groups: {3})".format( n_samples, n_portfolios, n_loops, n_groups)) weights = np.random.randn(n_samples, n_portfolios) ret_series = np.random.randn(n_samples) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): calc_ret = simple_settle(weights, ret_series, groups=groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() ret_series.shape = -1, 1 for _ in range(n_loops): ret_mat = weights * ret_series exp_ret = pd.DataFrame(ret_mat).groupby(groups).sum().values benchmark_model_time = dt.datetime.now() - start np.testing.assert_array_almost_equal(calc_ret, exp_ret) print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_simple_settle(3000, 3, 1000) benchmark_simple_settle_with_group(3000, 3, 1000, 30)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/settlement/simplesettle.py
simplesettle.py
import datetime as dt import numpy as np import pandas as pd from alphamind.data.winsorize import winsorize_normal def benchmark_winsorize_normal(n_samples: int, n_features: int, n_loops: int) -> None: print("-" * 60) print("Starting winsorize normal benchmarking") print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops)) num_stds = 2 x = np.random.randn(n_samples, n_features) start = dt.datetime.now() for _ in range(n_loops): _ = winsorize_normal(x, num_stds) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) def impl(x): std_values = x.std(axis=0) mean_value = x.mean(axis=0) lower_bound = mean_value - num_stds * std_values upper_bound = mean_value + num_stds * std_values res = np.where(x > upper_bound, upper_bound, x) res = np.where(res < lower_bound, lower_bound, res) return res start = dt.datetime.now() for _ in range(n_loops): _ = impl(x) benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) def benchmark_winsorize_normal_with_group(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None: print("-" * 60) print("Starting winsorize normal with group-by values benchmarking") print( "Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups)) num_stds = 2 x = np.random.randn(n_samples, n_features) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): _ = winsorize_normal(x, num_stds, groups=groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) def impl(x): std_values = x.std(axis=0) mean_value = x.mean(axis=0) lower_bound = mean_value - num_stds * std_values upper_bound = mean_value + num_stds * std_values res = np.where(x > upper_bound, upper_bound, x) res = np.where(res < lower_bound, lower_bound, res) return res start = dt.datetime.now() for _ in range(n_loops): _ = pd.DataFrame(x).groupby(groups).transform(impl) benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_winsorize_normal(3000, 10, 1000) benchmark_winsorize_normal_with_group(3000, 10, 1000, 30)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/data/winsorize.py
winsorize.py
import datetime as dt import numpy as np from sklearn.linear_model import LinearRegression from alphamind.data.neutralize import neutralize def benchmark_neutralize(n_samples: int, n_features: int, n_loops: int) -> None: print("-" * 60) print("Starting least square fitting benchmarking") print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops)) y = np.random.randn(n_samples, 5) x = np.random.randn(n_samples, n_features) start = dt.datetime.now() for _ in range(n_loops): calc_res = neutralize(x, y) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): benchmark_model = LinearRegression(fit_intercept=False) benchmark_model.fit(x, y) exp_res = y - x @ benchmark_model.coef_.T benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) np.testing.assert_array_almost_equal(calc_res, exp_res) def benchmark_neutralize_with_groups(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None: print("-" * 60) print("Starting least square fitting with group benchmarking") print( "Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups)) y = np.random.randn(n_samples, 5) x = np.random.randn(n_samples, n_features) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): _ = neutralize(x, y, groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() model = LinearRegression(fit_intercept=False) for _ in range(n_loops): for i in range(n_groups): curr_x = x[groups == i] curr_y = y[groups == i] model.fit(curr_x, curr_y) _ = curr_y - curr_x @ model.coef_.T benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_neutralize(3000, 10, 1000) benchmark_neutralize_with_groups(3000, 10, 1000, 30)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/data/neutralize.py
neutralize.py
import datetime as dt import numpy as np import pandas as pd from scipy.stats import zscore from alphamind.data.standardize import standardize def benchmark_standardize(n_samples: int, n_features: int, n_loops: int) -> None: print("-" * 60) print("Starting standardizing benchmarking") print("Parameters(n_samples: {0}, n_features: {1}, n_loops: {2})".format(n_samples, n_features, n_loops)) x = np.random.randn(n_samples, n_features) start = dt.datetime.now() for _ in range(n_loops): _ = standardize(x) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): _ = zscore(x) benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) def benchmark_standardize_with_group(n_samples: int, n_features: int, n_loops: int, n_groups: int) -> None: print("-" * 60) print("Starting standardizing with group-by values benchmarking") print( "Parameters(n_samples: {0}, n_features: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_features, n_loops, n_groups)) x = np.random.randn(n_samples, n_features) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): _ = standardize(x, groups=groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): _ = pd.DataFrame(x).groupby(groups).transform( lambda s: (s - s.mean(axis=0)) / s.std(axis=0)) benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_standardize(3000, 10, 1000) benchmark_standardize_with_group(3000, 10, 1000, 30)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/data/standardize.py
standardize.py
import datetime as dt import numpy as np import pandas as pd from alphamind.portfolio.percentbuilder import percent_build def benchmark_build_percent(n_samples: int, n_loops: int, p_included: float) -> None: print("-" * 60) print("Starting portfolio construction by percent benchmarking") print("Parameters(n_samples: {0}, p_included: {1}, n_loops: {2})".format(n_samples, p_included, n_loops)) n_portfolio = 10 x = np.random.randn(n_samples, n_portfolio) start = dt.datetime.now() for _ in range(n_loops): calc_weights = percent_build(x, p_included) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): exp_weights = np.zeros((len(x), n_portfolio)) n_incuded = int(p_included * len(x)) choosed_index = (-x).argsort(axis=0).argsort(axis=0) < n_incuded for j in range(n_portfolio): exp_weights[choosed_index[:, j], j] = 1. benchmark_model_time = dt.datetime.now() - start np.testing.assert_array_almost_equal(calc_weights, exp_weights) print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) def benchmark_build_percent_with_group(n_samples: int, n_loops: int, p_included: float, n_groups: int) -> None: print("-" * 60) print("Starting portfolio construction by percent with group-by values benchmarking") print( "Parameters(n_samples: {0}, p_included: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, p_included, n_loops, n_groups)) n_portfolio = 10 x = np.random.randn(n_samples, n_portfolio) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): calc_weights = percent_build(x, p_included, groups=groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): grouped_ordering = pd.DataFrame(-x).groupby(groups).rank() grouped_count = pd.DataFrame(-x).groupby(groups).transform(lambda x: x.count()) exp_weights = np.zeros((len(x), n_portfolio)) n_included = (grouped_count * p_included).astype(int) masks = (grouped_ordering <= n_included).values for j in range(n_portfolio): exp_weights[masks[:, j], j] = 1. benchmark_model_time = dt.datetime.now() - start np.testing.assert_array_almost_equal(calc_weights, exp_weights) print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_build_percent(3000, 1000, 0.1) benchmark_build_percent_with_group(3000, 1000, 0.1, 30)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/portfolio/percentbuild.py
percentbuild.py
import datetime as dt import numpy as np from cvxopt import matrix from cvxopt import solvers from scipy.optimize import linprog from alphamind.portfolio.linearbuilder import linear_builder solvers.options['show_progress'] = False def benchmark_build_linear(n_samples: int, n_risks: int, n_loop: int) -> None: print("-" * 60) print("Starting portfolio construction by linear programming") print( "Parameters(n_samples: {0}, n_risks: {1}, n_loop: {2})".format(n_samples, n_risks, n_loop)) er = np.random.randn(n_samples) risk_exp = np.random.randn(n_samples, n_risks) bm = np.random.rand(n_samples) bm /= bm.sum() lbound = -0.04 ubound = 0.05 risk_lbound = bm @ risk_exp risk_ubound = bm @ risk_exp start = dt.datetime.now() for _ in range(n_loop): status, v, x = linear_builder(er, lbound, ubound, risk_exp, risk_target=(risk_lbound, risk_ubound)) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model (ECOS)', impl_model_time)) c = - er bounds = [(lbound, ubound) for _ in range(n_samples)] a_eq = np.ones((1, n_samples)) a_eq = np.vstack((a_eq, risk_exp.T)) b_eq = np.hstack((np.array([1.]), risk_exp.T @ bm)) start = dt.datetime.now() for _ in range(n_loop): res = linprog(c, A_eq=a_eq, b_eq=b_eq, bounds=bounds, options={'maxiter': 10000}) benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model (scipy)', benchmark_model_time)) np.testing.assert_array_almost_equal(x, res['x']) c = matrix(-er) aneq = matrix(a_eq) b = matrix(b_eq) g = matrix(np.vstack((np.diag(np.ones(n_samples)), -np.diag(np.ones(n_samples))))) h = matrix(np.hstack((ubound * np.ones(n_samples), -lbound * np.ones(n_samples)))) solvers.lp(c, g, h, solver='glpk') start = dt.datetime.now() for _ in range(n_loop): res2 = solvers.lp(c, g, h, aneq, b, solver='glpk') benchmark_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Benchmark model (glpk)', benchmark_model_time)) np.testing.assert_array_almost_equal(x, np.array(res2['x']).flatten()) if __name__ == '__main__': benchmark_build_linear(2000, 30, 10)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/portfolio/linearbuild.py
linearbuild.py
import datetime as dt import numpy as np import pandas as pd from alphamind.portfolio.rankbuilder import rank_build def benchmark_build_rank(n_samples: int, n_loops: int, n_included: int) -> None: print("-" * 60) print("Starting portfolio construction by rank benchmarking") print("Parameters(n_samples: {0}, n_included: {1}, n_loops: {2})".format(n_samples, n_included, n_loops)) n_portfolio = 10 x = np.random.randn(n_samples, n_portfolio) start = dt.datetime.now() for _ in range(n_loops): calc_weights = rank_build(x, n_included) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): exp_weights = np.zeros((len(x), n_portfolio)) choosed_index = (-x).argsort(axis=0).argsort(axis=0) < n_included for j in range(n_portfolio): exp_weights[choosed_index[:, j], j] = 1. benchmark_model_time = dt.datetime.now() - start np.testing.assert_array_almost_equal(calc_weights, exp_weights) print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) def benchmark_build_rank_with_group(n_samples: int, n_loops: int, n_included: int, n_groups: int) -> None: print("-" * 60) print("Starting portfolio construction by rank with group-by values benchmarking") print( "Parameters(n_samples: {0}, n_included: {1}, n_loops: {2}, n_groups: {3})".format(n_samples, n_included, n_loops, n_groups)) n_portfolio = 10 x = np.random.randn(n_samples, n_portfolio) groups = np.random.randint(n_groups, size=n_samples) start = dt.datetime.now() for _ in range(n_loops): calc_weights = rank_build(x, n_included, groups=groups) impl_model_time = dt.datetime.now() - start print('{0:20s}: {1}'.format('Implemented model', impl_model_time)) start = dt.datetime.now() for _ in range(n_loops): grouped_ordering = pd.DataFrame(-x).groupby(groups).rank() exp_weights = np.zeros((len(x), n_portfolio)) masks = (grouped_ordering <= n_included).values for j in range(n_portfolio): exp_weights[masks[:, j], j] = 1. benchmark_model_time = dt.datetime.now() - start np.testing.assert_array_almost_equal(calc_weights, exp_weights) print('{0:20s}: {1}'.format('Benchmark model', benchmark_model_time)) if __name__ == '__main__': benchmark_build_rank(3000, 1000, 300) benchmark_build_rank_with_group(3000, 1000, 10, 30)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/benchmarks/portfolio/rankbuild.py
rankbuild.py
import abc from distutils.version import LooseVersion import arrow import numpy as np import pandas as pd from simpleutils.miscellaneous import list_eq from sklearn import __version__ as sklearn_version from xgboost import __version__ as xgbboot_version from alphamind.data.transformer import Transformer from alphamind.utilities import alpha_logger from alphamind.utilities import decode from alphamind.utilities import encode class ModelBase(metaclass=abc.ABCMeta): def __init__(self, features=None, fit_target=None): if features is not None: self.formulas = Transformer(features) self.features = self.formulas.names else: self.features = None if fit_target is not None: self.fit_target = Transformer(fit_target) else: self.fit_target = None self.impl = None self.trained_time = None def model_encode(self): return encode(self.impl) @classmethod def model_decode(cls, model_desc): return decode(model_desc) def __eq__(self, rhs): return self.model_encode() == rhs.model_encode() \ and self.trained_time == rhs.trained_time \ and list_eq(self.features, rhs.features) \ and encode(self.formulas) == encode(rhs.formulas) \ and encode(self.fit_target) == encode(rhs.fit_target) def fit(self, x: pd.DataFrame, y: np.ndarray): self.impl.fit(x[self.features].values, y.flatten()) self.trained_time = arrow.now().format("YYYY-MM-DD HH:mm:ss") def predict(self, x: pd.DataFrame) -> np.ndarray: return self.impl.predict(x[self.features].values) def score(self, x: pd.DataFrame, y: np.ndarray) -> float: return self.impl.score(x[self.features].values, y) def ic(self, x: pd.DataFrame, y: np.ndarray) -> float: predict_y = self.impl.predict(x[self.features].values) return np.corrcoef(predict_y, y)[0, 1] @abc.abstractmethod def save(self) -> dict: if self.__class__.__module__ == '__main__': alpha_logger.warning( "model is defined in a main module. The model_name may not be correct.") model_desc = dict(model_name=self.__class__.__module__ + "." + self.__class__.__name__, language='python', saved_time=arrow.now().format("YYYY-MM-DD HH:mm:ss"), features=list(self.features), trained_time=self.trained_time, desc=self.model_encode(), formulas=encode(self.formulas), fit_target=encode(self.fit_target), internal_model=self.impl.__class__.__module__ + "." + self.impl.__class__.__name__) return model_desc @classmethod @abc.abstractmethod def load(cls, model_desc: dict): obj_layout = cls() obj_layout.features = model_desc['features'] obj_layout.formulas = decode(model_desc['formulas']) obj_layout.trained_time = model_desc['trained_time'] obj_layout.impl = cls.model_decode(model_desc['desc']) if 'fit_target' in model_desc: obj_layout.fit_target = decode(model_desc['fit_target']) else: obj_layout.fit_target = None return obj_layout def create_model_base(party_name=None): if not party_name: return ModelBase else: class ExternalLibBase(ModelBase): _lib_name = party_name def save(self) -> dict: model_desc = super().save() if self._lib_name == 'sklearn': model_desc[self._lib_name + "_version"] = sklearn_version elif self._lib_name == 'xgboost': model_desc[self._lib_name + "_version"] = xgbboot_version else: raise ValueError( "3rd party lib name ({0}) is not recognized".format(self._lib_name)) return model_desc @classmethod def load(cls, model_desc: dict): obj_layout = super().load(model_desc) if cls._lib_name == 'sklearn': current_version = sklearn_version elif cls._lib_name == 'xgboost': current_version = xgbboot_version else: raise ValueError( "3rd party lib name ({0}) is not recognized".format(cls._lib_name)) if LooseVersion(current_version) < LooseVersion( model_desc[cls._lib_name + "_version"]): alpha_logger.warning( 'Current {2} version {0} is lower than the model version {1}. ' 'Loaded model may work incorrectly.'.format(sklearn_version, model_desc[cls._lib_name], cls._lib_name)) return obj_layout return ExternalLibBase
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/model/modelbase.py
modelbase.py
import bisect import datetime as dt from typing import Iterable from typing import Union import numpy as np import pandas as pd from simpleutils.asserts import require from PyFin.DateUtilities import Period from PyFin.api import BizDayConventions from PyFin.api import DateGeneration from PyFin.api import advanceDateByCalendar from PyFin.api import makeSchedule from alphamind.data.engines.sqlengine import SqlEngine from alphamind.data.engines.sqlengine import total_risk_factors from alphamind.data.engines.universe import Universe from alphamind.data.processing import factor_processing from alphamind.data.transformer import Transformer from alphamind.utilities import alpha_logger from alphamind.utilities import map_freq def _merge_df(engine, names, factor_df, target_df, universe, dates, risk_model, neutralized_risk): risk_df = engine.fetch_risk_model_range(universe, dates=dates, risk_model=risk_model)[1] used_neutralized_risk = list(set(total_risk_factors).difference(names)) risk_df = risk_df[['trade_date', 'code'] + used_neutralized_risk].dropna() target_df = pd.merge(target_df, risk_df, on=['trade_date', 'code']).dropna() if neutralized_risk: train_x = pd.merge(factor_df, risk_df, on=['trade_date', 'code']) train_y = target_df.copy() risk_exp = train_x[neutralized_risk].values.astype(float) x_values = train_x[names].values.astype(float) y_values = train_y[['dx']].values else: risk_exp = None train_x = factor_df.copy() train_y = target_df.copy() x_values = train_x[names].values.astype(float) y_values = train_y[['dx']].values codes = train_x['code'].values date_label = pd.DatetimeIndex(factor_df.trade_date).to_pydatetime() dates = np.unique(date_label) return target_df, dates, date_label, risk_exp, x_values, y_values, train_x, train_y, codes def prepare_data(engine: SqlEngine, factors: Union[Transformer, Iterable[object]], start_date: str, end_date: str, frequency: str, universe: Universe, benchmark: int, warm_start: int = 0, fit_target: Union[Transformer, object] = None): if warm_start > 0: p = Period(frequency) p = Period(length=-warm_start * p.length(), units=p.units()) start_date = advanceDateByCalendar('china.sse', start_date, p).strftime('%Y-%m-%d') dates = makeSchedule(start_date, end_date, frequency, calendar='china.sse', dateRule=BizDayConventions.Following, dateGenerationRule=DateGeneration.Forward) dates = [d.strftime('%Y-%m-%d') for d in dates] horizon = map_freq(frequency) if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) factor_df = engine.fetch_factor_range(universe, factors=transformer, dates=dates).sort_values(['trade_date', 'code']) alpha_logger.info("factor data loading finished") if fit_target is None: target_df = engine.fetch_dx_return_range(universe, dates=dates, horizon=horizon) else: one_more_date = advanceDateByCalendar('china.sse', dates[-1], frequency) target_df = engine.fetch_factor_range_forward(universe, factors=fit_target, dates=dates + [one_more_date]) target_df = target_df[target_df.trade_date.isin(dates)] target_df = target_df.groupby('code').apply(lambda x: x.fillna(method='pad')) alpha_logger.info("fit target data loading finished") industry_df = engine.fetch_industry_range(universe, dates=dates) alpha_logger.info("industry data loading finished") benchmark_df = engine.fetch_benchmark_range(benchmark, dates=dates) alpha_logger.info("benchmark data loading finished") df = pd.merge(factor_df, target_df, on=['trade_date', 'code']).dropna() df = pd.merge(df, benchmark_df, on=['trade_date', 'code'], how='left') df = pd.merge(df, industry_df, on=['trade_date', 'code']) df['weight'] = df['weight'].fillna(0.) df.dropna(inplace=True) return dates, df[['trade_date', 'code', 'dx']], df[ ['trade_date', 'code', 'weight', 'industry_code', 'industry'] + transformer.names] def batch_processing(names, x_values, y_values, groups, group_label, batch, risk_exp, pre_process, post_process, codes): train_x_buckets = {} train_y_buckets = {} train_risk_buckets = {} predict_x_buckets = {} predict_y_buckets = {} predict_risk_buckets = {} predict_codes_bucket = {} for i, start in enumerate(groups[:-batch]): end = groups[i + batch] left_index = bisect.bisect_left(group_label, start) right_index = bisect.bisect_left(group_label, end) this_raw_x = x_values[left_index:right_index] this_raw_y = y_values[left_index:right_index] if risk_exp is not None: this_risk_exp = risk_exp[left_index:right_index] else: this_risk_exp = None train_x_buckets[end] = pd.DataFrame(factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process), columns=names) train_y_buckets[end] = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) train_risk_buckets[end] = this_risk_exp left_index = bisect.bisect_right(group_label, start) right_index = bisect.bisect_right(group_label, end) sub_dates = group_label[left_index:right_index] this_raw_x = x_values[left_index:right_index] this_codes = codes[left_index:right_index] if risk_exp is not None: this_risk_exp = risk_exp[left_index:right_index] else: this_risk_exp = None ne_x = factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) inner_left_index = bisect.bisect_left(sub_dates, end) inner_right_index = bisect.bisect_right(sub_dates, end) predict_x_buckets[end] = pd.DataFrame(ne_x[inner_left_index:inner_right_index], columns=names) if risk_exp is not None: predict_risk_buckets[end] = this_risk_exp[inner_left_index:inner_right_index] else: predict_risk_buckets = None predict_codes_bucket[end] = this_codes[inner_left_index:inner_right_index] this_raw_y = y_values[left_index:right_index] if len(this_raw_y) > 0: ne_y = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) predict_y_buckets[end] = ne_y[inner_left_index:inner_right_index] return train_x_buckets, \ train_y_buckets, \ train_risk_buckets, \ predict_x_buckets, \ predict_y_buckets, \ predict_risk_buckets, \ predict_codes_bucket def fetch_data_package(engine: SqlEngine, alpha_factors: Iterable[object], start_date: str, end_date: str, frequency: str, universe: Universe, benchmark: int, warm_start: int = 0, batch: int = 1, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, fit_target: Union[Transformer, object] = None) -> dict: alpha_logger.info("Starting data package fetching ...") transformer = Transformer(alpha_factors) names = transformer.names dates, target_df, factor_df = prepare_data(engine, transformer, start_date, end_date, frequency, universe, benchmark, warm_start + batch, fit_target=fit_target) target_df, dates, date_label, risk_exp, x_values, y_values, train_x, train_y, codes = \ _merge_df(engine, names, factor_df, target_df, universe, dates, risk_model, neutralized_risk) alpha_logger.info("data merging finished") target_df['weight'] = train_x['weight'] target_df['industry'] = train_x['industry'] target_df['industry_code'] = train_x['industry_code'] if neutralized_risk: for i, name in enumerate(neutralized_risk): target_df.loc[:, name] = risk_exp[:, i] alpha_logger.info("Loading data is finished") train_x_buckets, train_y_buckets, train_risk_buckets, predict_x_buckets, predict_y_buckets, predict_risk_buckets, predict_codes_bucket \ = batch_processing(names, x_values, y_values, dates, date_label, batch, risk_exp, pre_process, post_process, codes) alpha_logger.info("Data processing is finished") ret = dict() ret['x_names'] = names ret['settlement'] = target_df[target_df.trade_date >= start_date] train_x_buckets = {k: train_x_buckets[k] for k in train_x_buckets if k.strftime('%Y-%m-%d') >= start_date} train_y_buckets = {k: train_y_buckets[k] for k in train_y_buckets if k.strftime('%Y-%m-%d') >= start_date} train_risk_buckets = {k: train_risk_buckets[k] for k in train_risk_buckets if k.strftime('%Y-%m-%d') >= start_date} predict_x_buckets = {k: predict_x_buckets[k] for k in predict_x_buckets if k.strftime('%Y-%m-%d') >= start_date} predict_y_buckets = {k: predict_y_buckets[k] for k in predict_y_buckets if k.strftime('%Y-%m-%d') >= start_date} if neutralized_risk: predict_risk_buckets = {k: predict_risk_buckets[k] for k in predict_risk_buckets if k.strftime('%Y-%m-%d') >= start_date} else: predict_risk_buckets = None predict_codes_bucket = {k: predict_codes_bucket[k] for k in predict_codes_bucket if k.strftime('%Y-%m-%d') >= start_date} ret['train'] = {'x': train_x_buckets, 'y': train_y_buckets, 'risk': train_risk_buckets} ret['predict'] = {'x': predict_x_buckets, 'y': predict_y_buckets, 'risk': predict_risk_buckets, 'code': predict_codes_bucket} return ret def fetch_train_phase(engine, alpha_factors: Union[Transformer, Iterable[object]], ref_date, frequency, universe, batch=1, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, warm_start: int = 0, fit_target: Union[Transformer, object] = None) -> dict: if isinstance(alpha_factors, Transformer): transformer = alpha_factors else: transformer = Transformer(alpha_factors) p = Period(frequency) p = Period(length=-(warm_start + batch) * p.length(), units=p.units()) start_date = advanceDateByCalendar('china.sse', ref_date, p, BizDayConventions.Following) dates = makeSchedule(start_date, ref_date, frequency, calendar='china.sse', dateRule=BizDayConventions.Following, dateGenerationRule=DateGeneration.Backward) horizon = map_freq(frequency) factor_df = engine.fetch_factor_range(universe, factors=transformer, dates=dates) if fit_target is None: target_df = engine.fetch_dx_return_range(universe, dates=dates, horizon=horizon) else: one_more_date = advanceDateByCalendar('china.sse', dates[-1], frequency) target_df = engine.fetch_factor_range_forward(universe, factors=fit_target, dates=dates + [one_more_date]) target_df = target_df[target_df.trade_date.isin(dates)] target_df = target_df.groupby('code').apply(lambda x: x.fillna(method='pad')) df = pd.merge(factor_df, target_df, on=['trade_date', 'code']).dropna() target_df, factor_df = df[['trade_date', 'code', 'dx']], df[ ['trade_date', 'code'] + transformer.names] target_df, dates, date_label, risk_exp, x_values, y_values, _, _, codes = \ _merge_df(engine, transformer.names, factor_df, target_df, universe, dates, risk_model, neutralized_risk) if dates[-1] == dt.datetime.strptime(ref_date, '%Y-%m-%d'): require(len(dates) >= 2, ValueError, "No previous data for training for the date {0}".format(ref_date)) end = dates[-2] start = dates[-batch - 1] if batch <= len(dates) - 1 else dates[0] else: end = dates[-1] start = dates[-batch] if batch <= len(dates) else dates[0] index = (date_label >= start) & (date_label <= end) this_raw_x = x_values[index] this_raw_y = y_values[index] this_code = codes[index] if risk_exp is not None: this_risk_exp = risk_exp[index] else: this_risk_exp = None ne_x = factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) ne_y = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) ret = dict() ret['x_names'] = transformer.names ret['train'] = {'x': pd.DataFrame(ne_x, columns=transformer.names), 'y': ne_y, 'code': this_code} return ret def fetch_predict_phase(engine, alpha_factors: Union[Transformer, Iterable[object]], ref_date, frequency, universe, batch=1, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, warm_start: int = 0, fillna: str = None, fit_target: Union[Transformer, object] = None): if isinstance(alpha_factors, Transformer): transformer = alpha_factors else: transformer = Transformer(alpha_factors) p = Period(frequency) p = Period(length=-(warm_start + batch - 1) * p.length(), units=p.units()) start_date = advanceDateByCalendar('china.sse', ref_date, p, BizDayConventions.Following) dates = makeSchedule(start_date, ref_date, frequency, calendar='china.sse', dateRule=BizDayConventions.Following, dateGenerationRule=DateGeneration.Backward) horizon = map_freq(frequency) factor_df = engine.fetch_factor_range(universe, factors=transformer, dates=dates) if fillna: factor_df = factor_df.groupby('trade_date').apply( lambda x: x.fillna(x.median())).reset_index( drop=True).dropna() else: factor_df = factor_df.dropna() if fit_target is None: target_df = engine.fetch_dx_return_range(universe, dates=dates, horizon=horizon) else: one_more_date = advanceDateByCalendar('china.sse', dates[-1], frequency) target_df = engine.fetch_factor_range_forward(universe, factors=fit_target, dates=dates + [one_more_date]) target_df = target_df[target_df.trade_date.isin(dates)] target_df = target_df.groupby('code').apply(lambda x: x.fillna(method='pad')) names = transformer.names if neutralized_risk: risk_df = engine.fetch_risk_model_range(universe, dates=dates, risk_model=risk_model)[1] used_neutralized_risk = list(set(neutralized_risk).difference(names)) risk_df = risk_df[['trade_date', 'code'] + used_neutralized_risk].dropna() train_x = pd.merge(factor_df, risk_df, on=['trade_date', 'code']) train_x = pd.merge(train_x, target_df, on=['trade_date', 'code'], how='left') risk_exp = train_x[neutralized_risk].values.astype(float) else: train_x = pd.merge(factor_df, target_df, on=['trade_date', 'code'], how='left') risk_exp = None train_x.dropna(inplace=True, subset=train_x.columns[:-1]) x_values = train_x[names].values.astype(float) y_values = train_x[['dx']].values.astype(float) date_label = pd.DatetimeIndex(train_x.trade_date).to_pydatetime() dates = np.unique(date_label) if dates[-1] == dt.datetime.strptime(ref_date, '%Y-%m-%d'): end = dates[-1] start = dates[-batch] if batch <= len(dates) else dates[0] left_index = bisect.bisect_left(date_label, start) right_index = bisect.bisect_right(date_label, end) this_raw_x = x_values[left_index:right_index] this_raw_y = y_values[left_index:right_index] sub_dates = date_label[left_index:right_index] if risk_exp is not None: this_risk_exp = risk_exp[left_index:right_index] else: this_risk_exp = None ne_x = factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) ne_y = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) inner_left_index = bisect.bisect_left(sub_dates, end) inner_right_index = bisect.bisect_right(sub_dates, end) ne_x = ne_x[inner_left_index:inner_right_index] ne_y = ne_y[inner_left_index:inner_right_index] left_index = bisect.bisect_left(date_label, end) right_index = bisect.bisect_right(date_label, end) codes = train_x.code.values[left_index:right_index] else: ne_x = None ne_y = None codes = None ret = dict() ret['x_names'] = transformer.names ret['predict'] = {'x': pd.DataFrame(ne_x, columns=transformer.names, index=codes), 'code': codes, 'y': ne_y.flatten()} return ret
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/model/data_preparing.py
data_preparing.py
import numpy as np from simpleutils.asserts import require from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression as LinearRegressionImpl from sklearn.linear_model import LogisticRegression as LogisticRegressionImpl from alphamind.model.modelbase import create_model_base class ConstLinearModelImpl(object): def __init__(self, weights: np.ndarray = None): self.weights = weights.flatten() def fit(self, x: np.ndarray, y: np.ndarray): raise NotImplementedError("Const linear model doesn't offer fit methodology") def predict(self, x: np.ndarray): return x @ self.weights def score(self, x: np.ndarray, y: np.ndarray) -> float: y_hat = self.predict(x) y_bar = y.mean() ssto = ((y - y_bar) ** 2).sum() sse = ((y - y_hat) ** 2).sum() return 1. - sse / ssto class ConstLinearModel(create_model_base()): def __init__(self, features=None, weights: dict = None, fit_target=None): super().__init__(features=features, fit_target=fit_target) if features is not None and weights is not None: require(len(features) == len(weights), ValueError, "length of features is not equal to length of weights") if weights: self.impl = ConstLinearModelImpl(np.array([weights[name] for name in self.features])) def save(self): model_desc = super().save() model_desc['weight'] = list(self.impl.weights) return model_desc @classmethod def load(cls, model_desc: dict): return super().load(model_desc) @property def weights(self): return self.impl.weights.tolist() class LinearRegression(create_model_base('sklearn')): def __init__(self, features=None, fit_intercept: bool = False, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = LinearRegressionImpl(fit_intercept=fit_intercept, **kwargs) def save(self) -> dict: model_desc = super().save() model_desc['weight'] = self.impl.coef_.tolist() return model_desc @property def weights(self): return self.impl.coef_.tolist() class LassoRegression(create_model_base('sklearn')): def __init__(self, alpha=0.01, features=None, fit_intercept: bool = False, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = Lasso(alpha=alpha, fit_intercept=fit_intercept, **kwargs) def save(self) -> dict: model_desc = super().save() model_desc['weight'] = self.impl.coef_.tolist() return model_desc @property def weights(self): return self.impl.coef_.tolist() class LogisticRegression(create_model_base('sklearn')): def __init__(self, features=None, fit_intercept: bool = False, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = LogisticRegressionImpl(fit_intercept=fit_intercept, **kwargs) def save(self) -> dict: model_desc = super().save() model_desc['weight'] = self.impl.coef_.tolist() return model_desc @property def weights(self): return self.impl.coef_.tolist() if __name__ == '__main__': import pprint ls = ConstLinearModel(['a', 'b'], np.array([0.5, 0.5])) x = np.array([[0.2, 0.2], [0.1, 0.1], [0.3, 0.1]]) ls.predict(x) desc = ls.save() new_model = ConstLinearModel.load(desc) pprint.pprint(new_model.save())
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/model/linearmodel.py
linearmodel.py
import arrow import numpy as np import pandas as pd import xgboost as xgb from sklearn.ensemble import RandomForestClassifier as RandomForestClassifierImpl from sklearn.ensemble import RandomForestRegressor as RandomForestRegressorImpl from sklearn.model_selection import train_test_split from xgboost import XGBClassifier as XGBClassifierImpl from xgboost import XGBRegressor as XGBRegressorImpl from alphamind.model.modelbase import create_model_base class RandomForestRegressor(create_model_base('sklearn')): def __init__(self, n_estimators: int = 100, max_features: str = 'auto', features=None, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = RandomForestRegressorImpl(n_estimators=n_estimators, max_features=max_features, **kwargs) @property def importances(self): return self.impl.feature_importances_.tolist() class RandomForestClassifier(create_model_base('sklearn')): def __init__(self, n_estimators: int = 100, max_features: str = 'auto', features=None, fit_target=None, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = RandomForestClassifierImpl(n_estimators=n_estimators, max_features=max_features, **kwargs) @property def importances(self): return self.impl.feature_importances_.tolist() class XGBRegressor(create_model_base('xgboost')): def __init__(self, n_estimators: int = 100, learning_rate: float = 0.1, max_depth: int = 3, features=None, fit_target=None, n_jobs: int = 1, missing: float = np.nan, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = XGBRegressorImpl(n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, n_jobs=n_jobs, missing=missing, **kwargs) @property def importances(self): return self.impl.feature_importances_.tolist() class XGBClassifier(create_model_base('xgboost')): def __init__(self, n_estimators: int = 100, learning_rate: float = 0.1, max_depth: int = 3, features=None, fit_target=None, n_jobs: int = 1, missing: float = np.nan, **kwargs): super().__init__(features=features, fit_target=fit_target) self.impl = XGBClassifierImpl(n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, n_jobs=n_jobs, missing=missing, **kwargs) self.impl = XGBClassifier.model_decode(self.model_encode()) @property def importances(self): return self.impl.feature_importances_.tolist() class XGBTrainer(create_model_base('xgboost')): def __init__(self, objective='binary:logistic', booster='gbtree', tree_method='hist', n_estimators: int = 100, learning_rate: float = 0.1, max_depth=3, eval_sample=None, early_stopping_rounds=None, subsample=1., colsample_bytree=1., features=None, fit_target=None, random_state: int = 0, n_jobs: int = 1, **kwargs): super().__init__(features=features, fit_target=fit_target) self.params = { 'objective': objective, 'max_depth': max_depth, 'eta': learning_rate, 'booster': booster, 'tree_method': tree_method, 'subsample': subsample, 'colsample_bytree': colsample_bytree, 'nthread': n_jobs, 'seed': random_state } self.eval_sample = eval_sample self.num_boost_round = n_estimators self.early_stopping_rounds = early_stopping_rounds self.impl = None self.kwargs = kwargs self.trained_time = None def fit(self, x: pd.DataFrame, y: np.ndarray): if self.eval_sample: x_train, x_eval, y_train, y_eval = train_test_split(x[self.features].values, y, test_size=self.eval_sample, random_state=42) d_train = xgb.DMatrix(x_train, y_train) d_eval = xgb.DMatrix(x_eval, y_eval) self.impl = xgb.train(params=self.params, dtrain=d_train, num_boost_round=self.num_boost_round, evals=[(d_eval, 'eval')], verbose_eval=False, **self.kwargs) else: d_train = xgb.DMatrix(x[self.features].values, y) self.impl = xgb.train(params=self.params, dtrain=d_train, num_boost_round=self.num_boost_round, **self.kwargs) self.trained_time = arrow.now().format("YYYY-MM-DD HH:mm:ss") def predict(self, x: pd.DataFrame) -> np.ndarray: d_predict = xgb.DMatrix(x[self.features].values) return self.impl.predict(d_predict) @property def importances(self): imps = self.impl.get_fscore().items() imps = sorted(imps, key=lambda x: x[0]) return list(zip(*imps))[1]
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/model/treemodel.py
treemodel.py
import bisect import copy from typing import Iterable from typing import Tuple import numpy as np import pandas as pd from simpleutils.miscellaneous import list_eq from alphamind.data.engines.sqlengine import SqlEngine from alphamind.data.engines.universe import Universe from alphamind.data.engines.universe import load_universe from alphamind.data.rank import rank from alphamind.data.standardize import standardize from alphamind.data.winsorize import winsorize_normal from alphamind.model.data_preparing import fetch_predict_phase from alphamind.model.data_preparing import fetch_train_phase from alphamind.model.linearmodel import ConstLinearModel from alphamind.model.loader import load_model from alphamind.model.modelbase import ModelBase PROCESS_MAPPING = { 'winsorize_normal': winsorize_normal, 'standardize': standardize, 'rank': rank, } def _map_process(processes): if processes: return [p if hasattr(p, '__call__') else PROCESS_MAPPING[p] for p in processes] else: return None class DataMeta(object): def __init__(self, freq: str, universe: Universe, batch: int, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, warm_start: int = 0, data_source: str = None): self.data_source = data_source self.freq = freq self.universe = universe self.batch = batch self.neutralized_risk = neutralized_risk self.risk_model = risk_model self.pre_process = _map_process(pre_process) self.post_process = _map_process(post_process) self.warm_start = warm_start def __eq__(self, rhs): return self.data_source == rhs.data_source \ and self.freq == rhs.freq \ and self.universe == rhs.universe \ and self.batch == rhs.batch \ and list_eq(self.neutralized_risk, rhs.neutralized_risk) \ and self.risk_model == rhs.risk_model \ and list_eq(self.pre_process, rhs.pre_process) \ and list_eq(self.post_process, rhs.post_process) \ and self.warm_start == rhs.warm_start def save(self) -> dict: return dict( freq=self.freq, universe=self.universe.save(), batch=self.batch, neutralized_risk=self.neutralized_risk, risk_model=self.risk_model, pre_process=[p.__name__ for p in self.pre_process] if self.pre_process else None, post_process=[p.__name__ for p in self.post_process] if self.pre_process else None, warm_start=self.warm_start, data_source=self.data_source ) @classmethod def load(cls, data_desc: dict): freq = data_desc['freq'] universe = load_universe(data_desc['universe']) batch = data_desc['batch'] neutralized_risk = data_desc['neutralized_risk'] risk_model = data_desc['risk_model'] pre_process = data_desc['pre_process'] post_process = data_desc['post_process'] warm_start = data_desc['warm_start'] data_source = data_desc['data_source'] return cls(freq=freq, universe=universe, batch=batch, neutralized_risk=neutralized_risk, risk_model=risk_model, pre_process=pre_process, post_process=post_process, warm_start=warm_start, data_source=data_source) def fetch_train_data(self, ref_date, alpha_model: ModelBase): return fetch_train_phase(SqlEngine(self.data_source), alpha_model.formulas, ref_date, self.freq, self.universe, self.batch, self.neutralized_risk, self.risk_model, self.pre_process, self.post_process, self.warm_start, fit_target=alpha_model.fit_target) def fetch_predict_data(self, ref_date: str, alpha_model: ModelBase): return fetch_predict_phase(SqlEngine(self.data_source), alpha_model.formulas, ref_date, self.freq, self.universe, self.batch, self.neutralized_risk, self.risk_model, self.pre_process, self.post_process, self.warm_start, fillna=True, fit_target=alpha_model.fit_target) def train_model(ref_date: str, alpha_model: ModelBase, data_meta: DataMeta = None, x_values: pd.DataFrame = None, y_values: pd.DataFrame = None): base_model = copy.deepcopy(alpha_model) if not isinstance(alpha_model, ConstLinearModel): if x_values is None: train_data = data_meta.fetch_train_data(ref_date, alpha_model) x_values = train_data['train']['x'] y_values = train_data['train']['y'] base_model.fit(x_values, y_values) return base_model, x_values, y_values def predict_by_model(ref_date: str, alpha_model: ModelBase, data_meta: DataMeta = None, x_values: pd.DataFrame = None, codes: Iterable[int] = None): if x_values is None: predict_data = data_meta.fetch_predict_data(ref_date, alpha_model) codes, x_values = predict_data['predict']['code'], predict_data['predict']['x'] return pd.DataFrame(alpha_model.predict(x_values).flatten(), index=codes), x_values class Composer: def __init__(self, alpha_model: ModelBase, data_meta: DataMeta): self.alpha_model = alpha_model self.data_meta = data_meta self.models = {} self.is_updated = False self.sorted_keys = None def train(self, ref_date: str, x=None, y=None) -> Tuple[ModelBase, pd.DataFrame, pd.DataFrame]: model, x, y = train_model(ref_date, self.alpha_model, self.data_meta, x, y) self.models[ref_date] = model self.is_updated = False return model, x, y def predict(self, ref_date: str, x: pd.DataFrame = None) -> Tuple[pd.DataFrame, pd.DataFrame]: model = self._fetch_latest_model(ref_date) if x is None: return predict_by_model(ref_date, model, self.data_meta) else: codes = x.index return pd.DataFrame(model.predict(x).flatten(), index=codes), x def score(self, ref_date: str, x: pd.DataFrame = None, y: np.ndarray = None, d_type: str = 'test') \ -> Tuple[float, pd.DataFrame, pd.DataFrame]: model = self._fetch_latest_model(ref_date) if x is None or y is None: if d_type == 'test': test_data = self.data_meta.fetch_predict_data(ref_date, model) x = test_data['predict']['x'] y = test_data['predict']['y'] else: test_data = self.data_meta.fetch_train_data(ref_date, model) x = test_data['train']['x'] y = test_data['train']['y'] return model.score(x, y), x, y def ic(self, ref_date, x=None, y=None) -> Tuple[float, pd.DataFrame, pd.DataFrame]: model = self._fetch_latest_model(ref_date) if x is None or y is None: test_data = self.data_meta.fetch_predict_data(ref_date, model) x = test_data['predict']['x'] y = test_data['predict']['y'] return model.ic(x, y), x, y def _fetch_latest_model(self, ref_date) -> ModelBase: if self.is_updated: sorted_keys = self.sorted_keys else: sorted_keys = sorted(self.models.keys()) self.sorted_keys = sorted_keys self.is_updated = True latest_index = bisect.bisect_left(sorted_keys, ref_date) - 1 return self.models[sorted_keys[latest_index]] def __getitem__(self, ref_date) -> ModelBase: return self.models[ref_date] def save(self) -> dict: return dict( alpha_model=self.alpha_model.save(), data_meta=self.data_meta.save() ) @classmethod def load(cls, comp_desc): alpha_model = load_model(comp_desc['alpha_model']) data_meta = DataMeta.load(comp_desc['data_meta']) return cls(alpha_model, data_meta) if __name__ == '__main__': from alphamind.api import (industry_styles, standardize, winsorize_normal, DataMeta, LinearRegression, fetch_data_package, map_freq) from PyFin.api import LAST, SHIFT freq = '60b' universe = Universe('custom', ['ashare_ex']) batch = 1 neutralized_risk = industry_styles risk_model = 'short' pre_process = [winsorize_normal, standardize] post_process = [standardize] warm_start = 3 data_source = None horizon = map_freq(freq) engine = SqlEngine(data_source) fit_intercept = True kernal_feature = 'roe_q' regress_features = {kernal_feature: LAST(kernal_feature), kernal_feature + '_l1': SHIFT(kernal_feature, 1), kernal_feature + '_l2': SHIFT(kernal_feature, 2), kernal_feature + '_l3': SHIFT(kernal_feature, 3) } const_features = {kernal_feature: LAST(kernal_feature)} fit_target = [kernal_feature] data_meta = DataMeta(freq=freq, universe=universe, batch=batch, neutralized_risk=neutralized_risk, risk_model=risk_model, pre_process=pre_process, post_process=post_process, warm_start=warm_start, data_source=data_source) alpha_model = LinearRegression(features=regress_features, fit_intercept=True, fit_target=fit_target) composer = Composer(alpha_model=alpha_model, data_meta=data_meta) start_date = '2014-01-01' end_date = '2016-01-01' regression_model = LinearRegression(features=regress_features, fit_intercept=fit_intercept, fit_target=fit_target) regression_composer = Composer(alpha_model=regression_model, data_meta=data_meta) data_package1 = fetch_data_package(engine, alpha_factors=[kernal_feature], start_date=start_date, end_date=end_date, frequency=freq, universe=universe, benchmark=906, warm_start=warm_start, batch=1, neutralized_risk=neutralized_risk, pre_process=pre_process, post_process=post_process, fit_target=fit_target)
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/model/composer.py
composer.py
import numpy as np from pfopt.linear import LpOptimizer as _LpOptimizer from pfopt.linear import L1LpOptimizer as _L1LpOptimizer from pfopt.quadratic import QOptimizer as _QOptimizer from pfopt.quadratic import DecomposedQOptimizer as _DecomposedQOptimizer from pfopt.quadratic import TargetVarianceOptimizer as _TargetVarianceOptimizer class LPOptimizer: def __init__(self, objective: np.array, cons_matrix: np.ndarray, lbound: np.ndarray, ubound: np.ndarray, method: str = "deprecated"): self._optimizer = _LpOptimizer(cost=objective, cons_matrix=cons_matrix, lower_bound=lbound, upper_bound=ubound) self._x, self._f_eval, self._status = self._optimizer.solve(solver="ECOS") def status(self): return self._status def feval(self): return self._f_eval def x_value(self): return self._x class L1LPOptimizer: def __init__(self, objective: np.array, cons_matrix: np.ndarray, current_pos: np.ndarray, target_turn_over: float, lbound: np.ndarray, ubound: np.ndarray): self._optimizer = _L1LpOptimizer(cost=objective, benchmark=current_pos, l1norm=target_turn_over, cons_matrix=cons_matrix, lower_bound=lbound, upper_bound=ubound) self._x, self._f_eval, self._status = self._optimizer.solve() def status(self): return self._status def feval(self): return self._f_eval def x_value(self): return self._x class QuadraticOptimizer: def __init__(self, objective: np.array, cons_matrix: np.ndarray = None, lbound: np.ndarray = None, ubound: np.ndarray = None, penalty: float = 1., cov: np.ndarray = None, factor_cov: np.ndarray = None, factor_load: np.ndarray = None, factor_special: np.ndarray = None): if cov is None and factor_cov is not None: self._optimizer = _DecomposedQOptimizer(cost=objective, factor_var=factor_cov, factor_load=factor_load, factor_special=factor_special, penalty=penalty, cons_matrix=cons_matrix, lower_bound=lbound, upper_bound=ubound) elif cov is not None: self._optimizer = _QOptimizer(cost=objective, variance=cov, penalty=penalty, cons_matrix=cons_matrix, lower_bound=lbound, upper_bound=ubound) else: raise ValueError("cov and factor cov can't be all empty") self._x, self._f_eval, self._status = self._optimizer.solve() def status(self): return self._status def feval(self): return self._f_eval def x_value(self): return self._x class TargetVolOptimizer: def __init__(self, objective: np.array, cons_matrix: np.ndarray = None, lbound: np.ndarray = None, ubound: np.ndarray = None, target_vol: float = 1., cov: np.ndarray = None, factor_cov: np.ndarray = None, factor_load: np.ndarray = None, factor_special: np.ndarray = None): if cov is None and factor_cov is not None: self._optimizer = _TargetVarianceOptimizer(cost=objective, variance_target=target_vol*target_vol, factor_var=factor_cov, factor_load=factor_load, factor_special=factor_special, cons_matrix=cons_matrix, lower_bound=lbound, upper_bound=ubound) elif cov is not None: self._optimizer = _TargetVarianceOptimizer(cost=objective, variance_target=target_vol*target_vol, variance=cov, cons_matrix=cons_matrix, lower_bound=lbound, upper_bound=ubound) else: raise ValueError("cov and factor cov can't be all empty") self._x, self._f_eval, self._status = self._optimizer.solve() def status(self): return self._status def feval(self): return self._f_eval def x_value(self): return self._x
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/portfolio/optimizers.py
optimizers.py
from typing import Dict from typing import Optional from typing import Tuple from typing import Union import numpy as np from alphamind.portfolio.optimizers import ( QuadraticOptimizer, TargetVolOptimizer ) from alphamind.exceptions.exceptions import PortfolioBuilderException def _create_bounds(lbound, ubound, bm, risk_exposure, risk_target): if lbound is not None: lbound = lbound - bm if ubound is not None: ubound = ubound - bm if risk_exposure is not None: cons_mat = risk_exposure.T bm_risk = cons_mat @ bm clbound = (risk_target[0] - bm_risk).reshape((-1, 1)) cubound = (risk_target[1] - bm_risk).reshape((-1, 1)) else: cons_mat = None clbound = None cubound = None return lbound, ubound, cons_mat, clbound, cubound def _create_result(optimizer, bm): if optimizer.status() == "optimal" or optimizer.status() == "optimal_inaccurate": return optimizer.status(), optimizer.feval(), optimizer.x_value() + bm else: raise PortfolioBuilderException(optimizer.status()) def mean_variance_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float, None], ubound: Union[np.ndarray, float, None], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], lam: float = 1., linear_solver: str = 'deprecated') -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if cons_mat is not None: cons_matrix = np.concatenate([cons_mat, clbound, cubound], axis=1) else: cons_matrix = None cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] prob = QuadraticOptimizer(objective=-er, cons_matrix=cons_matrix, lbound=lbound, ubound=ubound, penalty=lam, cov=cov, factor_cov=risk_cov, factor_load=risk_exposure, factor_special=special_risk) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() + bm else: raise PortfolioBuilderException(prob.status()) def target_vol_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float], ubound: Union[np.ndarray, float], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], vol_target: float = 1., linear_solver: str = 'ma27') -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if cons_mat is not None: cons_matrix = np.concatenate([cons_mat, clbound, cubound], axis=1) else: cons_matrix = None cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] prob = TargetVolOptimizer(objective=-er, cons_matrix=cons_matrix, lbound=lbound, ubound=ubound, target_vol=vol_target, factor_cov=risk_cov, factor_load=risk_exposure, factor_special=special_risk, cov=cov) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() + bm else: raise PortfolioBuilderException(prob.status())
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/portfolio/meanvariancebuilder.py
meanvariancebuilder.py
from typing import Tuple from typing import Union import numpy as np from alphamind.portfolio.optimizers import LPOptimizer from alphamind.portfolio.optimizers import L1LPOptimizer from alphamind.exceptions.exceptions import PortfolioBuilderException def linear_builder(er: np.ndarray, lbound: Union[np.ndarray, float] = None, ubound: Union[np.ndarray, float] = None, risk_constraints: np.ndarray = None, risk_target: Tuple[np.ndarray, np.ndarray] = None, turn_over_target: float = None, current_position: np.ndarray = None, method: str = "deprecated") -> Tuple[str, np.ndarray, np.ndarray]: er = er.flatten() if risk_constraints is not None: risk_lbound = risk_target[0].reshape((-1, 1)) risk_ubound = risk_target[1].reshape((-1, 1)) cons_matrix = np.concatenate((risk_constraints.T, risk_lbound, risk_ubound), axis=1) else: cons_matrix = None if not turn_over_target or current_position is None: prob = LPOptimizer(-er, cons_matrix, lbound, ubound) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() else: raise PortfolioBuilderException(prob.status()) elif turn_over_target: prob = L1LPOptimizer(objective=-er, cons_matrix=cons_matrix, current_pos=current_position, target_turn_over=turn_over_target, lbound=lbound, ubound=ubound) if prob.status() == 'optimal' or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() else: raise PortfolioBuilderException(prob.status()) if __name__ == '__main__': n = 5 lb = np.zeros(n) ub = 4. / n * np.ones(n) er = np.random.randn(n) current_pos = np.random.randint(0, n, size=n) current_pos = current_pos / current_pos.sum() turn_over_target = 0.1 cons = np.ones((n, 1)) risk_lbound = np.ones(1) risk_ubound = np.ones(1) status, fvalue, x_values = linear_builder(er, lb, ub, cons, (risk_lbound, risk_ubound), turn_over_target, current_pos, method='ecos') print(status) print(fvalue) print(x_values) print(current_pos) print(np.abs(x_values - current_pos).sum())
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/portfolio/linearbuilder.py
linearbuilder.py
from enum import IntEnum from math import inf from typing import Dict from typing import Iterable from typing import List from typing import Optional from typing import Tuple from typing import Union import numpy as np import pandas as pd from simpleutils.asserts import require from deprecated import deprecated class BoundaryDirection(IntEnum): LOWER = -1 UPPER = 1 class BoundaryType(IntEnum): ABSOLUTE = 0 RELATIVE = 1 MAXABSREL = 2 MINABSREL = 3 class BoundaryImpl(object): def __init__(self, direction: BoundaryDirection, b_type: BoundaryType, val): self.direction = direction self.b_type = b_type self.val = val self._validation() def _validation(self): require( self.b_type in [BoundaryType.ABSOLUTE, BoundaryType.RELATIVE, BoundaryType.MAXABSREL, BoundaryType.MINABSREL], ValueError, "Boundary Type {0} is not recognized".format(self.b_type)) require( self.direction == BoundaryDirection.LOWER or self.direction == BoundaryDirection.UPPER, ValueError, "Boundary direction {0} is not recognized".format(self.direction)) def __call__(self, center: float): if self.b_type == BoundaryType.ABSOLUTE: return self.val + center elif self.b_type == BoundaryType.MAXABSREL: abs_threshold = self.val[0] rel_threshold = self.val[1] if self.direction == BoundaryDirection.LOWER: rel_bound = center - abs(center) * rel_threshold abs_bound = center - abs_threshold return min(rel_bound, abs_bound) elif self.direction == BoundaryDirection.UPPER: rel_bound = center + abs(center) * rel_threshold abs_bound = center + abs_threshold return max(rel_bound, abs_bound) elif self.b_type == BoundaryType.MINABSREL: abs_threshold = self.val[0] rel_threshold = self.val[1] if self.direction == BoundaryDirection.LOWER: rel_bound = center - abs(center) * rel_threshold abs_bound = center - abs_threshold return max(rel_bound, abs_bound) elif self.direction == BoundaryDirection.UPPER: rel_bound = center + abs(center) * rel_threshold abs_bound = center + abs_threshold return min(rel_bound, abs_bound) else: require(center >= 0., ValueError, "relative bounds only support positive back bone value") return self.val * center class BoxBoundary(object): def __init__(self, lower_bound: BoundaryImpl, upper_bound: BoundaryImpl): self.lower = lower_bound self.upper = upper_bound def bounds(self, center): l_b, u_b = self.lower(center), self.upper(center) require(l_b <= u_b, ValueError, "lower bound should be lower then upper bound") return l_b, u_b def create_box_bounds(names: List[str], b_type: Union[Iterable[BoundaryType], BoundaryType], l_val: Union[Iterable[float], float], u_val: Union[Iterable[float], float]) -> Dict[str, BoxBoundary]: """ helper function to quickly create a series of bounds """ bounds = dict() if not hasattr(b_type, '__iter__'): b_type = np.array([b_type] * len(names)) if not hasattr(l_val, '__iter__'): l_val = np.array([l_val] * len(names)) if not hasattr(u_val, '__iter__'): u_val = np.array([u_val] * len(names)) for i, name in enumerate(names): lower = BoundaryImpl(BoundaryDirection.LOWER, b_type[i], l_val[i]) upper = BoundaryImpl(BoundaryDirection.UPPER, b_type[i], u_val[i]) bounds[name] = BoxBoundary(lower, upper) return bounds class LinearConstraints(object): def __init__(self, bounds: Dict[str, BoxBoundary], cons_mat: pd.DataFrame, backbone: np.ndarray = None): self.names = list(set(bounds.keys()).intersection(set(cons_mat.columns))) self.bounds = bounds self.cons_mat = cons_mat self.backbone = backbone require(cons_mat.shape[0] == len(backbone) if backbone is not None else True, "length of back bond should be same as number of rows of cons_mat") def risk_targets(self) -> Tuple[np.ndarray, np.ndarray]: lower_bounds = [] upper_bounds = [] if self.backbone is None: backbone = np.zeros(len(self.cons_mat)) else: backbone = self.backbone for name in self.names: center = backbone @ self.cons_mat[name].values l, u = self.bounds[name].bounds(center) lower_bounds.append(l) upper_bounds.append(u) return np.array(lower_bounds), np.array(upper_bounds) @property def risk_exp(self) -> np.ndarray: return self.cons_mat[self.names].values @deprecated( reason="Constraints is deprecated in alpha-mind 0.1.1. Please use LinearConstraints instead.") class Constraints(object): def __init__(self, risk_exp: Optional[np.ndarray] = None, risk_names: Optional[np.ndarray] = None): self.risk_exp = risk_exp if risk_names is not None: self.risk_names = np.array(risk_names) else: self.risk_names = np.array([]) n = len(self.risk_names) self.risk_maps = dict(zip(self.risk_names, range(n))) self.lower_bounds = -inf * np.ones(n) self.upper_bounds = inf * np.ones(n) def set_constraints(self, tag: str, lower_bound: float, upper_bound: float): index = self.risk_maps[tag] self.lower_bounds[index] = lower_bound self.upper_bounds[index] = upper_bound def add_exposure(self, tags: np.ndarray, new_exp: np.ndarray): if len(tags) != new_exp.shape[1]: raise ValueError( 'new dags length is not compatible with exposure shape {1}'.format(len(tags), new_exp.shape)) for tag in tags: if tag in self.risk_maps: raise ValueError('tag {0} is already in risk table'.format(tag)) self.risk_names = np.concatenate((self.risk_names, tags)) if self.risk_exp is not None: self.risk_exp = np.concatenate((self.risk_exp, new_exp), axis=1) else: self.risk_exp = new_exp n = len(self.risk_names) self.risk_maps = dict(zip(self.risk_names, range(n))) self.lower_bounds = np.concatenate((self.lower_bounds, -inf * np.ones(len(tags)))) self.upper_bounds = np.concatenate((self.upper_bounds, inf * np.ones(len(tags)))) def risk_targets(self) -> Tuple[np.ndarray, np.ndarray]: return self.lower_bounds, self.upper_bounds if __name__ == '__main__': risk_exp = np.array([[1.0, 2.0], [3.0, 4.0]]) risk_names = np.array(['a', 'b']) cons = Constraints(risk_exp, risk_names) cons.set_constraints('b', 0.0, 0.1) print(cons.risk_targets())
Alpha-Mind
/Alpha-Mind-0.3.1.tar.gz/Alpha-Mind-0.3.1/alphamind/portfolio/constraints.py
constraints.py
import pandas as pd import numpy as np class Factor_get_method(object): def __init__(self) -> None: pass def get_all_tables(self,con): sql = "select name from sqlite_master where type ='table' order by name" c = con.cursor() result = c.execute(sql) factorfilelist = [i[0] for i in result.fetchall()] return factorfilelist def sql_fetch(self,con,tablename): cursorObj = con.cursor() cursorObj.execute('PRAGMA table_info("{}")'.format(tablename)) return cursorObj.fetchall() def sql_exec(self,sql,sqlcols,conn): cur = conn.cursor() result = cur.execute(sql) result = pd.DataFrame(result,columns = sqlcols).set_index(['date','symbol']) return result def get_prev_days_factor_by_name(self,factorname:str,date:str,conn): sql = "select * from {} where {}.date >= '{}'".format(factorname,factorname,date) sqlcols = [txt[1] for txt in self.sql_fetch(conn,factorname)] return self.sql_exec(sql,sqlcols,conn) def get_selected_date_factor_by_name(self,factorname:str,date:str,conn): sql = "select * from {} where {}.date = '{}'".format(factorname,factorname,date) sqlcols = [txt[1] for txt in self.sql_fetch(conn,factorname)] return self.sql_exec(sql,sqlcols,conn) def mmt_intraday_M(tempClose,tempOpen): # 1个月日内动量 mmt_intraday_M = (tempClose/tempOpen - 1).iloc[-22:].cumsum() mmt_intraday_M = pd.DataFrame(mmt_intraday_M.iloc[-1:].stack(),columns = ['mmt_intraday_M']) return mmt_intraday_M # 一个月振幅调整动量 def mmt_range_M(tempHigh,tempLow,tempClose): High_m = tempHigh.iloc[-22:].max() Low_m = tempLow.iloc[-22:].min() mmt_range_M = (High_m-Low_m)/tempClose.shift(22) mmt_range_M = pd.DataFrame(mmt_range_M.iloc[-1:].stack(),columns = ['mmt_range_M']) return mmt_range_M def mmt_overnight_M(tempOpen,tempClose): # 隔夜动量 mmt_overnight = tempOpen/tempClose.shift(1) - 1 todaydate = mmt_overnight.index[-1] mmt_overnight_M = pd.DataFrame(mmt_overnight.iloc[-20:].sum(),columns = ['mmt_overnight_M']) mmt_overnight_M['date'] = todaydate mmt_overnight_M = mmt_overnight_M.reset_index().set_index(['date','symbol']) return mmt_overnight_M def mmt_route_M(tempClose): # 路径调整动量 mmt_route_M = (tempClose/tempClose.shift(20) - 1)/abs(tempClose/tempClose.shift(1)-1).rolling(20).sum() mmt_route_M = pd.DataFrame(mmt_route_M.iloc[-1:].stack(),columns = ['mmt_route_M']) return mmt_route_M def mmt_discrete_M(tempClose): # 信息离散度动量 daily_up = (tempClose/tempClose.shift(1)-1).applymap(lambda x: int(x>0) if not np.isnan(x) else np.nan) daily_down = (tempClose/tempClose.shift(1)-1).applymap(lambda x: int(x<0) if not np.isnan(x) else np.nan) mmt_discrete_M = daily_up.rolling(20).sum()/20-daily_down.rolling(20).sum()/20 mmt_discrete_M = pd.DataFrame(mmt_discrete_M.iloc[-1:].stack(),columns = ['mmt_discrete_M']) return mmt_discrete_M def mmt_sec_rank_M(tempClose): # 截面rank动量 mmt_sec_rank_M = (tempClose/tempClose.shift(1)-1).rank(axis = 1).rolling(20).mean() mmt_sec_rank_M = pd.DataFrame(mmt_sec_rank_M.iloc[-1:].stack(),columns = ['mmt_sec_rank_M']) return mmt_sec_rank_M def mmt_time_rank_M(anaual_close): # 时序rank_score # anaual_close = Close.iloc[-272:] mmt_time_rank_M = (anaual_close/anaual_close.shift(1)-1).rolling(252,min_periods = 100).rank().rolling(20).mean() mmt_time_rank_M = pd.DataFrame(mmt_time_rank_M.iloc[-1:].stack(),columns = ['mmt_time_rank_M']) return mmt_time_rank_M def mmt_highest_days_A(anaual_High): # 最高价距今天数 todaydate = anaual_High.index[-1] mmt_highest_days_A = 252- anaual_High.iloc[-252:].apply(lambda x: x.argmax()) mmt_highest_days_A = pd.DataFrame(mmt_highest_days_A,columns= ['mmt_highest_days_A']) mmt_highest_days_A['date'] = todaydate mmt_highest_days_A = mmt_highest_days_A.reset_index().set_index(['date','symbol']) return mmt_highest_days_A def volumestable(volume): # 成交量稳定度 vol_m = volume.rolling(20).mean() vol_std = volume.rolling(20).std() volumestable = (vol_m/vol_std) volumestable = pd.DataFrame(volumestable.iloc[-1:].stack(),columns = ['volumestable']) return volumestable def re_con(tempClose): # 收益一致性因子 import numpy as np d5_r = tempClose.pct_change(5).iloc[-1:]/5 d10_r = tempClose.pct_change(10).iloc[-1:]/10/np.sqrt(2) d15_r = tempClose.pct_change(15).iloc[-1:]/15/np.sqrt(3) con = pd.concat([d5_r.stack(),d10_r.stack(),d15_r.stack()],axis = 1).dropna() con = con.mean(axis =1)/con.std(axis = 1) con = con.unstack() con_output = con.rank(axis = 1) con_output = con_output.apply(lambda x: x-x.mean(),axis = 1).abs() _con = pd.DataFrame(con_output.iloc[-1:].stack(),columns = ['_con']) return _con def bofu_money(tempHigh,tempLow,tempOpen,total_turnover): # 波幅/成交额 bofu_money = (tempHigh-tempLow)/tempOpen/total_turnover bofu_money = pd.DataFrame(bofu_money.iloc[-1:].stack(),columns = ['bofu_money']) return bofu_money def vol_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = pd.DataFrame(ret.std(),columns = ['vol_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_up_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = (ret*(ret>0).astype(int)).replace(0,np.nan) df = pd.DataFrame(df.std(),columns = ['vol_up_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_down_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = (ret*(ret<0).astype(int)).replace(0,np.nan) df = pd.DataFrame(df.std(),columns = ['vol_down_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_highlow_avg(high,low,periodname,perioddays): ratio = (high/low).iloc[-perioddays:] todaydate = ratio.index[-1] df = pd.DataFrame(ratio.mean(),columns = ['vol_highlow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_highlow_std(high,low,periodname,perioddays): ratio = (high/low).iloc[-perioddays:] todaydate = ratio.index[-1] df = pd.DataFrame(ratio.std(),columns = ['vol_highlow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_updown_ratio(df,periodname,perioddays): upstd = vol_up_std(df,periodname,perioddays) downstd = vol_down_std(df,periodname,perioddays) updownratio = pd.DataFrame(upstd['vol_up_std_'+periodname]/downstd['vol_down_std_'+periodname],columns = ['vol_updown_ratio_'+periodname]) return updownratio def vol_highlow_stable(high,low,periodname,perioddays): hlavg = vol_highlow_avg(high,low,periodname,perioddays) hlstd = vol_highlow_std(high,low,periodname,perioddays) hlstable = pd.DataFrame(hlavg['vol_highlow_avg_'+periodname]/hlstd['vol_highlow_std_'+periodname],columns = ['vol_highlow_stable_'+periodname]) return hlstable def vol_upshadow_avg(High,Open,Close,periodname,perioddays): multiper = (Open>Close).astype(int) Open_Close_max = multiper*Open + (1-multiper)*Close upshadow_df = ((High - Open_Close_max)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.mean(),columns = ['vol_upshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_upshadow_std(High,Open,Close,periodname,perioddays): multiper = (Open>Close).astype(int) Open_Close_max = multiper*Open + (1-multiper)*Close upshadow_df = ((High - Open_Close_max)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.std(),columns = ['vol_upshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_upshadow_stable(High,Open,Close,periodname,perioddays): avg = vol_upshadow_avg(High,Open,Close,periodname,perioddays) std = vol_upshadow_std(High,Open,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_upshadow_avg_'+periodname]/std['vol_upshadow_std_'+periodname],columns = ['vol_upshadow_stable_'+periodname]) return df def vol_downshadow_avg(Low,Open,Close,periodname,perioddays): multiper = (Open<Close).astype(int) Open_Close_min = multiper*Open + (1-multiper)*Close downshadow_df = ((Open_Close_min - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.mean(),columns = ['vol_downshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_downshadow_std(Low,Open,Close,periodname,perioddays): multiper = (Open<Close).astype(int) Open_Close_min = multiper*Open + (1-multiper)*Close downshadow_df = ((Open_Close_min - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.std(),columns = ['vol_downshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_downshadow_stable(Low,Open,Close,periodname,perioddays): avg = vol_downshadow_avg(Low,Open,Close,periodname,perioddays) std = vol_downshadow_std(Low,Open,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_downshadow_avg_'+periodname]/std['vol_downshadow_std_'+periodname],columns = ['vol_downshadow_stable_'+periodname]) return df def vol_w_downshadow_avg(Low,Close,periodname,perioddays): downshadow_df = ((Close - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.mean(),columns = ['vol_w_downshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_downshadow_std(Low,Close,periodname,perioddays): downshadow_df = ((Close - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.std(),columns = ['vol_w_downshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_downshadow_stable(Low,Close,periodname,perioddays): avg = vol_w_downshadow_avg(Low,Close,periodname,perioddays) std = vol_w_downshadow_std(Low,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_w_downshadow_avg_'+periodname]/std['vol_w_downshadow_std_'+periodname],columns = ['vol_w_downshadow_stable_'+periodname]) return df def vol_w_upshadow_avg(High,Close,periodname,perioddays): upshadow_df = ((High - Close)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.mean(),columns = ['vol_w_upshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_upshadow_std(High,Close,periodname,perioddays): upshadow_df = ((High - Close)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.std(),columns = ['vol_w_upshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_upshadow_stable(High,Close,periodname,perioddays): avg = vol_w_upshadow_avg(High,Close,periodname,perioddays) std = vol_w_upshadow_std(High,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_w_upshadow_avg_'+periodname]/std['vol_w_upshadow_std_'+periodname],columns = ['vol_w_upshadow_stable_'+periodname]) return df def liq_turn_avg(tovr_r,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] todaydate = tovr_r_df.index[-1] df = pd.DataFrame(tovr_r_df.mean(),columns = ['liq_turn_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_turn_std(tovr_r,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] todaydate = tovr_r_df.index[-1] df = pd.DataFrame(tovr_r_df.std(),columns = ['liq_turn_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_vstd(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df = ret.iloc[-perioddays:] df = pd.DataFrame(tovr_r_df.mean()/ret_df.std(),columns = ['liq_vstd_'+periodname]) todaydate = tovr_r_df.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_avg(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df_abs = ret.iloc[-perioddays:].abs() amihud = ret_df_abs/tovr_r_df df = pd.DataFrame(amihud.mean(),columns = ['liq_amihud_avg_'+periodname]) todaydate = amihud.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_std(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df_abs = ret.iloc[-perioddays:].abs() amihud = ret_df_abs/tovr_r_df df = pd.DataFrame(amihud.std(),columns = ['liq_amihud_std_'+periodname]) todaydate = amihud.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_stable(tovr_r,ret,periodname,perioddays): avg = liq_amihud_avg(tovr_r,ret,periodname,perioddays) std = liq_amihud_std(tovr_r,ret,periodname,perioddays) v = avg['liq_amihud_avg_'+periodname]/std['liq_amihud_std_'+periodname] df = pd.DataFrame(v,columns = ['liq_amihud_stable_'+periodname]) return df def liq_shortcut_avg(tovr_r,High,Low,Open,Close,periodname,perioddays): shortcut = 2*(High - Low) - (Open - Close).abs() v = shortcut.iloc[-perioddays:]/tovr_r.iloc[-perioddays:] df = pd.DataFrame(v.mean(),columns = ['liq_shortcut_avg_'+periodname]) todaydate = v.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_shortcut_std(tovr_r,High,Low,Open,Close,periodname,perioddays): shortcut = 2*(High - Low) - (Open - Close).abs() v = shortcut.iloc[-perioddays:]/tovr_r.iloc[-perioddays:] df = pd.DataFrame(v.std(),columns = ['liq_shortcut_std_'+periodname]) todaydate = v.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_shortcut_stable(tovr_r,High,Low,Open,Close,periodname,perioddays): avg = liq_shortcut_avg(tovr_r,High,Low,Open,Close,periodname,perioddays) std = liq_shortcut_std(tovr_r,High,Low,Open,Close,periodname,perioddays) v = avg['liq_shortcut_avg_'+periodname]/std['liq_shortcut_std_'+periodname] df = pd.DataFrame(v,columns = ['liq_shortcut_stable_'+periodname]) return df def PLUS(Close, High, Low): plus = (2*Close - High - Low)/Close.shift(1) todaydate = plus.index[-1] df = pd.DataFrame(plus.iloc[-1]) df.columns = ['PLUS'] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_std_w_plus(Close, High, Low, tovr_r,periodname,perioddays): plus = PLUS(Close, High, Low) liq_std = liq_turn_std(tovr_r,periodname,perioddays) plus['PLUS'] = plus['PLUS'].groupby(level = 'date', group_keys=False).apply(lambda x: x-min(0,x.min())) swp = liq_std['liq_turn_std_'+periodname]*plus['PLUS'] df = pd.DataFrame(swp,columns = ['liq_std_w_plus_'+periodname]) return df def tvr_std(tovr_r,periodname,perioddays): df = tovr_r.iloc[-perioddays:] todaydate = tovr_r.index[-1] fc = pd.DataFrame(df.std()) fc.columns = ['tvr_std_'+periodname] fc['date'] = todaydate fc = fc.reset_index().set_index(['date','symbol']) return fc.sort_index() def HL_Sprd(close,high,low,perioddays): todaydate = close.index[-1] sprd = (high/low - 1).iloc[-perioddays:] close_ = close.iloc[-perioddays:] phigh = close_.apply(lambda x: x>x.quantile(0.75)).astype(int).replace(0,np.nan) plow = close_.apply(lambda x: x<x.quantile(0.25)).astype(int).replace(0,np.nan) vhigh = pd.DataFrame((sprd*phigh).mean()) vlow = pd.DataFrame((sprd*plow).mean()) vlow['date'],vhigh['date'] = todaydate,todaydate vhigh = vhigh.set_index('date',append=True).swaplevel() vlow = vlow.set_index('date',append=True).swaplevel() hlsprd = vhigh-vlow hlsprd.columns = ['HL_Sprd'] return hlsprd.dropna() def corr_price_turn(timerange,pricebyday,periodname): price = pricebyday.loc[timerange] fc = price[['close','turnover_ratio']].groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['close'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_price_turn_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def corr_ret_turn_post(timerange,pricebyday,periodname): pricedf = pricebyday.loc[timerange] pricedf['turnover_ratio'] = pricedf['turnover_ratio'].unstack().sort_index().shift(1).stack() # post pricedf['ret'] = pricedf['close'].unstack().sort_index().pct_change().stack() fc = pricedf[['ret','turnover_ratio']].groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['ret'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_ret_turn_post_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def corr_ret_turnd(timerange,pricebyday,periodname): pricedf = pricebyday.loc[timerange] pricedf['turnover_ratio_pct'] = pricedf['turnover_ratio'].unstack().sort_index().pct_change().stack() pricedf['ret'] = pricedf['close'].unstack().sort_index().pct_change().stack() fc = pricedf[['ret','turnover_ratio_pct']].dropna().groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['ret'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_ret_turnd_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def mts(sta_del_extrm,minbar,todaydate): mts = sta_del_extrm[['single_trade_amt']] mts['total_turnover'] = minbar['total_turnover'] mts = mts.groupby(level = 'symbol').corr()[::2]['total_turnover'].droplevel(1) mts= pd.DataFrame(mts) mts.columns = ['mts'] mts['date'] = todaydate mts = mts.reset_index().set_index(['date','symbol']) return mts def mte(sta_del_extrm,minbar,todaydate): mte = sta_del_extrm[['single_trade_amt']] mte['close'] = minbar['close'] mte = mte.groupby(level = 'symbol').corr()[::2]['close'].droplevel(1) mte= pd.DataFrame(mte) mte.columns = ['mte'] mte['date'] = todaydate mte = mte.reset_index().set_index(['date','symbol']) return mte def qua(sta_del_extrm,todaydate): qua = sta_del_extrm.groupby(level = 'symbol').\ apply(lambda x: (x['single_trade_amt'].quantile(0.1)-\ x['single_trade_amt'].min())/(x['single_trade_amt'].max()-x['single_trade_amt'].min())) qua = pd.DataFrame(qua,columns = ['qua']) qua['date'] = todaydate qua = qua.reset_index().set_index(['date','symbol']) qua.index.name = ('date','symbol') return qua def skew(sta_50pct,todaydate):# 偏度因子skew skew = sta_50pct.groupby(level = 'symbol').\ apply(lambda x: (((x['single_trade_amt']-x['single_trade_amt'].mean())/x['single_trade_amt'].std())**3).mean()) skew = pd.DataFrame(skew,columns = ['skew']) skew['date'] = todaydate skew = skew.reset_index().set_index(['date','symbol']) skew.index.name = ('date','symbol') return skew def s_reverse(sing_trade_amt,minbar,todaydate):# 强反转因子 minute_r = sing_trade_amt.copy() minute_r['minute_r'] = minbar['close']/minbar['open'] - 1 minute_r = minute_r.set_index('trading_date',append = True) s_reverse = minute_r.groupby(level = 0).\ apply(lambda x: x[x.single_trade_amt > x.single_trade_amt.quantile(0.8)].minute_r.sum()) s_reverse = pd.DataFrame(s_reverse,columns = ['s_reverse']) s_reverse['date'] = todaydate s_reverse = s_reverse.reset_index().set_index(['date','symbol']) s_reverse.index.name = ('date','symbol') return s_reverse def daily_sta_90pct(sta_del_extrm):# 日单笔成交额90分位值 daily_sta = sta_del_extrm.set_index('trading_date',append = True).rename_axis(index = {'trading_date':'date'}) daily_sta_90pct = daily_sta.droplevel('datetime').groupby(level = 'symbol').apply(lambda x: x.groupby(level = 1).quantile(0.9)).reset_index().set_index(['date','symbol']) daily_sta_90pct.columns = ['daily_sta_90pct'] return daily_sta_90pct def ideal_reverse(daily_sta_cal,Close): daily_sta_cal['day_return'] = Close.pct_change().stack() by_stock = list(daily_sta_cal.groupby(level = 1)) def apply_rolling_cal(rollingdata): if len(rollingdata.index)<20: return else: temp = rollingdata.sort_values('daily_sta_90pct') returndf = rollingdata.iloc[-1:].copy() returndf['ideal_reverse'] = temp.iloc[:10].day_return.sum() - temp.iloc[10:].day_return.sum() return returndf['ideal_reverse'] ideal_reverse = list(map(lambda x:apply_rolling_cal(x[1]),by_stock)) ideal_reverse = pd.concat(ideal_reverse) ideal_reverse = pd.DataFrame(ideal_reverse) ideal_reverse.columns = ['ideal_reverse'] return ideal_reverse
Alpha-Planet
/Alpha_Planet-0.0.2-py3-none-any.whl/Alpha_Rabbit/Factor_Def_and_Get_Method.py
Factor_Def_and_Get_Method.py
import os import pandas as pd import numpy as np import statsmodels.api as sm from tqdm import * class single_signal_test(object): def __init__(self) -> None: pass def cal_turnover(self,df,ndays): # holdings: # pd.Series # multiindex: timestamp,code # 值都是1 holdings = df.copy() holdings = holdings.unstack().dropna(how ='all',axis = 1) holdings = holdings.apply(lambda x: x/x.sum(),axis = 1) holdings = holdings.fillna(0) return (holdings.diff(ndays).abs().sum(axis = 1)/2) def cal_holdingnums(self,df): # holdings: # pd.Series # multiindex: timestamp,code # 值都是1 holdings = df.copy() holdings = holdings.groupby(level = 0).sum() return holdings def one_factor_grouper(self,df,factorname,quantiles,qcut): # 分组 # concatdf:pd.DataFrame # factorname: str # multiindex: timestamp,code # columns: nday_return, factorname1, factorname2... concatdf = df[[factorname]].copy().round(6)# 设置保留小数! concatdf[factorname+'_rank'] = concatdf[factorname].groupby(level = 'date', group_keys = False).rank() if qcut: concatdf[factorname+'_quantile'] =concatdf[factorname+'_rank'].dropna().groupby(level = 'date', group_keys = False).apply(lambda x: pd.qcut(x,quantiles,labels=list(range(1,quantiles+1)))).astype(int) else: concatdf[factorname+'_quantile'] =concatdf[factorname+'_rank'].dropna().groupby(level = 'date', group_keys = False).apply(lambda x: pd.cut(x,quantiles,labels=list(range(1,quantiles+1)))).astype(int) return concatdf def one_factor_return(self,df,factorname,ndays,return_col,w_method,demean = False): # 计算分组收益 if w_method =='average': qreturn = df.groupby(level = 'date', group_keys = True).apply(lambda x: x.groupby(factorname+'_quantile')[[return_col]].mean()/ndays).unstack() qreturn.columns = [i[1] for i in list(qreturn)] if w_method == 'factor_weighted': tmpdf = df.copy() tmpdf['rwf'] = tmpdf[return_col]*tmpdf[factorname] tmpdf.dropna(subset = ['rwf'],inplace = True) qreturn = tmpdf.groupby(level = 'date', group_keys = True).\ apply(lambda x: x.groupby(factorname+'_quantile').\ apply(lambda x: x['rwf'].sum()/x[factorname].sum() if x[factorname].sum()>0 else 0)/ndays) # qreturn = tmpdf.groupby(level = 'date', group_keys = True).\ # apply(lambda x: x.groupby(factorname+'_quantile').\ # apply(lambda x: (x[return_col]*x[factorname]).sum()/x[factorname].sum())/ndays) if w_method =='cap_weighted': qreturn = df.groupby(level = 'date', group_keys = True).\ apply(lambda x: x.groupby(factorname+'_quantile').\ apply(lambda x: (x[return_col]*x['cap']).sum()/x['cap'].sum())/ndays) if len(qreturn.index.names)==1: pass else: qreturn= qreturn.unstack().apply(lambda x: x.fillna(x.mean()),axis = 1) if demean: qreturn = qreturn.apply(lambda x: x-x.mean(),axis = 1) return qreturn def one_factor_icir(self,df,factorname,return_col): from scipy import stats ic = df.groupby(level = 'date').apply(lambda x: x[[return_col,factorname]].corr('spearman')) ic_org = ic[ic.index.get_level_values(1) ==return_col][factorname].dropna() ictable = ic_org.describe()[['count','mean','std','min','max']].copy() ictable['risk_adj'] = ic_org.mean()/ic_org.std() ictable['skew'] = ic_org.skew() ictable['kurtosis'] = ic_org.kurtosis() if ictable['mean'] <0: ictable['p-value'] = stats.ttest_1samp(ic_org,0,alternative='less').pvalue else: ictable['p-value'] = stats.ttest_1samp(ic_org,0,alternative='greater').pvalue return ictable def one_factor_ret_sharp(self,qreturn,ret_freq): return qreturn.mean()/qreturn.std()*np.sqrt(252/ret_freq) def factor_prepare(self,allfactors,fc,quantiles,qcut): test_fc = allfactors[[fc]].copy().rename_axis(['date','symbol']) res_df = self.one_factor_grouper(test_fc,fc,quantiles,qcut)# 序数标准化 return res_df def factor_ret_test_sheet(self, weight_method, index_price, #'''基准日期是timestamp''' fcname, res_df, Price, days, savedir, demean = False): from alphalens import utils plottools = plot_tools() mate_al = mate_alphalens() tov_df = res_df.groupby(by = fcname+'_quantile').apply(lambda x: self.cal_turnover(x[fcname+'_quantile']/x[fcname+'_quantile'],days)) if len(tov_df.index.names)==1: to = tov_df.mean(axis =1) else: to = tov_df.unstack().mean(axis = 1) clean_factor,price = mate_al.index_mate(res_df.dropna(),Price) fwr = utils.compute_forward_returns(price.stack(),price) clean_factor[str(days)+'D'] = fwr[str(days)+'D'] clean_factor = clean_factor.reset_index() clean_factor['date'] = clean_factor['date'].astype(str) clean_factor = clean_factor.set_index(['date','asset']).dropna() if index_price is not None: clean_factor = mate_al.trans_ex_return(clean_factor,index_price,ret_col=[str(days)+'D']) else: clean_factor[str(days)+'D'] = clean_factor.groupby(level = 'date',group_keys = False).apply(lambda x: x[str(days)+'D']-x[str(days)+'D'].mean()) qreturn = self.one_factor_return(clean_factor,fcname,days,str(days)+'D',w_method = weight_method,demean=demean) # ic ic_table = self.one_factor_icir(clean_factor,fcname,str(days)+'D') indicators = self.judge_material(qreturn,ic_table,days) plottools.factor_plt(qreturn,to,indicators,fcname,days,savedir) return qreturn,clean_factor,indicators def judge_material(self,qreturn,ic_table,days): from scipy import stats indicators = ic_table.copy() maxquantile = max(qreturn.columns) lsret = qreturn[maxquantile] - qreturn[1] groupmean = qreturn.mean(axis = 0) groupmean_diff = groupmean.diff().dropna() top_half = groupmean_diff.iloc[-5:] top_sharp = qreturn[maxquantile].mean()/qreturn[maxquantile].std()*pow(252/days,1/2) t,p_lsret =stats.ttest_1samp(lsret,0,alternative='greater') t,p_groupmean =stats.ttest_1samp(groupmean_diff,0,alternative='greater') t,p_tophalfmean = stats.ttest_1samp(top_half,0,alternative='greater') indicators['TopQtl_SR'] = top_sharp indicators['LSRet_pvalue'] = p_lsret indicators['MeanRetDiff_pvalue'] = p_groupmean indicators['TophalfMeanRetDiff_pvalue'] = p_tophalfmean return indicators def efficient_judge(self,indicators): from scipy import stats # 因子判别 ''' 检验: 对两个都通过的是有用的因子 ''' if indicators['p-value']<= 0.05 and indicators['TopQtl_SR']>=1: if indicators['TophalfMeanRetDiff_pvalue']<=0.3 and indicators['LSRet_pvalue']<=0.12: # print(fc+'有用;头部{}组平均收益一阶差分p值{},多空收益p值{},ic_pvalue{},top组超额夏普{}'.format(int(maxquantile/2),p_top_halfmean,p_lsret)) return 1 # 且两个乘起来能跟原来的匹配;且另一个不能太差 # elif indicators['TophalfMeanRetDiff_pvalue']*indicators['LSRet_pvalue']<0.0025 and (indicators['TophalfMeanRetDiff_pvalue']/0.05 <= 0.1 or indicators['LSRet_pvalue']/0.05 <= 0.1) \ # and min(indicators['MeanRetDiff_pvalue'],indicators['TophalfMeanRetDiff_pvalue'])<=0.05 and indicators['TophalfMeanRetDiff_pvalue']<0.3: # print(fc+'勉强有用;头部{}组平均收益一阶差分p值{},整体平均收益一阶差分p值{},多空收益p值{}'.format(int(maxquantile/2),p_top_halfmean,p_groupmean,p_lsret)) else: return 2 return 0 def eff_classification(self,fc,indicator,judgefunc,strict_eff,unstrict_eff): ''' 输入: 因子矩阵 输出: 1、因子测试结果 2、噪声因子 ''' # 因子判别 if judgefunc(indicator) == 1: strict_eff.append(fc) unstrict_eff.append(fc) elif judgefunc(indicator) == 2: unstrict_eff.append(fc) return strict_eff,unstrict_eff class multi_factor_test(object): def __init__(self) -> None: self.sst = single_signal_test() pass def factors_abnormal_ret(self,factordf,return_col,factorlist,days,index_price = None,pricedf = None,longshort_return = False): df = factordf.copy() if pricedf is not None: # 默认明收除今收 df[str(days)+'D'] = pricedf.pct_change(days,fill_method = None).shift(-days).stack() if index_price is not None: ml = mate_alphalens() df,pricedf = ml.index_mate(df,pricedf) df = ml.trans_ex_return(df,index_price,str(days)+'D') df = df.rename(columns = {str(days)+'D':return_col+str(days)+'D'}).dropna(subset = return_col+str(days)+'D') if longshort_return == False: ret_k = df.groupby(level = 'date',group_keys = False).apply(lambda x: sm.formula.ols(return_col+str(days)+'D'+'~'+'+'.join(factorlist),data = x).fit().params) del ret_k['Intercept'] else : lscol = list(factordf) quantiles = int(df[return_col+str(days)+'D'].groupby(level = 'date').count().mean()//100) LSretList = [] for col in tqdm(lscol): tmpdf = df.copy() tmpdf[col+'_quantile'] = self.sst.one_factor_grouper(df,col,quantiles,False)[col+'_quantile'] qreturn = self.sst.one_factor_return(tmpdf,col,days,'ret{}D'.format(days),'factor_weighted',False) LSretList.append(qreturn[max(list(qreturn))] - qreturn[1]) ret_k = pd.concat(LSretList,axis = 1) ret_k.columns = lscol return ret_k def multif_barra_norm(self,allfactors,Bft): df = allfactors.copy() print('barra中性化....') for fcname in tqdm(list(df)): test_fc = df[[fcname]].copy().rename_axis(['date','symbol']) residual_ols,params_ols = Bft.barra_compose(test_fc) df[fcname] = residual_ols # 中性化之后的因子替换原始因子 return df def multif_industry_norm(self,allfactors,industry_info): df = allfactors.copy() df['first_industry_name'] = industry_info df = df.dropna(subset = 'first_industry_name').groupby(level = 'date',group_keys =False).apply(lambda x: x.groupby(by = 'first_industry_name',group_keys =False).apply(lambda x:x-x.mean(numeric_only=True))) del df['first_industry_name'] return df def multif_corr_ana(self,df,factornamelist): # 多因子相关性分析 # df:pd.DataFrame # factornamelist: strlist # multiindex: timestamp,code # columns: nday_return, factorname1, factorname2... df_ana = df[factornamelist].groupby(level = 'date').corr() corr_mean = df_ana.groupby(level = 1).mean() # corr之后的矩阵第二层没名字,所以用1来表示;第二层是因子名 corr_ir = df_ana.groupby(level = 1).mean()/df_ana.groupby(level = 1).std() return corr_mean.loc[list(corr_mean)],corr_ir.loc[list(corr_ir)] def multif_pca_ana(self,originalFactor,domain_factor_nums): # 多因子pca分析 # originalFactor: pd.DataFrame # multiindex: timestamp,code # columns: factorname1, factorname2... from sklearn import preprocessing data = originalFactor.groupby(level = 'date', group_keys = False).apply(lambda x: preprocessing.scale(x)) data = np.vstack(data.values) from sklearn.decomposition import PCA pcaModel = PCA(domain_factor_nums) pcaModel.fit(data) pcaFactors = pcaModel.transform(data) pcaFactors = pd.DataFrame(pcaFactors) pcaFactors.index = originalFactor.index pcaFactors.columns = ['pca_'+str(i) for i in range(domain_factor_nums)] return pcaModel.explained_variance_,pcaModel.explained_variance_ratio_,pcaFactors def batch_factors_test(self,weight_method,allfactors,Price,quantiles,days,qcut,savedir,index_price = None,demean = False): returndict = {} sst = single_signal_test() for fc in tqdm(list(allfactors)): res_df = sst.factor_prepare(allfactors,fc,quantiles,qcut) sst.factor_ret_test_sheet(weight_method,index_price,fc,res_df,Price,days,savedir,demean) returndict[fc] = res_df[[fc]] return returndict def multif_tsstable_test(self,originalData): # originalFactor: pd.DataFrame # multiindex: timestamp,code # columns: factorname1, factorname2... from statsmodels.tsa.stattools import adfuller data = originalData.copy()#.groupby(level = 0).apply(lambda x: (x-x.mean())/x.std())不要再标准化了!! mean_pvalue = data.groupby(level = 'date').apply(lambda x:x.mean()).apply(lambda x: adfuller(x)[1]) std_pvalue = data.groupby(level = 'date').apply(lambda x:x.std()).apply(lambda x: adfuller(x)[1]) skew_pvalue = data.groupby(level = 'date').apply(lambda x:x.skew()).apply(lambda x: adfuller(x)[1]) kurt_pvalue = data.groupby(level = 'date').apply(lambda x:x.kurt()).apply(lambda x: adfuller(x)[1]) yarn_pvalue = pd.concat([mean_pvalue,std_pvalue,skew_pvalue,kurt_pvalue],axis = 1) yarn_pvalue.columns = ['mean','std','skew','kurt'] return yarn_pvalue def del_updown_limit(self,factordf,daybar,text): # 剔除涨跌停 notuplimit = daybar[~(daybar[text] == daybar.limit_up)] notdownlimit = daybar[~(daybar[text] == daybar.limit_down)] factordf = factordf[factordf.index.isin(notuplimit.index)] factordf = factordf[factordf.index.isin(notdownlimit.index)] return factordf def in_some_pool(self,df,pool_components): factordf = df.copy() factordf['inpool']=pool_components.applymap(lambda x:1) factordf['inpool'] = factordf['inpool'].apply(lambda x: 1 if x>0 else 0) testdf = factordf[factordf['inpool']>=1] del testdf['inpool'] return testdf def orthog(self,factor_mat, y, xlist): df = factor_mat.replace([np.inf, -np.inf], np.nan).dropna() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() params = regre.params[~(regre.params.index == 'Intercept')] intercept = regre.params[(regre.params.index == 'Intercept')] residual = df[y] - (df[list(params.index)]*params).sum(axis = 1) - intercept.values residual = pd.DataFrame(residual) residual.columns = [y] return self.mat_normlize(residual),params def mat_orthog(self,factor_mat): temp1 = factor_mat.replace([np.inf, -np.inf], np.nan).dropna() for i in list(temp1): no = list(temp1).index(i) if no==0: temp1[i] = self.mat_normlize(temp1[i]) continue fclist = list(filter(lambda x: x!=i,list(temp1)[:no])) temp1[i] = self.orthog(temp1,i,fclist)[0] return temp1 def ts_mat_orthog(self,factor_mat): return factor_mat.groupby(level = 'date',group_keys = False).apply(self.mat_orthog) def mat_normlize(self,factor_mat): df = factor_mat.rename_axis(['date','symbol']).replace([np.inf, -np.inf], np.nan) def norm(x): return (x - x.min())/(x.max()-x.min()) return df.groupby(level = 'date',group_keys = False).apply(norm) def mat_ranknormlize(self,factor_mat): df = factor_mat.rename_axis(['date','symbol']).replace([np.inf, -np.inf], np.nan) def norm(x): x_rank = x.rank() return (x_rank - x_rank.min())/(x_rank.max()-x_rank.min()) return df.groupby(level = 'date',group_keys = False).apply(norm) def multindex_shift(self,fcdf): df = fcdf.reset_index() datelist = list(df['date'].drop_duplicates()) datedict = dict(zip(datelist[:-1],datelist[1:])) df['date'] =df['date'].apply(lambda x: datedict[x] if x in datedict.keys() else np.nan) return df.dropna(subset = 'date').set_index(['date','symbol']) class Barra_factor_ana(object): ''' 1. growth要求至少504天的数据,部分股票不满足该条件会导致在因子整合到一起的时候被剔除 2. barrafactor必须为双重索引,且第一重索引是日期,第二重索引是标的 ''' def __init__(self,df=None,start_date=None,end_date=None,dir=None,skip_fileload=None) -> None: # 预加载数据 if not skip_fileload: self.price = df dailyreturn = df/df.shift(1)-1 dailyreturn.dropna(how = 'all',inplace=True) self.returndata = dailyreturn self.start_date = start_date self.end_date = end_date import os filelist = os.listdir(dir) self.filedict = {} for f in filelist: if f[-3:]=='csv': self.filedict[f[:-4]] = pd.read_csv(dir+f,index_col = [0,1]) pass def rise_barra_factors(self): print('rise size') self.size = np.log(self.filedict['market_cap']).dropna() def OLSparams(y,x): print('rise beta') X_ = x.droplevel('order_book_id') df = y.copy() df['market_r'] = X_['r'] df.dropna(subset = 'market_r',inplace = True) dflist = list(df.rolling(252))[252:] paramslist = [] for olsdf in dflist: mod = sm.OLS(olsdf,sm.add_constant(olsdf['market_r'])) re = mod.fit() params = re.params.T params.index = olsdf.columns params = params[params.index!='market_r'] params['date'] = olsdf.index[-1] params = params.rename(columns = {'market_r':'beta'}) paramslist.append(params) olsparams = pd.concat(paramslist).set_index('date',append=True).unstack().T constdf = olsparams.loc['const'].ewm(halflife = 63,ignore_na = True,adjust = False).mean().stack() betadf = olsparams.loc['beta'].ewm(halflife = 63,ignore_na = True,adjust = False).mean().stack() # cal residual mkt_df = pd.concat([X_['r']]*len(list(betadf.unstack())),axis = 1) mkt_df.columns = list(betadf.unstack()) residual = y - betadf.unstack()*mkt_df - constdf.unstack() # 这里的residual已经是经过ewm的beta和const计算得到的就不用再ewm了 return {'beta':betadf,'const':constdf,'residual':residual} def MOMTM(y): df = np.log(1+y) momtm = df.ewm(halflife=126,ignore_na = True,adjust = False).mean()#.iloc[-1:] return momtm def CMRA(y,T): date = y.index[-1] dflist= [] for i in range(1,T+1): pct_n_month = pd.DataFrame((y/y.shift(21*i)-1).iloc[-1])/21 dflist.append(pct_n_month) df = pd.concat(dflist,axis =1) zmax = df.max(axis =1) zmin = df.min(axis = 1) cmra = pd.DataFrame(np.log(1+zmax)-np.log(1+zmin),columns = [date]).T return cmra def orthog(barrafactor,y,xlist): df = barrafactor.copy() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() for p in xlist: df[p]*= regre.params[p] df[y+'_orth'] = df[y] - df[xlist].sum(axis = 1)-regre.params['Intercept'] return df[[y+'_orth']] # beta self.olsparams = OLSparams(self.returndata,self.filedict['market_r']) self.beta = pd.DataFrame(self.olsparams['beta']).dropna() self.beta.columns = ['beta'] # momentum print('rise momentum') # retroll504 = list(self.returndata.rolling(504))[504:] # self.momtm = pd.concat(list(map(lambda x: MOMTM(x),retroll504))).shift(21).dropna(how = 'all') self.momtm = MOMTM(self.returndata).shift(21).dropna(how = 'all') self.momtm = pd.DataFrame(self.momtm.stack(),columns=['momentum']) # residual volatility print('rise residual volatility') self.hist_volatility = self.returndata.ewm(halflife = 42,ignore_na = True,adjust = False).std().dropna(how = 'all') CMRAlist = list(self.price.rolling(252))[252:] self.CMRA = pd.concat(list(map(lambda x: CMRA(x,12),CMRAlist))) self.Hsigma = self.olsparams['residual'].rolling(252,min_periods = 1).std() self.residual_volatility = pd.DataFrame((self.hist_volatility*0.74+self.CMRA*0.16+self.Hsigma*0.1).stack()).dropna() self.residual_volatility.columns = ['residual_volatility'] # non-linear size print('rise non-linear size') self.nlsize = (self.size**3).dropna() self.nlsize.columns = ['nlsize'] # Bp print('rise Bp') self.Bp = self.filedict['Bp'].dropna() # liquidity print('rise Liquidity') self.tvrdf = self.filedict['turnover'] self.liq_1m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(22,min_periods =1).mean()) self.liq_3m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(74,min_periods =1).mean()) self.liq_12m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(252,min_periods =1).mean()) self.liq = (0.35*self.liq_1m + 0.35*self.liq_3m + 0.3*self.liq_12m).dropna() print('rise Earning Yield') self.earning_yield = pd.concat([self.filedict['Ep'],self.filedict['Sp']],axis = 1) self.earning_yield['earning_yield'] = self.earning_yield['ep_ratio_ttm']*0.66+self.earning_yield['sp_ratio_ttm']*0.34 self.earning_yield = self.earning_yield[['earning_yield']].dropna() # growth print('rise growth') NP = self.filedict['NPGO'].unstack() NP = (NP-NP.shift(504))/NP.shift(504).abs().replace(0,np.nan) NP = NP.stack() RVN = self.filedict['RGO'].unstack() RVN = (RVN - RVN.shift(504))/RVN.shift(504).abs().replace(0,np.nan) RVN = RVN.stack() self.growth = pd.DataFrame(NP['net_profit_parent_company_ttm_0']*0.34+RVN['revenue_ttm_0']*0.66) self.growth.columns = ['growth'] self.growth.dropna(inplace=True) # leverage print('rise leverage') self.leverage = self.filedict['MLEV']['du_equity_multiplier_ttm']*0.38+self.filedict['DTOA']['debt_to_asset_ratio_ttm']*0.35+self.filedict['BLEV']['book_leverage_ttm']*0.27 self.leverage = pd.DataFrame(self.leverage) self.leverage.columns = ['leverage'] self.leverage.dropna(inplace=True) # concat self.barrafactor = pd.concat([ self.size, self.beta, self.momtm, self.residual_volatility, self.nlsize, self.Bp, self.liq, self.earning_yield, self.growth, self.leverage],axis = 1).sort_index(level = 0) '''正则化''' # 未经正则化的原始因子已存为类变量,可直接调用 print('Orthogonalizing....') y = ['residual_volatility','nlsize','turnover'] xlist = ['circulation_A','beta'] # 不dropna会报错 self.barrafactor[y[0]] = self.barrafactor[[y[0]]+xlist].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[0],xlist)) self.barrafactor[y[1]] = self.barrafactor[[y[1]]+xlist[:1]].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[1],xlist[:1])) self.barrafactor[y[2]] = self.barrafactor[[y[2]]+xlist[:1]].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[2],xlist[:1])) # 标准化 def return_barra_factor(self,rank_normalize:bool): mft = multi_factor_test() if rank_normalize: return mft.mat_ranknormlize(self.barrafactor) else: return mft.mat_normlize(self.barrafactor) def barra_compose(self,factordata): # 因子是rank数据 decompose = pd.concat([self.barrafactor,factordata],axis = 1).dropna().rename_axis(['date','symbol']) def orthog(barrafactor,y,xlist): df = barrafactor.copy() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() params = regre.params[~(regre.params.index == 'Intercept')] intercept = regre.params[(regre.params.index == 'Intercept')] residual = df[y] - (df[list(params.index)]*params).sum(axis = 1) - intercept.values return residual,params # 这种方法只算一天的会错 # residual_ols =decompose.groupby(level = 0).apply(lambda x: orthog(x,list(decompose)[-1],list(decompose)[:-1])[0]).droplevel(0) # params_ols =decompose.groupby(level = 0).apply(lambda x: orthog(x,list(decompose)[-1],list(decompose)[:-1])[1]) # return residual_ols,params_ols decomposebyday = list(decompose.groupby(level = 'date')) residual_olslist = [] params_olslist = [] for df in decomposebyday: x = df[1] residual_ols,params_ols = orthog(x,list(decompose)[-1],list(decompose)[:-1]) residual_olslist.append(residual_ols) params_olslist.append(pd.DataFrame(params_ols,columns = [df[0]]).T) return pd.concat(residual_olslist),pd.concat(params_olslist) def barra_style_pool(self,style,cutnum): bystyle = self.barrafactor[[style]].copy() bystyle[style+'_group'] = bystyle[style].dropna().groupby(level = 0,group_keys=False).apply(lambda x: pd.cut(x,cutnum,labels=list(range(1,cutnum+1)))) return bystyle def factor_performance_bystyle(self,factordata,factorname,style,cutnum): # 即便因子在风格上没有偏斜,仍然会有不同风格上因子表现不同的情况 bystyle = pd.concat([factordata,self.barrafactor[[style]]],axis = 1) bystyle[style+'_group'] = bystyle[style].dropna().groupby(level = 0,group_keys=False).apply(lambda x: pd.cut(x,cutnum,labels=list(range(1,cutnum+1)))) ic_daily = bystyle.groupby(style+'_group',group_keys=False).apply(lambda x: x[[factorname,'nday_return']].groupby(level = 0).apply(lambda x: x.corr('spearman').iloc[0,1])).T return ic_daily class AutoMatic(object): sst = single_signal_test() mft = multi_factor_test() def __init__(self,Bft,base_index,Price,quantiles,days,qcut,demean,weighted_method) -> None: '''base_index基准价格时间索引是timestamp''' self.Bft = Bft self.Price = Price.copy() self.base_index = base_index self.quantiles = quantiles self.days = days self.qcut = qcut self.demean = demean self.weighted_method = weighted_method pass def AutoMatic_DirCheck(self,path): if not os.path.exists(path): os.makedirs(path) def AutoMatic_Direc_Adjust(self,factors,dir_): neu_factors = factors.copy() direction_dict = {} strict_eff = [] unstrict_eff = [] self.AutoMatic_DirCheck(dir_+'direction/') self.AutoMatic_DirCheck(dir_+'direction/redirection/') for fc in list(neu_factors): res_df = self.sst.factor_prepare(neu_factors,fc,self.quantiles,self.qcut) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,tmp,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,fc,res_df,self.Price,self.days,dir_+'/direction/',self.demean) if qreturn[list(qreturn)[0]].sum()<= qreturn[self.quantiles].sum(): print(fc+'是正向因子') direction_dict[fc] = 1 if qreturn[list(qreturn)[0]].sum() > qreturn[self.quantiles].sum(): print(fc+'是负向因子') neu_factors = neu_factors.copy() neu_factors[fc]=self.mft.mat_normlize(-1*neu_factors[fc]) direction_dict[fc] = -1 res_df = self.sst.factor_prepare(neu_factors,fc,self.quantiles,self.qcut) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,tmp,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,fc,res_df,self.Price,self.days,dir_+'direction/redirection/',self.demean) # 有效性判别 strict_eff,unstrict_eff = self.sst.eff_classification(fc,indicator,self.sst.efficient_judge,strict_eff,unstrict_eff) return direction_dict,strict_eff,unstrict_eff def AutoMatic_Factor_Merge_Ret(self,neu_factors,base_factors,mergename,dir_): base_f = pd.DataFrame(neu_factors[base_factors].sum(axis = 1),columns = [mergename]) res_df = self.sst.factor_prepare(base_f,mergename,self.quantiles,self.qcut) self.AutoMatic_DirCheck(dir_) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,clean_factor,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,mergename,res_df,self.Price,self.days,dir_,self.demean) return qreturn,clean_factor def AutoMatic_Compare_Indicator(self,qreturn,reverse): if reverse: maxq = min(list(qreturn)) base_perf_sr = -1*qreturn[maxq].mean()/qreturn[maxq].std() return base_perf_sr maxq = max(list(qreturn)) base_perf_sr = qreturn[maxq].mean()/qreturn[maxq].std() return base_perf_sr def threads_pool_run(self,params_batch): InSampleFactors,i,dir_ = params_batch[0] , params_batch[1] , params_batch[2] import matplotlib matplotlib.use('agg') savedir = dir_+'{}/'.format(i) direction_dict,strict_eff,unstrict_eff =self.AutoMatic_Direc_Adjust(InSampleFactors,savedir) # 方向调整 return (direction_dict,strict_eff,unstrict_eff) def AutoMatic_Stochastic_Optimizer(self,test_factor,threads_num,dir_): dateset = list(set(test_factor.index.get_level_values('date'))) import multiprocessing from multiprocessing import Pool InSplList = [] for i in range(threads_num): randomdate = sorted(np.random.choice(dateset,int(len(dateset)/5),replace = False)) InSplList.append((test_factor.loc[randomdate],i,dir_)) pool = Pool(min(multiprocessing.cpu_count(),threads_num)) return pool.map(self.threads_pool_run,InSplList) def AutoMatic_Perf_InPool(self,neu_factors,base_factors,reverse,save_dir): qreturn,tmp =self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors,'basef',save_dir+'temp/') base_perf_sr= self.AutoMatic_Compare_Indicator(qreturn,reverse) others = list(filter(lambda x: x not in base_factors,list(neu_factors))) for sf in others:# 挨个加表现 print(base_factors) qreturn,tmp =self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors+[sf],sf+'_basef',save_dir+'temp/') perf_sr = self.AutoMatic_Compare_Indicator(qreturn,reverse) print('是否超越此前表现:{};本次超额夏普:{},此前最佳超额夏普:{}'.format(perf_sr > base_perf_sr,perf_sr,base_perf_sr)) if perf_sr > base_perf_sr: base_factors.append(sf) if perf_sr > base_perf_sr: base_perf_sr = perf_sr qreturn,clean_factor = self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors,'basef',save_dir+'final/') return qreturn,clean_factor class plot_tools(object): def __init__(self) -> None: import matplotlib self.plotstatus = matplotlib.get_backend() pass def trio_plt(self,qmean,qcum,quantiles): # 画收益图 import matplotlib.pyplot as plt qmean[list(range(1,quantiles+1))].plot(kind= 'bar',title = 'mean') plt.show() qcum[list(range(1,quantiles+1))].plot(title = 'cumreturn') plt.legend(loc = 'upper center',bbox_to_anchor=(1.1, 1.02)) plt.show() (qcum[10]-qcum[1]).plot(title = 'long-short') plt.show() def fbplot(self,frontplot,bgplot,c,fname,bname): # frontplot,bgplot: # pd.Series # multiindex: timestamp,code import matplotlib.pyplot as plt import matplotlib.ticker as ticker tickspace = len(frontplot)//12 fig = plt.figure() a1=fig.add_axes([0,0,1,1]) a1.bar(frontplot.index,bgplot.loc[frontplot.index],color = c) a1.tick_params(axis='x', labelrotation= 30) a1.xaxis.set_major_locator(ticker.MultipleLocator(tickspace)) a2 = a1.twinx() a2.plot(frontplot.index,frontplot,color = 'red') a2.tick_params(axis='x', labelrotation= 30) a2.xaxis.set_major_locator(ticker.MultipleLocator(tickspace)) fig.legend(frameon = False,labels = [bname+'(left)',fname+'(right)'],loc = 'upper center') plt.show() def factor_plt(self,qreturn,to,ictable,fc,ndays,savedir=''): from alphalens import utils from pandas.plotting import table numtable = pd.concat([qreturn.mean(),qreturn.sum(),qreturn.mean()/qreturn.std()],axis = 1).rename(columns= {0:'avg',1:'sum',2:'risk-adj'}).T top_quantile = max(list(qreturn)) totalSeed = qreturn.index xticks = list(range(0, len(totalSeed), 60)) xlabels = [str(totalSeed[x]) for x in xticks] import matplotlib.pyplot as plt plt.figure(dpi=300, figsize=(24, 12)) ax = plt.subplot(321,frame_on=False,title = fc+'_retsheet_bygroup') ax.xaxis.set_visible(False) # hide the x axis ax.yaxis.set_visible(False) # hide the y axis table(ax, numtable.round(5), loc='center') # 将df换成需要保存的dataframe即可 ax = plt.subplot(365,frame_on=False,title = str(ndays)+'days_information') ax.xaxis.set_visible(False) # hide the x axis ax.yaxis.set_visible(False) # hide the y axis table(ax, ictable.round(5), loc='center') # 将df换成需要保存的dataframe即可 plt.subplot(325,title = fc+'_cumret_bygroup') plt.plot(qreturn.index,qreturn.cumsum(),label = list(qreturn)) plt.legend() plt.xticks(rotation=90) plt.xticks(ticks=xticks, labels=xlabels) plt.subplot(324,title = fc+'_turnover_bygroup') plt.bar(to.index,to,color="blue") plt.subplot(323,title = fc+'_avgret_bygroup') plt.bar(qreturn.mean().index,qreturn.mean(),color="y") plt.subplot(326,title = fc+'_lsret_bygroup') plt.plot(qreturn.index,(qreturn[top_quantile]-qreturn[1]).cumsum(),color="g") plt.xticks(rotation=90) plt.xticks(ticks=xticks, labels=xlabels) try: os.remove(savedir+fc+'.jpg') print(fc+'.jpg'+' 旧文件删除') except: print(fc+'.jpg'+' 是新文件') plt.savefig(savedir+fc+'.jpg') if self.plotstatus != 'agg': plt.show() plt.close() # 热力图展示 def ShowHeatMap(self,DataFrame,savedir='',triangle = True): import matplotlib.pyplot as plt import seaborn as sns f, ax = plt.subplots(figsize=(35, 15)) ax.set_title('Wine GRA') # 设置展示一半,如果不需要注释掉mask即可 if triangle: mask = np.zeros_like(DataFrame) mask[np.triu_indices_from(mask)] = True # np.triu_indices 上三角矩阵 with sns.axes_style("white"): sns.heatmap(DataFrame, cmap="YlGnBu", annot=True, mask=mask, ) else : with sns.axes_style("white"): sns.heatmap(DataFrame, cmap="YlGnBu", annot=True, ) plt.savefig(savedir) if self.plotstatus != 'agg': plt.show() def combine_imgs_pdf(self,folder_path, pdf_file_path,idstname): import os from PIL import Image """ 合成文件夹下的所有图片为pdf Args: folder_path (str): 源文件夹 pdf_file_path (str): 输出路径 """ files = os.listdir(folder_path) png_files = [] sources = [] for file in files: if 'png' in file or 'jpg' in file: png_files.append(folder_path + file) png_files.sort() for file in png_files: png_file = Image.open(file) png_file = png_file.convert("RGB") sources.append(png_file) sources[0].save(pdf_file_path+'{}.pdf'.format(idstname), "pdf", save_all=True, append_images=sources[1:],quality = 95) class mate_alphalens(object): def __init__(self) -> None: pass def index_mate(self,factordata,price): fcdf = factordata.reset_index() fcdf['date'] = pd.to_datetime(fcdf['date']) fcdf = fcdf.rename(columns = {'symbol':'asset'}).set_index(['date','asset']) ptemp = price.copy() ptemp.index = pd.to_datetime(ptemp.index) return fcdf,ptemp def trans_ex_return(self,clean_factor,index_price,ret_col): from alphalens import utils index_price['factor'] = 1 base_ret = utils.compute_forward_returns(index_price[['factor']],index_price['close'].unstack()) base_ret = base_ret.droplevel('asset').reindex(clean_factor.index.get_level_values(0)) base_ret['asset'] = clean_factor.index.get_level_values('asset') base_ret = base_ret.set_index(['asset'],append=True) df = clean_factor.copy() df[ret_col]= df[ret_col]-base_ret[ret_col] return df class alert(object): def __init__(self,**file): if file: self.filename = file else: import sys self.filename = sys.argv[0] pass def finish_alert(self): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header # 1. 连接邮箱服务器 con = smtplib.SMTP_SSL('smtp.qq.com', 465) # 2. 登录邮箱 con.login('[email protected]', 'jwtjvrktevlobiag') # 2. 准备数据 # 创建邮件对象 msg = MIMEMultipart() # 设置邮件主题 subject = Header('{}程序运行完毕'.format(self.filename), 'utf-8').encode() msg['Subject'] = subject # 设置邮件发送者 msg['From'] = '[email protected]' # 设置邮件接受者 msg['To'] = '[email protected]' # 添加⽂文字内容 text = MIMEText('{}程序运行完毕'.format(self.filename), 'plain', 'utf-8') msg.attach(text) # 3.发送邮件 con.sendmail('[email protected]', '[email protected]', msg.as_string()) con.quit() def breakdown_alert(self): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header # 1. 连接邮箱服务器 con = smtplib.SMTP_SSL('smtp.qq.com', 465) # 2. 登录邮箱 con.login('[email protected]', 'jwtjvrktevlobiag') # 2. 准备数据 # 创建邮件对象 msg = MIMEMultipart() # 设置邮件主题 subject = Header('{}程序运行失败'.format(self.filename), 'utf-8').encode() msg['Subject'] = subject # 设置邮件发送者 msg['From'] = '[email protected]' # 设置邮件接受者 msg['To'] = '[email protected]' # 添加⽂文字内容 text = MIMEText('{}程序运行失败'.format(self.filename), 'plain', 'utf-8') msg.attach(text) # 3.发送邮件 con.sendmail('[email protected]', '[email protected]', msg.as_string()) con.quit() # sst: # def noise_judge(self,qreturn,fc): # from scipy import stats # from statsmodels.stats.diagnostic import acorr_ljungbox # # 因子判别 # lsret,groupmean,groupmean_diff,top_sharp = self.judge_material(qreturn,fc) # ''' # 检验: # 对两个都没通过的可能是噪声的因子做自相关性检验,因为0假设是有相关性,所以哪怕只有一点自相关性(123123)都可能不会被拒绝,所以被拒绝的基本上可认定为噪声 # ''' # t,p_lsret =stats.ttest_1samp(lsret,0,alternative='greater') # t,p_groupmean = stats.ttest_1samp(groupmean_diff,0,alternative='greater') # if p_groupmean>0.05 and p_lsret>0.05: # print(fc+'可能是噪声;分组平均收益一阶差分p值{},多空收益p值{}'.format(p_groupmean,p_lsret)) # # ls_ljung = acorr_ljungbox(lsret.cumsum(), lags=[1,5,10,20]) # gmdf_ljung = acorr_ljungbox(groupmean, lags=[1,5]) # if gmdf_ljung['lb_pvalue'].min()>=0.05: # print(fc+'是噪声;分组平均收益自相关检验最小p值{}'.format(gmdf_ljung['lb_pvalue'].min())) # return True # else: # print('无法判定'+fc+'是噪声;分组平均收益自相关检验最小p值{}'.format(gmdf_ljung['lb_pvalue'].min())) # return False # def short_judge(self,qreturn,fc): # from scipy import stats # # 因子判别 # lsret,groupmean,groupmean_diff = self.judge_material(qreturn,fc) # ''' # 检验: # 对两个都通过的是有用的因子 # ''' # maxquantile = max(list(lsret)) # top5 = groupmean_diff.iloc[-5:] # bottom5 = groupmean_diff.iloc[:5] # t,p_top5 = stats.ttest_1samp(top5,0,alternative='greater') # t,p_bottom5 = stats.ttest_1samp(bottom5,0,alternative='greater') # if p_top5>0.5 and p_bottom5<0.1 and (abs(groupmean.iloc[-1])<abs(groupmean.iloc[0])): # print(fc+'是空头因子;top5组平均收益一阶差分p值{},bottom5组平均收益一阶差分p值{}'.format(p_top5,p_bottom5)) # return True # return False # mft: # def multif_denoisies(self,noise_factors_list,allfactors,threshold): # ''' # 输入: # 因子矩阵,噪声因子 # 输出: # 去噪后的因子 # ''' # if len(noise_factors_list)==0: # print('无可用于去噪的噪声') # return allfactors # other_factors_df = allfactors[list(filter(lambda x: x not in noise_factors_list,list(allfactors)))] # noise_factors_df = self.ts_mat_orthog(allfactors[noise_factors_list]) # factordf = pd.concat([other_factors_df,noise_factors_df],axis = 1) # # 去噪 # other_factors = list(other_factors_df) # corrdf = self.multif_corr_ana(factordf,list(factordf))[0] # print('相关性详情:') # print(corrdf) # corrdf = corrdf.loc[other_factors,noise_factors_list].abs().max(axis = 1) # print('要被去噪的因子:') # corr_with_noise = list(corrdf[corrdf>=threshold].index) # print(corr_with_noise) # for fc in corr_with_noise: # factordf[fc] = self.orthog(factordf, fc, noise_factors_list)[0] # return factordf[other_factors] # def multif_cal_weight(self,factordf,factorlist,return_col,weight_type): # # factordf: pd.DataFrame # # multiindex: timestamp,code # # columns: factorname1, factorname2...,returndata # # factorlist: strlist # # return_col: column name, str # df = factordf.copy() # ret_k = self.fators_abnormal_ret(df,return_col,factorlist) # ic = df.groupby(level = 'date').apply(lambda x: x.corr(method= 'spearman')[return_col]) # del ic['ret'] # weight = ret_k*ic # direc = ic.mean().apply(lambda x: 1 if x>0 else -1) # if weight_type == 1: # return weight.mean()/weight.std()*direc # elif weight_type == 2: # return weight.mean()*direc # else: # return direc # # if weight_type == '风险平价加权': # # cov = weight[factorlist].cov() # # from scipy.optimize import minimize # # def objective(x): # # w_cov = np.dot(cov,x.T) # # for n in range(len(x)): # # w_cov[n] *= x[n] # # mat = np.array([w_cov]*len(x)) # # scale = 1/sum(abs(mat)) # # return np.sum(abs(scale*(mat-mat.T))) # # initial_w=np.array([0.2]*len(factorlist)) # # cons = [] # # cons.append({'type':'eq','fun':lambda x: sum(x)-1}) # # for i in range(len(initial_w)): # # cons.append({'type':'ineq','fun':lambda x: x[i]}) # # #结果 # # res=minimize(objective,initial_w,method='SLSQP',constraints=cons) # # params = pd.Series(res.x) # # params.index = cov.index # # return params # def weighted_factor(self,factordf,weight): # # factordf: pd.DataFrame # # multiindex: timestamp,code # # columns: factorname1, factorname2... # # weight:pd.Series # wf = (weight*factordf).sum(axis = 1) # return pd.DataFrame(wf,columns = ['weighted_factor'])
Alpha-Planet
/Alpha_Planet-0.0.2-py3-none-any.whl/Alpha_Rabbit/Alpha_Rabbit.py
Alpha_Rabbit.py
from Alpha_Rabbit.Factor_Def_and_Get_Method import * _method = Factor_get_method() def Factor_Calculator(pricebyday,minbar,conn,todaydate,notst,factors_to_cal): ######################################## 日间数据计算因子 #################################### uploadfactordict = {} Close = pricebyday['close'].unstack().sort_index() Open = pricebyday['open'].unstack().sort_index() High = pricebyday['high'].unstack().sort_index() Low = pricebyday['low'].unstack().sort_index() volume = pricebyday[['volume']].pivot_table(index = 'date',columns = 'symbol',values = 'volume').sort_index() total_turnover = pricebyday[['total_turnover']].pivot_table(index = 'date',columns = 'symbol',values = 'total_turnover').sort_index() tovr_r = pricebyday['turnover_ratio'].unstack().sort_index() Close_ret = Close.pct_change() tempClose = Close.iloc[-30:] tempOpen = Open.iloc[-30:] tempHigh = High.iloc[-30:] tempLow = Low.iloc[-30:] anaual_close = Close.iloc[-272:] anaual_High = High.iloc[-272:] if 'mmt_intraday_M' in factors_to_cal or factors_to_cal == 'all': # 1个月日内动量 uploadfactordict['mmt_intraday_M'] = mmt_intraday_M(tempClose,tempOpen) if 'mmt_range_M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅调整动量 uploadfactordict['mmt_range_M'] = mmt_range_M(tempHigh,tempLow,tempClose) if 'mmt_overnight_M' in factors_to_cal or factors_to_cal == 'all': # 隔夜动量 uploadfactordict['mmt_overnight_M'] = mmt_overnight_M(tempOpen,tempClose) if 'mmt_route_M' in factors_to_cal or factors_to_cal == 'all': # 路径调整动量 uploadfactordict['mmt_route_M'] = mmt_route_M(tempClose) if 'mmt_discrete_M' in factors_to_cal or factors_to_cal == 'all': # 信息离散度动量 uploadfactordict['mmt_discrete_M'] = mmt_discrete_M(tempClose) if 'mmt_sec_rank_M' in factors_to_cal or factors_to_cal == 'all': # 截面rank动量 uploadfactordict['mmt_sec_rank_M'] = mmt_sec_rank_M(tempClose) if 'mmt_time_rank_M' in factors_to_cal or factors_to_cal == 'all': # 时序rank_score uploadfactordict['mmt_time_rank_M'] = mmt_time_rank_M(anaual_close) if 'mmt_highest_days_A' in factors_to_cal or factors_to_cal == 'all': # 最高价距今天数 uploadfactordict['mmt_highest_days_A'] = mmt_highest_days_A(anaual_High) if 'volumestable' in factors_to_cal or factors_to_cal == 'all': # 成交量稳定度 uploadfactordict['volumestable'] = volumestable(volume) if '_con' in factors_to_cal or factors_to_cal == 'all': # 收益一致性因子 uploadfactordict['_con'] = re_con(tempClose) if 'bofu_money' in factors_to_cal or factors_to_cal == 'all': # 波幅/成交额 uploadfactordict['bofu_money'] = bofu_money(tempHigh,tempLow,tempOpen,total_turnover) if 'vol_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月收益率波动 uploadfactordict['vol_std_1M'] = vol_std(Close_ret,'1M',30) if 'vol_up_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上行收益率波动 uploadfactordict['vol_up_std_1M'] = vol_up_std(Close_ret,'1M',30) if 'vol_down_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下行收益率波动 uploadfactordict['vol_down_std_1M'] = vol_down_std(Close_ret,'1M',30) if 'vol_updown_ratio_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上行波动和下行波动比 uploadfactordict['vol_updown_ratio_1M'] = vol_updown_ratio(Close_ret,'1M',30) if 'vol_highlow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅均值 uploadfactordict['vol_highlow_avg_1M'] = vol_highlow_avg(High,Low,'1M',30) if 'vol_highlow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅波动 uploadfactordict['vol_highlow_std_1M'] = vol_highlow_std(High,Low,'1M',30) if 'vol_highlow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅稳定度 uploadfactordict['vol_highlow_stable_1M'] = vol_highlow_stable(High,Low,'1M',30) if 'vol_upshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线均值 uploadfactordict['vol_upshadow_avg_1M'] = vol_upshadow_avg(High,Open,Close,'1M',30) if 'vol_upshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线波动 uploadfactordict['vol_upshadow_std_1M'] = vol_upshadow_std(High,Open,Close,'1M',30) if 'vol_upshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线稳定度 uploadfactordict['vol_upshadow_stable_1M'] = vol_upshadow_stable(High,Open,Close,'1M',30) if 'vol_downshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线均值 uploadfactordict['vol_downshadow_avg_1M'] = vol_downshadow_avg(Low,Open,Close,'1M',30) if 'vol_downshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线波动 uploadfactordict['vol_downshadow_std_1M'] = vol_downshadow_std(Low,Open,Close,'1M',30) if 'vol_downshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线稳定度 uploadfactordict['vol_downshadow_stable_1M'] = vol_downshadow_stable(Low,Open,Close,'1M',30) if 'vol_w_upshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线均值 uploadfactordict['vol_w_upshadow_avg_1M'] = vol_w_upshadow_avg(High,Close,'1M',30) if 'vol_w_upshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线波动 uploadfactordict['vol_w_upshadow_std_1M'] = vol_w_upshadow_std(High,Close,'1M',30) if 'vol_w_upshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线稳定度 uploadfactordict['vol_w_upshadow_stable_1M'] = vol_w_upshadow_stable(High,Close,'1M',30) if 'vol_w_downshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线均值 uploadfactordict['vol_w_downshadow_avg_1M'] = vol_w_downshadow_avg(Low,Close,'1M',30) if 'vol_w_downshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线波动 uploadfactordict['vol_w_downshadow_std_1M'] = vol_w_downshadow_std(Low,Close,'1M',30) if 'vol_w_downshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线稳定度 uploadfactordict['vol_w_downshadow_stable_1M'] = vol_w_downshadow_stable(Low,Close,'1M',30) if 'liq_turn_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月换手均值 uploadfactordict['liq_turn_avg_1M'] = liq_turn_avg(tovr_r,'1M',30) if 'liq_turn_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月换手方差 uploadfactordict['liq_turn_std_1M'] = liq_turn_std(tovr_r,'1M',30) if 'liq_vstd_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月成交波动比 uploadfactordict['liq_vstd_1M'] = liq_vstd(tovr_r,Close_ret,'1M',30) if 'liq_amihud_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子均值 uploadfactordict['liq_amihud_avg_1M'] = liq_amihud_avg(tovr_r,Close_ret,'1M',30) if 'liq_amihud_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子波动 uploadfactordict['liq_amihud_std_1M'] = liq_amihud_std(tovr_r,Close_ret,'1M',30) if 'liq_amihud_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子稳定度 uploadfactordict['liq_amihud_stable_1M'] = liq_amihud_stable(tovr_r,Close_ret,'1M',30) if 'liq_shortcut_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子均值 uploadfactordict['liq_shortcut_avg_1M'] = liq_shortcut_avg(tovr_r,High,Low,Open,Close,'1M',30) if 'liq_shortcut_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子波动 uploadfactordict['liq_shortcut_std_1M'] = liq_shortcut_std(tovr_r,High,Low,Open,Close,'1M',30) if 'liq_shortcut_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子稳定度 uploadfactordict['liq_shortcut_stable_1M'] = liq_shortcut_stable(tovr_r,High,Low,Open,Close,'1M',30) if 'PLUS' in factors_to_cal or factors_to_cal == 'all': # 上下影线差 uploadfactordict['PLUS'] = PLUS(tempClose,tempHigh,tempLow) if 'liq_std_w_plus_1M' in factors_to_cal or factors_to_cal == 'all': # 上下影线差*换手波动 uploadfactordict['liq_std_w_plus_1M'] = liq_std_w_plus(tempClose,tempHigh,tempLow, tovr_r,'1M',30) if 'HL_Sprd' in factors_to_cal or factors_to_cal == 'all': # 理想振幅因子 uploadfactordict['HL_Sprd'] = HL_Sprd(Close,High,Low,20) if 'tvr_std_1M' in factors_to_cal or factors_to_cal == 'all': # 换手率稳定度 uploadfactordict['tvr_std_1M'] = tvr_std(tovr_r,'1M',20) if 'corr_price_turn_1M' in factors_to_cal or factors_to_cal == 'all': # 换手率与价格的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-20:] uploadfactordict['corr_price_turn_1M'] = corr_price_turn(timerange,pricebyday,'1M') if 'corr_ret_turn_post_1M' in factors_to_cal or factors_to_cal == 'all': # 收益率与换手率的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-21:] # 涉及到计算pct_change需要多一天 uploadfactordict['corr_ret_turn_post_1M'] = corr_ret_turn_post(timerange,pricebyday,'1M') if 'corr_ret_turnd_1M' in factors_to_cal or factors_to_cal == 'all': # 收益率与换手率变动的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-21:] uploadfactordict['corr_ret_turnd_1M'] = corr_ret_turnd(timerange,pricebyday,'1M') ######################################## 日内数据计算因子 #################################### # #单笔成交金额相关因子 sing_trade_amt = pd.DataFrame(minbar['total_turnover']/minbar['num_trades'],columns= ['single_trade_amt']) sing_trade_amt = sing_trade_amt[sing_trade_amt['single_trade_amt']>0] sing_trade_amt['trading_date'] = todaydate sta_del_extrm = sing_trade_amt.groupby(level = 0).apply(lambda x: x.sort_values('single_trade_amt').iloc[:-10]).droplevel(0)# 剔除极大值 sta_50pct = sing_trade_amt.groupby(level = 0).\ apply(lambda x: x[x['single_trade_amt']<x['single_trade_amt'].quantile(0.5)]).droplevel(0)# 后百分之五十 if 'mts' in factors_to_cal or factors_to_cal == 'all': # 主力交易强度 uploadfactordict['mts'] = mts(sta_del_extrm,minbar,todaydate) if 'mte' in factors_to_cal or factors_to_cal == 'all': # 主力交易情绪 uploadfactordict['mte'] = mte(sta_del_extrm,minbar,todaydate) if 'qua' in factors_to_cal or factors_to_cal == 'all': # 分位数因子qua uploadfactordict['qua'] = qua(sta_del_extrm,todaydate) if 'qua20m' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('qua',notst.index[-20],conn) q = qua(sta_del_extrm,todaydate) qua20m = pd.concat([prv_factor,q]).unstack().rolling(20,min_periods=1).mean().iloc[-1:].stack().rename(columns = {'qua':'qua20m'}) uploadfactordict['qua20m'] = qua20m if 'skew' in factors_to_cal or factors_to_cal == 'all': # 偏度因子skew uploadfactordict['skew'] = skew(sta_50pct,todaydate) if 'skew20m' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('skew',notst.index[-20],conn) sk = skew(sta_50pct,todaydate) skew20m = pd.concat([prv_factor,sk]).unstack().rolling(20,min_periods=1).mean().iloc[-1:].stack().rename(columns = {'skew':'skew20m'}) uploadfactordict['skew20m'] = skew20m if 's_reverse' in factors_to_cal or factors_to_cal == 'all': # 强反转因子 uploadfactordict['s_reverse'] = s_reverse(sing_trade_amt,minbar,todaydate) if 's_reverse_10_sum' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('s_reverse',notst.index[-10],conn) sr = s_reverse(sing_trade_amt,minbar,todaydate) s_reverse_10_sum = pd.concat([prv_factor,sr]).unstack().rolling(10,min_periods=1).sum().iloc[-1:].stack().rename(columns = {'s_reverse':'s_reverse_10_sum'}) uploadfactordict['s_reverse_10_sum'] = s_reverse_10_sum if 'daily_sta_90pct' in factors_to_cal or factors_to_cal == 'all': # 理想反转因子 uploadfactordict['daily_sta_90pct'] = daily_sta_90pct(sta_del_extrm) if 'ideal_reverse' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('daily_sta_90pct',notst.index[-20],conn) dsta90 = daily_sta_90pct(sing_trade_amt) daily_sta_cal = pd.concat([prv_factor,dsta90]) uploadfactordict['ideal_reverse'] = ideal_reverse(daily_sta_cal,Close) return uploadfactordict
Alpha-Planet
/Alpha_Planet-0.0.2-py3-none-any.whl/Alpha_Rabbit/Factor_Calculator.py
Factor_Calculator.py
import pandas as pd import numpy as np class Factor_get_method(object): def __init__(self) -> None: pass def get_all_tables(self,con): sql = "select name from sqlite_master where type ='table' order by name" c = con.cursor() result = c.execute(sql) factorfilelist = [i[0] for i in result.fetchall()] return factorfilelist def sql_fetch(self,con,tablename): cursorObj = con.cursor() cursorObj.execute('PRAGMA table_info("{}")'.format(tablename)) return cursorObj.fetchall() def sql_exec(self,sql,sqlcols,conn): cur = conn.cursor() result = cur.execute(sql) result = pd.DataFrame(result,columns = sqlcols).set_index(['date','symbol']) return result def get_prev_days_factor_by_name(self,factorname:str,date:str,conn): sql = "select * from {} where {}.date >= '{}'".format(factorname,factorname,date) sqlcols = [txt[1] for txt in self.sql_fetch(conn,factorname)] return self.sql_exec(sql,sqlcols,conn) def get_selected_date_factor_by_name(self,factorname:str,date:str,conn): sql = "select * from {} where {}.date = '{}'".format(factorname,factorname,date) sqlcols = [txt[1] for txt in self.sql_fetch(conn,factorname)] return self.sql_exec(sql,sqlcols,conn) def mmt_intraday_M(tempClose,tempOpen): # 1个月日内动量 mmt_intraday_M = (tempClose/tempOpen - 1).iloc[-22:].cumsum() mmt_intraday_M = pd.DataFrame(mmt_intraday_M.iloc[-1:].stack(),columns = ['mmt_intraday_M']) return mmt_intraday_M # 一个月振幅调整动量 def mmt_range_M(tempHigh,tempLow,tempClose): High_m = tempHigh.iloc[-22:].max() Low_m = tempLow.iloc[-22:].min() mmt_range_M = (High_m-Low_m)/tempClose.shift(22) mmt_range_M = pd.DataFrame(mmt_range_M.iloc[-1:].stack(),columns = ['mmt_range_M']) return mmt_range_M def mmt_overnight_M(tempOpen,tempClose): # 隔夜动量 mmt_overnight = tempOpen/tempClose.shift(1) - 1 todaydate = mmt_overnight.index[-1] mmt_overnight_M = pd.DataFrame(mmt_overnight.iloc[-20:].sum(),columns = ['mmt_overnight_M']) mmt_overnight_M['date'] = todaydate mmt_overnight_M = mmt_overnight_M.reset_index().set_index(['date','symbol']) return mmt_overnight_M def mmt_route_M(tempClose): # 路径调整动量 mmt_route_M = (tempClose/tempClose.shift(20) - 1)/abs(tempClose/tempClose.shift(1)-1).rolling(20).sum() mmt_route_M = pd.DataFrame(mmt_route_M.iloc[-1:].stack(),columns = ['mmt_route_M']) return mmt_route_M def mmt_discrete_M(tempClose): # 信息离散度动量 daily_up = (tempClose/tempClose.shift(1)-1).applymap(lambda x: int(x>0) if not np.isnan(x) else np.nan) daily_down = (tempClose/tempClose.shift(1)-1).applymap(lambda x: int(x<0) if not np.isnan(x) else np.nan) mmt_discrete_M = daily_up.rolling(20).sum()/20-daily_down.rolling(20).sum()/20 mmt_discrete_M = pd.DataFrame(mmt_discrete_M.iloc[-1:].stack(),columns = ['mmt_discrete_M']) return mmt_discrete_M def mmt_sec_rank_M(tempClose): # 截面rank动量 mmt_sec_rank_M = (tempClose/tempClose.shift(1)-1).rank(axis = 1).rolling(20).mean() mmt_sec_rank_M = pd.DataFrame(mmt_sec_rank_M.iloc[-1:].stack(),columns = ['mmt_sec_rank_M']) return mmt_sec_rank_M def mmt_time_rank_M(anaual_close): # 时序rank_score # anaual_close = Close.iloc[-272:] mmt_time_rank_M = (anaual_close/anaual_close.shift(1)-1).rolling(252,min_periods = 100).rank().rolling(20).mean() mmt_time_rank_M = pd.DataFrame(mmt_time_rank_M.iloc[-1:].stack(),columns = ['mmt_time_rank_M']) return mmt_time_rank_M def mmt_highest_days_A(anaual_High): # 最高价距今天数 todaydate = anaual_High.index[-1] mmt_highest_days_A = 252- anaual_High.iloc[-252:].apply(lambda x: x.argmax()) mmt_highest_days_A = pd.DataFrame(mmt_highest_days_A,columns= ['mmt_highest_days_A']) mmt_highest_days_A['date'] = todaydate mmt_highest_days_A = mmt_highest_days_A.reset_index().set_index(['date','symbol']) return mmt_highest_days_A def volumestable(volume): # 成交量稳定度 vol_m = volume.rolling(20).mean() vol_std = volume.rolling(20).std() volumestable = (vol_m/vol_std) volumestable = pd.DataFrame(volumestable.iloc[-1:].stack(),columns = ['volumestable']) return volumestable def re_con(tempClose): # 收益一致性因子 import numpy as np d5_r = tempClose.pct_change(5).iloc[-1:]/5 d10_r = tempClose.pct_change(10).iloc[-1:]/10/np.sqrt(2) d15_r = tempClose.pct_change(15).iloc[-1:]/15/np.sqrt(3) con = pd.concat([d5_r.stack(),d10_r.stack(),d15_r.stack()],axis = 1).dropna() con = con.mean(axis =1)/con.std(axis = 1) con = con.unstack() con_output = con.rank(axis = 1) con_output = con_output.apply(lambda x: x-x.mean(),axis = 1).abs() _con = pd.DataFrame(con_output.iloc[-1:].stack(),columns = ['_con']) return _con def bofu_money(tempHigh,tempLow,tempOpen,total_turnover): # 波幅/成交额 bofu_money = (tempHigh-tempLow)/tempOpen/total_turnover bofu_money = pd.DataFrame(bofu_money.iloc[-1:].stack(),columns = ['bofu_money']) return bofu_money def vol_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = pd.DataFrame(ret.std(),columns = ['vol_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_up_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = (ret*(ret>0).astype(int)).replace(0,np.nan) df = pd.DataFrame(df.std(),columns = ['vol_up_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_down_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = (ret*(ret<0).astype(int)).replace(0,np.nan) df = pd.DataFrame(df.std(),columns = ['vol_down_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_highlow_avg(high,low,periodname,perioddays): ratio = (high/low).iloc[-perioddays:] todaydate = ratio.index[-1] df = pd.DataFrame(ratio.mean(),columns = ['vol_highlow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_highlow_std(high,low,periodname,perioddays): ratio = (high/low).iloc[-perioddays:] todaydate = ratio.index[-1] df = pd.DataFrame(ratio.std(),columns = ['vol_highlow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_updown_ratio(df,periodname,perioddays): upstd = vol_up_std(df,periodname,perioddays) downstd = vol_down_std(df,periodname,perioddays) updownratio = pd.DataFrame(upstd['vol_up_std_'+periodname]/downstd['vol_down_std_'+periodname],columns = ['vol_updown_ratio_'+periodname]) return updownratio def vol_highlow_stable(high,low,periodname,perioddays): hlavg = vol_highlow_avg(high,low,periodname,perioddays) hlstd = vol_highlow_std(high,low,periodname,perioddays) hlstable = pd.DataFrame(hlavg['vol_highlow_avg_'+periodname]/hlstd['vol_highlow_std_'+periodname],columns = ['vol_highlow_stable_'+periodname]) return hlstable def vol_upshadow_avg(High,Open,Close,periodname,perioddays): multiper = (Open>Close).astype(int) Open_Close_max = multiper*Open + (1-multiper)*Close upshadow_df = ((High - Open_Close_max)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.mean(),columns = ['vol_upshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_upshadow_std(High,Open,Close,periodname,perioddays): multiper = (Open>Close).astype(int) Open_Close_max = multiper*Open + (1-multiper)*Close upshadow_df = ((High - Open_Close_max)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.std(),columns = ['vol_upshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_upshadow_stable(High,Open,Close,periodname,perioddays): avg = vol_upshadow_avg(High,Open,Close,periodname,perioddays) std = vol_upshadow_std(High,Open,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_upshadow_avg_'+periodname]/std['vol_upshadow_std_'+periodname],columns = ['vol_upshadow_stable_'+periodname]) return df def vol_downshadow_avg(Low,Open,Close,periodname,perioddays): multiper = (Open<Close).astype(int) Open_Close_min = multiper*Open + (1-multiper)*Close downshadow_df = ((Open_Close_min - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.mean(),columns = ['vol_downshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_downshadow_std(Low,Open,Close,periodname,perioddays): multiper = (Open<Close).astype(int) Open_Close_min = multiper*Open + (1-multiper)*Close downshadow_df = ((Open_Close_min - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.std(),columns = ['vol_downshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_downshadow_stable(Low,Open,Close,periodname,perioddays): avg = vol_downshadow_avg(Low,Open,Close,periodname,perioddays) std = vol_downshadow_std(Low,Open,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_downshadow_avg_'+periodname]/std['vol_downshadow_std_'+periodname],columns = ['vol_downshadow_stable_'+periodname]) return df def vol_w_downshadow_avg(Low,Close,periodname,perioddays): downshadow_df = ((Close - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.mean(),columns = ['vol_w_downshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_downshadow_std(Low,Close,periodname,perioddays): downshadow_df = ((Close - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.std(),columns = ['vol_w_downshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_downshadow_stable(Low,Close,periodname,perioddays): avg = vol_w_downshadow_avg(Low,Close,periodname,perioddays) std = vol_w_downshadow_std(Low,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_w_downshadow_avg_'+periodname]/std['vol_w_downshadow_std_'+periodname],columns = ['vol_w_downshadow_stable_'+periodname]) return df def vol_w_upshadow_avg(High,Close,periodname,perioddays): upshadow_df = ((High - Close)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.mean(),columns = ['vol_w_upshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_upshadow_std(High,Close,periodname,perioddays): upshadow_df = ((High - Close)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.std(),columns = ['vol_w_upshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_upshadow_stable(High,Close,periodname,perioddays): avg = vol_w_upshadow_avg(High,Close,periodname,perioddays) std = vol_w_upshadow_std(High,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_w_upshadow_avg_'+periodname]/std['vol_w_upshadow_std_'+periodname],columns = ['vol_w_upshadow_stable_'+periodname]) return df def liq_turn_avg(tovr_r,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] todaydate = tovr_r_df.index[-1] df = pd.DataFrame(tovr_r_df.mean(),columns = ['liq_turn_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_turn_std(tovr_r,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] todaydate = tovr_r_df.index[-1] df = pd.DataFrame(tovr_r_df.std(),columns = ['liq_turn_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_vstd(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df = ret.iloc[-perioddays:] df = pd.DataFrame(tovr_r_df.mean()/ret_df.std(),columns = ['liq_vstd_'+periodname]) todaydate = tovr_r_df.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_avg(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df_abs = ret.iloc[-perioddays:].abs() amihud = ret_df_abs/tovr_r_df df = pd.DataFrame(amihud.mean(),columns = ['liq_amihud_avg_'+periodname]) todaydate = amihud.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_std(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df_abs = ret.iloc[-perioddays:].abs() amihud = ret_df_abs/tovr_r_df df = pd.DataFrame(amihud.std(),columns = ['liq_amihud_std_'+periodname]) todaydate = amihud.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_stable(tovr_r,ret,periodname,perioddays): avg = liq_amihud_avg(tovr_r,ret,periodname,perioddays) std = liq_amihud_std(tovr_r,ret,periodname,perioddays) v = avg['liq_amihud_avg_'+periodname]/std['liq_amihud_std_'+periodname] df = pd.DataFrame(v,columns = ['liq_amihud_stable_'+periodname]) return df def liq_shortcut_avg(tovr_r,High,Low,Open,Close,periodname,perioddays): shortcut = 2*(High - Low) - (Open - Close).abs() v = shortcut.iloc[-perioddays:]/tovr_r.iloc[-perioddays:] df = pd.DataFrame(v.mean(),columns = ['liq_shortcut_avg_'+periodname]) todaydate = v.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_shortcut_std(tovr_r,High,Low,Open,Close,periodname,perioddays): shortcut = 2*(High - Low) - (Open - Close).abs() v = shortcut.iloc[-perioddays:]/tovr_r.iloc[-perioddays:] df = pd.DataFrame(v.std(),columns = ['liq_shortcut_std_'+periodname]) todaydate = v.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_shortcut_stable(tovr_r,High,Low,Open,Close,periodname,perioddays): avg = liq_shortcut_avg(tovr_r,High,Low,Open,Close,periodname,perioddays) std = liq_shortcut_std(tovr_r,High,Low,Open,Close,periodname,perioddays) v = avg['liq_shortcut_avg_'+periodname]/std['liq_shortcut_std_'+periodname] df = pd.DataFrame(v,columns = ['liq_shortcut_stable_'+periodname]) return df def PLUS(Close, High, Low): plus = (2*Close - High - Low)/Close.shift(1) todaydate = plus.index[-1] df = pd.DataFrame(plus.iloc[-1]) df.columns = ['PLUS'] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_std_w_plus(Close, High, Low, tovr_r,periodname,perioddays): plus = PLUS(Close, High, Low) liq_std = liq_turn_std(tovr_r,periodname,perioddays) plus['PLUS'] = plus['PLUS'].groupby(level = 'date', group_keys=False).apply(lambda x: x-min(0,x.min())) swp = liq_std['liq_turn_std_'+periodname]*plus['PLUS'] df = pd.DataFrame(swp,columns = ['liq_std_w_plus_'+periodname]) return df def tvr_std(tovr_r,periodname,perioddays): df = tovr_r.iloc[-perioddays:] todaydate = tovr_r.index[-1] fc = pd.DataFrame(df.std()) fc.columns = ['tvr_std_'+periodname] fc['date'] = todaydate fc = fc.reset_index().set_index(['date','symbol']) return fc.sort_index() def HL_Sprd(close,high,low,perioddays): todaydate = close.index[-1] sprd = (high/low - 1).iloc[-perioddays:] close_ = close.iloc[-perioddays:] phigh = close_.apply(lambda x: x>x.quantile(0.75)).astype(int).replace(0,np.nan) plow = close_.apply(lambda x: x<x.quantile(0.25)).astype(int).replace(0,np.nan) vhigh = pd.DataFrame((sprd*phigh).mean()) vlow = pd.DataFrame((sprd*plow).mean()) vlow['date'],vhigh['date'] = todaydate,todaydate vhigh = vhigh.set_index('date',append=True).swaplevel() vlow = vlow.set_index('date',append=True).swaplevel() hlsprd = vhigh-vlow hlsprd.columns = ['HL_Sprd'] return hlsprd.dropna() def corr_price_turn(timerange,pricebyday,periodname): price = pricebyday.loc[timerange] fc = price[['close','turnover_ratio']].groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['close'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_price_turn_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def corr_ret_turn_post(timerange,pricebyday,periodname): pricedf = pricebyday.loc[timerange] pricedf['turnover_ratio'] = pricedf['turnover_ratio'].unstack().sort_index().shift(1).stack() # post pricedf['ret'] = pricedf['close'].unstack().sort_index().pct_change().stack() fc = pricedf[['ret','turnover_ratio']].groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['ret'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_ret_turn_post_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def corr_ret_turnd(timerange,pricebyday,periodname): pricedf = pricebyday.loc[timerange] pricedf['turnover_ratio_pct'] = pricedf['turnover_ratio'].unstack().sort_index().pct_change().stack() pricedf['ret'] = pricedf['close'].unstack().sort_index().pct_change().stack() fc = pricedf[['ret','turnover_ratio_pct']].dropna().groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['ret'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_ret_turnd_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def mts(sta_del_extrm,minbar,todaydate): mts = sta_del_extrm[['single_trade_amt']] mts['total_turnover'] = minbar['total_turnover'] mts = mts.groupby(level = 'symbol').corr()[::2]['total_turnover'].droplevel(1) mts= pd.DataFrame(mts) mts.columns = ['mts'] mts['date'] = todaydate mts = mts.reset_index().set_index(['date','symbol']) return mts def mte(sta_del_extrm,minbar,todaydate): mte = sta_del_extrm[['single_trade_amt']] mte['close'] = minbar['close'] mte = mte.groupby(level = 'symbol').corr()[::2]['close'].droplevel(1) mte= pd.DataFrame(mte) mte.columns = ['mte'] mte['date'] = todaydate mte = mte.reset_index().set_index(['date','symbol']) return mte def qua(sta_del_extrm,todaydate): qua = sta_del_extrm.groupby(level = 'symbol').\ apply(lambda x: (x['single_trade_amt'].quantile(0.1)-\ x['single_trade_amt'].min())/(x['single_trade_amt'].max()-x['single_trade_amt'].min())) qua = pd.DataFrame(qua,columns = ['qua']) qua['date'] = todaydate qua = qua.reset_index().set_index(['date','symbol']) qua.index.name = ('date','symbol') return qua def skew(sta_50pct,todaydate):# 偏度因子skew skew = sta_50pct.groupby(level = 'symbol').\ apply(lambda x: (((x['single_trade_amt']-x['single_trade_amt'].mean())/x['single_trade_amt'].std())**3).mean()) skew = pd.DataFrame(skew,columns = ['skew']) skew['date'] = todaydate skew = skew.reset_index().set_index(['date','symbol']) skew.index.name = ('date','symbol') return skew def s_reverse(sing_trade_amt,minbar,todaydate):# 强反转因子 minute_r = sing_trade_amt.copy() minute_r['minute_r'] = minbar['close']/minbar['open'] - 1 minute_r = minute_r.set_index('trading_date',append = True) s_reverse = minute_r.groupby(level = 0).\ apply(lambda x: x[x.single_trade_amt > x.single_trade_amt.quantile(0.8)].minute_r.sum()) s_reverse = pd.DataFrame(s_reverse,columns = ['s_reverse']) s_reverse['date'] = todaydate s_reverse = s_reverse.reset_index().set_index(['date','symbol']) s_reverse.index.name = ('date','symbol') return s_reverse def daily_sta_90pct(sta_del_extrm):# 日单笔成交额90分位值 daily_sta = sta_del_extrm.set_index('trading_date',append = True).rename_axis(index = {'trading_date':'date'}) daily_sta_90pct = daily_sta.droplevel('datetime').groupby(level = 'symbol').apply(lambda x: x.groupby(level = 1).quantile(0.9)).reset_index().set_index(['date','symbol']) daily_sta_90pct.columns = ['daily_sta_90pct'] return daily_sta_90pct def ideal_reverse(daily_sta_cal,Close): daily_sta_cal['day_return'] = Close.pct_change().stack() by_stock = list(daily_sta_cal.groupby(level = 1)) def apply_rolling_cal(rollingdata): if len(rollingdata.index)<20: return else: temp = rollingdata.sort_values('daily_sta_90pct') returndf = rollingdata.iloc[-1:].copy() returndf['ideal_reverse'] = temp.iloc[:10].day_return.sum() - temp.iloc[10:].day_return.sum() return returndf['ideal_reverse'] ideal_reverse = list(map(lambda x:apply_rolling_cal(x[1]),by_stock)) ideal_reverse = pd.concat(ideal_reverse) ideal_reverse = pd.DataFrame(ideal_reverse) ideal_reverse.columns = ['ideal_reverse'] return ideal_reverse
Alpha-Planet
/Alpha_Planet-0.0.2-py3-none-any.whl/Alpha_Planet/Factor_Def_and_Get_Method.py
Factor_Def_and_Get_Method.py
import os import pandas as pd import numpy as np import statsmodels.api as sm from tqdm import * class single_signal_test(object): def __init__(self) -> None: pass def cal_turnover(self,df,ndays): # holdings: # pd.Series # multiindex: timestamp,code # 值都是1 holdings = df.copy() holdings = holdings.unstack().dropna(how ='all',axis = 1) holdings = holdings.apply(lambda x: x/x.sum(),axis = 1) holdings = holdings.fillna(0) return (holdings.diff(ndays).abs().sum(axis = 1)/2) def cal_holdingnums(self,df): # holdings: # pd.Series # multiindex: timestamp,code # 值都是1 holdings = df.copy() holdings = holdings.groupby(level = 0).sum() return holdings def one_factor_grouper(self,df,factorname,quantiles,qcut): # 分组 # concatdf:pd.DataFrame # factorname: str # multiindex: timestamp,code # columns: nday_return, factorname1, factorname2... concatdf = df[[factorname]].copy().round(6)# 设置保留小数! concatdf[factorname+'_rank'] = concatdf[factorname].groupby(level = 'date', group_keys = False).rank() if qcut: concatdf[factorname+'_quantile'] =concatdf[factorname+'_rank'].dropna().groupby(level = 'date', group_keys = False).apply(lambda x: pd.qcut(x,quantiles,labels=list(range(1,quantiles+1)))).astype(int) else: concatdf[factorname+'_quantile'] =concatdf[factorname+'_rank'].dropna().groupby(level = 'date', group_keys = False).apply(lambda x: pd.cut(x,quantiles,labels=list(range(1,quantiles+1)))).astype(int) return concatdf def one_factor_return(self,df,factorname,ndays,return_col,w_method,demean = False): # 计算分组收益 if w_method =='average': qreturn = df.groupby(level = 'date', group_keys = True).apply(lambda x: x.groupby(factorname+'_quantile')[[return_col]].mean()/ndays).unstack() qreturn.columns = [i[1] for i in list(qreturn)] if w_method == 'factor_weighted': tmpdf = df.copy() tmpdf['rwf'] = tmpdf[return_col]*tmpdf[factorname] tmpdf.dropna(subset = ['rwf'],inplace = True) qreturn = tmpdf.groupby(level = 'date', group_keys = True).\ apply(lambda x: x.groupby(factorname+'_quantile').\ apply(lambda x: x['rwf'].sum()/x[factorname].sum() if x[factorname].sum()>0 else 0)/ndays) # qreturn = tmpdf.groupby(level = 'date', group_keys = True).\ # apply(lambda x: x.groupby(factorname+'_quantile').\ # apply(lambda x: (x[return_col]*x[factorname]).sum()/x[factorname].sum())/ndays) if w_method =='cap_weighted': qreturn = df.groupby(level = 'date', group_keys = True).\ apply(lambda x: x.groupby(factorname+'_quantile').\ apply(lambda x: (x[return_col]*x['cap']).sum()/x['cap'].sum())/ndays) if len(qreturn.index.names)==1: pass else: qreturn= qreturn.unstack().apply(lambda x: x.fillna(x.mean()),axis = 1) if demean: qreturn = qreturn.apply(lambda x: x-x.mean(),axis = 1) return qreturn def one_factor_icir(self,df,factorname,return_col): from scipy import stats ic = df.groupby(level = 'date').apply(lambda x: x[[return_col,factorname]].corr('spearman')) ic_org = ic[ic.index.get_level_values(1) ==return_col][factorname].dropna() ictable = ic_org.describe()[['count','mean','std','min','max']].copy() ictable['risk_adj'] = ic_org.mean()/ic_org.std() ictable['skew'] = ic_org.skew() ictable['kurtosis'] = ic_org.kurtosis() if ictable['mean'] <0: ictable['p-value'] = stats.ttest_1samp(ic_org,0,alternative='less').pvalue else: ictable['p-value'] = stats.ttest_1samp(ic_org,0,alternative='greater').pvalue return ictable def one_factor_ret_sharp(self,qreturn,ret_freq): return qreturn.mean()/qreturn.std()*np.sqrt(252/ret_freq) def factor_prepare(self,allfactors,fc,quantiles,qcut): test_fc = allfactors[[fc]].copy().rename_axis(['date','symbol']) res_df = self.one_factor_grouper(test_fc,fc,quantiles,qcut)# 序数标准化 return res_df def factor_ret_test_sheet(self, weight_method, index_price, #'''基准日期是timestamp''' fcname, res_df, Price, days, savedir, demean = False): from alphalens import utils plottools = plot_tools() mate_al = mate_alphalens() tov_df = res_df.groupby(by = fcname+'_quantile').apply(lambda x: self.cal_turnover(x[fcname+'_quantile']/x[fcname+'_quantile'],days)) if len(tov_df.index.names)==1: to = tov_df.mean(axis =1) else: to = tov_df.unstack().mean(axis = 1) clean_factor,price = mate_al.index_mate(res_df.dropna(),Price) fwr = utils.compute_forward_returns(price.stack(),price) clean_factor[str(days)+'D'] = fwr[str(days)+'D'] clean_factor = clean_factor.reset_index() clean_factor['date'] = clean_factor['date'].astype(str) clean_factor = clean_factor.set_index(['date','asset']).dropna() if index_price is not None: clean_factor = mate_al.trans_ex_return(clean_factor,index_price,ret_col=[str(days)+'D']) else: clean_factor[str(days)+'D'] = clean_factor.groupby(level = 'date',group_keys = False).apply(lambda x: x[str(days)+'D']-x[str(days)+'D'].mean()) qreturn = self.one_factor_return(clean_factor,fcname,days,str(days)+'D',w_method = weight_method,demean=demean) # ic ic_table = self.one_factor_icir(clean_factor,fcname,str(days)+'D') indicators = self.judge_material(qreturn,ic_table,days) plottools.factor_plt(qreturn,to,indicators,fcname,days,savedir) return qreturn,clean_factor,indicators def judge_material(self,qreturn,ic_table,days): from scipy import stats indicators = ic_table.copy() maxquantile = max(qreturn.columns) lsret = qreturn[maxquantile] - qreturn[1] groupmean = qreturn.mean(axis = 0) groupmean_diff = groupmean.diff().dropna() top_half = groupmean_diff.iloc[-5:] top_sharp = qreturn[maxquantile].mean()/qreturn[maxquantile].std()*pow(252/days,1/2) t,p_lsret =stats.ttest_1samp(lsret,0,alternative='greater') t,p_groupmean =stats.ttest_1samp(groupmean_diff,0,alternative='greater') t,p_tophalfmean = stats.ttest_1samp(top_half,0,alternative='greater') indicators['TopQtl_SR'] = top_sharp indicators['LSRet_pvalue'] = p_lsret indicators['MeanRetDiff_pvalue'] = p_groupmean indicators['TophalfMeanRetDiff_pvalue'] = p_tophalfmean return indicators def efficient_judge(self,indicators): from scipy import stats # 因子判别 ''' 检验: 对两个都通过的是有用的因子 ''' if indicators['p-value']<= 0.05 and indicators['TopQtl_SR']>=1: if indicators['TophalfMeanRetDiff_pvalue']<=0.3 and indicators['LSRet_pvalue']<=0.12: # print(fc+'有用;头部{}组平均收益一阶差分p值{},多空收益p值{},ic_pvalue{},top组超额夏普{}'.format(int(maxquantile/2),p_top_halfmean,p_lsret)) return 1 # 且两个乘起来能跟原来的匹配;且另一个不能太差 # elif indicators['TophalfMeanRetDiff_pvalue']*indicators['LSRet_pvalue']<0.0025 and (indicators['TophalfMeanRetDiff_pvalue']/0.05 <= 0.1 or indicators['LSRet_pvalue']/0.05 <= 0.1) \ # and min(indicators['MeanRetDiff_pvalue'],indicators['TophalfMeanRetDiff_pvalue'])<=0.05 and indicators['TophalfMeanRetDiff_pvalue']<0.3: # print(fc+'勉强有用;头部{}组平均收益一阶差分p值{},整体平均收益一阶差分p值{},多空收益p值{}'.format(int(maxquantile/2),p_top_halfmean,p_groupmean,p_lsret)) else: return 2 return 0 def eff_classification(self,fc,indicator,judgefunc,strict_eff,unstrict_eff): ''' 输入: 因子矩阵 输出: 1、因子测试结果 2、噪声因子 ''' # 因子判别 if judgefunc(indicator) == 1: strict_eff.append(fc) unstrict_eff.append(fc) elif judgefunc(indicator) == 2: unstrict_eff.append(fc) return strict_eff,unstrict_eff class multi_factor_test(object): def __init__(self) -> None: self.sst = single_signal_test() pass def factors_abnormal_ret(self,factordf,return_col,factorlist,days,index_price = None,pricedf = None,longshort_return = False): df = factordf.copy() if pricedf is not None: # 默认明收除今收 df[str(days)+'D'] = pricedf.pct_change(days,fill_method = None).shift(-days).stack() if index_price is not None: ml = mate_alphalens() df,pricedf = ml.index_mate(df,pricedf) df = ml.trans_ex_return(df,index_price,str(days)+'D') df = df.rename(columns = {str(days)+'D':return_col+str(days)+'D'}).dropna(subset = return_col+str(days)+'D') if longshort_return == False: ret_k = df.groupby(level = 'date',group_keys = False).apply(lambda x: sm.formula.ols(return_col+str(days)+'D'+'~'+'+'.join(factorlist),data = x).fit().params) del ret_k['Intercept'] else : lscol = list(factordf) quantiles = int(df[return_col+str(days)+'D'].groupby(level = 'date').count().mean()//100) LSretList = [] for col in tqdm(lscol): tmpdf = df.copy() tmpdf[col+'_quantile'] = self.sst.one_factor_grouper(df,col,quantiles,False)[col+'_quantile'] qreturn = self.sst.one_factor_return(tmpdf,col,days,'ret{}D'.format(days),'factor_weighted',False) LSretList.append(qreturn[max(list(qreturn))] - qreturn[1]) ret_k = pd.concat(LSretList,axis = 1) ret_k.columns = lscol return ret_k def multif_barra_norm(self,allfactors,Bft): df = allfactors.copy() print('barra中性化....') for fcname in tqdm(list(df)): test_fc = df[[fcname]].copy().rename_axis(['date','symbol']) residual_ols,params_ols = Bft.barra_compose(test_fc) df[fcname] = residual_ols # 中性化之后的因子替换原始因子 return df def multif_industry_norm(self,allfactors,industry_info): df = allfactors.copy() df['first_industry_name'] = industry_info df = df.dropna(subset = 'first_industry_name').groupby(level = 'date',group_keys =False).apply(lambda x: x.groupby(by = 'first_industry_name',group_keys =False).apply(lambda x:x-x.mean(numeric_only=True))) del df['first_industry_name'] return df def multif_corr_ana(self,df,factornamelist): # 多因子相关性分析 # df:pd.DataFrame # factornamelist: strlist # multiindex: timestamp,code # columns: nday_return, factorname1, factorname2... df_ana = df[factornamelist].groupby(level = 'date').corr() corr_mean = df_ana.groupby(level = 1).mean() # corr之后的矩阵第二层没名字,所以用1来表示;第二层是因子名 corr_ir = df_ana.groupby(level = 1).mean()/df_ana.groupby(level = 1).std() return corr_mean.loc[list(corr_mean)],corr_ir.loc[list(corr_ir)] def multif_pca_ana(self,originalFactor,domain_factor_nums): # 多因子pca分析 # originalFactor: pd.DataFrame # multiindex: timestamp,code # columns: factorname1, factorname2... from sklearn import preprocessing data = originalFactor.groupby(level = 'date', group_keys = False).apply(lambda x: preprocessing.scale(x)) data = np.vstack(data.values) from sklearn.decomposition import PCA pcaModel = PCA(domain_factor_nums) pcaModel.fit(data) pcaFactors = pcaModel.transform(data) pcaFactors = pd.DataFrame(pcaFactors) pcaFactors.index = originalFactor.index pcaFactors.columns = ['pca_'+str(i) for i in range(domain_factor_nums)] return pcaModel.explained_variance_,pcaModel.explained_variance_ratio_,pcaFactors def batch_factors_test(self,weight_method,allfactors,Price,quantiles,days,qcut,savedir,index_price = None,demean = False): returndict = {} sst = single_signal_test() for fc in tqdm(list(allfactors)): res_df = sst.factor_prepare(allfactors,fc,quantiles,qcut) sst.factor_ret_test_sheet(weight_method,index_price,fc,res_df,Price,days,savedir,demean) returndict[fc] = res_df[[fc]] return returndict def multif_tsstable_test(self,originalData): # originalFactor: pd.DataFrame # multiindex: timestamp,code # columns: factorname1, factorname2... from statsmodels.tsa.stattools import adfuller data = originalData.copy()#.groupby(level = 0).apply(lambda x: (x-x.mean())/x.std())不要再标准化了!! mean_pvalue = data.groupby(level = 'date').apply(lambda x:x.mean()).apply(lambda x: adfuller(x)[1]) std_pvalue = data.groupby(level = 'date').apply(lambda x:x.std()).apply(lambda x: adfuller(x)[1]) skew_pvalue = data.groupby(level = 'date').apply(lambda x:x.skew()).apply(lambda x: adfuller(x)[1]) kurt_pvalue = data.groupby(level = 'date').apply(lambda x:x.kurt()).apply(lambda x: adfuller(x)[1]) yarn_pvalue = pd.concat([mean_pvalue,std_pvalue,skew_pvalue,kurt_pvalue],axis = 1) yarn_pvalue.columns = ['mean','std','skew','kurt'] return yarn_pvalue def del_updown_limit(self,factordf,daybar,text): # 剔除涨跌停 notuplimit = daybar[~(daybar[text] == daybar.limit_up)] notdownlimit = daybar[~(daybar[text] == daybar.limit_down)] factordf = factordf[factordf.index.isin(notuplimit.index)] factordf = factordf[factordf.index.isin(notdownlimit.index)] return factordf def in_some_pool(self,df,pool_components): factordf = df.copy() factordf['inpool']=pool_components.applymap(lambda x:1) factordf['inpool'] = factordf['inpool'].apply(lambda x: 1 if x>0 else 0) testdf = factordf[factordf['inpool']>=1] del testdf['inpool'] return testdf def orthog(self,factor_mat, y, xlist): df = factor_mat.replace([np.inf, -np.inf], np.nan).dropna() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() params = regre.params[~(regre.params.index == 'Intercept')] intercept = regre.params[(regre.params.index == 'Intercept')] residual = df[y] - (df[list(params.index)]*params).sum(axis = 1) - intercept.values residual = pd.DataFrame(residual) residual.columns = [y] return self.mat_normlize(residual),params def mat_orthog(self,factor_mat): temp1 = factor_mat.replace([np.inf, -np.inf], np.nan).dropna() for i in list(temp1): no = list(temp1).index(i) if no==0: temp1[i] = self.mat_normlize(temp1[i]) continue fclist = list(filter(lambda x: x!=i,list(temp1)[:no])) temp1[i] = self.orthog(temp1,i,fclist)[0] return temp1 def ts_mat_orthog(self,factor_mat): return factor_mat.groupby(level = 'date',group_keys = False).apply(self.mat_orthog) def mat_normlize(self,factor_mat): df = factor_mat.rename_axis(['date','symbol']).replace([np.inf, -np.inf], np.nan) def norm(x): return (x - x.min())/(x.max()-x.min()) return df.groupby(level = 'date',group_keys = False).apply(norm) def mat_ranknormlize(self,factor_mat): df = factor_mat.rename_axis(['date','symbol']).replace([np.inf, -np.inf], np.nan) def norm(x): x_rank = x.rank() return (x_rank - x_rank.min())/(x_rank.max()-x_rank.min()) return df.groupby(level = 'date',group_keys = False).apply(norm) def multindex_shift(self,fcdf): df = fcdf.reset_index() datelist = list(df['date'].drop_duplicates()) datedict = dict(zip(datelist[:-1],datelist[1:])) df['date'] =df['date'].apply(lambda x: datedict[x] if x in datedict.keys() else np.nan) return df.dropna(subset = 'date').set_index(['date','symbol']) class Barra_factor_ana(object): ''' 1. growth要求至少504天的数据,部分股票不满足该条件会导致在因子整合到一起的时候被剔除 2. barrafactor必须为双重索引,且第一重索引是日期,第二重索引是标的 ''' def __init__(self,df=None,start_date=None,end_date=None,dir=None,skip_fileload=None) -> None: # 预加载数据 if not skip_fileload: self.price = df dailyreturn = df/df.shift(1)-1 dailyreturn.dropna(how = 'all',inplace=True) self.returndata = dailyreturn self.start_date = start_date self.end_date = end_date import os filelist = os.listdir(dir) self.filedict = {} for f in filelist: if f[-3:]=='csv': self.filedict[f[:-4]] = pd.read_csv(dir+f,index_col = [0,1]) pass def rise_barra_factors(self): print('rise size') self.size = np.log(self.filedict['market_cap']).dropna() def OLSparams(y,x): print('rise beta') X_ = x.droplevel('order_book_id') df = y.copy() df['market_r'] = X_['r'] df.dropna(subset = 'market_r',inplace = True) dflist = list(df.rolling(252))[252:] paramslist = [] for olsdf in dflist: mod = sm.OLS(olsdf,sm.add_constant(olsdf['market_r'])) re = mod.fit() params = re.params.T params.index = olsdf.columns params = params[params.index!='market_r'] params['date'] = olsdf.index[-1] params = params.rename(columns = {'market_r':'beta'}) paramslist.append(params) olsparams = pd.concat(paramslist).set_index('date',append=True).unstack().T constdf = olsparams.loc['const'].ewm(halflife = 63,ignore_na = True,adjust = False).mean().stack() betadf = olsparams.loc['beta'].ewm(halflife = 63,ignore_na = True,adjust = False).mean().stack() # cal residual mkt_df = pd.concat([X_['r']]*len(list(betadf.unstack())),axis = 1) mkt_df.columns = list(betadf.unstack()) residual = y - betadf.unstack()*mkt_df - constdf.unstack() # 这里的residual已经是经过ewm的beta和const计算得到的就不用再ewm了 return {'beta':betadf,'const':constdf,'residual':residual} def MOMTM(y): df = np.log(1+y) momtm = df.ewm(halflife=126,ignore_na = True,adjust = False).mean()#.iloc[-1:] return momtm def CMRA(y,T): date = y.index[-1] dflist= [] for i in range(1,T+1): pct_n_month = pd.DataFrame((y/y.shift(21*i)-1).iloc[-1])/21 dflist.append(pct_n_month) df = pd.concat(dflist,axis =1) zmax = df.max(axis =1) zmin = df.min(axis = 1) cmra = pd.DataFrame(np.log(1+zmax)-np.log(1+zmin),columns = [date]).T return cmra def orthog(barrafactor,y,xlist): df = barrafactor.copy() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() for p in xlist: df[p]*= regre.params[p] df[y+'_orth'] = df[y] - df[xlist].sum(axis = 1)-regre.params['Intercept'] return df[[y+'_orth']] # beta self.olsparams = OLSparams(self.returndata,self.filedict['market_r']) self.beta = pd.DataFrame(self.olsparams['beta']).dropna() self.beta.columns = ['beta'] # momentum print('rise momentum') # retroll504 = list(self.returndata.rolling(504))[504:] # self.momtm = pd.concat(list(map(lambda x: MOMTM(x),retroll504))).shift(21).dropna(how = 'all') self.momtm = MOMTM(self.returndata).shift(21).dropna(how = 'all') self.momtm = pd.DataFrame(self.momtm.stack(),columns=['momentum']) # residual volatility print('rise residual volatility') self.hist_volatility = self.returndata.ewm(halflife = 42,ignore_na = True,adjust = False).std().dropna(how = 'all') CMRAlist = list(self.price.rolling(252))[252:] self.CMRA = pd.concat(list(map(lambda x: CMRA(x,12),CMRAlist))) self.Hsigma = self.olsparams['residual'].rolling(252,min_periods = 1).std() self.residual_volatility = pd.DataFrame((self.hist_volatility*0.74+self.CMRA*0.16+self.Hsigma*0.1).stack()).dropna() self.residual_volatility.columns = ['residual_volatility'] # non-linear size print('rise non-linear size') self.nlsize = (self.size**3).dropna() self.nlsize.columns = ['nlsize'] # Bp print('rise Bp') self.Bp = self.filedict['Bp'].dropna() # liquidity print('rise Liquidity') self.tvrdf = self.filedict['turnover'] self.liq_1m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(22,min_periods =1).mean()) self.liq_3m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(74,min_periods =1).mean()) self.liq_12m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(252,min_periods =1).mean()) self.liq = (0.35*self.liq_1m + 0.35*self.liq_3m + 0.3*self.liq_12m).dropna() print('rise Earning Yield') self.earning_yield = pd.concat([self.filedict['Ep'],self.filedict['Sp']],axis = 1) self.earning_yield['earning_yield'] = self.earning_yield['ep_ratio_ttm']*0.66+self.earning_yield['sp_ratio_ttm']*0.34 self.earning_yield = self.earning_yield[['earning_yield']].dropna() # growth print('rise growth') NP = self.filedict['NPGO'].unstack() NP = (NP-NP.shift(504))/NP.shift(504).abs().replace(0,np.nan) NP = NP.stack() RVN = self.filedict['RGO'].unstack() RVN = (RVN - RVN.shift(504))/RVN.shift(504).abs().replace(0,np.nan) RVN = RVN.stack() self.growth = pd.DataFrame(NP['net_profit_parent_company_ttm_0']*0.34+RVN['revenue_ttm_0']*0.66) self.growth.columns = ['growth'] self.growth.dropna(inplace=True) # leverage print('rise leverage') self.leverage = self.filedict['MLEV']['du_equity_multiplier_ttm']*0.38+self.filedict['DTOA']['debt_to_asset_ratio_ttm']*0.35+self.filedict['BLEV']['book_leverage_ttm']*0.27 self.leverage = pd.DataFrame(self.leverage) self.leverage.columns = ['leverage'] self.leverage.dropna(inplace=True) # concat self.barrafactor = pd.concat([ self.size, self.beta, self.momtm, self.residual_volatility, self.nlsize, self.Bp, self.liq, self.earning_yield, self.growth, self.leverage],axis = 1).sort_index(level = 0) '''正则化''' # 未经正则化的原始因子已存为类变量,可直接调用 print('Orthogonalizing....') y = ['residual_volatility','nlsize','turnover'] xlist = ['circulation_A','beta'] # 不dropna会报错 self.barrafactor[y[0]] = self.barrafactor[[y[0]]+xlist].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[0],xlist)) self.barrafactor[y[1]] = self.barrafactor[[y[1]]+xlist[:1]].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[1],xlist[:1])) self.barrafactor[y[2]] = self.barrafactor[[y[2]]+xlist[:1]].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[2],xlist[:1])) # 标准化 def return_barra_factor(self,rank_normalize:bool): mft = multi_factor_test() if rank_normalize: return mft.mat_ranknormlize(self.barrafactor) else: return mft.mat_normlize(self.barrafactor) def barra_compose(self,factordata): # 因子是rank数据 decompose = pd.concat([self.barrafactor,factordata],axis = 1).dropna().rename_axis(['date','symbol']) def orthog(barrafactor,y,xlist): df = barrafactor.copy() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() params = regre.params[~(regre.params.index == 'Intercept')] intercept = regre.params[(regre.params.index == 'Intercept')] residual = df[y] - (df[list(params.index)]*params).sum(axis = 1) - intercept.values return residual,params # 这种方法只算一天的会错 # residual_ols =decompose.groupby(level = 0).apply(lambda x: orthog(x,list(decompose)[-1],list(decompose)[:-1])[0]).droplevel(0) # params_ols =decompose.groupby(level = 0).apply(lambda x: orthog(x,list(decompose)[-1],list(decompose)[:-1])[1]) # return residual_ols,params_ols decomposebyday = list(decompose.groupby(level = 'date')) residual_olslist = [] params_olslist = [] for df in decomposebyday: x = df[1] residual_ols,params_ols = orthog(x,list(decompose)[-1],list(decompose)[:-1]) residual_olslist.append(residual_ols) params_olslist.append(pd.DataFrame(params_ols,columns = [df[0]]).T) return pd.concat(residual_olslist),pd.concat(params_olslist) def barra_style_pool(self,style,cutnum): bystyle = self.barrafactor[[style]].copy() bystyle[style+'_group'] = bystyle[style].dropna().groupby(level = 0,group_keys=False).apply(lambda x: pd.cut(x,cutnum,labels=list(range(1,cutnum+1)))) return bystyle def factor_performance_bystyle(self,factordata,factorname,style,cutnum): # 即便因子在风格上没有偏斜,仍然会有不同风格上因子表现不同的情况 bystyle = pd.concat([factordata,self.barrafactor[[style]]],axis = 1) bystyle[style+'_group'] = bystyle[style].dropna().groupby(level = 0,group_keys=False).apply(lambda x: pd.cut(x,cutnum,labels=list(range(1,cutnum+1)))) ic_daily = bystyle.groupby(style+'_group',group_keys=False).apply(lambda x: x[[factorname,'nday_return']].groupby(level = 0).apply(lambda x: x.corr('spearman').iloc[0,1])).T return ic_daily class AutoMatic(object): sst = single_signal_test() mft = multi_factor_test() def __init__(self,Bft,base_index,Price,quantiles,days,qcut,demean,weighted_method) -> None: '''base_index基准价格时间索引是timestamp''' self.Bft = Bft self.Price = Price.copy() self.base_index = base_index self.quantiles = quantiles self.days = days self.qcut = qcut self.demean = demean self.weighted_method = weighted_method pass def AutoMatic_DirCheck(self,path): if not os.path.exists(path): os.makedirs(path) def AutoMatic_Direc_Adjust(self,factors,dir_): neu_factors = factors.copy() direction_dict = {} strict_eff = [] unstrict_eff = [] self.AutoMatic_DirCheck(dir_+'direction/') self.AutoMatic_DirCheck(dir_+'direction/redirection/') for fc in list(neu_factors): res_df = self.sst.factor_prepare(neu_factors,fc,self.quantiles,self.qcut) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,tmp,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,fc,res_df,self.Price,self.days,dir_+'/direction/',self.demean) if qreturn[list(qreturn)[0]].sum()<= qreturn[self.quantiles].sum(): print(fc+'是正向因子') direction_dict[fc] = 1 if qreturn[list(qreturn)[0]].sum() > qreturn[self.quantiles].sum(): print(fc+'是负向因子') neu_factors = neu_factors.copy() neu_factors[fc]=self.mft.mat_normlize(-1*neu_factors[fc]) direction_dict[fc] = -1 res_df = self.sst.factor_prepare(neu_factors,fc,self.quantiles,self.qcut) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,tmp,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,fc,res_df,self.Price,self.days,dir_+'direction/redirection/',self.demean) # 有效性判别 strict_eff,unstrict_eff = self.sst.eff_classification(fc,indicator,self.sst.efficient_judge,strict_eff,unstrict_eff) return direction_dict,strict_eff,unstrict_eff def AutoMatic_Factor_Merge_Ret(self,neu_factors,base_factors,mergename,dir_): base_f = pd.DataFrame(neu_factors[base_factors].sum(axis = 1),columns = [mergename]) res_df = self.sst.factor_prepare(base_f,mergename,self.quantiles,self.qcut) self.AutoMatic_DirCheck(dir_) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,clean_factor,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,mergename,res_df,self.Price,self.days,dir_,self.demean) return qreturn,clean_factor def AutoMatic_Compare_Indicator(self,qreturn,reverse): if reverse: maxq = min(list(qreturn)) base_perf_sr = -1*qreturn[maxq].mean()/qreturn[maxq].std() return base_perf_sr maxq = max(list(qreturn)) base_perf_sr = qreturn[maxq].mean()/qreturn[maxq].std() return base_perf_sr def threads_pool_run(self,params_batch): InSampleFactors,i,dir_ = params_batch[0] , params_batch[1] , params_batch[2] import matplotlib matplotlib.use('agg') savedir = dir_+'{}/'.format(i) direction_dict,strict_eff,unstrict_eff =self.AutoMatic_Direc_Adjust(InSampleFactors,savedir) # 方向调整 return (direction_dict,strict_eff,unstrict_eff) def AutoMatic_Stochastic_Optimizer(self,test_factor,threads_num,dir_): dateset = list(set(test_factor.index.get_level_values('date'))) import multiprocessing from multiprocessing import Pool InSplList = [] for i in range(threads_num): randomdate = sorted(np.random.choice(dateset,int(len(dateset)/5),replace = False)) InSplList.append((test_factor.loc[randomdate],i,dir_)) pool = Pool(min(multiprocessing.cpu_count(),threads_num)) return pool.map(self.threads_pool_run,InSplList) def AutoMatic_Perf_InPool(self,neu_factors,base_factors,reverse,save_dir): qreturn,tmp =self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors,'basef',save_dir+'temp/') base_perf_sr= self.AutoMatic_Compare_Indicator(qreturn,reverse) others = list(filter(lambda x: x not in base_factors,list(neu_factors))) for sf in others:# 挨个加表现 print(base_factors) qreturn,tmp =self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors+[sf],sf+'_basef',save_dir+'temp/') perf_sr = self.AutoMatic_Compare_Indicator(qreturn,reverse) print('是否超越此前表现:{};本次超额夏普:{},此前最佳超额夏普:{}'.format(perf_sr > base_perf_sr,perf_sr,base_perf_sr)) if perf_sr > base_perf_sr: base_factors.append(sf) if perf_sr > base_perf_sr: base_perf_sr = perf_sr qreturn,clean_factor = self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors,'basef',save_dir+'final/') return qreturn,clean_factor class plot_tools(object): def __init__(self) -> None: import matplotlib self.plotstatus = matplotlib.get_backend() pass def trio_plt(self,qmean,qcum,quantiles): # 画收益图 import matplotlib.pyplot as plt qmean[list(range(1,quantiles+1))].plot(kind= 'bar',title = 'mean') plt.show() qcum[list(range(1,quantiles+1))].plot(title = 'cumreturn') plt.legend(loc = 'upper center',bbox_to_anchor=(1.1, 1.02)) plt.show() (qcum[10]-qcum[1]).plot(title = 'long-short') plt.show() def fbplot(self,frontplot,bgplot,c,fname,bname): # frontplot,bgplot: # pd.Series # multiindex: timestamp,code import matplotlib.pyplot as plt import matplotlib.ticker as ticker tickspace = len(frontplot)//12 fig = plt.figure() a1=fig.add_axes([0,0,1,1]) a1.bar(frontplot.index,bgplot.loc[frontplot.index],color = c) a1.tick_params(axis='x', labelrotation= 30) a1.xaxis.set_major_locator(ticker.MultipleLocator(tickspace)) a2 = a1.twinx() a2.plot(frontplot.index,frontplot,color = 'red') a2.tick_params(axis='x', labelrotation= 30) a2.xaxis.set_major_locator(ticker.MultipleLocator(tickspace)) fig.legend(frameon = False,labels = [bname+'(left)',fname+'(right)'],loc = 'upper center') plt.show() def factor_plt(self,qreturn,to,ictable,fc,ndays,savedir=''): from alphalens import utils from pandas.plotting import table numtable = pd.concat([qreturn.mean(),qreturn.sum(),qreturn.mean()/qreturn.std()],axis = 1).rename(columns= {0:'avg',1:'sum',2:'risk-adj'}).T top_quantile = max(list(qreturn)) totalSeed = qreturn.index xticks = list(range(0, len(totalSeed), 60)) xlabels = [str(totalSeed[x]) for x in xticks] import matplotlib.pyplot as plt plt.figure(dpi=300, figsize=(24, 12)) ax = plt.subplot(321,frame_on=False,title = fc+'_retsheet_bygroup') ax.xaxis.set_visible(False) # hide the x axis ax.yaxis.set_visible(False) # hide the y axis table(ax, numtable.round(5), loc='center') # 将df换成需要保存的dataframe即可 ax = plt.subplot(365,frame_on=False,title = str(ndays)+'days_information') ax.xaxis.set_visible(False) # hide the x axis ax.yaxis.set_visible(False) # hide the y axis table(ax, ictable.round(5), loc='center') # 将df换成需要保存的dataframe即可 plt.subplot(325,title = fc+'_cumret_bygroup') plt.plot(qreturn.index,qreturn.cumsum(),label = list(qreturn)) plt.legend() plt.xticks(rotation=90) plt.xticks(ticks=xticks, labels=xlabels) plt.subplot(324,title = fc+'_turnover_bygroup') plt.bar(to.index,to,color="blue") plt.subplot(323,title = fc+'_avgret_bygroup') plt.bar(qreturn.mean().index,qreturn.mean(),color="y") plt.subplot(326,title = fc+'_lsret_bygroup') plt.plot(qreturn.index,(qreturn[top_quantile]-qreturn[1]).cumsum(),color="g") plt.xticks(rotation=90) plt.xticks(ticks=xticks, labels=xlabels) try: os.remove(savedir+fc+'.jpg') print(fc+'.jpg'+' 旧文件删除') except: print(fc+'.jpg'+' 是新文件') plt.savefig(savedir+fc+'.jpg') if self.plotstatus != 'agg': plt.show() plt.close() # 热力图展示 def ShowHeatMap(self,DataFrame,savedir='',triangle = True): import matplotlib.pyplot as plt import seaborn as sns f, ax = plt.subplots(figsize=(35, 15)) ax.set_title('Wine GRA') # 设置展示一半,如果不需要注释掉mask即可 if triangle: mask = np.zeros_like(DataFrame) mask[np.triu_indices_from(mask)] = True # np.triu_indices 上三角矩阵 with sns.axes_style("white"): sns.heatmap(DataFrame, cmap="YlGnBu", annot=True, mask=mask, ) else : with sns.axes_style("white"): sns.heatmap(DataFrame, cmap="YlGnBu", annot=True, ) plt.savefig(savedir) if self.plotstatus != 'agg': plt.show() def combine_imgs_pdf(self,folder_path, pdf_file_path,idstname): import os from PIL import Image """ 合成文件夹下的所有图片为pdf Args: folder_path (str): 源文件夹 pdf_file_path (str): 输出路径 """ files = os.listdir(folder_path) png_files = [] sources = [] for file in files: if 'png' in file or 'jpg' in file: png_files.append(folder_path + file) png_files.sort() for file in png_files: png_file = Image.open(file) png_file = png_file.convert("RGB") sources.append(png_file) sources[0].save(pdf_file_path+'{}.pdf'.format(idstname), "pdf", save_all=True, append_images=sources[1:],quality = 95) class mate_alphalens(object): def __init__(self) -> None: pass def index_mate(self,factordata,price): fcdf = factordata.reset_index() fcdf['date'] = pd.to_datetime(fcdf['date']) fcdf = fcdf.rename(columns = {'symbol':'asset'}).set_index(['date','asset']) ptemp = price.copy() ptemp.index = pd.to_datetime(ptemp.index) return fcdf,ptemp def trans_ex_return(self,clean_factor,index_price,ret_col): from alphalens import utils index_price['factor'] = 1 base_ret = utils.compute_forward_returns(index_price[['factor']],index_price['close'].unstack()) base_ret = base_ret.droplevel('asset').reindex(clean_factor.index.get_level_values(0)) base_ret['asset'] = clean_factor.index.get_level_values('asset') base_ret = base_ret.set_index(['asset'],append=True) df = clean_factor.copy() df[ret_col]= df[ret_col]-base_ret[ret_col] return df class alert(object): def __init__(self,**file): if file: self.filename = file else: import sys self.filename = sys.argv[0] pass def finish_alert(self): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header # 1. 连接邮箱服务器 con = smtplib.SMTP_SSL('smtp.qq.com', 465) # 2. 登录邮箱 con.login('[email protected]', 'jwtjvrktevlobiag') # 2. 准备数据 # 创建邮件对象 msg = MIMEMultipart() # 设置邮件主题 subject = Header('{}程序运行完毕'.format(self.filename), 'utf-8').encode() msg['Subject'] = subject # 设置邮件发送者 msg['From'] = '[email protected]' # 设置邮件接受者 msg['To'] = '[email protected]' # 添加⽂文字内容 text = MIMEText('{}程序运行完毕'.format(self.filename), 'plain', 'utf-8') msg.attach(text) # 3.发送邮件 con.sendmail('[email protected]', '[email protected]', msg.as_string()) con.quit() def breakdown_alert(self): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header # 1. 连接邮箱服务器 con = smtplib.SMTP_SSL('smtp.qq.com', 465) # 2. 登录邮箱 con.login('[email protected]', 'jwtjvrktevlobiag') # 2. 准备数据 # 创建邮件对象 msg = MIMEMultipart() # 设置邮件主题 subject = Header('{}程序运行失败'.format(self.filename), 'utf-8').encode() msg['Subject'] = subject # 设置邮件发送者 msg['From'] = '[email protected]' # 设置邮件接受者 msg['To'] = '[email protected]' # 添加⽂文字内容 text = MIMEText('{}程序运行失败'.format(self.filename), 'plain', 'utf-8') msg.attach(text) # 3.发送邮件 con.sendmail('[email protected]', '[email protected]', msg.as_string()) con.quit() # sst: # def noise_judge(self,qreturn,fc): # from scipy import stats # from statsmodels.stats.diagnostic import acorr_ljungbox # # 因子判别 # lsret,groupmean,groupmean_diff,top_sharp = self.judge_material(qreturn,fc) # ''' # 检验: # 对两个都没通过的可能是噪声的因子做自相关性检验,因为0假设是有相关性,所以哪怕只有一点自相关性(123123)都可能不会被拒绝,所以被拒绝的基本上可认定为噪声 # ''' # t,p_lsret =stats.ttest_1samp(lsret,0,alternative='greater') # t,p_groupmean = stats.ttest_1samp(groupmean_diff,0,alternative='greater') # if p_groupmean>0.05 and p_lsret>0.05: # print(fc+'可能是噪声;分组平均收益一阶差分p值{},多空收益p值{}'.format(p_groupmean,p_lsret)) # # ls_ljung = acorr_ljungbox(lsret.cumsum(), lags=[1,5,10,20]) # gmdf_ljung = acorr_ljungbox(groupmean, lags=[1,5]) # if gmdf_ljung['lb_pvalue'].min()>=0.05: # print(fc+'是噪声;分组平均收益自相关检验最小p值{}'.format(gmdf_ljung['lb_pvalue'].min())) # return True # else: # print('无法判定'+fc+'是噪声;分组平均收益自相关检验最小p值{}'.format(gmdf_ljung['lb_pvalue'].min())) # return False # def short_judge(self,qreturn,fc): # from scipy import stats # # 因子判别 # lsret,groupmean,groupmean_diff = self.judge_material(qreturn,fc) # ''' # 检验: # 对两个都通过的是有用的因子 # ''' # maxquantile = max(list(lsret)) # top5 = groupmean_diff.iloc[-5:] # bottom5 = groupmean_diff.iloc[:5] # t,p_top5 = stats.ttest_1samp(top5,0,alternative='greater') # t,p_bottom5 = stats.ttest_1samp(bottom5,0,alternative='greater') # if p_top5>0.5 and p_bottom5<0.1 and (abs(groupmean.iloc[-1])<abs(groupmean.iloc[0])): # print(fc+'是空头因子;top5组平均收益一阶差分p值{},bottom5组平均收益一阶差分p值{}'.format(p_top5,p_bottom5)) # return True # return False # mft: # def multif_denoisies(self,noise_factors_list,allfactors,threshold): # ''' # 输入: # 因子矩阵,噪声因子 # 输出: # 去噪后的因子 # ''' # if len(noise_factors_list)==0: # print('无可用于去噪的噪声') # return allfactors # other_factors_df = allfactors[list(filter(lambda x: x not in noise_factors_list,list(allfactors)))] # noise_factors_df = self.ts_mat_orthog(allfactors[noise_factors_list]) # factordf = pd.concat([other_factors_df,noise_factors_df],axis = 1) # # 去噪 # other_factors = list(other_factors_df) # corrdf = self.multif_corr_ana(factordf,list(factordf))[0] # print('相关性详情:') # print(corrdf) # corrdf = corrdf.loc[other_factors,noise_factors_list].abs().max(axis = 1) # print('要被去噪的因子:') # corr_with_noise = list(corrdf[corrdf>=threshold].index) # print(corr_with_noise) # for fc in corr_with_noise: # factordf[fc] = self.orthog(factordf, fc, noise_factors_list)[0] # return factordf[other_factors] # def multif_cal_weight(self,factordf,factorlist,return_col,weight_type): # # factordf: pd.DataFrame # # multiindex: timestamp,code # # columns: factorname1, factorname2...,returndata # # factorlist: strlist # # return_col: column name, str # df = factordf.copy() # ret_k = self.fators_abnormal_ret(df,return_col,factorlist) # ic = df.groupby(level = 'date').apply(lambda x: x.corr(method= 'spearman')[return_col]) # del ic['ret'] # weight = ret_k*ic # direc = ic.mean().apply(lambda x: 1 if x>0 else -1) # if weight_type == 1: # return weight.mean()/weight.std()*direc # elif weight_type == 2: # return weight.mean()*direc # else: # return direc # # if weight_type == '风险平价加权': # # cov = weight[factorlist].cov() # # from scipy.optimize import minimize # # def objective(x): # # w_cov = np.dot(cov,x.T) # # for n in range(len(x)): # # w_cov[n] *= x[n] # # mat = np.array([w_cov]*len(x)) # # scale = 1/sum(abs(mat)) # # return np.sum(abs(scale*(mat-mat.T))) # # initial_w=np.array([0.2]*len(factorlist)) # # cons = [] # # cons.append({'type':'eq','fun':lambda x: sum(x)-1}) # # for i in range(len(initial_w)): # # cons.append({'type':'ineq','fun':lambda x: x[i]}) # # #结果 # # res=minimize(objective,initial_w,method='SLSQP',constraints=cons) # # params = pd.Series(res.x) # # params.index = cov.index # # return params # def weighted_factor(self,factordf,weight): # # factordf: pd.DataFrame # # multiindex: timestamp,code # # columns: factorname1, factorname2... # # weight:pd.Series # wf = (weight*factordf).sum(axis = 1) # return pd.DataFrame(wf,columns = ['weighted_factor'])
Alpha-Planet
/Alpha_Planet-0.0.2-py3-none-any.whl/Alpha_Planet/Alpha_Rabbit.py
Alpha_Rabbit.py
from Alpha_Rabbit.Factor_Def_and_Get_Method import * _method = Factor_get_method() def Factor_Calculator(pricebyday,minbar,conn,todaydate,notst,factors_to_cal): ######################################## 日间数据计算因子 #################################### uploadfactordict = {} Close = pricebyday['close'].unstack().sort_index() Open = pricebyday['open'].unstack().sort_index() High = pricebyday['high'].unstack().sort_index() Low = pricebyday['low'].unstack().sort_index() volume = pricebyday[['volume']].pivot_table(index = 'date',columns = 'symbol',values = 'volume').sort_index() total_turnover = pricebyday[['total_turnover']].pivot_table(index = 'date',columns = 'symbol',values = 'total_turnover').sort_index() tovr_r = pricebyday['turnover_ratio'].unstack().sort_index() Close_ret = Close.pct_change() tempClose = Close.iloc[-30:] tempOpen = Open.iloc[-30:] tempHigh = High.iloc[-30:] tempLow = Low.iloc[-30:] anaual_close = Close.iloc[-272:] anaual_High = High.iloc[-272:] if 'mmt_intraday_M' in factors_to_cal or factors_to_cal == 'all': # 1个月日内动量 uploadfactordict['mmt_intraday_M'] = mmt_intraday_M(tempClose,tempOpen) if 'mmt_range_M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅调整动量 uploadfactordict['mmt_range_M'] = mmt_range_M(tempHigh,tempLow,tempClose) if 'mmt_overnight_M' in factors_to_cal or factors_to_cal == 'all': # 隔夜动量 uploadfactordict['mmt_overnight_M'] = mmt_overnight_M(tempOpen,tempClose) if 'mmt_route_M' in factors_to_cal or factors_to_cal == 'all': # 路径调整动量 uploadfactordict['mmt_route_M'] = mmt_route_M(tempClose) if 'mmt_discrete_M' in factors_to_cal or factors_to_cal == 'all': # 信息离散度动量 uploadfactordict['mmt_discrete_M'] = mmt_discrete_M(tempClose) if 'mmt_sec_rank_M' in factors_to_cal or factors_to_cal == 'all': # 截面rank动量 uploadfactordict['mmt_sec_rank_M'] = mmt_sec_rank_M(tempClose) if 'mmt_time_rank_M' in factors_to_cal or factors_to_cal == 'all': # 时序rank_score uploadfactordict['mmt_time_rank_M'] = mmt_time_rank_M(anaual_close) if 'mmt_highest_days_A' in factors_to_cal or factors_to_cal == 'all': # 最高价距今天数 uploadfactordict['mmt_highest_days_A'] = mmt_highest_days_A(anaual_High) if 'volumestable' in factors_to_cal or factors_to_cal == 'all': # 成交量稳定度 uploadfactordict['volumestable'] = volumestable(volume) if '_con' in factors_to_cal or factors_to_cal == 'all': # 收益一致性因子 uploadfactordict['_con'] = re_con(tempClose) if 'bofu_money' in factors_to_cal or factors_to_cal == 'all': # 波幅/成交额 uploadfactordict['bofu_money'] = bofu_money(tempHigh,tempLow,tempOpen,total_turnover) if 'vol_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月收益率波动 uploadfactordict['vol_std_1M'] = vol_std(Close_ret,'1M',30) if 'vol_up_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上行收益率波动 uploadfactordict['vol_up_std_1M'] = vol_up_std(Close_ret,'1M',30) if 'vol_down_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下行收益率波动 uploadfactordict['vol_down_std_1M'] = vol_down_std(Close_ret,'1M',30) if 'vol_updown_ratio_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上行波动和下行波动比 uploadfactordict['vol_updown_ratio_1M'] = vol_updown_ratio(Close_ret,'1M',30) if 'vol_highlow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅均值 uploadfactordict['vol_highlow_avg_1M'] = vol_highlow_avg(High,Low,'1M',30) if 'vol_highlow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅波动 uploadfactordict['vol_highlow_std_1M'] = vol_highlow_std(High,Low,'1M',30) if 'vol_highlow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅稳定度 uploadfactordict['vol_highlow_stable_1M'] = vol_highlow_stable(High,Low,'1M',30) if 'vol_upshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线均值 uploadfactordict['vol_upshadow_avg_1M'] = vol_upshadow_avg(High,Open,Close,'1M',30) if 'vol_upshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线波动 uploadfactordict['vol_upshadow_std_1M'] = vol_upshadow_std(High,Open,Close,'1M',30) if 'vol_upshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线稳定度 uploadfactordict['vol_upshadow_stable_1M'] = vol_upshadow_stable(High,Open,Close,'1M',30) if 'vol_downshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线均值 uploadfactordict['vol_downshadow_avg_1M'] = vol_downshadow_avg(Low,Open,Close,'1M',30) if 'vol_downshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线波动 uploadfactordict['vol_downshadow_std_1M'] = vol_downshadow_std(Low,Open,Close,'1M',30) if 'vol_downshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线稳定度 uploadfactordict['vol_downshadow_stable_1M'] = vol_downshadow_stable(Low,Open,Close,'1M',30) if 'vol_w_upshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线均值 uploadfactordict['vol_w_upshadow_avg_1M'] = vol_w_upshadow_avg(High,Close,'1M',30) if 'vol_w_upshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线波动 uploadfactordict['vol_w_upshadow_std_1M'] = vol_w_upshadow_std(High,Close,'1M',30) if 'vol_w_upshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线稳定度 uploadfactordict['vol_w_upshadow_stable_1M'] = vol_w_upshadow_stable(High,Close,'1M',30) if 'vol_w_downshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线均值 uploadfactordict['vol_w_downshadow_avg_1M'] = vol_w_downshadow_avg(Low,Close,'1M',30) if 'vol_w_downshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线波动 uploadfactordict['vol_w_downshadow_std_1M'] = vol_w_downshadow_std(Low,Close,'1M',30) if 'vol_w_downshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线稳定度 uploadfactordict['vol_w_downshadow_stable_1M'] = vol_w_downshadow_stable(Low,Close,'1M',30) if 'liq_turn_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月换手均值 uploadfactordict['liq_turn_avg_1M'] = liq_turn_avg(tovr_r,'1M',30) if 'liq_turn_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月换手方差 uploadfactordict['liq_turn_std_1M'] = liq_turn_std(tovr_r,'1M',30) if 'liq_vstd_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月成交波动比 uploadfactordict['liq_vstd_1M'] = liq_vstd(tovr_r,Close_ret,'1M',30) if 'liq_amihud_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子均值 uploadfactordict['liq_amihud_avg_1M'] = liq_amihud_avg(tovr_r,Close_ret,'1M',30) if 'liq_amihud_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子波动 uploadfactordict['liq_amihud_std_1M'] = liq_amihud_std(tovr_r,Close_ret,'1M',30) if 'liq_amihud_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子稳定度 uploadfactordict['liq_amihud_stable_1M'] = liq_amihud_stable(tovr_r,Close_ret,'1M',30) if 'liq_shortcut_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子均值 uploadfactordict['liq_shortcut_avg_1M'] = liq_shortcut_avg(tovr_r,High,Low,Open,Close,'1M',30) if 'liq_shortcut_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子波动 uploadfactordict['liq_shortcut_std_1M'] = liq_shortcut_std(tovr_r,High,Low,Open,Close,'1M',30) if 'liq_shortcut_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子稳定度 uploadfactordict['liq_shortcut_stable_1M'] = liq_shortcut_stable(tovr_r,High,Low,Open,Close,'1M',30) if 'PLUS' in factors_to_cal or factors_to_cal == 'all': # 上下影线差 uploadfactordict['PLUS'] = PLUS(tempClose,tempHigh,tempLow) if 'liq_std_w_plus_1M' in factors_to_cal or factors_to_cal == 'all': # 上下影线差*换手波动 uploadfactordict['liq_std_w_plus_1M'] = liq_std_w_plus(tempClose,tempHigh,tempLow, tovr_r,'1M',30) if 'HL_Sprd' in factors_to_cal or factors_to_cal == 'all': # 理想振幅因子 uploadfactordict['HL_Sprd'] = HL_Sprd(Close,High,Low,20) if 'tvr_std_1M' in factors_to_cal or factors_to_cal == 'all': # 换手率稳定度 uploadfactordict['tvr_std_1M'] = tvr_std(tovr_r,'1M',20) if 'corr_price_turn_1M' in factors_to_cal or factors_to_cal == 'all': # 换手率与价格的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-20:] uploadfactordict['corr_price_turn_1M'] = corr_price_turn(timerange,pricebyday,'1M') if 'corr_ret_turn_post_1M' in factors_to_cal or factors_to_cal == 'all': # 收益率与换手率的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-21:] # 涉及到计算pct_change需要多一天 uploadfactordict['corr_ret_turn_post_1M'] = corr_ret_turn_post(timerange,pricebyday,'1M') if 'corr_ret_turnd_1M' in factors_to_cal or factors_to_cal == 'all': # 收益率与换手率变动的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-21:] uploadfactordict['corr_ret_turnd_1M'] = corr_ret_turnd(timerange,pricebyday,'1M') ######################################## 日内数据计算因子 #################################### # #单笔成交金额相关因子 sing_trade_amt = pd.DataFrame(minbar['total_turnover']/minbar['num_trades'],columns= ['single_trade_amt']) sing_trade_amt = sing_trade_amt[sing_trade_amt['single_trade_amt']>0] sing_trade_amt['trading_date'] = todaydate sta_del_extrm = sing_trade_amt.groupby(level = 0).apply(lambda x: x.sort_values('single_trade_amt').iloc[:-10]).droplevel(0)# 剔除极大值 sta_50pct = sing_trade_amt.groupby(level = 0).\ apply(lambda x: x[x['single_trade_amt']<x['single_trade_amt'].quantile(0.5)]).droplevel(0)# 后百分之五十 if 'mts' in factors_to_cal or factors_to_cal == 'all': # 主力交易强度 uploadfactordict['mts'] = mts(sta_del_extrm,minbar,todaydate) if 'mte' in factors_to_cal or factors_to_cal == 'all': # 主力交易情绪 uploadfactordict['mte'] = mte(sta_del_extrm,minbar,todaydate) if 'qua' in factors_to_cal or factors_to_cal == 'all': # 分位数因子qua uploadfactordict['qua'] = qua(sta_del_extrm,todaydate) if 'qua20m' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('qua',notst.index[-20],conn) q = qua(sta_del_extrm,todaydate) qua20m = pd.concat([prv_factor,q]).unstack().rolling(20,min_periods=1).mean().iloc[-1:].stack().rename(columns = {'qua':'qua20m'}) uploadfactordict['qua20m'] = qua20m if 'skew' in factors_to_cal or factors_to_cal == 'all': # 偏度因子skew uploadfactordict['skew'] = skew(sta_50pct,todaydate) if 'skew20m' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('skew',notst.index[-20],conn) sk = skew(sta_50pct,todaydate) skew20m = pd.concat([prv_factor,sk]).unstack().rolling(20,min_periods=1).mean().iloc[-1:].stack().rename(columns = {'skew':'skew20m'}) uploadfactordict['skew20m'] = skew20m if 's_reverse' in factors_to_cal or factors_to_cal == 'all': # 强反转因子 uploadfactordict['s_reverse'] = s_reverse(sing_trade_amt,minbar,todaydate) if 's_reverse_10_sum' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('s_reverse',notst.index[-10],conn) sr = s_reverse(sing_trade_amt,minbar,todaydate) s_reverse_10_sum = pd.concat([prv_factor,sr]).unstack().rolling(10,min_periods=1).sum().iloc[-1:].stack().rename(columns = {'s_reverse':'s_reverse_10_sum'}) uploadfactordict['s_reverse_10_sum'] = s_reverse_10_sum if 'daily_sta_90pct' in factors_to_cal or factors_to_cal == 'all': # 理想反转因子 uploadfactordict['daily_sta_90pct'] = daily_sta_90pct(sta_del_extrm) if 'ideal_reverse' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('daily_sta_90pct',notst.index[-20],conn) dsta90 = daily_sta_90pct(sing_trade_amt) daily_sta_cal = pd.concat([prv_factor,dsta90]) uploadfactordict['ideal_reverse'] = ideal_reverse(daily_sta_cal,Close) return uploadfactordict
Alpha-Planet
/Alpha_Planet-0.0.2-py3-none-any.whl/Alpha_Planet/Factor_Calculator.py
Factor_Calculator.py
import pandas as pd import numpy as np class Factor_get_method(object): def __init__(self) -> None: pass def get_all_tables(self,con): sql = "select name from sqlite_master where type ='table' order by name" c = con.cursor() result = c.execute(sql) factorfilelist = [i[0] for i in result.fetchall()] return factorfilelist def sql_fetch(self,con,tablename): cursorObj = con.cursor() cursorObj.execute('PRAGMA table_info("{}")'.format(tablename)) return cursorObj.fetchall() def sql_exec(self,sql,sqlcols,conn): cur = conn.cursor() result = cur.execute(sql) result = pd.DataFrame(result,columns = sqlcols).set_index(['date','symbol']) return result def get_prev_days_factor_by_name(self,factorname:str,date:str,conn): sql = "select * from {} where {}.date >= '{}'".format(factorname,factorname,date) sqlcols = [txt[1] for txt in self.sql_fetch(conn,factorname)] return self.sql_exec(sql,sqlcols,conn) def get_selected_date_factor_by_name(self,factorname:str,date:str,conn): sql = "select * from {} where {}.date = '{}'".format(factorname,factorname,date) sqlcols = [txt[1] for txt in self.sql_fetch(conn,factorname)] return self.sql_exec(sql,sqlcols,conn) def mmt_intraday_M(tempClose,tempOpen): # 1个月日内动量 mmt_intraday_M = (tempClose/tempOpen - 1).iloc[-22:].cumsum() mmt_intraday_M = pd.DataFrame(mmt_intraday_M.iloc[-1:].stack(),columns = ['mmt_intraday_M']) return mmt_intraday_M # 一个月振幅调整动量 def mmt_range_M(tempHigh,tempLow,tempClose): High_m = tempHigh.iloc[-22:].max() Low_m = tempLow.iloc[-22:].min() mmt_range_M = (High_m-Low_m)/tempClose.shift(22) mmt_range_M = pd.DataFrame(mmt_range_M.iloc[-1:].stack(),columns = ['mmt_range_M']) return mmt_range_M def mmt_overnight_M(tempOpen,tempClose): # 隔夜动量 mmt_overnight = tempOpen/tempClose.shift(1) - 1 todaydate = mmt_overnight.index[-1] mmt_overnight_M = pd.DataFrame(mmt_overnight.iloc[-20:].sum(),columns = ['mmt_overnight_M']) mmt_overnight_M['date'] = todaydate mmt_overnight_M = mmt_overnight_M.reset_index().set_index(['date','symbol']) return mmt_overnight_M def mmt_route_M(tempClose): # 路径调整动量 mmt_route_M = (tempClose/tempClose.shift(20) - 1)/abs(tempClose/tempClose.shift(1)-1).rolling(20).sum() mmt_route_M = pd.DataFrame(mmt_route_M.iloc[-1:].stack(),columns = ['mmt_route_M']) return mmt_route_M def mmt_discrete_M(tempClose): # 信息离散度动量 daily_up = (tempClose/tempClose.shift(1)-1).applymap(lambda x: int(x>0) if not np.isnan(x) else np.nan) daily_down = (tempClose/tempClose.shift(1)-1).applymap(lambda x: int(x<0) if not np.isnan(x) else np.nan) mmt_discrete_M = daily_up.rolling(20).sum()/20-daily_down.rolling(20).sum()/20 mmt_discrete_M = pd.DataFrame(mmt_discrete_M.iloc[-1:].stack(),columns = ['mmt_discrete_M']) return mmt_discrete_M def mmt_sec_rank_M(tempClose): # 截面rank动量 mmt_sec_rank_M = (tempClose/tempClose.shift(1)-1).rank(axis = 1).rolling(20).mean() mmt_sec_rank_M = pd.DataFrame(mmt_sec_rank_M.iloc[-1:].stack(),columns = ['mmt_sec_rank_M']) return mmt_sec_rank_M def mmt_time_rank_M(anaual_close): # 时序rank_score # anaual_close = Close.iloc[-272:] mmt_time_rank_M = (anaual_close/anaual_close.shift(1)-1).rolling(252,min_periods = 100).rank().rolling(20).mean() mmt_time_rank_M = pd.DataFrame(mmt_time_rank_M.iloc[-1:].stack(),columns = ['mmt_time_rank_M']) return mmt_time_rank_M def mmt_highest_days_A(anaual_High): # 最高价距今天数 todaydate = anaual_High.index[-1] mmt_highest_days_A = 252- anaual_High.iloc[-252:].apply(lambda x: x.argmax()) mmt_highest_days_A = pd.DataFrame(mmt_highest_days_A,columns= ['mmt_highest_days_A']) mmt_highest_days_A['date'] = todaydate mmt_highest_days_A = mmt_highest_days_A.reset_index().set_index(['date','symbol']) return mmt_highest_days_A def volumestable(volume): # 成交量稳定度 vol_m = volume.rolling(20).mean() vol_std = volume.rolling(20).std() volumestable = (vol_m/vol_std) volumestable = pd.DataFrame(volumestable.iloc[-1:].stack(),columns = ['volumestable']) return volumestable def re_con(tempClose): # 收益一致性因子 import numpy as np d5_r = tempClose.pct_change(5).iloc[-1:]/5 d10_r = tempClose.pct_change(10).iloc[-1:]/10/np.sqrt(2) d15_r = tempClose.pct_change(15).iloc[-1:]/15/np.sqrt(3) con = pd.concat([d5_r.stack(),d10_r.stack(),d15_r.stack()],axis = 1).dropna() con = con.mean(axis =1)/con.std(axis = 1) con = con.unstack() con_output = con.rank(axis = 1) con_output = con_output.apply(lambda x: x-x.mean(),axis = 1).abs() _con = pd.DataFrame(con_output.iloc[-1:].stack(),columns = ['_con']) return _con def bofu_money(tempHigh,tempLow,tempOpen,total_turnover): # 波幅/成交额 bofu_money = (tempHigh-tempLow)/tempOpen/total_turnover bofu_money = pd.DataFrame(bofu_money.iloc[-1:].stack(),columns = ['bofu_money']) return bofu_money def vol_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = pd.DataFrame(ret.std(),columns = ['vol_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_up_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = (ret*(ret>0).astype(int)).replace(0,np.nan) df = pd.DataFrame(df.std(),columns = ['vol_up_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_down_std(df,periodname,perioddays): ret = df.iloc[-perioddays:] todaydate = ret.index[-1] df = (ret*(ret<0).astype(int)).replace(0,np.nan) df = pd.DataFrame(df.std(),columns = ['vol_down_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_highlow_avg(high,low,periodname,perioddays): ratio = (high/low).iloc[-perioddays:] todaydate = ratio.index[-1] df = pd.DataFrame(ratio.mean(),columns = ['vol_highlow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_highlow_std(high,low,periodname,perioddays): ratio = (high/low).iloc[-perioddays:] todaydate = ratio.index[-1] df = pd.DataFrame(ratio.std(),columns = ['vol_highlow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_updown_ratio(df,periodname,perioddays): upstd = vol_up_std(df,periodname,perioddays) downstd = vol_down_std(df,periodname,perioddays) updownratio = pd.DataFrame(upstd['vol_up_std_'+periodname]/downstd['vol_down_std_'+periodname],columns = ['vol_updown_ratio_'+periodname]) return updownratio def vol_highlow_stable(high,low,periodname,perioddays): hlavg = vol_highlow_avg(high,low,periodname,perioddays) hlstd = vol_highlow_std(high,low,periodname,perioddays) hlstable = pd.DataFrame(hlavg['vol_highlow_avg_'+periodname]/hlstd['vol_highlow_std_'+periodname],columns = ['vol_highlow_stable_'+periodname]) return hlstable def vol_upshadow_avg(High,Open,Close,periodname,perioddays): multiper = (Open>Close).astype(int) Open_Close_max = multiper*Open + (1-multiper)*Close upshadow_df = ((High - Open_Close_max)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.mean(),columns = ['vol_upshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_upshadow_std(High,Open,Close,periodname,perioddays): multiper = (Open>Close).astype(int) Open_Close_max = multiper*Open + (1-multiper)*Close upshadow_df = ((High - Open_Close_max)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.std(),columns = ['vol_upshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_upshadow_stable(High,Open,Close,periodname,perioddays): avg = vol_upshadow_avg(High,Open,Close,periodname,perioddays) std = vol_upshadow_std(High,Open,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_upshadow_avg_'+periodname]/std['vol_upshadow_std_'+periodname],columns = ['vol_upshadow_stable_'+periodname]) return df def vol_downshadow_avg(Low,Open,Close,periodname,perioddays): multiper = (Open<Close).astype(int) Open_Close_min = multiper*Open + (1-multiper)*Close downshadow_df = ((Open_Close_min - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.mean(),columns = ['vol_downshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_downshadow_std(Low,Open,Close,periodname,perioddays): multiper = (Open<Close).astype(int) Open_Close_min = multiper*Open + (1-multiper)*Close downshadow_df = ((Open_Close_min - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.std(),columns = ['vol_downshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_downshadow_stable(Low,Open,Close,periodname,perioddays): avg = vol_downshadow_avg(Low,Open,Close,periodname,perioddays) std = vol_downshadow_std(Low,Open,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_downshadow_avg_'+periodname]/std['vol_downshadow_std_'+periodname],columns = ['vol_downshadow_stable_'+periodname]) return df def vol_w_downshadow_avg(Low,Close,periodname,perioddays): downshadow_df = ((Close - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.mean(),columns = ['vol_w_downshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_downshadow_std(Low,Close,periodname,perioddays): downshadow_df = ((Close - Low)/Low).iloc[-perioddays:] todaydate = downshadow_df.index[-1] df = pd.DataFrame(downshadow_df.std(),columns = ['vol_w_downshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_downshadow_stable(Low,Close,periodname,perioddays): avg = vol_w_downshadow_avg(Low,Close,periodname,perioddays) std = vol_w_downshadow_std(Low,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_w_downshadow_avg_'+periodname]/std['vol_w_downshadow_std_'+periodname],columns = ['vol_w_downshadow_stable_'+periodname]) return df def vol_w_upshadow_avg(High,Close,periodname,perioddays): upshadow_df = ((High - Close)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.mean(),columns = ['vol_w_upshadow_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_upshadow_std(High,Close,periodname,perioddays): upshadow_df = ((High - Close)/High).iloc[-perioddays:] todaydate = upshadow_df.index[-1] df = pd.DataFrame(upshadow_df.std(),columns = ['vol_w_upshadow_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def vol_w_upshadow_stable(High,Close,periodname,perioddays): avg = vol_w_upshadow_avg(High,Close,periodname,perioddays) std = vol_w_upshadow_std(High,Close,periodname,perioddays) df = pd.DataFrame(avg['vol_w_upshadow_avg_'+periodname]/std['vol_w_upshadow_std_'+periodname],columns = ['vol_w_upshadow_stable_'+periodname]) return df def liq_turn_avg(tovr_r,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] todaydate = tovr_r_df.index[-1] df = pd.DataFrame(tovr_r_df.mean(),columns = ['liq_turn_avg_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_turn_std(tovr_r,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] todaydate = tovr_r_df.index[-1] df = pd.DataFrame(tovr_r_df.std(),columns = ['liq_turn_std_'+periodname]) df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_vstd(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df = ret.iloc[-perioddays:] df = pd.DataFrame(tovr_r_df.mean()/ret_df.std(),columns = ['liq_vstd_'+periodname]) todaydate = tovr_r_df.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_avg(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df_abs = ret.iloc[-perioddays:].abs() amihud = ret_df_abs/tovr_r_df df = pd.DataFrame(amihud.mean(),columns = ['liq_amihud_avg_'+periodname]) todaydate = amihud.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_std(tovr_r,ret,periodname,perioddays): tovr_r_df = tovr_r.iloc[-perioddays:] ret_df_abs = ret.iloc[-perioddays:].abs() amihud = ret_df_abs/tovr_r_df df = pd.DataFrame(amihud.std(),columns = ['liq_amihud_std_'+periodname]) todaydate = amihud.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_amihud_stable(tovr_r,ret,periodname,perioddays): avg = liq_amihud_avg(tovr_r,ret,periodname,perioddays) std = liq_amihud_std(tovr_r,ret,periodname,perioddays) v = avg['liq_amihud_avg_'+periodname]/std['liq_amihud_std_'+periodname] df = pd.DataFrame(v,columns = ['liq_amihud_stable_'+periodname]) return df def liq_shortcut_avg(tovr_r,High,Low,Open,Close,periodname,perioddays): shortcut = 2*(High - Low) - (Open - Close).abs() v = shortcut.iloc[-perioddays:]/tovr_r.iloc[-perioddays:] df = pd.DataFrame(v.mean(),columns = ['liq_shortcut_avg_'+periodname]) todaydate = v.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_shortcut_std(tovr_r,High,Low,Open,Close,periodname,perioddays): shortcut = 2*(High - Low) - (Open - Close).abs() v = shortcut.iloc[-perioddays:]/tovr_r.iloc[-perioddays:] df = pd.DataFrame(v.std(),columns = ['liq_shortcut_std_'+periodname]) todaydate = v.index[-1] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_shortcut_stable(tovr_r,High,Low,Open,Close,periodname,perioddays): avg = liq_shortcut_avg(tovr_r,High,Low,Open,Close,periodname,perioddays) std = liq_shortcut_std(tovr_r,High,Low,Open,Close,periodname,perioddays) v = avg['liq_shortcut_avg_'+periodname]/std['liq_shortcut_std_'+periodname] df = pd.DataFrame(v,columns = ['liq_shortcut_stable_'+periodname]) return df def PLUS(Close, High, Low): plus = (2*Close - High - Low)/Close.shift(1) todaydate = plus.index[-1] df = pd.DataFrame(plus.iloc[-1]) df.columns = ['PLUS'] df['date'] = todaydate df = df.reset_index().set_index(['date','symbol']) return df def liq_std_w_plus(Close, High, Low, tovr_r,periodname,perioddays): plus = PLUS(Close, High, Low) liq_std = liq_turn_std(tovr_r,periodname,perioddays) plus['PLUS'] = plus['PLUS'].groupby(level = 'date', group_keys=False).apply(lambda x: x-min(0,x.min())) swp = liq_std['liq_turn_std_'+periodname]*plus['PLUS'] df = pd.DataFrame(swp,columns = ['liq_std_w_plus_'+periodname]) return df def tvr_std(tovr_r,periodname,perioddays): df = tovr_r.iloc[-perioddays:] todaydate = tovr_r.index[-1] fc = pd.DataFrame(df.std()) fc.columns = ['tvr_std_'+periodname] fc['date'] = todaydate fc = fc.reset_index().set_index(['date','symbol']) return fc.sort_index() def HL_Sprd(close,high,low,perioddays): todaydate = close.index[-1] sprd = (high/low - 1).iloc[-perioddays:] close_ = close.iloc[-perioddays:] phigh = close_.apply(lambda x: x>x.quantile(0.75)).astype(int).replace(0,np.nan) plow = close_.apply(lambda x: x<x.quantile(0.25)).astype(int).replace(0,np.nan) vhigh = pd.DataFrame((sprd*phigh).mean()) vlow = pd.DataFrame((sprd*plow).mean()) vlow['date'],vhigh['date'] = todaydate,todaydate vhigh = vhigh.set_index('date',append=True).swaplevel() vlow = vlow.set_index('date',append=True).swaplevel() hlsprd = vhigh-vlow hlsprd.columns = ['HL_Sprd'] return hlsprd.dropna() def corr_price_turn(timerange,pricebyday,periodname): price = pricebyday.loc[timerange] fc = price[['close','turnover_ratio']].groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['close'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_price_turn_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def corr_ret_turn_post(timerange,pricebyday,periodname): pricedf = pricebyday.loc[timerange] pricedf['turnover_ratio'] = pricedf['turnover_ratio'].unstack().sort_index().shift(1).stack() # post pricedf['ret'] = pricedf['close'].unstack().sort_index().pct_change().stack() fc = pricedf[['ret','turnover_ratio']].groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['ret'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_ret_turn_post_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def corr_ret_turnd(timerange,pricebyday,periodname): pricedf = pricebyday.loc[timerange] pricedf['turnover_ratio_pct'] = pricedf['turnover_ratio'].unstack().sort_index().pct_change().stack() pricedf['ret'] = pricedf['close'].unstack().sort_index().pct_change().stack() fc = pricedf[['ret','turnover_ratio_pct']].dropna().groupby(level = 'symbol').apply(lambda x: x.droplevel('symbol').sort_index().corr()) fc = list(fc.groupby(level = 1))[1][1].droplevel(1)['ret'] fc = pd.DataFrame(fc).dropna() fc.columns =['corr_ret_turnd_'+periodname] fc['date'] = timerange[-1] fc = fc.reset_index().set_index(['date','symbol']) return fc def mts(sta_del_extrm,minbar,todaydate): mts = sta_del_extrm[['single_trade_amt']] mts['total_turnover'] = minbar['total_turnover'] mts = mts.groupby(level = 'symbol').corr()[::2]['total_turnover'].droplevel(1) mts= pd.DataFrame(mts) mts.columns = ['mts'] mts['date'] = todaydate mts = mts.reset_index().set_index(['date','symbol']) return mts def mte(sta_del_extrm,minbar,todaydate): mte = sta_del_extrm[['single_trade_amt']] mte['close'] = minbar['close'] mte = mte.groupby(level = 'symbol').corr()[::2]['close'].droplevel(1) mte= pd.DataFrame(mte) mte.columns = ['mte'] mte['date'] = todaydate mte = mte.reset_index().set_index(['date','symbol']) return mte def qua(sta_del_extrm,todaydate): qua = sta_del_extrm.groupby(level = 'symbol').\ apply(lambda x: (x['single_trade_amt'].quantile(0.1)-\ x['single_trade_amt'].min())/(x['single_trade_amt'].max()-x['single_trade_amt'].min())) qua = pd.DataFrame(qua,columns = ['qua']) qua['date'] = todaydate qua = qua.reset_index().set_index(['date','symbol']) qua.index.name = ('date','symbol') return qua def skew(sta_50pct,todaydate):# 偏度因子skew skew = sta_50pct.groupby(level = 'symbol').\ apply(lambda x: (((x['single_trade_amt']-x['single_trade_amt'].mean())/x['single_trade_amt'].std())**3).mean()) skew = pd.DataFrame(skew,columns = ['skew']) skew['date'] = todaydate skew = skew.reset_index().set_index(['date','symbol']) skew.index.name = ('date','symbol') return skew def s_reverse(sing_trade_amt,minbar,todaydate):# 强反转因子 minute_r = sing_trade_amt.copy() minute_r['minute_r'] = minbar['close']/minbar['open'] - 1 minute_r = minute_r.set_index('trading_date',append = True) s_reverse = minute_r.groupby(level = 0).\ apply(lambda x: x[x.single_trade_amt > x.single_trade_amt.quantile(0.8)].minute_r.sum()) s_reverse = pd.DataFrame(s_reverse,columns = ['s_reverse']) s_reverse['date'] = todaydate s_reverse = s_reverse.reset_index().set_index(['date','symbol']) s_reverse.index.name = ('date','symbol') return s_reverse def daily_sta_90pct(sta_del_extrm):# 日单笔成交额90分位值 daily_sta = sta_del_extrm.set_index('trading_date',append = True).rename_axis(index = {'trading_date':'date'}) daily_sta_90pct = daily_sta.droplevel('datetime').groupby(level = 'symbol').apply(lambda x: x.groupby(level = 1).quantile(0.9)).reset_index().set_index(['date','symbol']) daily_sta_90pct.columns = ['daily_sta_90pct'] return daily_sta_90pct def ideal_reverse(daily_sta_cal,Close): daily_sta_cal['day_return'] = Close.pct_change().stack() by_stock = list(daily_sta_cal.groupby(level = 1)) def apply_rolling_cal(rollingdata): if len(rollingdata.index)<20: return else: temp = rollingdata.sort_values('daily_sta_90pct') returndf = rollingdata.iloc[-1:].copy() returndf['ideal_reverse'] = temp.iloc[:10].day_return.sum() - temp.iloc[10:].day_return.sum() return returndf['ideal_reverse'] ideal_reverse = list(map(lambda x:apply_rolling_cal(x[1]),by_stock)) ideal_reverse = pd.concat(ideal_reverse) ideal_reverse = pd.DataFrame(ideal_reverse) ideal_reverse.columns = ['ideal_reverse'] return ideal_reverse
Alpha-Rabbit
/Alpha_Rabbit-1.4.17.tar.gz/Alpha_Rabbit-1.4.17/Alpha_Rabbit/Factor_Def_and_Get_Method.py
Factor_Def_and_Get_Method.py
import os import pandas as pd import numpy as np import statsmodels.api as sm from tqdm import * class single_signal_test(object): def __init__(self) -> None: pass def cal_turnover(self,df,ndays): # holdings: # pd.Series # multiindex: timestamp,code # 值都是1 holdings = df.copy() holdings = holdings.unstack().dropna(how ='all',axis = 1) holdings = holdings.apply(lambda x: x/x.sum(),axis = 1) holdings = holdings.fillna(0) return (holdings.diff(ndays).abs().sum(axis = 1)/2) def cal_holdingnums(self,df): # holdings: # pd.Series # multiindex: timestamp,code # 值都是1 holdings = df.copy() holdings = holdings.groupby(level = 0).sum() return holdings def one_factor_grouper(self,df,factorname,quantiles,qcut): # 分组 # concatdf:pd.DataFrame # factorname: str # multiindex: timestamp,code # columns: nday_return, factorname1, factorname2... concatdf = df[[factorname]].copy().round(6)# 设置保留小数! concatdf[factorname+'_rank'] = concatdf[factorname].groupby(level = 'date', group_keys = False).rank() if qcut: concatdf[factorname+'_quantile'] =concatdf[factorname+'_rank'].dropna().groupby(level = 'date', group_keys = False).apply(lambda x: pd.qcut(x,quantiles,labels=list(range(1,quantiles+1)))).astype(int) else: concatdf[factorname+'_quantile'] =concatdf[factorname+'_rank'].dropna().groupby(level = 'date', group_keys = False).apply(lambda x: pd.cut(x,quantiles,labels=list(range(1,quantiles+1)))).astype(int) return concatdf def one_factor_return(self,df,factorname,ndays,return_col,w_method,demean = False): # 计算分组收益 if w_method =='average': qreturn = df.groupby(level = 'date', group_keys = True).apply(lambda x: x.groupby(factorname+'_quantile')[[return_col]].mean()/ndays).unstack() qreturn.columns = [i[1] for i in list(qreturn)] if w_method == 'factor_weighted': tmpdf = df.copy() tmpdf['rwf'] = tmpdf[return_col]*tmpdf[factorname] tmpdf.dropna(subset = ['rwf'],inplace = True) qreturn = tmpdf.groupby(level = 'date', group_keys = True).\ apply(lambda x: x.groupby(factorname+'_quantile').\ apply(lambda x: x['rwf'].sum()/x[factorname].sum() if x[factorname].sum()>0 else 0)/ndays) # qreturn = tmpdf.groupby(level = 'date', group_keys = True).\ # apply(lambda x: x.groupby(factorname+'_quantile').\ # apply(lambda x: (x[return_col]*x[factorname]).sum()/x[factorname].sum())/ndays) if w_method =='cap_weighted': qreturn = df.groupby(level = 'date', group_keys = True).\ apply(lambda x: x.groupby(factorname+'_quantile').\ apply(lambda x: (x[return_col]*x['cap']).sum()/x['cap'].sum())/ndays) if len(qreturn.index.names)==1: pass else: qreturn= qreturn.unstack().apply(lambda x: x.fillna(x.mean()),axis = 1) if demean: qreturn = qreturn.apply(lambda x: x-x.mean(),axis = 1) return qreturn def one_factor_icir(self,df,factorname,return_col): from scipy import stats ic = df.groupby(level = 'date').apply(lambda x: x[[return_col,factorname]].corr('spearman')) ic_org = ic[ic.index.get_level_values(1) ==return_col][factorname].dropna() ictable = ic_org.describe()[['count','mean','std','min','max']].copy() ictable['risk_adj'] = ic_org.mean()/ic_org.std() ictable['skew'] = ic_org.skew() ictable['kurtosis'] = ic_org.kurtosis() if ictable['mean'] <0: ictable['p-value'] = stats.ttest_1samp(ic_org,0,alternative='less').pvalue else: ictable['p-value'] = stats.ttest_1samp(ic_org,0,alternative='greater').pvalue return ictable def one_factor_ret_sharp(self,qreturn,ret_freq): return qreturn.mean()/qreturn.std()*np.sqrt(252/ret_freq) def factor_prepare(self,allfactors,fc,quantiles,qcut): test_fc = allfactors[[fc]].copy().rename_axis(['date','symbol']) res_df = self.one_factor_grouper(test_fc,fc,quantiles,qcut)# 序数标准化 return res_df def factor_ret_test_sheet(self, weight_method, index_price, #'''基准日期是timestamp''' fcname, res_df, Price, days, savedir, demean = False): from alphalens import utils plottools = plot_tools() mate_al = mate_alphalens() tov_df = res_df.groupby(by = fcname+'_quantile').apply(lambda x: self.cal_turnover(x[fcname+'_quantile']/x[fcname+'_quantile'],days)) if len(tov_df.index.names)==1: to = tov_df.mean(axis =1) else: to = tov_df.unstack().mean(axis = 1) clean_factor,price = mate_al.index_mate(res_df.dropna(),Price) fwr = utils.compute_forward_returns(price.stack(),price) clean_factor[str(days)+'D'] = fwr[str(days)+'D'] clean_factor = clean_factor.reset_index() clean_factor['date'] = clean_factor['date'].astype(str) clean_factor = clean_factor.set_index(['date','asset']).dropna() if index_price is not None: clean_factor = mate_al.trans_ex_return(clean_factor,index_price,ret_col=[str(days)+'D']) else: clean_factor[str(days)+'D'] = clean_factor.groupby(level = 'date',group_keys = False).apply(lambda x: x[str(days)+'D']-x[str(days)+'D'].mean()) qreturn = self.one_factor_return(clean_factor,fcname,days,str(days)+'D',w_method = weight_method,demean=demean) # ic ic_table = self.one_factor_icir(clean_factor,fcname,str(days)+'D') indicators = self.judge_material(qreturn,ic_table,days) plottools.factor_plt(qreturn,to,indicators,fcname,days,savedir) return qreturn,clean_factor,indicators def judge_material(self,qreturn,ic_table,days): from scipy import stats indicators = ic_table.copy() maxquantile = max(qreturn.columns) lsret = qreturn[maxquantile] - qreturn[1] groupmean = qreturn.mean(axis = 0) groupmean_diff = groupmean.diff().dropna() top_half = groupmean_diff.iloc[-5:] top_sharp = qreturn[maxquantile].mean()/qreturn[maxquantile].std()*pow(252/days,1/2) t,p_lsret =stats.ttest_1samp(lsret,0,alternative='greater') t,p_groupmean =stats.ttest_1samp(groupmean_diff,0,alternative='greater') t,p_tophalfmean = stats.ttest_1samp(top_half,0,alternative='greater') indicators['TopQtl_SR'] = top_sharp indicators['LSRet_pvalue'] = p_lsret indicators['MeanRetDiff_pvalue'] = p_groupmean indicators['TophalfMeanRetDiff_pvalue'] = p_tophalfmean return indicators def efficient_judge(self,indicators): from scipy import stats # 因子判别 ''' 检验: 对两个都通过的是有用的因子 ''' if indicators['p-value']<= 0.05 and indicators['TopQtl_SR']>=1: if indicators['TophalfMeanRetDiff_pvalue']<=0.3 and indicators['LSRet_pvalue']<=0.12: # print(fc+'有用;头部{}组平均收益一阶差分p值{},多空收益p值{},ic_pvalue{},top组超额夏普{}'.format(int(maxquantile/2),p_top_halfmean,p_lsret)) return 1 # 且两个乘起来能跟原来的匹配;且另一个不能太差 # elif indicators['TophalfMeanRetDiff_pvalue']*indicators['LSRet_pvalue']<0.0025 and (indicators['TophalfMeanRetDiff_pvalue']/0.05 <= 0.1 or indicators['LSRet_pvalue']/0.05 <= 0.1) \ # and min(indicators['MeanRetDiff_pvalue'],indicators['TophalfMeanRetDiff_pvalue'])<=0.05 and indicators['TophalfMeanRetDiff_pvalue']<0.3: # print(fc+'勉强有用;头部{}组平均收益一阶差分p值{},整体平均收益一阶差分p值{},多空收益p值{}'.format(int(maxquantile/2),p_top_halfmean,p_groupmean,p_lsret)) else: return 2 return 0 def eff_classification(self,fc,indicator,judgefunc,strict_eff,unstrict_eff): ''' 输入: 因子矩阵 输出: 1、因子测试结果 2、噪声因子 ''' # 因子判别 if judgefunc(indicator) == 1: strict_eff.append(fc) unstrict_eff.append(fc) elif judgefunc(indicator) == 2: unstrict_eff.append(fc) return strict_eff,unstrict_eff class multi_factor_test(object): def __init__(self) -> None: self.sst = single_signal_test() pass def factors_abnormal_ret(self,factordf,return_col,factorlist,days,index_price = None,pricedf = None,longshort_return = False): df = factordf.copy() if pricedf is not None: # 默认明收除今收 df[str(days)+'D'] = pricedf.pct_change(days,fill_method = None).shift(-days).stack() if index_price is not None: ml = mate_alphalens() df,pricedf = ml.index_mate(df,pricedf) df = ml.trans_ex_return(df,index_price,str(days)+'D') df = df.rename(columns = {str(days)+'D':return_col+str(days)+'D'}).dropna(subset = return_col+str(days)+'D') if longshort_return == False: ret_k = df.groupby(level = 'date',group_keys = False).apply(lambda x: sm.formula.ols(return_col+str(days)+'D'+'~'+'+'.join(factorlist),data = x).fit().params) del ret_k['Intercept'] else : lscol = list(factordf) quantiles = int(df[return_col+str(days)+'D'].groupby(level = 'date').count().mean()//100) LSretList = [] for col in tqdm(lscol): tmpdf = df.copy() tmpdf[col+'_quantile'] = self.sst.one_factor_grouper(df,col,quantiles,False)[col+'_quantile'] qreturn = self.sst.one_factor_return(tmpdf,col,days,'ret{}D'.format(days),'factor_weighted',False) LSretList.append(qreturn[max(list(qreturn))] - qreturn[1]) ret_k = pd.concat(LSretList,axis = 1) ret_k.columns = lscol return ret_k def multif_barra_norm(self,allfactors,Bft): df = allfactors.copy() print('barra中性化....') for fcname in tqdm(list(df)): test_fc = df[[fcname]].copy().rename_axis(['date','symbol']) residual_ols,params_ols = Bft.barra_compose(test_fc) df[fcname] = residual_ols # 中性化之后的因子替换原始因子 return df def multif_industry_norm(self,allfactors,industry_info): df = allfactors.copy() df['first_industry_name'] = industry_info df = df.dropna(subset = 'first_industry_name').groupby(level = 'date',group_keys =False).apply(lambda x: x.groupby(by = 'first_industry_name',group_keys =False).apply(lambda x:x-x.mean(numeric_only=True))) del df['first_industry_name'] return df def multif_corr_ana(self,df,factornamelist): # 多因子相关性分析 # df:pd.DataFrame # factornamelist: strlist # multiindex: timestamp,code # columns: nday_return, factorname1, factorname2... df_ana = df[factornamelist].groupby(level = 'date').corr() corr_mean = df_ana.groupby(level = 1).mean() # corr之后的矩阵第二层没名字,所以用1来表示;第二层是因子名 corr_ir = df_ana.groupby(level = 1).mean()/df_ana.groupby(level = 1).std() return corr_mean.loc[list(corr_mean)],corr_ir.loc[list(corr_ir)] def multif_pca_ana(self,originalFactor,domain_factor_nums): # 多因子pca分析 # originalFactor: pd.DataFrame # multiindex: timestamp,code # columns: factorname1, factorname2... from sklearn import preprocessing data = originalFactor.groupby(level = 'date', group_keys = False).apply(lambda x: preprocessing.scale(x)) data = np.vstack(data.values) from sklearn.decomposition import PCA pcaModel = PCA(domain_factor_nums) pcaModel.fit(data) pcaFactors = pcaModel.transform(data) pcaFactors = pd.DataFrame(pcaFactors) pcaFactors.index = originalFactor.index pcaFactors.columns = ['pca_'+str(i) for i in range(domain_factor_nums)] return pcaModel.explained_variance_,pcaModel.explained_variance_ratio_,pcaFactors def batch_factors_test(self,weight_method,allfactors,Price,quantiles,days,qcut,savedir,index_price = None,demean = False): returndict = {} sst = single_signal_test() for fc in tqdm(list(allfactors)): res_df = sst.factor_prepare(allfactors,fc,quantiles,qcut) sst.factor_ret_test_sheet(weight_method,index_price,fc,res_df,Price,days,savedir,demean) returndict[fc] = res_df[[fc]] return returndict def multif_tsstable_test(self,originalData): # originalFactor: pd.DataFrame # multiindex: timestamp,code # columns: factorname1, factorname2... from statsmodels.tsa.stattools import adfuller data = originalData.copy()#.groupby(level = 0).apply(lambda x: (x-x.mean())/x.std())不要再标准化了!! mean_pvalue = data.groupby(level = 'date').apply(lambda x:x.mean()).apply(lambda x: adfuller(x)[1]) std_pvalue = data.groupby(level = 'date').apply(lambda x:x.std()).apply(lambda x: adfuller(x)[1]) skew_pvalue = data.groupby(level = 'date').apply(lambda x:x.skew()).apply(lambda x: adfuller(x)[1]) kurt_pvalue = data.groupby(level = 'date').apply(lambda x:x.kurt()).apply(lambda x: adfuller(x)[1]) yarn_pvalue = pd.concat([mean_pvalue,std_pvalue,skew_pvalue,kurt_pvalue],axis = 1) yarn_pvalue.columns = ['mean','std','skew','kurt'] return yarn_pvalue def del_updown_limit(self,factordf,daybar,text): # 剔除涨跌停 notuplimit = daybar[~(daybar[text] == daybar.limit_up)] notdownlimit = daybar[~(daybar[text] == daybar.limit_down)] factordf = factordf[factordf.index.isin(notuplimit.index)] factordf = factordf[factordf.index.isin(notdownlimit.index)] return factordf def in_some_pool(self,df,pool_components): factordf = df.copy() factordf['inpool']=pool_components.applymap(lambda x:1) factordf['inpool'] = factordf['inpool'].apply(lambda x: 1 if x>0 else 0) testdf = factordf[factordf['inpool']>=1] del testdf['inpool'] return testdf def orthog(self,factor_mat, y, xlist): df = factor_mat.replace([np.inf, -np.inf], np.nan).dropna() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() params = regre.params[~(regre.params.index == 'Intercept')] intercept = regre.params[(regre.params.index == 'Intercept')] residual = df[y] - (df[list(params.index)]*params).sum(axis = 1) - intercept.values residual = pd.DataFrame(residual) residual.columns = [y] return self.mat_normlize(residual),params def mat_orthog(self,factor_mat): temp1 = factor_mat.replace([np.inf, -np.inf], np.nan).dropna() for i in list(temp1): no = list(temp1).index(i) if no==0: temp1[i] = self.mat_normlize(temp1[i]) continue fclist = list(filter(lambda x: x!=i,list(temp1)[:no])) temp1[i] = self.orthog(temp1,i,fclist)[0] return temp1 def ts_mat_orthog(self,factor_mat): return factor_mat.groupby(level = 'date',group_keys = False).apply(self.mat_orthog) def mat_normlize(self,factor_mat): df = factor_mat.rename_axis(['date','symbol']).replace([np.inf, -np.inf], np.nan) def norm(x): return (x - x.min())/(x.max()-x.min()) return df.groupby(level = 'date',group_keys = False).apply(norm) def mat_ranknormlize(self,factor_mat): df = factor_mat.rename_axis(['date','symbol']).replace([np.inf, -np.inf], np.nan) def norm(x): x_rank = x.rank() return (x_rank - x_rank.min())/(x_rank.max()-x_rank.min()) return df.groupby(level = 'date',group_keys = False).apply(norm) def multindex_shift(self,fcdf): df = fcdf.reset_index() datelist = list(df['date'].drop_duplicates()) datedict = dict(zip(datelist[:-1],datelist[1:])) df['date'] =df['date'].apply(lambda x: datedict[x] if x in datedict.keys() else np.nan) return df.dropna(subset = 'date').set_index(['date','symbol']) class Barra_factor_ana(object): ''' 1. growth要求至少504天的数据,部分股票不满足该条件会导致在因子整合到一起的时候被剔除 2. barrafactor必须为双重索引,且第一重索引是日期,第二重索引是标的 ''' def __init__(self,df=None,start_date=None,end_date=None,dir=None,skip_fileload=None) -> None: # 预加载数据 if not skip_fileload: self.price = df dailyreturn = df/df.shift(1)-1 dailyreturn.dropna(how = 'all',inplace=True) self.returndata = dailyreturn self.start_date = start_date self.end_date = end_date import os filelist = os.listdir(dir) self.filedict = {} for f in filelist: if f[-3:]=='csv': self.filedict[f[:-4]] = pd.read_csv(dir+f,index_col = [0,1]) pass def rise_barra_factors(self): print('rise size') self.size = np.log(self.filedict['market_cap']).dropna() def OLSparams(y,x): print('rise beta') X_ = x.droplevel('order_book_id') df = y.copy() df['market_r'] = X_['r'] df.dropna(subset = 'market_r',inplace = True) dflist = list(df.rolling(252))[252:] paramslist = [] for olsdf in dflist: mod = sm.OLS(olsdf,sm.add_constant(olsdf['market_r'])) re = mod.fit() params = re.params.T params.index = olsdf.columns params = params[params.index!='market_r'] params['date'] = olsdf.index[-1] params = params.rename(columns = {'market_r':'beta'}) paramslist.append(params) olsparams = pd.concat(paramslist).set_index('date',append=True).unstack().T constdf = olsparams.loc['const'].ewm(halflife = 63,ignore_na = True,adjust = False).mean().stack() betadf = olsparams.loc['beta'].ewm(halflife = 63,ignore_na = True,adjust = False).mean().stack() # cal residual mkt_df = pd.concat([X_['r']]*len(list(betadf.unstack())),axis = 1) mkt_df.columns = list(betadf.unstack()) residual = y - betadf.unstack()*mkt_df - constdf.unstack() # 这里的residual已经是经过ewm的beta和const计算得到的就不用再ewm了 return {'beta':betadf,'const':constdf,'residual':residual} def MOMTM(y): df = np.log(1+y) momtm = df.ewm(halflife=126,ignore_na = True,adjust = False).mean()#.iloc[-1:] return momtm def CMRA(y,T): date = y.index[-1] dflist= [] for i in range(1,T+1): pct_n_month = pd.DataFrame((y/y.shift(21*i)-1).iloc[-1])/21 dflist.append(pct_n_month) df = pd.concat(dflist,axis =1) zmax = df.max(axis =1) zmin = df.min(axis = 1) cmra = pd.DataFrame(np.log(1+zmax)-np.log(1+zmin),columns = [date]).T return cmra def orthog(barrafactor,y,xlist): df = barrafactor.copy() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() for p in xlist: df[p]*= regre.params[p] df[y+'_orth'] = df[y] - df[xlist].sum(axis = 1)-regre.params['Intercept'] return df[[y+'_orth']] # beta self.olsparams = OLSparams(self.returndata,self.filedict['market_r']) self.beta = pd.DataFrame(self.olsparams['beta']).dropna() self.beta.columns = ['beta'] # momentum print('rise momentum') # retroll504 = list(self.returndata.rolling(504))[504:] # self.momtm = pd.concat(list(map(lambda x: MOMTM(x),retroll504))).shift(21).dropna(how = 'all') self.momtm = MOMTM(self.returndata).shift(21).dropna(how = 'all') self.momtm = pd.DataFrame(self.momtm.stack(),columns=['momentum']) # residual volatility print('rise residual volatility') self.hist_volatility = self.returndata.ewm(halflife = 42,ignore_na = True,adjust = False).std().dropna(how = 'all') CMRAlist = list(self.price.rolling(252))[252:] self.CMRA = pd.concat(list(map(lambda x: CMRA(x,12),CMRAlist))) self.Hsigma = self.olsparams['residual'].rolling(252,min_periods = 1).std() self.residual_volatility = pd.DataFrame((self.hist_volatility*0.74+self.CMRA*0.16+self.Hsigma*0.1).stack()).dropna() self.residual_volatility.columns = ['residual_volatility'] # non-linear size print('rise non-linear size') self.nlsize = (self.size**3).dropna() self.nlsize.columns = ['nlsize'] # Bp print('rise Bp') self.Bp = self.filedict['Bp'].dropna() # liquidity print('rise Liquidity') self.tvrdf = self.filedict['turnover'] self.liq_1m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(22,min_periods =1).mean()) self.liq_3m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(74,min_periods =1).mean()) self.liq_12m = self.tvrdf.groupby(level = 1, group_keys = False).apply(lambda x: x.sort_index().rolling(252,min_periods =1).mean()) self.liq = (0.35*self.liq_1m + 0.35*self.liq_3m + 0.3*self.liq_12m).dropna() print('rise Earning Yield') self.earning_yield = pd.concat([self.filedict['Ep'],self.filedict['Sp']],axis = 1) self.earning_yield['earning_yield'] = self.earning_yield['ep_ratio_ttm']*0.66+self.earning_yield['sp_ratio_ttm']*0.34 self.earning_yield = self.earning_yield[['earning_yield']].dropna() # growth print('rise growth') NP = self.filedict['NPGO'].unstack() NP = (NP-NP.shift(504))/NP.shift(504).abs().replace(0,np.nan) NP = NP.stack() RVN = self.filedict['RGO'].unstack() RVN = (RVN - RVN.shift(504))/RVN.shift(504).abs().replace(0,np.nan) RVN = RVN.stack() self.growth = pd.DataFrame(NP['net_profit_parent_company_ttm_0']*0.34+RVN['revenue_ttm_0']*0.66) self.growth.columns = ['growth'] self.growth.dropna(inplace=True) # leverage print('rise leverage') self.leverage = self.filedict['MLEV']['du_equity_multiplier_ttm']*0.38+self.filedict['DTOA']['debt_to_asset_ratio_ttm']*0.35+self.filedict['BLEV']['book_leverage_ttm']*0.27 self.leverage = pd.DataFrame(self.leverage) self.leverage.columns = ['leverage'] self.leverage.dropna(inplace=True) # concat self.barrafactor = pd.concat([ self.size, self.beta, self.momtm, self.residual_volatility, self.nlsize, self.Bp, self.liq, self.earning_yield, self.growth, self.leverage],axis = 1).sort_index(level = 0) '''正则化''' # 未经正则化的原始因子已存为类变量,可直接调用 print('Orthogonalizing....') y = ['residual_volatility','nlsize','turnover'] xlist = ['circulation_A','beta'] # 不dropna会报错 self.barrafactor[y[0]] = self.barrafactor[[y[0]]+xlist].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[0],xlist)) self.barrafactor[y[1]] = self.barrafactor[[y[1]]+xlist[:1]].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[1],xlist[:1])) self.barrafactor[y[2]] = self.barrafactor[[y[2]]+xlist[:1]].dropna().groupby(level = 0, group_keys = False).apply(lambda x: orthog(x,y[2],xlist[:1])) # 标准化 def return_barra_factor(self,rank_normalize:bool): mft = multi_factor_test() if rank_normalize: return mft.mat_ranknormlize(self.barrafactor) else: return mft.mat_normlize(self.barrafactor) def barra_compose(self,factordata): # 因子是rank数据 decompose = pd.concat([self.barrafactor,factordata],axis = 1).dropna().rename_axis(['date','symbol']) def orthog(barrafactor,y,xlist): df = barrafactor.copy() regre = sm.formula.ols(y+'~'+'+'.join(xlist),data = df).fit() params = regre.params[~(regre.params.index == 'Intercept')] intercept = regre.params[(regre.params.index == 'Intercept')] residual = df[y] - (df[list(params.index)]*params).sum(axis = 1) - intercept.values return residual,params # 这种方法只算一天的会错 # residual_ols =decompose.groupby(level = 0).apply(lambda x: orthog(x,list(decompose)[-1],list(decompose)[:-1])[0]).droplevel(0) # params_ols =decompose.groupby(level = 0).apply(lambda x: orthog(x,list(decompose)[-1],list(decompose)[:-1])[1]) # return residual_ols,params_ols decomposebyday = list(decompose.groupby(level = 'date')) residual_olslist = [] params_olslist = [] for df in decomposebyday: x = df[1] residual_ols,params_ols = orthog(x,list(decompose)[-1],list(decompose)[:-1]) residual_olslist.append(residual_ols) params_olslist.append(pd.DataFrame(params_ols,columns = [df[0]]).T) return pd.concat(residual_olslist),pd.concat(params_olslist) def barra_style_pool(self,style,cutnum): bystyle = self.barrafactor[[style]].copy() bystyle[style+'_group'] = bystyle[style].dropna().groupby(level = 0,group_keys=False).apply(lambda x: pd.cut(x,cutnum,labels=list(range(1,cutnum+1)))) return bystyle def factor_performance_bystyle(self,factordata,factorname,style,cutnum): # 即便因子在风格上没有偏斜,仍然会有不同风格上因子表现不同的情况 bystyle = pd.concat([factordata,self.barrafactor[[style]]],axis = 1) bystyle[style+'_group'] = bystyle[style].dropna().groupby(level = 0,group_keys=False).apply(lambda x: pd.cut(x,cutnum,labels=list(range(1,cutnum+1)))) ic_daily = bystyle.groupby(style+'_group',group_keys=False).apply(lambda x: x[[factorname,'nday_return']].groupby(level = 0).apply(lambda x: x.corr('spearman').iloc[0,1])).T return ic_daily class AutoMatic(object): sst = single_signal_test() mft = multi_factor_test() def __init__(self,Bft,base_index,Price,quantiles,days,qcut,demean,weighted_method) -> None: '''base_index基准价格时间索引是timestamp''' self.Bft = Bft self.Price = Price.copy() self.base_index = base_index self.quantiles = quantiles self.days = days self.qcut = qcut self.demean = demean self.weighted_method = weighted_method pass def AutoMatic_DirCheck(self,path): if not os.path.exists(path): os.makedirs(path) def AutoMatic_Direc_Adjust(self,factors,dir_): neu_factors = factors.copy() direction_dict = {} strict_eff = [] unstrict_eff = [] self.AutoMatic_DirCheck(dir_+'direction/') self.AutoMatic_DirCheck(dir_+'direction/redirection/') for fc in list(neu_factors): res_df = self.sst.factor_prepare(neu_factors,fc,self.quantiles,self.qcut) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,tmp,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,fc,res_df,self.Price,self.days,dir_+'/direction/',self.demean) if qreturn[list(qreturn)[0]].sum()<= qreturn[self.quantiles].sum(): print(fc+'是正向因子') direction_dict[fc] = 1 if qreturn[list(qreturn)[0]].sum() > qreturn[self.quantiles].sum(): print(fc+'是负向因子') neu_factors = neu_factors.copy() neu_factors[fc]=self.mft.mat_normlize(-1*neu_factors[fc]) direction_dict[fc] = -1 res_df = self.sst.factor_prepare(neu_factors,fc,self.quantiles,self.qcut) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,tmp,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,fc,res_df,self.Price,self.days,dir_+'direction/redirection/',self.demean) # 有效性判别 strict_eff,unstrict_eff = self.sst.eff_classification(fc,indicator,self.sst.efficient_judge,strict_eff,unstrict_eff) return direction_dict,strict_eff,unstrict_eff def AutoMatic_Factor_Merge_Ret(self,neu_factors,base_factors,mergename,dir_): base_f = pd.DataFrame(neu_factors[base_factors].sum(axis = 1),columns = [mergename]) res_df = self.sst.factor_prepare(base_f,mergename,self.quantiles,self.qcut) self.AutoMatic_DirCheck(dir_) if self.weighted_method == 'cap_weighted': res_df['cap'] = self.cap qreturn,clean_factor,indicator = self.sst.factor_ret_test_sheet(self.weighted_method,self.base_index,mergename,res_df,self.Price,self.days,dir_,self.demean) return qreturn,clean_factor def AutoMatic_Compare_Indicator(self,qreturn,reverse): if reverse: maxq = min(list(qreturn)) base_perf_sr = -1*qreturn[maxq].mean()/qreturn[maxq].std() return base_perf_sr maxq = max(list(qreturn)) base_perf_sr = qreturn[maxq].mean()/qreturn[maxq].std() return base_perf_sr def threads_pool_run(self,params_batch): InSampleFactors,i,dir_ = params_batch[0] , params_batch[1] , params_batch[2] import matplotlib matplotlib.use('agg') savedir = dir_+'{}/'.format(i) direction_dict,strict_eff,unstrict_eff =self.AutoMatic_Direc_Adjust(InSampleFactors,savedir) # 方向调整 return (direction_dict,strict_eff,unstrict_eff) def AutoMatic_Stochastic_Optimizer(self,test_factor,threads_num,dir_): dateset = list(set(test_factor.index.get_level_values('date'))) import multiprocessing from multiprocessing import Pool InSplList = [] for i in range(threads_num): randomdate = sorted(np.random.choice(dateset,int(len(dateset)/5),replace = False)) InSplList.append((test_factor.loc[randomdate],i,dir_)) pool = Pool(min(multiprocessing.cpu_count(),threads_num)) return pool.map(self.threads_pool_run,InSplList) def AutoMatic_Perf_InPool(self,neu_factors,base_factors,reverse,save_dir): qreturn,tmp =self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors,'basef',save_dir+'temp/') base_perf_sr= self.AutoMatic_Compare_Indicator(qreturn,reverse) others = list(filter(lambda x: x not in base_factors,list(neu_factors))) for sf in others:# 挨个加表现 print(base_factors) qreturn,tmp =self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors+[sf],sf+'_basef',save_dir+'temp/') perf_sr = self.AutoMatic_Compare_Indicator(qreturn,reverse) print('是否超越此前表现:{};本次超额夏普:{},此前最佳超额夏普:{}'.format(perf_sr > base_perf_sr,perf_sr,base_perf_sr)) if perf_sr > base_perf_sr: base_factors.append(sf) if perf_sr > base_perf_sr: base_perf_sr = perf_sr qreturn,clean_factor = self.AutoMatic_Factor_Merge_Ret(neu_factors,base_factors,'basef',save_dir+'final/') return qreturn,clean_factor class plot_tools(object): def __init__(self) -> None: import matplotlib self.plotstatus = matplotlib.get_backend() pass def trio_plt(self,qmean,qcum,quantiles): # 画收益图 import matplotlib.pyplot as plt qmean[list(range(1,quantiles+1))].plot(kind= 'bar',title = 'mean') plt.show() qcum[list(range(1,quantiles+1))].plot(title = 'cumreturn') plt.legend(loc = 'upper center',bbox_to_anchor=(1.1, 1.02)) plt.show() (qcum[10]-qcum[1]).plot(title = 'long-short') plt.show() def fbplot(self,frontplot,bgplot,c,fname,bname): # frontplot,bgplot: # pd.Series # multiindex: timestamp,code import matplotlib.pyplot as plt import matplotlib.ticker as ticker tickspace = len(frontplot)//12 fig = plt.figure() a1=fig.add_axes([0,0,1,1]) a1.bar(frontplot.index,bgplot.loc[frontplot.index],color = c) a1.tick_params(axis='x', labelrotation= 30) a1.xaxis.set_major_locator(ticker.MultipleLocator(tickspace)) a2 = a1.twinx() a2.plot(frontplot.index,frontplot,color = 'red') a2.tick_params(axis='x', labelrotation= 30) a2.xaxis.set_major_locator(ticker.MultipleLocator(tickspace)) fig.legend(frameon = False,labels = [bname+'(left)',fname+'(right)'],loc = 'upper center') plt.show() def factor_plt(self,qreturn,to,ictable,fc,ndays,savedir=''): from alphalens import utils from pandas.plotting import table numtable = pd.concat([qreturn.mean(),qreturn.sum(),qreturn.mean()/qreturn.std()],axis = 1).rename(columns= {0:'avg',1:'sum',2:'risk-adj'}).T top_quantile = max(list(qreturn)) totalSeed = qreturn.index xticks = list(range(0, len(totalSeed), 60)) xlabels = [str(totalSeed[x]) for x in xticks] import matplotlib.pyplot as plt plt.figure(dpi=300, figsize=(24, 12)) ax = plt.subplot(321,frame_on=False,title = fc+'_retsheet_bygroup') ax.xaxis.set_visible(False) # hide the x axis ax.yaxis.set_visible(False) # hide the y axis table(ax, numtable.round(5), loc='center') # 将df换成需要保存的dataframe即可 ax = plt.subplot(365,frame_on=False,title = str(ndays)+'days_information') ax.xaxis.set_visible(False) # hide the x axis ax.yaxis.set_visible(False) # hide the y axis table(ax, ictable.round(5), loc='center') # 将df换成需要保存的dataframe即可 plt.subplot(325,title = fc+'_cumret_bygroup') plt.plot(qreturn.index,qreturn.cumsum(),label = list(qreturn)) plt.legend() plt.xticks(rotation=90) plt.xticks(ticks=xticks, labels=xlabels) plt.subplot(324,title = fc+'_turnover_bygroup') plt.bar(to.index,to,color="blue") plt.subplot(323,title = fc+'_avgret_bygroup') plt.bar(qreturn.mean().index,qreturn.mean(),color="y") plt.subplot(326,title = fc+'_lsret_bygroup') plt.plot(qreturn.index,(qreturn[top_quantile]-qreturn[1]).cumsum(),color="g") plt.xticks(rotation=90) plt.xticks(ticks=xticks, labels=xlabels) try: os.remove(savedir+fc+'.jpg') print(fc+'.jpg'+' 旧文件删除') except: print(fc+'.jpg'+' 是新文件') plt.savefig(savedir+fc+'.jpg') if self.plotstatus != 'agg': plt.show() plt.close() # 热力图展示 def ShowHeatMap(self,DataFrame,savedir='',triangle = True): import matplotlib.pyplot as plt import seaborn as sns f, ax = plt.subplots(figsize=(35, 15)) ax.set_title('Wine GRA') # 设置展示一半,如果不需要注释掉mask即可 if triangle: mask = np.zeros_like(DataFrame) mask[np.triu_indices_from(mask)] = True # np.triu_indices 上三角矩阵 with sns.axes_style("white"): sns.heatmap(DataFrame, cmap="YlGnBu", annot=True, mask=mask, ) else : with sns.axes_style("white"): sns.heatmap(DataFrame, cmap="YlGnBu", annot=True, ) plt.savefig(savedir) if self.plotstatus != 'agg': plt.show() def combine_imgs_pdf(self,folder_path, pdf_file_path,idstname): import os from PIL import Image """ 合成文件夹下的所有图片为pdf Args: folder_path (str): 源文件夹 pdf_file_path (str): 输出路径 """ files = os.listdir(folder_path) png_files = [] sources = [] for file in files: if 'png' in file or 'jpg' in file: png_files.append(folder_path + file) png_files.sort() for file in png_files: png_file = Image.open(file) png_file = png_file.convert("RGB") sources.append(png_file) sources[0].save(pdf_file_path+'{}.pdf'.format(idstname), "pdf", save_all=True, append_images=sources[1:],quality = 95) class mate_alphalens(object): def __init__(self) -> None: pass def index_mate(self,factordata,price): fcdf = factordata.reset_index() fcdf['date'] = pd.to_datetime(fcdf['date']) fcdf = fcdf.rename(columns = {'symbol':'asset'}).set_index(['date','asset']) ptemp = price.copy() ptemp.index = pd.to_datetime(ptemp.index) return fcdf,ptemp def trans_ex_return(self,clean_factor,index_price,ret_col): from alphalens import utils index_price['factor'] = 1 base_ret = utils.compute_forward_returns(index_price[['factor']],index_price['close'].unstack()) base_ret = base_ret.droplevel('asset').reindex(clean_factor.index.get_level_values(0)) base_ret['asset'] = clean_factor.index.get_level_values('asset') base_ret = base_ret.set_index(['asset'],append=True) df = clean_factor.copy() df[ret_col]= df[ret_col]-base_ret[ret_col] return df class alert(object): def __init__(self,**file): if file: self.filename = file else: import sys self.filename = sys.argv[0] pass def finish_alert(self): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header # 1. 连接邮箱服务器 con = smtplib.SMTP_SSL('smtp.qq.com', 465) # 2. 登录邮箱 con.login('[email protected]', 'jwtjvrktevlobiag') # 2. 准备数据 # 创建邮件对象 msg = MIMEMultipart() # 设置邮件主题 subject = Header('{}程序运行完毕'.format(self.filename), 'utf-8').encode() msg['Subject'] = subject # 设置邮件发送者 msg['From'] = '[email protected]' # 设置邮件接受者 msg['To'] = '[email protected]' # 添加⽂文字内容 text = MIMEText('{}程序运行完毕'.format(self.filename), 'plain', 'utf-8') msg.attach(text) # 3.发送邮件 con.sendmail('[email protected]', '[email protected]', msg.as_string()) con.quit() def breakdown_alert(self): import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header # 1. 连接邮箱服务器 con = smtplib.SMTP_SSL('smtp.qq.com', 465) # 2. 登录邮箱 con.login('[email protected]', 'jwtjvrktevlobiag') # 2. 准备数据 # 创建邮件对象 msg = MIMEMultipart() # 设置邮件主题 subject = Header('{}程序运行失败'.format(self.filename), 'utf-8').encode() msg['Subject'] = subject # 设置邮件发送者 msg['From'] = '[email protected]' # 设置邮件接受者 msg['To'] = '[email protected]' # 添加⽂文字内容 text = MIMEText('{}程序运行失败'.format(self.filename), 'plain', 'utf-8') msg.attach(text) # 3.发送邮件 con.sendmail('[email protected]', '[email protected]', msg.as_string()) con.quit() # sst: # def noise_judge(self,qreturn,fc): # from scipy import stats # from statsmodels.stats.diagnostic import acorr_ljungbox # # 因子判别 # lsret,groupmean,groupmean_diff,top_sharp = self.judge_material(qreturn,fc) # ''' # 检验: # 对两个都没通过的可能是噪声的因子做自相关性检验,因为0假设是有相关性,所以哪怕只有一点自相关性(123123)都可能不会被拒绝,所以被拒绝的基本上可认定为噪声 # ''' # t,p_lsret =stats.ttest_1samp(lsret,0,alternative='greater') # t,p_groupmean = stats.ttest_1samp(groupmean_diff,0,alternative='greater') # if p_groupmean>0.05 and p_lsret>0.05: # print(fc+'可能是噪声;分组平均收益一阶差分p值{},多空收益p值{}'.format(p_groupmean,p_lsret)) # # ls_ljung = acorr_ljungbox(lsret.cumsum(), lags=[1,5,10,20]) # gmdf_ljung = acorr_ljungbox(groupmean, lags=[1,5]) # if gmdf_ljung['lb_pvalue'].min()>=0.05: # print(fc+'是噪声;分组平均收益自相关检验最小p值{}'.format(gmdf_ljung['lb_pvalue'].min())) # return True # else: # print('无法判定'+fc+'是噪声;分组平均收益自相关检验最小p值{}'.format(gmdf_ljung['lb_pvalue'].min())) # return False # def short_judge(self,qreturn,fc): # from scipy import stats # # 因子判别 # lsret,groupmean,groupmean_diff = self.judge_material(qreturn,fc) # ''' # 检验: # 对两个都通过的是有用的因子 # ''' # maxquantile = max(list(lsret)) # top5 = groupmean_diff.iloc[-5:] # bottom5 = groupmean_diff.iloc[:5] # t,p_top5 = stats.ttest_1samp(top5,0,alternative='greater') # t,p_bottom5 = stats.ttest_1samp(bottom5,0,alternative='greater') # if p_top5>0.5 and p_bottom5<0.1 and (abs(groupmean.iloc[-1])<abs(groupmean.iloc[0])): # print(fc+'是空头因子;top5组平均收益一阶差分p值{},bottom5组平均收益一阶差分p值{}'.format(p_top5,p_bottom5)) # return True # return False # mft: # def multif_denoisies(self,noise_factors_list,allfactors,threshold): # ''' # 输入: # 因子矩阵,噪声因子 # 输出: # 去噪后的因子 # ''' # if len(noise_factors_list)==0: # print('无可用于去噪的噪声') # return allfactors # other_factors_df = allfactors[list(filter(lambda x: x not in noise_factors_list,list(allfactors)))] # noise_factors_df = self.ts_mat_orthog(allfactors[noise_factors_list]) # factordf = pd.concat([other_factors_df,noise_factors_df],axis = 1) # # 去噪 # other_factors = list(other_factors_df) # corrdf = self.multif_corr_ana(factordf,list(factordf))[0] # print('相关性详情:') # print(corrdf) # corrdf = corrdf.loc[other_factors,noise_factors_list].abs().max(axis = 1) # print('要被去噪的因子:') # corr_with_noise = list(corrdf[corrdf>=threshold].index) # print(corr_with_noise) # for fc in corr_with_noise: # factordf[fc] = self.orthog(factordf, fc, noise_factors_list)[0] # return factordf[other_factors] # def multif_cal_weight(self,factordf,factorlist,return_col,weight_type): # # factordf: pd.DataFrame # # multiindex: timestamp,code # # columns: factorname1, factorname2...,returndata # # factorlist: strlist # # return_col: column name, str # df = factordf.copy() # ret_k = self.fators_abnormal_ret(df,return_col,factorlist) # ic = df.groupby(level = 'date').apply(lambda x: x.corr(method= 'spearman')[return_col]) # del ic['ret'] # weight = ret_k*ic # direc = ic.mean().apply(lambda x: 1 if x>0 else -1) # if weight_type == 1: # return weight.mean()/weight.std()*direc # elif weight_type == 2: # return weight.mean()*direc # else: # return direc # # if weight_type == '风险平价加权': # # cov = weight[factorlist].cov() # # from scipy.optimize import minimize # # def objective(x): # # w_cov = np.dot(cov,x.T) # # for n in range(len(x)): # # w_cov[n] *= x[n] # # mat = np.array([w_cov]*len(x)) # # scale = 1/sum(abs(mat)) # # return np.sum(abs(scale*(mat-mat.T))) # # initial_w=np.array([0.2]*len(factorlist)) # # cons = [] # # cons.append({'type':'eq','fun':lambda x: sum(x)-1}) # # for i in range(len(initial_w)): # # cons.append({'type':'ineq','fun':lambda x: x[i]}) # # #结果 # # res=minimize(objective,initial_w,method='SLSQP',constraints=cons) # # params = pd.Series(res.x) # # params.index = cov.index # # return params # def weighted_factor(self,factordf,weight): # # factordf: pd.DataFrame # # multiindex: timestamp,code # # columns: factorname1, factorname2... # # weight:pd.Series # wf = (weight*factordf).sum(axis = 1) # return pd.DataFrame(wf,columns = ['weighted_factor'])
Alpha-Rabbit
/Alpha_Rabbit-1.4.17.tar.gz/Alpha_Rabbit-1.4.17/Alpha_Rabbit/Alpha_Rabbit.py
Alpha_Rabbit.py
from Alpha_Rabbit.Factor_Def_and_Get_Method import * _method = Factor_get_method() def Factor_Calculator(pricebyday,minbar,conn,todaydate,notst,factors_to_cal): ######################################## 日间数据计算因子 #################################### uploadfactordict = {} Close = pricebyday['close'].unstack().sort_index() Open = pricebyday['open'].unstack().sort_index() High = pricebyday['high'].unstack().sort_index() Low = pricebyday['low'].unstack().sort_index() volume = pricebyday[['volume']].pivot_table(index = 'date',columns = 'symbol',values = 'volume').sort_index() total_turnover = pricebyday[['total_turnover']].pivot_table(index = 'date',columns = 'symbol',values = 'total_turnover').sort_index() tovr_r = pricebyday['turnover_ratio'].unstack().sort_index() Close_ret = Close.pct_change() tempClose = Close.iloc[-30:] tempOpen = Open.iloc[-30:] tempHigh = High.iloc[-30:] tempLow = Low.iloc[-30:] anaual_close = Close.iloc[-272:] anaual_High = High.iloc[-272:] if 'mmt_intraday_M' in factors_to_cal or factors_to_cal == 'all': # 1个月日内动量 uploadfactordict['mmt_intraday_M'] = mmt_intraday_M(tempClose,tempOpen) if 'mmt_range_M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅调整动量 uploadfactordict['mmt_range_M'] = mmt_range_M(tempHigh,tempLow,tempClose) if 'mmt_overnight_M' in factors_to_cal or factors_to_cal == 'all': # 隔夜动量 uploadfactordict['mmt_overnight_M'] = mmt_overnight_M(tempOpen,tempClose) if 'mmt_route_M' in factors_to_cal or factors_to_cal == 'all': # 路径调整动量 uploadfactordict['mmt_route_M'] = mmt_route_M(tempClose) if 'mmt_discrete_M' in factors_to_cal or factors_to_cal == 'all': # 信息离散度动量 uploadfactordict['mmt_discrete_M'] = mmt_discrete_M(tempClose) if 'mmt_sec_rank_M' in factors_to_cal or factors_to_cal == 'all': # 截面rank动量 uploadfactordict['mmt_sec_rank_M'] = mmt_sec_rank_M(tempClose) if 'mmt_time_rank_M' in factors_to_cal or factors_to_cal == 'all': # 时序rank_score uploadfactordict['mmt_time_rank_M'] = mmt_time_rank_M(anaual_close) if 'mmt_highest_days_A' in factors_to_cal or factors_to_cal == 'all': # 最高价距今天数 uploadfactordict['mmt_highest_days_A'] = mmt_highest_days_A(anaual_High) if 'volumestable' in factors_to_cal or factors_to_cal == 'all': # 成交量稳定度 uploadfactordict['volumestable'] = volumestable(volume) if '_con' in factors_to_cal or factors_to_cal == 'all': # 收益一致性因子 uploadfactordict['_con'] = re_con(tempClose) if 'bofu_money' in factors_to_cal or factors_to_cal == 'all': # 波幅/成交额 uploadfactordict['bofu_money'] = bofu_money(tempHigh,tempLow,tempOpen,total_turnover) if 'vol_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月收益率波动 uploadfactordict['vol_std_1M'] = vol_std(Close_ret,'1M',30) if 'vol_up_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上行收益率波动 uploadfactordict['vol_up_std_1M'] = vol_up_std(Close_ret,'1M',30) if 'vol_down_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下行收益率波动 uploadfactordict['vol_down_std_1M'] = vol_down_std(Close_ret,'1M',30) if 'vol_updown_ratio_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上行波动和下行波动比 uploadfactordict['vol_updown_ratio_1M'] = vol_updown_ratio(Close_ret,'1M',30) if 'vol_highlow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅均值 uploadfactordict['vol_highlow_avg_1M'] = vol_highlow_avg(High,Low,'1M',30) if 'vol_highlow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅波动 uploadfactordict['vol_highlow_std_1M'] = vol_highlow_std(High,Low,'1M',30) if 'vol_highlow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月振幅稳定度 uploadfactordict['vol_highlow_stable_1M'] = vol_highlow_stable(High,Low,'1M',30) if 'vol_upshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线均值 uploadfactordict['vol_upshadow_avg_1M'] = vol_upshadow_avg(High,Open,Close,'1M',30) if 'vol_upshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线波动 uploadfactordict['vol_upshadow_std_1M'] = vol_upshadow_std(High,Open,Close,'1M',30) if 'vol_upshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月上影线稳定度 uploadfactordict['vol_upshadow_stable_1M'] = vol_upshadow_stable(High,Open,Close,'1M',30) if 'vol_downshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线均值 uploadfactordict['vol_downshadow_avg_1M'] = vol_downshadow_avg(Low,Open,Close,'1M',30) if 'vol_downshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线波动 uploadfactordict['vol_downshadow_std_1M'] = vol_downshadow_std(Low,Open,Close,'1M',30) if 'vol_downshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月下影线稳定度 uploadfactordict['vol_downshadow_stable_1M'] = vol_downshadow_stable(Low,Open,Close,'1M',30) if 'vol_w_upshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线均值 uploadfactordict['vol_w_upshadow_avg_1M'] = vol_w_upshadow_avg(High,Close,'1M',30) if 'vol_w_upshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线波动 uploadfactordict['vol_w_upshadow_std_1M'] = vol_w_upshadow_std(High,Close,'1M',30) if 'vol_w_upshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉上影线稳定度 uploadfactordict['vol_w_upshadow_stable_1M'] = vol_w_upshadow_stable(High,Close,'1M',30) if 'vol_w_downshadow_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线均值 uploadfactordict['vol_w_downshadow_avg_1M'] = vol_w_downshadow_avg(Low,Close,'1M',30) if 'vol_w_downshadow_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线波动 uploadfactordict['vol_w_downshadow_std_1M'] = vol_w_downshadow_std(Low,Close,'1M',30) if 'vol_w_downshadow_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月威廉下影线稳定度 uploadfactordict['vol_w_downshadow_stable_1M'] = vol_w_downshadow_stable(Low,Close,'1M',30) if 'liq_turn_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月换手均值 uploadfactordict['liq_turn_avg_1M'] = liq_turn_avg(tovr_r,'1M',30) if 'liq_turn_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月换手方差 uploadfactordict['liq_turn_std_1M'] = liq_turn_std(tovr_r,'1M',30) if 'liq_vstd_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月成交波动比 uploadfactordict['liq_vstd_1M'] = liq_vstd(tovr_r,Close_ret,'1M',30) if 'liq_amihud_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子均值 uploadfactordict['liq_amihud_avg_1M'] = liq_amihud_avg(tovr_r,Close_ret,'1M',30) if 'liq_amihud_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子波动 uploadfactordict['liq_amihud_std_1M'] = liq_amihud_std(tovr_r,Close_ret,'1M',30) if 'liq_amihud_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月amihud非流动因子稳定度 uploadfactordict['liq_amihud_stable_1M'] = liq_amihud_stable(tovr_r,Close_ret,'1M',30) if 'liq_shortcut_avg_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子均值 uploadfactordict['liq_shortcut_avg_1M'] = liq_shortcut_avg(tovr_r,High,Low,Open,Close,'1M',30) if 'liq_shortcut_std_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子波动 uploadfactordict['liq_shortcut_std_1M'] = liq_shortcut_std(tovr_r,High,Low,Open,Close,'1M',30) if 'liq_shortcut_stable_1M' in factors_to_cal or factors_to_cal == 'all': # 一个月最短路径非流动因子稳定度 uploadfactordict['liq_shortcut_stable_1M'] = liq_shortcut_stable(tovr_r,High,Low,Open,Close,'1M',30) if 'PLUS' in factors_to_cal or factors_to_cal == 'all': # 上下影线差 uploadfactordict['PLUS'] = PLUS(tempClose,tempHigh,tempLow) if 'liq_std_w_plus_1M' in factors_to_cal or factors_to_cal == 'all': # 上下影线差*换手波动 uploadfactordict['liq_std_w_plus_1M'] = liq_std_w_plus(tempClose,tempHigh,tempLow, tovr_r,'1M',30) if 'HL_Sprd' in factors_to_cal or factors_to_cal == 'all': # 理想振幅因子 uploadfactordict['HL_Sprd'] = HL_Sprd(Close,High,Low,20) if 'tvr_std_1M' in factors_to_cal or factors_to_cal == 'all': # 换手率稳定度 uploadfactordict['tvr_std_1M'] = tvr_std(tovr_r,'1M',20) if 'corr_price_turn_1M' in factors_to_cal or factors_to_cal == 'all': # 换手率与价格的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-20:] uploadfactordict['corr_price_turn_1M'] = corr_price_turn(timerange,pricebyday,'1M') if 'corr_ret_turn_post_1M' in factors_to_cal or factors_to_cal == 'all': # 收益率与换手率的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-21:] # 涉及到计算pct_change需要多一天 uploadfactordict['corr_ret_turn_post_1M'] = corr_ret_turn_post(timerange,pricebyday,'1M') if 'corr_ret_turnd_1M' in factors_to_cal or factors_to_cal == 'all': # 收益率与换手率变动的相关性因子 timerange = sorted(list(pricebyday.index.get_level_values('date').drop_duplicates()))[-21:] uploadfactordict['corr_ret_turnd_1M'] = corr_ret_turnd(timerange,pricebyday,'1M') ######################################## 日内数据计算因子 #################################### # #单笔成交金额相关因子 sing_trade_amt = pd.DataFrame(minbar['total_turnover']/minbar['num_trades'],columns= ['single_trade_amt']) sing_trade_amt = sing_trade_amt[sing_trade_amt['single_trade_amt']>0] sing_trade_amt['trading_date'] = todaydate sta_del_extrm = sing_trade_amt.groupby(level = 0).apply(lambda x: x.sort_values('single_trade_amt').iloc[:-10]).droplevel(0)# 剔除极大值 sta_50pct = sing_trade_amt.groupby(level = 0).\ apply(lambda x: x[x['single_trade_amt']<x['single_trade_amt'].quantile(0.5)]).droplevel(0)# 后百分之五十 if 'mts' in factors_to_cal or factors_to_cal == 'all': # 主力交易强度 uploadfactordict['mts'] = mts(sta_del_extrm,minbar,todaydate) if 'mte' in factors_to_cal or factors_to_cal == 'all': # 主力交易情绪 uploadfactordict['mte'] = mte(sta_del_extrm,minbar,todaydate) if 'qua' in factors_to_cal or factors_to_cal == 'all': # 分位数因子qua uploadfactordict['qua'] = qua(sta_del_extrm,todaydate) if 'qua20m' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('qua',notst.index[-20],conn) q = qua(sta_del_extrm,todaydate) qua20m = pd.concat([prv_factor,q]).unstack().rolling(20,min_periods=1).mean().iloc[-1:].stack().rename(columns = {'qua':'qua20m'}) uploadfactordict['qua20m'] = qua20m if 'skew' in factors_to_cal or factors_to_cal == 'all': # 偏度因子skew uploadfactordict['skew'] = skew(sta_50pct,todaydate) if 'skew20m' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('skew',notst.index[-20],conn) sk = skew(sta_50pct,todaydate) skew20m = pd.concat([prv_factor,sk]).unstack().rolling(20,min_periods=1).mean().iloc[-1:].stack().rename(columns = {'skew':'skew20m'}) uploadfactordict['skew20m'] = skew20m if 's_reverse' in factors_to_cal or factors_to_cal == 'all': # 强反转因子 uploadfactordict['s_reverse'] = s_reverse(sing_trade_amt,minbar,todaydate) if 's_reverse_10_sum' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('s_reverse',notst.index[-10],conn) sr = s_reverse(sing_trade_amt,minbar,todaydate) s_reverse_10_sum = pd.concat([prv_factor,sr]).unstack().rolling(10,min_periods=1).sum().iloc[-1:].stack().rename(columns = {'s_reverse':'s_reverse_10_sum'}) uploadfactordict['s_reverse_10_sum'] = s_reverse_10_sum if 'daily_sta_90pct' in factors_to_cal or factors_to_cal == 'all': # 理想反转因子 uploadfactordict['daily_sta_90pct'] = daily_sta_90pct(sta_del_extrm) if 'ideal_reverse' in factors_to_cal or factors_to_cal == 'all': prv_factor = _method.get_prev_days_factor_by_name('daily_sta_90pct',notst.index[-20],conn) dsta90 = daily_sta_90pct(sing_trade_amt) daily_sta_cal = pd.concat([prv_factor,dsta90]) uploadfactordict['ideal_reverse'] = ideal_reverse(daily_sta_cal,Close) return uploadfactordict
Alpha-Rabbit
/Alpha_Rabbit-1.4.17.tar.gz/Alpha_Rabbit-1.4.17/Alpha_Rabbit/Factor_Calculator.py
Factor_Calculator.py
# Alpha-Vantage-API-Data - Financial Data Retrieving Alpha-Vantage-API-Data is a package for collecting stocks price and their related information. Notice : Please go visit https://www.alphavantage.co/support/#api-key to get your own free API key. ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install Alpha-Vantage-API-Data. ```bash pip install Alpha-Vantage-API-Data ``` ## Example ```python from Alpha_Vantage_API_Data import API_Data_Retrieves # returns stock daily result StockTimeSeries = API_Data_Retrieves.StockTimeSeries(apikey) daily_data = StockTimeSeries.GetDailyStockPrice("IBM") print(daily_data) # returns company information FundamentalData = API_Data_Retrieves.FundamentalData(apikey) stock_company_info = FundamentalData.CompanyInfo("AAPL") print(stock_company_info) ``` Go to [Alpha_Vantage_API_Project Issues Page](https://github.com/codemakerss/Alpha_Vantage_API_Project/issues) to report any issues. ## Other For more information, please visit [Alpha Vantage Official Page](https://www.alphavantage.co) and their [documents](https://www.alphavantage.co/documentation/). ## License [MIT](https://choosealicense.com/licenses/mit/)
Alpha-Vantage-API-Data
/Alpha_Vantage_API_Data-1.0.3.tar.gz/Alpha_Vantage_API_Data-1.0.3/README.md
README.md
import sys # Do not show error traceback sys.tracebacklimit=0 # Check if all packages installed try: from pandas.core.frame import DataFrame import pandas as pd except ImportError as e: print("Package <pandas> needed to be installed before getting data ! ") raise e try: import requests except ImportError as e: print("Package <requests> needed to be installed before getting data ! ") raise e try: import xlwt except ImportError as e: print("Package <xlwt> needed to be installed before getting data ! ") raise e try: import csv except ImportError as e: print("Package <csv> needed to be installed before getting data ! ") raise e class StockTimeSeries(object): def __init__(self, apikey : str): self.apikey = apikey # Get Stock Information # daily stock price def GetDailyStockPrice(self, stock_id : str) -> DataFrame: """return DataFrame type daily stock price The results will show daily stock price Parameters ---------- stock_id : str Choose the stock you want to get daily data """ base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_DAILY", "symbol": stock_id, "outputsize": "full","apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict daily_data = data["Time Series (Daily)"] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. volume"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. volume" : "Volume"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # weekly stock price def GetWeeklyStockPrice(self, stock_id : str) -> DataFrame: """return DataFrame type weekly stock price The results will show weekly stock price Parameters ---------- stock_id : str Choose the stock you want to get weekly data """ # https://www.alphavantage.co/query?function=TIME_SERIES_WEEKLY_ADJUSTED&symbol=IBM&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_WEEKLY_ADJUSTED", "symbol": stock_id,"apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict daily_data = data["Weekly Adjusted Time Series"] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. adjusted close", "6. volume", "7. dividend amount"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. adjusted close" : "Adjusted Close", "6. volume" : "Volume", "7. dividend amount" : "Dividend Amount"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # monthly stock price def GetMonthlyStockPrice(self, stock_id : str) -> DataFrame: """return DataFrame type monthly stock price The results will show monthly stock price Parameters ---------- stock_id : str Choose the stock you want to get monthly data """ # https://www.alphavantage.co/query?function=TIME_SERIES_MONTHLY_ADJUSTED&symbol=IBM&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_MONTHLY_ADJUSTED", "symbol": stock_id,"apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict daily_data = data["Monthly Adjusted Time Series"] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. adjusted close", "6. volume", "7. dividend amount"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. adjusted close" : "Adjusted Close", "6. volume" : "Volume", "7. dividend amount" : "Dividend Amount"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # intraday stock price - most recent 1 to 2 months data def GetIntradayStockPrice(self, stock_id : str, interval : str) -> DataFrame: """return DataFrame type intraday stock price The results will show intraday stock price at certain interval you choose Parameters ---------- stock_id : str Choose the stock you want to get intraday data interval : str Choose "1min" or "5min" or "15min" or "30min" or "60min" at time interval for intraday data """ # https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&outputsize=full&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_INTRADAY", "symbol": stock_id, "interval": interval, "outputsize": "full", "apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict ts_str = "Time Series (" + interval + ")" daily_data = data[ts_str] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. volume"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. volume" : "Volume"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # Symbol, Name, Type, Region, MarketOpen, MarketClose, Timezone, Currency, MatchScore def GetSearchEndpoint(self, find_stock : str) -> DataFrame: # https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords=tesco&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "SYMBOL_SEARCH", "keywords": find_stock, "apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict data = data["bestMatches"] for dict in data: df = df.append(pd.DataFrame([dict])) df_new = df.loc[:,["1. symbol", "2. name", "3. type", "4. region", "5. marketOpen", "6. marketClose", "7. timezone", "8. currency", "9. matchScore"]] df_new = df_new.rename(columns= {"1. symbol" : 'Symbol', "2. name" : 'Name', "3. type" : 'Type', "4. region" : 'Region', "5. marketOpen" : 'MarketOpen', "6. marketClose" : 'MarketClose', "7. timezone" : 'Timezone', "8. currency" : 'Currency', "9. matchScore" : 'MatchScore'}) return df_new class FundamentalData(object): def __init__(self, apikey : str): self.apikey = apikey # Company Information # Currency, GrossProfit in last 5 years - from 2016/12/31 to 2020/12/31, Total Revenue, NetIncome def GetIncomeStatement(self, stock_id : str) -> DataFrame: """return DataFrame type stock income statement The results will show stock annual and quarterly income statement Parameters ---------- stock_id : str Choose the stock you want to get income statement """ base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {'function': 'INCOME_STATEMENT', 'symbol': stock_id, 'apikey': self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict data_annual = data['annualReports'] for dict in data_annual: df = df.append(pd.DataFrame([dict])) df_new = df.loc[:,['fiscalDateEnding','reportedCurrency','grossProfit', 'totalRevenue', 'netIncome']] col_name = df_new.columns.tolist() col_name.insert(0,'Symbol') df_new = df_new.reindex(columns=col_name) df_new['Symbol'] = stock_id return df_new def GetIncomeStatement_Original(self, stock_id : str) -> DataFrame: """return DataFrame type stock income statement The results will show stock annual and quarterly income statement Parameters ---------- stock_id : str Choose the stock you want to get income statement """ base_url = 'https://www.alphavantage.co/query?' df_annual = pd.DataFrame() df_quarterly = pd.DataFrame() params = {'function': 'INCOME_STATEMENT', 'symbol': stock_id, 'apikey': self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict data_annual = data['annualReports'] data_quarterly = data['quarterlyReports'] for dict_1 in data_annual: df_annual = df_annual.append(pd.DataFrame([dict_1])) col_name = df_annual.columns.tolist() col_name.insert(0,'Symbol') df_annual = df_annual.reindex(columns=col_name) df_annual['Symbol'] = stock_id for dict_2 in data_quarterly: df_quarterly = df_quarterly.append(pd.DataFrame([dict_2])) col_name = df_quarterly.columns.tolist() col_name.insert(0,'Symbol') df_quarterly = df_quarterly.reindex(columns=col_name) df_quarterly['Symbol'] = stock_id return df_annual, df_quarterly # Symbol, Name, Exchange, Country, Sector, Industry, Fiscal year end, 52 Week high, 52 Week low, 50DayMovingAverage, 200DayMovingAverage, def GetCompanyOverview(self, stock_id : str) -> DataFrame: """return DataFrame type stock company overview The results will show stock company overview Parameters ---------- stock_id : str Choose the stock you want to get company overview """ base_url = 'https://www.alphavantage.co/query?' df_new = pd.DataFrame() params = {'function': 'OVERVIEW', 'symbol': stock_id, 'apikey': self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict df = pd.DataFrame([data]) df_new = df.loc[:,['Symbol', 'Name','Exchange','Country', 'Sector', 'Industry', 'FiscalYearEnd', '52WeekHigh', '52WeekLow','50DayMovingAverage', '200DayMovingAverage']] return df_new def GetCompanyOverview_Original(self, stock_id : str) -> DataFrame: """return DataFrame type stock company overview The results will show stock company overview Parameters ---------- stock_id : str Choose the stock you want to get company overview """ base_url = 'https://www.alphavantage.co/query?' df_new = pd.DataFrame() params = {'function': 'OVERVIEW', 'symbol': stock_id, 'apikey': self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict df = pd.DataFrame([data]) return df # Symbol, Name, Exchange, AssetType, IPO Date, Delisting Date, Status # This is the new version of function def GetListingDelistingStatus(self) -> DataFrame: """return DataFrame type listing and delisting information The results will show stock listing and delisting information """ CSV_URL ='https://www.alphavantage.co/query?function=LISTING_STATUS&apikey=' + self.apikey r = requests.get(CSV_URL) decoded_content = r.content.decode('utf-8') df = pd.DataFrame() for i in decoded_content.splitlines(): data_list = i.split(',') df = df.append(pd.DataFrame(data_list).T, ignore_index=True) df = df.rename(columns=df.iloc[0]) df = df.drop(df.index[0]) df.loc[(df["delistingDate"] == "null"), "delistingDate"] = "1970-01-01" return df # Symbol, Name, Exchange, AssetType, IPO Date, Delisting Date, Status # This is the old version of function def GetListingDelistingStatus_Original(self) -> DataFrame: """return DataFrame type listing and delisting information The results will show stock listing and delisting information """ CSV_URL ='https://www.alphavantage.co/query?function=LISTING_STATUS&apikey=' + self.apikey data_lst = [] with requests.Session() as s: download = s.get(CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: data_lst.append(row) df = pd.DataFrame(columns=data_lst[0], data = data_lst[1:]) return df # 'symbol', 'name', 'ipoDate', 'priceRangeLow', 'priceRangeHigh', 'currency', 'exchange' # This is the new version def FindIPOCalender(self) -> DataFrame: """Return DataFrame type of incoming IPO stocks This will show incoming listing stocks in next few days """ CSV_URL = 'https://www.alphavantage.co/query?function=IPO_CALENDAR&apikey=' + self.apikey r = requests.get(CSV_URL) decoded_content = r.content.decode('utf-8') df = pd.DataFrame() for i in decoded_content.splitlines(): data_list = i.split(',') df = df.append(pd.DataFrame(data_list).T, ignore_index=True) df = df.rename(columns=df.iloc[0]) df = df.drop(df.index[0]) return df # Find IPO companies in the next three months # 'symbol', 'name', 'ipoDate', 'priceRangeLow', 'priceRangeHigh', 'currency', 'exchange' # This is the old version def FindIPOCalender_Original(self) -> DataFrame: """Return DataFrame type of incoming IPO stocks This will show incoming listing stocks in next few days """ CSV_URL = 'https://www.alphavantage.co/query?function=IPO_CALENDAR&apikey=' + self.apikey data_lst = [] with requests.Session() as s: download = s.get(CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: data_lst.append(row) df = pd.DataFrame(columns=data_lst[0], data = data_lst[1:]) return df # Company overview combine with the IPO date information in the listing&delisting data def CompanyInfo(self, stock_id : str) -> DataFrame: """return DataFrame type stock company information The results will show stock company information Parameters ---------- stock_id : str Choose the stock you want to get company information """ df_income_statement = self.GetListingDelistingStatus() df_company_overview = self.GetCompanyOverview_Original(stock_id) df_company_overview = df_company_overview.loc[:,['Symbol', 'AssetType', 'Name', 'Exchange','Country', 'Sector', 'Industry']] df_company_IPO_date = df_income_statement.loc[df_income_statement['symbol'] == stock_id] df_company_overview['IpoDate'] = str(df_company_IPO_date['ipoDate'].values[0]) df_company_overview['DelistingDate'] = str(df_company_IPO_date['delistingDate'].values[0]) df_company_overview.loc[(df_company_overview["DelistingDate"] == "null"), "DelistingDate"] = "1970-01-01" df_company_overview['Status'] = str(df_company_IPO_date['status'].values[0]) return df_company_overview # class FileOutputCSV(object): # def __init__(self, apikey: str, StockTimeSeries : classmethod, FundamentalData : classmethod) -> None: # self.apikey = apikey # self.StockTimeSeries = StockTimeSeries(self.apikey) # self.FundamentalData = FundamentalData(self.apikey) # def CSV_Output_Original(self, stock_id : str) -> DataFrame: # workbook = xlwt.Workbook() # workbook.add_sheet('Daily Price') # workbook.add_sheet('Weekly Price') # workbook.add_sheet('Monthly Price') # workbook.add_sheet('Intraday Price') # workbook.add_sheet('Income Statement Annual') # workbook.add_sheet('Income Statement Quarterly') # workbook.add_sheet('Company Overview') # workbook.add_sheet('Search Endpoint Results') # workbook.add_sheet('US ListingDelisting Status') # workbook.add_sheet('IPO Calender') # workbook.save('Original_Data.xlsx') # df = self.GetIncomeStatement_Original(stock_id) # writer = pd.ExcelWriter('Original_Data.xlsx', engine='xlsxwriter') # self.GetDailyStockPrice_Original(stock_id).to_excel(writer, sheet_name='Daily Price') # self.GetWeeklyStockPrice(stock_id).to_excel(writer, sheet_name='Weekly Price') # self.GetMonthlyStockPrice(stock_id).to_excel(writer, sheet_name='Monthly Price') # self.GetIntradayStockPrice(stock_id).to_excel(writer, sheet_name='Intraday Price') # df[0].to_excel(writer, sheet_name='Income Statement Annual') # df[1].to_excel(writer, sheet_name='Income Statement Quarterly') # self.GetCompanyOverview_Original(stock_id).to_excel(writer, sheet_name='Company Overview') # self.GetSearchEndpoint(stock_id).to_excel(writer, sheet_name='Search Endpoint Results') # self.GetListingDelistingStatus().to_excel(writer, sheet_name='US ListingDelisting Status') # self.FindIPOCalender().to_excel(writer, sheet_name='IPO Calender') # writer.save() # # CSV file - Filter data # def CSV_Output(self, stock_id : str) -> DataFrame: # workbook = xlwt.Workbook() # workbook.add_sheet('Daily Price') # workbook.add_sheet('Weekly Price') # workbook.add_sheet('Monthly Price') # workbook.add_sheet('Intraday Price') # workbook.add_sheet('Income Statement Annual Reports') # workbook.add_sheet('Company Overview') # workbook.add_sheet('Search Endpoint Results') # workbook.add_sheet('US ListingDelisting Status') # workbook.add_sheet('IPO Calender') # workbook.save('Filter_Data.xlsx') # writer = pd.ExcelWriter('Filter_Data.xlsx', engine='xlsxwriter') # self.GetDailyStockPrice(stock_id).to_excel(writer, sheet_name='Daily Price') # self.GetWeeklyStockPrice(stock_id).to_excel(writer, sheet_name='Weekly Price') # self.GetMonthlyStockPrice(stock_id).to_excel(writer, sheet_name='Monthly Price') # self.GetIntradayStockPrice(stock_id).to_excel(writer, sheet_name='Intraday Price') # self.GetIncomeStatement(stock_id).to_excel(writer, sheet_name='Income Statement Annual Reports') # self.GetCompanyOverview(stock_id).to_excel(writer, sheet_name='Company Overview') # self.GetSearchEndpoint(stock_id).to_excel(writer, sheet_name='Search Endpoint Results') # self.GetListingDelistingStatus().to_excel(writer, sheet_name='US ListingDelisting Status') # self.FindIPOCalender().to_excel(writer, sheet_name='IPO Calender') # writer.save()
Alpha-Vantage-API-Data
/Alpha_Vantage_API_Data-1.0.3.tar.gz/Alpha_Vantage_API_Data-1.0.3/src/Alpha_Vantage_API_Data/API_Data_Retrieves.py
API_Data_Retrieves.py
# AlphaAffixedNumericType (aant) Python data type to support arithmetics on alphanumeric string ## Types of arithmetics supported - Addition `aant + integer` \* NOTE: integer type must be on the right of addition operator - Subtraction `aant - [integer|aant]` ## How to Use ```python from AlphaAffixedNumericType import AlphaAffixedNumericType aant = AlphaAffixedNumericType('A123') print(aant + 1) # prints 'A124' print(aant + 1000) # prints 'A1123' aant += 10 print(aant.get_value()) # prints 'A133' aant2 = AlphaAffixedNumericType('A123B') aant3 = AlphaAffixedNumericType('A124B') print(aant2 - aant3) # prints -1 print(aant2 - 200) # raises 'NumericArithmeticException' - Numeric part of aant2 (123) is less than 200 aant4 = AlphaAffixedNumericType('A0001B') print(aant4 + 1000) # prints 'A1001B' ```
AlphaAffixedNumericType
/AlphaAffixedNumericType-0.1.0.tar.gz/AlphaAffixedNumericType-0.1.0/README.md
README.md
import os, json, pdb, itertools import pandas as pd from ultron.strategy.deformer import FusionLoad from ultron.kdutils.file import load_pickle from jdw.mfc.entropy.deformer.fusionx import Futures from alphaedge.plugins.quantum.base import Base class Predictor(Base): def __init__(self, directory, policy_id, is_groups=1): super(Predictor, self).__init__(directory=directory, policy_id=policy_id, is_groups=is_groups) def predict(self, model_desc, total_data, returns_data): alpha_res = [] desc_dir = os.path.join(self.category_directory, "desc") model_dir = os.path.join(self.category_directory, "model") model_desc = model_desc if isinstance(model_desc, list) else [model_desc] model_list = [] for m in model_desc: filename = os.path.join(desc_dir, "{0}.h5".format(m)) desc = load_pickle(filename) model = FusionLoad(desc) model_list.append(model) columns = [model.formulas.dependency for model in model_list] columns = list(set(itertools.chain.from_iterable(columns))) total_data = self.normal(total_data=total_data, columns=columns) for model in model_list: eng = Futures(batch=model.batch, freq=model.freq, horizon=model.horizon, id=model.id, is_full=True, directory=model_dir) factors = eng.create_data(total_data=total_data, returns=returns_data) alpha_res.append(factors) return pd.concat(alpha_res, axis=1) def calculate(self, total_data, returns_data=None): policy_file = os.path.join(self.directory, "policy.json") with open(policy_file, 'r') as json_file: policy_data = json.load(json_file) model_desc = policy_data['groups'] if self.is_groups else policy_data[ 'main'] return self.predict(model_desc=model_desc, total_data=total_data, returns_data=returns_data)
AlphaEdge
/AlphaEdge-0.0.4.tar.gz/AlphaEdge-0.0.4/alphaedge/plugins/quantum/predictor.py
predictor.py
import os, json, copy, math import pandas as pd import numpy as np from ultron.tradingday import * from ultron.strategy.experimental.multiple_factor import MultipleFactor class Constraint(object): def __init__(self, directory, policy_id, volatility_name): self.policy_id = policy_id self.directory = os.path.join(directory, self.policy_id) self.volatility_name = volatility_name def load_configure(self): policy_file = os.path.join(self.directory, "policy.json") with open(policy_file, 'r') as json_file: policy_data = json.load(json_file) return policy_data['constraint'] def calculate(self, weighted_data, volatility_data, prev_returns): configure = self.load_configure() volatility_mc = MultipleFactor(signal_data=None, volatility_data=volatility_data, returns_data=prev_returns) volatility_data = volatility_mc._winsorize_volatility( name=self.volatility_name, volatility_data=volatility_data) volatility_data['trade_date'] = pd.to_datetime( volatility_data['trade_date']) weighted_groups = weighted_data.groupby('trade_date') res = [] for ref_date, this_data in weighted_groups: begin_date = advanceDateByCalendar( 'china.sse', ref_date, '-{0}b'.format(configure['window'])) end_date = advanceDateByCalendar('china.sse', ref_date, '-0b') signal = weighted_data.set_index('trade_date').loc[end_date] volatility = volatility_data.set_index('trade_date').loc[end_date] returns = prev_returns.set_index( 'trade_date').loc[begin_date:end_date].reset_index() codes = set(signal.code.unique().tolist()) & set( returns.code.unique().tolist()) & set( volatility.code.unique().tolist()) returns = returns.set_index('code').loc[codes].reset_index() signal = signal.set_index('code').loc[codes].reset_index() w = copy.deepcopy(this_data) corr_dt = volatility_mc._returns_corr(returns).fillna(0) ###重置w, 波动率顺序 w = w.set_index('code').reindex(corr_dt.index).reset_index() volatility = volatility.set_index('code').reindex( corr_dt.index).reset_index() data = w.merge(corr_dt, on=['code']).merge(volatility, on=['code']) cols = [ col for col in data.columns if col not in [ 'code', 'signal', 'trade_date', 'weight', self.volatility_name ] ] s = data['weight'] * data[self.volatility_name] v = data[self.volatility_name] n = np.dot(s.T, data[cols]) if n.shape[0] != s.shape[0]: print(n.shape[0], n.shape[0]) else: m = np.dot(n, s) if m == 0: continue op = math.sqrt(m) weighted_dt = copy.deepcopy(this_data) weighted_dt['weight'] = ((configure['volatility'] / op) * this_data['weight']) res.append(weighted_dt.set_index(['trade_date', 'code'])) target_pos = pd.concat(res, axis=0) return target_pos
AlphaEdge
/AlphaEdge-0.0.4.tar.gz/AlphaEdge-0.0.4/alphaedge/plugins/quantum/constraint.py
constraint.py
import os, json, pdb import pandas as pd from ultron.tradingday import * from ultron.strategy.optimize import Optimize def create_params(**kwargs): ### 序列设置 industry_effective = [] if 'industry_effective' not in kwargs else kwargs[ 'industry_effective'] industry_invalid = [] if 'industry_invalid' not in kwargs else kwargs[ 'industry_invalid'] riskstyle = [] if 'riskstyle' not in kwargs else kwargs['riskstyle'] ### 通用参数设置 weights_bandwidth = 0.1 if 'weights_bandwidth' not in kwargs else kwargs[ 'weights_bandwidth'] method = 'fmv' if 'method' not in kwargs else kwargs['method'] turn_over_target = 1.0 if 'turn_over_target' not in kwargs else kwargs[ 'turn_over_target'] target_vol = 0.1 if 'target_vol' not in kwargs else kwargs['target_vol'] lbound = 0. if 'lbound' not in kwargs else kwargs['lbound'] ubound = 0.04 if 'ubound' not in kwargs else kwargs['ubound'] is_benchmark = 0 if 'is_benchmark' not in kwargs else kwargs['is_benchmark'] ### benchmark 区间设置 benchmark_boundary = 'relative' if 'benchmark_boundary' not in kwargs else kwargs[ 'benchmark_boundary'] benchmark_lower = 1.001 if 'benchmark_lower' not in kwargs else kwargs[ 'benchmark_lower'] benchmark_upper = 0.8 if 'benchmark_upper' not in kwargs else kwargs[ 'benchmark_upper'] #### total 区间设置 total_boundary = 'relative' if 'total_boundary' not in kwargs else kwargs[ 'total_boundary'] total_lower = 0.001 if 'total_lower' not in kwargs else kwargs[ 'total_lower'] total_upper = 0.01 if 'total_upper' not in kwargs else kwargs['total_upper'] #### 上限行业区间设置 effective_industry_boundary = 'absolute' if 'effective_industry_boundary' not in kwargs else kwargs[ 'effective_industry_boundary'] effective_industry_lower = 0.0 if 'effective_industry_lower' not in kwargs else kwargs[ 'effective_industry_lower'] effective_industry_upper = 0.20 if 'effective_industry_upper' not in kwargs else kwargs[ 'effective_industry_upper'] #### 下限行业区间设置 invalid_industry_boundary = 'absolute' if 'invalid_industry_boundary' not in kwargs else kwargs[ 'invalid_industry_boundary'] invalid_industry_lower = 0.0 if 'invalid_industry_lower' not in kwargs else kwargs[ 'invalid_industry_lower'] invalid_industry_upper = 0.20 if 'invalid_industry_upper' not in kwargs else kwargs[ 'invalid_industry_upper'] riskstyle_boundary = 'absolute' if 'riskstyle_boundary' not in kwargs else kwargs[ 'riskstyle_boundary'] riskstyle_lower = 0.0 if 'riskstyle_lower' not in kwargs else kwargs[ 'riskstyle_lower'] riskstyle_upper = 0.20 if 'riskstyle_upper' not in kwargs else kwargs[ 'riskstyle_upper'] neutralized_styles = None if 'neutralized_styles' not in kwargs else kwargs[ 'neutralized_styles'] other_boundary = 'absolute' if 'other_boundary' not in kwargs else kwargs[ 'other_boundary'] params = {} params['industry'] = {} params['riskstyle'] = {} ### 序列设置 params['industry']['effective'] = industry_effective params['industry']['invalid'] = industry_invalid params['riskstyle'] = riskstyle ### 通用参数设置 params['setting_params'] = {} params['setting_params']['weights_bandwidth'] = weights_bandwidth params['setting_params']['method'] = method params['setting_params']['turn_over_target'] = turn_over_target params['setting_params']['target_vol'] = target_vol params['setting_params']['lbound'] = lbound params['setting_params']['ubound'] = ubound params['setting_params']['is_benchmark'] = is_benchmark params['setting_params']['benchmark'] = {} params['setting_params']['total'] = {} params['setting_params']['other'] = {} ### params['setting_params']['other']['boundary'] = other_boundary params['setting_params']['other']['lower'] = 0.0 params['setting_params']['other']['upper'] = 0.0 # benchmark 区间设置 params['setting_params']['benchmark']['boundary'] = benchmark_boundary params['setting_params']['benchmark']['lower'] = benchmark_lower params['setting_params']['benchmark']['upper'] = benchmark_upper # total 区间设置 条件6 params['setting_params']['total']['boundary'] = total_boundary params['setting_params']['total']['lower'] = total_lower params['setting_params']['total']['upper'] = total_upper ### 此处考虑行业择时 params['setting_params']['effective_industry'] = {} params['setting_params']['invalid_industry'] = {} #### effective_industry 上限行业区间设置 params['setting_params']['effective_industry'][ 'boundary'] = effective_industry_boundary params['setting_params']['effective_industry'][ 'lower'] = effective_industry_lower params['setting_params']['effective_industry'][ 'upper'] = effective_industry_upper #### invalid_industry 下限行业区间设置 params['setting_params']['invalid_industry'][ 'boundary'] = invalid_industry_boundary params['setting_params']['invalid_industry'][ 'lower'] = invalid_industry_lower params['setting_params']['invalid_industry'][ 'upper'] = invalid_industry_upper ### riskstyle 风格设置 params['setting_params']['riskstyle'] = {} params['setting_params']['riskstyle']['boundary'] = riskstyle_boundary params['setting_params']['riskstyle']['lower'] = riskstyle_lower params['setting_params']['riskstyle']['upper'] = riskstyle_upper params['setting_params']['neutralized_styles'] = neutralized_styles return params class Optimizer(object): def __init__(self, directory, policy_id): self.policy_id = policy_id self.directory = os.path.join(directory, self.policy_id) self.method = None def load_configure(self): policy_file = os.path.join(self.directory, "policy.json") with open(policy_file, 'r') as json_file: policy_data = json.load(json_file) self.method = policy_data['optimizer']['method'].split('_')[0] return create_params(**policy_data['optimizer']) def load_features(self): policy_file = os.path.join(self.directory, "policy.json") with open(policy_file, 'r') as json_file: policy_data = json.load(json_file) return policy_data['main'] def tailor_data(self, total_data): industry_dummy = pd.get_dummies( total_data.set_index(['trade_date', 'code'])['industry_code']).reset_index() total_data = total_data.merge(industry_dummy, on=['trade_date', 'code']) return total_data def calculate(self, total_data, risk_model): pdb.set_trace() configure = self.load_configure() total_data = self.tailor_data(total_data) begin_date = pd.to_datetime( total_data['trade_date']).dt.strftime('%Y-%m-%d').min() end_date = pd.to_datetime( total_data['trade_date']).dt.strftime('%Y-%m-%d').max() optimize = Optimize(alpha_model=None, category=self.method, features=[self.load_features()], begin_date=begin_date, end_date=end_date, risk_model=risk_model, index_returns=None, total_data=total_data) return optimize.rebalance_positions(configure).reset_index(drop=True)
AlphaEdge
/AlphaEdge-0.0.4.tar.gz/AlphaEdge-0.0.4/alphaedge/plugins/quantum/optimizer.py
optimizer.py
from typing import List, Union import requests from concurrent.futures import ThreadPoolExecutor, as_completed from tqdm import tqdm import os from datetime import datetime import time import logging logging.basicConfig(level=logging.INFO) class AlphaFetcher: """ A class to fetch and download protein metadata and files from the AlphaFold Protein Structure Database using Uniprot access codes. Attributes: uniprot_access_list (List[str]): A list storing the Uniprot access codes to be fetched. failed_ids (List[str]): A list storing any Uniprot access codes that failed to be fetched. metadata_dict (dict): A dictionary storing fetched metadata against each Uniprot access code. base_savedir (str): The base directory where fetched files will be saved. """ def __init__(self): """ Initializes the AlphaFetcher class with default values. """ self.uniprot_access_list = [] self.failed_ids = [] self.metadata_dict = {} self.base_savedir = os.path.join(os.getcwd(), f'alphafetcher_results_' f'{datetime.now().strftime("%Y%m%d_%H%M%S")}') def add_proteins(self, proteins: Union[str, List[str]]) -> None: """ Adds the provided Uniprot access codes to the list for fetching. Args: proteins (Union[str, List[str]]): A single Uniprot access code or a list of codes. Raises: ValueError: If the provided proteins parameter is neither a string nor a list of strings. """ if isinstance(proteins, str): self.uniprot_access_list.append(proteins) elif isinstance(proteins, list): self.uniprot_access_list.extend(proteins) # Using extend() method to add multiple items from a list. else: raise ValueError("Expected a string or a list of strings, but got {}".format(type(proteins))) def _fetch_single_metadata(self, uniprot_access: str, alphafold_database_base: str, pbar=None): """ Fetches the metadata for a single Uniprot access code. Args: uniprot_access (str): The Uniprot access code to fetch. alphafold_database_base (str): The base URL for the Alphafold API. pbar (tqdm, optional): A tqdm progress bar. Defaults to None. """ response = requests.get(f"{alphafold_database_base}{uniprot_access}") if response.status_code == 200: alphafold_data = response.json()[0] self.metadata_dict[uniprot_access] = alphafold_data else: self.failed_ids.append(uniprot_access) if pbar: pbar.update(1) def fetch_metadata(self, multithread: bool = False, workers: int = 10): """ Fetches metadata for all the Uniprot access codes added to the class. Args: multithread (bool, optional): If true, uses multithreading for faster fetching. Defaults to False. workers (int, optional): Number of threads to use if multithreading. If -1, uses all available CPUs. Defaults to 10. """ alphafold_api_base = "https://alphafold.ebi.ac.uk/api/prediction/" # Use all available CPUs if workers is set to -1 if workers == -1: workers = os.cpu_count() or 1 # Default to 1 if os.cpu_count() returns None if len(self.uniprot_access_list) == 0: print('Please a list of Uniprot access codes with the method add_proteins()') return with tqdm(total=len(self.uniprot_access_list), desc="Fetching Metadata") as pbar: if multithread: with ThreadPoolExecutor(max_workers=workers) as executor: futures = [executor.submit(self._fetch_single_metadata, uniprot_access, alphafold_api_base, pbar) for uniprot_access in self.uniprot_access_list] # Ensure all futures have completed for _ in as_completed(futures): pass else: for uniprot_access in self.uniprot_access_list: self._fetch_single_metadata(uniprot_access, alphafold_api_base, pbar) if len(self.failed_ids) > 0: print(f'Uniprot accessions not found in database: {", ".join(self.failed_ids)}') def _download_single_protein(self, uniprot_access: str, pdb: bool = False, cif: bool = False, bcif: bool = False, pae_image: bool = False, pae_data: bool = False, pbar=None): """ Downloads files for a single Uniprot access code. Args: uniprot_access (str): The Uniprot access code to fetch. pdb (bool, optional): If true, downloads the pdb file. Defaults to False. cif (bool, optional): If true, downloads the cif file. Defaults to False. bcif (bool, optional): If true, downloads the bcif file. Defaults to False. pae_image (bool, optional): If true, downloads the PAE image file. Defaults to False. pae_data (bool, optional): If true, downloads the PAE data file. Defaults to False. pbar (tqdm, optional): A tqdm progress bar. Defaults to None. """ links_to_download = [] metadata_dict = self.metadata_dict[uniprot_access] if pdb: pdb_savedir = os.path.join(self.base_savedir, 'pdb_files') extension = 'pdb' links_to_download.append([metadata_dict['pdbUrl'], pdb_savedir, extension]) if cif: cif_savedir = os.path.join(self.base_savedir, 'cif_files') extension = 'cif' links_to_download.append([metadata_dict['cifUrl'], cif_savedir, extension]) if bcif: bcif_savedir = os.path.join(self.base_savedir, 'bcif_files') extension = 'bcif' links_to_download.append([metadata_dict['bcifUrl'], bcif_savedir, extension]) if pae_image: pae_image_savedir = os.path.join(self.base_savedir, 'pae_image_files') extension = 'png' links_to_download.append([metadata_dict['paeImageUrl'], pae_image_savedir, extension]) if pae_data: pae_data_savedir = os.path.join(self.base_savedir, 'pae_data_files') extension = 'json' links_to_download.append([metadata_dict['paeDocUrl'], pae_data_savedir, extension]) if len(links_to_download) == 0: print('Please select a type of data to download') return for data_type in links_to_download: data_type_url = data_type[0] data_type_savedir = data_type[1] file_extension = data_type[2] if not os.path.isdir(data_type_savedir): os.makedirs(data_type_savedir, exist_ok=True) response = requests.get(data_type_url) if response.status_code == 200: save_path = os.path.join(data_type_savedir, f"{uniprot_access}.{file_extension}") with open(save_path, 'wb') as f: f.write(response.content) else: print(f"Error with protein {uniprot_access}") return if pbar: pbar.update(1) def download_all_files(self, multithread: bool = False, workers: int = 10, pdb: bool = False, cif: bool = False, bcif: bool = False, pae_image: bool = False, pae_data: bool = False): """ Downloads files for all the Uniprot access codes added to the class. Args: multithread (bool, optional): If true, uses multithreading for faster downloading. Defaults to False. workers (int, optional): Number of threads to use if multithreading. If -1, uses all available CPUs. Defaults to 10. pdb (bool, optional): If true, downloads the pdb file. Defaults to False. cif (bool, optional): If true, downloads the cif file. Defaults to False. bcif (bool, optional): If true, downloads the bcif file. Defaults to False. pae_image (bool, optional): If true, downloads the PAE image file. Defaults to False. pae_data (bool, optional): If true, downloads the PAE data file. Defaults to False. """ # Use all available CPUs if workers is set to -1 if workers == -1: workers = os.cpu_count() or 1 # Default to 1 if os.cpu_count() returns None if len(self.uniprot_access_list) == 0: print('Please a list of Uniprot access codes with the method add_proteins()') return # This means that fetch_metadata has not been called. If it was called but had invalid codes, self.failed_ids # would not be empty if len(self.metadata_dict) == 0 and len(self.failed_ids) == 0: self.fetch_metadata(multithread=multithread, workers=workers) # This means that after fetching the metadata, there were no valid uniprot access codes if len(self.metadata_dict) == 0 and len(self.failed_ids) > 0: print('No valid Uniprot access codes provided') return valid_uniprots = self.metadata_dict.keys() with tqdm(total=len(valid_uniprots), desc="Fetching files") as pbar: if multithread: with ThreadPoolExecutor(max_workers=workers) as executor: futures = {executor.submit(self._download_single_protein, uniprot_access, pdb, cif, bcif, pae_image, pae_data, pbar): uniprot_access for uniprot_access in valid_uniprots} # Ensure all futures have completed and handle exceptions for future in as_completed(futures): uniprot_access = futures.get(future) try: future.result() except Exception as e: logging.error(f"Error in thread for {uniprot_access}: {e}") else: for uniprot_access in valid_uniprots: self._download_single_protein(uniprot_access, pdb, cif, bcif, pae_image, pae_data, pbar)
AlphaFetcher
/AlphaFetcher-0.1.0b2-py3-none-any.whl/alphafetcher/wrapper/wrapper_utils.py
wrapper_utils.py
import time from Constants import MISSINGGENOTYPECODE import numpy as np # import scipy as sp import typing log1 = 0 loge = np.log(np.exp(-5)) log5 = np.log(0.5) logd = loge # Global variables defined for heuristic geneprob heuristicTrace = np.empty((3,3)) heuristicTrace[0,:] = (log1,log5,loge) heuristicTrace[0,:] = (loge,log5,log1) heuristicTrace[0,:] = (log1,log5,loge) heuristicTraceNoSeg = np.empty((3,4),dtype=np.float64) heuristicTraceNoSeg[0, :] = (log1, log5, log5, loge) heuristicTraceNoSeg[1, :] = (loge, log5, log5, log1) heuristicTraceNoSeg[2, :] = (loge, log5, log5, log1) heuristicTraceSeg = np.empty((2,2,4),dtype=np.float64) heuristicTraceSeg[0,0,:] = (log1, log1, logd, logd) heuristicTraceSeg[1,0,:] = (logd, logd, log1, log1) heuristicTraceSeg[0, 1 ,:]= (log1, logd, log1, logd) heuristicTraceSeg[0,1,:] = (logd, log1, logd, log1) DISTANCETHRESHOLD = 15 def heuristicGenerob(ped): for ind in ped: for (i,g) in enumerate(ind.genotype): genosProbs = np.zeros(3,dtype=np.float64) if (g != MISSINGGENOTYPECODE): continue for off in ind.offsprings: offG = off.genotype[i] if offG == MISSINGGENOTYPECODE: continue if (off.sire == ind): sire = True e = 0 else: sire = False e = 1 if (offG == 1): p = off.haplotypes[e][i] if (p != MISSINGGENOTYPECODE): genosProbs[:]= genosProbs[:] + heuristicTrace[:,p] else: if (sire): gOtherParent = off.dam.genotype[i] else: gOtherParent = off.sire.genotype[i] if (gOtherParent == 0 or gOtherParent == 1): p = 1 - gOtherParent / 2 genosProbs[:] = genosProbs[:] + heuristicTrace[:,p] else: genosProbs[:] = genosProbs[:] + heuristicTrace[:,offG] indexes = np.argpartition(genosProbs, -2)[-2:] #get two largest indexes as a list largest = genosProbs[indexes[0]] secondLargest = genosProbs[indexes[1]] pos = indexes[0] if (largest - secondLargest > DISTANCETHRESHOLD): ind.genotype[i] = pos def heuristicMLP(ped): peelDown(ped) updateSeg(ped) peelUp(ped) def peelDown(ped): parentPhase = np.zeros((2,2), dtype=np.int8) parentGeno = np.zeros((2), dtype=np.int8) for ind in ped: ind.setSegToMissing() if ind.founder: continue for i,g in enumerate(ind.genotype): parentPhase[0,0] = ind.sire.haplotypes[0][i] parentPhase[0,1] = ind.sire.haplotypes[1][i] parentPhase[1,0] = ind.dam.haplotypes[0][i] parentPhase[1,1] = ind.dam.haplotypes[1][i] parentGeno[0] = ind.sire.genotype[i] parentGeno[1] = ind.dam.genotype[i] for h in range(0,2): if parentGeno[h] == 2: ind.haplotypes[h][i] = 1 elif parentGeno[h] == 0: ind.haplotypes[h][i] = 0 elif parentGeno[h] == 1: if (parentPhase[h,1] != MISSINGGENOTYPECODE and parentPhase[h,1] != MISSINGGENOTYPECODE): seg = ind.seg[i,h] if seg != MISSINGGENOTYPECODE: ind.haplotypes[h][i] = parentPhase[h,seg] ind.makeIndividualGenotypeFromPhase() ind.makeIndividualPhaseCompliment() def peelUp(ped): for ind in ped.GenotypedIndividuals: for i, g in ind.genotype: phaseProbs = np.zeros(ind.genotype.length) for off in ind.offsprings: offG = off.genotype[i] if offG != MISSINGGENOTYPECODE: continue if (off.sire == ind): e = 0 sire = True else: e = 1 sire = False childSeg= ind.seg[i,e] if (childSeg != MISSINGGENOTYPECODE): childPhase = ind.haplotypes[e][i] if (childPhase != MISSINGGENOTYPECODE): phaseProbs[:]= phaseProbs[:] + heuristicTraceSeg[childPhase,childSeg, :] else: if g == 1: p = off.haplotypes[e][i] if (p!= MISSINGGENOTYPECODE): phaseProbs[:] = phaseProbs[:]+ heuristicTraceNoSeg[g,:] else: if (sire): g = off.dam.genotype[i] else: g = off.sire.genotype[i] if (g == MISSINGGENOTYPECODE): continue phaseProbs[:] = phaseProbs[:] + heuristicTraceNoSeg[g,:] indexes = np.argpartition(phaseProbs, -2)[-2:] #get two largest indexes as a list largest = phaseProbs[indexes[0]] secondLargest = phaseProbs[indexes[1]] pos = indexes[0] secondPos = indexes[1] if (largest - secondLargest) > 15-1: if pos == 0: ind.genotype[i] = 0 ind.phase[0][i] = 0 ind.phase[1][i] = 0 elif pos == 1: ind.genotype[i] = 1 ind.phase[0][i] = 0 ind.phase[1][i] = 1 elif pos == 2: ind.genotype[i] = 1 ind.phase[0][i] = 1 ind.phase[1][i] = 0 elif pos == 3: ind.genotype[i] = 2 ind.phase[0][i] = 1 ind.phase[1][i] = 1 else: genosProbs = (phaseProbs[0], np.max(phaseProbs[1:])) indexes = np.argpartition(genosProbs, -2)[-2:] #get two largest indexes as a list largest = genosProbs[indexes[0]] secondLargest = genosProbs[indexes[1]] pos = indexes[0] if (largest - secondLargest) > DISTANCETHRESHOLD: ind.genotype[i] = pos def updateSeg(ped): threshold = 3 for ind in ped: if ind.founder: continue for i,g in enumerate(ind.genotype): genos = (ind.sire.genotype[i], ind.dam.genotype[i]) if (np.mod(genos[0],2) == 0 and np.mod(genos[1],2) == 0): continue if (ind.haplotypes[0][i] != MISSINGGENOTYPECODE and ind.haplotypes[1][i] != MISSINGGENOTYPECODE): parents = ind.getParentArray() for e in range(0,2): parent = parents[e] if (genos[e] == 1): phase = (parent.haplotypes[0][i],parent.haplotypes[1][i]) if (not all(phase) == 9): if (ind.haplotypes[e][i] == phase[0]): ind.seg[i,e] = 1 #TODO originally 1 and 2 _TEST! MIGHT NEED TO BE 0, 1 elif ind.haplotypes[e][i] == phase[1]: ind.seg[i,e] = 2 for i in range(0,2): startLoc = 0 lastLoc = 0 currentSeg = -1 numConsistent = 0 for h in range(0, ind.genotype.length): if ind.seg[h,i] != MISSINGGENOTYPECODE: lastLoc = h numConsistent += 1 else: if (numConsistent > threshold): ind.seg[startLoc:lastLoc,i] = currentSeg else: ind.seg[startLoc:lastLoc,i] = MISSINGGENOTYPECODE startloc = h lastLoc = h currentSeg = ind.seg[h,i] numConsistent = 1 lastLoc = ind.genotype.length if (numConsistent > threshold): ind.seg[startLoc:lastLoc,i] = currentSeg else: ind.seg[startLoc:lastLoc,i] = MISSINGGENOTYPECODE # ped = Pedigree(file='recoded-pedigree.txt') # print("READ IN PED") # start = time.time() # ped.addGenotypesFromFile('genos.txt',initAll=True) # end = time.time() # print("time" + str(end - start)) # # ped.addGenotypesFromFile('genoTest.txt',initAll=True) # print("READ IN geno") # start = time.time() # # heuristicMLP(ped) # heuristicGenerob(ped) # end = time.time() # print("time" + str(end - start))
AlphaHousePython
/alphahousepython-1.0.6-cp36-cp36m-macosx_10_6_x86_64.whl/alphahousepython/src/HeuristicGeneProb.py
HeuristicGeneProb.py
from typing import Union, List import numpy as np from bitarray import bitarray # from Genotype import Genotype # import Genotype import Genotype as Genotype import Utils as Utils use_numba = True try: import numba as nb from nb import jit, int8, int32, boolean, jitclass except ImportError: use_numba = False from _faker import jit, int8, int32, boolean, jitclass from Constants import MEMORYSAVE, ERRORPHASECODE, MISSINGPHASECODE class EmptyHaploypeException(Exception): def __init__(self): Exception.__init__(self, "Empty Haplotype given") def checkValid(val): if (val == MISSINGPHASECODE or val == 0 or val == 1): return True return False if (use_numba): spec = [ ('array', int8[:]), # a simple scalar field ('phase', int8[:]), # an array field ('missing', int8[:]), ('lock', boolean[:]), ('start', int32), ('weight', int32), ('boolean', boolean) ] # @jitclass(spec) class Haplotype: """ Phase Phase Missing ! 0 0 0 ! 1 1 0 ! Missing 0 1 ! Error 1 1 ! """ def __init__(self, array=None, phase=None, missing=None, locked=None, lock=False, start=0, weight=1): """ Default constructor for haplotypes Takes in array (that can be converted to ints) and assigns haplotype object Parameters ------------ array : [int] array of 0,1,9 of haplotype information lock : [bool] And an iterable boolean of items that should be locked """ if array is None: array = [] if (len(array) > 0): if MEMORYSAVE: self.__initFromArray(array, lock) else: self.array = np.array(array, dtype=np.int8) elif (phase != None and missing != None): self.__initFromBitArrays(phase, missing, locked) else: self.locked = [] if MEMORYSAVE: self.missing = [] self.phase = [] else: self.array = [] self.start = start self.weight = weight self.hasLock = False # this is a boolean def getEnd(self) -> int: return len(self) + self.start def __initFromBitArrays(self, phase: bitarray, missing: bitarray, locked: bitarray): self.phase = phase self.missing = missing self.locked = locked def __initFromArray(self, array, lock): self.phase = bitarray(len(array)) self.missing = bitarray(len(array)) self.locked = bitarray(len(array)) for i in range(0, len(self)): val = int(array[i]) if (val == 1): self.phase[i] = True self.missing[i] = False elif (val == 0): self.phase[i] = False self.missing[i] = False # everything is already 0 elif (val == MISSINGPHASECODE): self.phase[i] = False self.missing[i] = True else: # set to erro # TODO throw error self.phase[i] = True self.missing[i] = True if (lock): self.hasLock = True self.locked = bitarray(len(self)) for i in range(0, len(self)): self.locked[i] = (~ self.missing[i]) def __len__(self) -> int: """returns length of haplotype""" if MEMORYSAVE: return len(self.phase) else: return len(self.array) def __getitem__(self, item) -> Union[int, List[int]]: """gets haplotype at given snp""" if isinstance(item, slice): return [self[ii] for ii in range(*item.indices(len(self)))] # TODO think # return self.getSubsetHaplotype(start=item.start,end=item.stop) elif isinstance(item, list): return [self[ii] for ii in item] elif isinstance(item, int): if item < 0 or item >= len(self): raise IndexError("The index (%d) is out of range." % item) else: if MEMORYSAVE: return self.getPhase(item) else: return self.array[item] def getSubsetHaplotype(self, start: int, end: int) -> 'Haplotype': """ Start of subset haplotype is current haplotype start + start""" start = int(start) end = int(end) return Haplotype(self[start:end], start=start + self.start, weight=self.weight) def __eq__(self, other: object) -> bool: """compares two haplotpyes""" if isinstance(other, Haplotype): if self.start != other.start: return False if MEMORYSAVE: if self.phase != other.phase or self.missing != other.missing: return False else: return np.array_equal(self.array, other.array) else: return False return True def contains(self, index) : return index >= self.start and index < self.getEnd() def toIntArray(self) -> np.ndarray: """Returns an integer (int8) array of the haplotype. """ if not MEMORYSAVE: return self.array ret = np.empty(len(self), np.int8) c = 0 for hom, add in zip(self.phase, self.missing): if (hom and add): ret[c] = 9 elif (hom): ret[c] = 1 elif (add): ret[c] = 9 else: ret[c] = 0 c += 1 return ret # Some utility functions to make haplotype math/comparisons moderately easier. This may be a bad idea. Not using (or tested) for now. def toZeroOneIntArray(self) -> np.ndarray: """Returns an integer (int8) array of the haplotype. """ ret = np.zeros(len(self), np.int64) if not MEMORYSAVE: np.place(ret, self.array == MISSINGPHASECODE, 0) np.place(ret, self.array == 1, 1) return ret c = 0 for hom, add in zip(self.phase, self.missing): if (hom and add): ret[c] = 0 elif (hom): ret[c] = 1 elif (add): ret[c] = 0 else: ret[c] = 0 c += 1 return ret def toNonMissingArray(self) -> np.ndarray: """Returns an integer (int8) array of the haplotype. """ ret = np.zeros(len(self), np.int64) if not MEMORYSAVE: np.place(ret, self.array == MISSINGPHASECODE, 0) np.place(ret, self.array != MISSINGPHASECODE, 1) return ret c = 0 for hom, add in zip(self.phase, self.missing): if (hom and add): ret[c] = 0 elif (hom): ret[c] = 1 elif (add): ret[c] = 0 else: ret[c] = 1 c += 1 return ret def __setitem__(self, key: int, value: int): if MEMORYSAVE: self.setPhase(key, value) else: self.setPhaseArray(key, value) def __iter__(self): for i in range(0, len(self)): if MEMORYSAVE: yield self.getPhase(i) else: yield self.getPhaseArray(i) def getPhase(self, pos: int): if not MEMORYSAVE: raise NotImplementedError("ERROR - get phase should only be called in verbose memory mode") if (self.missing[pos] and self.phase[pos]): return ERRORPHASECODE elif (self.missing[pos]): return MISSINGPHASECODE elif (self.phase[pos]): return 1 else: return 0 def getPhaseArray(self, pos : int): return self.array[pos] def append(self, value: int): self[len(self)] = value def setPhaseArray(self, pos, value): if not checkValid(value): value = MISSINGPHASECODE if (pos < len(self)): self.array[pos] = value if (pos == len(self)): self.array = np.append(self.array, [value]) if (self.hasLock): self.locked.append(Utils.bitMap[False]) def setPhase(self, pos: int, value: int): value = int(value) if (value == 0): phase = False miss = False elif (value == 1): phase = True miss = False elif (value == MISSINGPHASECODE): phase = False miss = True else: phase = True miss = True if (pos == len(self)): self.phase.append(Utils.bitMap[phase]) self.missing.append(Utils.bitMap[miss]) if (self.hasLock): self.locked.append(Utils.bitMap[False]) else: self.phase[pos] = phase self.missing[pos] = miss def __str__(self): if self.array is not None: string = " " string = string.join(str(x) for x in self.array) else: string = "" for i in range(0, len(self)): string += str(self.getPhase(i)) + " " return string def setFromOtherIfMissing(self, oh: 'Haplotype'): '''!> @brief Sets one haplotypes from another if the first is missing !> @detail Uses the following rules per snp: !> 1) If haplotype 1 is phased then return that phase !> 2) If haplotype 1 is missing but haplotype 2 is phased then !> return that phase !> 3) If both are unphased and both error then error !> 4) If both are missing then missing !> @date May 25, 2017''' if (len(self) != len(oh)): raise IndexError("Haplotypes are different lengths ") if MEMORYSAVE: self.phase = ((~self.missing & self.phase) | (self.missing & oh.phase)) self.missing = (self.missing & oh.missing) else: for i in range(0, len(self)): if self[i] == MISSINGPHASECODE: if (oh[i] == 1): self[i] = 1 elif (oh[i] == 0): self[i] = 0 def setFromGenotypeIfMissing(self, g: Genotype): if (len(self) != len(g)): raise IndexError("Genotype and Haplotype are different lengths ") if MEMORYSAVE: self.phase = ((~self.missing & self.phase) | (self.missing & (g.homo & g.additional))) self.missing = ~g.homo & self.missing else: for i in range(0, len(self)): if self[i] == MISSINGPHASECODE: if (g[i] == 2): self[i] = 1 elif (g[i] == 0): self[i] = 0 def countMissing(self) -> int: if MEMORYSAVE: return (~self.phase & self.missing).count(True) else: return (self.array == 9).sum() def countNotMissing(self) -> int: return len(self) - self.countMissing() def countNotEqualExcludeMissing(self, other): if MEMORYSAVE: return (((self.phase ^ other.phase) | (self.missing ^ other.missing)) & ( (~self.missing) & (~other.missing))).count(True) else: count = 0 for i in range(0, len(self)): if not (self[i] == MISSINGPHASECODE or other[i] == MISSINGPHASECODE): if (self[i] != other[i]): count += 1 return count def percentageMissing(self) -> float: return self.countMissing() / len(self) class IntersectCompare: def __init__(self, matching, nonMatching, nonMissing, total): self.matching = matching self.nonMatching = nonMatching self.nonMissing = nonMissing self.total = total # if (use_numba): @jit(parallel=True) def compareHapsOnIntersect(hap1: Haplotype, hap2: Haplotype) -> IntersectCompare: if not MEMORYSAVE: return compareHapsOnIntersectArray(hap1, hap2) nonMissing = 0 matching = 0 start = max(hap1.start, hap2.start) end = min(len(hap1) + hap1.start, len(hap2) + hap2.start) h1 = hap1.getSubsetHaplotype(start - hap1.start, end - hap1.start) h2 = hap2.getSubsetHaplotype(start - hap2.start, end - hap2.start) if h1.length == 0 or h2.length == 0: return IntersectCompare(0, 0, 0, end - start + 1) nonMissing = (~h1.missing & ~h2.missing).count(True) matching = ((~h1.missing & ~h2.missing) & ((h1.phase & h2.phase) ^ ((~h1.phase & ~h2.phase)))).count(True) nonMatching = nonMissing - matching return IntersectCompare(matching, nonMatching, nonMissing, end - start + 1) def compareHapsOnIntersectArray(hap1: Haplotype, hap2: Haplotype) -> IntersectCompare: if MEMORYSAVE: return compareHapsOnIntersect(hap1, hap2) nonMissing = 0 matching = 0 missing = 9 if (len(hap1.array) == 0): hap1.array = hap1.toIntArray() if (len(hap2.array) == 0): hap2.array = hap2.toIntArray() hap1Start = hap1.start hap2Start = hap2.start hap1Array = hap1.array hap2Array = hap2.array hap1Length = len(hap1) hap2Length = len(hap2) start = max(hap1Start, hap2Start) end = min(hap1Length + hap1Start, hap2Length + hap2Start) for i in range(start, end): ind1 = i - hap1Start ind2 = i - hap2Start if (hap1Array[ind1] != missing and hap2Array[ind2] != missing): nonMissing += 1 if (hap1Array[ind1] == hap2Array[ind2]): matching += 1 nonMatching = nonMissing - matching return IntersectCompare(matching, nonMatching, nonMissing, end - start + 1)
AlphaHousePython
/alphahousepython-1.0.6-cp36-cp36m-macosx_10_6_x86_64.whl/alphahousepython/src/Haplotype.py
Haplotype.py
import math from hap import PyHaplotype from ped import PyIndividual import itertools class HaplotypeLibraryAlteredException(Exception): """Exception to be thrown when there is no genotype information available""" def __init__(self): Exception.__init__(self, "Haplotype library altered during iteration!") class HaplotypeLibrary(object): def __init__(self, haplotypes = None, individuals = [], coreLengths = None) -> object: self.partialHaplotypes = haplotypes if haplotypes is None: self.partialHaplotypes = [] self.fullHaplotypes = [] for ind in individuals: self.fullHaplotypes.append(ind.haplotypes[0]) self.fullHaplotypes.append(ind.haplotypes[1]) self.currentIterator = None self.workingOnHaplotypes =True self.index = 0 self.coreLengths = coreLengths if coreLengths is None: coreLengths = [] self.changed = False def __iter__(self): self.workingOnHaplotypes = True self.index = 0 self.changed = False return self def __next__(self): if (len(self.partialHaplotypes) ==0 and len(self.fullHaplotypes) == 0): raise StopIteration if self.changed: raise HaplotypeLibraryAlteredException if self.currentIterator is not None : try : return self.currentIterator.__next__() except StopIteration : self.currentIterator = None if self.currentIterator is None : if self.workingOnHaplotypes : if self.index < len(self.partialHaplotypes) : self.index = self.index + 1 return self.partialHaplotypes[self.index-1] else: self.workingOnHaplotypes = False self.index = 0 if not self.workingOnHaplotypes : if self.index < len(self.fullHaplotypes) : self.currentIterator = HaplotypeIterator(self.coreLengths, self.fullHaplotypes[self.index]) # Need to actually do the correct thing here. self.index = self.index + 1 else: raise StopIteration return self.__next__() def __getitem__(self, item): if isinstance(item, list): return [self.partialHaplotypes[i] for i in item] else: try: return self.fullHaplotypes[int(item)] except ValueError: raise TypeError("Wrong type given for getter:" + str(type(item))) def __setitem__(self, key, value): if (isinstance(value, PyIndividual)): # todo check keys self.fullHaplotypes.append(value.haplotypes[0]) self.fullHaplotypes.append(value.haplotypes[1]) elif (isinstance(value, int)): self.coreLengths.append(value) elif (isinstance(value, PyHaplotype)): self.partialHaplotypes.append(value) self.changed = True def appendHap(self, h: PyHaplotype): self.partialHaplotypes.append(h) class HaplotypeIterator(object) : def __init__(self, coreLengths, offsets, haplotype) : self.coreLengths = coreLengths self.maxSnp = len(haplotype) self.haplotype = haplotype self.offsets = offsets def __iter__(self): for coreLength in self.coreLengths : for offset in self.offsets: end = 0 index = 0 while end < self.maxSnp : end, subHap = self.getHap(coreLength, offset, index) yield ((coreLength, offset, index), subHap) index = index + 1 def getHap(self, coreLength, offset, index): coreLength = min(coreLength, self.maxSnp) offset = math.floor(offset*coreLength) start = max( index*coreLength - offset, 0) end = min( (index + 1)*coreLength - offset, self.maxSnp) return (end, self.haplotype.getSubsetHaplotype(start=start,end=end)) class HaplotypeLibraryFrom(object): def __init__(self, individuals=[], coreLengths=[100]): self.coreLengths = coreLengths self.offsets = [0, .5] self.haplotypes = dict() for ind in individuals: self.add(ind.haplotypes[0]) self.add(ind.haplotypes[1]) def add(self, hap): hapIter = HaplotypeIterator(self.coreLengths, self.offsets, hap) for pair in hapIter: index, subHap = pair if index not in self.haplotypes : self.haplotypes[index] = [] if subHap.countMissing() == 0: try: ii = self.haplotypes[index].index(subHap) self.haplotypes[index][ii].incrementWeight() # print("weight increased", self.haplotypes[index][ii].weight) except ValueError: # print("Hap added") self.haplotypes[index].append(subHap) def __iter__(self): for key, value in self.haplotypes.items(): for v in value: yield v def toList(self): haps = self.haplotypes.values() return list(itertools.chain(*haps)) # class test(object) : # def __init__(self, ids) : # self.ids = ids # def __iter__(self) : # for idx in self.ids : # yield idx # aa = test([1, 2, 3, 4]) # for idx in aa: # print(idx)
AlphaHousePython
/alphahousepython-1.0.6-cp36-cp36m-macosx_10_6_x86_64.whl/alphahousepython/src/HaplotypeLibrary.py
HaplotypeLibrary.py
import logging import numpy as np from bitarray import bitarray import Haplotype import Utils from Constants import MEMORYSAVE,MISSINGGENOTYPECODE,MISSINGPHASECODE def checkValid(val): if (val == MISSINGGENOTYPECODE or val == 0 or val == 2 or val == 1): return True return False class NoGenotypeException(Exception): """Exception to be thrown when there is no genotype information available""" def __init__(self): Exception.__init__(self, "No Genotype Information Present") class IncorrectHaplotypeNumberError(Exception): """Exception thrown when there is an incorrect number of haplotypes given (2 is usually expected)""" def __init__(self): Exception.__init__(self, "Incorrect number of haplotypes present") class Genotype(object): # !Reminder as to how the data is stored... # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # ! Genotype Homo Additional ! # ! 0 1 0 ! # ! 1 0 0 ! # ! 2 1 1 ! # ! Missing 0 1 ! def __init__(self, array = None,haplotypes = None, lock= False, length=0): # if cython.compiled: # print("Yep, I'm compiled.") # else: # print("Just a lowly interpreted script.") self.hasLock = False self.array = None if (not haplotypes is None): # first check if we should initialise the genotypes from the haplotypes self.__initFromHaplotypes(haplotypes) elif (not array is None): # otherwise, try to use the array if not MEMORYSAVE: self.array = np.array(array,dtype=np.int8) else: self.__initFromArray(array) else: # otherwise initialise an empty to an array missing = np.full(length,fill_value=9,dtype=np.int8) if MEMORYSAVE: self.__initFromArray(missing) else: self.array = np.array(missing,dtype=np.int8) if (lock): self.hasLock = True self.locked = bitarray(self.locked) for i in range(0,len(self)): self.locked[i] = not self.isMissing(i) def __initFromArray(self, array): self.homo = bitarray(len(array)) self.additional = bitarray(len(array)) for i in range(0, len(array)): val = int(array[i]) if (val == 0): self.homo[i] = True self.additional[i] = False elif (val == 1): self.homo[i] = False self.additional[i] = False elif (val == 2): self.homo[i] = True self.additional[i] = True else: # must be missing self.additional[i] = True self.homo[i] = False def __initFromHaplotypes(self, haplotypes :[Haplotype]) -> 'Genotype': """Function populates an array based on what values the haplotypes given have""" if (len(haplotypes) != 2): raise IncorrectHaplotypeNumberError length = min(len(haplotypes[0]), len(haplotypes[1])) array = np.full(length,fill_value=9,dtype=np.int8) for i,(one,two) in enumerate(zip(haplotypes[0].toIntArray(), haplotypes[1].toIntArray())): if ((one == 1) and (two == 1)): array[i] = 2 elif ((one == 0) and (two == 0)): array[i] = 0 elif (one == MISSINGGENOTYPECODE or two == MISSINGGENOTYPECODE): # if either is missing - set to missing array[i] = MISSINGGENOTYPECODE else: # if one is 1, and the other is 0 array[i] = 1 self.__init__(array) def __eq__(self, other : object) -> bool: if (isinstance(other,Genotype)): if MEMORYSAVE: if (self.homo != other.homo or self.additional != other.additional): return False else: return np.array_equal(self.array, other.array) else: return False return True def __len__(self) -> int: if MEMORYSAVE: return len(self.homo) else: return len(self.array) def __str__(self) -> str: if self.array is not None: string = " " string = string.join(str(x) for x in self.array) else: string = " " string = string.join(str(x) for x in self) return string def __getitem__(self, item) : if isinstance(item, slice): return [self[ii] for ii in range(*item.indices(len(self)))] elif isinstance(item, list): return [self[ii] for ii in item] elif isinstance(item, int): if item < 0 or item >= len(self): raise IndexError("The index (%d) is out of range." % item) else: if self.array is not None: return self.array[item] else: return self.getGenotype(item) def __setitem__(self, key, value :int): if MEMORYSAVE: self.setGenotype(key,value) else: self.setGenotypeArray(key,value) def __iter__(self) -> iter: self.n = 0 for i in range(0, len(self)): yield (self[i]) # yield self.getGenotype(self.n) def getGenotype(self, pos : int) -> int: if not MEMORYSAVE: raise NotImplementedError("ERROR - get genotype should only be called in verbose memory mode") hom = self.homo[pos] add = self.additional[pos] if (hom and add): return 2 elif (hom): return 0 elif(add): return 9 else: return 1 def append(self, value : int): self[len(self)] = value def setGenotypeArray(self, pos, value): if not checkValid(value): value = MISSINGGENOTYPECODE if (pos < len(self)): self.array[pos] = value if (pos == len(self)): self.array = np.append(self.array,[value]) if (self.hasLock): self.locked.append(Utils.bitMap[False]) def setGenotype(self, pos : int, value : int): """sets the value of a genotype at a given position""" if not MEMORYSAVE: raise NotImplementedError("ERROR - set genotype should only be called in verbose memory mode") value = int(value) if self.array is not None and pos < len(self.array): self.array[pos] = value if value == 0: hom = True add = False elif value == 1: hom = False add = False elif value == 2: hom= True add= True else: hom = False add = True if (pos == len(self)): self.homo.append(Utils.bitMap[hom]) self.additional.append(Utils.bitMap[add]) if (self.hasLock): self.locked.append(Utils.bitMap[False]) else: self.homo[pos] = hom self.additional[pos] = add def toIntArray(self): if self.array is not None: return self. array ret = np.empty(len(self), np.int8) c = 0 for hom,add in zip(self.homo, self.additional): if (hom and add): ret[c] = 2 elif (hom): ret[c] = 0 elif (add): ret[c] = 9 else: ret[c] = 1 c+=1 return ret def isHaplotypeCompatable(self, hap: Haplotype, threshold= 0) -> bool: """Returns true if number of mismatches are less than threshold""" if MEMORYSAVE: res = ((self.homo & ~self.additional) & (hap.phase & ~ hap.missing)) \ | ((self.homo & self.additional) & (~hap.phase & ~hap.missing)) x = res.count(True) else: x = 0 if (len(self) != len(hap)): raise IndexError("Genotype and Haplotype are different lengths ") for i in range(0,len(self)): if(self[i] == 0): if not hap[i] == 0 or hap[i] == MISSINGPHASECODE: x += 1 elif(self[i] == 2): if not hap[i] == 1 or hap[i] == MISSINGPHASECODE: x += 1 return x <= threshold def numHet(self) -> int: """Returns the number of Heterozygous snps""" if MEMORYSAVE: return (~self.homo & ~self.additional).count(True) else: return (self.array == 1).sum() def countMissing(self) -> int: if MEMORYSAVE: return (~self.homo & self.additional).count(True) else: return (self.array == 9).sum() def percentageMissing(self) -> float: return self.countMissing() / len(self) def countNotMissing(self): return len(self) - self.countMissing() def countNotEqual(self, other : 'Genotype') -> int: if MEMORYSAVE: return ((self.homo ^ other.homo) | (self.additional ^ other.additional)).count(True) else: return (np.not_equal(self.array, other.array) == True).sum() def countNotEqualExcludeMissing(self, other : 'Genotype') -> int: if MEMORYSAVE: return (((self.homo ^ other.homo) | (self.additional ^ other.additional)) & ((self.homo | ~self.additional) & (other.homo | ~other.additional))).count(True) else: count = 0 for i in range(0, len(self)): if not (self[i] == MISSINGGENOTYPECODE or other[i] == MISSINGGENOTYPECODE): if (self[i] != other[i]): count+=1 return count def countMismatches(self, other: 'Genotype') -> int: """Counts the number of opposing homozygotes between the two genotypes Parameters ------------ other : Genotype Genotype to be compared with """ if MEMORYSAVE: x = ((self.homo & other.homo) & (self.additional ^ other.additional)) return x.count(True) else: count = 0 for i in range(0, len(self)): if self[i] == 0: if other[i] == 2: count += 1 elif self[i] == 2: if other[i] == 0: count += 1 return count def isMissing(self, pos): if self[pos] == MISSINGGENOTYPECODE: return True return False def getSubsetGenotype(self, startPos = 0, endPos = 0): """Returns a subset genotype object Parameters ------------ startPos : int starting position of new genotype endPos : int | end position """ if (endPos == 0): endPos = len(self) - 1 if (endPos > len(self) - 1): logging.exception("WARNING subset given size too big as end position") endPos = len(self) - 1 if MEMORYSAVE: empty = np.full((endPos - startPos), MISSINGGENOTYPECODE) g = Genotype(empty) g.homo = self.homo[startPos:endPos] g.additional = self.additional[startPos:endPos] else: g = Genotype(self.array[startPos:endPos]) return g def complement(self,h:Haplotype) -> Haplotype: if (len(self) != len(h)): raise IndexError("Genotype and Haploype are different lengths ") if MEMORYSAVE: phase = bitarray(len(self)) missing = bitarray(len(self)) y =(h.phase & ~h.missing) x = ((y & self.homo)) phase = ((h.phase & h.missing) | (((h.phase & ~h.missing) & self.homo) | (~(h.phase | h.missing) & ~(self.homo ^ self.additional)))) missing = (h.missing | (self.additional & ~self.homo)| ((~h.phase & self.additional) & h.phase & (self.homo ^ self.additional ))) return Haplotype.Haplotype(phase=phase, missing= missing) else: array = np.full(len(self), MISSINGPHASECODE) for i in range(0, len(self)): if (self[i] == 0): array[i] = 0 elif (self[i] == 2): array[i] = 1 elif (self[i] == 1): if (h[i] ==1): array[i] = 0 elif (h[i] == 0): array[i] = 1 return Haplotype.Haplotype(array) def setFromHaplotypesIfMissing(self, h1: Haplotype,h2: Haplotype): tempG = Genotype(haplotypes=(h1,h2)) self.setFromOtherIfMissing(tempG) def setFromOtherIfMissing(self,other : 'Genotype'): if (len(self) != len(other)): raise IndexError("Genotype are different lengths ") if MEMORYSAVE: origHom = self.homo self.homo = (((self.homo | ~self.additional) & self.homo) | ((~self.homo & self.additional) & other.homo)) self.additional = ((( origHom | ~self.additional) & self.additional) | ( ( ~origHom & self.additional) & other.additional )) else: for i in range(0, len(self)): if self[i] == 9: self[i] = other[i]
AlphaHousePython
/alphahousepython-1.0.6-cp36-cp36m-macosx_10_6_x86_64.whl/alphahousepython/src/Genotype.py
Genotype.py
import csv import re import typing from collections import OrderedDict from enum import Enum from typing import * from gen import PyGenotype from hap import PyHaplotype, compareHapsOnIntersectArray import numpy as np import pandas as pd try: from plinkio import plinkfile except ImportError: use_plink = False import Utils as Utils # from Genotype import Genotype,NoGenotypeException # from Haplotype import Haplotype, compareHapsOnIntersect,compareHapsOnIntersectArray from bitarray import bitarray import HaplotypeLibrary as HaplotypeLibrary from Constants import MEMORYSAVE,MISSINGGENOTYPECODE,MISSINGPHASECODE NOPARENT = '0' try: import numba as nb from nb import jit, int8, int32, boolean, jitclass except ImportError: use_numba = False from _faker import jit, int8, int32, boolean, jitclass # "ctypedef" assigns a corresponding compile-time type to DTYPE_t. For # every type in the numpy module there's a corresponding compile-time # type with a _t-suffix. #####THIS SHOULD NOT BE HERE!!! (but I'm sticking it here anyways...) class Gender(Enum): """SIMPLE ENUM CLASS SHOWING GENDER""" MALE = 1 FEMALE = 2 UNKNOWN = 9 class Inconsistencies: """Class for representing mendelian inconsistencies, in terms of parental inconsistencies""" def __init__(self, g, pg, mg): if MEMORYSAVE: het = (~ (g.homo | g.additional)) & ((pg.homo & mg.homo) & (~pg.additional ^ mg.additional)) self.maternalInconsistent = (het | ((g.homo & mg.homo) & (g.additional ^ mg.additional))) self.paternalInconsistent = (het | ((g.homo & pg.homo) & (g.additional ^ pg.additional))) patPres = pg.homo | ~pg.additional matPres = mg.homo | ~mg.additional indPres = g.homo | ~g.additional else: self.maternalInconsistent = bitarray(len(g)) self.paternalInconsistent = bitarray(len(g)) patPres = bitarray(len(g)) matPres = bitarray(len(g)) indPres = bitarray(len(g)) for i in range(0, len(g)): if (g[i] != MISSINGGENOTYPECODE): indPres[i] = True else: indPres[i] = False if (pg[i] != MISSINGGENOTYPECODE): patPres[i] = True else: patPres[i] = True if (mg[i] != MISSINGGENOTYPECODE): matPres[i] = True else: matPres[i] = True # corresponds to HET step above if (g[i] == 1 and ((pg[i] == 0 and mg[i] == 2) or (pg[i]==2 and mg[i] == 0 ))): self.maternalInconsistent[i] = True self.paternalInconsistent[i] = True continue if (g[i] == 0 and pg[i] == 2) or (g[i] == 2 and pg[i] == 0): self.paternalInconsistent[i] = True if (g[i] == 0 and mg[i] == 2) or (g[i] == 2 and mg[i] == 0): self.maternalInconsistent[i] = True self.individualInconsistent = self.paternalInconsistent | self.maternalInconsistent self.paternalConsistent = (indPres & patPres) & (~ self.paternalInconsistent) self.maternalConsistent = (indPres & matPres) & (~self.maternalInconsistent) self.individualConsistent = (indPres & matPres & patPres) & ~self.individualInconsistent class Individual: def __init__(self, id, sireId, damId, founder, recId, gender = Gender.UNKNOWN, genotype = None, haplotypes = None, initToSnps= 0): """Default constructor of Individual""" self.id = id self.recId = recId self.sireId = sireId self.damId = damId self.offsprings = [] self.sire = None self.dam = None self.founder = founder self.generation = 0 self.genotype = genotype self.haplotypes = haplotypes self.inconsistenciesCount = 0 self.inconsistencies = None self.mend = None self.reads = [] self.gender = gender self.weight = 0 if (self.haplotypes is None): self.haplotypes = [] if (initToSnps != 0): missingArray = np.full(initToSnps, 9) if (self.haplotypes is None): self.haplotypes[0] = PyHaplotype(missingArray) self.haplotypes[1] = PyHaplotype(missingArray) else: for i in range(len(self.haplotypes[0]), initToSnps): self.haplotypes[0][i] = 9 # extends haplotype object self.haplotypes[1][i] = 9 # extends haplotype object if (self.genotype is None): self.genotype = PyGenotype(missingArray) else: for i in range(len(self.genotype), initToSnps): self.genotype[i] = 9 def getInconsistencies(self) -> Optional[Inconsistencies]: if (self.genotype is None): pass self.inconsistencies = np.zeros(len(self.genotype)) if (not (self.sire is None or self.dam is None)): self.mend = Inconsistencies(self.genotype, self.sire.genotype, self.dam.genotype) return self.mend return None def getParentBasedOnIndex(self, index) -> 'Individual': if (index == 0): return self.sire elif (index == 1): return self.dam def indivParentHomozygoticFillIn(self, hetGameticStatus=None, homGameticParent=0): if not self.founder: # for e in range(0, 2): parent = self.getParentBasedOnIndex(e) tmpG = PyGenotype(haplotypes=parent.haplotypes) self.haplotypes[e].setFromGenotypeIfMissing(tmpG) self.makeIndividualGenotypeFromPhase() def __hash__(self): """Returns the hash of the id""" return self.id.__hash__() # def __dict__(self) -> dict: # # ret = {} # ret["id"] = self.id # ret["recI"] = self.recId # ret["sireId"] = self.sireId # ret["damId"] = self.damId # ret["nOffs"] = len(self.offsprings) # #do all offsprings # # currently doesn't do genotypes and haplotypes def __eq__(self, o: object) -> bool: if (not isinstance(o, Individual)): return False if (not self.id == o.id): return False if (not self.recId == o.recId): return False if (not self.sireId == o.sireId): return False if (not self.damId == o.damId): return False return True def getParentArray(self) -> []: return (self.sire, self.dam) def __str__(self) -> str: return self.id + " " + self.sireId + " " + self.damId + '\n' def addOffspring(self, offspring: 'Individual'): self.offsprings.append(offspring) if (offspring.sireId == self.id): offspring.sire = self self.gender = Gender.MALE elif (offspring.damId == self.id): offspring.dam = self self.gender = Gender.FEMALE else: print("ERROR - animal is being given offspring that is unrelated") def writeOutPhase(self) -> str: '''Prints out the phase in alphasuite format This is a two line per individual format e.g. ANIMID 1 0 0 1 ANIMID 1 0 1 0 ''' string = "" if (len(self.haplotypes) != 0): string += self.id + " " + str(self.haplotypes[0]) + '\n' string += self.id + " " + str(self.haplotypes[1]) + '\n' else: string += self.id + '\n' string += self.id + '\n' return string def writeOutGenotypes(self) -> str: """returnsthe genotype information as a string per individual If no genotype is present, tries to create genotype information if haplotypes are present""" string = "" if (len(self.haplotypes) == 0 and self.genotype == None): return self.id + '\n' elif (self.genotype == None): self.genotype = np.full(1, fill_value=9, dtype=np.int8) # self.genotype = PyGenotype(haplotypes=self.haplotypes) string += self.id + " " + str(self.genotype) + '\n' return string def removeOffspring(self, offspring: 'Individual', dummy=None): """Removes offspring object, and fixes pointer fields in offspring""" self.offsprings.remove(offspring) if (offspring.sireId == self.id): offspring.sire = dummy if (dummy is not None): offspring.sireId = dummy.id else: offspring.sireId = '0' elif (offspring.damId == self.id): offspring.dam = dummy if (dummy is not None): offspring.damId = dummy.id else: offspring.damId = '0' else: print("ERROR - animal is being given offspring that is unrelated") def makeIndividualPhaseCompliment(self): comp2 = self.genotype.complement(self.haplotypes[0]) comp1 = self.genotype.complement(self.haplotypes[1]) self.haplotypes[0].setFromOtherIfMissing(comp1) self.haplotypes[1].setFromOtherIfMissing(comp2) def makeIndividualGenotypeFromPhase(self): if self.genotype is None: self.genotype = PyGenotype(length=len(self.haplotypes[0])) self.genotype.setFromHaplotypesIfMissing(self.haplotypes[0], self.haplotypes[1]) @jit def indivHomoFillIn(self): for i, val in enumerate(self.genotype): if (val == 2): self.haplotypes[0][i] = 1 self.haplotypes[1][i] = 1 if (val == 0): self.haplotypes[0][i] = 0 self.haplotypes[1][i] = 0 def getPercentageNonMissingHaps(self) -> tuple: return (1 - self.haplotypes[0].percentageMissing(),1 - self.haplotypes[1].percentageMissing()) def isFullyPhased(self) -> bool: hap1, hap2 = self.getPercentageNonMissingHaps() return hap1 + hap2 == 2 def isHD(self, HDTHRESHOLD = 0.9) -> bool: return self.getPercentageNonMissingGeno() > HDTHRESHOLD def getPercentageNonMissingGeno(self) -> float: return 1 - self.genotype.percentageMissing() def randomlyPhasedMidPoint(self): if self.genotype is None: raise NoGenotypeException mid = len(self.genotype) /2 index = -1 for i in range(0, len(self.genotype)-int(mid)-1): if self.genotype[int(mid) + i] == 1: index = int(mid) + i break if self.genotype[int(mid) - i] == 1: index = int(mid) - i break if index != -1 : self.haplotypes[0][index] = 0 self.haplotypes[1][index] = 1 areDifferent = compareHapsOnIntersectArray(self.haplotypes[1], self.haplotypes[0]) # print("Post Phasing", areDifferent.matching, areDifferent.nonMatching) # if index == -1: # print("No midpoint found") class DummyIndiv(Individual): """Individual that is defined as a DUMMY""" def __init__(self): super(DummyIndiv, self).__init__('0', '0', '0', True, 0) class Pedigree: """Pedigree Class contains individual objects, as well as ordered dictionary of genotyped individuals Also contains founders (which is also an ordered dictionary) """ def __init__(self, file= None, plinkFile= None, array = None, genotypeArray = None, initToSnps= 0): self.individuals = OrderedDict() self.genotypedIndividuals = OrderedDict() self.founders = OrderedDict() self.generations = [] self.sorted = False if plinkFile is not None: self.__initFromPlinkFile(plinkFile) elif file is not None: self.__initFromFile(file, genotypeArray, initToSnps) elif array is not None: self.__initFromArray(array, genotypeArray, initToSnps) def __initFromFile(self, file, genotypes=None, initToSnps=0): i = open(file, 'r') array = [] # should be array of string tuple # add 0 in to state that pedigree is ordered for l in i: s = l.rstrip().split(" ") s = list(filter(lambda name: name.strip(), s)) array.append(s) i.close() self.__initFromArray(array, genotypes, initToSnps) def __initFromArray(self, animal_array, genotypes= None, initToSnps=0): """Inits pedigree from array""" zero = DummyIndiv() self['0'] = zero count = 0 animals = [] # list should be a tuple temp = [] gCount = 0 for s in animal_array: Founder = False if (s[1] == NOPARENT and s[2] == NOPARENT): Founder = True g = None if (genotypes is not None): g = PyGenotype(genotypes[gCount]) gCount += 1 elif initToSnps != 0: # if in g = PyGenotype(np.full(initToSnps, 9)) animal = Individual(s[0], s[1], s[2], Founder, count, g) if (g is not None): self.genotypedIndividuals[s[0]] = animal if Founder: self.founders[animal.id] = animal elif (animal.sireId in self.individuals and animal.damId in self.individuals): animals.append(animal) self[animal.sireId].addOffspring(animal) self[animal.damId].addOffspring(animal) else: temp.append(animal) self[s[0]] = animal # actually a anim to ped for e in temp: if (e.sireId in self.individuals): self[e.sireId].addOffspring(e) elif (e.sireId != NOPARENT): self[e.sireId] = Individual(e.sireId, NOPARENT, NOPARENT, True, len(self) + 1) self[e.sireId].addOffspring(e) else: print(("ERROR in ped - contact developer")) if (e.damId in self.individuals): self[e.damId].addOffspring(e) elif (e.damId != NOPARENT): self[e.damId] = Individual(e.damId, NOPARENT, NOPARENT, True, len(self) + 1) self[e.damId].addOffspring(e) # e.damId = '0' # e.founder = True # self.founders.append(e) def __initFromPlinkFile(self, fileName: str, startSnp= None, endSnp= None): pf = plinkfile.open(fileName) samples = pf.get_samples() locus = pf.get_loci() nSnp = len(locus) nInd = len(samples) if (startSnp is None): startSnp = 0 if (endSnp is None): endSnp = nSnp array = [] for ind in samples: a = [ind.iid, ind.father_iid, ind.mother_iid] array.append(a) values = np.zeros((nInd, endSnp - startSnp)) for snpIndex in range(startSnp - 1): pf.next() for snpIndex in range(endSnp - startSnp): if snpIndex % 1000 == 0: print("read %s out of %s" % (snpIndex, endSnp - startSnp + 1)) row = np.array(pf.next()) maf = np.mean(row) values[:, snpIndex] = np.array(row) - maf # Maf Centered self.__initFromArray(animal_array=array, genotypes=values) def __str__(self) -> str: arr = ([str(item) for item in list(self.individuals.values())]) return ''.join(arr) def getPhaseAsString(self) -> str: """gets phase information for all non dummy animals as a string""" arr = ( [item.writeOutPhase() for item in list(self.individuals.values()) if (not (isinstance(item, DummyIndiv)))]) return ''.join(arr) def writeOutPhase(self, file): """Writes out phase information to file""" f = open(file, 'w') for i in self: if (isinstance(i, DummyIndiv)): continue f.write(i.writeOutPhase()) f.close() def getGenotypesAsString(self) -> str: arr = ( [item.writeOutGenotypes() for item in list(self.individuals.values()) if (not (isinstance(item, DummyIndiv)))]) return ''.join(arr) def writeOutGenotypes(self, file): "writes out genotype informations to a file" f = open(file, 'w') for i in self: if (isinstance(i, DummyIndiv)): continue f.write(i.writeOutGenotypes()) f.close() def getGenotypesAll(self) -> np.ndarray: """Function returns all genotypes in an array :return np.ndarray[indviduals, snps] """ ret = np.zeros((len(self.individuals), len(self[0].genotype))) for ind in self.individuals: np.append(ret, ind.genotype.toIntArray()) return ret def getGenotypes(self) -> np.ndarray: """Gets 3D array of genotypes""" ret = np.zeros((len(self.genotypedIndividuals), len(self.genotypedIndividuals[0].genotype))) for ind in self.genotypedIndividuals: np.append(ret, ind.genotype.toIntArray()) return ret def getNumIndivs(self) -> int: """DUPLICATE OF LENGTH""" # TODO Why is this here??? return len(self) def __len__(self) -> int: """returns number of individuals stored in pedigree object""" return len(self.individuals) def __eq__(self, other: 'Pedigree'): """compares the pedigree in terms of individuals within the pedigree""" if (len(self) != len(other)): return False for i, b in zip(self.individuals, other.individuals): if (i != b): return False return True def __iter__(self) -> Iterator[Individual]: """Iterates through individuals and yields individual items """ iter = self.individuals.items().__iter__() for i in iter: yield i[1] def __getitem__(self, item) -> Union[Individual,List]: """gets individuals""" if isinstance(item, list): return [self.individuals[i] for i in item] elif isinstance(item, slice): return [self[ii] for ii in range(*item.indices(len(self)))] elif isinstance(item, str): return self.individuals[item] else: try: return self.individuals[str(item)] except ValueError: raise TypeError("Wrong type given for getter:" + str(type(item))) def __setitem__(self, key: str, value: Individual): """Sets individuals """ if (not key in self.individuals): value.recId= len(self.individuals) self.sorted = False self.individuals[key] = value if (value.founder): self.founders[value.id] = value def setIndividualAsGenotyped(self, id: str): ind = self[id] if (not ind.id in self.genotypedIndividuals): self.genotypedIndividuals[ind.id] = ind def addGenotypesFromFile(self, file: str, initAll = False): """Adds genotype information to corresponding animals in pedigree from file will overwrite corresponding information already present if InitAll is present - will overwrite all genotype information for all animals """ size = 0 # with open(file, 'r').readlines() as f: f = open(file, 'r') for l in f.readlines(): t = l.strip().split(" ") if (not t[0] in self.individuals): print("Warning animal %s not in Pedigree, will be added as founder"), t[0] self[t[0]] = Individual('0', '0', '0', True, 0) g = PyGenotype(np.array(t[1:],dtype=int)) self.individuals[t[0]].genotype = g self.individuals[t[0]].inconsistencies = np.zeros(len(g)) self.genotypedIndividuals[t[0]] = self[t[0]] if (size == 0): size = len(t) - 1 f.close() if initAll: empty = np.full(size, fill_value=MISSINGGENOTYPECODE) for ind in self: if ind.genotype is None: ind.genotype = PyGenotype(empty) ind.inconsistencies = np.zeros(size) if (len(ind.haplotypes) == 0): ind.haplotypes.append(PyHaplotype(empty)) ind.haplotypes.append(PyHaplotype(empty)) def compareToTrueFile(self, file: str, ids = None): """Returns yield and accuracy of genotype information for pedigree compared to a specified true file""" # with open(file, 'r').readlines() as f: if ids is None: ids = [ind for ind in self.individuals.keys()] f = open(file, 'r') yieldCount = 0 diffs = 0 totalLength = 0 for l in f.readlines(): t = l.strip().split(" ") g = PyGenotype(np.array(t[1:],dtype=int)) if (t[0] in ids and t[0] in self.individuals): comp = self.individuals[t[0]].genotype yieldCount += comp.countNotMissing() totalLength += len(comp) diffs += comp.countNotEqualExcludeMissing(g) yieldRet = float(yieldCount) / totalLength accuracy = 1 - float(diffs) / yieldCount f.close() return (yieldRet, accuracy) def compareToTrueFilePhase(self, file: str, ids = None): """Returns yield and accuracy of genotype information for pedigree compared to a specified true file""" # with open(file, 'r').readlines() as f: if ids is None: ids = [ind for ind in self.individuals.keys()] f = open(file, 'r') yieldCount = 0 diffs = 0 totalLength = 0 lines = dict() for l in f.readlines(): t = l.strip().split(" ") g = PyHaplotype(t[1:]) if (t[0] in ids and t[0] in self.individuals): if t[0] not in lines : lines[t[0]] = g else: g0 = lines.pop(t[0]) #This also removes it from the dict. g1 = g comp0 = self.individuals[t[0]].haplotypes[0] comp1 = self.individuals[t[0]].haplotypes[1] yieldCount += comp0.countNotMissing() yieldCount += comp1.countNotMissing() totalLength += len(comp0) + len(comp1) diffsAlign = comp0.countNotEqualExcludeMissing(g0) + comp1.countNotEqualExcludeMissing(g1) diffsNot = comp0.countNotEqualExcludeMissing(g1) + comp1.countNotEqualExcludeMissing(g0) diffs += min(diffsAlign, diffsNot) yieldRet = float(yieldCount) / totalLength if yieldCount != 0 : accuracy = 1 - float(diffs) / yieldCount else: accuracy = -1 f.close() return (yieldRet, accuracy) def addGenotypesFromFileFast(self, file: str, initAll = False): size = 0 # with open(file, 'r').readlines() as f: f = open(file, 'r') x = np.loadtxt(file, dtype=str) for t in x: # t = l.strip().split(" ") if (not t[0] in self.individuals): print("Warning animal %s not in Pedigree, will be added as founder"), t[0] self[t[0]] = Individual('0', '0', '0', True, 0) g = PyGenotype(t[1:]) self.individuals[t[0]].genotype = g self.individuals[t[0]].inconsistencies = np.zeros(len(g)) self.genotypedIndividuals[t[0]] = self[t[0]] if (size == 0): size = len(t) - 1 f.close() # if initAll: # empty = np.full(size, fill_value=MISSINGGENOTYPECODE) # for ind in self: # if ind.genotype is None: # ind.genotype = Genotype(empty) # ind.inconsistencies = np.zeros(size) # if (len(ind.haplotypes) == 0): # ind.haplotypes.append(Haplotype(empty)) # ind.haplotypes.append(Haplotype(empty)) def addGenotypesFromArray(self, array: np.ndarray, initAll= False): size = 0 for t in array: if (not t[0] in self.individuals): print("Warning animal %s not in Pedigree, will be added as founder" % t[0]) self[t[0]] = Individual('0', '0', '0', True, 0) g = PyGenotype(t[1:]) self.individuals[t[0]].genotype = g self.individuals[t[0]].inconsistencies = np.zeros(len(g)) self.genotypedIndividuals[t[0]] = self[t[0]] if (size == 0): size = len(t[1:]) if initAll: empty = np.full(size, fill_value=MISSINGGENOTYPECODE) for ind in self: if ind.genotype is None: ind.genotype = PyGenotype(empty) ind.inconsistencies = np.zeros(size) def addPhaseFromFile(self, file: str, initAll= False, overwrite=False): '''Adds phase information from alphasuite format file''' size = 0 with open(file, 'r') as f: for l in f: t = re.split('\s+', l.strip()) if (not t[0] in self.individuals): print("Warning animal %s not in Pedigree, will be added as founder" % t[0]) self[t[0]] = Individual('0', '0', '0', True, 0) h = PyHaplotype(t[1:]) ind = self.individuals[t[0]] if overwrite and len(ind.haplotypes) == 2: ind.haplotypes = [] ind.haplotypes.append(h) if (size == 0): size = len(t[1:]) if initAll: empty = np.full(size, fill_value=MISSINGGENOTYPECODE) for ind in self: if ind.haplotypes[0] is None: ind.haplotypes.insert(0, PyHaplotype(empty)) ind.haplotypes.insert(1, PyHaplotype(empty)) def addPhaseFromArray(self, array: np.ndarray, initAll = False): size = 0 hCount = 0 for t in array: if (not t[0] in self.individuals): print("Warning animal %s not in Pedigree, will be added as founder" % t[0]) self[t[0]] = Individual('0', '0', '0', True, 0) h = PyHaplotype(t[1:]) if (hCount == 2): hCount = 0 self.individuals[t[0]].haplotypes[hCount] = h hCount += 1 if (size == 0): size = len(t[1:]) if initAll: empty = np.full(size, fill_value=MISSINGGENOTYPECODE) for ind in self: if ind.haplotypes[0] is None: ind.haplotypes[0] = PyHaplotype(empty) ind.haplotypes[1] = PyHaplotype(empty) def getMatePairs(self: 'Pedigree'): """Gets pairs of mates that are in the pedigree""" checked = {} for ind in self.individuals.items(): for off in ind.offsprings: if off.sire == ind: pair = Utils.generateParing(ind.recId, off.dam.recId) if pair in checked: checked[pair].offspring.append(off) else: checked[pair] = Family(ind, off.dam, off) elif off.dam == ind: pair = Utils.generateParing(ind.recId, off.sire.recId) if pair in checked: checked[pair].offspring.append(off) else: checked[pair] = Family(off.sire, ind, off) return checked def sortPedigree(self: 'Pedigree') -> 'Pedigree': """Returns a new pedigree that is sorted """ new = Pedigree() seen = {} self.generations = [] new.founders = self.founders seen['0'] = True new['0'] = self['0'] currentGen = 0 # new['0'] = Individual('0', '0', '0', True, 0) for i in self.founders: self.__checkOffspring(self.founders[i], seen, self.generations, currentGen) new.generations = self.generations # self.individuals = OrderedDict() for g in self.generations: for animal in g: new.individuals[animal.id] = animal if (animal.id in self.genotypedIndividuals): new.genotypedIndividuals[animal.id] = animal new.sorted = True return new def findMendelianInconsistencies(self: 'Pedigree', threshold = 0.05, file = None): """Function computes the inconsistencies properties across the pedigree""" snpChanges = 0 countChanges = 0 sireRemoved = False damRemoved = False if not self.sorted: print("WARNING - Pedigree is not sorted - MendelianInconsistencies might be unreliable") for ind in self: if (ind.founder): continue mend = ind.getInconsistencies() sireIncon = mend.paternalInconsistent.count(True) ind.sire.inconsistenciesCount += sireIncon damIncon = mend.maternalInconsistent.count(True) ind.dam.inconsistenciesCount += damIncon if (float(sireIncon) / len(ind.genotype) > threshold): countChanges += 1 ind.sire.removeOffspring(ind, self['0']) sireRemoved = True if (float(damIncon) / len(ind.genotype) > threshold): countChanges += 1 ind.dam.removeOffspring(ind, self['0']) damRemoved = True if (not sireRemoved): count = 0 for i, c in zip(mend.paternalInconsistent, mend.paternalConsistent): if i: ind.sire.inconsistencies[count] += 1 count += 1 if c: ind.sire.inconsistencies[count] -= 1 count += 1 if (not damRemoved): count = 0 for i, c in zip(mend.maternalInconsistent, mend.maternalConsistent): if i: ind.dam.inconsistencies[count] += 1 if c: ind.dam.inconsistencies[count] -= 1 count += 1 for ind in self: if ind.founder: continue for i in range(0, len(ind.genotype)): if ind.mend.individualInconsistent[i]: snpChanges += 1 if (ind.sire.inconsistencies[i] > ind.dam.inconsistencies[i]): ind.genotype[i] = MISSINGGENOTYPECODE ind.sire.genotype[i] = MISSINGGENOTYPECODE elif (ind.sire.inconsistencies[i] < ind.dam.inconsistencies[i]): ind.genotype[i] = MISSINGGENOTYPECODE ind.dam.genotype[i] = MISSINGGENOTYPECODE else: ind.genotype[i] = MISSINGGENOTYPECODE ind.sire.genotype[i] = MISSINGGENOTYPECODE ind.dam.genotype[i] = MISSINGGENOTYPECODE # TODO think about the case of having only one parent def __checkOffspring(self: 'Pedigree', animal: Individual, seen: [bool], generations: [], currentGen: int): if (not (animal.id == '0')): seen[animal.id] = True if currentGen > len(generations) - 1: generations.append([]) animal.generation = currentGen generations[currentGen].append(animal) # file.write(animal.id +" " + animal.sireId + " " + animal.damId+'\n') for off in animal.offsprings: if (off.sireId in seen and off.damId in seen): m = max(off.sire.generation, off.dam.generation) self.__checkOffspring(off, seen, generations, m + 1) class Family: def __init__(self, sire: Individual, dam: Individual, off: Individual): """Class to define a family in the Pedigree""" self.sire = sire self.dam = dam self.children = set() self.children.add(off) infile = "pedigree.txt" # infile = "merge_illumina" outfile = "ped.out" # o = open(outfile,'w') # # ped = Pedigree(plinkFile=infile) # ped = Pedigree(file=infile) # y = ped.sortPedigree() # # print(y) # o.write(y.__str__())
AlphaHousePython
/alphahousepython-1.0.6-cp36-cp36m-macosx_10_6_x86_64.whl/alphahousepython/src/PedigreeHolder.py
PedigreeHolder.py
# AlphaPeel AlphaPeel is a software package for calling, phasing, and imputing genotype and sequence data in pedigree populations. This program implements single locus peeling, multi locus peeling, and hybrid peeling. A complete description of these methods is given in <a href="https://gsejournal.biomedcentral.com/articles/10.1186/s12711-018-0438-2">Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any coverage in pedigrees, Genetics Selection Evolution</a>. ## User guide See `docs/source/index.rst` or PDF in the ZIP file in this repository. ## Conditions of use AlphaPeel is part of a suite of software that our group has developed. It is fully and freely available for all use under the MIT License. ## Suggested Citation Whalen, A, Ros-Freixedes, R, Wilson, DL, Gorjanc, G, Hickey, JM. (2018). Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any coverage in pedigrees. Genetics Selection Evolution; doi: <a href="https://doi.org/10.1186/s12711-018-0438-2"> https://doi.org/10.1186/s12711-018-0438-2</a> ## Requirements * Python 3 * NumPy * Numba ## Installation wget https://github.com/AlphaGenes/AlphaPeel/raw/main/AlphaPeel.zip unzip AlphaPeel.zip pip install AlphaPeel/AlphaPeel*.whl ## Build instructions Run the following to build the Python wheel and user guide. You will need an installation of [Sphinx](https://www.sphinx-doc.org) and [LaTex](https://www.latex-project.org/get) to build the user guide. git clone --recurse-submodules https://github.com/AlphaGenes/AlphaPeel.git cd AlphaPeel mamba create -n AlphaPeel mamba activate AlphaPeel mamba install python=3.9 pip install sphinx ./build_pipeline.sh pip install --force-reinstall dist/AlphaPeel*.whl cd example; ./runScript.sh The wheel can be found in `dist/` and PDF of the user guide at `docs/build/latex/alphaplantimpute2.pdf`
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/README.md
README.md
import numpy as np from numba import jit, float32, int32, int64, optional from numba.experimental import jitclass from .tinyhouse import Pedigree from .tinyhouse import ProbMath from .tinyhouse import InputOutput from .Peeling import Peeling from .Peeling import PeelingIO from .Peeling import PeelingInfo from .Peeling import PeelingUpdates import concurrent.futures from itertools import repeat import argparse def runPeelingCycles(pedigree, peelingInfo, args, singleLocusMode = False): #Right now maf _only_ uses the penetrance so can be estimated once. if args.estmaf: PeelingUpdates.updateMaf(pedigree, peelingInfo) for i in range(args.ncycles): print("Cycle ", i) peelingCycle(pedigree, peelingInfo, args = args, singleLocusMode = singleLocusMode) peelingInfo.iteration += 1 # esttransitions is been disabled. # if args.esttransitions: # print("Estimating the transmission rate is currently a disabled option") # PeelingUpdates.updateSeg(peelingInfo) #Option currently disabled. if args.esterrors: PeelingUpdates.updatePenetrance(pedigree, peelingInfo) def peelingCycle(pedigree, peelingInfo, args, singleLocusMode = False) : nWorkers = args.maxthreads for index, generation in enumerate(pedigree.generations): print("Peeling Down, Generation", index) jit_families = [family.toJit() for family in generation.families] if args.maxthreads > 1: with concurrent.futures.ThreadPoolExecutor(max_workers=nWorkers) as executor: results = executor.map(Peeling.peel, jit_families, repeat(Peeling.PEEL_DOWN), repeat(peelingInfo), repeat(singleLocusMode)) else: for family in jit_families: Peeling.peel(family, Peeling.PEEL_DOWN, peelingInfo, singleLocusMode) for index, generation in enumerate(reversed(pedigree.generations)): print("Peeling Up, Generation", len(pedigree.generations) - index - 1) jit_families = [family.toJit() for family in generation.families] if args.maxthreads > 1: with concurrent.futures.ThreadPoolExecutor(max_workers=nWorkers) as executor: results = executor.map(Peeling.peel, jit_families, repeat(Peeling.PEEL_UP), repeat(peelingInfo), repeat(singleLocusMode)) else: for family in jit_families: Peeling.peel(family, Peeling.PEEL_UP, peelingInfo, singleLocusMode) sires = set() dams = set() for family in generation.families: sires.add(family.sire) dams.add(family.dam) updatePosterior(pedigree, peelingInfo, sires, dams) # updatePosterior updates the posterior term for a specific set of sires and dams. # The updateSire and updateDam functions perform the updates for a specific sire # and specific dam by including all of the information from all of their families. # This update is currently not multithreaded. It is also currently not ideal -- # right now the posterior term is updated for all of the sires/dams no matter # whether or not they have been changed since the last update. def updatePosterior(pedigree, peelingInfo, sires, dams) : # if pedigree.mapSireToFamilies is None or pedigree.mapDamToFamilies is None: # pedigree.setupFamilyMap() for sire in sires: updateSire(sire, peelingInfo) for dam in dams: updateDam(dam, peelingInfo) def updateSire(sire, peelingInfo) : famList = [fam.idn for fam in sire.families] sire = sire.idn peelingInfo.posterior[sire,:,:] = 0 for famId in famList: log_update = np.log(peelingInfo.posteriorSire_new[famId,:,:]) peelingInfo.posterior[sire,:,:] += log_update peelingInfo.posteriorSire_minusFam[famId,:,:] = -log_update for famId in famList: peelingInfo.posteriorSire_minusFam[famId,:,:] += peelingInfo.posterior[sire,:,:] #Rescale values. peelingInfo.posterior[sire,:,:] = Peeling.expNorm1D(peelingInfo.posterior[sire,:,:]) peelingInfo.posterior[sire,:,:] /= np.sum(peelingInfo.posterior[sire,:,:], 0) for famId in famList: peelingInfo.posteriorSire_minusFam[famId,:,:] = Peeling.expNorm1D(peelingInfo.posteriorSire_minusFam[famId,:,:]) peelingInfo.posteriorSire_minusFam[famId,:,:] /= np.sum(peelingInfo.posteriorSire_minusFam[famId,:,:], 0) def updateDam(dam, peelingInfo) : famList = [fam.idn for fam in dam.families] dam = dam.idn peelingInfo.posterior[dam,:,:] = 0 for famId in famList: log_update = np.log(peelingInfo.posteriorDam_new[famId,:,:]) peelingInfo.posterior[dam,:,:] += log_update peelingInfo.posteriorDam_minusFam[famId,:,:] = -log_update for famId in famList: peelingInfo.posteriorDam_minusFam[famId,:,:] += peelingInfo.posterior[dam,:,:] peelingInfo.posterior[dam,:,:] = Peeling.expNorm1D(peelingInfo.posterior[dam,:,:]) peelingInfo.posterior[dam,:,:] /= np.sum(peelingInfo.posterior[dam,:,:], 0) for famId in famList: peelingInfo.posteriorDam_minusFam[famId,:,:] = Peeling.expNorm1D(peelingInfo.posteriorDam_minusFam[famId,:,:]) peelingInfo.posteriorDam_minusFam[famId,:,:] /= np.sum(peelingInfo.posteriorDam_minusFam[famId,:,:], 0) def getLociAndDistance(snpMap, segMap): nSnp = len(snpMap) distance = np.full(nSnp, 0, dtype = np.float32) loci = np.full((nSnp, 2), 0, dtype = np.int64) # Assume snp map and segMap are sorted. segIndex = 0 for i in range(nSnp) : pos = snpMap[i] # Move along the segMap until we reach a point where we are either at the end of the map, or where the next seg marker occurs after the position in the genotype file. # This assumes sorting pretty heavily. Alternative would be to find the neighboring positions in the seg file for each marker in the genotype file. while segIndex < (len(segMap)-1) and segMap[segIndex + 1] < pos : segIndex += 1 # Now that positions are known, choose the neighboring markers and the distance to those markers. # First two if statements handle the begining and ends of the chromosome. if segIndex == 0 and segMap[segIndex] > pos : loci[i, :] = (segIndex, segIndex) distance[i] = 0 elif segIndex == (len(segMap)-1) and segMap[segIndex] <= pos : loci[i, :] = (segIndex, segIndex) distance[i] = 0 else: loci[i,:] = (segIndex, segIndex + 1) gap = segMap[segIndex+1] - segMap[segIndex] distance[i] = 1.0 - (pos - segMap[segIndex])/gap #At distance 0, only use segIndex. At distance 1, use segIndex + 1. return (loci, distance) def generateSingleLocusSegregation(peelingInfo, pedigree, args): segInfo = None if args.segfile is not None: # This just gets the locations in the map files. snpMap = np.array(InputOutput.readMapFile(args.mapfile, args.startsnp, args.stopsnp)[2]) segMap = np.array(InputOutput.readMapFile(args.segmapfile)[2]) loci, distance = getLociAndDistance(snpMap, segMap) start = np.min(loci) stop = np.max(loci) seg = InputOutput.readInSeg(pedigree, args.segfile, start = start, stop = stop) loci -= start # Re-align to seg file. for i in range(len(distance)): segLoc0 = loci[i,0] segLoc1 = loci[i,1] peelingInfo.segregation[:,:,i] = distance[i]*seg[:,:,segLoc0] + (1-distance[i])*seg[:,:,segLoc1] else: peelingInfo.segregation[:,:,:] = .25 ### ACTUAL PROGRAM BELOW def getArgs() : parser = argparse.ArgumentParser(description='') core_parser = parser.add_argument_group("Core arguments") core_parser.add_argument('-out', required=True, type=str, help='The output file prefix.') core_peeling_parser = parser.add_argument_group("Mandatory peeling arguments") core_peeling_parser.add_argument('-runtype', default=None, required=False, type=str, help='Program run type. Either "single" or "multi".') # Input options input_parser = parser.add_argument_group("Input Options") InputOutput.add_arguments_from_dictionary(input_parser, InputOutput.get_input_options(), options = ["bfile", "genotypes", "phasefile", "seqfile", "pedigree", "startsnp", "stopsnp"]) # Output options output_parser = parser.add_argument_group("Output Options") output_parser.add_argument('-no_dosages', action='store_true', required=False, help='Flag to suppress the dosage files.') output_parser.add_argument('-no_seg', action='store_true', required=False, help='Flag to suppress the segregation files (e.g. when running for chip imputation and not hybrid peeling).') output_parser.add_argument('-no_params', action='store_true', required=False, help='Flag to suppress writing the parameter files.') output_parser.add_argument('-haps', action='store_true', required=False, help='Flag to enable writing out the genotype probabilities.') output_parser.add_argument('-calling_threshold', default=None, required=False, type=float, nargs="*", help='Genotype calling threshold(s). Multiple space separated values allowed. Use. .3 for best guess genotype.') output_parser.add_argument('-binary_call_files', action='store_true', required=False, help='Flag to write out the called genotype files as a binary plink output [Not yet implemented].') output_parser.add_argument('-call_phase', action='store_true', required=False, help='Flag to call the phase as well as the genotypes.') InputOutput.add_arguments_from_dictionary(output_parser, InputOutput.get_output_options(), options = ["writekey", "onlykeyed"]) # Multithreading multithread_parser = parser.add_argument_group("Multithreading Options") InputOutput.add_arguments_from_dictionary(multithread_parser, InputOutput.get_multithread_options(), options = ["iothreads", "maxthreads"]) peeling_parser = parser.add_argument_group("Optional peeling arguments") peeling_parser.add_argument('-ncycles',default=5, required=False, type=int, help='Number of peeling cycles. Default: 5.') peeling_parser.add_argument('-length', default=1.0, required=False, type=float, help='Estimated length of the chromosome in Morgans. [Default 1.00]') peeling_parser.add_argument('-penetrance', default=None, required=False, type=str, nargs="*", help=argparse.SUPPRESS) #help='An optional external penetrance file. This will overwrite the default penetrance values.') InputOutput.add_arguments_from_dictionary(peeling_parser, InputOutput.get_probability_options(), options = ["error", "seqerror"]) peeling_control_parser = parser.add_argument_group("Peeling control arguments") peeling_control_parser.add_argument('-esterrors', action='store_true', required=False, help='Flag to re-estimate the genotyping error rates after each peeling cycle.') peeling_control_parser.add_argument('-estmaf', action='store_true', required=False, help='Flag to re-estimate the minor allele frequency after each peeling cycle.') peeling_control_parser.add_argument('-nophasefounders', action='store_true', required=False, help='A flag phase a heterozygous allele in one of the founders (if such an allele can be found).') peeling_control_parser.add_argument('-sexchrom', action='store_true', required=False, help='A flag to that this is a sex chromosome. Sex needs to be given in the pedigree file. This is currently an experimental option.') singleLocus_parser = parser.add_argument_group("Hybrid peeling arguments") singleLocus_parser.add_argument('-mapfile',default=None, required=False, type=str, help='a map file for genotype data.') singleLocus_parser.add_argument('-segmapfile',default=None, required=False, type=str, help='a map file for the segregation estimates for hybrid peeling.') singleLocus_parser.add_argument('-segfile',default=None, required=False, type=str, help='A segregation file for hybrid peeling.') # singleLocus_parser.add_argument('-blocksize',default=100, required=False, type=int, help='The number of markers to impute at once. This changes the memory requirements of the program.') return InputOutput.parseArgs("AlphaPeel", parser) def main() : args = getArgs() pedigree = Pedigree.Pedigree() InputOutput.readInPedigreeFromInputs(pedigree, args) singleLocusMode = args.runtype == "single" if args.runtype == "multi" and args.segfile : print("Running in multi-locus mode, external segfile ignored") peelingInfo = PeelingInfo.createPeelingInfo(pedigree, args, phaseFounder = (not args.nophasefounders)) if singleLocusMode: print("Generating seg estimates") generateSingleLocusSegregation(peelingInfo, pedigree, args) runPeelingCycles(pedigree, peelingInfo, args, singleLocusMode = singleLocusMode) PeelingIO.writeGenotypes(pedigree, genoProbFunc = peelingInfo.getGenoProbs) if not args.no_params: PeelingIO.writeOutParamaters(peelingInfo) if not singleLocusMode and not args.no_seg: InputOutput.writeIdnIndexedMatrix(pedigree, peelingInfo.segregation, args.out + ".seg") if __name__ == "__main__": main()
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinypeel.py
tinypeel.py
import concurrent.futures from numba import jit, float32, int8, int64, optional, boolean from numba.experimental import jitclass import numpy as np from collections import OrderedDict from ..tinyhouse import InputOutput from ..tinyhouse import ProbMath from ..tinyhouse import HaplotypeOperations from . import PeelingInfo import math ######################################################################### ### In this module we will update 3 things: ### ### 1) Our estimate for the MAF. ### ### 2) Our estimate of the locus specific (sequencing) error rate. ### ### 3) Our estimate of the locus specific recombination rate. ### ######################################################################### # Estimating the minor allele frequency. This update is done by using an iterative approach # which minimizes the likelihood of the observed genotypes conditional on them having been # generated from hardy-weinberg equilibrium with a fixed maf value. To speed up, we use # Newton style updates to re-estimate the minor allele frequency. # There is math on how to do this... somewhere? def updateMaf(pedigree, peelingInfo): if peelingInfo.isSexChrom: print("Updating error rates and minor allele frequencies for sex chromosomes are not well test and will break in interesting ways. Recommend running without that option.") maf = np.full(peelingInfo.nLoci, .5, dtype = np.float32) for i in range(peelingInfo.nLoci): maf[i] = newtonMafUpdates(peelingInfo, i) mafGeno = ProbMath.getGenotypesFromMaf(maf) for ind in pedigree: if ind.isFounder(): peelingInfo.anterior[ind.idn,:,:] = mafGeno peelingInfo.maf = maf.astype(np.float32) def newtonMafUpdates(peelingInfo, index) : # This function gives an iterative approximation for the minor allele frequency. It uses a maximum of 5 iterations. maf = 0.5 maf_old = 0.5 iters = 5 converged = False while not converged: delta = getNewtonUpdate(maf_old, peelingInfo, index) maf = maf_old + delta if maf < 0.01: maf = 0.01 if maf > .99: maf = .99 if abs(maf - maf_old) < 0.0001: converged = True iters -= 1 if iters < 0: converged = True return maf @jit(nopython=True) def getNewtonUpdate(p, peelingInfo, index) : #Log likelihood of the liklihood's first + second derivitives LLp = 0 LLpp = 0 #I want to add priors. Should be 1 individual of each of the four states. LLp, LLpp = addIndividualToUpdate(np.array([1, 0, 0, 0], dtype = np.float32), p, LLp, LLpp) LLp, LLpp = addIndividualToUpdate(np.array([0, 1, 0, 0], dtype = np.float32), p, LLp, LLpp) LLp, LLpp = addIndividualToUpdate(np.array([0, 0, 1, 0], dtype = np.float32), p, LLp, LLpp) LLp, LLpp = addIndividualToUpdate(np.array([0, 0, 0, 1], dtype = np.float32), p, LLp, LLpp) for i in range(peelingInfo.nInd): if peelingInfo.genotyped[i, index] : d = peelingInfo.penetrance[i,:,index] LLp, LLpp = addIndividualToUpdate(d, p, LLp, LLpp) if LLp == 0 or LLpp == 0: return 0 #Could be a case where no one has data. return -LLp/LLpp @jit(nopython = True) def addIndividualToUpdate(d, p, LLp, LLpp): d0 = d[0] d1 = d[1] + d[2] d2 = d[3] f = d0*(1-p)**2 + d1*p*(1-p) + d2*p**2 fp = (d1 - 2*d0) + 2*p*(d0 + d2 - d1) fpp = 2*(d0 + d2 - d1) LLp += fp/f LLpp += fpp/f - (fp/f)**2 return LLp, LLpp # Commenting out the following code. This was used to do updates via grid search. # @jit(nopython = True) # def mafLoglikelihood(peelingInfo, maf, index): # score = 0 # maf_squared = maf**2 # maf_one_minus_maf = maf*(1-maf) # one_minus_maf_squared = (1-maf)**2 # for i in range(peelingInfo.nInd): # if peelingInfo.genotyped[i, index] : # # if True : # genoProbs = peelingInfo.penetrance[i,:,index] # prob = 0 # prob += one_minus_maf_squared*genoProbs[0] # prob += maf_one_minus_maf*genoProbs[1] # prob += maf_one_minus_maf*genoProbs[2] # prob += maf_squared*genoProbs[3] # score += math.log(prob) # return score ### ### NOTE: The following code updates the genotype and sequencing error rates. ### def updatePenetrance(pedigree, peelingInfo): peelingInfo.genoError = updateGenoError(pedigree, peelingInfo) peelingInfo.seqError = updateSeqError(pedigree, peelingInfo) if peelingInfo.isSexChrom: print("Updating error rates and minor allele frequencies for sex chromosomes are not well test and will break in interesting ways. Recommend running without that option.") for ind in pedigree: sexChromFlag = peelingInfo.isSexChrom and ind.sex == 0 #This is the sex chromosome and the individual is male. peelingInfo.penetrance[ind.idn,:,:] = ProbMath.getGenotypeProbabilities(peelingInfo.nLoci, ind.genotypes, ind.reads, peelingInfo.genoError, peelingInfo.seqError, sexChromFlag) if ind.isGenotypedFounder() and (not InputOutput.args.nophasefounders) and ind.genotypes is not None: loci = PeelingInfo.getHetMidpoint(ind.genotypes) if loci is not None: e = peelingInfo.genoError[loci] peelingInfo.penetrance[ind.idn,:,loci] = np.array([e/3, e/3, 1-e, e/3], dtype = np.float32) def updateGenoError(pedigree, peelingInfo) : # The following is a simple EM update for the genotyping error rate at each locus. # This update adds the expected number of errors that an individual marginalizing over their current estimate of their genotype probabilities. # We use a max value of 5% and a min value of .0001 percent to make sure the values are reasonable counts = np.full(pedigree.nLoci, 1, dtype = np.float32) errors = np.full(pedigree.nLoci, 0.01, dtype = np.float32) for ind in pedigree: updateGenoError_ind(counts, errors, ind.genotypes, peelingInfo.getGenoProbs(ind.idn)) newError = errors/counts newError = np.maximum(np.minimum(newError, .05), .0001) return newError @jit(nopython=True) def updateGenoError_ind(counts, errors, genotypes, genoProbs): for i in range(len(counts)) : if genotypes[i] != 9: # Only include non-missing genotypes. counts[i] += 1 if genotypes[i] == 0: errors[i] += (genoProbs[1,i] + genoProbs[2, i] + genoProbs[3, i]) if genotypes[i] == 1: errors[i] += (genoProbs[0, i] + genoProbs[3, i]) if genotypes[i] == 2: errors[i] += (genoProbs[0, i] + genoProbs[1,i] + genoProbs[2, i]) def updateSeqError(pedigree, peelingInfo) : # The following is a simple EM update for the genotyping error rate at each locus. # This update adds the expected number of errors that an individual has marginalizing over their current genotype probabilities. # This only uses the homozygotic states, heterozygotic states are ignored (in both the counts + errors terms). # We use a max value of 5% and a min value of .0001 percent to make sure the values are reasonable counts = np.full(pedigree.nLoci, 1, dtype = np.float32) errors = np.full(pedigree.nLoci, 0.001, dtype = np.float32) for ind in pedigree: if ind.reads is not None: updateSeqError_ind(counts, errors, ind.reads[0], ind.reads[1], peelingInfo.getGenoProbs(ind.idn)) newError = errors/counts newError = np.maximum(np.minimum(newError, .01), .0001) return newError @jit(nopython=True) def updateSeqError_ind(counts, errors, refReads, altReads, genoProbs): # Errors occur when genotype is 0 and an alternative allele happens. # Errors occur when genotype is 2 (coded as 3) and a reference allele happens. # Number of observations is number of reads * probability the individual is homozygous. for i in range(len(counts)) : counts[i] += (genoProbs[0,i] + genoProbs[3,i]) * (altReads[i] + refReads[i]) errors[i] += genoProbs[0,i] * altReads[i] errors[i] += genoProbs[3,i] * refReads[i] ### ### NOTE: The following code is designed to estimate the recombination rate between markers. ### This is currently broken and does not give good estimates. Strongly recommend not using it, and the associated options have been disabled in tinyPeel.py ### def updateSeg(peelingInfo): #Idea: Split the chromosome into ~10 blocks with slightly different starts/stops. Estimate at each one and then sum. #Not sure if this is the best way, but probably will work okay. distances = [estDistanceFromBreaks(0, peelingInfo.nLoci-1, nBreaks, peelingInfo) for nBreaks in [5, 10, 20]] distance = np.mean(distances[0:2]) print(distances, ":", distance) setupTransmission(distance, peelingInfo) def estDistanceFromBreaks(loc1, loc2, nBreaks, peelingInfo): breakPoints = np.floor(np.linspace(loc1, loc2, nBreaks)).astype(dtype = np.int64) distances = [getDistance(breakPoints[i], breakPoints[i+1], peelingInfo) for i in range(nBreaks-1)] print(nBreaks, ":", distances) return sum(distances) def getDistance(loc1, loc2, peelingInfo): patSeg1 = getSumSeg(loc1, peelingInfo) patSeg2 = getSumSeg(loc2, peelingInfo) patValid = ((patSeg1 > .99) | (patSeg1 < .01)) & ((patSeg2 > .99) | (patSeg2 < .01)) # matValid = ((matSeg1 > .99) | (matSeg1 < .01)) & ((matSeg2 > .99) | (matSeg2 < .01)) # patRecomb = np.mean(np.abs(patSeg1[patValid] - patSeg2[patValid])) # matRecomb = np.mean(np.abs(matSeg1[matValid] - matSeg2[matValid])) # recomb = (patRecomb + matRecomb)/2 # difference = np.abs(np.round(patSeg1[patValid]) - np.round(patSeg2[patValid])) # return np.mean(difference) entropy1 = 1 - (-patSeg1*np.log2(patSeg1) - (1-patSeg1)*np.log2(1-patSeg1)) entropy2 = 1 - (-patSeg2*np.log2(patSeg2) - (1-patSeg2)*np.log2(1-patSeg2)) difference = patSeg1*(1-patSeg2) + (1-patSeg1)*patSeg2 est = np.sum(entropy1*entropy2*difference)/np.sum(entropy1*entropy2) # return est return haldane(est) def getSumSeg(loc, peelingInfo): seg = peelingInfo.segregation[:, :, loc] sumSeg = np.sum(seg, 1) patSeg = (seg[:,2] + seg[:,3])/sumSeg # matSeg = (seg[:,1] + seg[:,3])/sumSeg return patSeg def haldane(difference) : return -np.log(1.0-2.0*difference)/2.0
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/Peeling/PeelingUpdates.py
PeelingUpdates.py
import concurrent.futures from numba import jit, float32, int8, int64, optional, boolean from numba.experimental import jitclass import numpy as np from collections import OrderedDict from ..tinyhouse import InputOutput from ..tinyhouse import ProbMath from ..tinyhouse import HaplotypeOperations import math # Defining variables for peel up and peel down. Ideally these would be characters, but numba does not support characters. PEEL_UP = 0 PEEL_DOWN = 1 # This is the main peeling function. @jit(nopython=True, nogil=True, locals={'e': float32, 'e4':float32, 'e16':float32, 'e1e':float32}) def peel(family, operation, peelingInfo, singleLocusMode) : isSexChrom = peelingInfo.isSexChrom e = .000001 e1e = 1-e e4 = e/4 e16 = e/16 ### Setup local variables from the peeling information container. anterior = peelingInfo.anterior penetrance = peelingInfo.penetrance posterior = peelingInfo.posterior segregation = peelingInfo.segregation pointSeg = peelingInfo.pointSeg segregationTensor = peelingInfo.segregationTensor segregationTensor_norm = peelingInfo.segregationTensor_norm nLoci = peelingInfo.nLoci nOffspring = len(family.offspring) sire = family.sire dam = family.dam fam = family.idn #Creating variables here: # childToParents: The projection of each child onto the parent genotypes. # childSegs: The segregation estimates for a particular child (These are re-used? so need to be stored) # allToParents: The projection of each child onto the parental genotypes. # parentsMinustChild: The estimate of the parent's genotypes minus the contribution from a specific individual. childToParents = np.full((nOffspring, 4, 4, nLoci), 0, dtype = np.float32) childSegTensor = np.full((nOffspring, 4, 4, 4, nLoci), 0, dtype = np.float32) allToParents = np.full((4, 4, nLoci), 1.0, dtype = np.float32) parentsMinusChild = np.full((nOffspring, 4, 4, nLoci), 1, dtype = np.float32) # Some local variables. currentSeg is the segregation estimate of a child (but may be modified). currentSeg = np.full((4, nLoci), 1, dtype = np.float32) #Construct the joint parent genotypes based on the parent's anterior, penetrance, and posterior terms minus this family. probSire = anterior[sire,:,:]*penetrance[sire,:,:] * peelingInfo.posteriorSire_minusFam[fam,:,:] probDam = anterior[dam,:,:]*penetrance[dam,:,:] * peelingInfo.posteriorDam_minusFam[fam,:,:] probSire = probSire/np.sum(probSire, 0) probDam = probDam/np.sum(probDam, 0) # Einstien sum notation 1: create the joint parental genotypes based on the probabilities for each parent. # jointParents = np.einsum("ai, bi -> abi", probSire, probDam) jointParents = getJointParents(probSire, probDam) jointParents = jointParents/np.sum(np.sum(jointParents, axis = 0), axis = 0) jointParents = (1-e)*jointParents + e/16 # There are 4x4 values for each locus in jointparents. # There are 4 values for each locus. Normalization is done here so that jointParents is as accurate as possible. # We need the posterior terms here for the peeling up step later. probSire = probSire*e1e + e4 probDam = probDam*e1e + e4 # Now construct the parental genotypes based on within-family information. for index in range(nOffspring): child = family.offspring[index] # The child's estimate is the combination of the posterior term and penetrance term for that child. # We are estimating the parent's genotypes so the anterior term is ignored to avoid double counting. childValues = posterior[child,:,:] * penetrance[child,:,:] childValues = childValues/np.sum(childValues, axis = 0) childValues = e1e*childValues + e4 # METHOD 1: Just use the current segregation of the child. currentSeg[:,:] = segregation[child,:,:] currentSeg /= np.sum(currentSeg, 0) # METHOD 2: Use the segregation estimate of the child minus the contribution at a particular locus. # Currently do not recommend using this. # if not singleLocusMode : # currentSeg[:,:] = segregation[child,:,:] / pointSeg[child,:,:] # currentSeg /= np.sum(currentSeg, 0) # else: # currentSeg[:,:] = segregation[child,:,:] if isSexChrom and peelingInfo.sex[child] == 0: #0 for male, 1 for female. segregationTensor = peelingInfo.segregationTensorXY if isSexChrom and peelingInfo.sex[child] == 1: #0 for male, 1 for female. segregationTensor = peelingInfo.segregationTensorXX #Einstien sum notation 2: Create the child-specific segregation tensor using the child's currrent segregation estimate. # childSegTensor[index,:,:,:,:] = np.einsum("abcd, di -> abci", segregationTensor, currentSeg) createChildSegs(segregationTensor, currentSeg, childSegTensor[index,:,:,:,:]) #Einstien sum notation 3: Estimate the parental genotypes based on the child's genotypes and their segregation tensor. # childToParents[index,:,:,:] = np.einsum("abci, ci -> abi", childSegTensor[index,:,:,:,:], childValues) projectChildGenotypes(childSegTensor[index,:,:,:,:], childValues, childToParents[index,:,:,:]) # Method 1: estimate the parents genotype and the child-specific posterior terms using iterative normalizing. # for i in range(nOffspring) : # parentsMinusChild[i,:,:,:] = jointParents[:,:,:] # for i in range(nOffspring): # allToParents *= childToParents[i,:,:,:] # allToParents /= np.sum(np.sum(allToParents, axis = 0), axis=0) # for j in range(nOffspring) : # if i != j : # parentsMinusChild[j,:,:,:] *= childToParents[i,:,:,:] # parentsMinusChild[j,:,:,:] /= np.sum(np.sum(parentsMinusChild[i,:,:,:], axis = 0), axis=0) ## # Method 2: estimate the parents genotype and the child-specific posterior terms using a log scale. ## # for i in range(nOffspring) : # parentsMinusChild[i,:,:,:] = np.log(jointParents[:,:,:]) # allToParents[:,:,:] = 0 # # #taking out post estimates. # for i in range(nOffspring): # log_childToParents = np.log(childToParents[i,:,:,:]) # allToParents += log_childToParents # for j in range(nOffspring) : # if i != j : # parentsMinusChild[j,:,:,:] += log_childToParents # Method 3: estimate the parents genotype and the child-specific posterior terms using a slightly smarter log scale. for i in range(nOffspring) : parentsMinusChild[i,:,:,:] = np.log(jointParents[:,:,:]) allToParents[:,:,:] = 0 for i in range(nOffspring): log_childToParents = np.log(childToParents[i,:,:,:]) allToParents += log_childToParents parentsMinusChild[i,:,:,:] -= log_childToParents # This is done to take away the setimate for an individual child from their parent's posterior term. for i in range(nOffspring): parentsMinusChild[i,:,:,:] += allToParents # Move from a log-scale to a non-log scale and re-normalize. allToParents = expNorm2D(allToParents) for i in range(nOffspring): parentsMinusChild[i,:,:,:] = expNorm2D(parentsMinusChild[i,:,:,:]) if operation == PEEL_DOWN: for i in range(nOffspring): child = family.offspring[i] #Einstien sum notation 4: Project the parent genotypes down onto the child genotypes. # anterior[child,:,:] = np.einsum("abci, abi -> ci", childSegTensor[i,:,:,:,:], parentsMinusChild[i,:,:,:]) projectParentGenotypes(childSegTensor[i,:,:,:,:], parentsMinusChild[i,:,:,:], anterior[child,:,:]) anterior[child,:,:] /= np.sum(anterior[child,:,:], 0) if operation == PEEL_UP : # Take the allToParents estimate and combine to estimate the sire and dam's posterior estimates (for this family) sirePosterior = combineAndReduceAxis1(allToParents, probDam) sirePosterior /= np.sum(sirePosterior, axis = 0) sirePosterior = sirePosterior*e1e + e4 peelingInfo.posteriorSire_new[fam,:,:] = sirePosterior damPosterior = combineAndReduceAxis0(allToParents, probSire) damPosterior /= np.sum(damPosterior, axis = 0) damPosterior = damPosterior*e1e + e4 peelingInfo.posteriorDam_new[fam,:,:] = damPosterior if (not singleLocusMode) and (operation == PEEL_DOWN): # Estimate the segregation probabilities for each child. for i in range(nOffspring): # Child values is the same as in the posterior estimation step above. child = family.offspring[i] childValues = posterior[child,:,:] * penetrance[child,:,:] childValues = childValues/np.sum(childValues, axis = 0) childValues = e1e*childValues + e4 if isSexChrom and peelingInfo.sex[child] == 0: #0 for male, 1 for female. segregationTensor = peelingInfo.segregationTensorXY if isSexChrom and peelingInfo.sex[child] == 1: #0 for male, 1 for female. segregationTensor = peelingInfo.segregationTensorXX #Einstien sum notation 5: # pointSeg[child,:,:] = np.einsum("abcd, abi, ci-> di", segregationTensor, parentsMinusChild[i,:,:,:], childValues) #Option 1: Estimate without normalizing. # estimateSegregation(segregationTensor, parentsMinusChild[i,:,:,:], childValues, pointSeg[child,:,:]) #Option 2: Estimate with normalizing. I think this is what we want. estimateSegregationWithNorm(segregationTensor, segregationTensor_norm, parentsMinusChild[i,:,:,:], childValues, pointSeg[child,:,:]) segregation[child,:,:] = (1-e)*collapsePointSeg(pointSeg[child,:,:], peelingInfo.transmissionRate) + e/4 ##### ##### The following are a large number of "helper" jit functions that replace the einstien sums in the original scripts. ##### @jit(nopython=True, nogil=True) def getJointParents(probSire, probDam): # jointParents = np.einsum("ai, bi -> abi", probSire, probDam) nLoci = probSire.shape[1] output = np.full(shape = (4, 4, nLoci), fill_value = 0, dtype = np.float32) for a in range(4) : for b in range(4) : for i in range(nLoci): output[a, b, i] = probSire[a,i] * probDam[b,i] return output @jit(nopython=True, nogil=True) def createChildSegs(segregationTensor, currentSeg, output): # childSegs[index,:,:,:,:] = np.einsum("abcd, di -> abci", segregationTensor, currentSeg) nLoci = currentSeg.shape[1] output[:,:,:,:] = 0 for a in range(4) : for b in range(4) : for c in range(4) : for d in range(4) : for i in range(nLoci): output[a, b, c, i] += segregationTensor[a, b, c, d]*currentSeg[d,i] return output @jit(nopython=True, nogil=True) def projectChildGenotypes(childSegs, childValues, output): # childToParents[index,:,:,:] = np.einsum("abci, ci -> abi", childSegs[index,:,:,:,:], childValues) nLoci = childSegs.shape[3] output[:,:,:] = 0 for a in range(4) : for b in range(4) : for c in range(4) : for i in range(nLoci): output[a, b, i] += childSegs[a, b, c, i]*childValues[c,i] return output @jit(nopython=True, nogil=True) def projectParentGenotypes(childSegs, parentValues, output): # anterior[child,:,:] = np.einsum("abci, abi -> ci", childSegs[i,:,:,:,:], parentsMinusChild[i,:,:,:]) nLoci = childSegs.shape[3] output[:,:]=0 for a in range(4) : for b in range(4) : for c in range(4) : for i in range(nLoci): output[c, i] += childSegs[a,b,c,i]*parentValues[a,b,i] return output @jit(nopython=True, nogil=True) def estimateSegregation(segregationTensor, parentValues, childValues, output): # pointSeg[child,:,:] = np.einsum("abcd, abi, ci-> di", segregationTensor, parentsMinusChild[i,:,:,:], childValues) nLoci = childValues.shape[1] output[:,:]=0 for a in range(4) : for b in range(4) : for c in range(4) : for d in range(4) : for i in range(nLoci): output[d, i] += segregationTensor[a,b,c,d]*parentValues[a,b,i]*childValues[c,i] return output @jit(nopython=True, nogil=True) def estimateSegregationWithNorm(segregationTensor, segregationTensor_norm, parentValues, childValues, output): # pointSeg[child,:,:] = np.einsum("abcd, abi, ci-> di", segregationTensor, parentsMinusChild[i,:,:,:], childValues) nLoci = childValues.shape[1] output[:,:]=0 for a in range(4) : for b in range(4) : for c in range(4) : for d in range(4) : for i in range(nLoci): #Check if norm is 0. Otherwise use norm to normalize. if segregationTensor_norm[a, b, c] != 0: output[d, i] += segregationTensor[a,b,c,d]*parentValues[a,b,i]*childValues[c,i]/segregationTensor_norm[a, b, c] return output @jit(nopython=True, nogil=True) def combineAndReduceAxis1(jointEstimate, parentEstimate): # output = np.einsum("abi, bi-> ai", jointEstimate, parentEstimate) nLoci = parentEstimate.shape[1] output = np.full((4, nLoci), 0, dtype = np.float32) for a in range(4): for b in range(4) : for i in range(nLoci): output[a, i] += jointEstimate[a,b,i]*parentEstimate[b, i] return output @jit(nopython=True, nogil=True) def combineAndReduceAxis0(jointEstimate, parentEstimate): # output = np.einsum("abi, ai-> bi", jointEstimate, parentEstimate) nLoci = parentEstimate.shape[1] output = np.full((4, nLoci), 0, dtype = np.float32) for a in range(4): for b in range(4) : for i in range(nLoci): output[b, i] += jointEstimate[a,b,i]*parentEstimate[a, i] return output @jit(nopython=True, nogil=True) def expNorm2D(mat): # Matrix is 4x4xnLoci: Output is to take the exponential of the matrix and normalize each locus. We need to make sure that there are not any overflow values. nLoci = mat.shape[2] for i in range(nLoci): maxVal = 1 # Log of anything between 0-1 will be less than 0. Using 1 as a default. for a in range(4): for b in range(4): if mat[a, b, i] > maxVal or maxVal == 1: maxVal = mat[a, b, i] for a in range(4): for b in range(4): mat[a, b, i] -= maxVal # Normalize. tmp = np.exp(mat) for i in range(nLoci): total = 0 for a in range(4): for b in range(4): total += tmp[a, b, i] for a in range(4): for b in range(4): tmp[a, b, i] /= total return tmp @jit(nopython=True, nogil=True) def expNorm1D(mat): # Matrix is 4x4xnLoci: Output is to take the exponential of the matrix and normalize each locus. We need to make sure that there are not any overflow values. nLoci = mat.shape[1] for i in range(nLoci): maxVal = 1 # Log of anything between 0-1 will be less than 0. Using 1 as a default. for a in range(4): if mat[a, i] > maxVal or maxVal == 1: maxVal = mat[a, i] for a in range(4): mat[a, i] -= maxVal tmp = np.exp(mat) for i in range(nLoci): total = 0 for a in range(4): total += tmp[a,i] for a in range(4): tmp[a, i] /= total return tmp @jit(nopython=True, nogil=True, locals={'e': float32, 'e2':float32, 'e1e':float32, 'e2i':float32}) def collapsePointSeg(pointSeg, transmission): # This is the forward backward algorithm. # Segregation estimate state ordering: pp, pm, mp, mm nLoci = pointSeg.shape[1] seg = np.full(pointSeg.shape, .25, dtype = np.float32) for i in range(nLoci): for j in range(4): seg[j,i] = pointSeg[j,i] tmp = np.full((4), 0, dtype = np.float32) new = np.full((4), 0, dtype = np.float32) prev = np.full((4), .25, dtype = np.float32) for i in range(1, nLoci): e = transmission[i-1] e2 = e**2 e1e = e*(1-e) e2i = (1.0-e)**2 for j in range(4): tmp[j] = prev[j]*pointSeg[j,i-1] sum_j = 0 for j in range(4): sum_j += tmp[j] for j in range(4): tmp[j] = tmp[j]/sum_j # ! fm fm fm fm # !segregationOrder: pp, pm, mp, mm new[0] = e2*tmp[3] + e1e*(tmp[1] + tmp[2]) + e2i*tmp[0] new[1] = e2*tmp[2] + e1e*(tmp[0] + tmp[3]) + e2i*tmp[1] new[2] = e2*tmp[1] + e1e*(tmp[0] + tmp[3]) + e2i*tmp[2] new[3] = e2*tmp[0] + e1e*(tmp[1] + tmp[2]) + e2i*tmp[3] # tmp = tmp/np.sum(tmp) # new = e2i*tmp + e2 + e1e*(tmp[0] + tmp[3])*same + e1e*(tmp[1] + tmp[2])*diff for j in range(4): seg[j,i] *= new[j] # seg[:,i] *= new prev = new prev = np.full((4), .25, dtype = np.float32) for i in range(nLoci-2, -1, -1): #zero indexed then minus one since we skip the boundary. e = transmission[i] e2 = e**2 e1e = e*(1-e) e2i = (1.0-e)**2 for j in range(4): tmp[j] = prev[j]*pointSeg[j,i+1] sum_j = 0 for j in range(4): sum_j += tmp[j] for j in range(4): tmp[j] = tmp[j]/sum_j new[0] = e2*tmp[3] + e1e*(tmp[1] + tmp[2]) + e2i*tmp[0] new[1] = e2*tmp[2] + e1e*(tmp[0] + tmp[3]) + e2i*tmp[1] new[2] = e2*tmp[1] + e1e*(tmp[0] + tmp[3]) + e2i*tmp[2] new[3] = e2*tmp[0] + e1e*(tmp[1] + tmp[2]) + e2i*tmp[3] for j in range(4): seg[j,i] *= new[j] prev = new for i in range(nLoci): sum_j = 0 for j in range(4): sum_j += seg[j, i] for j in range(4): seg[j, i] = seg[j, i]/sum_j # seg = seg/np.sum(seg, 0) return(seg)
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/Peeling/Peeling.py
Peeling.py
import concurrent.futures from numba import jit, float32, int8, int64, optional, boolean from numba.experimental import jitclass import numpy as np from collections import OrderedDict from ..tinyhouse import InputOutput from ..tinyhouse import ProbMath from ..tinyhouse import HaplotypeOperations import math ######################################################################### ### In this module we define the peeling info object. ### ### This is a just in time container for the various ### ### peeling probability calculations. ### ######################################################################### def createPeelingInfo(pedigree, args, createSeg=True, phaseFounder = False) : # NOTE: createSeg is added as an option to decrease memory usage during the single locus peeling steps. nLoci = pedigree.nLoci peelingInfo = jit_peelingInformation(nInd=pedigree.maxIdn, nFam=pedigree.maxFam, nLoci=nLoci, createSeg=createSeg) peelingInfo.isSexChrom = args.sexchrom # Information about the peeling positions are handled elsewhere. peelingInfo.positions = None #Generate the segregation tensors. peelingInfo.segregationTensor = ProbMath.generateSegregation(e = 1e-06) peelingInfo.segregationTensor_norm = ProbMath.generateSegregation(e = 1e-06, partial=True) #Partial gives the normalizing constant. peelingInfo.segregationTensorXY = ProbMath.generateSegregationXYChrom(e = 1e-06) peelingInfo.segregationTensorXX = ProbMath.generateSegregationXXChrom(e = 1e-06) peelingInfo.genoError[:] = args.error peelingInfo.seqError[:] = args.seqerror setupTransmission(args.length, peelingInfo) #Sets up the transmission rates using a custom position list and a total chromosome length. for ind in pedigree: peelingInfo.sex[ind.idn] = ind.sex if ind.genotypes is not None and ind.haplotypes is not None: HaplotypeOperations.ind_fillInGenotypesFromPhase(ind) sexChromFlag = peelingInfo.isSexChrom and ind.sex == 0 #This is the sex chromosome and the individual is male. peelingInfo.penetrance[ind.idn,:,:] = ProbMath.getGenotypeProbabilities(peelingInfo.nLoci, ind.genotypes, ind.reads, peelingInfo.genoError, peelingInfo.seqError, sexChromFlag) # Set the genotyping/read status for each individual. This will be used for, e.g., estimating the minor allele frequency. if ind.genotypes is not None: setGenotypeStatusGenotypes(ind.idn, ind.genotypes, peelingInfo) if ind.reads is not None: setGenotypeStatusReads(ind.idn, ind.reads[0], ind.reads[1], peelingInfo) if ind.isGenotypedFounder() and phaseFounder and ind.genotypes is not None: loci = getHetMidpoint(ind.genotypes) if loci is not None: e = args.error peelingInfo.penetrance[ind.idn,:,loci] = np.array([e/3, e/3, 1-e, e/3], dtype = np.float32) if args.penetrance is not None: if args.sexchrom: print("Using an external penetrance file and the sexchrom option is highly discouraged. Please do not use.") if args.esterrors : print("External penetrance file included, but esterrors flag used. The two options are incompatible. esterrors set to false.") args.esterrors = False for pen in args.penetrance: addPenetranceFromExternalFile(pedigree, peelingInfo, pen, args) # updateMaf(pedigree, peelingInfo) return peelingInfo def setupTransmission(length, peelingInfo) : if peelingInfo.positions is None: localMap = np.linspace(0, 1, num = peelingInfo.nLoci, dtype = np.float32) else: localMap = peelingInfo.positions/peelingInfo.positions[-1] #This should be sorted. Need to add in code to check. for i in range(peelingInfo.nLoci -1): distance = localMap[i+1] - localMap[i] distance = distance * length peelingInfo.transmissionRate[i] = distance @jit(nopython=True) def setGenotypeStatusGenotypes(idn, genotypes, peelingInfo): nLoci = len(genotypes) if genotypes is not None: for i in range(nLoci): peelingInfo.genotyped[idn, i] = peelingInfo.genotyped[idn, i] or genotypes[i] != 9 @jit(nopython=True) def setGenotypeStatusReads(idn, reads0, reads1, peelingInfo): nLoci = len(reads0) if reads0 is not None and reads1 is not None: for i in range(nLoci): peelingInfo.genotyped[idn, i] = peelingInfo.genotyped[idn, i] or reads0[i] != 0 or reads1[i] != 0 def addPenetranceFromExternalFile(pedigree, peelingInfo, fileName, args): # This function allows external penetrance files to be read in and added to the gentoype probabilities for an individual. print("Reading in penetrance file:", fileName) with open(fileName) as f: e = 0 for line in f: parts = line.split(); idx = parts[0]; parts = parts[1:] if args.startsnp is not None : parts = parts[args.startsnp : args.stopsnp+1] #Offset 1 to include stopsnp penetranceLine=np.array([float(val) for val in parts], dtype = np.float32) if idx not in pedigree.individuals: print("Individual", idx, "not found in pedigree. Individual ignored.") else: ind = pedigree.individuals[idx] peelingInfo.penetrance[ind.idn,e,:] *= penetranceLine # Normalizing in terms of SNPs seems like a really bad idea. # peelingInfo.penetrance[ind.idn,e,:] /= np.sum(peelingInfo.penetrance[ind.idn,e,:], 0) # Normalization added, just in case. e = (e+1)%4 @jit(nopython=True) def getHetMidpoint(geno): nLoci = len(geno) midpoint = int(nLoci/2) index = 0 changed = False while index < nLoci/2: if midpoint + index < nLoci: if geno[midpoint + index] == 1: return midpoint + index if midpoint - index >= 0: if geno[midpoint - index] == 1: return midpoint - index index += 1 return None spec = OrderedDict() spec['nInd'] = int64 spec['nFam'] = int64 spec['nLoci'] = int64 spec['isSexChrom'] = boolean spec['sex'] = int64[:] spec['genotyped'] = boolean[:,:] #Maybe this should be removed? # Individual terms: Each will be nInd x 4 x nLoci spec['anterior'] = float32[:,:,:] spec['posterior'] = float32[:,:,:] spec['penetrance'] = float32[:,:,:] spec['segregation'] = optional(float32[:,:,:]) spec['pointSeg'] = optional(float32[:,:,:]) # I think we don't use this any more. Potentially could be dropped. # Family terms. Each will be nFam x 4 x nLoci spec['posteriorSire_minusFam'] = float32[:,:,:] spec['posteriorDam_minusFam'] = float32[:,:,:] spec['posteriorSire_new'] = float32[:,:,:] spec['posteriorDam_new'] = float32[:,:,:] # Segregation tensors. Each of these will be either 4x4x4x4 or 4x4x4 spec['segregationTensor'] = optional(float32[:,:,:,:]) spec['segregationTensor_norm'] = optional(float32[:,:,:]) # Note: This one is a bit smaller. spec['segregationTensorXX'] = optional(float32[:,:,:,:]) spec['segregationTensorXY'] = optional(float32[:,:,:,:]) # Marker specific rates: spec['genoError'] = optional(float32[:]) spec['seqError'] = optional(float32[:]) spec['transmissionRate'] = optional(float32[:]) spec['maf'] = optional(float32[:]) spec['positions'] = optional(float32[:]) # Not sure we use this. spec['iteration'] = int64 @jitclass(spec) class jit_peelingInformation(object): def __init__(self, nInd, nFam, nLoci, createSeg=True): self.iteration = 0 self.nInd = nInd self.nFam = nFam self.nLoci = nLoci self.isSexChrom = False self.construct(createSeg) # These are filled in from createPeelingInfo, above. self.positions = None self.segregationTensor = None self.segregationTensor_norm = None def construct(self, createSeg = True) : baseValue = .25 self.sex = np.full(self.nInd, 0, dtype = np.int64) self.genotyped = np.full((self.nInd, self.nLoci), False, dtype = np.bool_) self.anterior = np.full((self.nInd, 4, self.nLoci), baseValue, dtype = np.float32) self.posterior = np.full((self.nInd, 4, self.nLoci), baseValue, dtype = np.float32) self.penetrance = np.full((self.nInd, 4, self.nLoci), baseValue, dtype = np.float32) self.segregation = np.full((self.nInd, 4, self.nLoci), baseValue, dtype = np.float32) if createSeg: # Only removes the point seg term since this is not used for single locus peeling. self.pointSeg = np.full((self.nInd, 4, self.nLoci), baseValue, dtype = np.float32) else: self.pointSeg = None self.posteriorSire_minusFam = np.full((self.nFam, 4, self.nLoci), baseValue, dtype = np.float32) self.posteriorDam_minusFam = np.full((self.nFam, 4, self.nLoci), baseValue, dtype = np.float32) self.posteriorSire_new = np.full((self.nFam, 4, self.nLoci), baseValue, dtype = np.float32) self.posteriorDam_new = np.full((self.nFam, 4, self.nLoci), baseValue, dtype = np.float32) self.genoError = np.full((self.nLoci), 0, dtype = np.float32) self.seqError = np.full((self.nLoci), 0, dtype = np.float32) self.maf = np.full((self.nLoci), .5, dtype = np.float32) self.transmissionRate = np.full((self.nLoci-1), 0, dtype = np.float32) def getGenoProbs(self, idn): genoProbs = self.anterior[idn,:,:]*self.posterior[idn,:,:]*self.penetrance[idn,:,:] genoProbs = genoProbs/np.sum(genoProbs,0) return genoProbs
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/Peeling/PeelingInfo.py
PeelingInfo.py
import numpy as np from numba import jit from ..tinyhouse import InputOutput def readInSeg(pedigree, fileName, start=None, stop = None): print("Reading in seg file:", fileName) if start is None: start = 0 if stop is None: stop = pedigree.nLoci nLoci = stop - start + 1 #Contains stop. seg = np.full((pedigree.maxIdn, 4, nLoci), .25, dtype = np.float32) index = 0 fileNColumns = 0 indHit = np.full(pedigree.maxIdn, 0, dtype = np.int64) with open(fileName) as f: e = 0 currentInd = None for line in f: parts = line.split(); idx = parts[0]; if fileNColumns == 0: fileNColumns = len(parts) if fileNColumns != len(parts): raise ValueError(f"The length of the line is not the expected length. Expected {fileNColumns} got {len(parts)} on individual {idx} and line {e}.") segLine=np.array([float(val) for val in parts[(start+1):(stop+2)]], dtype = np.float32) if len(segLine) != nLoci: raise ValueError(f"The length of the line subsection is not the expected length. Expected {nLoci} got {len(segLine)} on individual {idx} and line {e}.") if idx not in pedigree.individuals: print(f"Individual {idx} not found in pedigree. Individual ignored.") else: ind = pedigree.individuals[idx] if e == 0: currentInd = ind.idx if currentInd != ind.idx: raise ValueError(f"Unexpected individual. Expecting individual {currentInd}, but got ind {ind.idx} on value {e}") seg[ind.idn,e,:] = segLine e = (e+1)%4 ind.fileIndex['segregation'] = index; index += 1 indHit[ind.idn] += 1 for ind in pedigree: if indHit[ind.idn] != 4: print(f"No segregation information found for individual {ind.idx}") return seg def writeOutParamaters(peelingInfo) : args = InputOutput.args np.savetxt(args.out + ".genoError", peelingInfo.genoError, fmt = "%f") np.savetxt(args.out + ".seqError", peelingInfo.seqError, fmt = "%f") # np.savetxt(args.out + ".trans", peelingInfo.transmissionRate, fmt = "%f") np.savetxt(args.out + ".maf", peelingInfo.maf, fmt = "%f") def writeGenotypes(pedigree, genoProbFunc) : args = InputOutput.args if not args.no_dosages: writeDosages(pedigree, genoProbFunc, args.out + ".dosages") if args.haps: writeGenoProbs(pedigree, genoProbFunc, args.out + ".haps") if args.calling_threshold is not None: for thresh in args.calling_threshold: if args.binary_call_files : writeBinaryCalledGenotypes(pedigree, genoProbFunc, args.out + ".called." + str(thresh), thresh) if not args.binary_call_files : writeCalledGenotypes(pedigree, genoProbFunc, args.out + ".called." + str(thresh), thresh) if args.call_phase: writeCalledPhase(pedigree, genoProbFunc, args.out + ".called_phase." + str(thresh), thresh) def writeGenoProbs(pedigree, genoProbFunc, outputFile): with open(outputFile, 'w+') as f: for idx, ind in pedigree.writeOrder(): matrix = genoProbFunc(ind.idn) f.write('\n') for i in range(matrix.shape[0]) : f.write(ind.idx + ' ' + ' '.join(map("{:.4f}".format, matrix[i,:])) + '\n') def writeDosages(pedigree, genoProbFunc, outputFile): with open(outputFile, 'w+') as f: for idx, ind in pedigree.writeOrder(): matrix = np.dot(np.array([0,1,1,2]), genoProbFunc(ind.idn)) if InputOutput.args.sexchrom and ind.sex == 0: matrix *= 2 f.write(ind.idx + ' ' + ' '.join(map("{:.4f}".format, matrix)) + '\n') def writeCalledGenotypes(pedigree, genoProbFunc, outputFile, thresh): with open(outputFile, 'w+') as f: for idx, ind in pedigree.writeOrder(): matrix = genoProbFunc(ind.idn) matrixCollapsedHets = np.array([matrix[0,:], matrix[1,:] + matrix[2,:], matrix[3,:]], dtype=np.float32) calledGenotypes = np.argmax(matrixCollapsedHets, axis = 0) setMissing(calledGenotypes, matrixCollapsedHets, thresh) if InputOutput.args.sexchrom and ind.sex == 0: doubleIfNotMissing(calledGenotypes) f.write(ind.idx + ' ' + ' '.join(map(str, calledGenotypes)) + '\n') def writeCalledPhase(pedigree, genoProbFunc, outputFile, thresh): with open(outputFile, 'w+') as f: for idx, ind in pedigree.writeOrder(): matrix = genoProbFunc(ind.idn) # Paternal paternal_probs = np.array([matrix[0,:] + matrix[1,:], matrix[2,:] + matrix[3,:]], dtype=np.float32) paternal_haplotype = np.argmax(paternal_probs, axis = 0) setMissing(paternal_haplotype, paternal_probs, thresh) f.write(ind.idx + ' ' + ' '.join(map(str, paternal_haplotype)) + '\n') #Maternal maternal_probs = np.array([matrix[0,:] + matrix[2,:], matrix[1,:] + matrix[3,:]], dtype=np.float32) maternal_haplotype = np.argmax(maternal_probs, axis = 0) setMissing(maternal_haplotype, maternal_probs, thresh) f.write(ind.idx + ' ' + ' '.join(map(str, maternal_haplotype)) + '\n') def writeBinaryCalledGenotypes(pedigree, genoProbFunc, outputFile, thresh): for idx, ind in pedigree.writeOrder(): matrix = genoProbFunc(ind.idn) matrixCollapsedHets = np.array([matrix[0,:], matrix[1,:] + matrix[2,:], matrix[3,:]], dtype=np.float32) calledGenotypes = np.argmax(matrixCollapsedHets, axis = 0) setMissing(calledGenotypes, matrixCollapsedHets, thresh) if InputOutput.args.sexchrom and ind.sex == 0: doubleIfNotMissing(calledGenotypes) ind.genotypes = calledGenotypes.astype(np.int8) InputOutput.writeOutGenotypesPlink(pedigree, outputFile) @jit(nopython=True) def doubleIfNotMissing(calledGenotypes): nLoci = len(calledGenotypes) for i in range(nLoci): if calledGenotypes[i] == 1: calledGenotypes[i] = 2 @jit(nopython=True) def setMissing(calledGenotypes, matrix, thresh) : nLoci = len(calledGenotypes) for i in range(nLoci): if matrix[calledGenotypes[i],i] < thresh: calledGenotypes[i] = 9 def fullOutput(pedigree, peelingInfo, args): InputOutput.writeIdnIndexedMatrix(pedigree, peelingInfo.penetrance, args.out + ".penetrance") InputOutput.writeIdnIndexedMatrix(pedigree, peelingInfo.anterior, args.out + ".anterior") InputOutput.writeIdnIndexedMatrix(pedigree, peelingInfo.posterior, args.out + ".posterior") InputOutput.writeFamIndexedMatrix(pedigree, peelingInfo.posteriorSire_minusFam, args.out + ".posteriorSire_minusFam") InputOutput.writeFamIndexedMatrix(pedigree, peelingInfo.posteriorDam_minusFam, args.out + ".posteriorDam_minusFam") InputOutput.writeFamIndexedMatrix(pedigree, peelingInfo.posteriorSire_new, args.out + ".posteriorSire_new") InputOutput.writeFamIndexedMatrix(pedigree, peelingInfo.posteriorDam_new, args.out + ".posteriorDam_new")
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/Peeling/PeelingIO.py
PeelingIO.py
import numpy as np import numba import sys from numba import jit, int8, int64, boolean, deferred_type, optional, float32, double from numba.experimental import jitclass from collections import OrderedDict from . import InputOutput from . import ProbMath from . import MultiThreadIO class Family(object): """Family is a container for fullsib families""" def __init__(self, idn, sire, dam, offspring): self.idn = idn self.sire = sire self.dam = dam self.offspring = offspring self.generation = max(sire.generation, dam.generation) + 1 # Add this family to both the sire and dam's family. self.sire.families.append(self) self.dam.families.append(self) def addChild(self, child) : self.offspring.append(child) def toJit(self): """Returns a just in time version of itself with Individuals replaced by id numbers""" offspring = np.array([child.idn for child in self.offspring]) return jit_Family(self.idn, self.sire.idn, self.dam.idn, offspring) spec = OrderedDict() spec['idn'] = int64 spec['sire'] = int64 spec['dam'] = int64 spec['offspring'] = int64[:] @jitclass(spec) class jit_Family(object): def __init__(self, idn, sire, dam, offspring): self.idn = idn self.sire = sire self.dam = dam self.offspring = offspring.astype(np.int64) class Individual(object): def __init__(self, idx, idn) : self.genotypes = None self.haplotypes = None self.dosages = None self.imputed_genotypes = None self.imputed_haplotypes = None self.reads = None self.longReads = [] # Do we use this? self.genotypeDosages = None self.haplotypeDosages = None self.hapOfOrigin = None # Info is here to provide other software to add in additional information to an Individual. self.info = None #For plant impute. Inbred is either DH or heavily selfed. Ancestors is historical source of the cross (may be more than 2 way so can't handle via pedigree). self.inbred = False self.imputationAncestors = [] #This is a list of lists. Either length 0, length 1 or length 2. self.selfingGeneration = None self.sire = None self.dam = None self.idx = idx # User inputed string identifier self.idn = idn # ID number assigned by the pedigree self.fileIndex = dict() # Position of an animal in each file when reading in. Used to make sure Input and Output order are the same. self.fileIndex["id"] = idx self.dummy = False self.offspring = [] self.families = [] self.sex = -1 self.generation = None self.initHD = False # used in pythonHMM, but how should this best be coded when already have initHD? Should probably be set when data is read in, # but need high_density_threshold to be set in the pedigree first self.is_high_density = False self.genotypedFounderStatus = None #? def __eq__(self, other): return self is other def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.idn) def subset(self, start, stop): # Take an individual and create an individual that just contains information on those markers. # It's okay if this wipes other information. # print(self.__class__) new_ind = self.__class__(self.idx, self.idn) if self.genotypes is not None: new_ind.genotypes = self.genotypes[start:stop].copy() # Maybe could get away with not doing copies... doing them just to be safe. if self.haplotypes is not None: new_ind.haplotypes = (self.haplotypes[0][start:stop].copy(), self.haplotypes[1][start:stop].copy()) if self.reads is not None: new_ind.reads = (self.reads[0][start:stop].copy(), self.reads[1][start:stop].copy()) return new_ind def getPercentMissing(self): return np.mean(self.genotypes == 9) def getGeneration(self): if self.generation is not None : return self.generation if self.dam is None: damGen = -1 else: damGen = self.dam.getGeneration() if self.sire is None: sireGen = -1 else: sireGen = self.sire.getGeneration() self.generation = max(sireGen, damGen) + 1 return self.generation def constructInfo(self, nLoci, genotypes = True, haps = False, reads = False) : if genotypes and self.genotypes is None: self.genotypes = np.full(nLoci, 9, dtype = np.int8) if haps and self.haplotypes is None: self.haplotypes = (np.full(nLoci, 9, dtype = np.int8), np.full(nLoci, 9, dtype = np.int8)) if reads and self.reads is None: self.reads = (np.full(nLoci, 0, dtype = np.int64), np.full(nLoci, 0, dtype = np.int64)) def isFounder(self): return (self.sire is None) and (self.dam is None) def getGenotypedFounderStatus(self): # options: 1: "GenotypedFounder", 0:"ChildOfNonGenotyped", 2:"ChildOfGenotyped" if self.genotypedFounderStatus is None: if self.isFounder() : if self.genotypes is None or np.all(self.genotypes == 9): self.genotypedFounderStatus = 0 else: self.genotypedFounderStatus = 1 else: parentStatus = max(self.sire.getGenotypedFounderStatus(), self.sire.getGenotypedFounderStatus()) if parentStatus > 0: self.genotypedFounderStatus = 2 else: if self.genotypes is None or np.all(self.genotypes == 9): self.genotypedFounderStatus = 0 else: self.genotypedFounderStatus = 1 return self.genotypedFounderStatus def isGenotypedFounder(self): return (self.getGenotypedFounderStatus() == 1) class PlantImputeIndividual(Individual): """Simple derived class for AlphaPlantImpute2 with some extra member variables""" def __init__(self, idx, idn): super().__init__(idx, idn) self.founders = [] self.descendants = [] # Not sure of the code source: https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/ # Slightly modified. import re def sorted_nicely( l , key): """ Sort the given iterable in the way that humans expect.""" return sorted(l, key = lambda k: alphanum_key(key(k))) def alphanum_key(k): convert = lambda text: int(text) if text.isdigit() else text return [ convert(c) for c in re.split('([0-9]+)', str(k)) ] class Generation(object): def __init__(self, number): self.number = number self.families = [] self.individuals = [] self.sires = set() self.dams = set() self.parents = set() def add_individual(self, ind): self.individuals.append(ind) def add_family(self, fam): self.families.append(fam) self.sires.add(fam.sire) self.dams.add(fam.dam) self.parents.add(fam.sire) self.parents.add(fam.dam) # Note: Individuals are added seperately. class Pedigree(object): def __init__(self, fileName = None, constructor = Individual): self.maxIdn = 0 self.maxFam = 0 self.individuals = dict() self.families = None self.constructor = constructor self.nGenerations = 0 self.generations = None #List of lists self.truePed = None self.nLoci = 0 self.startsnp = 0 self.endsnp = self.nLoci self.referencePanel = [] #This should be an array of haplotypes. Or a dictionary? self.maf=None #Maf is the frequency of 2s. # Threshold that determines if an individual is high-density genotyped self.high_density_threshold = 0.9 if fileName is not None: self.readInPedigree(fileName) self.args = None self.writeOrderList = None self.allele_coding = None def reset_families(self): for ind in self.individuals.values(): ind.families = [] ind.generation = None self.nGenerations = 0 self.generations = None self.families = None for ind in self: ind.families = [] self.setupFamilies() def subset(self, start, stop): new_pedigree = Pedigree(constructor = self.constructor) new_pedigree.nLoci = stop - start # Add all of the individuals. for ind in self: # Note: ind.subset strips away all of the family information. new_pedigree[ind.idx] = ind.subset(start, stop) for ind in self: if ind.sire is not None: new_ind = new_pedigree[ind.idx] new_sire = new_pedigree[ind.sire.idx] # Add individuals new_ind.sire = new_sire new_sire.offspring.append(new_ind) if ind.dam is not None: new_ind = new_pedigree[ind.idx] new_dam = new_pedigree[ind.dam.idx] # Add individuals new_ind.dam = new_dam new_dam.offspring.append(new_ind) return new_pedigree def merge(self, new_pedigree, start, stop): # This just merged genotype, haplotype, and dosage information (if availible). for ind in self: new_ind = new_pedigree[ind.idx] if new_ind.genotypes is not None: if ind.genotypes is None: ind.genotypes = np.full(self.nLoci, 9, dtype = np.int8) ind.genotypes[start:stop] = new_ind.genotypes if new_ind.dosages is not None: if ind.dosages is None: ind.dosages = np.full(self.nLoci, -1, dtype = np.float32) ind.dosages[start:stop] = new_ind.dosages if new_ind.haplotypes is not None: if ind.haplotypes is None: ind.haplotypes = (np.full(self.nLoci, 9, dtype = np.int8), np.full(self.nLoci, 9, dtype = np.int8)) ind.haplotypes[0][start:stop] = new_ind.haplotypes[0] ind.haplotypes[1][start:stop] = new_ind.haplotypes[1] def __len__(self): return len(self.individuals) def writeOrder(self): if self.writeOrderList is None: inds = [ind for ind in self if (not ind.dummy) and (self.args.writekey in ind.fileIndex)] self.writeOrderList = sorted_nicely(inds, key = lambda ind: ind.fileIndex[self.args.writekey]) if not self.args.onlykeyed: indsNoDummyNoFileIndex = [ind for ind in self if (not ind.dummy) and (not self.args.writekey in ind.fileIndex)] self.writeOrderList.extend(sorted_nicely(indsNoDummyNoFileIndex, key = lambda ind: ind.idx)) dummys = [ind for ind in self if ind.dummy] self.writeOrderList.extend(sorted_nicely(dummys, key = lambda ind: ind.idx)) for ind in self.writeOrderList : yield (ind.idx, ind) def setMaf(self): """Calculate minor allele frequencies at each locus""" # The default values of 1 (maf) and 2 (counts) provide a sensible prior # For example, a locus where all individuals are missing, the MAF will be 0.5 maf = np.full(self.nLoci, 1, dtype = np.float32) counts = np.full(self.nLoci, 2, dtype = np.float32) for ind in self.individuals.values(): if ind.genotypes is not None: addIfNotMissing(maf, counts, ind.genotypes) self.maf = maf/counts def getMissingness(self): missingness = np.full(self.nLoci, 1, dtype = np.float32) counts = 0 for ind in self.individuals.values(): if ind.genotypes is not None: counts += 1 addIfMissing(missingness, ind.genotypes) return missingness/counts def set_high_density(self): """Set whether each individual is high-density""" for individual in self:#.individuals.values(): is_high_density = np.mean(individual.genotypes != 9) >= self.high_density_threshold if is_high_density: individual.is_high_density = True def fillIn(self, genotypes = True, haps = False, reads = False): for individual in self: individual.constructInfo(self.nLoci, genotypes = True, haps = haps, reads = reads) def __getitem__(self, key) : return self.individuals[key] def __setitem__(self, key, value): self.individuals[key] = value def __iter__(self) : if self.generations is None: self.setUpGenerations() for gen in self.generations: for ind in gen.individuals: yield ind def __reversed__(self) : if self.generations is None: self.setUpGenerations() for gen in reversed(self.generations): for ind in gen.individuals: yield ind def sort_individuals(self, individuals): return {k:v for k, v in sorted(individuals.items(), key = lambda pair: alphanum_key(pair[0]))} # Generation code def setUpGenerations(self) : # Try and make pedigree independent. self.individuals = self.sort_individuals(self.individuals) self.nGenerations = 0 #We can't use a simple iterator over self here, becuase __iter__ calls this function. for idx, ind in self.individuals.items(): gen = ind.getGeneration() self.nGenerations = max(gen, self.nGenerations) self.nGenerations += 1 #To account for generation 0. self.generations = [Generation(i) for i in range(self.nGenerations)] for idx, ind in self.individuals.items(): gen = ind.getGeneration() self.generations[gen].add_individual(ind) #This is really sloppy, but probably not important. def setupFamilies(self) : if self.generations is None: self.setUpGenerations() self.families = dict() for ind in self: if not ind.isFounder(): parents = (ind.sire.idx, ind.dam.idx) if parents in self.families : self.families[parents].addChild(ind) else: self.families[parents] = Family(self.maxFam, ind.sire, ind.dam, [ind]) self.maxFam += 1 for family in self.families.values(): self.generations[family.generation].add_family(family) def getFamilies(self, rev = False) : if self.generations is None: self.setUpGenerations() if self.families is None: self.setupFamilies() gens = range(0, len(self.generations)) if rev: gens = reversed(gens) for i in gens: for family in self.generations[i].families: yield family def getIndividual(self, idx) : if idx not in self.individuals: self.individuals[idx] = self.constructor(idx, self.maxIdn) self.maxIdn += 1 self.generations = None return self.individuals[idx] def readInPedigree(self, fileName): with open(fileName) as f: lines = f.readlines() pedList = [line.split() for line in lines] self.readInPedigreeFromList(pedList) def readInPlantInfo(self, fileName): with open(fileName) as f: lines = f.readlines() for line in lines: parts = line.split() idx = parts[0]; if idx not in self.individuals: self.individuals[idx] = self.constructor(idx, self.maxIdn) self.maxIdn += 1 ind = self.individuals[idx] if len(parts) > 1: if parts[1] == "DH" or parts[1] == "INBRED": ind.inbred = True elif parts[1][0] == "S" : ind.inbred = False ind.selfingGeneration = int(parts[1][1:]) else: ind.inbred = False if len(parts) > 2: if "|" in line: first, second = line.split("|") self.addAncestors(ind, first.split()[2:]) self.addAncestors(ind, second.split()) else: self.addAncestors(ind, parts[2:]) def addAncestors(self, ind, parts): ancestors = [] for idx in parts: if idx not in self.individuals: self.individuals[idx] = self.constructor(idx, self.maxIdn) self.maxIdn += 1 ancestor = self.individuals[idx] ancestors.append(ancestor) ind.imputationAncestors.append(ancestors) def readInPedigreeFromList(self, pedList): index = 0 for parts in pedList : idx = parts[0] self.individuals[idx] = self.constructor(idx, self.maxIdn) self.maxIdn += 1 self.individuals[idx].fileIndex['pedigree'] = index; index += 1 for parts in pedList : idx = parts[0] if parts[1] == "0": parts[1] = None if parts[2] == "0": parts[2] = None if parts[1] is not None and parts[2] is None: parts[2] = "MotherOf"+parts[0] if parts[2] is not None and parts[1] is None: parts[1] = "FatherOf"+parts[0] ind = self.individuals[parts[0]] if parts[1] is not None: if parts[1] not in self.individuals: self.individuals[parts[1]] = self.constructor(parts[1], self.maxIdn) self.maxIdn += 1 self.individuals[parts[1]].fileIndex['pedigree'] = index; index += 1 self.individuals[parts[1]].dummy=True sire = self.individuals[parts[1]] ind.sire = sire sire.offspring.append(ind) sire.sex = 0 if parts[2] is not None: if parts[2] not in self.individuals: self.individuals[parts[2]] = self.constructor(parts[2], self.maxIdn) self.maxIdn += 1 self.individuals[parts[2]].fileIndex['pedigree'] = index; index += 1 self.individuals[parts[1]].dummy=True dam = self.individuals[parts[2]] ind.dam = dam dam.offspring.append(ind) dam.sex = 1 # Optional fourth column contains sex OR inbred/outbred status if len(parts) > 3: male, female = {'m', '0', 'xy'}, {'f', '1', 'xx'} inbred, outbred = {'dh', 'inbred'}, {'outbred'} expected_entries = male | female | inbred | outbred if parts[3].lower() not in expected_entries: print(f"ERROR: unexpected entry in pedigree file, fourth field: '{parts[3]}'\nExiting...") sys.exit(2) # Sex if parts[3].lower() in male: ind.sex = 0 elif parts[3].lower() in female: ind.sex = 1 # Inbred/DH if parts[3].lower() in inbred: ind.inbred = True elif parts[3].lower() in outbred: ind.inbred = False def readInFromPlink(self, idList, pedList, bed, externalPedigree = False): index = 0 if not externalPedigree: self.readInPedigreeFromList(pedList) for i, idx in enumerate(idList): genotypes=bed[:, i].copy() ##I think this is the right order. Doing the copy to be safe. nLoci = len(genotypes) if self.nLoci == 0: self.nLoci = nLoci if self.nLoci != nLoci: print(f"ERROR: incorrect number of loci when reading in plink file. Expected {self.nLoci} got {nLoci}.\nExiting...") sys.exit(2) if idx not in self.individuals: self.individuals[idx] = self.constructor(idx, self.maxIdn) self.maxIdn += 1 ind = self.individuals[idx] ind.constructInfo(nLoci, genotypes=True) ind.genotypes = genotypes ind.fileIndex['plink'] = index; index += 1 if np.mean(genotypes == 9) < .1 : ind.initHD = True def check_line(self, id_data, fileName, idxExpected=None, ncol=None, getInd=True, even_cols=False): idx, data = id_data if idxExpected is not None and idx != idxExpected: print(f"ERROR: Expected individual {idxExpected} but got individual {idx}.\nExiting...") sys.exit(2) if ncol is None: ncol = len(data) if ncol != len(data): print(f"ERROR: incorrect number of columns in {fileName}. Expected {ncol} values but got {len(data)} for individual {idx}.\nExiting...") sys.exit(2) if even_cols and ncol % 2 != 0: print(f"ERROR: file {fileName} doesn't contain an even number of allele columns for individual {idx}.\nExiting...") sys.exit(2) nLoci = len(data) if self.nLoci == 0: self.nLoci = nLoci if self.nLoci != nLoci: print(f"ERROR: inconsistent number of markers or alleles in {fileName}. Expected {self.nLoci} got {nLoci}.") sys.exit(2) ind = None if getInd : ind = self.getIndividual(idx) return ind, data, ncol def update_allele_coding(self, alleles): """Update allele codings with new alleles self.allele_coding - array of shape (2, n_loci) such that: self.allele_coding[0] - array of alleles that are coded as 0 (these are set to the first alleles 'seen') self.allele_coding[1] - array of alleles that are coded as 1 (these are alleles that are different from self.allele_coding[0]) alleles - alleles as read in from PLINK file array of dtype np.bytes_, b'0' is 'missing' This function is much like finding unique entries in a list: only add a new item if it is different from those seen before In this case, only record the first two uniques found, but also check there are only 2 alleles in total""" # If allele coding is complete then skip the update if self.allele_coding_complete(): return # Update any missing entries in self.allele_coding[0] mask = self.allele_coding[0] == b'0' self.allele_coding[0, mask] = alleles[mask] # Update entries in self.allele_coding[1] if: # - the alleles have not already been seen in self.allele_coding[0] # - and the entry (in self.allele_coding[1]) is missing mask = self.allele_coding[1] == b'0' mask &= self.allele_coding[0] != alleles self.allele_coding[1, mask] = alleles[mask] # Check for > 2 alleles at any loci. These are: # - alleles that are not missing # - alleles that are not in either of self.allele_coding[0] or self.allele_coding[1] mask = alleles != b'0' mask &= ((alleles != self.allele_coding[0]) & (alleles != self.allele_coding[1])) # poss speedup alleles != self.allele_coding[0] done above if np.sum(mask) > 0: print(f'ERROR: more than two alleles found in input file(s) at loci {np.flatnonzero(mask)}\nExiting...') sys.exit(2) def allele_coding_complete(self): """Check whether the allele coding is complete (contains no missing values)""" if self.allele_coding is None: return False else: return np.sum(self.allele_coding == b'0') == 0 def decode_alleles(self, alleles): """Decode PLINK plain text alleles to AlphaGenes genotypes or haplotypes handles single individuals - alleles has shape (n_loci*2, ) or multiple individuals - alleles has shape (n_individuals, n_loci*2)""" # 'Double' self.allele_coding as there are two allele columns at each locus coding = np.repeat(self.allele_coding, 2, axis=1) decoded = np.full_like(alleles, b'0', dtype=np.int8) decoded[alleles == coding[0]] = 0 # set alleles coded as 0 decoded[alleles == coding[1]] = 1 # set alleles coded as 1 decoded[alleles == b'0'] = 9 # convert missing (b'0' -> 9) # Extract haplotypes decoded = np.atleast_2d(decoded) n_haps = decoded.shape[0] * 2 n_loci = decoded.shape[1] // 2 haplotypes = np.full((n_haps, n_loci), 9, dtype=np.int8) haplotypes[::2] = decoded[:, ::2] haplotypes[1::2] = decoded[:, 1::2] # Convert to genotypes genotypes = decoded[:, ::2] + decoded[:, 1::2] genotypes[genotypes > 9] = 9 # reset missing values return genotypes.squeeze(), haplotypes def encode_alleles(self, haplotypes): """Encode haplotypes as PLINK plain text handles any even number of haplotypes with shape (n_individuals*2, n_loci)""" assert len(haplotypes) % 2 == 0 assert len(haplotypes[0])== self.nLoci # 'Double' self.allele_coding as there are two allele columns at each locus in PLINK format coding = np.repeat(self.allele_coding, 2, axis=1) # Encoded array is 'reshaped' - one individual per line, each locus is a pair of alleles encoded = np.full((len(haplotypes)//2, self.nLoci*2), b'0', dtype=np.bytes_) # 'Splice' haplotypes into (adjacent) pairs of alleles encoded[:, ::2] = haplotypes[::2] encoded[:, 1::2] = haplotypes[1::2] # Encode mask0 = encoded == b'0' # major alleles (0) mask1 = encoded == b'1' # minor alleles (1) mask9 = encoded == b'9' # missing (9) encoded[mask0] = np.broadcast_to(coding[0], encoded.shape)[mask0] encoded[mask1] = np.broadcast_to(coding[1], encoded.shape)[mask1] encoded[mask9] = b'0' return encoded.squeeze() def check_allele_coding(self, filename): """Check coding is sensible""" # Monoallelic loci: # allele_coding[0] filled, but allele_coding[1] unfilled, i.e. coding[1] == b'0' n_monoallelic = (self.allele_coding[1] == b'0').sum() # Unusual letters unusual = ~np.isin(self.allele_coding, [b'A', b'C', b'G', b'T', b'0']) # unexpected letters if np.sum(unusual) > 0: letters = ' '.join(np.unique(self.allele_coding[unusual].astype(str))) print(f'ERROR: unexpected values found in {filename}: [{letters}].\n' f'Please check the file is in PLINK .ped format\nExiting...') sys.exit(2) elif n_monoallelic > 0: print(f'WARNING: allele coding from {filename} has {n_monoallelic} monoallelic loci') else: # Reassuring message if tests pass print('Allele coding OK') def readInPed(self, filename, startsnp=None, stopsnp=None, haps=False, update_coding=False): """Read in genotypes, and optionally haplotypes, from a PLINK plain text formated file, usually .ped If update_coding is True, the allele coding is interpreted from the .ped file and any coding in self.allele_coding is updated (if the coding is incomplete). Note: to force a full read of the allele coding set self.allele_codine = None first""" print(f'Reading in PLINK .ped format: {filename}') # Check the allele coding is to be got from file or is provided via self.allele_coding if not update_coding and self.allele_coding is None: raise ValueError('readInPed () called with no allele coding') data_list = MultiThreadIO.readLinesPlinkPlainTxt(filename, startsnp=startsnp, stopsnp=stopsnp, dtype=np.bytes_) index = 0 ncol = None if self.nLoci != 0: # Temporarilly double nLoci while reading in PLINK plain text formats (two fields per locus) # otherwise reading of multiple PLINK files results in an 'Incorrect number of values' # error in check_line() self.nLoci = self.nLoci * 2 if not self.allele_coding_complete(): if self.allele_coding is None: print(f'Interpreting allele coding from {filename}') else: print(f'Updating allele coding with coding from {filename}') for value in data_list: ind, alleles, ncol = self.check_line(value, filename, idxExpected=None, ncol=ncol, even_cols=True) ind.constructInfo(self.nLoci, genotypes=True) ind.fileIndex['plink'] = index; index += 1 if update_coding: # Initialise allele coding array if none exists # read_or_create = 'Reading' if self.allele_coding is None else 'Updating' if self.allele_coding is None: self.allele_coding = np.full((2, self.nLoci//2), b'0', dtype=np.bytes_) # Update allele codes # print(f'{read_or_create} allele coding with coding from {filename}') self.update_allele_coding(alleles[::2]) # first allele in each pair self.update_allele_coding(alleles[1::2]) # second allele # Decode haplotypes and genotypes ind.genotypes, haplotypes = self.decode_alleles(alleles) if haps: ind.haplotypes = haplotypes if np.mean(ind.genotypes == 9) < .1: ind.initHD = True # Check allele coding self.check_allele_coding(filename) # Reset nLoci back to its undoubled state self.nLoci = self.nLoci//2 def readInGenotypes(self, fileName, startsnp=None, stopsnp = None): print("Reading in AlphaGenes format:", fileName) index = 0 ncol = None data_list = MultiThreadIO.readLines(fileName, startsnp = startsnp, stopsnp = stopsnp, dtype = np.int8) for value in data_list: ind, genotypes, ncol = self.check_line(value, fileName, idxExpected = None, ncol = ncol) ind.constructInfo(self.nLoci, genotypes=True) ind.genotypes = genotypes ind.fileIndex['genotypes'] = index; index += 1 if np.mean(genotypes == 9) < .1 : ind.initHD = True def readInReferencePanel(self, fileName, startsnp=None, stopsnp = None): print("Reading in reference panel:", fileName) index = 0 ncol = None data_list = MultiThreadIO.readLines(fileName, startsnp = startsnp, stopsnp = stopsnp, dtype = np.int8) for value in data_list: ind, haplotype, ncol = self.check_line(value, fileName, idxExpected = None, ncol = ncol, getInd=False) self.referencePanel.append(haplotype) def readInPhase(self, fileName, startsnp=None, stopsnp = None): index = 0 ncol = None data_list = MultiThreadIO.readLines(fileName, startsnp = startsnp, stopsnp = stopsnp, dtype = np.int8) e = 0 currentInd = None for value in data_list: if e == 0: idxExpected = None else: idxExpected = currentInd.idx ind, haplotype, ncol = self.check_line(value, fileName, idxExpected = idxExpected, ncol = ncol) currentInd = ind ind.constructInfo(self.nLoci, haps=True) ind.haplotypes[e][:] = haplotype e = 1-e ind.fileIndex['phase'] = index; index += 1 def readInSequence(self, fileName, startsnp=None, stopsnp = None): index = 0 ncol = None print("Reading in sequence data :", fileName) data_list = MultiThreadIO.readLines(fileName, startsnp = startsnp, stopsnp = stopsnp, dtype = np.int64) e = 0 currentInd = None for value in data_list: if e == 0: idxExpected = None else: idxExpected = currentInd.idx ind, reads, ncol = self.check_line(value, fileName, idxExpected = idxExpected, ncol = ncol) currentInd = ind ind.constructInfo(self.nLoci, reads=True) ind.fileIndex['sequence'] = index; index += 1 ind.reads[e][:] = reads e = 1-e def callGenotypes(self, threshold): for idx, ind in self.writeOrder(): matrix = ProbMath.getGenotypeProbabilities_ind(ind, InputOutput.args) matrixCollapsedHets = np.array([matrix[0,:], matrix[1,:] + matrix[2,:], matrix[3,:]], dtype=np.float32) calledGenotypes = np.argmax(matrixCollapsedHets, axis = 0) setMissing(calledGenotypes, matrixCollapsedHets, threshold) if InputOutput.args.sexchrom and ind.sex == 0: doubleIfNotMissing(calledGenotypes) ind.genotypes = calledGenotypes def writePedigree(self, outputFile): with open(outputFile, 'w+') as f: for ind in self: sire = "0" if ind.sire is not None: sire = ind.sire.idx dam = "0" if ind.dam is not None: dam = ind.dam.idx f.write(ind.idx + ' ' + sire + ' ' + dam + '\n') def writeGenotypes(self, outputFile): data_list = [] for ind in self : data_list.append( (ind.idx, ind.genotypes) ) MultiThreadIO.writeLines(outputFile, data_list, str) def writePhase(self, outputFile): data_list = [] for ind in self: if ind.haplotypes.ndim == 2: # diploid data_list.append((ind.idx, ind.haplotypes[0])) data_list.append((ind.idx, ind.haplotypes[1])) elif ind.haplotypes.ndim == 1: # haploid data_list.append((ind.idx, ind.haplotypes)) data_list.append((ind.idx, ind.haplotypes)) MultiThreadIO.writeLines(outputFile, data_list, str) def writeDosages(self, outputFile): data_list = [] for ind in self : if ind.dosages is not None: data_list.append( (ind.idx, ind.dosages) ) else: dosages = ind.genotypes.copy() dosages[dosages == 9] = 1 data_list.append( (ind.idx, dosages) ) MultiThreadIO.writeLines(outputFile, data_list, "{:.4f}".format) def writeGenotypes_prefil(self, outputFile): # print("Output is using filled genotypes. Filling missing with a value of 1") # fillValues = np.full(1, self.nLoci) print("Output is using filled genotypes. Filling missing with rounded allele frequency") self.setMaf() fillValues = np.round(self.maf) with open(outputFile, 'w+') as f: for idx, ind in self.individuals.items(): fill(ind.genotypes, fillValues) self.writeLine(f, ind.idx, ind.genotypes, str) def writeGenotypesPed(self, outputFile): """Write genotypes in PLINK plain text format""" data_list = [] for ind in self: # Split genotypes into 'pseudo' haplotypes such that # the first allele/haplotype of a heterozygous locus is always 0 missing = ind.genotypes == 9 h1 = ind.genotypes//2 h2 = ind.genotypes - h1 h1[missing] = 9 h2[missing] = 9 alleles = self.encode_alleles(np.vstack([h1, h2])) data_list.append( (ind.idx, alleles) ) MultiThreadIO.writeLinesPlinkPlainTxt(outputFile, data_list) def writePhasePed(self, outputFile): """Write phased data (i.e. haplotypes) in PLINK plain text .ped format""" data_list = [] for ind in self: if ind.haplotypes.ndim == 2: # diploid alleles = self.encode_alleles(ind.haplotypes) elif ind.haplotypes.ndim == 1: # haploid diploid = np.vstack([ind.haplotypes, ind.haplotypes]) alleles = self.encode_alleles(diploid) data_list.append( (ind.idx, alleles) ) MultiThreadIO.writeLinesPlinkPlainTxt(outputFile, data_list) def writeLine(self, f, idx, data, func) : f.write(idx + ' ' + ' '.join(map(func, data)) + '\n') @jit(nopython=True) def fill(genotypes, fillValue): for i in range(len(genotypes)): if genotypes[i] == 9: genotypes[i] = fillValue[i] @jit(nopython=True) def addIfNotMissing(array1, counts, array2): for i in range(len(array1)): if array2[i] != 9: array1[i] += array2[i] counts[i] += 2 @jit(nopython=True) def addIfMissing(array1, array2): for i in range(len(array1)): if array2[i] == 9: array1[i] += 1 @jit(nopython=True) def doubleIfNotMissing(calledGenotypes): nLoci = len(calledGenotypes) for i in range(nLoci): if calledGenotypes[i] == 1: calledGenotypes[i] = 2 @jit(nopython=True) def setMissing(calledGenotypes, matrix, thresh) : nLoci = len(calledGenotypes) for i in range(nLoci): if matrix[calledGenotypes[i],i] < thresh: calledGenotypes[i] = 9
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/Pedigree.py
Pedigree.py
import sys import argparse import re import numpy as np from numba import jit import random import warnings alphaplinkpython_avail = False try: import alphaplinkpython from alphaplinkpython import PlinkWriter alphaplinkpython_avail = True except ImportError: alphaplinkpython_avail = False ##Global: args = None def getParser(program) : parser = argparse.ArgumentParser(description='') core_parser = parser.add_argument_group("Core arguments") core_parser.add_argument('-out', required=True, type=str, help='The output file prefix.') addInputFileParser(parser) #Genotype files. # output_options_parser = parser.add_argument_group("Output options") # output_options_parser.add_argument('-writekey', default="id", required=False, type=str, help='Determines the order in which individuals are ordered in the output file based on their order in the corresponding input file. Animals not in the input file are placed at the end of the file and sorted in alphanumeric order. These animals can be surpressed with the "-onlykeyed" option. Options: id, pedigree, genotypes, sequence, segregation. Defualt: id.') # output_options_parser.add_argument('-onlykeyed', action='store_true', required=False, help='Flag to surpress the animals who are not present in the file used with -outputkey. Also surpresses "dummy" animals.') if program == "Default": pass if program == "AlphaImpute" : core_impute_parser = parser.add_argument_group("Impute options") core_impute_parser.add_argument('-no_impute', action='store_true', required=False, help='Flag to read in the files but not perform imputation.') core_impute_parser.add_argument('-no_phase', action='store_true', required=False, help='Flag to not do HD phasing initially.') core_impute_parser.add_argument('-maxthreads',default=1, required=False, type=int, help='Number of threads to use. Default: 1.') core_impute_parser.add_argument('-binaryoutput', action='store_true', required=False, help='Flag to write out the genotypes as a binary plink output.') if program in ["AlphaPeel", "AlphaMGS", "AlphaCall"]: probability_parser = parser.add_argument_group("Genotype probability arguments") add_arguments_from_dictionary(probability_parser, get_probability_options(), None) if program in ["longreads"]: longread_parser = parser.add_argument_group("Long read arguments") longread_parser.add_argument('-longreads', default=None, required=False, type=str, nargs="*", help='A read file.') if program == "AlphaPlantImpute" : core_plant_parser = parser.add_argument_group("Mandatory arguments") core_plant_parser.add_argument('-plantinfo', default=None, required=False, type=str, nargs="*", help='A plant info file.') if program == "AlphaMGS" : core_assign_parser = parser.add_argument_group("Core assignement arguments") core_assign_parser.add_argument('-potentialgrandsires', default=None, required=False, type=str, help='A list of potential dams for each individual.') core_assign_parser.add_argument('-usemaf', action='store_true', required=False, help='A flag to use the minor allele frequency when constructing genotype estimates for the sire and maternal grandsire. Not recomended for small input pedigrees.') if program == "AlphaCall": call_parser = parser.add_argument_group("AlphaCall arguments") call_parser.add_argument('-threshold', default=None, required=False, type=float, help='Genotype calling threshold. Use. .3 for best guess genotype.') call_parser.add_argument('-sexchrom', action='store_true', required=False, help='A flag to that this is a sex chromosome. Sex needs to be given in the pedigree file. This is currently an experimental option.') return parser def addInputFileParser(parser): genotype_parser = parser.add_argument_group("Input arguments") add_arguments_from_dictionary(genotype_parser, get_input_options(), None) output_options_parser = parser.add_argument_group("Output options") add_arguments_from_dictionary(output_options_parser, get_output_options(), None) def get_input_options(): parse_dictionary = dict() parse_dictionary["bfile"] = lambda parser: parser.add_argument('-bfile', default=None, required=False, type=str, nargs="*", help='A file in plink (binary) format. Only stable on Linux).') parse_dictionary["genotypes"] = lambda parser: parser.add_argument('-genotypes', default=None, required=False, type=str, nargs="*", help='A file in AlphaGenes format.') parse_dictionary["reference"] = lambda parser: parser.add_argument('-reference', default=None, required=False, type=str, nargs="*", help='A haplotype reference panel in AlphaGenes format.') parse_dictionary["seqfile"] = lambda parser: parser.add_argument('-seqfile', default=None, required=False, type=str, nargs="*", help='A sequence data file.') parse_dictionary["pedigree"] = lambda parser: parser.add_argument('-pedigree',default=None, required=False, type=str, nargs="*", help='A pedigree file in AlphaGenes format.') parse_dictionary["phasefile"] = lambda parser: parser.add_argument('-phasefile',default=None, required=False, type=str, nargs="*", help='A phase file in AlphaGenes format.') parse_dictionary["startsnp"] = lambda parser: parser.add_argument('-startsnp',default=None, required=False, type=int, help="The first marker to consider. The first marker in the file is marker '1'. Default: 1.") parse_dictionary["stopsnp"] = lambda parser: parser.add_argument('-stopsnp',default=None, required=False, type=int, help='The last marker to consider. Default: all markers considered.') parse_dictionary["seed"] = lambda parser: parser.add_argument('-seed',default=None, required=False, type=int, help='A random seed to use for debugging.') return parse_dictionary def get_output_options(): parse_dictionary = dict() parse_dictionary["writekey"] = lambda parser: parser.add_argument('-writekey', default="id", required=False, type=str, help='Determines the order in which individuals are ordered in the output file based on their order in the corresponding input file. Animals not in the input file are placed at the end of the file and sorted in alphanumeric order. These animals can be surpressed with the "-onlykeyed" option. Options: id, pedigree, genotypes, sequence, segregation. Defualt: id.') parse_dictionary["onlykeyed"] = lambda parser: parser.add_argument('-onlykeyed', action='store_true', required=False, help='Flag to surpress the animals who are not present in the file used with -outputkey. Also surpresses "dummy" animals.') parse_dictionary["iothreads"] = lambda parser: parser.add_argument('-iothreads', default=1, required=False, type=int, help='Number of threads to use for io. Default: 1.') return parse_dictionary def get_multithread_options(): parse_dictionary = dict() parse_dictionary["iothreads"] = lambda parser: parser.add_argument('-iothreads', default=1, required=False, type=int, help='Number of threads to use for input and output. Default: 1.') parse_dictionary["maxthreads"] = lambda parser: parser.add_argument('-maxthreads', default=1, required=False, type=int, help='Maximum number of threads to use for analysis. Default: 1.') return parse_dictionary def get_probability_options(): parse_dictionary = dict() parse_dictionary["error"] = lambda parser: parser.add_argument('-error', default=0.01, required=False, type=float, help='Genotyping error rate. Default: 0.01.') parse_dictionary["seqerror"] = lambda parser: parser.add_argument('-seqerror', default=0.001, required=False, type=float, help='Assumed sequencing error rate. Default: 0.001.') parse_dictionary["recombination"] = lambda parser: parser.add_argument('-recomb', default=1, required=False, type=float, help='Recombination rate per chromosome. Default: 1.') return parse_dictionary def add_arguments_from_dictionary(parser, arg_dict, options = None): if options is None: for key, value in arg_dict.items(): value(parser) else: for option in options: if option in arg_dict: arg_dict[option](parser) else: print("Option not found:", option, arg_dict) def parseArgs(program, parser = None, no_args = False): global args args = rawParseArgs(program, parser, no_args = no_args) args.program = program # We want start/stop snp to be in python format (i.e. 0 to n-1). # Input values are between 1 to n. try: if args.startsnp is not None: args.startsnp -= 1 args.stopsnp -= 1 ##Add any necessary code to check args here. except AttributeError as error: pass return args def rawParseArgs(program, parser = None, no_args = False) : if parser is None: parser = getParser(program) if no_args: return parser.parse_args(["-out", "out"]) else: args = sys.argv[1:] if len(args) == 0 : parser.print_help(sys.stderr) sys.exit(1) if len(args) == 1: if args[0] in ["-h", "-help", "--help"]: parser.print_help(sys.stderr) sys.exit(1) else: with open(args[0]) as f: args = [] for line in f: if line[0] != "-": line = "-" + line args.extend(re.split(r"[,|\s|\n]+",line)) for arg in args: if len(arg) == 0: args.remove(arg) for i, arg in enumerate(args): if len(arg) > 0 and arg[0] == "-": args[i] = str.lower(arg) return parser.parse_args(args) parseArgs("Default", parser = None, no_args = True) @jit(nopython=True) def setNumbaSeeds(seed): np.random.seed(seed) random.seed(seed) def readInPedigreeFromInputs(pedigree, args, genotypes=True, haps=False, reads=False, update_coding=False): # Try catch is incase the program does not have a seed option. seed = getattr(args, "seed", None) if seed is not None: np.random.seed(args.seed) random.seed(args.seed) setNumbaSeeds(args.seed) startsnp = getattr(args, "startsnp", None) stopsnp = getattr(args, "stopsnp", None) pedigree.args = args pedigreeReadIn = False pedigree_args = getattr(args, "pedigree", None) if pedigree_args is not None: pedigreeReadIn = True for ped in args.pedigree: pedigree.readInPedigree(ped) # This gets the attribute from args, but returns None if the atribute is not valid. genotypes = getattr(args, "genotypes", None) if genotypes is not None: for geno in args.genotypes: pedigree.readInGenotypes(geno, startsnp, stopsnp) reference = getattr(args, "reference", None) if reference is not None: for ref in args.reference: pedigree.readInReferencePanel(ref, startsnp, stopsnp) seqfile = getattr(args, "seqfile", None) if seqfile is not None: for seq in args.seqfile: pedigree.readInSequence(seq, startsnp, stopsnp) phasefile = getattr(args, "phasefile", None) if phasefile is not None: if args.program == "AlphaPeel": print("Use of an external phase file is not currently supported. Phase information will be translated to genotype probabilities. If absolutely necessary use a penetrance file instead.") for phase in args.phasefile: pedigree.readInPhase(phase, startsnp, stopsnp) bfile = getattr(args, "bfile", None) if bfile is not None: global alphaplinkpython_avail if alphaplinkpython_avail: for plink in args.bfile: if pedigreeReadIn == True: print(f"Pedigree file read in from -pedigree option. Reading in binary plink file {plink}. Pedigree information in the .fam file will be ignored.") readInGenotypesPlink(pedigree, plink, startsnp, stopsnp, pedigreeReadIn) else: warnings.warn("The module alphaplinkpython was not found. Plink files cannot be read in and will be ignored.") # Note: need to read .bim before .ped as the .bim sets the allele coding to use for reading the .ped bim = getattr(args, 'bim', None) if bim is not None: for file in args.bim: pedigree.readInBim(file, startsnp, stopsnp) ped = getattr(args, 'ped', None) if ped is not None: for file in args.ped: pedigree.readInPed(file, startsnp, stopsnp, haps=False, update_coding=update_coding) #It's important that these happen after all the datafiles are read in. #Each read in can add individuals. This information needs to be calculated on the final pedigree. pedigree.fillIn(genotypes, haps, reads) pedigree.setUpGenerations() pedigree.setupFamilies() def readMapFile(mapFile, start = None, stop = None) : ids = [] chrs = [] positions = [] with open(mapFile) as f: for line in f: parts = line.split(); try: positions.append(float(parts[2])) chrs.append(parts[1]) ids.append(parts[0]) except ValueError: pass if start is None: start = 0 stop = len(ids) return (ids[start:stop], chrs[start:stop], positions[start:stop]) # def getPositionsFromMap(mapFileName, nLoci) : # if mapFileName is None: # return np.arange(nLoci, dtype = np.float32) # positions = [] # with open(mapFileName) as f: # for line in f: # parts = line.split(); # try: # positions.append(float(parts[1])) # except ValueError: # pass # if len(positions) != nLoci : # raise ValueError(f"Number of loci not equal to map file length {nLoci}, {len(positions)}") # return np.array(positions, dtype = np.float32) def readInSeg(pedigree, fileName, start=None, stop = None): print("Reading in seg file:", fileName) if start is None: start = 0 if stop is None: stop = pedigree.nLoci nLoci = stop - start + 1 #Contains stop. print(pedigree.maxIdn) seg = np.full((pedigree.maxIdn, 4, nLoci), .25, dtype = np.float32) index = 0 fileNColumns = 0 indHit = np.full(pedigree.maxIdn, 0, dtype = np.int64) with open(fileName) as f: e = 0 currentInd = None for line in f: parts = line.split(); idx = parts[0]; if fileNColumns == 0: fileNColumns = len(parts) if fileNColumns != len(parts): raise ValueError(f"The length of the line is not the expected length. Expected {fileNColumns} got {len(parts)} on individual {idx} and line {e}.") segLine=np.array([float(val) for val in parts[(start+1):(stop+2)]], dtype = np.float32) if len(segLine) != nLoci: raise ValueError(f"The length of the line subsection is not the expected length. Expected {nLoci} got {len(segLine)} on individual {idx} and line {e}.") if idx not in pedigree.individuals: print(f"Individual {idx} not found in pedigree. Individual ignored.") else: ind = pedigree.individuals[idx] if e == 0: currentInd = ind.idx if currentInd != ind.idx: raise ValueError(f"Unexpected individual. Expecting individual {currentInd}, but got ind {ind.idx} on value {e}") seg[ind.idn,e,:] = segLine e = (e+1)%4 ind.fileIndex['segregation'] = index; index += 1 indHit[ind.idn] += 1 for ind in pedigree: if indHit[ind.idn] != 4: print(f"No segregation information found for individual {ind.idx}") return seg def writeIdnIndexedMatrix(pedigree, matrix, outputFile): np.set_printoptions(suppress=True) print("Writing to ", outputFile) with open(outputFile, 'w+') as f: for idx, ind in pedigree.writeOrder(): if len(matrix.shape) == 2 : tmp = np.around(matrix[ind.idn, :], decimals = 4) f.write(' '.join(map(str, tmp))) # f.write('\n') if len(matrix.shape) == 3 : for i in range(matrix.shape[1]) : f.write(idx + " ") tmp2 = map("{:.4f}".format, matrix[ind.idn,i, :].tolist()) tmp3 = ' '.join(tmp2) f.write(tmp3) f.write('\n') # f.write('\n') def writeFamIndexedMatrix(pedigree, matrix, outputFile): np.set_printoptions(suppress=True) print("Writing to ", outputFile) with open(outputFile, 'w+') as f: for fam in pedigree.getFamilies(): if len(matrix.shape) == 2 : tmp = np.around(matrix[fam.idn, :], decimals = 4) f.write(' '.join(map(str, tmp))) # f.write('\n') if len(matrix.shape) == 3 : for i in range(matrix.shape[1]) : f.write(str(fam.idn) + " ") tmp2 = map("{:.4f}".format, matrix[fam.idn,i, :].tolist()) tmp3 = ' '.join(tmp2) f.write(tmp3) f.write('\n') # f.write('\n') def writeOutGenotypesPlink(pedigree, fileName): global alphaplinkpython_avail if alphaplinkpython_avail: import alphaplinkpython from alphaplinkpython import PlinkWriter ped = [getFamString(ind) for ind in pedigree] nLoci = pedigree.nLoci nInd = len(pedigree.individuals) genotypes = np.full((nLoci, nInd), 0, dtype = np.int8) for i, ind in enumerate(pedigree): genotypes[:,i] = ind.genotypes genotypeIds = ["snp" + str(i+1) for i in range(nLoci)] genotypePos = [i + 1 for i in range(nLoci)] if args.startsnp is not None: genotypeIds = ["snp" + str(i + args.startsnp + 1) for i in range(nLoci)] genotypePos = [i + args.startsnp + 1 for i in range(nLoci)] PlinkWriter.writeFamFile(fileName + ".fam", ped) # PlinkWriter.writeBimFile(genotypeIds, fileName + ".bim") writeSimpleBim(genotypeIds, genotypePos, fileName + ".bim") PlinkWriter.writeBedFile(genotypes, fileName + ".bed") else: warnings.warn("The module alphaplinkpython was not found. Plink files cannot be written out and will be ignored.") def writeSimpleBim(genotypeIds, genotypePos, fileName) : with open(fileName, "w") as file: for i in range(len(genotypeIds)): line = f"1 {genotypeIds[i]} 0 {genotypePos[i]} A B \n" file.write(line) def readInGenotypesPlink(pedigree, fileName, startsnp, endsnp, externalPedigree = False): bim = PlinkWriter.readBimFile(fileName + '.bim') fam = PlinkWriter.readFamFile(fileName + '.fam') bed = PlinkWriter.readBedFile(fileName + '.bed', bim, fam) if startsnp is not None: bed = bed[startsnp:endsnp,:] pedList = [[line.getId(), line.getSire(), line.getDam()] for line in fam] idList = [line.getId() for line in fam] pedigree.readInFromPlink(idList, pedList, bed, externalPedigree) def getFamString(ind): sireStr = 0 damStr = 0 if ind.sire is not None: sireStr = ind.sire.idx if ind.dam is not None: damStr = ind.dam.idx return [str(ind.idx), str(sireStr), str(damStr)] # return [str(ind.idx).encode('utf-8'), str(sireStr).encode('utf-8'), str(damStr).encode('utf-8')] # @profile # def writeIdnIndexedMatrix2(pedigree, matrix, outputFile): # np.set_printoptions(suppress=True) # print("Writing to ", outputFile) # with open(outputFile, 'w+') as f: # for idx, ind in pedigree.individuals.items(): # if len(matrix.shape) == 2 : # tmp = np.around(matrix[ind.idn, :], decimals = 4) # f.write(' '.join(map(str, tmp))) # f.write('\n') # if len(matrix.shape) == 3 : # for i in range(matrix.shape[1]) : # tmp2 = tuple(map("{:.4f}".format, matrix[ind.idn,i, :])) # tmp3 = ' '.join(tmp2) # f.write(tmp3) # f.write('\n') def print_boilerplate(name, version = None, commit = None, date = None): """Print software name, version and contact""" width = 42 # width of 'website' line print('-' * width) print(f'{name:^{width}}') # centre aligned print('-' * width) if version is not None: print(f'Version: {version}') if commit is not None: print(f'Commit: {commit}') if date is not None: print(f'Date: {date}') print('Email: [email protected]') print('Website: http://alphagenes.roslin.ed.ac.uk') print('-' * width)
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/InputOutput.py
InputOutput.py
from numba import jit import numpy as np from . import NumbaUtils from . import ProbMath class HaploidMarkovModel : def __init__(self, n_loci, error, recombination_rate = None): self.update_paramaters(n_loci, error, recombination_rate) self.directional_smoothing = self.create_directional_smoothing() self.apply_smoothing = self.create_apply_smoothing() self.apply_viterbi = self.create_viterbi_algorithm() self.apply_sampling = self.create_sampling_algorithm(NumbaUtils.multinomial_sample) def update_paramaters(self, n_loci, error, recombination_rate = None): self.n_loci = n_loci if type(error) is float: self.error = np.full(n_loci, error, dtype=np.float32) else: self.error = error if recombination_rate is None: recombination_rate = 1.0/n_loci if type(recombination_rate) is float: self.recombination_rate = np.full(n_loci, recombination_rate, dtype=np.float32) else: self.recombination_rate = recombination_rate def get_mask(self, called_haplotypes): return np.all(called_haplotypes != 9, axis = 0) # def get_run_option(default_arg, alternative_arg): # # Return the default arg as true if it is supplied, otherwise return the alternative arg. # if default_arg is not None: # if alternative_arg is not None: # if default_arg and alternative_arg: # print("Both arguments are true, returning default") # if not default_arg and not alternative_arg: # print("Both arguments are false, returning default") # return default_arg # else: # if alternative_arg is None: # return True # else: # return not alternative_arg def run_HMM(self, point_estimates = None, algorithm = "marginalize", **kwargs): # return_called_values = get_run_option(return_called_values, return_genotype_probabilities) if point_estimates is None: point_estimates = self.get_point_estimates(**kwargs) if algorithm == "marginalize": total_probs = self.apply_smoothing(point_estimates, self.recombination_rate) genotype_probabilities = self.calculate_genotype_probabilities(total_probs, **kwargs) elif algorithm == "viterbi": total_probs = self.apply_viterbi(point_estimates, self.recombination_rate) genotype_probabilities = self.calculate_genotype_probabilities(total_probs, **kwargs) elif algorithm == "sample": total_probs = self.apply_sampling(point_estimates, self.recombination_rate) genotype_probabilities = self.calculate_genotype_probabilities(total_probs, **kwargs) else: print(f"Valid alrogithm option not given: {alrogithm}") return genotype_probabilities def call_genotype_probabilities(self, genotype_probabilities, threshold = 0.1): return ProbMath.call_genotype_probs(genotype_probabilities, threshold) def get_point_estimates(self, individual, haplotype_library, library_calling_threshold = 0.95, **kwargs) : called_haplotypes = haplotype_library.get_called_haplotypes(threshold = library_calling_threshold) mask = self.get_mask(called_haplotypes) point_estimates = self.njit_get_point_estimates(individual.genotypes, called_haplotypes, self.error, mask) return point_estimates @staticmethod @jit(nopython=True, nogil=True) def njit_get_point_estimates(genotypes, haplotypes, error, mask): nHap, nLoci = haplotypes.shape point_estimates = np.full((nLoci, nHap), 1, dtype = np.float32) for i in range(nLoci): if genotypes[i] != 9 and mask[i]: for j in range(nHap): sourceGeno = haplotypes[j, i] if 2*sourceGeno == genotypes[i]: point_estimates[i, j] = 1-error[i] else: point_estimates[i, j] = error[i] return point_estimates @staticmethod @jit(nopython=True, nogil=True) def transmission(cummulative_probabilities, previous_point_probability, recombination_rate, output): output[:] = cummulative_probabilities * previous_point_probability normalize(output) output[:] *= (1-recombination_rate) output[:] += recombination_rate def create_directional_smoothing(self) : transmission = self.transmission @jit(nopython=True, nogil=True) def directional_smoothing(point_estimate, recombination_rate, forward = False, backward = False): output = np.full(point_estimate.shape, 1, dtype = np.float32) n_loci = point_estimate.shape[0] if forward: start = 1 stop = n_loci step = 1 if backward: start = n_loci - 2 stop = -1 step = -1 for i in range(start, stop, step): transmission(output[i-step,:], point_estimate[i - step,:], recombination_rate[i], output[i,:]) return output return directional_smoothing def create_apply_smoothing(self): directional_smoothing = self.directional_smoothing @jit(nopython=True, nogil=True) def apply_smoothing(point_estimate, recombination_rate): """Calculate normalized state probabilities at each loci using the forward-backward algorithm""" est = ( point_estimate * directional_smoothing(point_estimate, recombination_rate, forward = True) * directional_smoothing(point_estimate, recombination_rate, backward = True) ) # Return normalized probabilities normalize_along_first_axis(est) return est return apply_smoothing def create_sampling_algorithm(self, selection_function): directional_smoothing = self.directional_smoothing transmission = self.transmission @jit(nopython=True, nogil=True) def sample_path(point_estimate, recombination_rate): """Calculate normalized state probabilities at each loci using the forward-backward algorithm""" # Right now using a matrix output; will improve later. n_loci = point_estimate.shape[0] output = np.full(point_estimate.shape, 0, dtype = np.float32) forward_and_point_estimate = point_estimate * directional_smoothing(point_estimate, recombination_rate, forward = True) # First index. selected_index = selection_function(forward_and_point_estimate[-1].ravel()) output[- 1].ravel()[selected_index] = 1 # Set the output value at the selected_index to 1. # Always sample backward (for tradition mostly). locus_estimate = np.full(point_estimate[0].shape, 0, dtype = np.float32) matrix_ones = np.full(point_estimate[0].shape, 1, dtype = np.float32) start = n_loci - 2 stop = -1 step = -1 for i in range(start, stop, step): # Pass along sampled value at the locus. transmission(output[i-step,:], matrix_ones, recombination_rate[i], locus_estimate) # Combine forward_estimate with backward_estimate locus_estimate *= forward_and_point_estimate[i,:] selected_index = selection_function(locus_estimate.ravel()) output[i].ravel()[selected_index] = 1 # Set the output value at the selected_index to 1. # Return probabilities return output return sample_path def create_viterbi_algorithm(self): maximum_likelihood_step = self.maximum_likelihood_step @jit(nopython=True, nogil=True) def viterbi_path(point_estimate, recombination_rate): """Calculate normalized state probabilities at each loci using the forward-backward algorithm""" # Right now using a matrix output; will improve later. n_loci = point_estimate.shape[0] path_score = np.full(point_estimate.shape, 0, dtype = np.float32) previous_index = np.full(point_estimate.shape, 0, dtype = np.int64) output = np.full(point_estimate.shape, 0, dtype = np.float32) path_score[0] = point_estimate[0] start = 1; stop = n_loci; step = 1 for i in range(start, stop, step): # Pass along sampled value at the locus. maximum_likelihood_step(path_score[i-step], recombination_rate[i], point_estimate[i], path_score[i], previous_index[i]) # Traceback start_index = np.argmax(path_score[-1]) output[n_loci-1].ravel()[start_index] = 1 index = start_index start = n_loci-2; stop = -1; step = -1 for i in range(start, stop, step): index = previous_index[i-step].ravel()[index] output[i].ravel()[index] = 1 return output return viterbi_path @staticmethod @jit(nopython=True, nogil=True) def maximum_likelihood_step(previous_path_score, recombination_rate, point_estimate, output_path_score, output_index): best_index = np.argmax(previous_path_score) best_score = previous_path_score[best_index] n_hap = previous_path_score.shape[0] for i in range(n_hap): no_rec_score = (1-recombination_rate)*previous_path_score[i] rec_score = best_score*recombination_rate if no_rec_score > rec_score: # No recombination output_path_score[i] = no_rec_score*point_estimate[i] output_index[i] = i else: # Recombination output_path_score[i] = rec_score/n_hap*point_estimate[i] output_index[i] = best_index output_path_score /= np.sum(output_path_score) def calculate_genotype_probabilities(self, total_probs, haplotype_library, **kwargs): haplotype_dosages = haplotype_library.get_haplotypes() return self.njit_calculate_genotype_probabilities(total_probs, haplotype_dosages) @staticmethod @jit(nopython=True, nogil=True) def njit_calculate_genotype_probabilities(total_probs, reference_haplotypes) : n_hap, n_loci = reference_haplotypes.shape geno_probs = np.full((2, n_loci), 0.0000001, dtype = np.float32) # Adding a very small value as a prior incase all of the values are missing. for i in range(n_loci): for j in range(n_hap): hap_value = reference_haplotypes[j, i] prob_value = total_probs[i,j] if hap_value != 9: # Add in a sum of total_probs values. geno_probs[0, i] += prob_value * (1-hap_value) geno_probs[1, i] += prob_value * hap_value geno_probs = geno_probs/np.sum(geno_probs, axis = 0) return geno_probs class DiploidMarkovModel(HaploidMarkovModel) : def __init__(self, n_loci, error, recombination_rate = None): HaploidMarkovModel.__init__(self, n_loci, error, recombination_rate) def extract_reference_panels(self, haplotype_library = None, paternal_haplotype_library = None, maternal_haplotype_library = None) : if maternal_haplotype_library is not None and paternal_haplotype_library is not None: seperate_reference_panels = True return paternal_haplotype_library, maternal_haplotype_library, seperate_reference_panels else: seperate_reference_panels = False return haplotype_library, haplotype_library, seperate_reference_panels def get_point_estimates(self, individual, library_calling_threshold= 0.95, **kwargs): paternal_haplotype_library, maternal_haplotype_library, seperate_reference_panels = self.extract_reference_panels(**kwargs) paternal_called_haplotypes = paternal_haplotype_library.get_called_haplotypes(threshold = library_calling_threshold) maternal_called_haplotypes = maternal_haplotype_library.get_called_haplotypes(threshold = library_calling_threshold) mask = self.get_mask(paternal_called_haplotypes) & self.get_mask(maternal_called_haplotypes) return self.njit_get_point_estimates(individual.genotypes, paternal_called_haplotypes, maternal_called_haplotypes, self.error, mask) @staticmethod @jit(nopython=True, nogil=True) def njit_get_point_estimates(indGeno, paternalHaplotypes, maternalHaplotypes, error, mask): nPat, nLoci = paternalHaplotypes.shape nMat, nLoci = maternalHaplotypes.shape point_estimates = np.full((nLoci, nPat, nMat), 1, dtype = np.float32) for i in range(nLoci): if indGeno[i] != 9 and mask[i]: for j in range(nPat): for k in range(nMat): sourceGeno = paternalHaplotypes[j, i] + maternalHaplotypes[k, i] if sourceGeno == indGeno[i]: point_estimates[i, j, k] = 1-error[i] else: point_estimates[i, j, k] = error[i] return point_estimates def calculate_genotype_probabilities(self, total_probs, haplotype_library = None, paternal_haplotype_library= None, maternal_haplotype_library= None, **kwargs): paternal_haplotype_library, maternal_haplotype_library, seperate_reference_panels = self.extract_reference_panels(haplotype_library, paternal_haplotype_library, maternal_haplotype_library) return self.njit_calculate_genotype_probabilities(total_probs, paternal_haplotype_library.get_haplotypes(), maternal_haplotype_library.get_haplotypes(), seperate_reference_panels) @staticmethod @jit(nopython=True, nogil=True) def njit_calculate_genotype_probabilities(total_probs, paternal_haplotypes, maternal_haplotypes, seperate_reference_panels) : n_pat, n_loci = paternal_haplotypes.shape n_mat, n_loci = maternal_haplotypes.shape geno_probs = np.full((4, n_loci), 0.00001, dtype = np.float32) for i in range(n_loci): for j in range(n_pat): for k in range(n_mat): # diploid case where the markers are assumed independent. if seperate_reference_panels or j != k: pat_value = paternal_haplotypes[j, i] mat_value = maternal_haplotypes[k, i] prob_value = total_probs[i,j,k] if pat_value != 9 and mat_value != 9: # Add in a sum of total_probs values. geno_probs[0, i] += prob_value * (1-pat_value)*(1-mat_value) #aa geno_probs[1, i] += prob_value * (1-pat_value)*mat_value #aA geno_probs[2, i] += prob_value * pat_value*(1-mat_value) #Aa geno_probs[3, i] += prob_value * pat_value*mat_value #AA # Haploid case where the markers are not independent else: hap_value = paternal_haplotypes[j, i] prob_value = total_probs[i,j,k] if hap_value != 9: geno_probs[0, i] += prob_value * (1-hap_value) geno_probs[1, i] += 0 geno_probs[2, i] += 0 geno_probs[3, i] += prob_value * hap_value geno_probs = geno_probs/np.sum(geno_probs, axis = 0) return geno_probs @staticmethod @jit(nopython=True, nogil=True) def transmission(cummulative_probabilities, previous_point_probability, recombination_rate, output): output[:] = cummulative_probabilities * previous_point_probability normalize(output) row_sums = np.sum(output, 0) col_sums = np.sum(output, 1) output[:] *= (1 - recombination_rate)**2 # No recombination on either chromosome. output[:] += np.expand_dims(row_sums, 0)/output.shape[0]*recombination_rate*(1-recombination_rate) # recombination on the maternal (second) chromosome) output[:] += np.expand_dims(col_sums, 1)/output.shape[1]*recombination_rate*(1-recombination_rate) # recombination on the paternal (first) chromosome) output[:] += recombination_rate**2/output.size # double recombination @staticmethod @jit(nopython=True, nogil=True) def maximum_likelihood_step(previous_path_score, recombination_rate, point_estimate, output_path_score, output_index): n_pat = previous_path_score.shape[0] n_mat = previous_path_score.shape[1] combined_max_index = np.argmax(previous_path_score) combined_max_score = previous_path_score.ravel()[combined_max_index] * recombination_rate**2/(n_mat*n_pat) paternal_max_index = np.full(n_pat, 0, dtype = np.int64) paternal_max_value = np.full(n_pat, 0, dtype = np.float32) maternal_max_index = np.full(n_mat, 0, dtype = np.int64) maternal_max_value = np.full(n_mat, 0, dtype = np.float32) # Recombination on the maternal side, paternal side is fixed for i in range(n_pat): index = np.argmax(previous_path_score[i,:]) paternal_max_value[i] = previous_path_score[i, index] * (1-recombination_rate)*recombination_rate/n_mat paternal_max_index[i] = i*n_mat + index # Recombination on the paternal side, maternal side is fixed for j in range(n_mat): index = np.argmax(previous_path_score[:, j]) maternal_max_value[j] = previous_path_score[index, j] * (1-recombination_rate)*recombination_rate/n_pat maternal_max_index[j] = index*n_mat + j for i in range(n_pat): for j in range(n_mat): best_score = (1-recombination_rate)**2*previous_path_score[i,j] best_index = i*n_mat + j # Paternal recombination if paternal_max_value[i] > best_score: best_score = paternal_max_value[i] best_index = paternal_max_index[i] if maternal_max_value[j] > best_score: best_score = maternal_max_value[j] best_index = maternal_max_index[j] if combined_max_score > best_score: best_score = combined_max_score best_index = combined_max_index output_path_score[i,j] = best_score*point_estimate[i,j] output_index[i,j] = best_index output_path_score /= np.sum(output_path_score) class JointMarkovModel(HaploidMarkovModel) : def __init__(self, n_loci, error, recombination_rate = None): HaploidMarkovModel.__init__(self, n_loci, error, recombination_rate) @staticmethod @jit(nopython=True, nogil=True) def njit_get_point_estimates(indGeno, haplotypes, error, mask): n_hap, n_loci = haplotypes.shape point_estimates = np.full((n_loci, n_hap, n_hap + 1), 1, dtype = np.float32) diploid_section = point_estimates[:,:,0:-1] haploid_section = point_estimates[:,:,-1] # Diploid point estimates/Emission probabilities for i in range(n_loci): if indGeno[i] != 9 and mask[i]: for j in range(n_hap): for k in range(n_hap): sourceGeno = haplotypes[j, i] + haplotypes[k, i] if sourceGeno == indGeno[i]: diploid_section[i, j, k] = 1-error[i] else: diploid_section[i, j, k] = error[i] # Diploid point estimates/Emission probabilities for i in range(n_loci): if indGeno[i] != 9 and mask[i]: for j in range(n_hap): sourceGeno = 2*haplotypes[j, i] if sourceGeno == indGeno[i]: haploid_section[i, j] = 1-error[i] else: haploid_section[i, j] = error[i] return point_estimates @staticmethod @jit(nopython=True, nogil=True) def njit_calculate_genotype_probabilities(total_probs, reference_haplotypes) : n_hap, n_loci = reference_haplotypes.shape geno_probs = np.full((4, n_loci), 0.00001, dtype = np.float32) diploid_section = total_probs[:,:,0:-1] haploid_section = total_probs[:,:,-1] for i in range(n_loci): for j in range(n_hap): for k in range(n_hap): # diploid case where the markers are assumed independent. if j != k: pat_value = reference_haplotypes[j, i] mat_value = reference_haplotypes[k, i] prob_value = diploid_section[i,j,k] if pat_value != 9 and mat_value != 9: # Add in a sum of total_probs values. geno_probs[0, i] += prob_value * (1-pat_value)*(1-mat_value) #aa geno_probs[1, i] += prob_value * (1-pat_value)*mat_value #aA geno_probs[2, i] += prob_value * pat_value*(1-mat_value) #Aa geno_probs[3, i] += prob_value * pat_value*mat_value #AA # markers are not independent else: hap_value = reference_haplotypes[j, i] prob_value = diploid_section[i,j,k] if hap_value != 9: geno_probs[0, i] += prob_value * (1-hap_value) geno_probs[1, i] += 0 geno_probs[2, i] += 0 geno_probs[3, i] += prob_value * hap_value for i in range(n_loci): for j in range(n_hap): hap_value = reference_haplotypes[j, i] prob_value = haploid_section[i,j] if hap_value != 9: geno_probs[0, i] += prob_value * (1-hap_value) geno_probs[1, i] += 0 geno_probs[2, i] += 0 geno_probs[3, i] += prob_value * hap_value geno_probs = geno_probs/np.sum(geno_probs, axis = 0) return geno_probs @staticmethod @jit(nopython=True, nogil=True) def transmission(cummulative_probabilities, previous_point_probability, recombination_rate, output): output[:] = cummulative_probabilities * previous_point_probability normalize(output) diploid_section = output[:,0:-1] haploid_section = output[:,-1] diploid_weight = np.sum(diploid_section) haploid_weight = np.sum(haploid_section) row_sums = np.sum(diploid_section, 0) col_sums = np.sum(diploid_section, 1) diploid_section[:] *= (1 - recombination_rate)**2 diploid_section[:] += np.expand_dims(row_sums, 0)/diploid_section.shape[0]*recombination_rate*(1-recombination_rate) # recombination on the maternal (second) chromosome) diploid_section[:] += np.expand_dims(col_sums, 1)/diploid_section.shape[1]*recombination_rate*(1-recombination_rate) # recombination on the paternal (first) chromosome) diploid_section[:] += diploid_weight*recombination_rate**2/diploid_section.size # double recombination haploid_section[:] *= (1 - recombination_rate) haploid_section[:] += haploid_weight*recombination_rate/haploid_section.size # loose the recombination to the haploid section and add the haploid recombination to diploid diploid_section[:] *= (1 - recombination_rate) diploid_section[:] += recombination_rate * haploid_weight/diploid_section.size # loose the recombination to the haploid section and add the haploid recombination to diploid haploid_section[:] *= (1 - recombination_rate) haploid_section[:] += recombination_rate * diploid_weight/haploid_section.size # @staticmethod # @jit(nopython=True, nogil=True) # def maximum_likelihood_step(previous_path_score, recombination_rate, point_estimate, output_path_score, output_index): # n_pat = previous_path_score.shape[0] # n_mat = previous_path_score.shape[1] # combined_max_index = np.argmax(previous_path_score) # combined_max_score = previous_path_score.ravel()[combined_max_index] * recombination_rate**2/(n_mat*n_pat) # paternal_max_index = np.full(n_pat, 0, dtype = np.int64) # paternal_max_value = np.full(n_pat, 0, dtype = np.float32) # maternal_max_index = np.full(n_mat, 0, dtype = np.int64) # maternal_max_value = np.full(n_mat, 0, dtype = np.float32) # # Recombination on the maternal side, paternal side is fixed # for i in range(n_pat): # index = np.argmax(previous_path_score[i,:]) # paternal_max_value[i] = previous_path_score[i, index] * (1-recombination_rate)*recombination_rate/n_mat # paternal_max_index[i] = i*n_mat + index # # Recombination on the paternal side, maternal side is fixed # for j in range(n_mat): # index = np.argmax(previous_path_score[:, j]) # maternal_max_value[j] = previous_path_score[index, j] * (1-recombination_rate)*recombination_rate/n_pat # maternal_max_index[j] = index*n_mat + j # for i in range(n_pat): # for j in range(n_mat): # best_score = (1-recombination_rate)**2*previous_path_score[i,j] # best_index = i*n_mat + j # # Paternal recombination # if paternal_max_value[i] > best_score: # best_score = paternal_max_value[i] # best_index = paternal_max_index[i] # if maternal_max_value[j] > best_score: # best_score = maternal_max_value[j] # best_index = maternal_max_index[j] # if combined_max_score > best_score: # best_score = combined_max_score # best_index = combined_max_index # output_path_score[i,j] = best_score*point_estimate[i,j] # output_index[i,j] = best_index # output_path_score /= np.sum(output_path_score) @jit(nopython=True, nogil=True) def normalize(mat): mat[:] /= np.sum(mat) @jit(nopython=True, nogil=True) def normalize_along_first_axis(mat): for i in range(mat.shape[0]): normalize(mat[i,:])
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/CombinedHMM.py
CombinedHMM.py
from numba import jit import numpy as np import collections def getGenotypesFromMaf(maf) : nLoci = len(maf) mafGenotypes = np.full((4, nLoci), .25, dtype = np.float32) mafGenotypes[0,:] = (1-maf)**2 mafGenotypes[1,:] = maf*(1-maf) mafGenotypes[2,:] = (1-maf)*maf mafGenotypes[3,:] = maf**2 return mafGenotypes def getGenotypeProbabilities_ind(ind, args = None, log = False): if args is None: error = 0.01 seqError = 0.001 sexChromFlag = False else: error = args.error seqError = args.seqerror sexChromFlag = getattr(args, "sexchrom", False) and ind.sex == 0 #This is the sex chromosome and the individual is male. if ind.reads is not None: nLoci = len(ind.reads[0]) if ind.genotypes is not None: nLoci = len(ind.genotypes) if not log: return getGenotypeProbabilities(nLoci, ind.genotypes, ind.reads, error, seqError, sexChromFlag) else: return getGenotypeProbabilities_log(nLoci, ind.genotypes, ind.reads, error, seqError, sexChromFlag) def getGenotypeProbabilities(nLoci, genotypes, reads, error = 0.01, seqError = 0.001, useSexChrom=False): vals = np.full((4, nLoci), .25, dtype = np.float32) if type(error) is float: error = np.full(nLoci, error) if type(seqError) is float: seqError = np.full(nLoci, seqError) errorMat = generateErrorMat(error) if genotypes is not None: setGenoProbsFromGenotypes(genotypes, errorMat, vals) if reads is not None: seqError = seqError log1 = np.log(1-seqError) log2 = np.log(.5) loge = np.log(seqError) valSeq = np.array([log1*reads[0] + loge*reads[1], log2*reads[0] + log2*reads[1], log2*reads[0] + log2*reads[1], log1*reads[1] + loge*reads[0]]) maxVals = np.amax(valSeq, 0) valSeq = valSeq - maxVals valSeq = np.exp(valSeq) vals *= valSeq if useSexChrom: #Recode so we only care about the two homozygous states, but they are coded as 0, 1. vals[1,:] = vals[3,:] vals[2,:] = 0 vals[3,:] = 0 return vals/np.sum(vals,0) def getGenotypeProbabilities_log(nLoci, genotypes, reads, error = 0.01, seqError = 0.001, useSexChrom=False): vals = np.full((4, nLoci), .25, dtype = np.float32) if type(error) is float: error = np.full(nLoci, error) if type(seqError) is float: seqError = np.full(nLoci, seqError) errorMat = generateErrorMat(error) if genotypes is not None: setGenoProbsFromGenotypes(genotypes, errorMat, vals) vals = np.log(vals) if reads is not None: log1 = np.log(1-seqError) log2 = np.log(.5) loge = np.log(seqError) ref_reads = reads[0] alt_reads = reads[1] val_seq = np.full((4, nLoci), 0, dtype = np.float32) val_seq[0,:] = log1*ref_reads + loge*alt_reads val_seq[1,:] = log2*ref_reads + log2*alt_reads val_seq[2,:] = log2*ref_reads + log2*alt_reads val_seq[3,:] = loge*ref_reads + log1*alt_reads vals += val_seq output = np.full((4, nLoci), 0, dtype = np.float32) apply_log_norm_1d(vals, output) return output @jit(nopython=True, nogil = True) def apply_log_norm_1d(vals, output): nLoci = vals.shape[-1] for i in range(nLoci): output[:,i] = log_norm_1D(vals[:, i]) @jit(nopython=True, nogil = True) def log_norm_1D(mat): log_exp_sum = 0 first = True maxVal = 100 for a in range(4): if mat[a] > maxVal or first: maxVal = mat[a] if first: first = False for a in range(4): log_exp_sum += np.exp(mat[a] - maxVal) return mat - (np.log(log_exp_sum) + maxVal) def set_from_genotype_probs(ind, geno_probs = None, calling_threshold = 0.1, set_genotypes = False, set_dosages = False, set_haplotypes = False) : # Check diploid geno_probs; not sure what to do for haploid except assume inbred? if geno_probs.shape[0] == 2: geno_probs = geno_probs/np.sum(geno_probs, axis = 0) called_values = call_genotype_probs(geno_probs, calling_threshold) # Assuming the individual is haploid if set_dosages: if ind.dosages is None: ind.dosages = called_values.dosages.copy() ind.dosages[:] = 2*called_values.dosages if set_genotypes: ind.genotypes[:] = 2*called_values.haplotypes ind.genotypes[called_values.haplotypes == 9] = 9 # Correctly set missing loci. if set_haplotypes: ind.haplotypes[0][:] = called_values.haplotypes ind.haplotypes[1][:] = called_values.haplotypes if geno_probs.shape[0] == 4: geno_probs = geno_probs/np.sum(geno_probs, axis = 0) called_values = call_genotype_probs(geno_probs, calling_threshold) if set_dosages: if ind.dosages is None: ind.dosages = called_values.dosages.copy() ind.dosages[:] = called_values.dosages if set_genotypes: ind.genotypes[:] = called_values.genotypes if set_haplotypes: ind.haplotypes[0][:] = called_values.haplotypes[0] ind.haplotypes[1][:] = called_values.haplotypes[1] def call_genotype_probs(geno_probs, calling_threshold = 0.1) : if geno_probs.shape[0] == 2: # Haploid HaploidValues = collections.namedtuple("HaploidValues", ["haplotypes", "dosages"]) dosages = geno_probs[1,:].copy() haplotypes = call_matrix(geno_probs, calling_threshold) return HaploidValues(dosages = dosages, haplotypes = haplotypes) if geno_probs.shape[0] == 4: # Diploid DiploidValues = collections.namedtuple("DiploidValues", ["genotypes", "haplotypes", "dosages"]) dosages = geno_probs[1,:] + geno_probs[2,:] + 2*geno_probs[3,:] # Collapse the two heterozygous states into one. collapsed_hets = np.array([geno_probs[0,:], geno_probs[1,:] + geno_probs[2,:], geno_probs[3,:]], dtype=np.float32) genotypes = call_matrix(collapsed_hets, calling_threshold) # aa + aA, Aa + AA haplotype_0 = np.array([geno_probs[0,:] + geno_probs[1,:], geno_probs[2,:] + geno_probs[3,:]], dtype=np.float32) haplotype_1 = np.array([geno_probs[0,:] + geno_probs[2,:], geno_probs[1,:] + geno_probs[3,:]], dtype=np.float32) haplotypes = (call_matrix(haplotype_0, calling_threshold), call_matrix(haplotype_1, calling_threshold)) return DiploidValues(dosages = dosages, haplotypes = haplotypes, genotypes = genotypes) def call_matrix(matrix, threshold): called_genotypes = np.argmax(matrix, axis = 0) setMissing(called_genotypes, matrix, threshold) return called_genotypes.astype(np.int8) @jit(nopython=True) def setMissing(calledGenotypes, matrix, threshold) : nLoci = len(calledGenotypes) for i in range(nLoci): if matrix[calledGenotypes[i],i] < threshold: calledGenotypes[i] = 9 @jit(nopython=True) def setGenoProbsFromGenotypes(genotypes, errorMat, vals): nLoci = len(genotypes) for i in range(nLoci) : if genotypes[i] != 9: vals[:, i] = errorMat[genotypes[i], :, i] def generateErrorMat(error) : errorMat = np.array([[1-error, error/2, error/2, error/2], [error/2, 1-error, 1-error, error/2], [error/2, error/2, error/2, 1-error]], dtype = np.float32) errorMat = errorMat/np.sum(errorMat, 1)[:,None] return errorMat def generateSegregationXXChrom(partial=False, e= 1e-06) : paternalTransmission = np.array([ [1, 1, 0, 0],[0, 0, 1, 1]]) maternalTransmission = np.array([ [1, 0, 1, 0],[0, 1, 0, 1]]) fatherAlleleCoding = np.array([0, 0, 1, 1]) motherAlleleCoding = np.array([0, 1, 0, 1]) # ! fm fm fm fm # !segregationOrder: pp, pm, mp, mm segregationTensor = np.zeros((4, 4, 4, 4)) for segregation in range(4): #Change so that father always passes on the maternal allele? if(segregation == 0) : father = maternalTransmission mother = paternalTransmission if(segregation == 1) : father = maternalTransmission mother = maternalTransmission if(segregation == 2) : father = maternalTransmission mother = paternalTransmission if(segregation == 3) : father = maternalTransmission mother = maternalTransmission # !alleles: aa, aA, Aa, AA for allele in range(4) : segregationTensor[:, :, allele, segregation] = np.outer(father[fatherAlleleCoding[allele]], mother[motherAlleleCoding[allele]]) segregationTensor = segregationTensor*(1-e) + e/4 #trace has 4 times as many elements as it should since it has 4 internal reps. segregationTensor = segregationTensor.astype(np.float32) return(segregationTensor) def generateSegregationXYChrom(partial=False, e= 1e-06) : paternalTransmission = np.array([ [1, 1, 0, 0],[0, 0, 1, 1]]) maternalTransmission = np.array([ [1, 0, 1, 0],[0, 1, 0, 1]]) motherAlleleCoding = np.array([0, 1, 0, 1]) # ! fm fm fm fm # !segregationOrder: pp, pm, mp, mm #They don't get anything from the father -- father is always 0 segregationTensor = np.zeros((4, 4, 4, 4)) for segregation in range(4): if(segregation == 0) : mother = paternalTransmission if(segregation == 1) : mother = maternalTransmission if(segregation == 2) : mother = paternalTransmission if(segregation == 3) : mother = maternalTransmission # !alleles: aa, aA, Aa, AA for allele in range(4) : for fatherAllele in range(4): segregationTensor[fatherAllele, :, allele, segregation] = mother[motherAlleleCoding[allele]] segregationTensor = segregationTensor*(1-e) + e/4 #trace has 4 times as many elements as it should since it has 4 internal reps. segregationTensor = segregationTensor.astype(np.float32) return(segregationTensor) def generateSegregation(partial=False, e= 1e-06) : paternalTransmission = np.array([ [1, 1, 0, 0],[0, 0, 1, 1]]) maternalTransmission = np.array([ [1, 0, 1, 0],[0, 1, 0, 1]]) fatherAlleleCoding = np.array([0, 0, 1, 1]) motherAlleleCoding = np.array([0, 1, 0, 1]) # ! fm fm fm fm # !segregationOrder: pp, pm, mp, mm segregationTensor = np.zeros((4, 4, 4, 4)) for segregation in range(4): if(segregation == 0) : father = paternalTransmission mother = paternalTransmission if(segregation == 1) : father = paternalTransmission mother = maternalTransmission if(segregation == 2) : father = maternalTransmission mother = paternalTransmission if(segregation == 3) : father = maternalTransmission mother = maternalTransmission # !alleles: aa, aA, Aa, AA for allele in range(4) : segregationTensor[:, :, allele, segregation] = np.outer(father[fatherAlleleCoding[allele]], mother[motherAlleleCoding[allele]]) if partial : segregationTensor = np.mean(segregationTensor, 3) segregationTensor = segregationTensor*(1-e) + e/4 #trace has 4 times as many elements as it should since it has 4 internal reps. segregationTensor = segregationTensor.astype(np.float32) return(segregationTensor) # def generateErrorMat(error) : # # errorMat = np.array([[1-error*3/4, error/4, error/4, error/4], # # [error/4, .5-error/4, .5-error/4, error/4], # # [error/4, error/4, error/4, 1-error*3/4]], dtype = np.float32) # errorMat = np.array([[1-error*2/3, error/3, error/3, error/3], # [error/3, 1-error*2/3, 1-error*2/3, error/3], # [error/3, error/3, error/3, 1-error*2/3]], dtype = np.float32) # errorMat = errorMat/np.sum(errorMat, 1)[:,None] # return errorMat ## Not sure if below is ever used. # def generateTransmission(error) : # paternalTransmission = np.array([ [1-error, 1.-error, error, error], # [error, error, 1-error, 1-error]]) # maternalTransmission = np.array([ [1.-error, error, 1.-error, error], # [error, 1-error, error, 1-error]] ) # segregationTransmissionMatrix = np.zeros((4,4)) # segregationTransmissionMatrix[0,:] = paternalTransmission[0,:] # segregationTransmissionMatrix[1,:] = paternalTransmission[0,:] # segregationTransmissionMatrix[2,:] = paternalTransmission[1,:] # segregationTransmissionMatrix[3,:] = paternalTransmission[1,:] # segregationTransmissionMatrix[:,0] = segregationTransmissionMatrix[:,0] * maternalTransmission[0,:] # segregationTransmissionMatrix[:,1] = segregationTransmissionMatrix[:,1] * maternalTransmission[1,:] # segregationTransmissionMatrix[:,2] = segregationTransmissionMatrix[:,2] * maternalTransmission[0,:] # segregationTransmissionMatrix[:,3] = segregationTransmissionMatrix[:,3] * maternalTransmission[1,:] # segregationTransmissionMatrix = segregationTransmissionMatrix.astype(np.float32) # return(segregationTransmissionMatrix)
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/ProbMath.py
ProbMath.py
from numba import jit import numpy as np from . import ProbMath from . import NumbaUtils from . HaplotypeLibrary import haplotype_from_indices def diploidHMM(individual, paternal_haplotypes, maternal_haplotypes, error, recombination_rate, calling_method='dosages', use_called_haps=True, include_geno_probs=False): n_loci = len(individual.genotypes) # !!!! NEED TO MAKE SURE SOURCE HAPLOTYPES ARE ALL NON MISSING!!! if type(paternal_haplotypes) is list or type(paternal_haplotypes) is tuple: paternal_haplotypes = np.array(paternal_haplotypes) if type(maternal_haplotypes) is list or type(maternal_haplotypes) is tuple: maternal_haplotypes = np.array(maternal_haplotypes) # Expand error and recombinationRate to arrays as may need to have # marker specific error/recombination rates. if type(error) is float: error = np.full(n_loci, error, dtype=np.float32) if type(recombination_rate) is float: recombination_rate = np.full(n_loci, recombination_rate, dtype=np.float32) # Construct penetrance values (point estimates) if use_called_haps: point_estimates = getDiploidPointEstimates(individual.genotypes, individual.haplotypes[0], individual.haplotypes[1], paternal_haplotypes, maternal_haplotypes, error) elif calling_method in ('sample', 'dosages', 'Viterbi'): n_pat = len(paternal_haplotypes) n_mat = len(maternal_haplotypes) point_estimates = np.ones((n_loci, n_pat, n_mat), dtype=np.float32) getDiploidPointEstimates_geno(individual.genotypes, paternal_haplotypes, maternal_haplotypes, error, point_estimates) else: probs = ProbMath.getGenotypeProbabilities_ind(individual) point_estimates = getDiploidPointEstimates_probs(probs, paternal_haplotypes, maternal_haplotypes, error) # Do 'sample' and 'Viterbi' before other 'calling_method' as we don't need the forward-backward probs if calling_method == 'sample': haplotypes = getDiploidSample(point_estimates, recombination_rate, paternal_haplotypes, maternal_haplotypes) individual.imputed_haplotypes = haplotypes return if calling_method == 'Viterbi': haplotypes = get_viterbi(point_estimates, recombination_rate, paternal_haplotypes, maternal_haplotypes) individual.imputed_haplotypes = haplotypes return # Run forward-backward algorithm on penetrance values total_probs = diploidForwardBackward(point_estimates, recombination_rate) if calling_method == 'dosages': dosages = getDiploidDosages(total_probs, paternal_haplotypes, maternal_haplotypes) individual.dosages = dosages if calling_method == 'probabilities': values = getDiploidProbabilities(total_probs, paternal_haplotypes, maternal_haplotypes) individual.info = values if calling_method == 'callhaps': raise ValueError('callhaps not yet implimented.') @jit(nopython=True) def addDiploidPrior(pointEst, prior): nPat, nMat, nLoci = pointEst.shape for i in range(nLoci): for j in range(nPat): for k in range(nMat): pointEst[j, k, i] *= prior[j, k] @jit(nopython=True, nogil=True) def getDiploidDosages(hapEst, paternalHaplotypes, maternalHaplotypes): nPat, nLoci = paternalHaplotypes.shape nMat, nLoci = maternalHaplotypes.shape dosages = np.full(nLoci, 0, dtype=np.float32) for i in range(nLoci): for j in range(nPat): for k in range(nMat): dosages[i] += hapEst[i, j, k]*(paternalHaplotypes[j, i] + maternalHaplotypes[k, i]) return dosages @jit(nopython=True) def getDiploidProbabilities(hapEst, paternalHaplotypes, maternalHaplotypes): nPat, nLoci = paternalHaplotypes.shape nMat, nLoci = maternalHaplotypes.shape probs = np.full((4, nLoci), 0, dtype = np.float32) for i in range(nLoci): for j in range(nPat): for k in range(nMat): if paternalHaplotypes[j, i] == 0 and maternalHaplotypes[k, i] == 0: probs[0, i] += hapEst[j, k, i] if paternalHaplotypes[j, i] == 0 and maternalHaplotypes[k, i] == 1: probs[1, i] += hapEst[j, k, i] if paternalHaplotypes[j, i] == 1 and maternalHaplotypes[k, i] == 0: probs[2, i] += hapEst[j, k, i] if paternalHaplotypes[j, i] == 1 and maternalHaplotypes[k, i] == 1: probs[3, i] += hapEst[j, k, i] return probs @jit(nopython=True, nogil=True) def getDiploidSample(point_estimate, recombination_rate, paternal_haps, maternal_haps): """Sample a pair of haplotypes""" forward_probs = diploid_forward(point_estimate, recombination_rate, in_place=True) haplotypes = diploidSampleHaplotypes(forward_probs, recombination_rate, paternal_haps, maternal_haps) return haplotypes @jit(nopython=True, nogil=True) def get_viterbi(point_estimates, recombination_rate, paternal_haplotypes, maternal_haplotypes): """Get most likely haplotype pair using the Viterbi algorithm""" n_loci = point_estimates.shape[0] haplotypes = np.full((2, n_loci), 9, dtype=np.int8) forward_probs = diploid_forward(point_estimates, recombination_rate) paternal_indices, maternal_indices = diploid_viterbi(forward_probs, recombination_rate) haplotypes[0] = haplotype_from_indices(paternal_indices, paternal_haplotypes) haplotypes[1] = haplotype_from_indices(maternal_indices, maternal_haplotypes) return haplotypes @jit(nopython=True, nogil=True) def getDiploidPointEstimates(indGeno, indPatHap, indMatHap, paternalHaplotypes, maternalHaplotypes, error): nPat, nLoci = paternalHaplotypes.shape nMat, nLoci = maternalHaplotypes.shape pointEst = np.full((nLoci, nPat, nMat), 1, dtype=np.float32) for i in range(nLoci): if indGeno[i] != 9: for j in range(nPat): for k in range(nMat): # Seperate Phased vs non phased loci if indPatHap[i] != 9 and indMatHap[i] != 9: value = 1 if indPatHap[i] == paternalHaplotypes[j, i]: value *= (1-error[i]) else: value *= error[i] if indMatHap[i] == maternalHaplotypes[k, i]: value *= (1-error[i]) else: value *= error[i] pointEst[i, j, k] = value else: #I think this shouldn't be too horrible. sourceGeno = paternalHaplotypes[j, i] + maternalHaplotypes[k, i] if sourceGeno == indGeno[i]: pointEst[i, j, k] = 1-error[i]*error[i] else: pointEst[i, j, k] = error[i]*error[i] return pointEst @jit(nopython=True, nogil=True) def getDiploidPointEstimates_geno(indGeno, paternalHaplotypes, maternalHaplotypes, error, pointEst): nPat, nLoci = paternalHaplotypes.shape nMat, nLoci = maternalHaplotypes.shape for i in range(nLoci): if indGeno[i] != 9: error_2 = error[i]*error[i] for j in range(nPat): for k in range(nMat): #I think this shouldn't be too horrible. sourceGeno = paternalHaplotypes[j, i] + maternalHaplotypes[k, i] if sourceGeno == indGeno[i]: pointEst[i, j, k] = 1-error_2 else: pointEst[i, j, k] = error_2 @jit(nopython=True) def getDiploidPointEstimates_probs(indProbs, paternalHaplotypes, maternalHaplotypes, error): nPat, nLoci = paternalHaplotypes.shape nMat, nLoci = maternalHaplotypes.shape pointEst = np.full((nPat, nMat, nLoci), 1, dtype = np.float32) for i in range(nLoci): for j in range(nPat): for k in range(nMat): # I'm just going to be super explicit here. p_aa = indProbs[0, i] p_aA = indProbs[1, i] p_Aa = indProbs[2, i] p_AA = indProbs[3, i] e = error[i] if paternalHaplotypes[j,i] == 0 and maternalHaplotypes[k, i] == 0: value = p_aa*(1-e)**2 + (p_aA + p_Aa)*e*(1-e) + p_AA*e**2 if paternalHaplotypes[j,i] == 1 and maternalHaplotypes[k, i] == 0: value = p_Aa*(1-e)**2 + (p_aa + p_AA)*e*(1-e) + p_aA*e**2 if paternalHaplotypes[j,i] == 0 and maternalHaplotypes[k, i] == 1: value = p_aA*(1-e)**2 + (p_aa + p_AA)*e*(1-e) + p_Aa*e**2 if paternalHaplotypes[j,i] == 1 and maternalHaplotypes[k, i] == 1: value = p_AA*(1-e)**2 + (p_aA + p_Aa)*e*(1-e) + p_aa*e**2 pointEst[j,k,i] = value return pointEst @jit(nopython=True) def diploid_normalize(array): """Normalize a 'diploid' probability array in place The array should have shape: (# paternal haplotypes, # maternal haplotypes, # loci) The function normalizes such that the values at each locus sum to 1 It's possible the accuracy could be improved by using a compensated summation algorithm, e.g.: https://en.wikipedia.org/wiki/Kahan_summation_algorithm As it stands, running np.sum(array, axis=(0,1)) on the output of this function with an array of shape (200,200,1000) gives values that differ from 1 by ~1e-4 Note also that Numba doesn't support axis=(0,1) so we can't use that""" n_pat, n_mat, n_loci = array.shape for i in range(n_loci): # Use a float64 accumulator to avoid losing precision sum_ = np.float64(0) for j in range(n_pat): for k in range(n_mat): sum_ += array[j, k, i] for j in range(n_pat): for k in range(n_mat): array[j, k, i] = array[j, k, i]/sum_ @jit(nopython=True) def transmit(previous_estimate, recombination_rate, output, pat, mat): """Transforms a probability distribution (over pairs of paternal and maternal haplotypes, at a single locus) to a probability distribution at the next locus by accounting for emission probabilities (point_estimates) and transition probabilities (recombination_rate) This is a core step in the forward and backward algorithms point_estimates probability distribution to be transmitted forward. Assume already normalized. shape: (# paternal haplotypes, # maternal haplotypes) recombination_rate recombination rate at this locus - scalar output newly calculated probability distribution over pairs of haplotypes at *this* locus shape: (# paternal haplotypes, # maternal haplotypes) Note: previous and estimate are updated by this function""" n_pat, n_mat = previous_estimate.shape # Get haplotype specific recombinations pat[:] = 0 mat[:] = 0 for j in range(n_pat): for k in range(n_mat): pat[j] += previous_estimate[j, k] mat[k] += previous_estimate[j, k] e = recombination_rate e1e = (1-e)*e e2m1 = (1-e)**2 # Adding modifications to pat and mat to take into account number of haplotypes and recombination rate. pat *= e1e/n_pat mat *= e1e/n_mat e2 = e*e/(n_mat*n_pat) # Account for recombinations for j in range(n_pat): for k in range(n_mat): output[j, k] = previous_estimate[j, k]*e2m1 + pat[j] + mat[k] + e2 @jit(nopython=True, nogil=True) def diploid_forward(point_estimate, recombination_rate, in_place=False): """Calculate forward probabilities combined with the point_estimates""" n_loci, n_pat, n_mat = point_estimate.shape if in_place: combined = point_estimate else: combined = point_estimate.copy() # copy so that point_estimate is not modified prev = np.full((n_pat, n_mat), 0.25, dtype=np.float32) # Temporary numba variables. forward_i = np.empty((n_pat, n_mat), dtype=np.float32) tmp_pat = np.empty(n_pat, dtype=np.float32) tmp_mat = np.empty(n_mat, dtype=np.float32) # Make sure the first locus is normalized. combined[0, :, :] /= np.sum(combined[:, :]) for i in range(1, n_loci): # Update estimates at this locus # Take the value at locus i-1 and transmit it forward. transmit(combined[i-1, :, :], recombination_rate[i], forward_i, tmp_pat, tmp_mat) # Combine the forward estimate at locus i with the point estimate at i. # This is safe if in_place = True since we have not updated combined[i,:,:] yet and it will be still equal to point_estimate. combined[i, :, :] = point_estimate[i, :, :] * forward_i combined[i, :, :] /= np.sum(combined[i, :, :]) return combined @jit(nopython=True, nogil=True) def diploid_backward(point_estimate, recombination_rate): """Calculate backward probabilities""" n_loci, n_pat, n_mat = point_estimate.shape backward = np.ones_like(point_estimate, dtype=np.float32) prev = np.full((n_pat, n_mat), 0.25, dtype=np.float32) # Temporary numba variables. combined_i = np.empty((n_pat, n_mat), dtype=np.float32) tmp_pat = np.empty(n_pat, dtype=np.float32) tmp_mat = np.empty(n_mat, dtype=np.float32) for i in range(n_loci-2, -1, -1): # Skip the first loci. # Combine the backward estimate at i+1 with the point estimate at i+1 (unlike the forward pass, the backward estimate does not contain the point_estimate). combined_i[:, :] = backward[i+1, :, :] * point_estimate[i+1, :, :] combined_i[:, :] /= np.sum(combined_i) # Transmit the combined value forward. This is the backward estimate. transmit(combined_i, recombination_rate[i], backward[i, :, :], tmp_pat, tmp_mat) return backward @jit(nopython=True, nogil=True) def diploidForwardBackward(point_estimate, recombination_rate): """Calculate state probabilities at each loci using the forward-backward algorithm""" # We may want to split this out into something else. est = diploid_backward(point_estimate, recombination_rate) est *= diploid_forward(point_estimate, recombination_rate, in_place=True) # Return normalized probabilities n_loci = est.shape[0] for i in range(n_loci): est[i, :, :] /= np.sum(est[i, :, :]) return est @jit(nopython=True, nogil=True) def diploidSampleHaplotypes(forward_probs, recombination_rate, paternal_haplotypes, maternal_haplotypes): """Sample a pair of paternal and maternal haplotypes from the forward and backward probability distributions and paternal and maternal haplotype libraries. Returns: haplotypes Pair of haplotypes as a 2D array of shape (2, n_loci) """ n_loci = forward_probs.shape[0] haplotypes = np.full((2, n_loci), 9, dtype=np.int8) paternal_indices, maternal_indices = diploidOneSample(forward_probs, recombination_rate) haplotypes[0] = haplotype_from_indices(paternal_indices, paternal_haplotypes) haplotypes[1] = haplotype_from_indices(maternal_indices, maternal_haplotypes) return haplotypes @jit(nopython=True) def diploidOneSample(forward_probs, recombination_rate): """Sample a pair of paternal and maternal haplotypes from the forward and backward probability distributions Returns: paternal_indices, maternal_indices - arrays of sampled haplotype indices A description of the sampling process would be nice here...""" n_loci, n_pat, n_mat = forward_probs.shape pvals = np.empty((n_pat, n_mat), dtype=np.float32) # sampled probability distribution at one locus paternal_indices = np.empty(n_loci, dtype=np.int64) maternal_indices = np.empty(n_loci, dtype=np.int64) # Backwards algorithm for i in range(n_loci-1, -1, -1): # zero indexed then minus one since we skip the boundary # Sample at this locus if i == n_loci-1: pvals[:, :] = forward_probs[i, :, :] else: combine_backward_sampled_value(forward_probs[i, :, :], paternal_indices[i+1], maternal_indices[i+1], recombination_rate[i+1], pvals[:, :]) j, k = NumbaUtils.multinomial_sample_2d(pvals=pvals) paternal_indices[i] = j maternal_indices[i] = k # Last sample (at the first locus) j, k = NumbaUtils.multinomial_sample_2d(pvals=pvals) paternal_indices[0] = j maternal_indices[0] = k return paternal_indices, maternal_indices @jit(nopython=True, nogil=True) def diploid_viterbi(forward_probs, recombination_rate): """Determine the most likely haplotype pair (paternal and maternal) using the Viterbi algorithm Returns: paternal_indices, maternal_indices - arrays of sampled haplotype indices""" n_loci, n_pat, n_mat = forward_probs.shape # pvals is the most ikely probability distribution at one locus pvals = np.empty((n_pat, n_mat), dtype=np.float32) paternal_indices = np.empty(n_loci, dtype=np.int64) maternal_indices = np.empty(n_loci, dtype=np.int64) # Backwards algorithm for i in range(n_loci-1, -1, -1): # zero indexed then minus one since we skip the boundary # Sample at this locus if i == n_loci-1: pvals[:, :] = forward_probs[i, :, :] else: combine_backward_sampled_value(forward_probs[i, :, :], paternal_indices[i+1], maternal_indices[i+1], recombination_rate[i+1], pvals[:, :]) idx = np.argmax(pvals) j, k = idx//n_mat, idx%n_mat paternal_indices[i] = j maternal_indices[i] = k # Last sample (at the first locus) idx = np.argmax(pvals) j, k = idx//n_mat, idx%n_mat paternal_indices[0] = j maternal_indices[0] = k return paternal_indices, maternal_indices @jit(nopython=True) def diploidIndices(sampled_probs): """Get paternal and maternal indices from sampled probability distribution Intended to be used with sampled probabilities as returned from diploidOneSample()""" n_loci, n_pat, n_mat = sampled_probs.shape paternal_indices = np.empty(n_loci, dtype=np.int64) maternal_indices = np.empty(n_loci, dtype=np.int64) eps = np.finfo(np.float32).eps for i in range(n_loci): for j in range(n_pat): for k in range(n_mat): # If sampled_probs[j, k, i] == 1 # set indices array to values j and k if sampled_probs[i, j, k] > 1-eps: paternal_indices[i] = j maternal_indices[i] = k return paternal_indices, maternal_indices @jit(nopython=True) def combine_backward_sampled_value(previous_estimate, pat_hap, mat_hap, recombination_rate, output): """Includes information from the previous sampled locus into the estimate at the current sampled locus. previous_estimate combination of the forward + point estimate at the locus. shape: (# paternal haplotypes, # maternal haplotypes) pat_hap, mat_hap Sampled paternal and maternal haplotypes -- integer recombination_rate recombination rate at this locus - scalar output newly calculated probability distribution over pairs of haplotypes at *this* locus shape: (# paternal haplotypes, # maternal haplotypes) Note: previous and estimate are updated by this function""" n_pat, n_mat = previous_estimate.shape e = recombination_rate single_rec = (1-e)*e no_rec = (1-e)**2 double_rec = e*e # Haplotype is moving from pat_hap, mat_hap. # Double recombination -- both haplotypes change. output[:, :] = double_rec/(n_mat*n_pat) # Maternal recombination -- pat_hap stays the same. for k in range(n_mat): output[pat_hap, k] += single_rec/n_mat # Paternal recombination -- mat_hap stays the same. for j in range(n_pat): output[j, mat_hap] += single_rec/n_pat # No recombinations -- both haplotypes stay the same. output[pat_hap, mat_hap] += no_rec # Add in forward_plus_combined output *= previous_estimate return output
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/DiploidHMM.py
DiploidHMM.py
import random import numpy as np import numba from numba import njit, jit, int8, int32,int64, boolean, deferred_type, optional, float32 from numba.experimental import jitclass from collections import OrderedDict try: profile except: def profile(x): return x ##################################### ### ### ### Burrows Wheeler ### ### ### ##################################### class BurrowsWheelerLibrary(): def __init__(self, haplotypeList): self.library = createBWLibrary(np.array(haplotypeList)) self.hapList = haplotypeList self.nHaps = len(haplotypeList) def getHaplotypeMatches(self, haplotype, start, stop): nHaps, hapIndexes = getConsistentHaplotypes(self.library, haplotype, start, stop) haps = [(self.hapList[hapIndexes[index, 0]], hapIndexes[index, 1]) for index in range(nHaps)] return haps @profile def getBestHaplotype(self, weights, start, stop): index = getHaplotypesPlusWeights(self.library, weights, start, stop) return self.hapList[index][start:stop] jit_BurrowsWheelerLibrary_spec = OrderedDict() jit_BurrowsWheelerLibrary_spec['a'] = int64[:,:] jit_BurrowsWheelerLibrary_spec['d'] = int64[:,:] jit_BurrowsWheelerLibrary_spec['zeroOccPrev'] = int64[:,:] jit_BurrowsWheelerLibrary_spec['nZeros'] = int64[:] jit_BurrowsWheelerLibrary_spec['haps'] = int8[:,:] @jitclass(jit_BurrowsWheelerLibrary_spec) class jit_BurrowsWheelerLibrary(): def __init__(self, a, d, nZeros, zeroOccPrev, haps): self.a = a self.d = d self.nZeros = nZeros self.zeroOccPrev = zeroOccPrev self.haps = haps def getValues(self): return (self.a, self.d, self.nZeros, self.zeroOccPrev, self.haps) def update_state(self, state, index): pass def get_null_state(self, value, index): if value == 0: lowerR = 0 upperR = nZeros[stop-1] if value == 1: lowerR = nZeros[stop-1] upperR = nHaps pass @njit def createBWLibrary(haps): #Definitions. # haps : a list of haplotypes # a : an ordering of haps in lexographic order. # d : Number of loci of a[i,j+k] == a[i,-1, j+k] nHaps = haps.shape[0] nLoci = haps.shape[1] a = np.full(haps.shape, 0, dtype = np.int64) d = np.full(haps.shape, 0, dtype = np.int64) nZerosArray = np.full(nLoci, 0, dtype = np.int64) zeros = np.full(nHaps, 0, dtype = np.int64) ones = np.full(nHaps, 0, dtype = np.int64) dZeros = np.full(nHaps, 0, dtype = np.int64) dOnes = np.full(nHaps, 0, dtype = np.int64) nZeros = 0 nOnes = 0 for j in range(nHaps): if haps[j, nLoci-1] == 0: zeros[nZeros] = j if nZeros == 0: dZeros[nZeros] = 0 else: dZeros[nZeros] = 1 nZeros += 1 else: ones[nOnes] = j if nOnes == 0: dOnes[nOnes] = 0 else: dOnes[nOnes] = 1 nOnes += 1 if nZeros > 0: a[0:nZeros, nLoci-1] = zeros[0:nZeros] d[0:nZeros, nLoci-1] = dZeros[0:nZeros] if nOnes > 0: a[nZeros:nHaps, nLoci-1] = ones[0:nOnes] d[nZeros:nHaps, nLoci-1] = dOnes[0:nOnes] nZerosArray[nLoci-1] = nZeros for i in range(nLoci-2, -1, -1) : zeros = np.full(nHaps, 0, dtype = np.int64) ones = np.full(nHaps, 0, dtype = np.int64) dZeros = np.full(nHaps, 0, dtype = np.int64) dOnes = np.full(nHaps, 0, dtype = np.int64) nZeros = 0 nOnes = 0 dZerosTmp = -1 #This is a hack. dOnesTmp = -1 for j in range(nHaps) : dZerosTmp = min(dZerosTmp, d[j,i+1]) dOnesTmp = min(dOnesTmp, d[j,i+1]) if haps[a[j, i+1], i] == 0: zeros[nZeros] = a[j, i+1] dZeros[nZeros] = dZerosTmp + 1 nZeros += 1 dZerosTmp = nLoci else: ones[nOnes] = a[j, i+1] dOnes[nOnes] = dOnesTmp + 1 nOnes += 1 dOnesTmp = nLoci if nZeros > 0: a[0:nZeros, i] = zeros[0:nZeros] d[0:nZeros, i] = dZeros[0:nZeros] if nOnes > 0: a[nZeros:nHaps, i] = ones[0:nOnes] d[nZeros:nHaps, i] = dOnes[0:nOnes] nZerosArray[i] = nZeros #I'm going to be a wee bit sloppy in creating zeroOccPrev #Not defined at 0 so start at 1. zeroOccPrev = np.full(haps.shape, 0, dtype = np.int64) for i in range(1, nLoci): count = 0 for j in range(0, nHaps): if haps[a[j, i], i-1] == 0: count += 1 zeroOccPrev[j, i] = count library = jit_BurrowsWheelerLibrary(a, d, nZerosArray, zeroOccPrev, haps) return library @jit(nopython=True, nogil=True) def getConsistentHaplotypes(bwLibrary, hap, start, stop): a, d, nZeros, zeroOccPrev, haps = bwLibrary.getValues() nHaps = a.shape[0] nLoci = a.shape[1] intervals = np.full((nHaps, 2), 0, dtype = np.int64) intervals_new = np.full((nHaps, 2), 0, dtype = np.int64) nIntervals = 0 nIntervals_new = 0 #Haps go from 0 to nHaps-1. Loci go from start to stop-1 (inclusive). #The first hap with one is nZeros. The last hap with zero is nZeros -1. #Last loci is stop -1 #These are split out because they represent *distinct* haplotypes. #Maybe could do this with tuple and list append but *shrug*. if hap[stop-1] == 0 or hap[stop-1] == 9: lowerR = 0 upperR = nZeros[stop-1] if upperR >= lowerR: intervals[nIntervals, 0] = lowerR intervals[nIntervals, 1] = upperR nIntervals += 1 if hap[stop-1] == 1 or hap[stop-1] == 9: lowerR = nZeros[stop-1] upperR = nHaps if upperR >= lowerR: intervals[nIntervals, 0] = lowerR intervals[nIntervals, 1] = upperR nIntervals += 1 #Python indexing is annoying. #Exclude stop and stop-1, include start. #Intervals are over haplotypes. for i in range(stop-2, start-1, -1): # print(intervals[0:nIntervals,:]) nIntervals_new = 0 #Doing it on interval seems to make marginally more sense. for interval in range(nIntervals): int_start = intervals[interval, 0] int_end = intervals[interval, 1] if hap[i] == 0 or hap[i] == 9: if int_start == 0: lowerR = 0 else: lowerR = zeroOccPrev[int_start-1, i+1] upperR = zeroOccPrev[int_end-1, i+1] #Number of zeros in the region. if upperR > lowerR: #Needs to be greater than. Regions no longer inclusive. # print("Added 0:", int_start, int_end, "->>", lowerR, upperR) intervals_new[nIntervals_new, 0] = lowerR intervals_new[nIntervals_new, 1] = upperR nIntervals_new += 1 if hap[i] == 1 or hap[i] == 9: # of ones between 0 and k (k inclusive) is k+1 - number of zeros. if int_start == 0: lowerR = nZeros[i] else: lowerR = nZeros[i] + (int_start - zeroOccPrev[int_start-1, i+1]) upperR = nZeros[i] + (int_end - zeroOccPrev[int_end-1, i+1]) if upperR > lowerR: # print("Added 1:", int_start, int_end, "->>", lowerR, upperR) intervals_new[nIntervals_new, 0] = lowerR intervals_new[nIntervals_new, 1] = upperR nIntervals_new += 1 # else: # print(i, "interval rejected:", int_start, int_end, "->", upperR, lowerR) #This is basically intervals = intervals_new for j in range(nIntervals_new): intervals[j, 0] = intervals_new[j, 0] intervals[j, 1] = intervals_new[j, 1] nIntervals = nIntervals_new # print("Finished", i, "->", nIntervals) # print(intervals[0:nIntervals,:]) hapIndexes = np.full((nHaps, 2), 0, dtype = np.int64) nHapsAssigned = 0 for i in range(nIntervals): int_start = intervals[i, 0] int_end = intervals[i, 1] hapIndexes[nHapsAssigned, 0] = a[int_start,start] hapIndexes[nHapsAssigned, 1] = int_end - int_start nHapsAssigned +=1 return (nHapsAssigned, hapIndexes) # def printSortAt(loci, library): # a, d, nZeros, zeroOccPrev, haps = library.getValues() # vals = haps[a[:,loci],:] # for i in range(vals.shape[0]): # print(i, ' '.join(map(str, vals[i,:])) ) # # print(zeroOccPrev[:,:]) # hapLib = [np.array([1, 0, 0, 0, 0, 0, 1], dtype = np.int8), # np.array([0, 1, 0, 0, 0, 1, 0], dtype = np.int8), # np.array([0, 1, 0, 0, 0, 1, 0], dtype = np.int8), # np.array([0, 1, 0, 0, 0, 1, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([1, 1, 1, 0, 0, 0, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([1, 1, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([0, 0, 0, 1, 0, 0, 0], dtype = np.int8), # np.array([0, 1, 1, 1, 0, 0, 0], dtype = np.int8), # np.array([0, 1, 1, 1, 0, 0, 0], dtype = np.int8), # np.array([1, 1, 0, 1, 0, 0, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8), # np.array([0, 0, 1, 0, 1, 0, 0], dtype = np.int8)] # bwlib = BurrowsWheelerLibrary(hapLib) # # printSortAt(0, bwlib.library) # printSortAt(6, bwlib.library); print("") # printSortAt(5, bwlib.library); print("") # printSortAt(4, bwlib.library); print("") # printSortAt(3, bwlib.library); print("") # printSortAt(2, bwlib.library); print("") # printSortAt(1, bwlib.library); print("") # printSortAt(0, bwlib.library); print("") # # print(bwlib.getHaplotypeMatches(haplotype = np.array([0, 0, 0], dtype = np.int8), start = 0, stop = 3)) # tmp = (bwlib.getHaplotypeMatches(haplotype = np.array([9, 9, 9, 9, 9, 9, 9], dtype = np.int8), start = 0, stop = 7)) # for key, value in tmp: # print(key, value) @njit def getConsistentHaplotypesBruteForce(bwLibrary, hap, start, stop): hap = hap[start:stop] a, d, nZeros, zeroOccPrev, haps = bwLibrary.getValues() recodedHaps = haps[:, start:stop] nHaps = recodedHaps.shape[0] nLoci = recodedHaps.shape[1] consistent = np.full(nHaps, 0, dtype = np.int64) #Last correct index lastIndex = -1 for j in range(nHaps): #Otherwise, we have not enough information and need to search. add = True for i in range(nLoci): if hap[i] != 9 : if recodedHaps[j, i] != hap[i]: add = False if add: consistent[j] = 1 hapIndexes = np.full((nHaps, 2), 0, dtype = np.int64) nHapsAssigned = 0 for i in range(nHaps): if consistent[i] > 0: # hapIndexes[nHapsAssigned, 0] = a[i,start] hapIndexes[nHapsAssigned, 0] = i hapIndexes[nHapsAssigned, 1] = consistent[i] nHapsAssigned +=1 return (nHapsAssigned, hapIndexes) @njit def getHaplotypesPlusWeights(bwLibrary, weights, start, stop): #Weights are weights to the original haplotypes (haps) a, d, nZeros, zeroOccPrev, haps = bwLibrary.getValues() recodedWeights = weights[a[:, start]] nHaps = d.shape[0] nLoci = stop - start bestLoci = -1 bestWeight = -1 currentLoci = 0 currentWeight = 0 for j in range(nHaps): #Will need to double check this. This code will be slow! if d[j, start] < nLoci: #Process the last haplotype before moving on. if currentWeight > bestWeight : bestLoci = currentLoci bestWeight = currentWeight currentLoci = j currentWeight = 0 currentWeight += recodedWeights[j] #Make sure we check the last haplotype. if currentWeight > bestWeight : bestLoci = currentLoci bestWeight = currentWeight #REMEMBER TO RECODE return a[bestLoci, start] #Older version that doesn't use all of the meta data we have. # @jit(nopython=True, nogil=True) # def getConsistentHaplotypes(bwLibrary, hap, start, stop): # a, d, nZeros, zeroOccPrev, haps = bwLibrary.getValues() # hap = hap[start:stop] # recodedHaps = haps[a[:, start], start:stop] # nHaps = recodedHaps.shape[0] # nLoci = recodedHaps.shape[1] # consistent = np.full(nHaps, 0, dtype = np.int64) # lastCorrect = -1 # firstError = nLoci + 1 # #Last correct index # lastIndex = -1 # for j in range(nHaps): # #Basically, we know how much overlap there was with the previous haplotype. # #We can use that to get a better estimate of where this one will be correct. # #By definition, all of 0 -> d[j, start]-1 inclusive is the same. # #All of 0 -> lastCorrect (inclusive) is correct. # #First error is the position of the first error. If firstError < nLoci, this is a problem. (nLoci is out of our bounds) # lastCorrect = min(lastCorrect, d[j, start]-1) # if firstError > d[j,start]-1: firstError = nLoci # #Two elif statements. # #First can we spot an error? # #Second if no error's exist, are we sure that the entire haplotype is right. # if firstError < nLoci: #or equal? # consistent[j] = 0 # lastIndex = -1 # #nLoci is the last position we care about (nLoci is out of our bounds). If nLoci is correct, then we're good). # elif lastCorrect >= nLoci-1: # #Adding in some short circuit code to prevent duplication # # lastIndex = -1 ###THIS LINE TOGGLES DUPLICATION PREVENTION # if lastIndex != -1: # consistent[lastIndex] += 1 # else: # consistent[j] = 1 # lastIndex = j # else: # #Otherwise, we have not enough information and need to search. # #Last correct is the last known correct loci. # stopIters = False # i = lastCorrect # while not stopIters: # i = i+1 #We know that the last correct loci is correct. So we're safe to start at last correct +1 # if hap[i] != 9 and recodedHaps[j, i] != hap[i]: # lastCorrect = i-1 # firstError = i # stopIters = True # elif i == nLoci-1: # stopIters = True # lastCorrect = nLoci-1 # firstError = nLoci # if firstError < nLoci: # consistent[j] = 0 # lastIndex = -1 # elif lastCorrect >= nLoci-1: #This will probably be nLoci-1 since that is where our search stops. # consistent[j] = 1 # lastIndex = j # hapIndexes = np.full((nHaps, 2), 0, dtype = np.int64) # nHapsAssigned = 0 # for i in range(nHaps): # if consistent[i] > 0: # hapIndexes[nHapsAssigned, 0] = a[i,start] # hapIndexes[nHapsAssigned, 1] = consistent[i] # nHapsAssigned +=1 # return (nHapsAssigned, hapIndexes)
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/BurrowsWheelerLibrary.py
BurrowsWheelerLibrary.py
import pickle import random import numpy as np from numba import njit, jit from numba.experimental import jitclass def profile(x): return x # Helper functions def slices(start, length, n): """Return `n` slices starting at `start` of length `length`""" return [slice(i, i+length) for i in range(start, length*n + start, length)] def bin_slices(l, n): """Return a list of slice() objects that split l items into n bins The first l%n bins are length l//n+1; the remaining n-l%n bins are length l//n Similar to np.array_split()""" return slices(0, l//n+1, l%n) + slices((l//n+1)*(l%n), l//n, n-l%n) def topk_indices(genotype, haplotypes, n_topk): """Return top-k haplotype indices with fewest opposite homozygous markers compared to genotype The array of number of opposite homozygous loci for each haplotype (`opposite_homozygous`) is first shuffled so that tied values are effectively randomly sampled""" # Mask of homozygous loci in the genotype homozygous_mask = (genotype == 0) | (genotype == 2) # note: this purposefully ignores missing loci # Select just these homozygous loci g = genotype[homozygous_mask] h = haplotypes[:, homozygous_mask] # Number of opposite homozygous loci for all haplotypes opposite_homozygous = np.sum(g//2 != h, axis=1) # Shuffle indices indices = np.arange(len(opposite_homozygous)) np.random.shuffle(indices) # Stable argsort on the shuffled values args = np.argsort(opposite_homozygous[indices], kind='stable') # Top-k indices (fewest opposite homozygous loci) return indices[args[:n_topk]] class HaplotypeLibrary(object): """A library of haplotypes Each haplotype can have an identifier (any Python object, but typically a str or int) The identifiers are used to select haplotypes for updating or masking Haplotypes should be NumPy arrays of dtype np.int8 Some functions only work on frozen libraries; some only on unfrozen ones. Use freeze() and unfreeze() to swap between the two states. Typically a library is built with append() and then frozen to enable additional functionality""" def __init__(self, n_loci=None): self._n_loci = n_loci self._frozen = False self._haplotypes = [] self._identifiers = [] # index to identifier mapping self.dtype = None def __repr__(self): return repr(self._identifiers) + '\n' + repr(self._haplotypes) def __len__(self): """Number of haplotypes in the library""" return len(self._haplotypes) def __iter__(self): """Iterate over tuple of (id, haplotype)""" for i in range(len(self)): yield self._identifiers[i], self._haplotypes[i] def append(self, haplotype, identifier=None): """Append a single haplotype to the library. Note: a copy of the haplotype is taken""" if self._frozen: raise RuntimeError('Cannot append to frozen library') if self.dtype is None: self.dtype = haplotype.dtype if self._n_loci is None: self._n_loci = len(haplotype) self._check_haplotype(haplotype, expected_shape=(self._n_loci,)) self._identifiers.append(identifier) self._haplotypes.append(haplotype.copy()) def freeze(self): """Freeze the library: convert identifier and haplotype lists to NumPy arrays""" if self._frozen: raise RuntimeError('Cannot freeze an already frozen library') self._haplotypes = np.array(self._haplotypes) self._identifiers = np.array(self._identifiers) self._frozen = True def unfreeze(self): """Unfreeze the library: convert identifiers and haplotypes to lists""" if not self._frozen: raise RuntimeError('Cannot unfreeze an unfrozen library') self._haplotypes = list(self._haplotypes) self._identifiers = list(self._identifiers) self._frozen = False def update(self, haplotypes, identifier): """Update identifier's haplotypes 'haplotypes' can be a 1d array of loci or a 2d array of shape(#haps, #loci)""" if not self._frozen: raise RuntimeError('Cannot update an unfrozen library') self._check_haplotype_dtype(haplotypes) indices = self._indices(identifier) # Use Numpy's broadcasting checks to handle mismatch of shape in the following: self._haplotypes[indices] = haplotypes def exclude_identifiers(self, identifiers): """Return a NumPy array of haplotypes excluding specified identifiers 'identifiers' can be a single identifier or iterable of identifiers""" if not self._frozen: raise RuntimeError('Cannot exclude from an unfrozen library') mask = ~np.isin(self._identifiers, identifiers) return self._haplotypes[mask] def sample_only_identifiers(self, identifiers): """Returns HaplotypeLibrary object of haplotypes only including specified identifiers 'identifiers' can be a single identifier or iterable of identifiers""" if not self._frozen: raise RuntimeError('Cannot exclude from an unfrozen library') mask = np.isin(self._identifiers, identifiers) return self._sampled_library(mask) def sample(self, n_haplotypes): """Return a NumPy array of randomly sampled haplotypes""" if not self._frozen: raise RuntimeError('Cannot sample from an unfrozen library') if n_haplotypes > len(self): n_haplotypes = len(self) sampled_indices = np.sort(np.random.choice(len(self), size=n_haplotypes, replace=False)) return self._haplotypes[sampled_indices] def sample_targeted(self, n_haplotypes, genotype, n_bins, exclude_identifiers=None): """Sample haplotypes that 'closely match' genotype `genotype`""" if not self._frozen: raise RuntimeError('Cannot sample from an unfrozen library') if n_haplotypes > len(self): return self # Get top-k in a number of marker bins n_topk = n_haplotypes # unnecessary variable redifinition indices = np.empty((n_topk, n_bins), dtype=np.int64) for i, s in enumerate(bin_slices(self._n_loci, n_bins)): indices[:, i] = topk_indices(genotype[s], self._haplotypes[:, s], n_topk) # Get top n_haplotypes across the bins excluding any in exclude_ifentifiers sampled_indices = set() exclude_indices = set(self._indices(exclude_identifiers)) for idx in indices.flatten(): if idx not in exclude_indices: sampled_indices.add(idx) if len(sampled_indices) >= n_topk: break sampled_indices = list(sampled_indices) # Return HaplotypeLibrary object return self._sampled_library(sampled_indices) def exclude_identifiers_and_sample(self, identifiers, n_haplotypes): """Return a NumPy array of (n_haplotypes) randomly sampled haplotypes excluding specified identifiers. 'identifiers' can be a single identifier or an iterable of identifiers Note: A copy of the haplotypes are created because of fancy indexing""" # Exclude specified identifiers if not self._frozen: raise RuntimeError('Cannot sample or exclude from an unfrozen library') exclude_mask = ~np.isin(self._identifiers, identifiers) n_remaining_haplotypes = exclude_mask.sum() # Generate random sample if n_haplotypes > n_remaining_haplotypes: n_haplotypes = n_remaining_haplotypes sampled_indices = np.random.choice(n_remaining_haplotypes, size=n_haplotypes, replace=False) sampled_indices.sort() # Return HaplotypeLibrary object return self._sampled_library(sampled_indices) def asMatrix(self): """Return the NumPy array - kept for backwards compatibility""" if self._frozen: return self._haplotypes.copy() return np.array(self._haplotypes) def removeMissingValues(self): """Replace missing values randomly with 0 or 1 with 50 % probability kept for backwards compatibility""" for hap in self._haplotypes: removeMissingValues(hap) def get_called_haplotypes(self, threshold = 0.99): """Return "called" haplotypes -- these are haplotypes which only contain integer values (0,1,9). For haplotypes where there is uncertainty, a threshold is used to determine whether the value is called as a value or is missing. """ if not self._frozen: self.freeze() if self.dtype is np.int8: return self._haplotypes else: called_haplotypes = np.full(self._haplotypes.shape, 0, dtype = np.float32) for i in range(called_haplotypes.shape[0]): called_haplotypes[i,:] = self.call_haplotypes(self._haplotypes[i,:], threshold) return called_haplotypes @staticmethod @jit(nopython=True) def call_haplotypes(hap, threshold): nLoci = len(hap) output = np.full(nLoci, 9, dtype = np.int8) for i in range(nLoci): if hap[i] <= 1 : if hap[i] > threshold : output[i] = 1 if hap[i] < 1-threshold : output[i] = 0 return output def get_haplotypes(self): if not self._frozen: self.freeze() return self._haplotypes def get_identifiers(self): """Get haplotype identifiers""" return list(self._identifiers) def _indices(self, identifier): """Get row indices associated with an identifier. These can be used for fancy indexing""" # Return empty list if identifier == None if not identifier: return list() if not self._frozen: raise RuntimeError("Cannot get indices from an unfrozen library") if identifier not in self._identifiers: raise KeyError(f"Identifier '{identifier}' not in library") return np.flatnonzero(self._identifiers == identifier).tolist() def _check_haplotype_dtype(self, haplotype): """Check the haplotype has expected dtype""" if haplotype.dtype != self.dtype: raise TypeError('haplotype(s) not equal to library dtype, {self.dtype}') def _check_haplotype(self, haplotype, expected_shape): """Check haplotype has expected shape and dtype. Could extend to check values in {0,1,9}""" self._check_haplotype_dtype(haplotype) if haplotype.shape != expected_shape: raise ValueError('haplotype(s) has unexpected shape') def _sampled_library(self, indices): """Create a 'duplicated' HaplotypeLibrary consisting of specified indices only""" # Create HaplotypeLibrary object to return library = HaplotypeLibrary(self._n_loci) library.dtype = self.dtype library._haplotypes = self._haplotypes[indices] library._identifiers = self._identifiers[indices] library.freeze() return library @jit(nopython=True) def haplotype_from_indices(indices, haplotype_library): """Helper function that takes an array of indices (for each locus) that 'point' to rows in a haplotype library (NumPy array) and extracts the alleles from the corresponding haplotypes (in the library) Returns: a haplotype array of length n_loci""" n_loci = len(indices) haplotype = np.empty(n_loci, dtype=np.int8) for col_idx in range(n_loci): row_idx = indices[col_idx] haplotype[col_idx] = haplotype_library[row_idx, col_idx] return haplotype @njit def removeMissingValues(hap): for i in range(len(hap)) : if hap[i] == 9: hap[i] = random.randint(0, 1) class ErrorLibrary(object): @profile def __init__(self, hap, haplotypes): self.hap = hap self.hapLib = haplotypes self.errors = jit_assessErrors(hap, self.hapLib) def getWindowValue(self, k): return jit_getWindowValue(self.errors, k, self.hap) @jit(nopython=True) def jit_getWindowValue(errors, k, hap) : window = np.full(errors.shape, 0, dtype = np.int8) nHaps, nLoci = errors.shape #Let me be silly here. for i in range(k+1): window[:,0] += errors[:,i] for i in range(1, nLoci): window[:,i] = window[:,i-1] if i > k: if hap[i-k-1] != 9: window[:,i] -= errors[:,i-k-1] #This is no longer in the window. if i < (nLoci-k): if hap[i+k] != 9: window[:,i] += errors[:,i+k] #This is now included in the window. return window @jit(nopython=True) def jit_assessErrors(hap, haps): errors = np.full(haps.shape, 0, dtype = np.int8) nHaps, nLoci = haps.shape for i in range(nLoci): if hap[i] != 9: if hap[i] == 0: errors[:, i] = haps[:,i] if hap[i] == 1: errors[:, i] = 1-haps[:,i] return errors from collections import OrderedDict class HaplotypeDict(object): def __init__(self): self.nHaps = 0 self.haps = [] self.tree = dict() # @profile def append(self, haplotype): byteVal = haplotype.tobytes() if byteVal in self.tree: return self.tree[byteVal] else: self.tree[byteVal] = self.nHaps self.haps.append(haplotype) self.nHaps += 1 return self.nHaps -1 return self.tree[byteVal] def get(self, index): return self.haps[index] # hap = np.array([0, 0, 0, 0, 0, 0, 0, 0]) # hapLib = [np.array([1, 0, 0, 0, 0, 0, 1]), # np.array([0, 1, 0, 0, 0, 1, 0]), # np.array([0, 0, 1, 0, 1, 0, 0]), # np.array([0, 0, 0, 1, 0, 0, 0]), # np.array([0, 0, 1, 0, 1, 0, 0])] # aa = ErrorLibrary(hap, hapLib) # print(aa.errors) # print(aa.getWindowValue(2)) # node_type = deferred_type() # jit_randomBinary_spec = OrderedDict() # jit_randomBinary_spec['array'] = int64[:] # jit_randomBinary_spec['index'] = int64 # jit_randomBinary_spec['nItems'] = int64 # @jitclass(jit_randomBinary_spec) # class jit_RandomBinary(object): # def __init__(self, nItems): # self.index = 0 # self.nItems = nItems # self.array = np.random.randint(2, size = nItems) # def next(): # self.index += 1 # if self.index == self.nItems: # self.array = np.random.randint(2, size = nItems) # self.index = 0 # return self.array[self.index] # I Don't think this is used any more. # def getCores(nLoci, lengths, offsets = [0]) : # nCores = len(lengths)*len(offsets) # startStop = [] # for length in lengths: # for offset in offsets: # finished = False # if offset > 0: # start = 0 # stop = min(offset, nLoci) # startStop.append((start, stop)) # if stop == nLoci: finished = True # else: # stop = 0 # while not finished: # start = stop # stop = min(stop + length, nLoci) # startStop.append((start, stop)) # if stop == nLoci: finished = True # return startStop # from collections import OrderedDict # class HaplotypeCount_dict(object): # def __init__(self): # self.nHaps = 0 # self.haps = [] # self.tree = OrderedDict() # # @profile # @profile # def append(self, haplotype, score = 1): # byteVal = haplotype.tobytes() # if byteVal in self.tree: # self.tree[byteVal] += score # else: # self.tree[byteVal] = score # self.haps.append(haplotype) # self.nHaps += 1 # def getLargest(self): # #This is sloppy # vals = [value for key, value in self.tree.items()] # index = np.argmax(vals) # return self.haps[index]
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/HaplotypeLibrary.py
HaplotypeLibrary.py
from numba import jit import numpy as np from . import NumbaUtils from . HaplotypeLibrary import haplotype_from_indices def haploidHMM(individual, source_haplotypes, error, recombination_rate, threshold=0.9, calling_method='dosages'): target_haplotype = individual.haplotypes n_loci = len(target_haplotype) # !!!! May need to cast the source Haplotypes to a matrix. #May also want to handle the probabilistic case. if type(source_haplotypes) is list: source_haplotypes = np.array(source_haplotypes) # Expand error and recombinationRate to arrays as may need to have # marker specific error/recombination rates. if type(error) is float: error = np.full(n_loci, error, dtype=np.float32) if type(recombination_rate) is float: recombination_rate = np.full(n_loci, recombination_rate, dtype=np.float32) # Construct penetrance values (point estimates) point_estimates = getHaploidPointEstimates(target_haplotype, source_haplotypes, error) # Run forward-backward algorithm on penetrance values # Note: don't need these probabilites if using the sample method if calling_method != 'sample': total_probs = haploidForwardBackward(point_estimates, recombination_rate) # Handle the different calling methods if calling_method == 'callhaps': # Call haplotypes called_haps = haploidCallHaps(total_probs, threshold) # Call genotypes called_genotypes = getHaploidGenotypes(called_haps, source_haplotypes) return called_genotypes if calling_method == 'dosages': dosages = getHaploidDosages(total_probs, source_haplotypes) individual.dosages = dosages if calling_method == 'sample': haplotype = getHaploidSample(point_estimates, recombination_rate, source_haplotypes) individual.imputed_haplotypes = haplotype if calling_method == 'Viterbi': haplotype = get_viterbi(point_estimates, recombination_rate, source_haplotypes) individual.imputed_haplotypes = haplotype @jit(nopython=True, nogil=True) def getHaploidDosages(hap_est, source_haplotypes): """Calculate dosages for a single haplotype""" n_loci, n_haps = hap_est.shape dosages = np.zeros(n_loci, dtype=np.float32) for i in range(n_loci): for j in range(n_haps): dosages[i] += source_haplotypes[j, i] * hap_est[i, j] return dosages @jit(nopython=True, nogil=True) def getHaploidSample(point_estimates, recombination_rate, source_haps): """Sample a haplotype""" forward_probs = haploidForward(point_estimates, recombination_rate) haplotype = haploidSampleHaplotype(forward_probs, source_haps, recombination_rate) return haplotype @jit(nopython=True, nogil=True) def get_viterbi(point_estimates, recombination_rate, haplotype_library): """Get most likely haplotype using the Viterbi algorithm""" forward_probs = haploidForward(point_estimates, recombination_rate) indices = haploid_viterbi(forward_probs, recombination_rate) return haplotype_from_indices(indices, haplotype_library) @jit(nopython=True) def haploidCallHaps(hapEst, threshold): nHaps, nLoci = hapEst.shape calledHaps = np.full(nLoci, -1, dtype=np.int64) # These are haplotype ids. -1 is missing. for i in range(nLoci): maxVal = -1 maxLoc = -1 for j in range(nHaps): if hapEst[j, i] > threshold and hapEst[j, i] > maxVal: maxLoc = j maxVal = hapEst[j, i] calledHaps[i] = maxLoc return calledHaps @jit(nopython=True) def getHaploidGenotypes(calledHaps, sourceHaplotypes): nHaps, nLoci = sourceHaplotypes.shape calledGenotypes = np.full(nLoci, 9, dtype=np.int8) # These are haplotype ids. -1 is missing. for i in range(nLoci): if calledHaps[i] != -1: calledGenotypes[i] = sourceHaplotypes[calledHaps[i], i] return calledGenotypes @jit(nopython=True, nogil=True) def getHaploidPointEstimates(targetHaplotype, sourceHaplotypes, error): nHaps, nLoci = sourceHaplotypes.shape pointMat = np.full((nLoci, nHaps), 1, dtype=np.float32) for i in range(nLoci): if targetHaplotype[i] != 9: for j in range(nHaps): if targetHaplotype[i] == sourceHaplotypes[j, i]: pointMat[i, j] = 1 - error[i] else: pointMat[i, j] = error[i] return pointMat @jit(nopython=True, nogil=True) def haploidTransformProbs(previous, new, estimate, point_estimate, recombination_rate): """Transforms a probability distribution (over haplotypes, at a single locus) to a probability distribution at the next locus by accounting for emission probabilities (point_estimates) and transition probabilities (recombination_rate) This is a core step in the forward and backward algorithms point_estimates emission probabilities - (1D NumPy array) recombination_rate recombination rate at this locus - (scalar) previous probability distribution over haplotypes (hidden states) at the *previous* locus estimate newly calculated probability distribution over haplotypes at *this* locus new intermediate probability distribution (passed in to this function for speed) Note: previous and estimate are updated by this function """ n_haps = len(previous) # Get estimate at this locus and normalize new[:] = previous * point_estimate new /= np.sum(new) # Account for recombination rate e = recombination_rate e1 = 1-recombination_rate for j in range(n_haps): new[j] = new[j]*e1 + e/n_haps # Update distributions (in place) for j in range(n_haps): estimate[j] *= new[j] previous[j] = new[j] @jit(nopython=True, nogil=True) def haploidOneSample(forward_probs, recombination_rate): """Sample one haplotype (an individual) from the forward and backward probability distributions Returns two arrays: sample_indices array of indices of haplotypes in the haplotype library at each locus e.g. an individual composed of haplotypes 13 and 42 with 8 loci: [42, 42, 42, 42, 42, 13, 13, 13] A description of the sampling process would be nice here...""" est = forward_probs.copy() # copy so that forward_probs is not modified n_loci, n_haps = forward_probs.shape prev = np.ones(n_haps, dtype=np.float32) new = np.empty(n_haps, dtype=np.float32) # Sampled probability distribution at one locus sampled_probs = np.empty(n_haps, dtype=np.float32) sample_indices = np.empty(n_loci, dtype=np.int64) # Backwards algorithm for i in range(n_loci-2, -1, -1): # zero indexed then minus one since we skip the boundary # Sample at this locus j = NumbaUtils.multinomial_sample(pvals=est[i+1, :]) sampled_probs[:] = 0 sampled_probs[j] = 1 sample_indices[i+1] = j # Get estimate at this locus using the *sampled* distribution # (instead of the point estimates/emission probabilities) haploidTransformProbs(prev, new, est[i, :], sampled_probs, recombination_rate[i+1]) # No need to normalise at this locus as multinomial_sample() # handles un-normalized probabilities # Last sample (at the first locus) j = NumbaUtils.multinomial_sample(pvals=est[0, :]) sample_indices[0] = j return sample_indices @jit(nopython=True, nogil=True) def haploid_viterbi(forward_probs, recombination_rate): """Find the most likely haplotype according to the The Viterbi algorithm Returns: indices array of indices of haplotypes in the haplotype library at each locus e.g. an individual composed of haplotypes 13 and 42 with 8 loci: [42, 42, 42, 42, 42, 13, 13, 13]""" est = forward_probs.copy() # copy so that forward_probs is not modified n_loci, n_haps = forward_probs.shape prev = np.ones(n_haps, dtype=np.float32) new = np.empty(n_haps, dtype=np.float32) # Most likely probability distribution at one locus sampled_probs = np.empty(n_haps, dtype=np.float32) indices = np.empty(n_loci, dtype=np.int64) # Backwards algorithm for i in range(n_loci-2, -1, -1): # zero indexed then minus one since we skip the boundary # Choose the most likely state (i.e. max probability) at this locus j = np.argmax(est[i+1, :]) sampled_probs[:] = 0 sampled_probs[j] = 1 indices[i+1] = j # Get estimate at this locus using the most likely distribution # (instead of the point estimates/emission probabilities) haploidTransformProbs(prev, new, est[i, :], sampled_probs, recombination_rate[i+1]) # No need to normalise at this locus as argmax() does not depend on normalisation # Most likely state at the first locus j = np.argmax(est[0, :]) indices[0] = j return indices @jit(nopython=True, nogil=True) def haploidSampleHaplotype(forward_probs, haplotype_library, recombination_rate): """Sample one haplotype (an individual) from the forward and backward probability distributions Returns: a sampled haploytpe of length n_loci""" indices = haploidOneSample(forward_probs, recombination_rate) return haplotype_from_indices(indices, haplotype_library) @jit(nopython=True, nogil=True) def haploidForward(point_estimate, recombination_rate): """Calculate (unnomalized) forward probabilities""" n_loci, n_haps = point_estimate.shape est = point_estimate.copy() prev = np.ones(n_haps, dtype=np.float32) new = np.empty(n_haps, dtype=np.float32) for i in range(1, n_loci): # Update estimates at this locus haploidTransformProbs(prev, new, est[i, :], point_estimate[i-1, :], recombination_rate[i]) return est @jit(nopython=True) def haploidBackward(point_estimate, recombination_rate): """Calculate (unnomalized) backward probabilities""" n_loci, n_haps = point_estimate.shape est = np.ones_like(point_estimate, dtype=np.float32) prev = np.ones(n_haps, dtype=np.float32) new = np.empty(n_haps, dtype=np.float32) for i in range(n_loci-2, -1, -1): # zero indexed then minus one since we skip the boundary # Update estimates at this locus haploidTransformProbs(prev, new, est[i, :], point_estimate[i+1, :], recombination_rate[i+1]) return est @jit(nopython=True) def haploidForwardBackward(point_estimate, recombination_rate): """Calculate normalized state probabilities at each loci using the forward-backward algorithm""" est = (haploidForward(point_estimate, recombination_rate) * haploidBackward(point_estimate, recombination_rate)) # Return normalized probabilities n_loci = point_estimate.shape[0] for i in range(n_loci): est[i, :] /= np.sum(est[i, :]) return est
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/HaploidHMM.py
HaploidHMM.py
import concurrent.futures import itertools import numpy as np import math from . import InputOutput def convert_data_to_line(data_tuple, fmt) : idx, data = data_tuple return idx + ' ' + ' '.join(map(fmt, data)) + '\n' def convert_data_to_line_plink(data_tuple, fmt): """Format data for PLINK plain text output""" idx, data = data_tuple return f"0 {idx} 0 0 0 0 {' '.join(data.astype(fmt))}\n" def writeLines(fileName, data_list, fmt, converter=convert_data_to_line): # print(f"Writing results to: {fileName}") try: iothreads = InputOutput.args.iothreads except AttributeError as error: iothreads = 1 with open(fileName, 'w+') as f: if iothreads > 1: with concurrent.futures.ProcessPoolExecutor(max_workers = iothreads) as executor: # The minus one is to account for the main thread. # Break up into small-ish chunks to reduce overall memory cost. # Hard code: splits into 1k individuals. # These get then split up into one chunk per thread. subsets = split_by(data_list, 1000) for subset in subsets: for result in executor.map(converter, subset, itertools.repeat(fmt), chunksize=math.ceil(1000/iothreads)): f.write(result) if iothreads <= 1: for data_tuple in data_list: result = converter(data_tuple, fmt) f.write(result) def writeLinesPlinkPlainTxt(fileName, data_list): """Write lines in PLINK plain text format""" writeLines(fileName, data_list, fmt=str, converter=convert_data_to_line_plink) def split_by(array, step): output = [] i = 0 while i*step < len(array): start = i*step stop = (i+1)*step output.append(array[start:stop]) i += 1 return output def process_input_line(line, startsnp, stopsnp, dtype): parts = line.split(); idx = parts[0] parts = parts[1:] if startsnp is not None : parts = parts[startsnp : stopsnp + 1] #Offset 1 for id and 2 for id + include stopsnp data=np.array([int(val) for val in parts], dtype = dtype) return (idx, data) def process_input_line_plink(line, startsnp, stopsnp, dtype): """Proces a line from PLINK .ped file Fields: 0 Family ID ('FID') 1 Within-family ID ('IID'; cannot be '0') 2 Within-family ID of father ('0' if father isn't in dataset) 3 Within-family ID of mother ('0' if mother isn't in dataset) 4 Sex code ('1' = male, '2' = female, '0' = unknown) 5 Phenotype value ('1' = control, '2' = case, '-9'/'0'/non-numeric = missing data if case/control) 6-end Genotypes as pairs of alleles (A, C, G or T) At present, this extracts individual's identifier as the within-family ID """ parts = line.split() idx = parts[1] # Use within-family ID genotypes = parts[6:] if startsnp is not None: genotypes = genotypes[startsnp*2: stopsnp*2 + 2] # Each locus is represented by two alleles data = np.array(genotypes, dtype=np.bytes_) return (idx, data) def readLines(fileName, startsnp, stopsnp, dtype, processor=process_input_line): # print(f"Reading in file: {fileName}") try: iothreads = InputOutput.args.iothreads except AttributeError as error: iothreads = 1 output = [] with open(fileName) as f: if iothreads > 1: # This could be more efficient, but it's dwarfed by some of the other stuff in the program. # i.e. line is roughly the same size as the haplotypes (2 bytes per genotype value, i.e. (space)(value); and two values per haplotype. all_outputs = [] lines = list(itertools.islice(f, 1000)) while len(lines) > 0: with concurrent.futures.ProcessPoolExecutor(max_workers = iothreads) as executor: chunk_output = executor.map(processor, lines, itertools.repeat(startsnp), itertools.repeat(stopsnp), itertools.repeat(dtype), chunksize=math.ceil(1000/iothreads)) all_outputs.append(chunk_output) lines = list(itertools.islice(f, 1000)) output = itertools.chain.from_iterable(all_outputs) if iothreads <= 1: for line in f: output.append(processor(line, startsnp = startsnp, stopsnp = stopsnp, dtype = dtype)) return output def readLinesPlinkPlainTxt(fileName, startsnp, stopsnp, dtype): """Read lines in PLINK plain text format""" return readLines(fileName, startsnp, stopsnp, dtype, processor=process_input_line_plink)
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/MultiThreadIO.py
MultiThreadIO.py
import numba from numba import jit, float32, int8, int64, optional, boolean from numba.experimental import jitclass import numpy as np def setup_individual(ind): fillInPhaseFromGenotypes(ind.haplotypes[0], ind.genotypes) fillInPhaseFromGenotypes(ind.haplotypes[1], ind.genotypes) fillInGenotypesFromPhase(ind.genotypes, ind.haplotypes[0], ind.haplotypes[1]) def align_individual(ind): # Note: The note below is no longer true. # Note: We never directly set genotypes so no need to go from genotypes -> phase # Fill in phase from genotypes. fillInPhaseFromGenotypes(ind.haplotypes[0], ind.genotypes) fillInPhaseFromGenotypes(ind.haplotypes[1], ind.genotypes) # Fill in genotypes from phase, and fill in haplotypes from each other. fillInGenotypesFromPhase(ind.genotypes, ind.haplotypes[0], ind.haplotypes[1]) fillInCompPhase(ind.haplotypes[0], ind.genotypes, ind.haplotypes[1]) fillInCompPhase(ind.haplotypes[1], ind.genotypes, ind.haplotypes[0]) def ind_fillInGenotypesFromPhase(ind): #Note: We never directly set genotypes so no need to go from genotypes -> phase fillInGenotypesFromPhase(ind.genotypes, ind.haplotypes[0], ind.haplotypes[1]) def fillFromParents(ind): if ind.sire is not None: if ind.sire.genotypes is not None: sirePhase = getPhaseFromGenotypes(ind.sire.genotypes) fillIfMissing(ind.haplotypes[0], sirePhase) if ind.dam is not None: if ind.dam.genotypes is not None: damPhase = getPhaseFromGenotypes(ind.dam.genotypes) fillIfMissing(ind.haplotypes[0], damPhase) @jit(nopython=True) def fillIfMissing(orig, new): for i in range(len(orig)): if orig[i] == 9: orig[i] = new[i] @jit(nopython=True) def fillInGenotypesFromPhase(geno, phase1, phase2): for i in range(len(geno)): if geno[i] == 9: if phase1[i] != 9 and phase2[i] != 9: geno[i] = phase1[i] + phase2[i] @jit(nopython=True) def fillInCompPhase(target, geno, compPhase): for i in range(len(geno)): if target[i] == 9: if geno[i] != 9: if compPhase[i] != 9: target[i] = geno[i] - compPhase[i] @jit(nopython=True) def fillInPhaseFromGenotypes(phase, geno): for i in range(len(geno)): if phase[i] == 9 : if geno[i] == 0: phase[i] = 0 if geno[i] == 2: phase[i] = 1 @jit(nopython=True) def getPhaseFromGenotypes(geno): phase = np.full(len(geno), 9, dtype = np.int8) for i in range(len(geno)): if phase[i] == 9 : if geno[i] == 0: phase[i] = 0 if geno[i] == 2: phase[i] = 1 return phase # def ind_randomlyPhaseRandomPoint(ind): # maxLength = len(ind.genotypes) # midpoint = np.random.normal(maxLength/2, maxLength/10) # while midpoint < 0 or midpoint > maxLength: # midpoint = np.random.normal(maxLength/2, maxLength/10) # midpoint = int(midpoint) # randomlyPhaseMidpoint(ind.genotypes, ind.haplotypes, midpoint) # def ind_randomlyPhaseMidpoint(ind, midpoint= None): # if midpoint is None: midpoint = int(len(ind.genotypes)/2) # randomlyPhaseMidpoint(ind.genotypes, ind.haplotypes, midpoint) # @jit(nopython=True) # def randomlyPhaseMidpoint(geno, phase, midpoint): # index = 0 # e = 1 # changed = False # while not changed : # if geno[midpoint + index * e] == 1: # phase[0][midpoint + index * e] = 0 # phase[1][midpoint + index * e] = 1 # changed = True # e = -e # if e == -1: index += 1 # if index >= midpoint: changed = True
AlphaPeel
/AlphaPeel-1.1.3.tar.gz/AlphaPeel-1.1.3/src/tinypeel/tinyhouse/HaplotypeOperations.py
HaplotypeOperations.py
# alphabetPy ![](img/Banner.png) [![Software License](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE.txt) [![versions](https://img.shields.io/pypi/v/AlphabetPy.svg)](https://pypi.python.org/pypi/AlphabetPy/1.0) [![platform](https://img.shields.io/badge/python-3.6-green.svg)]() A python tool to output characters in console/shell imitates starkwang's alphabetJS > 此项目是我在使用[@starkwang](https://github.com/starkwang)的作品[alphabetJS](https://github.com/starkwang)时,感觉十分方便,于是将其翻译成python。由于对开源协议不是十分了解,如有侵权,请及时联系我加以修改。 > When I use [@starkwang](https://github.com/starkwang)'s project [alphabetJS](https://github.com/starkwang), I think it's very convenient. So I write it again in Python. Because I'm not familiar with LGPL, if there's any infringement, please contact me immediately and I'll do something to fix it. ## Install ### 1.use `pip` to install it `pip install AlphabetPy` ### 2.download this project and use `setup.py` ```shell $ cd alphabetPy $ python setup.py install ``` ## Usage After install `alphabetPy`, you can require it in shell: ```shell $ AlphabetPy input the string you want to change:<what you want to output> input the mode you want to use:("planar" or "stereo"):<choose "planar" or "stereo"> ``` for example: ![](img/example1.png) you can also use the command: `alphabetPy -s <what you want to output> -m <choose "planar" or "stereo">` for example: ![](img/example2.png) if you don't use the `-m`, it's be use mode "planar" to output the characters. if you want to use `alphabetPy` in your own project, you can import `alphabetPy`: for example: ```python import AlphabetPy string = "AlphabetPy" letter = AlphabetPy.getAlphabet("233","stereo") for i in range(7): print(letter[i]) ``` Then you'll see the outputs in shell. However, I think my code is stupid which make us cannot print letter directly. Maybe I'll improve my code someday. ## License ### The MIT License (MIT) CopyRight (c) 2018 Ray Zhao &lt;<a href="[email protected]">[email protected]</a>&gt; Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
AlphabetPy
/AlphabetPy-1.0.1.tar.gz/AlphabetPy-1.0.1/README.md
README.md