code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
from operator import gt, lt from .libmp.backend import xrange from .functions.functions import SpecialFunctions from .functions.rszeta import RSCache from .calculus.quadrature import QuadratureMethods from .calculus.calculus import CalculusMethods from .calculus.optimization import OptimizationMethods from .calculus.odes import ODEMethods from .matrices.matrices import MatrixMethods from .matrices.calculus import MatrixCalculusMethods from .matrices.linalg import LinearAlgebraMethods from .identification import IdentificationMethods from .visualization import VisualizationMethods import libmp class Context(object): pass class StandardBaseContext(Context, SpecialFunctions, RSCache, QuadratureMethods, CalculusMethods, MatrixMethods, MatrixCalculusMethods, LinearAlgebraMethods, IdentificationMethods, OptimizationMethods, ODEMethods, VisualizationMethods): NoConvergence = libmp.NoConvergence ComplexResult = libmp.ComplexResult def __init__(ctx): ctx._aliases = {} # Call those that need preinitialization (e.g. for wrappers) SpecialFunctions.__init__(ctx) RSCache.__init__(ctx) QuadratureMethods.__init__(ctx) CalculusMethods.__init__(ctx) MatrixMethods.__init__(ctx) def _init_aliases(ctx): for alias, value in ctx._aliases.items(): try: setattr(ctx, alias, getattr(ctx, value)) except AttributeError: pass _fixed_precision = False # XXX verbose = False def warn(ctx, msg): print("Warning:", msg) def bad_domain(ctx, msg): raise ValueError(msg) def _re(ctx, x): if hasattr(x, "real"): return x.real return x def _im(ctx, x): if hasattr(x, "imag"): return x.imag return ctx.zero def _as_points(ctx, x): return x def fneg(ctx, x, **kwargs): return -ctx.convert(x) def fadd(ctx, x, y, **kwargs): return ctx.convert(x)+ctx.convert(y) def fsub(ctx, x, y, **kwargs): return ctx.convert(x)-ctx.convert(y) def fmul(ctx, x, y, **kwargs): return ctx.convert(x)*ctx.convert(y) def fdiv(ctx, x, y, **kwargs): return ctx.convert(x)/ctx.convert(y) def fsum(ctx, args, absolute=False, squared=False): if absolute: if squared: return sum((abs(x)**2 for x in args), ctx.zero) return sum((abs(x) for x in args), ctx.zero) if squared: return sum((x**2 for x in args), ctx.zero) return sum(args, ctx.zero) def fdot(ctx, xs, ys=None, conjugate=False): if ys is not None: xs = zip(xs, ys) if conjugate: cf = ctx.conj return sum((x*cf(y) for (x,y) in xs), ctx.zero) else: return sum((x*y for (x,y) in xs), ctx.zero) def fprod(ctx, args): prod = ctx.one for arg in args: prod *= arg return prod def nprint(ctx, x, n=6, **kwargs): """ Equivalent to ``print(nstr(x, n))``. """ print(ctx.nstr(x, n, **kwargs)) def chop(ctx, x, tol=None): """ Chops off small real or imaginary parts, or converts numbers close to zero to exact zeros. The input can be a single number or an iterable:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> chop(5+1e-10j, tol=1e-9) mpf('5.0') >>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2])) [1.0, 0.0, 3.0, -4.0, 2.0] The tolerance defaults to ``100*eps``. """ if tol is None: tol = 100*ctx.eps try: x = ctx.convert(x) absx = abs(x) if abs(x) < tol: return ctx.zero if ctx._is_complex_type(x): #part_tol = min(tol, absx*tol) part_tol = max(tol, absx*tol) if abs(x.imag) < part_tol: return x.real if abs(x.real) < part_tol: return ctx.mpc(0, x.imag) except TypeError: if isinstance(x, ctx.matrix): return x.apply(lambda a: ctx.chop(a, tol)) if hasattr(x, "__iter__"): return [ctx.chop(a, tol) for a in x] return x def almosteq(ctx, s, t, rel_eps=None, abs_eps=None): r""" Determine whether the difference between `s` and `t` is smaller than a given epsilon, either relatively or absolutely. Both a maximum relative difference and a maximum difference ('epsilons') may be specified. The absolute difference is defined as `|s-t|` and the relative difference is defined as `|s-t|/\max(|s|, |t|)`. If only one epsilon is given, both are set to the same value. If none is given, both epsilons are set to `2^{-p+m}` where `p` is the current working precision and `m` is a small integer. The default setting typically allows :func:`~mpmath.almosteq` to be used to check for mathematical equality in the presence of small rounding errors. **Examples** >>> from mpmath import * >>> mp.dps = 15 >>> almosteq(3.141592653589793, 3.141592653589790) True >>> almosteq(3.141592653589793, 3.141592653589700) False >>> almosteq(3.141592653589793, 3.141592653589700, 1e-10) True >>> almosteq(1e-20, 2e-20) True >>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0) False """ t = ctx.convert(t) if abs_eps is None and rel_eps is None: rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4) if abs_eps is None: abs_eps = rel_eps elif rel_eps is None: rel_eps = abs_eps diff = abs(s-t) if diff <= abs_eps: return True abss = abs(s) abst = abs(t) if abss < abst: err = diff/abst else: err = diff/abss return err <= rel_eps def arange(ctx, *args): r""" This is a generalized version of Python's :func:`~mpmath.range` function that accepts fractional endpoints and step sizes and returns a list of ``mpf`` instances. Like :func:`~mpmath.range`, :func:`~mpmath.arange` can be called with 1, 2 or 3 arguments: ``arange(b)`` `[0, 1, 2, \ldots, x]` ``arange(a, b)`` `[a, a+1, a+2, \ldots, x]` ``arange(a, b, h)`` `[a, a+h, a+h, \ldots, x]` where `b-1 \le x < b` (in the third case, `b-h \le x < b`). Like Python's :func:`~mpmath.range`, the endpoint is not included. To produce ranges where the endpoint is included, :func:`~mpmath.linspace` is more convenient. **Examples** >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> arange(4) [mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')] >>> arange(1, 2, 0.25) [mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')] >>> arange(1, -1, -0.75) [mpf('1.0'), mpf('0.25'), mpf('-0.5')] """ if not len(args) <= 3: raise TypeError('arange expected at most 3 arguments, got %i' % len(args)) if not len(args) >= 1: raise TypeError('arange expected at least 1 argument, got %i' % len(args)) # set default a = 0 dt = 1 # interpret arguments if len(args) == 1: b = args[0] elif len(args) >= 2: a = args[0] b = args[1] if len(args) == 3: dt = args[2] a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt) assert a + dt != a, 'dt is too small and would cause an infinite loop' # adapt code for sign of dt if a > b: if dt > 0: return [] op = gt else: if dt < 0: return [] op = lt # create list result = [] i = 0 t = a while 1: t = a + dt*i i += 1 if op(t, b): result.append(t) else: break return result def linspace(ctx, *args, **kwargs): """ ``linspace(a, b, n)`` returns a list of `n` evenly spaced samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)`` is also valid. This function is often more convenient than :func:`~mpmath.arange` for partitioning an interval into subintervals, since the endpoint is included:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> linspace(1, 4, 4) [mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')] You may also provide the keyword argument ``endpoint=False``:: >>> linspace(1, 4, 4, endpoint=False) [mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')] """ if len(args) == 3: a = ctx.mpf(args[0]) b = ctx.mpf(args[1]) n = int(args[2]) elif len(args) == 2: assert hasattr(args[0], '_mpi_') a = args[0].a b = args[0].b n = int(args[1]) else: raise TypeError('linspace expected 2 or 3 arguments, got %i' \ % len(args)) if n < 1: raise ValueError('n must be greater than 0') if not 'endpoint' in kwargs or kwargs['endpoint']: if n == 1: return [ctx.mpf(a)] step = (b - a) / ctx.mpf(n - 1) y = [i*step + a for i in xrange(n)] y[-1] = b else: step = (b - a) / ctx.mpf(n) y = [i*step + a for i in xrange(n)] return y def cos_sin(ctx, z, **kwargs): return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs) def cospi_sinpi(ctx, z, **kwargs): return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs) def _default_hyper_maxprec(ctx, p): return int(1000 * p**0.25 + 4*p) _gcd = staticmethod(libmp.gcd) list_primes = staticmethod(libmp.list_primes) isprime = staticmethod(libmp.isprime) bernfrac = staticmethod(libmp.bernfrac) moebius = staticmethod(libmp.moebius) _ifac = staticmethod(libmp.ifac) _eulernum = staticmethod(libmp.eulernum) def sum_accurately(ctx, terms, check_step=1): prec = ctx.prec try: extraprec = 10 while 1: ctx.prec = prec + extraprec + 5 max_mag = ctx.ninf s = ctx.zero k = 0 for term in terms(): s += term if (not k % check_step) and term: term_mag = ctx.mag(term) max_mag = max(max_mag, term_mag) sum_mag = ctx.mag(s) if sum_mag - term_mag > ctx.prec: break k += 1 cancellation = max_mag - sum_mag if cancellation != cancellation: break if cancellation < extraprec or ctx._fixed_precision: break extraprec += min(ctx.prec, cancellation) return s finally: ctx.prec = prec def mul_accurately(ctx, factors, check_step=1): prec = ctx.prec try: extraprec = 10 while 1: ctx.prec = prec + extraprec + 5 max_mag = ctx.ninf one = ctx.one s = one k = 0 for factor in factors(): s *= factor term = factor - one if (not k % check_step): term_mag = ctx.mag(term) max_mag = max(max_mag, term_mag) sum_mag = ctx.mag(s-one) #if sum_mag - term_mag > ctx.prec: # break if -term_mag > ctx.prec: break k += 1 cancellation = max_mag - sum_mag if cancellation != cancellation: break if cancellation < extraprec or ctx._fixed_precision: break extraprec += min(ctx.prec, cancellation) return s finally: ctx.prec = prec def power(ctx, x, y): r"""Converts `x` and `y` to mpmath numbers and evaluates `x^y = \exp(y \log(x))`:: >>> from mpmath import * >>> mp.dps = 30; mp.pretty = True >>> power(2, 0.5) 1.41421356237309504880168872421 This shows the leading few digits of a large Mersenne prime (performing the exact calculation ``2**43112609-1`` and displaying the result in Python would be very slow):: >>> power(2, 43112609)-1 3.16470269330255923143453723949e+12978188 """ return ctx.convert(x) ** ctx.convert(y) def _zeta_int(ctx, n): return ctx.zeta(n) def maxcalls(ctx, f, N): """ Return a wrapped copy of *f* that raises ``NoConvergence`` when *f* has been called more than *N* times:: >>> from mpmath import * >>> mp.dps = 15 >>> f = maxcalls(sin, 10) >>> print(sum(f(n) for n in range(10))) 1.95520948210738 >>> f(10) Traceback (most recent call last): ... NoConvergence: maxcalls: function evaluated 10 times """ counter = [0] def f_maxcalls_wrapped(*args, **kwargs): counter[0] += 1 if counter[0] > N: raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N) return f(*args, **kwargs) return f_maxcalls_wrapped def memoize(ctx, f): """ Return a wrapped copy of *f* that caches computed values, i.e. a memoized copy of *f*. Values are only reused if the cached precision is equal to or higher than the working precision:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> f = memoize(maxcalls(sin, 1)) >>> f(2) 0.909297426825682 >>> f(2) 0.909297426825682 >>> mp.dps = 25 >>> f(2) Traceback (most recent call last): ... NoConvergence: maxcalls: function evaluated 1 times """ f_cache = {} def f_cached(*args, **kwargs): if kwargs: key = args, tuple(kwargs.items()) else: key = args prec = ctx.prec if key in f_cache: cprec, cvalue = f_cache[key] if cprec >= prec: return +cvalue value = f(*args, **kwargs) f_cache[key] = (prec, value) return value f_cached.__name__ = f.__name__ f_cached.__doc__ = f.__doc__ return f_cached
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/ctx_base.py
ctx_base.py
__docformat__ = 'plaintext' import re from .ctx_base import StandardBaseContext from .libmp.backend import basestring import libmp from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps, round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps, ComplexResult, to_pickable, from_pickable, normalize, from_int, from_float, from_str, to_int, to_float, to_str, from_rational, from_man_exp, fone, fzero, finf, fninf, fnan, mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod, mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge, mpf_hash, mpf_rand, mpf_sum, bitcount, to_fixed, mpc_to_str, mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate, mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf, mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int, mpc_mpf_div, mpf_pow, mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10, mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin, mpf_glaisher, mpf_twinprime, mpf_mertens, int_types) import function_docs import rational new = object.__new__ get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*\.?\d*(e[\+\-]?\d+)?)??' r'(?P<im>[\+\-]?\d*\.?\d*(e[\+\-]?\d+)?j)?\)?$') try: from sage.libs.mpmath.ext_main import Context as BaseMPContext # pickle hack import sage.libs.mpmath.ext_main as _mpf_module except ImportError: from .ctx_mp_python import PythonMPContext as BaseMPContext import ctx_mp_python as _mpf_module from .ctx_mp_python import _mpf, _mpc, mpnumeric class MPContext(BaseMPContext, StandardBaseContext): """ Context for multiprecision arithmetic with a global precision. """ def __init__(ctx): BaseMPContext.__init__(ctx) ctx.trap_complex = False ctx.pretty = False ctx.types = [ctx.mpf, ctx.mpc, ctx.constant] ctx._mpq = rational.mpq ctx.default() StandardBaseContext.__init__(ctx) ctx.mpq = rational.mpq ctx.init_builtins() ctx.hyp_summators = {} ctx._init_aliases() # XXX: automate try: ctx.bernoulli.im_func.func_doc = function_docs.bernoulli ctx.primepi.im_func.func_doc = function_docs.primepi ctx.psi.im_func.func_doc = function_docs.psi ctx.atan2.im_func.func_doc = function_docs.atan2 except AttributeError: # python 3 ctx.bernoulli.__func__.func_doc = function_docs.bernoulli ctx.primepi.__func__.func_doc = function_docs.primepi ctx.psi.__func__.func_doc = function_docs.psi ctx.atan2.__func__.func_doc = function_docs.atan2 ctx.digamma.func_doc = function_docs.digamma ctx.cospi.func_doc = function_docs.cospi ctx.sinpi.func_doc = function_docs.sinpi def init_builtins(ctx): mpf = ctx.mpf mpc = ctx.mpc # Exact constants ctx.one = ctx.make_mpf(fone) ctx.zero = ctx.make_mpf(fzero) ctx.j = ctx.make_mpc((fzero,fone)) ctx.inf = ctx.make_mpf(finf) ctx.ninf = ctx.make_mpf(fninf) ctx.nan = ctx.make_mpf(fnan) eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1), "epsilon of working precision", "eps") ctx.eps = eps # Approximate constants ctx.pi = ctx.constant(mpf_pi, "pi", "pi") ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2") ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10") ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi") ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e") ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler") ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan") ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin") ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher") ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery") ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree") ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime") ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens") # Standard functions ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt) ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt) ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log) ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan) ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp) ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj) ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi) ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin) ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos) ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan) ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh) ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh) ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh) ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin) ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos) ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan) ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh) ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh) ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh) ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi) ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi) ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor) ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil) ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint) ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac) ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci) ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma) ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma) ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma) ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial) ctx.gamma_old = ctx._wrap_libmp_function(libmp.mpf_gamma_old, libmp.mpc_gamma_old) ctx.fac_old = ctx.factorial_old = ctx._wrap_libmp_function(libmp.mpf_factorial_old, libmp.mpc_factorial_old) ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0) ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic) ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei) ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1) ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci) ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si) ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk) ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe) ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1) ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None) ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None) ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta) ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta) # Faster versions ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt) ctx.exp = getattr(ctx, "_sage_exp", ctx.exp) ctx.ln = getattr(ctx, "_sage_ln", ctx.ln) ctx.cos = getattr(ctx, "_sage_cos", ctx.cos) ctx.sin = getattr(ctx, "_sage_sin", ctx.sin) def to_fixed(ctx, x, prec): return x.to_fixed(prec) def hypot(ctx, x, y): r""" Computes the Euclidean norm of the vector `(x, y)`, equal to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real.""" x = ctx.convert(x) y = ctx.convert(y) return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding)) def _gamma_upper_int(ctx, n, z): n = int(ctx._re(n)) if n == 0: return ctx.e1(z) if not hasattr(z, '_mpf_'): raise NotImplementedError prec, rounding = ctx._prec_rounding real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True) if imag is None: return ctx.make_mpf(real) else: return ctx.make_mpc((real, imag)) def _expint_int(ctx, n, z): n = int(n) if n == 1: return ctx.e1(z) if not hasattr(z, '_mpf_'): raise NotImplementedError prec, rounding = ctx._prec_rounding real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding) if imag is None: return ctx.make_mpf(real) else: return ctx.make_mpc((real, imag)) def _nthroot(ctx, x, n): if hasattr(x, '_mpf_'): try: return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding)) except ComplexResult: if ctx.trap_complex: raise x = (x._mpf_, libmp.fzero) else: x = x._mpc_ return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding)) def _besselj(ctx, n, z): prec, rounding = ctx._prec_rounding if hasattr(z, '_mpf_'): return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding)) elif hasattr(z, '_mpc_'): return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding)) def _agm(ctx, a, b=1): prec, rounding = ctx._prec_rounding if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'): try: v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding) return ctx.make_mpf(v) except ComplexResult: pass if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero) else: a = a._mpc_ if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero) else: b = b._mpc_ return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding)) def bernoulli(ctx, n): return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding)) def _zeta_int(ctx, n): return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding)) def atan2(ctx, y, x): x = ctx.convert(x) y = ctx.convert(y) return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding)) def psi(ctx, m, z): z = ctx.convert(z) m = int(m) if ctx._is_real_type(z): return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding)) else: return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding)) def cos_sin(ctx, x, **kwargs): if type(x) not in ctx.types: x = ctx.convert(x) prec, rounding = ctx._parse_prec(kwargs) if hasattr(x, '_mpf_'): c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding) return ctx.make_mpf(c), ctx.make_mpf(s) elif hasattr(x, '_mpc_'): c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding) return ctx.make_mpc(c), ctx.make_mpc(s) else: return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs) def cospi_sinpi(ctx, x, **kwargs): if type(x) not in ctx.types: x = ctx.convert(x) prec, rounding = ctx._parse_prec(kwargs) if hasattr(x, '_mpf_'): c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding) return ctx.make_mpf(c), ctx.make_mpf(s) elif hasattr(x, '_mpc_'): c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding) return ctx.make_mpc(c), ctx.make_mpc(s) else: return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs) def clone(ctx): """ Create a copy of the context, with the same working precision. """ a = ctx.__class__() a.prec = ctx.prec return a # Several helper methods # TODO: add more of these, make consistent, write docstrings, ... def _is_real_type(ctx, x): if hasattr(x, '_mpc_') or type(x) is complex: return False return True def _is_complex_type(ctx, x): if hasattr(x, '_mpc_') or type(x) is complex: return True return False def isnpint(ctx, x): """ Determine if *x* is a nonpositive integer. """ if not x: return True if hasattr(x, '_mpf_'): sign, man, exp, bc = x._mpf_ return sign and exp >= 0 if hasattr(x, '_mpc_'): return not x.imag and ctx.isnpint(x.real) if type(x) in int_types: return x <= 0 if isinstance(x, ctx.mpq): p, q = x._mpq_ if not p: return True return q == 1 and p <= 0 return ctx.isnpint(ctx.convert(x)) def __str__(ctx): lines = ["Mpmath settings:", (" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]", (" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]", (" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]", ] return "\n".join(lines) @property def _repr_digits(ctx): return repr_dps(ctx._prec) @property def _str_digits(ctx): return ctx._dps def extraprec(ctx, n, normalize_output=False): """ The block with extraprec(n): <code> increases the precision n bits, executes <code>, and then restores the precision. extraprec(n)(f) returns a decorated version of the function f that increases the working precision by n bits before execution, and restores the parent precision afterwards. With normalize_output=True, it rounds the return value to the parent precision. """ return PrecisionManager(ctx, lambda p: p + n, None, normalize_output) def extradps(ctx, n, normalize_output=False): """ This function is analogous to extraprec (see documentation) but changes the decimal precision instead of the number of bits. """ return PrecisionManager(ctx, None, lambda d: d + n, normalize_output) def workprec(ctx, n, normalize_output=False): """ The block with workprec(n): <code> sets the precision to n bits, executes <code>, and then restores the precision. workprec(n)(f) returns a decorated version of the function f that sets the precision to n bits before execution, and restores the precision afterwards. With normalize_output=True, it rounds the return value to the parent precision. """ return PrecisionManager(ctx, lambda p: n, None, normalize_output) def workdps(ctx, n, normalize_output=False): """ This function is analogous to workprec (see documentation) but changes the decimal precision instead of the number of bits. """ return PrecisionManager(ctx, None, lambda d: n, normalize_output) def autoprec(ctx, f, maxprec=None, catch=(), verbose=False): """ Return a wrapped copy of *f* that repeatedly evaluates *f* with increasing precision until the result converges to the full precision used at the point of the call. This heuristically protects against rounding errors, at the cost of roughly a 2x slowdown compared to manually setting the optimal precision. This method can, however, easily be fooled if the results from *f* depend "discontinuously" on the precision, for instance if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec` should be used judiciously. **Examples** Many functions are sensitive to perturbations of the input arguments. If the arguments are decimal numbers, they may have to be converted to binary at a much higher precision. If the amount of required extra precision is unknown, :func:`~mpmath.autoprec` is convenient:: >>> from mpmath import * >>> mp.dps = 15 >>> mp.pretty = True >>> besselj(5, 125 * 10**28) # Exact input -8.03284785591801e-17 >>> besselj(5, '1.25e30') # Bad 7.12954868316652e-16 >>> autoprec(besselj)(5, '1.25e30') # Good -8.03284785591801e-17 The following fails to converge because `\sin(\pi) = 0` whereas all finite-precision approximations of `\pi` give nonzero values:: >>> autoprec(sin)(pi) Traceback (most recent call last): ... NoConvergence: autoprec: prec increased to 2910 without convergence As the following example shows, :func:`~mpmath.autoprec` can protect against cancellation, but is fooled by too severe cancellation:: >>> x = 1e-10 >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x) 1.00000008274037e-10 1.00000000005e-10 1.00000000005e-10 >>> x = 1e-50 >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x) 0.0 1.0e-50 0.0 With *catch*, an exception or list of exceptions to intercept may be specified. The raised exception is interpreted as signaling insufficient precision. This permits, for example, evaluating a function where a too low precision results in a division by zero:: >>> f = lambda x: 1/(exp(x)-1) >>> f(1e-30) Traceback (most recent call last): ... ZeroDivisionError >>> autoprec(f, catch=ZeroDivisionError)(1e-30) 1.0e+30 """ def f_autoprec_wrapped(*args, **kwargs): prec = ctx.prec if maxprec is None: maxprec2 = ctx._default_hyper_maxprec(prec) else: maxprec2 = maxprec try: ctx.prec = prec + 10 try: v1 = f(*args, **kwargs) except catch: v1 = ctx.nan prec2 = prec + 20 while 1: ctx.prec = prec2 try: v2 = f(*args, **kwargs) except catch: v2 = ctx.nan if v1 == v2: break err = ctx.mag(v2-v1) - ctx.mag(v2) if err < (-prec): break if verbose: print("autoprec: target=%s, prec=%s, accuracy=%s" \ % (prec, prec2, -err)) v1 = v2 if prec2 >= maxprec2: raise ctx.NoConvergence(\ "autoprec: prec increased to %i without convergence"\ % prec2) prec2 += int(prec2*2) prec2 = min(prec2, maxprec2) finally: ctx.prec = prec return +v2 return f_autoprec_wrapped def nstr(ctx, x, n=6, **kwargs): """ Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n* significant digits. The small default value for *n* is chosen to make this function useful for printing collections of numbers (lists, matrices, etc). If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively to each element. For unrecognized classes, :func:`~mpmath.nstr` simply returns ``str(x)``. The companion function :func:`~mpmath.nprint` prints the result instead of returning it. >>> from mpmath import * >>> nstr([+pi, ldexp(1,-500)]) '[3.14159, 3.05494e-151]' >>> nprint([+pi, ldexp(1,-500)]) [3.14159, 3.05494e-151] """ if isinstance(x, list): return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x)) if isinstance(x, tuple): return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x)) if hasattr(x, '_mpf_'): return to_str(x._mpf_, n, **kwargs) if hasattr(x, '_mpc_'): return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")" if isinstance(x, basestring): return repr(x) if isinstance(x, ctx.matrix): return x.__nstr__(n, **kwargs) return str(x) def _convert_fallback(ctx, x, strings): if strings and isinstance(x, basestring): if 'j' in x.lower(): x = x.lower().replace(' ', '') match = get_complex.match(x) re = match.group('re') if not re: re = 0 im = match.group('im').rstrip('j') return ctx.mpc(ctx.convert(re), ctx.convert(im)) if hasattr(x, "_mpi_"): a, b = x._mpi_ if a == b: return ctx.make_mpf(a) else: raise ValueError("can only create mpf from zero-width interval") raise TypeError("cannot create mpf from " + repr(x)) def mpmathify(ctx, *args, **kwargs): return ctx.convert(*args, **kwargs) def _parse_prec(ctx, kwargs): if kwargs: if kwargs.get('exact'): return 0, 'f' prec, rounding = ctx._prec_rounding if 'rounding' in kwargs: rounding = kwargs['rounding'] if 'prec' in kwargs: prec = kwargs['prec'] if prec == ctx.inf: return 0, 'f' else: prec = int(prec) elif 'dps' in kwargs: dps = kwargs['dps'] if dps == ctx.inf: return 0, 'f' prec = dps_to_prec(dps) return prec, rounding return ctx._prec_rounding _exact_overflow_msg = "the exact result does not fit in memory" _hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy using a working precision of %i bits. Try with a higher maxprec, maxterms, or set zeroprec.""" def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs): if hasattr(z, "_mpf_"): key = p, q, flags, 'R' v = z._mpf_ elif hasattr(z, "_mpc_"): key = p, q, flags, 'C' v = z._mpc_ if key not in ctx.hyp_summators: ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1] summator = ctx.hyp_summators[key] prec = ctx.prec maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec)) extraprec = 50 epsshift = 25 # Jumps in magnitude occur when parameters are close to negative # integers. We must ensure that these terms are included in # the sum and added accurately magnitude_check = {} max_total_jump = 0 for i, c in enumerate(coeffs): if flags[i] == 'Z': if i >= p and c <= 0: ok = False for ii, cc in enumerate(coeffs[:p]): # Note: c <= cc or c < cc, depending on convention if flags[ii] == 'Z' and cc <= 0 and c <= cc: ok = True if not ok: raise ZeroDivisionError("pole in hypergeometric series") continue n, d = ctx.nint_distance(c) n = -int(n) d = -d if i >= p and n >= 0 and d > 4: if n in magnitude_check: magnitude_check[n] += d else: magnitude_check[n] = d extraprec = max(extraprec, d - prec + 60) max_total_jump += abs(d) while 1: if extraprec > maxprec: raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec)) wp = prec + extraprec if magnitude_check: mag_dict = dict((n,None) for n in magnitude_check) else: mag_dict = {} zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \ epsshift, mag_dict, **kwargs) cancel = -magnitude jumps_resolved = True if extraprec < max_total_jump: for n in mag_dict.values(): if (n is None) or (n < prec): jumps_resolved = False break accurate = (cancel < extraprec-25-5 or not accurate_small) if jumps_resolved: if accurate: break # zero? zeroprec = kwargs.get('zeroprec') if zeroprec is not None: if cancel > zeroprec: if have_complex: return ctx.mpc(0) else: return ctx.zero # Some near-singularities were not included, so increase # precision and repeat until they are extraprec *= 2 # Possible workaround for bad roundoff in fixed-point arithmetic epsshift += 5 extraprec += 5 if type(zv) is tuple: if have_complex: return ctx.make_mpc(zv) else: return ctx.make_mpf(zv) else: return zv def ldexp(ctx, x, n): r""" Computes `x 2^n` efficiently. No rounding is performed. The argument `x` must be a real floating-point number (or possible to convert into one) and `n` must be a Python ``int``. >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> ldexp(1, 10) mpf('1024.0') >>> ldexp(1, -3) mpf('0.125') """ x = ctx.convert(x) return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n)) def frexp(ctx, x): r""" Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`, `n` a Python integer, and such that `x = y 2^n`. No rounding is performed. >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> frexp(7.5) (mpf('0.9375'), 3) """ x = ctx.convert(x) y, n = libmp.mpf_frexp(x._mpf_) return ctx.make_mpf(y), n def fneg(ctx, x, **kwargs): """ Negates the number *x*, giving a floating-point result, optionally using a custom precision and rounding mode. See the documentation of :func:`~mpmath.fadd` for a detailed description of how to specify precision and rounding. **Examples** An mpmath number is returned:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fneg(2.5) mpf('-2.5') >>> fneg(-5+2j) mpc(real='5.0', imag='-2.0') Precise control over rounding is possible:: >>> x = fadd(2, 1e-100, exact=True) >>> fneg(x) mpf('-2.0') >>> fneg(x, rounding='f') mpf('-2.0000000000000004') Negating with and without roundoff:: >>> n = 200000000000000000000001 >>> print(int(-mpf(n))) -200000000000000016777216 >>> print(int(fneg(n))) -200000000000000016777216 >>> print(int(fneg(n, prec=log(n,2)+1))) -200000000000000000000001 >>> print(int(fneg(n, dps=log(n,10)+1))) -200000000000000000000001 >>> print(int(fneg(n, prec=inf))) -200000000000000000000001 >>> print(int(fneg(n, dps=inf))) -200000000000000000000001 >>> print(int(fneg(n, exact=True))) -200000000000000000000001 """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) if hasattr(x, '_mpf_'): return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding)) if hasattr(x, '_mpc_'): return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding)) raise ValueError("Arguments need to be mpf or mpc compatible numbers") def fadd(ctx, x, y, **kwargs): """ Adds the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. The default precision is the working precision of the context. You can specify a custom precision in bits by passing the *prec* keyword argument, or by providing an equivalent decimal precision with the *dps* keyword argument. If the precision is set to ``+inf``, or if the flag *exact=True* is passed, an exact addition with no rounding is performed. When the precision is finite, the optional *rounding* keyword argument specifies the direction of rounding. Valid options are ``'n'`` for nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'`` for down, ``'u'`` for up. **Examples** Using :func:`~mpmath.fadd` with precision and rounding control:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fadd(2, 1e-20) mpf('2.0') >>> fadd(2, 1e-20, rounding='u') mpf('2.0000000000000004') >>> nprint(fadd(2, 1e-20, prec=100), 25) 2.00000000000000000001 >>> nprint(fadd(2, 1e-20, dps=15), 25) 2.0 >>> nprint(fadd(2, 1e-20, dps=25), 25) 2.00000000000000000001 >>> nprint(fadd(2, 1e-20, exact=True), 25) 2.00000000000000000001 Exact addition avoids cancellation errors, enforcing familiar laws of numbers such as `x+y-x = y`, which don't hold in floating-point arithmetic with finite precision:: >>> x, y = mpf(2), mpf('1e-1000') >>> print(x + y - x) 0.0 >>> print(fadd(x, y, prec=inf) - x) 1.0e-1000 >>> print(fadd(x, y, exact=True) - x) 1.0e-1000 Exact addition can be inefficient and may be impossible to perform with large magnitude differences:: >>> fadd(1, '1e-100000000000000000000', prec=inf) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers") def fsub(ctx, x, y, **kwargs): """ Subtracts the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. See the documentation of :func:`~mpmath.fadd` for a detailed description of how to specify precision and rounding. **Examples** Using :func:`~mpmath.fsub` with precision and rounding control:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fsub(2, 1e-20) mpf('2.0') >>> fsub(2, 1e-20, rounding='d') mpf('1.9999999999999998') >>> nprint(fsub(2, 1e-20, prec=100), 25) 1.99999999999999999999 >>> nprint(fsub(2, 1e-20, dps=15), 25) 2.0 >>> nprint(fsub(2, 1e-20, dps=25), 25) 1.99999999999999999999 >>> nprint(fsub(2, 1e-20, exact=True), 25) 1.99999999999999999999 Exact subtraction avoids cancellation errors, enforcing familiar laws of numbers such as `x-y+y = x`, which don't hold in floating-point arithmetic with finite precision:: >>> x, y = mpf(2), mpf('1e1000') >>> print(x - y + y) 0.0 >>> print(fsub(x, y, prec=inf) + y) 2.0 >>> print(fsub(x, y, exact=True) + y) 2.0 Exact addition can be inefficient and may be impossible to perform with large magnitude differences:: >>> fsub(1, '1e-100000000000000000000', prec=inf) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers") def fmul(ctx, x, y, **kwargs): """ Multiplies the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. See the documentation of :func:`~mpmath.fadd` for a detailed description of how to specify precision and rounding. **Examples** The result is an mpmath number:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fmul(2, 5.0) mpf('10.0') >>> fmul(0.5j, 0.5) mpc(real='0.0', imag='0.25') Avoiding roundoff:: >>> x, y = 10**10+1, 10**15+1 >>> print(x*y) 10000000001000010000000001 >>> print(mpf(x) * mpf(y)) 1.0000000001e+25 >>> print(int(mpf(x) * mpf(y))) 10000000001000011026399232 >>> print(int(fmul(x, y))) 10000000001000011026399232 >>> print(int(fmul(x, y, dps=25))) 10000000001000010000000001 >>> print(int(fmul(x, y, exact=True))) 10000000001000010000000001 Exact multiplication with complex numbers can be inefficient and may be impossible to perform with large magnitude differences between real and imaginary parts:: >>> x = 1+2j >>> y = mpc(2, '1e-100000000000000000000') >>> fmul(x, y) mpc(real='2.0', imag='4.0') >>> fmul(x, y, rounding='u') mpc(real='2.0', imag='4.0000000000000009') >>> fmul(x, y, exact=True) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers") def fdiv(ctx, x, y, **kwargs): """ Divides the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. See the documentation of :func:`~mpmath.fadd` for a detailed description of how to specify precision and rounding. **Examples** The result is an mpmath number:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fdiv(3, 2) mpf('1.5') >>> fdiv(2, 3) mpf('0.66666666666666663') >>> fdiv(2+4j, 0.5) mpc(real='4.0', imag='8.0') The rounding direction and precision can be controlled:: >>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits mpf('0.6666259765625') >>> fdiv(2, 3, rounding='d') mpf('0.66666666666666663') >>> fdiv(2, 3, prec=60) mpf('0.66666666666666667') >>> fdiv(2, 3, rounding='u') mpf('0.66666666666666674') Checking the error of a division by performing it at higher precision:: >>> fdiv(2, 3) - fdiv(2, 3, prec=100) mpf('-3.7007434154172148e-17') Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not allowed since the quotient of two floating-point numbers generally does not have an exact floating-point representation. (In the future this might be changed to allow the case where the division is actually exact.) >>> fdiv(2, 3, exact=True) Traceback (most recent call last): ... ValueError: division is not an exact operation """ prec, rounding = ctx._parse_prec(kwargs) if not prec: raise ValueError("division is not an exact operation") x = ctx.convert(x) y = ctx.convert(y) if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding)) raise ValueError("Arguments need to be mpf or mpc compatible numbers") def nint_distance(ctx, x): r""" Return `(n,d)` where `n` is the nearest integer to `x` and `d` is an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision (measured in bits) lost to cancellation when computing `x-n`. >>> from mpmath import * >>> n, d = nint_distance(5) >>> print(n); print(d) 5 -inf >>> n, d = nint_distance(mpf(5)) >>> print(n); print(d) 5 -inf >>> n, d = nint_distance(mpf(5.00000001)) >>> print(n); print(d) 5 -26 >>> n, d = nint_distance(mpf(4.99999999)) >>> print(n); print(d) 5 -26 >>> n, d = nint_distance(mpc(5,10)) >>> print(n); print(d) 5 4 >>> n, d = nint_distance(mpc(5,0.000001)) >>> print(n); print(d) 5 -19 """ typx = type(x) if typx in int_types: return int(x), ctx.ninf elif typx is rational.mpq: p, q = x._mpq_ n, r = divmod(p, q) if 2*r >= q: n += 1 elif not r: return n, ctx.ninf # log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q) d = bitcount(abs(p-n*q)) - bitcount(q) return n, d if hasattr(x, "_mpf_"): re = x._mpf_ im_dist = ctx.ninf elif hasattr(x, "_mpc_"): re, im = x._mpc_ isign, iman, iexp, ibc = im if iman: im_dist = iexp + ibc elif im == fzero: im_dist = ctx.ninf else: raise ValueError("requires a finite number") else: x = ctx.convert(x) if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"): return ctx.nint_distance(x) else: raise TypeError("requires an mpf/mpc") sign, man, exp, bc = re mag = exp+bc # |x| < 0.5 if mag < 0: n = 0 re_dist = mag elif man: # exact integer if exp >= 0: n = man << exp re_dist = ctx.ninf # exact half-integer elif exp == -1: n = (man>>1)+1 re_dist = 0 else: d = (-exp-1) t = man >> d if t & 1: t += 1 man = (t<<d) - man else: man -= (t<<d) n = t>>1 # int(t)>>1 re_dist = exp+bitcount(man) if sign: n = -n elif re == fzero: re_dist = ctx.ninf n = 0 else: raise ValueError("requires a finite number") return n, max(re_dist, im_dist) def fprod(ctx, factors): r""" Calculates a product containing a finite number of factors (for infinite products, see :func:`~mpmath.nprod`). The factors will be converted to mpmath numbers. >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fprod([1, 2, 0.5, 7]) mpf('7.0') """ orig = ctx.prec try: v = ctx.one for p in factors: v *= p finally: ctx.prec = orig return +v def rand(ctx): """ Returns an ``mpf`` with value chosen randomly from `[0, 1)`. The number of randomly generated bits in the mantissa is equal to the working precision. """ return ctx.make_mpf(mpf_rand(ctx._prec)) def fraction(ctx, p, q): """ Given Python integers `(p, q)`, returns a lazy ``mpf`` representing the fraction `p/q`. The value is updated with the precision. >>> from mpmath import * >>> mp.dps = 15 >>> a = fraction(1,100) >>> b = mpf(1)/100 >>> print(a); print(b) 0.01 0.01 >>> mp.dps = 30 >>> print(a); print(b) # a will be accurate 0.01 0.0100000000000000002081668171172 >>> mp.dps = 15 """ return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd), '%s/%s' % (p, q)) def absmin(ctx, x): return abs(ctx.convert(x)) def absmax(ctx, x): return abs(ctx.convert(x)) def _as_points(ctx, x): # XXX: remove this? if hasattr(x, '_mpi_'): a, b = x._mpi_ return [ctx.make_mpf(a), ctx.make_mpf(b)] return x ''' def _zetasum(ctx, s, a, b): """ Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small integers. """ a = int(a) b = int(b) s = ctx.convert(s) prec, rounding = ctx._prec_rounding if hasattr(s, '_mpf_'): v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec)) elif hasattr(s, '_mpc_'): v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec)) return v ''' def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False): if not (ctx.isint(a) and hasattr(s, "_mpc_")): raise NotImplementedError a = int(a) prec = ctx._prec xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec) xs = [ctx.make_mpc(x) for x in xs] ys = [ctx.make_mpc(y) for y in ys] return xs, ys class PrecisionManager: def __init__(self, ctx, precfun, dpsfun, normalize_output=False): self.ctx = ctx self.precfun = precfun self.dpsfun = dpsfun self.normalize_output = normalize_output def __call__(self, f): def g(*args, **kwargs): orig = self.ctx.prec try: if self.precfun: self.ctx.prec = self.precfun(self.ctx.prec) else: self.ctx.dps = self.dpsfun(self.ctx.dps) if self.normalize_output: v = f(*args, **kwargs) if type(v) is tuple: return tuple([+a for a in v]) return +v else: return f(*args, **kwargs) finally: self.ctx.prec = orig g.__name__ = f.__name__ g.__doc__ = f.__doc__ return g def __enter__(self): self.origp = self.ctx.prec if self.precfun: self.ctx.prec = self.precfun(self.ctx.prec) else: self.ctx.dps = self.dpsfun(self.ctx.dps) def __exit__(self, exc_type, exc_val, exc_tb): self.ctx.prec = self.origp return False if __name__ == '__main__': import doctest doctest.testmod()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/ctx_mp.py
ctx_mp.py
from .functions import defun, defun_wrapped @defun def qp(ctx, a, q=None, n=None, **kwargs): r""" Evaluates the q-Pochhammer symbol (or q-rising factorial) .. math :: (a; q)_n = \prod_{k=0}^{n-1} (1-a q^k) where `n = \infty` is permitted if `|q| < 1`. Called with two arguments, ``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)`` computes `(q;q)_{\infty}`. The special case .. math :: \phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) = \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2} is also known as the Euler function, or (up to a factor `q^{-1/24}`) the Dirichlet eta function. **Examples** If `n` is a positive integer, the function amounts to a finite product:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qp(2,3,5) -725305.0 >>> fprod(1-2*3**k for k in range(5)) -725305.0 >>> qp(2,3,0) 1.0 Complex arguments are allowed:: >>> qp(2-1j, 0.75j) (0.4628842231660149089976379 + 4.481821753552703090628793j) The regular Pochhammer symbol `(a)_n` is obtained in the following limit as `q \to 1`:: >>> a, n = 4, 7 >>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1) 604800.0 >>> rf(a,n) 604800.0 The Taylor series of the reciprocal Euler function gives the partition function `P(n)`, i.e. the number of ways of writing `n` as a sum of positive integers:: >>> taylor(lambda q: 1/qp(q), 0, 10) [1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0] Special values include:: >>> qp(0) 1.0 >>> findroot(diffun(qp), -0.4) # location of maximum -0.4112484791779547734440257 >>> qp(_) 1.228348867038575112586878 The q-Pochhammer symbol is related to the Jacobi theta functions. For example, the following identity holds:: >>> q = mpf(0.5) # arbitrary >>> qp(q) 0.2887880950866024212788997 >>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6)) 0.2887880950866024212788997 """ a = ctx.convert(a) if n is None: n = ctx.inf else: n = ctx.convert(n) assert n >= 0 if q is None: q = a else: q = ctx.convert(q) if n == 0: return ctx.one + 0*(a+q) infinite = (n == ctx.inf) same = (a == q) if infinite: if abs(q) >= 1: if same and (q == -1 or q == 1): return ctx.zero * q raise ValueError("q-function only defined for |q| < 1") elif q == 0: return ctx.one - a maxterms = kwargs.get('maxterms', 50*ctx.prec) if infinite and same: # Euler's pentagonal theorem def terms(): t = 1 yield t k = 1 x1 = q x2 = q**2 while 1: yield (-1)**k * x1 yield (-1)**k * x2 x1 *= q**(3*k+1) x2 *= q**(3*k+2) k += 1 if k > maxterms: raise ctx.NoConvergence return ctx.sum_accurately(terms) # return ctx.nprod(lambda k: 1-a*q**k, [0,n-1]) def factors(): k = 0 r = ctx.one while 1: yield 1 - a*r r *= q k += 1 if k >= n: raise StopIteration if k > maxterms: raise ctx.NoConvergence return ctx.mul_accurately(factors) @defun_wrapped def qgamma(ctx, z, q, **kwargs): r""" Evaluates the q-gamma function .. math :: \Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}. **Examples** Evaluation for real and complex arguments:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qgamma(4,0.75) 4.046875 >>> qgamma(6,6) 121226245.0 >>> qgamma(3+4j, 0.5j) (0.1663082382255199834630088 + 0.01952474576025952984418217j) The q-gamma function satisfies a functional equation similar to that of the ordinary gamma function:: >>> q = mpf(0.25) >>> z = mpf(2.5) >>> qgamma(z+1,q) 1.428277424823760954685912 >>> (1-q**z)/(1-q)*qgamma(z,q) 1.428277424823760954685912 """ if abs(q) > 1: return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5) return ctx.qp(q, q, None, **kwargs) / \ ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z) @defun_wrapped def qfac(ctx, z, q, **kwargs): r""" Evaluates the q-factorial, .. math :: [n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}) or more generally .. math :: [z]_q! = \frac{(q;q)_z}{(1-q)^z}. **Examples** >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qfac(0,0) 1.0 >>> qfac(4,3) 2080.0 >>> qfac(5,6) 121226245.0 >>> qfac(1+1j, 2+1j) (0.4370556551322672478613695 + 0.2609739839216039203708921j) """ if ctx.isint(z) and ctx._re(z) > 0: n = int(ctx._re(z)) return ctx.qp(q, q, n, **kwargs) / (1-q)**n return ctx.qgamma(z+1, q, **kwargs) @defun def qhyper(ctx, a_s, b_s, q, z, **kwargs): r""" Evaluates the basic hypergeometric series or hypergeometric q-series .. math :: \,_r\phi_s \left[\begin{matrix} a_1 & a_2 & \ldots & a_r \\ b_1 & b_2 & \ldots & b_s \end{matrix} ; q,z \right] = \sum_{n=0}^\infty \frac{(a_1;q)_n, \ldots, (a_r;q)_n} {(b_1;q)_n, \ldots, (b_s;q)_n} \left((-1)^n q^{n\choose 2}\right)^{1+s-r} \frac{z^n}{(q;q)_n} where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`). **Examples** Evaluation works for real and complex arguments:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qhyper([0.5], [2.25], 0.25, 4) -0.1975849091263356009534385 >>> qhyper([0.5], [2.25], 0.25-0.25j, 4) (2.806330244925716649839237 + 3.568997623337943121769938j) >>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j) (9.112885171773400017270226 - 1.272756997166375050700388j) Comparing with a summation of the defining series, using :func:`~mpmath.nsum`:: >>> b, q, z = 3, 0.25, 0.5 >>> qhyper([], [b], q, z) 0.6221136748254495583228324 >>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf]) 0.6221136748254495583228324 """ #a_s = [ctx._convert_param(a)[0] for a in a_s] #b_s = [ctx._convert_param(b)[0] for b in b_s] #q = ctx._convert_param(q)[0] a_s = [ctx.convert(a) for a in a_s] b_s = [ctx.convert(b) for b in b_s] q = ctx.convert(q) z = ctx.convert(z) r = len(a_s) s = len(b_s) d = 1+s-r maxterms = kwargs.get('maxterms', 50*ctx.prec) def terms(): t = ctx.one yield t qk = 1 k = 0 x = 1 while 1: for a in a_s: p = 1 - a*qk t *= p for b in b_s: p = 1 - b*qk if not p: raise ValueError t /= p t *= z x *= (-1)**d * qk ** d qk *= q t /= (1 - qk) k += 1 yield t * x if k > maxterms: raise ctx.NoConvergence return ctx.sum_accurately(terms)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/qfunctions.py
qfunctions.py
r""" Elliptic functions historically comprise the elliptic integrals and their inverses, and originate from the problem of computing the arc length of an ellipse. From a more modern point of view, an elliptic function is defined as a doubly periodic function, i.e. a function which satisfies .. math :: f(z + 2 \omega_1) = f(z + 2 \omega_2) = f(z) for some half-periods `\omega_1, \omega_2` with `\mathrm{Im}[\omega_1 / \omega_2] > 0`. The canonical elliptic functions are the Jacobi elliptic functions. More broadly, this section includes quasi-doubly periodic functions (such as the Jacobi theta functions) and other functions useful in the study of elliptic functions. Many different conventions for the arguments of elliptic functions are in use. It is even standard to use different parameterizations for different functions in the same text or software (and mpmath is no exception). The usual parameters are the elliptic nome `q`, which usually must satisfy `|q| < 1`; the elliptic parameter `m` (an arbitrary complex number); the elliptic modulus `k` (an arbitrary complex number); and the half-period ratio `\tau`, which usually must satisfy `\mathrm{Im}[\tau] > 0`. These quantities can be expressed in terms of each other using the following relations: .. math :: m = k^2 .. math :: \tau = -i \frac{K(1-m)}{K(m)} .. math :: q = e^{i \pi \tau} .. math :: k = \frac{\vartheta_2^4(q)}{\vartheta_3^4(q)} In addition, an alternative definition is used for the nome in number theory, which we here denote by q-bar: .. math :: \bar{q} = q^2 = e^{2 i \pi \tau} For convenience, mpmath provides functions to convert between the various parameters (:func:`~mpmath.qfrom`, :func:`~mpmath.mfrom`, :func:`~mpmath.kfrom`, :func:`~mpmath.taufrom`, :func:`~mpmath.qbarfrom`). **References** 1. [AbramowitzStegun]_ 2. [WhittakerWatson]_ """ from .functions import defun, defun_wrapped def nome(ctx, m): m = ctx.convert(m) if not m: return m if m == ctx.one: return m if ctx.isnan(m): return m if ctx.isinf(m): if m == ctx.ninf: return type(m)(-1) else: return ctx.mpc(-1) a = ctx.ellipk(ctx.one-m) b = ctx.ellipk(m) v = ctx.exp(-ctx.pi*a/b) if not ctx._im(m) and ctx._re(m) < 1: if ctx._is_real_type(m): return v.real else: return v.real + 0j elif m == 2: v = ctx.mpc(0, v.imag) return v @defun_wrapped def qfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic nome `q`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qfrom(q=0.25) 0.25 >>> qfrom(m=mfrom(q=0.25)) 0.25 >>> qfrom(k=kfrom(q=0.25)) 0.25 >>> qfrom(tau=taufrom(q=0.25)) (0.25 + 0.0j) >>> qfrom(qbar=qbarfrom(q=0.25)) 0.25 """ if q is not None: return ctx.convert(q) if m is not None: return nome(ctx, m) if k is not None: return nome(ctx, ctx.convert(k)**2) if tau is not None: return ctx.expjpi(tau) if qbar is not None: return ctx.sqrt(qbar) @defun_wrapped def qbarfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the number-theoretic nome `\bar q`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qbarfrom(qbar=0.25) 0.25 >>> qbarfrom(q=qfrom(qbar=0.25)) 0.25 >>> qbarfrom(m=extraprec(20)(mfrom)(qbar=0.25)) # ill-conditioned 0.25 >>> qbarfrom(k=extraprec(20)(kfrom)(qbar=0.25)) # ill-conditioned 0.25 >>> qbarfrom(tau=taufrom(qbar=0.25)) (0.25 + 0.0j) """ if qbar is not None: return ctx.convert(qbar) if q is not None: return ctx.convert(q) ** 2 if m is not None: return nome(ctx, m) ** 2 if k is not None: return nome(ctx, ctx.convert(k)**2) ** 2 if tau is not None: return ctx.expjpi(2*tau) @defun_wrapped def taufrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic half-period ratio `\tau`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> taufrom(tau=0.5j) (0.0 + 0.5j) >>> taufrom(q=qfrom(tau=0.5j)) (0.0 + 0.5j) >>> taufrom(m=mfrom(tau=0.5j)) (0.0 + 0.5j) >>> taufrom(k=kfrom(tau=0.5j)) (0.0 + 0.5j) >>> taufrom(qbar=qbarfrom(tau=0.5j)) (0.0 + 0.5j) """ if tau is not None: return ctx.convert(tau) if m is not None: m = ctx.convert(m) return ctx.j*ctx.ellipk(1-m)/ctx.ellipk(m) if k is not None: k = ctx.convert(k) return ctx.j*ctx.ellipk(1-k**2)/ctx.ellipk(k**2) if q is not None: return ctx.log(q) / (ctx.pi*ctx.j) if qbar is not None: qbar = ctx.convert(qbar) return ctx.log(qbar) / (2*ctx.pi*ctx.j) @defun_wrapped def kfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic modulus `k`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> kfrom(k=0.25) 0.25 >>> kfrom(m=mfrom(k=0.25)) 0.25 >>> kfrom(q=qfrom(k=0.25)) 0.25 >>> kfrom(tau=taufrom(k=0.25)) (0.25 + 0.0j) >>> kfrom(qbar=qbarfrom(k=0.25)) 0.25 As `q \to 1` and `q \to -1`, `k` rapidly approaches `1` and `i \infty` respectively:: >>> kfrom(q=0.75) 0.9999999999999899166471767 >>> kfrom(q=-0.75) (0.0 + 7041781.096692038332790615j) >>> kfrom(q=1) 1 >>> kfrom(q=-1) (0.0 + +infj) """ if k is not None: return ctx.convert(k) if m is not None: return ctx.sqrt(m) if tau is not None: q = ctx.expjpi(tau) if qbar is not None: q = ctx.sqrt(qbar) if q == 1: return q if q == -1: return ctx.mpc(0,'inf') return (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**2 @defun_wrapped def mfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic parameter `m`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> mfrom(m=0.25) 0.25 >>> mfrom(q=qfrom(m=0.25)) 0.25 >>> mfrom(k=kfrom(m=0.25)) 0.25 >>> mfrom(tau=taufrom(m=0.25)) (0.25 + 0.0j) >>> mfrom(qbar=qbarfrom(m=0.25)) 0.25 As `q \to 1` and `q \to -1`, `m` rapidly approaches `1` and `-\infty` respectively:: >>> mfrom(q=0.75) 0.9999999999999798332943533 >>> mfrom(q=-0.75) -49586681013729.32611558353 >>> mfrom(q=1) 1.0 >>> mfrom(q=-1) -inf The inverse nome as a function of `q` has an integer Taylor series expansion:: >>> taylor(lambda q: mfrom(q), 0, 7) [0.0, 16.0, -128.0, 704.0, -3072.0, 11488.0, -38400.0, 117632.0] """ if m is not None: return m if k is not None: return k**2 if tau is not None: q = ctx.expjpi(tau) if qbar is not None: q = ctx.sqrt(qbar) if q == 1: return ctx.convert(q) if q == -1: return q*ctx.inf v = (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**4 if ctx._is_real_type(q) and q < 0: v = v.real return v jacobi_spec = { 'sn' : ([3],[2],[1],[4], 'sin', 'tanh'), 'cn' : ([4],[2],[2],[4], 'cos', 'sech'), 'dn' : ([4],[3],[3],[4], '1', 'sech'), 'ns' : ([2],[3],[4],[1], 'csc', 'coth'), 'nc' : ([2],[4],[4],[2], 'sec', 'cosh'), 'nd' : ([3],[4],[4],[3], '1', 'cosh'), 'sc' : ([3],[4],[1],[2], 'tan', 'sinh'), 'sd' : ([3,3],[2,4],[1],[3], 'sin', 'sinh'), 'cd' : ([3],[2],[2],[3], 'cos', '1'), 'cs' : ([4],[3],[2],[1], 'cot', 'csch'), 'dc' : ([2],[3],[3],[2], 'sec', '1'), 'ds' : ([2,4],[3,3],[3],[1], 'csc', 'csch'), 'cc' : None, 'ss' : None, 'nn' : None, 'dd' : None } @defun def ellipfun(ctx, kind, u=None, m=None, q=None, k=None, tau=None): try: S = jacobi_spec[kind] except KeyError: raise ValueError("First argument must be a two-character string " "containing 's', 'c', 'd' or 'n', e.g.: 'sn'") if u is None: def f(*args, **kwargs): return ctx.ellipfun(kind, *args, **kwargs) f.__name__ = kind return f prec = ctx.prec try: ctx.prec += 10 u = ctx.convert(u) q = ctx.qfrom(m=m, q=q, k=k, tau=tau) if S is None: v = ctx.one + 0*q*u elif q == ctx.zero: if S[4] == '1': v = ctx.one else: v = getattr(ctx, S[4])(u) v += 0*q*u elif q == ctx.one: if S[5] == '1': v = ctx.one else: v = getattr(ctx, S[5])(u) v += 0*q*u else: t = u / ctx.jtheta(3, 0, q)**2 v = ctx.one for a in S[0]: v *= ctx.jtheta(a, 0, q) for b in S[1]: v /= ctx.jtheta(b, 0, q) for c in S[2]: v *= ctx.jtheta(c, t, q) for d in S[3]: v /= ctx.jtheta(d, t, q) finally: ctx.prec = prec return +v @defun_wrapped def kleinj(ctx, tau=None, **kwargs): r""" Evaluates the Klein j-invariant, which is a modular function defined for `\tau` in the upper half-plane as .. math :: J(\tau) = \frac{g_2^3(\tau)}{g_2^3(\tau) - 27 g_3^2(\tau)} where `g_2` and `g_3` are the modular invariants of the Weierstrass elliptic function, .. math :: g_2(\tau) = 60 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-4} g_3(\tau) = 140 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-6}. An alternative, common notation is that of the j-function `j(\tau) = 1728 J(\tau)`. **Plots** .. literalinclude :: /plots/kleinj.py .. image :: /plots/kleinj.png .. literalinclude :: /plots/kleinj2.py .. image :: /plots/kleinj2.png **Examples** Verifying the functional equation `J(\tau) = J(\tau+1) = J(-\tau^{-1})`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> tau = 0.625+0.75*j >>> tau = 0.625+0.75*j >>> kleinj(tau) (-0.1507492166511182267125242 + 0.07595948379084571927228948j) >>> kleinj(tau+1) (-0.1507492166511182267125242 + 0.07595948379084571927228948j) >>> kleinj(-1/tau) (-0.1507492166511182267125242 + 0.07595948379084571927228946j) The j-function has a famous Laurent series expansion in terms of the nome `\bar{q}`, `j(\tau) = \bar{q}^{-1} + 744 + 196884\bar{q} + \ldots`:: >>> mp.dps = 15 >>> taylor(lambda q: 1728*q*kleinj(qbar=q), 0, 5, singular=True) [1.0, 744.0, 196884.0, 21493760.0, 864299970.0, 20245856256.0] The j-function admits exact evaluation at special algebraic points related to the Heegner numbers 1, 2, 3, 7, 11, 19, 43, 67, 163:: >>> @extraprec(10) ... def h(n): ... v = (1+sqrt(n)*j) ... if n > 2: ... v *= 0.5 ... return v ... >>> mp.dps = 25 >>> for n in [1,2,3,7,11,19,43,67,163]: ... n, chop(1728*kleinj(h(n))) ... (1, 1728.0) (2, 8000.0) (3, 0.0) (7, -3375.0) (11, -32768.0) (19, -884736.0) (43, -884736000.0) (67, -147197952000.0) (163, -262537412640768000.0) Also at other special points, the j-function assumes explicit algebraic values, e.g.:: >>> chop(1728*kleinj(j*sqrt(5))) 1264538.909475140509320227 >>> identify(cbrt(_)) # note: not simplified '((100+sqrt(13520))/2)' >>> (50+26*sqrt(5))**3 1264538.909475140509320227 """ q = ctx.qfrom(tau=tau, **kwargs) t2 = ctx.jtheta(2,0,q) t3 = ctx.jtheta(3,0,q) t4 = ctx.jtheta(4,0,q) P = (t2**8 + t3**8 + t4**8)**3 Q = 54*(t2*t3*t4)**8 return P/Q def RF_calc(ctx, x, y, z, r): if y == z: return RC_calc(ctx, x, y, r) if x == z: return RC_calc(ctx, y, x, r) if x == y: return RC_calc(ctx, z, x, r) if not (ctx.isnormal(x) and ctx.isnormal(y) and ctx.isnormal(z)): if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z): return x*y*z if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z): return ctx.zero xm,ym,zm = x,y,z A0 = Am = (x+y+z)/3 Q = ctx.root(3*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z)) g = ctx.mpf(0.25) pow4 = ctx.one m = 0 while 1: xs = ctx.sqrt(xm) ys = ctx.sqrt(ym) zs = ctx.sqrt(zm) lm = xs*ys + xs*zs + ys*zs Am1 = (Am+lm)*g xm, ym, zm = (xm+lm)*g, (ym+lm)*g, (zm+lm)*g if pow4 * Q < abs(Am): break Am = Am1 m += 1 pow4 *= g t = pow4/Am X = (A0-x)*t Y = (A0-y)*t Z = -X-Y E2 = X*Y-Z**2 E3 = X*Y*Z return ctx.power(Am,-0.5) * (9240-924*E2+385*E2**2+660*E3-630*E2*E3)/9240 def RC_calc(ctx, x, y, r, pv=True): if not (ctx.isnormal(x) and ctx.isnormal(y)): if ctx.isinf(x) or ctx.isinf(y): return 1/(x*y) if y == 0: return ctx.inf if x == 0: return ctx.pi / ctx.sqrt(y) / 2 raise ValueError # Cauchy principal value if pv and ctx._im(y) == 0 and ctx._re(y) < 0: return ctx.sqrt(x/(x-y)) * RC_calc(ctx, x-y, -y, r) if x == y: return 1/ctx.sqrt(x) extraprec = 2*max(0,-ctx.mag(x-y)+ctx.mag(x)) ctx.prec += extraprec if ctx._is_real_type(x) and ctx._is_real_type(y): x = ctx._re(x) y = ctx._re(y) a = ctx.sqrt(x/y) if x < y: b = ctx.sqrt(y-x) v = ctx.acos(a)/b else: b = ctx.sqrt(x-y) v = ctx.acosh(a)/b else: sx = ctx.sqrt(x) sy = ctx.sqrt(y) v = ctx.acos(sx/sy)/(ctx.sqrt((1-x/y))*sy) ctx.prec -= extraprec return v def RJ_calc(ctx, x, y, z, p, r): if not (ctx.isnormal(x) and ctx.isnormal(y) and \ ctx.isnormal(z) and ctx.isnormal(p)): if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z) or ctx.isnan(p): return x*y*z if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z) or ctx.isinf(p): return ctx.zero if not p: return ctx.inf xm,ym,zm,pm = x,y,z,p A0 = Am = (x + y + z + 2*p)/5 delta = (p-x)*(p-y)*(p-z) Q = ctx.root(0.25*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z),abs(A0-p)) m = 0 g = ctx.mpf(0.25) pow4 = ctx.one S = 0 while 1: sx = ctx.sqrt(xm) sy = ctx.sqrt(ym) sz = ctx.sqrt(zm) sp = ctx.sqrt(pm) lm = sx*sy + sx*sz + sy*sz Am1 = (Am+lm)*g xm = (xm+lm)*g; ym = (ym+lm)*g; zm = (zm+lm)*g; pm = (pm+lm)*g dm = (sp+sx) * (sp+sy) * (sp+sz) em = delta * ctx.power(4, -3*m) / dm**2 if pow4 * Q < abs(Am): break T = RC_calc(ctx, ctx.one, ctx.one+em, r) * pow4 / dm S += T pow4 *= g m += 1 Am = Am1 t = ctx.ldexp(1,-2*m) / Am X = (A0-x)*t Y = (A0-y)*t Z = (A0-z)*t P = (-X-Y-Z)/2 E2 = X*Y + X*Z + Y*Z - 3*P**2 E3 = X*Y*Z + 2*E2*P + 4*P**3 E4 = (2*X*Y*Z + E2*P + 3*P**3)*P E5 = X*Y*Z*P**2 P = 24024 - 5148*E2 + 2457*E2**2 + 4004*E3 - 4158*E2*E3 - 3276*E4 + 2772*E5 Q = 24024 v1 = g**m * ctx.power(Am, -1.5) * P/Q v2 = 6*S return v1 + v2 @defun def elliprf(ctx, x, y, z): r""" Evaluates the Carlson symmetric elliptic integral of the first kind .. math :: R_F(x,y,z) = \frac{1}{2} \int_0^{\infty} \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}} which is defined for `x,y,z \notin (-\infty,0)`, and with at most one of `x,y,z` being zero. For real `x,y,z \ge 0`, the principal square root is taken in the integrand. For complex `x,y,z`, the principal square root is taken as `t \to \infty` and as `t \to 0` non-principal branches are chosen as necessary so as to make the integrand continuous. **Examples** Some basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprf(0,1,1); pi/2 1.570796326794896619231322 1.570796326794896619231322 >>> elliprf(0,1,inf) 0.0 >>> elliprf(1,1,1) 1.0 >>> elliprf(2,2,2)**2 0.5 >>> elliprf(1,0,0); elliprf(0,0,1); elliprf(0,1,0); elliprf(0,0,0) +inf +inf +inf +inf Representing complete elliptic integrals in terms of `R_F`:: >>> m = mpf(0.75) >>> ellipk(m); elliprf(0,1-m,1) 2.156515647499643235438675 2.156515647499643235438675 >>> ellipe(m); elliprf(0,1-m,1)-m*elliprd(0,1-m,1)/3 1.211056027568459524803563 1.211056027568459524803563 Some symmetries and argument transformations:: >>> x,y,z = 2,3,4 >>> elliprf(x,y,z); elliprf(y,x,z); elliprf(z,y,x) 0.5840828416771517066928492 0.5840828416771517066928492 0.5840828416771517066928492 >>> k = mpf(100000) >>> elliprf(k*x,k*y,k*z); k**(-0.5) * elliprf(x,y,z) 0.001847032121923321253219284 0.001847032121923321253219284 >>> l = sqrt(x*y) + sqrt(y*z) + sqrt(z*x) >>> elliprf(x,y,z); 2*elliprf(x+l,y+l,z+l) 0.5840828416771517066928492 0.5840828416771517066928492 >>> elliprf((x+l)/4,(y+l)/4,(z+l)/4) 0.5840828416771517066928492 Comparing with numerical integration:: >>> x,y,z = 2,3,4 >>> elliprf(x,y,z) 0.5840828416771517066928492 >>> f = lambda t: 0.5*((t+x)*(t+y)*(t+z))**(-0.5) >>> q = extradps(25)(quad) >>> q(f, [0,inf]) 0.5840828416771517066928492 With the following arguments, the square root in the integrand becomes discontinuous at `t = 1/2` if the principal branch is used. To obtain the right value, `-\sqrt{r}` must be taken instead of `\sqrt{r}` on `t \in (0, 1/2)`:: >>> x,y,z = j-1,j,0 >>> elliprf(x,y,z) (0.7961258658423391329305694 - 1.213856669836495986430094j) >>> -q(f, [0,0.5]) + q(f, [0.5,inf]) (0.7961258658423391329305694 - 1.213856669836495986430094j) The so-called *first lemniscate constant*, a transcendental number:: >>> elliprf(0,1,2) 1.31102877714605990523242 >>> extradps(25)(quad)(lambda t: 1/sqrt(1-t**4), [0,1]) 1.31102877714605990523242 >>> gamma('1/4')**2/(4*sqrt(2*pi)) 1.31102877714605990523242 **References** 1. [Carlson]_ 2. [DLMF]_ Chapter 19. Elliptic Integrals """ x = ctx.convert(x) y = ctx.convert(y) z = ctx.convert(z) prec = ctx.prec try: ctx.prec += 20 tol = ctx.eps * 2**10 v = RF_calc(ctx, x, y, z, tol) finally: ctx.prec = prec return +v @defun def elliprc(ctx, x, y, pv=True): r""" Evaluates the degenerate Carlson symmetric elliptic integral of the first kind .. math :: R_C(x,y) = R_F(x,y,y) = \frac{1}{2} \int_0^{\infty} \frac{dt}{(t+y) \sqrt{(t+x)}}. If `y \in (-\infty,0)`, either a value defined by continuity, or with *pv=True* the Cauchy principal value, can be computed. If `x \ge 0, y > 0`, the value can be expressed in terms of elementary functions as .. math :: R_C(x,y) = \begin{cases} \dfrac{1}{\sqrt{y-x}} \cos^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x < y \\ \dfrac{1}{\sqrt{y}}, & x = y \\ \dfrac{1}{\sqrt{x-y}} \cosh^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x > y \\ \end{cases}. **Examples** Some special values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprc(1,2)*4; elliprc(0,1)*2; +pi 3.141592653589793238462643 3.141592653589793238462643 3.141592653589793238462643 >>> elliprc(1,0) +inf >>> elliprc(5,5)**2 0.2 >>> elliprc(1,inf); elliprc(inf,1); elliprc(inf,inf) 0.0 0.0 0.0 Comparing with the elementary closed-form solution:: >>> elliprc('1/3', '1/5'); sqrt(7.5)*acosh(sqrt('5/3')) 2.041630778983498390751238 2.041630778983498390751238 >>> elliprc('1/5', '1/3'); sqrt(7.5)*acos(sqrt('3/5')) 1.875180765206547065111085 1.875180765206547065111085 Comparing with numerical integration:: >>> q = extradps(25)(quad) >>> elliprc(2, -3, pv=True) 0.3333969101113672670749334 >>> elliprc(2, -3, pv=False) (0.3333969101113672670749334 + 0.7024814731040726393156375j) >>> 0.5*q(lambda t: 1/(sqrt(t+2)*(t-3)), [0,3-j,6,inf]) (0.3333969101113672670749334 + 0.7024814731040726393156375j) """ x = ctx.convert(x) y = ctx.convert(y) prec = ctx.prec try: ctx.prec += 20 tol = ctx.eps * 2**10 v = RC_calc(ctx, x, y, tol, pv) finally: ctx.prec = prec return +v @defun def elliprj(ctx, x, y, z, p): r""" Evaluates the Carlson symmetric elliptic integral of the third kind .. math :: R_J(x,y,z,p) = \frac{3}{2} \int_0^{\infty} \frac{dt}{(t+p)\sqrt{(t+x)(t+y)(t+z)}}. Like :func:`~mpmath.elliprf`, the branch of the square root in the integrand is defined so as to be continuous along the path of integration for complex values of the arguments. **Examples** Some values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprj(1,1,1,1) 1.0 >>> elliprj(2,2,2,2); 1/(2*sqrt(2)) 0.3535533905932737622004222 0.3535533905932737622004222 >>> elliprj(0,1,2,2) 1.067937989667395702268688 >>> 3*(2*gamma('5/4')**2-pi**2/gamma('1/4')**2)/(sqrt(2*pi)) 1.067937989667395702268688 >>> elliprj(0,1,1,2); 3*pi*(2-sqrt(2))/4 1.380226776765915172432054 1.380226776765915172432054 >>> elliprj(1,3,2,0); elliprj(0,1,1,0); elliprj(0,0,0,0) +inf +inf +inf >>> elliprj(1,inf,1,0); elliprj(1,1,1,inf) 0.0 0.0 >>> chop(elliprj(1+j, 1-j, 1, 1)) 0.8505007163686739432927844 Scale transformation:: >>> x,y,z,p = 2,3,4,5 >>> k = mpf(100000) >>> elliprj(k*x,k*y,k*z,k*p); k**(-1.5)*elliprj(x,y,z,p) 4.521291677592745527851168e-9 4.521291677592745527851168e-9 Comparing with numerical integration:: >>> elliprj(1,2,3,4) 0.2398480997495677621758617 >>> f = lambda t: 1/((t+4)*sqrt((t+1)*(t+2)*(t+3))) >>> 1.5*quad(f, [0,inf]) 0.2398480997495677621758617 >>> elliprj(1,2+1j,3,4-2j) (0.216888906014633498739952 + 0.04081912627366673332369512j) >>> f = lambda t: 1/((t+4-2j)*sqrt((t+1)*(t+2+1j)*(t+3))) >>> 1.5*quad(f, [0,inf]) (0.216888906014633498739952 + 0.04081912627366673332369511j) """ x = ctx.convert(x) y = ctx.convert(y) z = ctx.convert(z) p = ctx.convert(p) prec = ctx.prec try: ctx.prec += 20 tol = ctx.eps * 2**10 v = RJ_calc(ctx, x, y, z, p, tol) finally: ctx.prec = prec return +v @defun def elliprd(ctx, x, y, z): r""" Evaluates the degenerate Carlson symmetric elliptic integral of the third kind or Carlson elliptic integral of the second kind `R_D(x,y,z) = R_J(x,y,z,z)`. See :func:`~mpmath.elliprj` for additional information. **Examples** >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprd(1,2,3) 0.2904602810289906442326534 >>> elliprj(1,2,3,3) 0.2904602810289906442326534 The so-called *second lemniscate constant*, a transcendental number:: >>> elliprd(0,2,1)/3 0.5990701173677961037199612 >>> extradps(25)(quad)(lambda t: t**2/sqrt(1-t**4), [0,1]) 0.5990701173677961037199612 >>> gamma('3/4')**2/sqrt(2*pi) 0.5990701173677961037199612 """ return ctx.elliprj(x,y,z,z) @defun def elliprg(ctx, x, y, z): r""" Evaluates the Carlson completely symmetric elliptic integral of the second kind .. math :: R_G(x,y,z) = \frac{1}{4} \int_0^{\infty} \frac{t}{\sqrt{(t+x)(t+y)(t+z)}} \left( \frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right) dt. **Examples** Evaluation for real and complex arguments:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprg(0,1,1)*4; +pi 3.141592653589793238462643 3.141592653589793238462643 >>> elliprg(0,0.5,1) 0.6753219405238377512600874 >>> chop(elliprg(1+j, 1-j, 2)) 1.172431327676416604532822 A double integral that can be evaluated in terms of `R_G`:: >>> x,y,z = 2,3,4 >>> def f(t,u): ... st = fp.sin(t); ct = fp.cos(t) ... su = fp.sin(u); cu = fp.cos(u) ... return (x*(st*cu)**2 + y*(st*su)**2 + z*ct**2)**0.5 * st ... >>> nprint(mpf(fp.quad(f, [0,fp.pi], [0,2*fp.pi])/(4*fp.pi)), 13) 1.725503028069 >>> nprint(elliprg(x,y,z), 13) 1.725503028069 """ x = ctx.convert(x) y = ctx.convert(y) z = ctx.convert(z) if not z: x, z = z, x if not z: y, z = x, y if not z: return ctx.inf def terms(): T1 = 0.5*z*ctx.elliprf(x,y,z) T2 = -0.5*(x-z)*(y-z)*ctx.elliprd(x,y,z)/3 T3 = 0.5*ctx.sqrt(x*y/z) return T1,T2,T3 return ctx.sum_accurately(terms) @defun_wrapped def ellipf(ctx, phi, m): r""" Evaluates the Legendre incomplete elliptic integral of the first kind .. math :: F(\phi,m) = \int_0^{\phi} \frac{dt}{\sqrt{1-m \sin^2 t}} or equivalently .. math :: F(\phi,m) = \int_0^{\sin z} \frac{dt}{\left(\sqrt{1-t^2}\right)\left(\sqrt{1-mt^2}\right)}. The function reduces to a complete elliptic integral of the first kind (see :func:`~mpmath.ellipk`) when `\phi = \frac{\pi}{2}`; that is, .. math :: F\left(\frac{\pi}{2}, m\right) = K(m). In the defining integral, it is assumed that the principal branch of the square root is taken and that the path of integration avoids crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`, the function extends quasi-periodically as .. math :: F(\phi + n \pi, m) = 2 n K(m) + F(\phi,m), n \in \mathbb{Z}. **Plots** .. literalinclude :: /plots/ellipf.py .. image :: /plots/ellipf.png **Examples** Basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> ellipf(0,1) 0.0 >>> ellipf(0,0) 0.0 >>> ellipf(1,0); ellipf(2+3j,0) 1.0 (2.0 + 3.0j) >>> ellipf(1,1); log(sec(1)+tan(1)) 1.226191170883517070813061 1.226191170883517070813061 >>> ellipf(pi/2, -0.5); ellipk(-0.5) 1.415737208425956198892166 1.415737208425956198892166 >>> ellipf(pi/2+eps, 1); ellipf(-pi/2-eps, 1) +inf +inf >>> ellipf(1.5, 1) 3.340677542798311003320813 Comparing with numerical integration:: >>> z,m = 0.5, 1.25 >>> ellipf(z,m) 0.5287219202206327872978255 >>> quad(lambda t: (1-m*sin(t)**2)**(-0.5), [0,z]) 0.5287219202206327872978255 The arguments may be complex numbers:: >>> ellipf(3j, 0.5) (0.0 + 1.713602407841590234804143j) >>> ellipf(3+4j, 5-6j) (1.269131241950351323305741 - 0.3561052815014558335412538j) >>> z,m = 2+3j, 1.25 >>> k = 1011 >>> ellipf(z+pi*k,m); ellipf(z,m) + 2*k*ellipk(m) (4086.184383622179764082821 - 3003.003538923749396546871j) (4086.184383622179764082821 - 3003.003538923749396546871j) For `|\Re(z)| < \pi/2`, the function can be expressed as a hypergeometric series of two variables (see :func:`~mpmath.appellf1`):: >>> z,m = 0.5, 0.25 >>> ellipf(z,m) 0.5050887275786480788831083 >>> sin(z)*appellf1(0.5,0.5,0.5,1.5,sin(z)**2,m*sin(z)**2) 0.5050887275786480788831083 """ z = phi if not (ctx.isnormal(z) and ctx.isnormal(m)): if m == 0: return z + m if z == 0: return z * m if m == ctx.inf or m == ctx.ninf: return z/m raise ValueError x = z.real ctx.prec += max(0, ctx.mag(x)) pi = +ctx.pi away = abs(x) > pi/2 if m == 1: if away: return ctx.inf if away: d = ctx.nint(x/pi) z = z-pi*d P = 2*d*ctx.ellipk(m) else: P = 0 c, s = ctx.cos_sin(z) return s * ctx.elliprf(c**2, 1-m*s**2, 1) + P @defun_wrapped def ellipe(ctx, *args): r""" Called with a single argument `m`, evaluates the Legendre complete elliptic integral of the second kind, `E(m)`, defined by .. math :: E(m) = \int_0^{\pi/2} \sqrt{1-m \sin^2 t} \, dt \,=\, \frac{\pi}{2} \,_2F_1\left(\frac{1}{2}, -\frac{1}{2}, 1, m\right). Called with two arguments `\phi, m`, evaluates the incomplete elliptic integral of the second kind .. math :: E(\phi,m) = \int_0^{\phi} \sqrt{1-m \sin^2 t} \, dt = \int_0^{\sin z} \frac{\sqrt{1-mt^2}}{\sqrt{1-t^2}} \, dt. The incomplete integral reduces to a complete integral when `\phi = \frac{\pi}{2}`; that is, .. math :: E\left(\frac{\pi}{2}, m\right) = E(m). In the defining integral, it is assumed that the principal branch of the square root is taken and that the path of integration avoids crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`, the function extends quasi-periodically as .. math :: E(\phi + n \pi, m) = 2 n E(m) + F(\phi,m), n \in \mathbb{Z}. **Plots** .. literalinclude :: /plots/ellipe.py .. image :: /plots/ellipe.png **Examples for the complete integral** Basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> ellipe(0) 1.570796326794896619231322 >>> ellipe(1) 1.0 >>> ellipe(-1) 1.910098894513856008952381 >>> ellipe(2) (0.5990701173677961037199612 + 0.5990701173677961037199612j) >>> ellipe(inf) (0.0 + +infj) >>> ellipe(-inf) +inf Verifying the defining integral and hypergeometric representation:: >>> ellipe(0.5) 1.350643881047675502520175 >>> quad(lambda t: sqrt(1-0.5*sin(t)**2), [0, pi/2]) 1.350643881047675502520175 >>> pi/2*hyp2f1(0.5,-0.5,1,0.5) 1.350643881047675502520175 Evaluation is supported for arbitrary complex `m`:: >>> ellipe(0.5+0.25j) (1.360868682163129682716687 - 0.1238733442561786843557315j) >>> ellipe(3+4j) (1.499553520933346954333612 - 1.577879007912758274533309j) A definite integral:: >>> quad(ellipe, [0,1]) 1.333333333333333333333333 **Examples for the incomplete integral** Basic values and limits:: >>> ellipe(0,1) 0.0 >>> ellipe(0,0) 0.0 >>> ellipe(1,0) 1.0 >>> ellipe(2+3j,0) (2.0 + 3.0j) >>> ellipe(1,1); sin(1) 0.8414709848078965066525023 0.8414709848078965066525023 >>> ellipe(pi/2, -0.5); ellipe(-0.5) 1.751771275694817862026502 1.751771275694817862026502 >>> ellipe(pi/2, 1); ellipe(-pi/2, 1) 1.0 -1.0 >>> ellipe(1.5, 1) 0.9974949866040544309417234 Comparing with numerical integration:: >>> z,m = 0.5, 1.25 >>> ellipe(z,m) 0.4740152182652628394264449 >>> quad(lambda t: sqrt(1-m*sin(t)**2), [0,z]) 0.4740152182652628394264449 The arguments may be complex numbers:: >>> ellipe(3j, 0.5) (0.0 + 7.551991234890371873502105j) >>> ellipe(3+4j, 5-6j) (24.15299022574220502424466 + 75.2503670480325997418156j) >>> k = 35 >>> z,m = 2+3j, 1.25 >>> ellipe(z+pi*k,m); ellipe(z,m) + 2*k*ellipe(m) (48.30138799412005235090766 + 17.47255216721987688224357j) (48.30138799412005235090766 + 17.47255216721987688224357j) For `|\Re(z)| < \pi/2`, the function can be expressed as a hypergeometric series of two variables (see :func:`~mpmath.appellf1`):: >>> z,m = 0.5, 0.25 >>> ellipe(z,m) 0.4950017030164151928870375 >>> sin(z)*appellf1(0.5,0.5,-0.5,1.5,sin(z)**2,m*sin(z)**2) 0.4950017030164151928870376 """ if len(args) == 1: return ctx._ellipe(args[0]) else: phi, m = args z = phi if not (ctx.isnormal(z) and ctx.isnormal(m)): if m == 0: return z + m if z == 0: return z * m if m == ctx.inf or m == ctx.ninf: return ctx.inf raise ValueError x = z.real ctx.prec += max(0, ctx.mag(x)) pi = +ctx.pi away = abs(x) > pi/2 if away: d = ctx.nint(x/pi) z = z-pi*d P = 2*d*ctx.ellipe(m) else: P = 0 def terms(): c, s = ctx.cos_sin(z) x = c**2 y = 1-m*s**2 RF = ctx.elliprf(x, y, 1) RD = ctx.elliprd(x, y, 1) return s*RF, -m*s**3*RD/3 return ctx.sum_accurately(terms) + P @defun_wrapped def ellippi(ctx, *args): r""" Called with three arguments `n, \phi, m`, evaluates the Legendre incomplete elliptic integral of the third kind .. math :: \Pi(n; \phi, m) = \int_0^{\phi} \frac{dt}{(1-n \sin^2 t) \sqrt{1-m \sin^2 t}} = \int_0^{\sin \phi} \frac{dt}{(1-nt^2) \sqrt{1-t^2} \sqrt{1-mt^2}}. Called with two arguments `n, m`, evaluates the complete elliptic integral of the third kind `\Pi(n,m) = \Pi(n; \frac{\pi}{2},m)`. In the defining integral, it is assumed that the principal branch of the square root is taken and that the path of integration avoids crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`, the function extends quasi-periodically as .. math :: \Pi(n,\phi+k\pi,m) = 2k\Pi(n,m) + \Pi(n,\phi,m), k \in \mathbb{Z}. **Plots** .. literalinclude :: /plots/ellippi.py .. image :: /plots/ellippi.png **Examples for the complete integral** Some basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> ellippi(0,-5); ellipk(-5) 0.9555039270640439337379334 0.9555039270640439337379334 >>> ellippi(inf,2) 0.0 >>> ellippi(2,inf) 0.0 >>> abs(ellippi(1,5)) +inf >>> abs(ellippi(0.25,1)) +inf Evaluation in terms of simpler functions:: >>> ellippi(0.25,0.25); ellipe(0.25)/(1-0.25) 1.956616279119236207279727 1.956616279119236207279727 >>> ellippi(3,0); pi/(2*sqrt(-2)) (0.0 - 1.11072073453959156175397j) (0.0 - 1.11072073453959156175397j) >>> ellippi(-3,0); pi/(2*sqrt(4)) 0.7853981633974483096156609 0.7853981633974483096156609 **Examples for the incomplete integral** Basic values and limits:: >>> ellippi(0.25,-0.5); ellippi(0.25,pi/2,-0.5) 1.622944760954741603710555 1.622944760954741603710555 >>> ellippi(1,0,1) 0.0 >>> ellippi(inf,0,1) 0.0 >>> ellippi(0,0.25,0.5); ellipf(0.25,0.5) 0.2513040086544925794134591 0.2513040086544925794134591 >>> ellippi(1,1,1); (log(sec(1)+tan(1))+sec(1)*tan(1))/2 2.054332933256248668692452 2.054332933256248668692452 >>> ellippi(0.25, 53*pi/2, 0.75); 53*ellippi(0.25,0.75) 135.240868757890840755058 135.240868757890840755058 >>> ellippi(0.5,pi/4,0.5); 2*ellipe(pi/4,0.5)-1/sqrt(3) 0.9190227391656969903987269 0.9190227391656969903987269 Complex arguments are supported:: >>> ellippi(0.5, 5+6j-2*pi, -7-8j) (-0.3612856620076747660410167 + 0.5217735339984807829755815j) """ if len(args) == 2: n, m = args complete = True z = phi = ctx.pi/2 else: n, phi, m = args complete = False z = phi if not (ctx.isnormal(n) and ctx.isnormal(z) and ctx.isnormal(m)): if ctx.isnan(n) or ctx.isnan(z) or ctx.isnan(m): raise ValueError if complete: if m == 0: return ctx.pi/(2*ctx.sqrt(1-n)) if n == 0: return ctx.ellipk(m) if ctx.isinf(n) or ctx.isinf(m): return ctx.zero else: if z == 0: return z if ctx.isinf(n): return ctx.zero if ctx.isinf(m): return ctx.zero if ctx.isinf(n) or ctx.isinf(z) or ctx.isinf(m): raise ValueError if complete: if m == 1: return -ctx.inf/ctx.sign(n-1) away = False else: x = z.real ctx.prec += max(0, ctx.mag(x)) pi = +ctx.pi away = abs(x) > pi/2 if away: d = ctx.nint(x/pi) z = z-pi*d P = 2*d*ctx.ellippi(n,m) else: P = 0 def terms(): if complete: c, s = ctx.zero, ctx.one else: c, s = ctx.cos_sin(z) x = c**2 y = 1-m*s**2 RF = ctx.elliprf(x, y, 1) RJ = ctx.elliprj(x, y, 1, 1-n*s**2) return s*RF, n*s**3*RJ/3 return ctx.sum_accurately(terms) + P
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/elliptic.py
elliptic.py
from ..libmp.backend import xrange from .functions import defun, defun_wrapped def _check_need_perturb(ctx, terms, prec, discard_known_zeros): perturb = recompute = False extraprec = 0 discard = [] for term_index, term in enumerate(terms): w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term have_singular_nongamma_weight = False # Avoid division by zero in leading factors (TODO: # also check for near division by zero?) for k, w in enumerate(w_s): if not w: if ctx.re(c_s[k]) <= 0 and c_s[k]: perturb = recompute = True have_singular_nongamma_weight = True pole_count = [0, 0, 0] # Check for gamma and series poles and near-poles for data_index, data in enumerate([alpha_s, beta_s, b_s]): for i, x in enumerate(data): n, d = ctx.nint_distance(x) # Poles if n > 0: continue if d == ctx.ninf: # OK if we have a polynomial # ------------------------------ ok = False if data_index == 2: for u in a_s: if ctx.isnpint(u) and u >= int(n): ok = True break if ok: continue pole_count[data_index] += 1 # ------------------------------ #perturb = recompute = True #return perturb, recompute, extraprec elif d < -4: extraprec += -d recompute = True if discard_known_zeros and pole_count[1] > pole_count[0] + pole_count[2] \ and not have_singular_nongamma_weight: discard.append(term_index) elif sum(pole_count): perturb = recompute = True return perturb, recompute, extraprec, discard _hypercomb_msg = """ hypercomb() failed to converge to the requested %i bits of accuracy using a working precision of %i bits. The function value may be zero or infinite; try passing zeroprec=N or infprec=M to bound finite values between 2^(-N) and 2^M. Otherwise try a higher maxprec or maxterms. """ @defun def hypercomb(ctx, function, params=[], discard_known_zeros=True, **kwargs): orig = ctx.prec sumvalue = ctx.zero dist = ctx.nint_distance ninf = ctx.ninf orig_params = params[:] verbose = kwargs.get('verbose', False) maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(orig)) kwargs['maxprec'] = maxprec # For calls to hypsum zeroprec = kwargs.get('zeroprec') infprec = kwargs.get('infprec') perturbed_reference_value = None hextra = 0 try: while 1: ctx.prec += 10 if ctx.prec > maxprec: raise ValueError(_hypercomb_msg % (orig, ctx.prec)) orig2 = ctx.prec params = orig_params[:] terms = function(*params) if verbose: print() print("ENTERING hypercomb main loop") print("prec =", ctx.prec) print("hextra", hextra) perturb, recompute, extraprec, discard = \ _check_need_perturb(ctx, terms, orig, discard_known_zeros) ctx.prec += extraprec if perturb: if "hmag" in kwargs: hmag = kwargs["hmag"] elif ctx._fixed_precision: hmag = int(ctx.prec*0.3) else: hmag = orig + 10 + hextra h = ctx.ldexp(ctx.one, -hmag) ctx.prec = orig2 + 10 + hmag + 10 for k in range(len(params)): params[k] += h # Heuristically ensure that the perturbations # are "independent" so that two perturbations # don't accidentally cancel each other out # in a subtraction. h += h/(k+1) if recompute: terms = function(*params) if discard_known_zeros: terms = [term for (i, term) in enumerate(terms) if i not in discard] if not terms: return ctx.zero evaluated_terms = [] for term_index, term_data in enumerate(terms): w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term_data if verbose: print() print(" Evaluating term %i/%i : %iF%i" % \ (term_index+1, len(terms), len(a_s), len(b_s))) print(" powers", ctx.nstr(w_s), ctx.nstr(c_s)) print(" gamma", ctx.nstr(alpha_s), ctx.nstr(beta_s)) print(" hyper", ctx.nstr(a_s), ctx.nstr(b_s)) print(" z", ctx.nstr(z)) #v = ctx.hyper(a_s, b_s, z, **kwargs) #for a in alpha_s: v *= ctx.gamma(a) #for b in beta_s: v *= ctx.rgamma(b) #for w, c in zip(w_s, c_s): v *= ctx.power(w, c) v = ctx.fprod([ctx.hyper(a_s, b_s, z, **kwargs)] + \ [ctx.gamma(a) for a in alpha_s] + \ [ctx.rgamma(b) for b in beta_s] + \ [ctx.power(w,c) for (w,c) in zip(w_s,c_s)]) if verbose: print(" Value:", v) evaluated_terms.append(v) if len(terms) == 1 and (not perturb): sumvalue = evaluated_terms[0] break if ctx._fixed_precision: sumvalue = ctx.fsum(evaluated_terms) break sumvalue = ctx.fsum(evaluated_terms) term_magnitudes = [ctx.mag(x) for x in evaluated_terms] max_magnitude = max(term_magnitudes) sum_magnitude = ctx.mag(sumvalue) cancellation = max_magnitude - sum_magnitude if verbose: print() print(" Cancellation:", cancellation, "bits") print(" Increased precision:", ctx.prec - orig, "bits") precision_ok = cancellation < ctx.prec - orig if zeroprec is None: zero_ok = False else: zero_ok = max_magnitude - ctx.prec < -zeroprec if infprec is None: inf_ok = False else: inf_ok = max_magnitude > infprec if precision_ok and (not perturb) or ctx.isnan(cancellation): break elif precision_ok: if perturbed_reference_value is None: hextra += 20 perturbed_reference_value = sumvalue continue elif ctx.mag(sumvalue - perturbed_reference_value) <= \ ctx.mag(sumvalue) - orig: break elif zero_ok: sumvalue = ctx.zero break elif inf_ok: sumvalue = ctx.inf break elif 'hmag' in kwargs: break else: hextra *= 2 perturbed_reference_value = sumvalue # Increase precision else: increment = min(max(cancellation, orig//2), max(extraprec,orig)) ctx.prec += increment if verbose: print(" Must start over with increased precision") continue finally: ctx.prec = orig return +sumvalue @defun def hyper(ctx, a_s, b_s, z, **kwargs): """ Hypergeometric function, general case. """ z = ctx.convert(z) p = len(a_s) q = len(b_s) a_s = [ctx._convert_param(a) for a in a_s] b_s = [ctx._convert_param(b) for b in b_s] # Reduce degree by eliminating common parameters if kwargs.get('eliminate', True): i = 0 while i < q and a_s: b = b_s[i] if b in a_s: a_s.remove(b) b_s.remove(b) p -= 1 q -= 1 else: i += 1 # Handle special cases if p == 0: if q == 1: return ctx._hyp0f1(b_s, z, **kwargs) elif q == 0: return ctx.exp(z) elif p == 1: if q == 1: return ctx._hyp1f1(a_s, b_s, z, **kwargs) elif q == 2: return ctx._hyp1f2(a_s, b_s, z, **kwargs) elif q == 0: return ctx._hyp1f0(a_s[0][0], z) elif p == 2: if q == 1: return ctx._hyp2f1(a_s, b_s, z, **kwargs) elif q == 2: return ctx._hyp2f2(a_s, b_s, z, **kwargs) elif q == 3: return ctx._hyp2f3(a_s, b_s, z, **kwargs) elif q == 0: return ctx._hyp2f0(a_s, b_s, z, **kwargs) elif p == q+1: return ctx._hypq1fq(p, q, a_s, b_s, z, **kwargs) elif p > q+1 and not kwargs.get('force_series'): return ctx._hyp_borel(p, q, a_s, b_s, z, **kwargs) coeffs, types = zip(*(a_s+b_s)) return ctx.hypsum(p, q, types, coeffs, z, **kwargs) @defun def hyp0f1(ctx,b,z,**kwargs): return ctx.hyper([],[b],z,**kwargs) @defun def hyp1f1(ctx,a,b,z,**kwargs): return ctx.hyper([a],[b],z,**kwargs) @defun def hyp1f2(ctx,a1,b1,b2,z,**kwargs): return ctx.hyper([a1],[b1,b2],z,**kwargs) @defun def hyp2f1(ctx,a,b,c,z,**kwargs): return ctx.hyper([a,b],[c],z,**kwargs) @defun def hyp2f2(ctx,a1,a2,b1,b2,z,**kwargs): return ctx.hyper([a1,a2],[b1,b2],z,**kwargs) @defun def hyp2f3(ctx,a1,a2,b1,b2,b3,z,**kwargs): return ctx.hyper([a1,a2],[b1,b2,b3],z,**kwargs) @defun def hyp2f0(ctx,a,b,z,**kwargs): return ctx.hyper([a,b],[],z,**kwargs) @defun def hyp3f2(ctx,a1,a2,a3,b1,b2,z,**kwargs): return ctx.hyper([a1,a2,a3],[b1,b2],z,**kwargs) @defun_wrapped def _hyp1f0(ctx, a, z): return (1-z) ** (-a) @defun def _hyp0f1(ctx, b_s, z, **kwargs): (b, btype), = b_s if z: magz = ctx.mag(z) else: magz = 0 if magz >= 8 and not kwargs.get('force_series'): try: # http://functions.wolfram.com/HypergeometricFunctions/ # Hypergeometric0F1/06/02/03/0004/ # We don't need hypercomb because the only possible singularity # occurs when the value is undefined. However, we should perhaps # still check for cancellation... # TODO: handle the all-real case more efficiently! # TODO: figure out how much precision is needed (exponential growth) orig = ctx.prec try: ctx.prec += 12 + magz//2 w = ctx.sqrt(-z) jw = ctx.j*w u = 1/(4*jw) c = ctx.mpq_1_2 - b E = ctx.exp(2*jw) H1 = (-jw)**c/E*ctx.hyp2f0(b-ctx.mpq_1_2, ctx.mpq_3_2-b, -u, force_series=True) H2 = (jw)**c*E*ctx.hyp2f0(b-ctx.mpq_1_2, ctx.mpq_3_2-b, u, force_series=True) v = ctx.gamma(b)/(2*ctx.sqrt(ctx.pi))*(H1 + H2) finally: ctx.prec = orig if ctx._is_real_type(b) and ctx._is_real_type(z): v = ctx._re(v) return +v except ctx.NoConvergence: pass return ctx.hypsum(0, 1, (btype,), [b], z, **kwargs) @defun def _hyp1f1(ctx, a_s, b_s, z, **kwargs): (a, atype), = a_s (b, btype), = b_s if not z: return ctx.one+z magz = ctx.mag(z) if magz >= 7 and not (ctx.isint(a) and ctx.re(a) <= 0): if ctx.isinf(z): if ctx.sign(a) == ctx.sign(b) == ctx.sign(z) == 1: return ctx.inf return ctx.nan * z try: try: ctx.prec += magz sector = ctx._im(z) < 0 def h(a,b): if sector: E = ctx.expjpi(ctx.fneg(a, exact=True)) else: E = ctx.expjpi(a) rz = 1/z T1 = ([E,z], [1,-a], [b], [b-a], [a, 1+a-b], [], -rz) T2 = ([ctx.exp(z),z], [1,a-b], [b], [a], [b-a, 1-a], [], rz) return T1, T2 v = ctx.hypercomb(h, [a,b], force_series=True) if ctx._is_real_type(a) and ctx._is_real_type(b) and ctx._is_real_type(z): v = ctx._re(v) return +v except ctx.NoConvergence: pass finally: ctx.prec -= magz v = ctx.hypsum(1, 1, (atype, btype), [a, b], z, **kwargs) return v def _hyp2f1_gosper(ctx,a,b,c,z,**kwargs): # Use Gosper's recurrence # See http://www.math.utexas.edu/pipermail/maxima/2006/000126.html _a,_b,_c,_z = a, b, c, z orig = ctx.prec maxprec = kwargs.get('maxprec', 100*orig) extra = 10 while 1: ctx.prec = orig + extra #a = ctx.convert(_a) #b = ctx.convert(_b) #c = ctx.convert(_c) z = ctx.convert(_z) d = ctx.mpf(0) e = ctx.mpf(1) f = ctx.mpf(0) k = 0 # Common subexpression elimination, unfortunately making # things a bit unreadable. The formula is quite messy to begin # with, though... abz = a*b*z ch = c * ctx.mpq_1_2 c1h = (c+1) * ctx.mpq_1_2 nz = 1-z g = z/nz abg = a*b*g cba = c-b-a z2 = z-2 tol = -ctx.prec - 10 nstr = ctx.nstr nprint = ctx.nprint mag = ctx.mag maxmag = ctx.ninf while 1: kch = k+ch kakbz = (k+a)*(k+b)*z / (4*(k+1)*kch*(k+c1h)) d1 = kakbz*(e-(k+cba)*d*g) e1 = kakbz*(d*abg+(k+c)*e) ft = d*(k*(cba*z+k*z2-c)-abz)/(2*kch*nz) f1 = f + e - ft maxmag = max(maxmag, mag(f1)) if mag(f1-f) < tol: break d, e, f = d1, e1, f1 k += 1 cancellation = maxmag - mag(f1) if cancellation < extra: break else: extra += cancellation if extra > maxprec: raise ctx.NoConvergence return f1 @defun def _hyp2f1(ctx, a_s, b_s, z, **kwargs): (a, atype), (b, btype) = a_s (c, ctype), = b_s if z == 1: # TODO: the following logic can be simplified convergent = ctx.re(c-a-b) > 0 finite = (ctx.isint(a) and a <= 0) or (ctx.isint(b) and b <= 0) zerodiv = ctx.isint(c) and c <= 0 and not \ ((ctx.isint(a) and c <= a <= 0) or (ctx.isint(b) and c <= b <= 0)) #print "bz", a, b, c, z, convergent, finite, zerodiv # Gauss's theorem gives the value if convergent if (convergent or finite) and not zerodiv: return ctx.gammaprod([c, c-a-b], [c-a, c-b], _infsign=True) # Otherwise, there is a pole and we take the # sign to be that when approaching from below # XXX: this evaluation is not necessarily correct in all cases return ctx.hyp2f1(a,b,c,1-ctx.eps*2) * ctx.inf # Equal to 1 (first term), unless there is a subsequent # division by zero if not z: # Division by zero but power of z is higher than # first order so cancels if c or a == 0 or b == 0: return 1+z # Indeterminate return ctx.nan # Hit zero denominator unless numerator goes to 0 first if ctx.isint(c) and c <= 0: if (ctx.isint(a) and c <= a <= 0) or \ (ctx.isint(b) and c <= b <= 0): pass else: # Pole in series return ctx.inf absz = abs(z) # Fast case: standard series converges rapidly, # possibly in finitely many terms if absz <= 0.8 or (ctx.isint(a) and a <= 0 and a >= -1000) or \ (ctx.isint(b) and b <= 0 and b >= -1000): return ctx.hypsum(2, 1, (atype, btype, ctype), [a, b, c], z, **kwargs) orig = ctx.prec try: ctx.prec += 10 # Use 1/z transformation if absz >= 1.3: def h(a,b): t = ctx.mpq_1-c; ab = a-b; rz = 1/z T1 = ([-z],[-a], [c,-ab],[b,c-a], [a,t+a],[ctx.mpq_1+ab], rz) T2 = ([-z],[-b], [c,ab],[a,c-b], [b,t+b],[ctx.mpq_1-ab], rz) return T1, T2 v = ctx.hypercomb(h, [a,b], **kwargs) # Use 1-z transformation elif abs(1-z) <= 0.75: def h(a,b): t = c-a-b; ca = c-a; cb = c-b; rz = 1-z T1 = [], [], [c,t], [ca,cb], [a,b], [1-t], rz T2 = [rz], [t], [c,a+b-c], [a,b], [ca,cb], [1+t], rz return T1, T2 v = ctx.hypercomb(h, [a,b], **kwargs) # Use z/(z-1) transformation elif abs(z/(z-1)) <= 0.75: v = ctx.hyp2f1(a, c-b, c, z/(z-1)) / (1-z)**a # Remaining part of unit circle else: v = _hyp2f1_gosper(ctx,a,b,c,z,**kwargs) finally: ctx.prec = orig return +v @defun def _hypq1fq(ctx, p, q, a_s, b_s, z, **kwargs): r""" Evaluates 3F2, 4F3, 5F4, ... """ a_s, a_types = zip(*a_s) b_s, b_types = zip(*b_s) a_s = list(a_s) b_s = list(b_s) absz = abs(z) ispoly = False for a in a_s: if ctx.isint(a) and a <= 0: ispoly = True break # Direct summation if absz < 1 or ispoly: try: return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs) except ctx.NoConvergence: if absz > 1.1 or ispoly: raise # Use expansion at |z-1| -> 0. # Reference: Wolfgang Buhring, "Generalized Hypergeometric Functions at # Unit Argument", Proc. Amer. Math. Soc., Vol. 114, No. 1 (Jan. 1992), # pp.145-153 # The current implementation has several problems: # 1. We only implement it for 3F2. The expansion coefficients are # given by extremely messy nested sums in the higher degree cases # (see reference). Is efficient sequential generation of the coefficients # possible in the > 3F2 case? # 2. Although the series converges, it may do so slowly, so we need # convergence acceleration. The acceleration implemented by # nsum does not always help, so results returned are sometimes # inaccurate! Can we do better? # 3. We should check conditions for convergence, and possibly # do a better job of cancelling out gamma poles if possible. if z == 1: # XXX: should also check for division by zero in the # denominator of the series (cf. hyp2f1) S = ctx.re(sum(b_s)-sum(a_s)) if S <= 0: #return ctx.hyper(a_s, b_s, 1-ctx.eps*2, **kwargs) * ctx.inf return ctx.hyper(a_s, b_s, 0.9, **kwargs) * ctx.inf if (p,q) == (3,2) and abs(z-1) < 0.05: # and kwargs.get('sum1') #print "Using alternate summation (experimental)" a1,a2,a3 = a_s b1,b2 = b_s u = b1+b2-a3 initial = ctx.gammaprod([b2-a3,b1-a3,a1,a2],[b2-a3,b1-a3,1,u]) def term(k, _cache={0:initial}): u = b1+b2-a3+k if k in _cache: t = _cache[k] else: t = _cache[k-1] t *= (b1+k-a3-1)*(b2+k-a3-1) t /= k*(u-1) _cache[k] = t return t * ctx.hyp2f1(a1,a2,u,z) try: S = ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'), strict=kwargs.get('strict', True)) return S * ctx.gammaprod([b1,b2],[a1,a2,a3]) except ctx.NoConvergence: pass # Try to use convergence acceleration on and close to the unit circle. # Problem: the convergence acceleration degenerates as |z-1| -> 0, # except for special cases. Everywhere else, the Shanks transformation # is very efficient. if absz < 1.1 and ctx._re(z) <= 1: def term(kk, _cache={0:ctx.one}): k = int(kk) if k != kk: t = z ** ctx.mpf(kk) / ctx.fac(kk) for a in a_s: t *= ctx.rf(a,kk) for b in b_s: t /= ctx.rf(b,kk) return t if k in _cache: return _cache[k] t = term(k-1) m = k-1 for j in xrange(p): t *= (a_s[j]+m) for j in xrange(q): t /= (b_s[j]+m) t *= z t /= k _cache[k] = t return t sum_method = kwargs.get('sum_method', 'r+s+e') try: return ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'), strict=kwargs.get('strict', True), method=sum_method.replace('e','')) except ctx.NoConvergence: if 'e' not in sum_method: raise pass if kwargs.get('verbose'): print("Attempting Euler-Maclaurin summation") """ Somewhat slower version (one diffs_exp for each factor). However, this would be faster with fast direct derivatives of the gamma function. def power_diffs(k0): r = 0 l = ctx.log(z) while 1: yield z**ctx.mpf(k0) * l**r r += 1 def loggamma_diffs(x, reciprocal=False): sign = (-1) ** reciprocal yield sign * ctx.loggamma(x) i = 0 while 1: yield sign * ctx.psi(i,x) i += 1 def hyper_diffs(k0): b2 = b_s + [1] A = [ctx.diffs_exp(loggamma_diffs(a+k0)) for a in a_s] B = [ctx.diffs_exp(loggamma_diffs(b+k0,True)) for b in b2] Z = [power_diffs(k0)] C = ctx.gammaprod([b for b in b2], [a for a in a_s]) for d in ctx.diffs_prod(A + B + Z): v = C * d yield v """ def log_diffs(k0): b2 = b_s + [1] yield sum(ctx.loggamma(a+k0) for a in a_s) - \ sum(ctx.loggamma(b+k0) for b in b2) + k0*ctx.log(z) i = 0 while 1: v = sum(ctx.psi(i,a+k0) for a in a_s) - \ sum(ctx.psi(i,b+k0) for b in b2) if i == 0: v += ctx.log(z) yield v i += 1 def hyper_diffs(k0): C = ctx.gammaprod([b for b in b_s], [a for a in a_s]) for d in ctx.diffs_exp(log_diffs(k0)): v = C * d yield v tol = ctx.eps / 1024 prec = ctx.prec try: trunc = 50 * ctx.dps ctx.prec += 20 for i in xrange(5): head = ctx.fsum(term(k) for k in xrange(trunc)) tail, err = ctx.sumem(term, [trunc, ctx.inf], tol=tol, adiffs=hyper_diffs(trunc), verbose=kwargs.get('verbose'), error=True, _fast_abort=True) if err < tol: v = head + tail break trunc *= 2 # Need to increase precision because calculation of # derivatives may be inaccurate ctx.prec += ctx.prec//2 if i == 4: raise ctx.NoConvergence(\ "Euler-Maclaurin summation did not converge") finally: ctx.prec = prec return +v # Use 1/z transformation # http://functions.wolfram.com/HypergeometricFunctions/ # HypergeometricPFQ/06/01/05/02/0004/ def h(*args): a_s = list(args[:p]) b_s = list(args[p:]) Ts = [] recz = ctx.one/z negz = ctx.fneg(z, exact=True) for k in range(q+1): ak = a_s[k] C = [negz] Cp = [-ak] Gn = b_s + [ak] + [a_s[j]-ak for j in range(q+1) if j != k] Gd = a_s + [b_s[j]-ak for j in range(q)] Fn = [ak] + [ak-b_s[j]+1 for j in range(q)] Fd = [1-a_s[j]+ak for j in range(q+1) if j != k] Ts.append((C, Cp, Gn, Gd, Fn, Fd, recz)) return Ts return ctx.hypercomb(h, a_s+b_s, **kwargs) @defun def _hyp_borel(ctx, p, q, a_s, b_s, z, **kwargs): if a_s: a_s, a_types = zip(*a_s) a_s = list(a_s) else: a_s, a_types = [], () if b_s: b_s, b_types = zip(*b_s) b_s = list(b_s) else: b_s, b_types = [], () kwargs['maxterms'] = kwargs.get('maxterms', ctx.prec) try: return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs) except ctx.NoConvergence: pass prec = ctx.prec try: tol = kwargs.get('asymp_tol', ctx.eps/4) ctx.prec += 10 # hypsum is has a conservative tolerance. So we try again: def term(k, cache={0:ctx.one}): if k in cache: return cache[k] t = term(k-1) for a in a_s: t *= (a+(k-1)) for b in b_s: t /= (b+(k-1)) t *= z t /= k cache[k] = t return t s = ctx.one for k in xrange(1, ctx.prec): t = term(k) s += t if abs(t) <= tol: return s finally: ctx.prec = prec if p <= q+3: contour = kwargs.get('contour') if not contour: if ctx.arg(z) < 0.25: u = z / max(1, abs(z)) if ctx.arg(z) >= 0: contour = [0, 2j, (2j+2)/u, 2/u, ctx.inf] else: contour = [0, -2j, (-2j+2)/u, 2/u, ctx.inf] #contour = [0, 2j/z, 2/z, ctx.inf] #contour = [0, 2j, 2/z, ctx.inf] #contour = [0, 2j, ctx.inf] else: contour = [0, ctx.inf] quad_kwargs = kwargs.get('quad_kwargs', {}) def g(t): return ctx.exp(-t)*ctx.hyper(a_s, b_s+[1], t*z) I, err = ctx.quad(g, contour, error=True, **quad_kwargs) if err <= abs(I)*ctx.eps*8: return I raise ctx.NoConvergence @defun def _hyp2f2(ctx, a_s, b_s, z, **kwargs): (a1, a1type), (a2, a2type) = a_s (b1, b1type), (b2, b2type) = b_s absz = abs(z) magz = ctx.mag(z) orig = ctx.prec # Asymptotic expansion is ~ exp(z) asymp_extraprec = magz # Asymptotic series is in terms of 3F1 can_use_asymptotic = (not kwargs.get('force_series')) and \ (ctx.mag(absz) > 3) # TODO: much of the following could be shared with 2F3 instead of # copypasted if can_use_asymptotic: #print "using asymp" try: try: ctx.prec += asymp_extraprec # http://functions.wolfram.com/HypergeometricFunctions/ # Hypergeometric2F2/06/02/02/0002/ def h(a1,a2,b1,b2): X = a1+a2-b1-b2 A2 = a1+a2 B2 = b1+b2 c = {} c[0] = ctx.one c[1] = (A2-1)*X+b1*b2-a1*a2 s1 = 0 k = 0 tprev = 0 while 1: if k not in c: uu1 = 1-B2+2*a1+a1**2+2*a2+a2**2-A2*B2+a1*a2+b1*b2+(2*B2-3*(A2+1))*k+2*k**2 uu2 = (k-A2+b1-1)*(k-A2+b2-1)*(k-X-2) c[k] = ctx.one/k * (uu1*c[k-1]-uu2*c[k-2]) t1 = c[k] * z**(-k) if abs(t1) < 0.1*ctx.eps: #print "Convergence :)" break # Quit if the series doesn't converge quickly enough if k > 5 and abs(tprev) / abs(t1) < 1.5: #print "No convergence :(" raise ctx.NoConvergence s1 += t1 tprev = t1 k += 1 S = ctx.exp(z)*s1 T1 = [z,S], [X,1], [b1,b2],[a1,a2],[],[],0 T2 = [-z],[-a1],[b1,b2,a2-a1],[a2,b1-a1,b2-a1],[a1,a1-b1+1,a1-b2+1],[a1-a2+1],-1/z T3 = [-z],[-a2],[b1,b2,a1-a2],[a1,b1-a2,b2-a2],[a2,a2-b1+1,a2-b2+1],[-a1+a2+1],-1/z return T1, T2, T3 v = ctx.hypercomb(h, [a1,a2,b1,b2], force_series=True, maxterms=4*ctx.prec) if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,z]) == 5: v = ctx.re(v) return v except ctx.NoConvergence: pass finally: ctx.prec = orig return ctx.hypsum(2, 2, (a1type, a2type, b1type, b2type), [a1, a2, b1, b2], z, **kwargs) @defun def _hyp1f2(ctx, a_s, b_s, z, **kwargs): (a1, a1type), = a_s (b1, b1type), (b2, b2type) = b_s absz = abs(z) magz = ctx.mag(z) orig = ctx.prec # Asymptotic expansion is ~ exp(sqrt(z)) asymp_extraprec = z and magz//2 # Asymptotic series is in terms of 3F0 can_use_asymptotic = (not kwargs.get('force_series')) and \ (ctx.mag(absz) > 19) and \ (ctx.sqrt(absz) > 1.5*orig) #and \ #ctx._hyp_check_convergence([a1, a1-b1+1, a1-b2+1], [], # 1/absz, orig+40+asymp_extraprec) # TODO: much of the following could be shared with 2F3 instead of # copypasted if can_use_asymptotic: #print "using asymp" try: try: ctx.prec += asymp_extraprec # http://functions.wolfram.com/HypergeometricFunctions/ # Hypergeometric1F2/06/02/03/ def h(a1,b1,b2): X = ctx.mpq_1_2*(a1-b1-b2+ctx.mpq_1_2) c = {} c[0] = ctx.one c[1] = 2*(ctx.mpq_1_4*(3*a1+b1+b2-2)*(a1-b1-b2)+b1*b2-ctx.mpq_3_16) c[2] = 2*(b1*b2+ctx.mpq_1_4*(a1-b1-b2)*(3*a1+b1+b2-2)-ctx.mpq_3_16)**2+\ ctx.mpq_1_16*(-16*(2*a1-3)*b1*b2 + \ 4*(a1-b1-b2)*(-8*a1**2+11*a1+b1+b2-2)-3) s1 = 0 s2 = 0 k = 0 tprev = 0 while 1: if k not in c: uu1 = (3*k**2+(-6*a1+2*b1+2*b2-4)*k + 3*a1**2 - \ (b1-b2)**2 - 2*a1*(b1+b2-2) + ctx.mpq_1_4) uu2 = (k-a1+b1-b2-ctx.mpq_1_2)*(k-a1-b1+b2-ctx.mpq_1_2)*\ (k-a1+b1+b2-ctx.mpq_5_2) c[k] = ctx.one/(2*k)*(uu1*c[k-1]-uu2*c[k-2]) w = c[k] * (-z)**(-0.5*k) t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w t2 = ctx.j**k * ctx.mpf(2)**(-k) * w if abs(t1) < 0.1*ctx.eps: #print "Convergence :)" break # Quit if the series doesn't converge quickly enough if k > 5 and abs(tprev) / abs(t1) < 1.5: #print "No convergence :(" raise ctx.NoConvergence s1 += t1 s2 += t2 tprev = t1 k += 1 S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \ ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2 T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2], [a1],\ [], [], 0 T2 = [-z], [-a1], [b1,b2],[b1-a1,b2-a1], \ [a1,a1-b1+1,a1-b2+1], [], 1/z return T1, T2 v = ctx.hypercomb(h, [a1,b1,b2], force_series=True, maxterms=4*ctx.prec) if sum(ctx._is_real_type(u) for u in [a1,b1,b2,z]) == 4: v = ctx.re(v) return v except ctx.NoConvergence: pass finally: ctx.prec = orig #print "not using asymp" return ctx.hypsum(1, 2, (a1type, b1type, b2type), [a1, b1, b2], z, **kwargs) @defun def _hyp2f3(ctx, a_s, b_s, z, **kwargs): (a1, a1type), (a2, a2type) = a_s (b1, b1type), (b2, b2type), (b3, b3type) = b_s absz = abs(z) magz = ctx.mag(z) # Asymptotic expansion is ~ exp(sqrt(z)) asymp_extraprec = z and magz//2 orig = ctx.prec # Asymptotic series is in terms of 4F1 # The square root below empirically provides a plausible criterion # for the leading series to converge can_use_asymptotic = (not kwargs.get('force_series')) and \ (ctx.mag(absz) > 19) and (ctx.sqrt(absz) > 1.5*orig) if can_use_asymptotic: #print "using asymp" try: try: ctx.prec += asymp_extraprec # http://functions.wolfram.com/HypergeometricFunctions/ # Hypergeometric2F3/06/02/03/01/0002/ def h(a1,a2,b1,b2,b3): X = ctx.mpq_1_2*(a1+a2-b1-b2-b3+ctx.mpq_1_2) A2 = a1+a2 B3 = b1+b2+b3 A = a1*a2 B = b1*b2+b3*b2+b1*b3 R = b1*b2*b3 c = {} c[0] = ctx.one c[1] = 2*(B - A + ctx.mpq_1_4*(3*A2+B3-2)*(A2-B3) - ctx.mpq_3_16) c[2] = ctx.mpq_1_2*c[1]**2 + ctx.mpq_1_16*(-16*(2*A2-3)*(B-A) + 32*R +\ 4*(-8*A2**2 + 11*A2 + 8*A + B3 - 2)*(A2-B3)-3) s1 = 0 s2 = 0 k = 0 tprev = 0 while 1: if k not in c: uu1 = (k-2*X-3)*(k-2*X-2*b1-1)*(k-2*X-2*b2-1)*\ (k-2*X-2*b3-1) uu2 = (4*(k-1)**3 - 6*(4*X+B3)*(k-1)**2 + \ 2*(24*X**2+12*B3*X+4*B+B3-1)*(k-1) - 32*X**3 - \ 24*B3*X**2 - 4*B - 8*R - 4*(4*B+B3-1)*X + 2*B3-1) uu3 = (5*(k-1)**2+2*(-10*X+A2-3*B3+3)*(k-1)+2*c[1]) c[k] = ctx.one/(2*k)*(uu1*c[k-3]-uu2*c[k-2]+uu3*c[k-1]) w = c[k] * ctx.power(-z, -0.5*k) t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w t2 = ctx.j**k * ctx.mpf(2)**(-k) * w if abs(t1) < 0.1*ctx.eps: break # Quit if the series doesn't converge quickly enough if k > 5 and abs(tprev) / abs(t1) < 1.5: raise ctx.NoConvergence s1 += t1 s2 += t2 tprev = t1 k += 1 S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \ ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2 T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2, b3], [a1, a2],\ [], [], 0 T2 = [-z], [-a1], [b1,b2,b3,a2-a1],[a2,b1-a1,b2-a1,b3-a1], \ [a1,a1-b1+1,a1-b2+1,a1-b3+1], [a1-a2+1], 1/z T3 = [-z], [-a2], [b1,b2,b3,a1-a2],[a1,b1-a2,b2-a2,b3-a2], \ [a2,a2-b1+1,a2-b2+1,a2-b3+1],[-a1+a2+1], 1/z return T1, T2, T3 v = ctx.hypercomb(h, [a1,a2,b1,b2,b3], force_series=True, maxterms=4*ctx.prec) if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,b3,z]) == 6: v = ctx.re(v) return v except ctx.NoConvergence: pass finally: ctx.prec = orig return ctx.hypsum(2, 3, (a1type, a2type, b1type, b2type, b3type), [a1, a2, b1, b2, b3], z, **kwargs) @defun def _hyp2f0(ctx, a_s, b_s, z, **kwargs): (a, atype), (b, btype) = a_s # We want to try aggressively to use the asymptotic expansion, # and fall back only when absolutely necessary try: kwargsb = kwargs.copy() kwargsb['maxterms'] = kwargsb.get('maxterms', ctx.prec) return ctx.hypsum(2, 0, (atype,btype), [a,b], z, **kwargsb) except ctx.NoConvergence: if kwargs.get('force_series'): raise pass def h(a, b): w = ctx.sinpi(b) rz = -1/z T1 = ([ctx.pi,w,rz],[1,-1,a],[],[a-b+1,b],[a],[b],rz) T2 = ([-ctx.pi,w,rz],[1,-1,1+a-b],[],[a,2-b],[a-b+1],[2-b],rz) return T1, T2 return ctx.hypercomb(h, [a, 1+a-b], **kwargs) @defun def meijerg(ctx, a_s, b_s, z, r=1, series=None, **kwargs): an, ap = a_s bm, bq = b_s n = len(an) p = n + len(ap) m = len(bm) q = m + len(bq) a = an+ap b = bm+bq a = [ctx.convert(_) for _ in a] b = [ctx.convert(_) for _ in b] z = ctx.convert(z) if series is None: if p < q: series = 1 if p > q: series = 2 if p == q: if m+n == p and abs(z) > 1: series = 2 else: series = 1 if kwargs.get('verbose'): print("Meijer G m,n,p,q,series =", m,n,p,q,series) if series == 1: def h(*args): a = args[:p] b = args[p:] terms = [] for k in range(m): bases = [z] expts = [b[k]/r] gn = [b[j]-b[k] for j in range(m) if j != k] gn += [1-a[j]+b[k] for j in range(n)] gd = [a[j]-b[k] for j in range(n,p)] gd += [1-b[j]+b[k] for j in range(m,q)] hn = [1-a[j]+b[k] for j in range(p)] hd = [1-b[j]+b[k] for j in range(q) if j != k] hz = (-ctx.one)**(p-m-n) * z**(ctx.one/r) terms.append((bases, expts, gn, gd, hn, hd, hz)) return terms else: def h(*args): a = args[:p] b = args[p:] terms = [] for k in range(n): bases = [z] if r == 1: expts = [a[k]-1] else: expts = [(a[k]-1)/ctx.convert(r)] gn = [a[k]-a[j] for j in range(n) if j != k] gn += [1-a[k]+b[j] for j in range(m)] gd = [a[k]-b[j] for j in range(m,q)] gd += [1-a[k]+a[j] for j in range(n,p)] hn = [1-a[k]+b[j] for j in range(q)] hd = [1+a[j]-a[k] for j in range(p) if j != k] hz = (-ctx.one)**(q-m-n) / z**(ctx.one/r) terms.append((bases, expts, gn, gd, hn, hd, hz)) return terms return ctx.hypercomb(h, a+b, **kwargs) @defun_wrapped def appellf1(ctx,a,b1,b2,c,x,y,**kwargs): # Assume x smaller # We will use x for the outer loop if abs(x) > abs(y): x, y = y, x b1, b2 = b2, b1 def ok(x): return abs(x) < 0.99 # Finite cases if ctx.isnpint(a): pass elif ctx.isnpint(b1): pass elif ctx.isnpint(b2): x, y, b1, b2 = y, x, b2, b1 else: #print x, y # Note: ok if |y| > 1, because # 2F1 implements analytic continuation if not ok(x): u1 = (x-y)/(x-1) if not ok(u1): raise ValueError("Analytic continuation not implemented") #print "Using analytic continuation" return (1-x)**(-b1)*(1-y)**(c-a-b2)*\ ctx.appellf1(c-a,b1,c-b1-b2,c,u1,y,**kwargs) return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m+n':[c]}, x,y, **kwargs) @defun def appellf2(ctx,a,b1,b2,c1,c2,x,y,**kwargs): # TODO: continuation return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m':[c1],'n':[c2]}, x,y, **kwargs) @defun def appellf3(ctx,a1,a2,b1,b2,c,x,y,**kwargs): outer_polynomial = ctx.isnpint(a1) or ctx.isnpint(b1) inner_polynomial = ctx.isnpint(a2) or ctx.isnpint(b2) if not outer_polynomial: if inner_polynomial or abs(x) > abs(y): x, y = y, x a1,a2,b1,b2 = a2,a1,b2,b1 return ctx.hyper2d({'m':[a1,b1],'n':[a2,b2]}, {'m+n':[c]},x,y,**kwargs) @defun def appellf4(ctx,a,b,c1,c2,x,y,**kwargs): # TODO: continuation return ctx.hyper2d({'m+n':[a,b]}, {'m':[c1],'n':[c2]},x,y,**kwargs) @defun def hyper2d(ctx, a, b, x, y, **kwargs): r""" Sums the generalized 2D hypergeometric series .. math :: \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{P((a),m,n)}{Q((b),m,n)} \frac{x^m y^n} {m! n!} where `(a) = (a_1,\ldots,a_r)`, `(b) = (b_1,\ldots,b_s)` and where `P` and `Q` are products of rising factorials such as `(a_j)_n` or `(a_j)_{m+n}`. `P` and `Q` are specified in the form of dicts, with the `m` and `n` dependence as keys and parameter lists as values. The supported rising factorials are given in the following table (note that only a few are supported in `Q`): +------------+-------------------+--------+ | Key | Rising factorial | `Q` | +============+===================+========+ | ``'m'`` | `(a_j)_m` | Yes | +------------+-------------------+--------+ | ``'n'`` | `(a_j)_n` | Yes | +------------+-------------------+--------+ | ``'m+n'`` | `(a_j)_{m+n}` | Yes | +------------+-------------------+--------+ | ``'m-n'`` | `(a_j)_{m-n}` | No | +------------+-------------------+--------+ | ``'n-m'`` | `(a_j)_{n-m}` | No | +------------+-------------------+--------+ | ``'2m+n'`` | `(a_j)_{2m+n}` | No | +------------+-------------------+--------+ | ``'2m-n'`` | `(a_j)_{2m-n}` | No | +------------+-------------------+--------+ | ``'2n-m'`` | `(a_j)_{2n-m}` | No | +------------+-------------------+--------+ For example, the Appell F1 and F4 functions .. math :: F_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n} (b)_m (c)_n}{(d)_{m+n}} \frac{x^m y^n}{m! n!} F_4 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n} (b)_{m+n}}{(c)_m (d)_{n}} \frac{x^m y^n}{m! n!} can be represented respectively as ``hyper2d({'m+n':[a], 'm':[b], 'n':[c]}, {'m+n':[d]}, x, y)`` ``hyper2d({'m+n':[a,b]}, {'m':[c], 'n':[d]}, x, y)`` More generally, :func:`~mpmath.hyper2d` can evaluate any of the 34 distinct convergent second-order (generalized Gaussian) hypergeometric series enumerated by Horn, as well as the Kampe de Feriet function. The series is computed by rewriting it so that the inner series (i.e. the series containing `n` and `y`) has the form of an ordinary generalized hypergeometric series and thereby can be evaluated efficiently using :func:`~mpmath.hyper`. If possible, manually swapping `x` and `y` and the corresponding parameters can sometimes give better results. **Examples** Two separable cases: a product of two geometric series, and a product of two Gaussian hypergeometric functions:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> x, y = mpf(0.25), mpf(0.5) >>> hyper2d({'m':1,'n':1}, {}, x,y) 2.666666666666666666666667 >>> 1/(1-x)/(1-y) 2.666666666666666666666667 >>> hyper2d({'m':[1,2],'n':[3,4]}, {'m':[5],'n':[6]}, x,y) 4.164358531238938319669856 >>> hyp2f1(1,2,5,x)*hyp2f1(3,4,6,y) 4.164358531238938319669856 Some more series that can be done in closed form:: >>> hyper2d({'m':1,'n':1},{'m+n':1},x,y) 2.013417124712514809623881 >>> (exp(x)*x-exp(y)*y)/(x-y) 2.013417124712514809623881 Six of the 34 Horn functions, G1-G3 and H1-H3:: >>> from mpmath import * >>> mp.dps = 10; mp.pretty = True >>> x, y = 0.0625, 0.125 >>> a1,a2,b1,b2,c1,c2,d = 1.1,-1.2,-1.3,-1.4,1.5,-1.6,1.7 >>> hyper2d({'m+n':a1,'n-m':b1,'m-n':b2},{},x,y) # G1 1.139090746 >>> nsum(lambda m,n: rf(a1,m+n)*rf(b1,n-m)*rf(b2,m-n)*\ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) 1.139090746 >>> hyper2d({'m':a1,'n':a2,'n-m':b1,'m-n':b2},{},x,y) # G2 0.9503682696 >>> nsum(lambda m,n: rf(a1,m)*rf(a2,n)*rf(b1,n-m)*rf(b2,m-n)*\ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) 0.9503682696 >>> hyper2d({'2n-m':a1,'2m-n':a2},{},x,y) # G3 1.029372029 >>> nsum(lambda m,n: rf(a1,2*n-m)*rf(a2,2*m-n)*\ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) 1.029372029 >>> hyper2d({'m-n':a1,'m+n':b1,'n':c1},{'m':d},x,y) # H1 -1.605331256 >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m+n)*rf(c1,n)/rf(d,m)*\ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) -1.605331256 >>> hyper2d({'m-n':a1,'m':b1,'n':[c1,c2]},{'m':d},x,y) # H2 -2.35405404 >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m)*rf(c1,n)*rf(c2,n)/rf(d,m)*\ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) -2.35405404 >>> hyper2d({'2m+n':a1,'n':b1},{'m+n':c1},x,y) # H3 0.974479074 >>> nsum(lambda m,n: rf(a1,2*m+n)*rf(b1,n)/rf(c1,m+n)*\ ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) 0.974479074 **References** 1. [SrivastavaKarlsson]_ 2. [Weisstein]_ http://mathworld.wolfram.com/HornFunction.html 3. [Weisstein]_ http://mathworld.wolfram.com/AppellHypergeometricFunction.html """ x = ctx.convert(x) y = ctx.convert(y) def parse(dct, key): args = dct.pop(key, []) try: args = list(args) except TypeError: args = [args] return [ctx.convert(arg) for arg in args] a_s = dict(a) b_s = dict(b) a_m = parse(a, 'm') a_n = parse(a, 'n') a_m_add_n = parse(a, 'm+n') a_m_sub_n = parse(a, 'm-n') a_n_sub_m = parse(a, 'n-m') a_2m_add_n = parse(a, '2m+n') a_2m_sub_n = parse(a, '2m-n') a_2n_sub_m = parse(a, '2n-m') b_m = parse(b, 'm') b_n = parse(b, 'n') b_m_add_n = parse(b, 'm+n') if a: raise ValueError("unsupported key: %r" % a.keys()[0]) if b: raise ValueError("unsupported key: %r" % b.keys()[0]) s = 0 outer = ctx.one m = ctx.mpf(0) ok_count = 0 prec = ctx.prec maxterms = kwargs.get('maxterms', 20*prec) try: ctx.prec += 10 tol = +ctx.eps while 1: inner_sign = 1 outer_sign = 1 inner_a = list(a_n) inner_b = list(b_n) outer_a = [a+m for a in a_m] outer_b = [b+m for b in b_m] # (a)_{m+n} = (a)_m (a+m)_n for a in a_m_add_n: a = a+m inner_a.append(a) outer_a.append(a) # (b)_{m+n} = (b)_m (b+m)_n for b in b_m_add_n: b = b+m inner_b.append(b) outer_b.append(b) # (a)_{n-m} = (a-m)_n / (a-m)_m for a in a_n_sub_m: inner_a.append(a-m) outer_b.append(a-m-1) # (a)_{m-n} = (-1)^(m+n) (1-a-m)_m / (1-a-m)_n for a in a_m_sub_n: inner_sign *= (-1) outer_sign *= (-1)**(m) inner_b.append(1-a-m) outer_a.append(-a-m) # (a)_{2m+n} = (a)_{2m} (a+2m)_n for a in a_2m_add_n: inner_a.append(a+2*m) outer_a.append((a+2*m)*(1+a+2*m)) # (a)_{2m-n} = (-1)^(2m+n) (1-a-2m)_{2m} / (1-a-2m)_n for a in a_2m_sub_n: inner_sign *= (-1) inner_b.append(1-a-2*m) outer_a.append((a+2*m)*(1+a+2*m)) # (a)_{2n-m} = 4^n ((a-m)/2)_n ((a-m+1)/2)_n / (a-m)_m for a in a_2n_sub_m: inner_sign *= 4 inner_a.append(0.5*(a-m)) inner_a.append(0.5*(a-m+1)) outer_b.append(a-m-1) inner = ctx.hyper(inner_a, inner_b, inner_sign*y, zeroprec=ctx.prec, **kwargs) term = outer * inner * outer_sign if abs(term) < tol: ok_count += 1 else: ok_count = 0 if ok_count >= 3 or not outer: break s += term for a in outer_a: outer *= a for b in outer_b: outer /= b m += 1 outer = outer * x / m if m > maxterms: raise ctx.NoConvergence("maxterms exceeded in hyper2d") finally: ctx.prec = prec return +s """ @defun def kampe_de_feriet(ctx,a,b,c,d,e,f,x,y,**kwargs): return ctx.hyper2d({'m+n':a,'m':b,'n':c}, {'m+n':d,'m':e,'n':f}, x,y, **kwargs) """ @defun def bihyper(ctx, a_s, b_s, z, **kwargs): r""" Evaluates the bilateral hypergeometric series .. math :: \,_AH_B(a_1, \ldots, a_k; b_1, \ldots, b_B; z) = \sum_{n=-\infty}^{\infty} \frac{(a_1)_n \ldots (a_A)_n} {(b_1)_n \ldots (b_B)_n} \, z^n where, for direct convergence, `A = B` and `|z| = 1`, although a regularized sum exists more generally by considering the bilateral series as a sum of two ordinary hypergeometric functions. In order for the series to make sense, none of the parameters may be integers. **Examples** The value of `\,_2H_2` at `z = 1` is given by Dougall's formula:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a,b,c,d = 0.5, 1.5, 2.25, 3.25 >>> bihyper([a,b],[c,d],1) -14.49118026212345786148847 >>> gammaprod([c,d,1-a,1-b,c+d-a-b-1],[c-a,d-a,c-b,d-b]) -14.49118026212345786148847 The regularized function `\,_1H_0` can be expressed as the sum of one `\,_2F_0` function and one `\,_1F_1` function:: >>> a = mpf(0.25) >>> z = mpf(0.75) >>> bihyper([a], [], z) (0.2454393389657273841385582 + 0.2454393389657273841385582j) >>> hyper([a,1],[],z) + (hyper([1],[1-a],-1/z)-1) (0.2454393389657273841385582 + 0.2454393389657273841385582j) >>> hyper([a,1],[],z) + hyper([1],[2-a],-1/z)/z/(a-1) (0.2454393389657273841385582 + 0.2454393389657273841385582j) **References** 1. [Slater]_ (chapter 6: "Bilateral Series", pp. 180-189) 2. [Wikipedia]_ http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series """ z = ctx.convert(z) c_s = a_s + b_s p = len(a_s) q = len(b_s) if (p, q) == (0,0) or (p, q) == (1,1): return ctx.zero * z neg = (p-q) % 2 def h(*c_s): a_s = list(c_s[:p]) b_s = list(c_s[p:]) aa_s = [2-b for b in b_s] bb_s = [2-a for a in a_s] rp = [(-1)**neg * z] + [1-b for b in b_s] + [1-a for a in a_s] rc = [-1] + [1]*len(b_s) + [-1]*len(a_s) T1 = [], [], [], [], a_s + [1], b_s, z T2 = rp, rc, [], [], aa_s + [1], bb_s, (-1)**neg / z return T1, T2 return ctx.hypercomb(h, c_s, **kwargs)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/hypergeometric.py
hypergeometric.py
from .functions import defun, defun_wrapped @defun def _jacobi_theta2(ctx, z, q): extra1 = 10 extra2 = 20 # the loops below break when the fixed precision quantities # a and b go to zero; # right shifting small negative numbers by wp one obtains -1, not zero, # so the condition a**2 + b**2 > MIN is used to break the loops. MIN = 2 if z == ctx.zero: if (not ctx._im(q)): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 s = x2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << (wp+1)) + (s << 1) s = ctx.ldexp(s, -wp) else: wp = ctx.prec + extra1 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp-1) are = bre = x2re aim = bim = x2im sre = (1<<wp) + are sim = aim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) else: if (not ctx._im(q)) and (not ctx._im(z)): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s = c1 + ((a * cn) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s += (a * cn) >> wp s = (s << 1) s = ctx.ldexp(s, -wp) s *= ctx.nthroot(q, 4) return s # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre = c1 + ((are * cn) >> wp) sim = ((aim * cn) >> wp) while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre += ((are * cn) >> wp) sim += ((aim * cn) >> wp) sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre = c1re + ((a * cnre) >> wp) sim = c1im + ((a * cnim) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += ((a * cnre) >> wp) sim += ((a * cnim) >> wp) sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = ctx.prec ctx.prec = wp # cos(z), sin(z) with z complex c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 n = 1 termre = c1re termim = c1im sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 3 termre = ((are * cnre - aim * cnim) >> wp) termim = ((are * cnim + aim * cnre) >> wp) sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 termre = ((are * cnre - aim * cnim) >> wp) termim = ((aim * cnre + are * cnim) >> wp) sre += ((are * cnre - aim * cnim) >> wp) sim += ((aim * cnre + are * cnim) >> wp) n += 2 sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) s *= ctx.nthroot(q, 4) return s @defun def _djacobi_theta2(ctx, z, q, nd): MIN = 2 extra1 = 10 extra2 = 20 if (not ctx._im(q)) and (not ctx._im(z)): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): s = s1 + ((a * sn * 3**nd) >> wp) else: s = c1 + ((a * cn * 3**nd) >> wp) n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if nd&1: s += (a * sn * (2*n+1)**nd) >> wp else: s += (a * cn * (2*n+1)**nd) >> wp n += 1 s = -(s << 1) s = ctx.ldexp(s, -wp) # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre = s1 + ((are * sn * 3**nd) >> wp) sim = ((aim * sn * 3**nd) >> wp) else: sre = c1 + ((are * cn * 3**nd) >> wp) sim = ((aim * cn * 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre += ((are * sn * n**nd) >> wp) sim += ((aim * sn * n**nd) >> wp) else: sre += ((are * cn * n**nd) >> wp) sim += ((aim * cn * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + ((a * snre * 3**nd) >> wp) sim = s1im + ((a * snim * 3**nd) >> wp) else: sre = c1re + ((a * cnre * 3**nd) >> wp) sim = c1im + ((a * cnim * 3**nd) >> wp) n = 5 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += ((a * snre * n**nd) >> wp) sim += ((a * snim * n**nd) >> wp) else: sre += ((a * cnre * n**nd) >> wp) sim += ((a * cnim * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = ctx.prec ctx.prec = wp # cos(2*z), sin(2*z) with z complex c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp) else: sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (((are * snre - aim * snim) * n**nd) >> wp) sim += (((aim * snre + are * snim) * n**nd) >> wp) else: sre += (((are * cnre - aim * cnim) * n**nd) >> wp) sim += (((aim * cnre + are * cnim) * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) s *= ctx.nthroot(q, 4) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s @defun def _jacobi_theta3(ctx, z, q): extra1 = 10 extra2 = 20 MIN = 2 if z == ctx.zero: if not ctx._im(q): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) s = x a = b = x x2 = (x*x) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << wp) + (s << 1) s = ctx.ldexp(s, -wp) return s else: wp = ctx.prec + extra1 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) sre = are = bre = xre sim = aim = bim = xim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s else: if (not ctx._im(q)) and (not ctx._im(z)): s = 0 wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 s += (a * cn) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp s += (a * cn) >> wp s = (1 << wp) + (s << 1) s = ctx.ldexp(s, -wp) return s # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 sre = (are * cn) >> wp sim = (aim * cn) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp sre += (are * cn) >> wp sim += (aim * cn) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) sre = (a * cnre) >> wp sim = (a * cnim) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (a * cnre) >> wp sim += (a * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = ctx.prec ctx.prec = wp # cos(2*z), sin(2*z) with z complex c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (are * cnre - aim * cnim) >> wp sim += (aim * cnre + are * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s @defun def _djacobi_theta3(ctx, z, q, nd): """nd=1,2,3 order of the derivative with respect to z""" MIN = 2 extra1 = 10 extra2 = 20 if (not ctx._im(q)) and (not ctx._im(z)): s = 0 wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): s += (a * sn) >> wp else: s += (a * cn) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: s += (a * sn * n**nd) >> wp else: s += (a * cn * n**nd) >> wp n += 1 s = -(s << (nd+1)) s = ctx.ldexp(s, -wp) # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): sre = (are * sn) >> wp sim = (aim * sn) >> wp else: sre = (are * cn) >> wp sim = (aim * cn) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: sre += (are * sn * n**nd) >> wp sim += (aim * sn * n**nd) >> wp else: sre += (are * cn * n**nd) >> wp sim += (aim * cn * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) if (nd&1): sre = (a * snre) >> wp sim = (a * snim) >> wp else: sre = (a * cnre) >> wp sim = (a * cnim) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (a * snre * n**nd) >> wp sim += (a * snim * n**nd) >> wp else: sre += (a * cnre * n**nd) >> wp sim += (a * cnim * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = ctx.prec ctx.prec = wp # cos(2*z), sin(2*z) with z complex c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) if (nd&1): sre = (are * snre - aim * snim) >> wp sim = (aim * snre + are * snim) >> wp else: sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if(nd&1): sre += ((are * snre - aim * snim) * n**nd) >> wp sim += ((aim * snre + are * snim) * n**nd) >> wp else: sre += ((are * cnre - aim * cnim) * n**nd) >> wp sim += ((aim * cnre + are * cnim) * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s @defun def _jacobi_theta2a(ctx, z, q): """ case ctx._im(z) != 0 theta(2, z, q) = q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=-inf, inf) max term for minimum (2*n+1)*log(q).real - 2* ctx._im(z) n0 = int(ctx._im(z)/log(q).real - 1/2) theta(2, z, q) = q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=n0, inf) + q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n, n0-1, -inf) """ n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) e2 = ctx.expj(2*z) e = e0 = ctx.expj((2*n+1)*z) a = q**(n*n + n) # leading term term = a * e s = term eps1 = ctx.eps*abs(term) while 1: n += 1 e = e * e2 term = q**(n*n + n) * e if abs(term) < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 term = q**(n*n + n) * e if abs(term) < eps1: break s += term s = s * ctx.nthroot(q, 4) return s @defun def _jacobi_theta3a(ctx, z, q): """ case ctx._im(z) != 0 theta3(z, q) = Sum(q**(n*n) * exp(j*2*n*z), n, -inf, inf) max term for n*abs(log(q).real) + ctx._im(z) ~= 0 n0 = int(- ctx._im(z)/abs(log(q).real)) """ n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) e2 = ctx.expj(2*z) e = e0 = ctx.expj(2*n*z) s = term = q**(n*n) * e eps1 = ctx.eps*abs(term) while 1: n += 1 e = e * e2 term = q**(n*n) * e if abs(term) < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 term = q**(n*n) * e if abs(term) < eps1: break s += term return s @defun def _djacobi_theta2a(ctx, z, q, nd): """ case ctx._im(z) != 0 dtheta(2, z, q, nd) = j* q**1/4 * Sum(q**(n*n + n) * (2*n+1)*exp(j*(2*n + 1)*z), n=-inf, inf) max term for (2*n0+1)*log(q).real - 2* ctx._im(z) ~= 0 n0 = int(ctx._im(z)/log(q).real - 1/2) """ n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) e2 = ctx.expj(2*z) e = e0 = ctx.expj((2*n + 1)*z) a = q**(n*n + n) # leading term term = (2*n+1)**nd * a * e s = term eps1 = ctx.eps*abs(term) while 1: n += 1 e = e * e2 term = (2*n+1)**nd * q**(n*n + n) * e if abs(term) < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 term = (2*n+1)**nd * q**(n*n + n) * e if abs(term) < eps1: break s += term return ctx.j**nd * s * ctx.nthroot(q, 4) @defun def _djacobi_theta3a(ctx, z, q, nd): """ case ctx._im(z) != 0 djtheta3(z, q, nd) = (2*j)**nd * Sum(q**(n*n) * n**nd * exp(j*2*n*z), n, -inf, inf) max term for minimum n*abs(log(q).real) + ctx._im(z) """ n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) e2 = ctx.expj(2*z) e = e0 = ctx.expj(2*n*z) a = q**(n*n) * e s = term = n**nd * a if n != 0: eps1 = ctx.eps*abs(term) else: eps1 = ctx.eps*abs(a) while 1: n += 1 e = e * e2 a = q**(n*n) * e term = n**nd * a if n != 0: aterm = abs(term) else: aterm = abs(a) if aterm < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 a = q**(n*n) * e term = n**nd * a if n != 0: aterm = abs(term) else: aterm = abs(a) if aterm < eps1: break s += term return (2*ctx.j)**nd * s @defun def jtheta(ctx, n, z, q, derivative=0): if derivative: return ctx._djtheta(n, z, q, derivative) z = ctx.convert(z) q = ctx.convert(q) # Implementation note # If ctx._im(z) is close to zero, _jacobi_theta2 and _jacobi_theta3 # are used, # which compute the series starting from n=0 using fixed precision # numbers; # otherwise _jacobi_theta2a and _jacobi_theta3a are used, which compute # the series starting from n=n0, which is the largest term. # TODO: write _jacobi_theta2a and _jacobi_theta3a using fixed-point if abs(q) > ctx.THETA_Q_LIM: raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) extra = 10 if z: M = ctx.mag(z) if M > 5 or (n == 1 and M < -5): extra += 2*abs(M) cz = 0.5 extra2 = 50 prec0 = ctx.prec try: ctx.prec += extra if n == 1: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta2(z - ctx.pi/2, q) else: ctx.dps += 10 res = ctx._jacobi_theta2a(z - ctx.pi/2, q) else: res = ctx._jacobi_theta2(z - ctx.pi/2, q) elif n == 2: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta2(z, q) else: ctx.dps += 10 res = ctx._jacobi_theta2a(z, q) else: res = ctx._jacobi_theta2(z, q) elif n == 3: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta3(z, q) else: ctx.dps += 10 res = ctx._jacobi_theta3a(z, q) else: res = ctx._jacobi_theta3(z, q) elif n == 4: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta3(z, -q) else: ctx.dps += 10 res = ctx._jacobi_theta3a(z, -q) else: res = ctx._jacobi_theta3(z, -q) else: raise ValueError finally: ctx.prec = prec0 return res @defun def _djtheta(ctx, n, z, q, derivative=1): z = ctx.convert(z) q = ctx.convert(q) nd = int(derivative) if abs(q) > ctx.THETA_Q_LIM: raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) extra = 10 + ctx.prec * nd // 10 if z: M = ctx.mag(z) if M > 5 or (n != 1 and M < -5): extra += 2*abs(M) cz = 0.5 extra2 = 50 prec0 = ctx.prec try: ctx.prec += extra if n == 1: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta2a(z - ctx.pi/2, q, nd) else: res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) elif n == 2: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta2(z, q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta2a(z, q, nd) else: res = ctx._djacobi_theta2(z, q, nd) elif n == 3: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta3(z, q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta3a(z, q, nd) else: res = ctx._djacobi_theta3(z, q, nd) elif n == 4: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta3(z, -q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta3a(z, -q, nd) else: res = ctx._djacobi_theta3(z, -q, nd) else: raise ValueError finally: ctx.prec = prec0 return +res
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/theta.py
theta.py
from ..libmp.backend import xrange from .functions import defun, defun_wrapped @defun def gammaprod(ctx, a, b, _infsign=False): a = [ctx.convert(x) for x in a] b = [ctx.convert(x) for x in b] poles_num = [] poles_den = [] regular_num = [] regular_den = [] for x in a: [regular_num, poles_num][ctx.isnpint(x)].append(x) for x in b: [regular_den, poles_den][ctx.isnpint(x)].append(x) # One more pole in numerator or denominator gives 0 or inf if len(poles_num) < len(poles_den): return ctx.zero if len(poles_num) > len(poles_den): # Get correct sign of infinity for x+h, h -> 0 from above # XXX: hack, this should be done properly if _infsign: a = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_num] b = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_den] return ctx.sign(ctx.gammaprod(a+regular_num,b+regular_den)) * ctx.inf else: return ctx.inf # All poles cancel # lim G(i)/G(j) = (-1)**(i+j) * gamma(1-j) / gamma(1-i) p = ctx.one orig = ctx.prec try: ctx.prec = orig + 15 while poles_num: i = poles_num.pop() j = poles_den.pop() p *= (-1)**(i+j) * ctx.gamma(1-j) / ctx.gamma(1-i) for x in regular_num: p *= ctx.gamma(x) for x in regular_den: p /= ctx.gamma(x) finally: ctx.prec = orig return +p @defun def beta(ctx, x, y): x = ctx.convert(x) y = ctx.convert(y) if ctx.isinf(y): x, y = y, x if ctx.isinf(x): if x == ctx.inf and not ctx._im(y): if y == ctx.ninf: return ctx.nan if y > 0: return ctx.zero if ctx.isint(y): return ctx.nan if y < 0: return ctx.sign(ctx.gamma(y)) * ctx.inf return ctx.nan return ctx.gammaprod([x, y], [x+y]) @defun def binomial(ctx, n, k): return ctx.gammaprod([n+1], [k+1, n-k+1]) @defun def rf(ctx, x, n): return ctx.gammaprod([x+n], [x]) @defun def ff(ctx, x, n): return ctx.gammaprod([x+1], [x-n+1]) @defun_wrapped def fac2(ctx, x): if ctx.isinf(x): if x == ctx.inf: return x return ctx.nan return 2**(x/2)*(ctx.pi/2)**((ctx.cospi(x)-1)/4)*ctx.gamma(x/2+1) @defun_wrapped def barnesg(ctx, z): if ctx.isinf(z): if z == ctx.inf: return z return ctx.nan if ctx.isnan(z): return z if (not ctx._im(z)) and ctx._re(z) <= 0 and ctx.isint(ctx._re(z)): return z*0 # Account for size (would not be needed if computing log(G)) if abs(z) > 5: ctx.dps += 2*ctx.log(abs(z),2) # Reflection formula if ctx.re(z) < -ctx.dps: w = 1-z pi2 = 2*ctx.pi u = ctx.expjpi(2*w) v = ctx.j*ctx.pi/12 - ctx.j*ctx.pi*w**2/2 + w*ctx.ln(1-u) - \ ctx.j*ctx.polylog(2, u)/pi2 v = ctx.barnesg(2-z)*ctx.exp(v)/pi2**w if ctx._is_real_type(z): v = ctx._re(v) return v # Estimate terms for asymptotic expansion # TODO: fixme, obviously N = ctx.dps // 2 + 5 G = 1 while abs(z) < N or ctx.re(z) < 1: G /= ctx.gamma(z) z += 1 z -= 1 s = ctx.mpf(1)/12 s -= ctx.log(ctx.glaisher) s += z*ctx.log(2*ctx.pi)/2 s += (z**2/2-ctx.mpf(1)/12)*ctx.log(z) s -= 3*z**2/4 z2k = z2 = z**2 for k in xrange(1, N+1): t = ctx.bernoulli(2*k+2) / (4*k*(k+1)*z2k) if abs(t) < ctx.eps: #print k, N # check how many terms were needed break z2k *= z2 s += t #if k == N: # print "warning: series for barnesg failed to converge", ctx.dps return G*ctx.exp(s) @defun def superfac(ctx, z): return ctx.barnesg(z+2) @defun_wrapped def hyperfac(ctx, z): # XXX: estimate needed extra bits accurately if z == ctx.inf: return z if abs(z) > 5: extra = 4*int(ctx.log(abs(z),2)) else: extra = 0 ctx.prec += extra if not ctx._im(z) and ctx._re(z) < 0 and ctx.isint(ctx._re(z)): n = int(ctx.re(z)) h = ctx.hyperfac(-n-1) if ((n+1)//2) & 1: h = -h if ctx._is_complex_type(z): return h + 0j return h zp1 = z+1 # Wrong branch cut #v = ctx.gamma(zp1)**z #ctx.prec -= extra #return v / ctx.barnesg(zp1) v = ctx.exp(z*ctx.loggamma(zp1)) ctx.prec -= extra return v / ctx.barnesg(zp1) @defun_wrapped def loggamma_old(ctx, z): a = ctx._re(z) b = ctx._im(z) if not b and a > 0: return ctx.ln(ctx.gamma_old(z)) u = ctx.arg(z) w = ctx.ln(ctx.gamma_old(z)) if b: gi = -b - u/2 + a*u + b*ctx.ln(abs(z)) n = ctx.floor((gi-ctx._im(w))/(2*ctx.pi)+0.5) * (2*ctx.pi) return w + n*ctx.j elif a < 0: n = int(ctx.floor(a)) w += (n-(n%2))*ctx.pi*ctx.j return w ''' @defun def psi0(ctx, z): """Shortcut for psi(0,z) (the digamma function)""" return ctx.psi(0, z) @defun def psi1(ctx, z): """Shortcut for psi(1,z) (the trigamma function)""" return ctx.psi(1, z) @defun def psi2(ctx, z): """Shortcut for psi(2,z) (the tetragamma function)""" return ctx.psi(2, z) @defun def psi3(ctx, z): """Shortcut for psi(3,z) (the pentagamma function)""" return ctx.psi(3, z) '''
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/factorials.py
factorials.py
from .functions import defun, defun_wrapped def find_rosser_block_zero(ctx, n): """for n<400 000 000 determines a block were one find our zero""" for k in range(len(_ROSSER_EXCEPTIONS)//2): a=_ROSSER_EXCEPTIONS[2*k][0] b=_ROSSER_EXCEPTIONS[2*k][1] if ((a<= n-2) and (n-1 <= b)): t0 = ctx.grampoint(a) t1 = ctx.grampoint(b) v0 = ctx._fp.siegelz(t0) v1 = ctx._fp.siegelz(t1) my_zero_number = n-a-1 zero_number_block = b-a pattern = _ROSSER_EXCEPTIONS[2*k+1] return (my_zero_number, [a,b], [t0,t1], [v0,v1]) k = n-2 t,v,b = compute_triple_tvb(ctx, k) T = [t] V = [v] while b < 0: k -= 1 t,v,b = compute_triple_tvb(ctx, k) T.insert(0,t) V.insert(0,v) my_zero_number = n-k-1 m = n-1 t,v,b = compute_triple_tvb(ctx, m) T.append(t) V.append(v) while b < 0: m += 1 t,v,b = compute_triple_tvb(ctx, m) T.append(t) V.append(v) return (my_zero_number, [k,m], T, V) def wpzeros(t): """Precision needed to compute higher zeros""" wp = 53 if t > 3*10**8: wp = 63 if t > 10**11: wp = 70 if t > 10**14: wp = 83 return wp def separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=None, fp_tolerance=None): """Separate the zeros contained in the block T, limitloop determines how long one must search""" if limitloop is None: limitloop = ctx.inf loopnumber = 0 variations = count_variations(V) while ((variations < zero_number_block) and (loopnumber <limitloop)): a = T[0] v = V[0] newT = [a] newV = [v] variations = 0 for n in range(1,len(T)): b2 = T[n] u = V[n] if (u*v>0): alpha = ctx.sqrt(u/v) b= (alpha*a+b2)/(alpha+1) else: b = (a+b2)/2 if fp_tolerance < 10: w = ctx._fp.siegelz(b) if abs(w)<fp_tolerance: w = ctx.siegelz(b) else: w=ctx.siegelz(b) if v*w<0: variations += 1 newT.append(b) newV.append(w) u = V[n] if u*w <0: variations += 1 newT.append(b2) newV.append(u) a = b2 v = u T = newT V = newV loopnumber +=1 if (limitloop>ITERATION_LIMIT)and(loopnumber>2)and(variations+2==zero_number_block): dtMax=0 dtSec=0 kMax = 0 for k1 in range(1,len(T)): dt = T[k1]-T[k1-1] if dt > dtMax: kMax=k1 dtSec = dtMax dtMax = dt elif (dt<dtMax) and(dt >dtSec): dtSec = dt if dtMax>3*dtSec: f = lambda x: ctx.rs_z(x,derivative=1) t0=T[kMax-1] t1 = T[kMax] t=ctx.findroot(f, (t0,t1), solver ='illinois',verify=False, verbose=False) v = ctx.siegelz(t) if (t0<t) and (t<t1) and (v*V[kMax]<0): T.insert(kMax,t) V.insert(kMax,v) variations = count_variations(V) if variations == zero_number_block: separated = True else: separated = False return (T,V, separated) def separate_my_zero(ctx, my_zero_number, zero_number_block, T, V, prec): """If we know which zero of this block is mine, the function separates the zero""" variations = 0 v0 = V[0] for k in range(1,len(V)): v1 = V[k] if v0*v1 < 0: variations +=1 if variations == my_zero_number: k0 = k leftv = v0 rightv = v1 v0 = v1 t1 = T[k0] t0 = T[k0-1] ctx.prec = prec r = ctx.findroot(lambda x:ctx.siegelz(x), (t0,t1), solver ='illinois', verbose=False) return r def sure_number_block(ctx, n): """The number of good Rosser blocks needed to apply Turing method References: R. P. Brent, On the Zeros of the Riemann Zeta Function in the Critical Strip, Math. Comp. 33 (1979) 1361--1372 T. Trudgian, Improvements to Turing Method, Math. Comp.""" if n < 9*10**5: return(2) g = ctx.grampoint(n-100) lg = ctx._fp.ln(g) brent = 0.0061 * lg**2 +0.08*lg trudgian = 0.0031 * lg**2 +0.11*lg N = ctx.ceil(min(brent,trudgian)) N = int(N) return N def compute_triple_tvb(ctx, n): t = ctx.grampoint(n) v = ctx._fp.siegelz(t) if ctx.mag(abs(v))<ctx.mag(t)-45: v = ctx.siegelz(t) b = v*(-1)**n return t,v,b ITERATION_LIMIT = 4 def search_supergood_block(ctx, n, fp_tolerance): """To use for n>400 000 000""" sb = sure_number_block(ctx, n) number_goodblocks = 0 m2 = n-1 t, v, b = compute_triple_tvb(ctx, m2) Tf = [t] Vf = [v] while b < 0: m2 += 1 t,v,b = compute_triple_tvb(ctx, m2) Tf.append(t) Vf.append(v) goodpoints = [m2] T = [t] V = [v] while number_goodblocks < 2*sb: m2 += 1 t, v, b = compute_triple_tvb(ctx, m2) T.append(t) V.append(v) while b < 0: m2 += 1 t,v,b = compute_triple_tvb(ctx, m2) T.append(t) V.append(v) goodpoints.append(m2) zn = len(T)-1 A, B, separated =\ separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) Tf.pop() Tf.extend(A) Vf.pop() Vf.extend(B) if separated: number_goodblocks += 1 else: number_goodblocks = 0 T = [t] V = [v] # Now the same procedure to the left number_goodblocks = 0 m2 = n-2 t, v, b = compute_triple_tvb(ctx, m2) Tf.insert(0,t) Vf.insert(0,v) while b < 0: m2 -= 1 t,v,b = compute_triple_tvb(ctx, m2) Tf.insert(0,t) Vf.insert(0,v) goodpoints.insert(0,m2) T = [t] V = [v] while number_goodblocks < 2*sb: m2 -= 1 t, v, b = compute_triple_tvb(ctx, m2) T.insert(0,t) V.insert(0,v) while b < 0: m2 -= 1 t,v,b = compute_triple_tvb(ctx, m2) T.insert(0,t) V.insert(0,v) goodpoints.insert(0,m2) zn = len(T)-1 A, B, separated =\ separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) A.pop() Tf = A+Tf B.pop() Vf = B+Vf if separated: number_goodblocks += 1 else: number_goodblocks = 0 T = [t] V = [v] r = goodpoints[2*sb] lg = len(goodpoints) s = goodpoints[lg-2*sb-1] tr, vr, br = compute_triple_tvb(ctx, r) ar = Tf.index(tr) ts, vs, bs = compute_triple_tvb(ctx, s) as1 = Tf.index(ts) T = Tf[ar:as1+1] V = Vf[ar:as1+1] zn = s-r A, B, separated =\ separate_zeros_in_block(ctx, zn,T,V,limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) if separated: return (n-r-1,[r,s],A,B) q = goodpoints[sb] lg = len(goodpoints) t = goodpoints[lg-sb-1] tq, vq, bq = compute_triple_tvb(ctx, q) aq = Tf.index(tq) tt, vt, bt = compute_triple_tvb(ctx, t) at = Tf.index(tt) T = Tf[aq:at+1] V = Vf[aq:at+1] return (n-q-1,[q,t],T,V) def count_variations(V): count = 0 vold = V[0] for n in range(1, len(V)): vnew = V[n] if vold*vnew < 0: count +=1 vold = vnew return count def pattern_construct(ctx, block, T, V): pattern = '(' a = block[0] b = block[1] t0,v0,b0 = compute_triple_tvb(ctx, a) k = 0 k0 = 0 for n in range(a+1,b+1): t1,v1,b1 = compute_triple_tvb(ctx, n) lgT =len(T) while (k < lgT) and (T[k] <= t1): k += 1 L = V[k0:k] L.append(v1) L.insert(0,v0) count = count_variations(L) pattern = pattern + ("%s" % count) if b1 > 0: pattern = pattern + ')(' k0 = k t0,v0,b0 = t1,v1,b1 pattern = pattern[:-1] return pattern @defun def zetazero(ctx, n, info=False, round=True): r""" Computes the `n`-th nontrivial zero of `\zeta(s)` on the critical line, i.e. returns an approximation of the `n`-th largest complex number `s = \frac{1}{2} + ti` for which `\zeta(s) = 0`. Equivalently, the imaginary part `t` is a zero of the Z-function (:func:`~mpmath.siegelz`). **Examples** The first few zeros:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> zetazero(1) (0.5 + 14.13472514173469379045725j) >>> zetazero(2) (0.5 + 21.02203963877155499262848j) >>> zetazero(20) (0.5 + 77.14484006887480537268266j) Verifying that the values are zeros:: >>> for n in range(1,5): ... s = zetazero(n) ... chop(zeta(s)), chop(siegelz(s.imag)) ... (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) Negative indices give the conjugate zeros (`n = 0` is undefined):: >>> zetazero(-1) (0.5 - 14.13472514173469379045725j) :func:`~mpmath.zetazero` supports arbitrarily large `n` and arbitrary precision:: >>> mp.dps = 15 >>> zetazero(1234567) (0.5 + 727690.906948208j) >>> mp.dps = 50 >>> zetazero(1234567) (0.5 + 727690.9069482075392389420041147142092708393819935j) >>> chop(zeta(_)/_) 0.0 with *info=True*, :func:`~mpmath.zetazero` gives additional information:: >>> mp.dps = 15 >>> zetazero(542964976,info=True) ((0.5 + 209039046.578535j), [542964969, 542964978], 6, '(013111110)') This means that the zero is between Gram points 542964969 and 542964978; it is the 6-th zero between them. Finally (01311110) is the pattern of zeros in this interval. The numbers indicate the number of zeros in each Gram interval (Rosser blocks between parenthesis). In this case there is only one Rosser block of length nine. """ n = int(n) if n < 0: return ctx.zetazero(-n).conjugate() if n == 0: raise ValueError("n must be nonzero") wpinitial = ctx.prec try: wpz, fp_tolerance = comp_fp_tolerance(ctx, n) ctx.prec = wpz if n < 400000000: my_zero_number, block, T, V =\ find_rosser_block_zero(ctx, n) else: my_zero_number, block, T, V =\ search_supergood_block(ctx, n, fp_tolerance) zero_number_block = block[1]-block[0] T, V, separated = separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=ctx.inf, fp_tolerance=fp_tolerance) if info: pattern = pattern_construct(ctx,block,T,V) prec = max(wpinitial, wpz) t = separate_my_zero(ctx, my_zero_number, zero_number_block,T,V,prec) v = ctx.mpc(0.5,t) finally: ctx.prec = wpinitial if round: v =+v if info: return (v,block,my_zero_number,pattern) else: return v def gram_index(ctx, t): if t > 10**13: wp = 3*ctx.log(t, 10) else: wp = 0 prec = ctx.prec try: ctx.prec += wp x0 = (t/(2*ctx.pi))*ctx.log(t/(2*ctx.pi)) h = ctx.findroot(lambda x:ctx.siegeltheta(t)-ctx.pi*x, x0) h = int(h) finally: ctx.prec = prec return(h) def count_to(ctx, t, T, V): count = 0 vold = V[0] told = T[0] tnew = T[1] k = 1 while tnew < t: vnew = V[k] if vold*vnew < 0: count += 1 vold = vnew k += 1 tnew = T[k] a = ctx.siegelz(t) if a*vold < 0: count += 1 return count def comp_fp_tolerance(ctx, n): wpz = wpzeros(n*ctx.log(n)) if n < 15*10**8: fp_tolerance = 0.0005 elif n <= 10**14: fp_tolerance = 0.1 else: fp_tolerance = 100 return wpz, fp_tolerance @defun def nzeros(ctx, t): r""" Computes the number of zeros of the Riemann zeta function in `(0,1) \times (0,t]`, usually denoted by `N(t)`. **Examples** The first zero has imaginary part between 14 and 15:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> nzeros(14) 0 >>> nzeros(15) 1 >>> zetazero(1) (0.5 + 14.1347251417347j) Some closely spaced zeros:: >>> nzeros(10**7) 21136125 >>> zetazero(21136125) (0.5 + 9999999.32718175j) >>> zetazero(21136126) (0.5 + 10000000.2400236j) >>> nzeros(545439823.215) 1500000001 >>> zetazero(1500000001) (0.5 + 545439823.201985j) >>> zetazero(1500000002) (0.5 + 545439823.325697j) This confirms the data given by J. van de Lune, H. J. J. te Riele and D. T. Winter in 1986. """ if t < 14.1347251417347: return 0 x = gram_index(ctx, t) k = int(ctx.floor(x)) wpinitial = ctx.prec wpz, fp_tolerance = comp_fp_tolerance(ctx, k) ctx.prec = wpz a = ctx.siegelz(t) if k == -1 and a < 0: return 0 elif k == -1 and a > 0: return 1 if k+2 < 400000000: Rblock = find_rosser_block_zero(ctx, k+2) else: Rblock = search_supergood_block(ctx, k+2, fp_tolerance) n1, n2 = Rblock[1] if n2-n1 == 1: b = Rblock[3][0] if a*b > 0: ctx.prec = wpinitial return k+1 else: ctx.prec = wpinitial return k+2 my_zero_number,block, T, V = Rblock zero_number_block = n2-n1 T, V, separated = separate_zeros_in_block(ctx,\ zero_number_block, T, V,\ limitloop=ctx.inf,\ fp_tolerance=fp_tolerance) n = count_to(ctx, t, T, V) ctx.prec = wpinitial return n+n1+1 @defun_wrapped def backlunds(ctx, t): r""" Computes the function `S(t) = \operatorname{arg} \zeta(\frac{1}{2} + it) / \pi`. See Titchmarsh Section 9.3 for details of the definition. **Examples** >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> backlunds(217.3) 0.16302205431184 Generally, the value is a small number. At Gram points it is an integer, frequently equal to 0:: >>> chop(backlunds(grampoint(200))) 0.0 >>> backlunds(extraprec(10)(grampoint)(211)) 1.0 >>> backlunds(extraprec(10)(grampoint)(232)) -1.0 The number of zeros of the Riemann zeta function up to height `t` satisfies `N(t) = \theta(t)/\pi + 1 + S(t)` (see :func:nzeros` and :func:`siegeltheta`):: >>> t = 1234.55 >>> nzeros(t) 842 >>> siegeltheta(t)/pi+1+backlunds(t) 842.0 """ return ctx.nzeros(t)-1-ctx.siegeltheta(t)/ctx.pi """ _ROSSER_EXCEPTIONS is a list of all exceptions to Rosser's rule for n <= 400 000 000. Alternately the entry is of type [n,m], or a string. The string is the zero pattern of the Block and the relevant adjacent. For example (010)3 corresponds to a block composed of three Gram intervals, the first ant third without a zero and the intermediate with a zero. The next Gram interval contain three zeros. So that in total we have 4 zeros in 4 Gram blocks. n and m are the indices of the Gram points of this interval of four Gram intervals. The Rosser exception is therefore formed by the three Gram intervals that are signaled between parenthesis. We have included also some Rosser's exceptions beyond n=400 000 000 that are noted in the literature by some reason. The list is composed from the data published in the references: R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter, 'On the Zeros of the Riemann Zeta Function in the Critical Strip. II', Math. Comp. 39 (1982) 681--688. See also Corrigenda in Math. Comp. 46 (1986) 771. J. van de Lune, H. J. J. te Riele, 'On the Zeros of the Riemann Zeta Function in the Critical Strip. III', Math. Comp. 41 (1983) 759--767. See also Corrigenda in Math. Comp. 46 (1986) 771. J. van de Lune, 'Sums of Equal Powers of Positive Integers', Dissertation, Vrije Universiteit te Amsterdam, Centrum voor Wiskunde en Informatica, Amsterdam, 1984. Thanks to the authors all this papers and those others that have contributed to make this possible. """ _ROSSER_EXCEPTIONS = \ [[13999525, 13999528], '(00)3', [30783329, 30783332], '(00)3', [30930926, 30930929], '3(00)', [37592215, 37592218], '(00)3', [40870156, 40870159], '(00)3', [43628107, 43628110], '(00)3', [46082042, 46082045], '(00)3', [46875667, 46875670], '(00)3', [49624540, 49624543], '3(00)', [50799238, 50799241], '(00)3', [55221453, 55221456], '3(00)', [56948779, 56948782], '3(00)', [60515663, 60515666], '(00)3', [61331766, 61331770], '(00)40', [69784843, 69784846], '3(00)', [75052114, 75052117], '(00)3', [79545240, 79545243], '3(00)', [79652247, 79652250], '3(00)', [83088043, 83088046], '(00)3', [83689522, 83689525], '3(00)', [85348958, 85348961], '(00)3', [86513820, 86513823], '(00)3', [87947596, 87947599], '3(00)', [88600095, 88600098], '(00)3', [93681183, 93681186], '(00)3', [100316551, 100316554], '3(00)', [100788444, 100788447], '(00)3', [106236172, 106236175], '(00)3', [106941327, 106941330], '3(00)', [107287955, 107287958], '(00)3', [107532016, 107532019], '3(00)', [110571044, 110571047], '(00)3', [111885253, 111885256], '3(00)', [113239783, 113239786], '(00)3', [120159903, 120159906], '(00)3', [121424391, 121424394], '3(00)', [121692931, 121692934], '3(00)', [121934170, 121934173], '3(00)', [122612848, 122612851], '3(00)', [126116567, 126116570], '(00)3', [127936513, 127936516], '(00)3', [128710277, 128710280], '3(00)', [129398902, 129398905], '3(00)', [130461096, 130461099], '3(00)', [131331947, 131331950], '3(00)', [137334071, 137334074], '3(00)', [137832603, 137832606], '(00)3', [138799471, 138799474], '3(00)', [139027791, 139027794], '(00)3', [141617806, 141617809], '(00)3', [144454931, 144454934], '(00)3', [145402379, 145402382], '3(00)', [146130245, 146130248], '3(00)', [147059770, 147059773], '(00)3', [147896099, 147896102], '3(00)', [151097113, 151097116], '(00)3', [152539438, 152539441], '(00)3', [152863168, 152863171], '3(00)', [153522726, 153522729], '3(00)', [155171524, 155171527], '3(00)', [155366607, 155366610], '(00)3', [157260686, 157260689], '3(00)', [157269224, 157269227], '(00)3', [157755123, 157755126], '(00)3', [158298484, 158298487], '3(00)', [160369050, 160369053], '3(00)', [162962787, 162962790], '(00)3', [163724709, 163724712], '(00)3', [164198113, 164198116], '3(00)', [164689301, 164689305], '(00)40', [164880228, 164880231], '3(00)', [166201932, 166201935], '(00)3', [168573836, 168573839], '(00)3', [169750763, 169750766], '(00)3', [170375507, 170375510], '(00)3', [170704879, 170704882], '3(00)', [172000992, 172000995], '3(00)', [173289941, 173289944], '(00)3', [173737613, 173737616], '3(00)', [174102513, 174102516], '(00)3', [174284990, 174284993], '(00)3', [174500513, 174500516], '(00)3', [175710609, 175710612], '(00)3', [176870843, 176870846], '3(00)', [177332732, 177332735], '3(00)', [177902861, 177902864], '3(00)', [179979095, 179979098], '(00)3', [181233726, 181233729], '3(00)', [181625435, 181625438], '(00)3', [182105255, 182105259], '22(00)', [182223559, 182223562], '3(00)', [191116404, 191116407], '3(00)', [191165599, 191165602], '3(00)', [191297535, 191297539], '(00)22', [192485616, 192485619], '(00)3', [193264634, 193264638], '22(00)', [194696968, 194696971], '(00)3', [195876805, 195876808], '(00)3', [195916548, 195916551], '3(00)', [196395160, 196395163], '3(00)', [196676303, 196676306], '(00)3', [197889882, 197889885], '3(00)', [198014122, 198014125], '(00)3', [199235289, 199235292], '(00)3', [201007375, 201007378], '(00)3', [201030605, 201030608], '3(00)', [201184290, 201184293], '3(00)', [201685414, 201685418], '(00)22', [202762875, 202762878], '3(00)', [202860957, 202860960], '3(00)', [203832577, 203832580], '3(00)', [205880544, 205880547], '(00)3', [206357111, 206357114], '(00)3', [207159767, 207159770], '3(00)', [207167343, 207167346], '3(00)', [207482539, 207482543], '3(010)', [207669540, 207669543], '3(00)', [208053426, 208053429], '(00)3', [208110027, 208110030], '3(00)', [209513826, 209513829], '3(00)', [212623522, 212623525], '(00)3', [213841715, 213841718], '(00)3', [214012333, 214012336], '(00)3', [214073567, 214073570], '(00)3', [215170600, 215170603], '3(00)', [215881039, 215881042], '3(00)', [216274604, 216274607], '3(00)', [216957120, 216957123], '3(00)', [217323208, 217323211], '(00)3', [218799264, 218799267], '(00)3', [218803557, 218803560], '3(00)', [219735146, 219735149], '(00)3', [219830062, 219830065], '3(00)', [219897904, 219897907], '(00)3', [221205545, 221205548], '(00)3', [223601929, 223601932], '(00)3', [223907076, 223907079], '3(00)', [223970397, 223970400], '(00)3', [224874044, 224874048], '22(00)', [225291157, 225291160], '(00)3', [227481734, 227481737], '(00)3', [228006442, 228006445], '3(00)', [228357900, 228357903], '(00)3', [228386399, 228386402], '(00)3', [228907446, 228907449], '(00)3', [228984552, 228984555], '3(00)', [229140285, 229140288], '3(00)', [231810024, 231810027], '(00)3', [232838062, 232838065], '3(00)', [234389088, 234389091], '3(00)', [235588194, 235588197], '(00)3', [236645695, 236645698], '(00)3', [236962876, 236962879], '3(00)', [237516723, 237516727], '04(00)', [240004911, 240004914], '(00)3', [240221306, 240221309], '3(00)', [241389213, 241389217], '(010)3', [241549003, 241549006], '(00)3', [241729717, 241729720], '(00)3', [241743684, 241743687], '3(00)', [243780200, 243780203], '3(00)', [243801317, 243801320], '(00)3', [244122072, 244122075], '(00)3', [244691224, 244691227], '3(00)', [244841577, 244841580], '(00)3', [245813461, 245813464], '(00)3', [246299475, 246299478], '(00)3', [246450176, 246450179], '3(00)', [249069349, 249069352], '(00)3', [250076378, 250076381], '(00)3', [252442157, 252442160], '3(00)', [252904231, 252904234], '3(00)', [255145220, 255145223], '(00)3', [255285971, 255285974], '3(00)', [256713230, 256713233], '(00)3', [257992082, 257992085], '(00)3', [258447955, 258447959], '22(00)', [259298045, 259298048], '3(00)', [262141503, 262141506], '(00)3', [263681743, 263681746], '3(00)', [266527881, 266527885], '(010)3', [266617122, 266617125], '(00)3', [266628044, 266628047], '3(00)', [267305763, 267305766], '(00)3', [267388404, 267388407], '3(00)', [267441672, 267441675], '3(00)', [267464886, 267464889], '(00)3', [267554907, 267554910], '3(00)', [269787480, 269787483], '(00)3', [270881434, 270881437], '(00)3', [270997583, 270997586], '3(00)', [272096378, 272096381], '3(00)', [272583009, 272583012], '(00)3', [274190881, 274190884], '3(00)', [274268747, 274268750], '(00)3', [275297429, 275297432], '3(00)', [275545476, 275545479], '3(00)', [275898479, 275898482], '3(00)', [275953000, 275953003], '(00)3', [277117197, 277117201], '(00)22', [277447310, 277447313], '3(00)', [279059657, 279059660], '3(00)', [279259144, 279259147], '3(00)', [279513636, 279513639], '3(00)', [279849069, 279849072], '3(00)', [280291419, 280291422], '(00)3', [281449425, 281449428], '3(00)', [281507953, 281507956], '3(00)', [281825600, 281825603], '(00)3', [282547093, 282547096], '3(00)', [283120963, 283120966], '3(00)', [283323493, 283323496], '(00)3', [284764535, 284764538], '3(00)', [286172639, 286172642], '3(00)', [286688824, 286688827], '(00)3', [287222172, 287222175], '3(00)', [287235534, 287235537], '3(00)', [287304861, 287304864], '3(00)', [287433571, 287433574], '(00)3', [287823551, 287823554], '(00)3', [287872422, 287872425], '3(00)', [288766615, 288766618], '3(00)', [290122963, 290122966], '3(00)', [290450849, 290450853], '(00)22', [291426141, 291426144], '3(00)', [292810353, 292810356], '3(00)', [293109861, 293109864], '3(00)', [293398054, 293398057], '3(00)', [294134426, 294134429], '3(00)', [294216438, 294216441], '(00)3', [295367141, 295367144], '3(00)', [297834111, 297834114], '3(00)', [299099969, 299099972], '3(00)', [300746958, 300746961], '3(00)', [301097423, 301097426], '(00)3', [301834209, 301834212], '(00)3', [302554791, 302554794], '(00)3', [303497445, 303497448], '3(00)', [304165344, 304165347], '3(00)', [304790218, 304790222], '3(010)', [305302352, 305302355], '(00)3', [306785996, 306785999], '3(00)', [307051443, 307051446], '3(00)', [307481539, 307481542], '3(00)', [308605569, 308605572], '3(00)', [309237610, 309237613], '3(00)', [310509287, 310509290], '(00)3', [310554057, 310554060], '3(00)', [310646345, 310646348], '3(00)', [311274896, 311274899], '(00)3', [311894272, 311894275], '3(00)', [312269470, 312269473], '(00)3', [312306601, 312306605], '(00)40', [312683193, 312683196], '3(00)', [314499804, 314499807], '3(00)', [314636802, 314636805], '(00)3', [314689897, 314689900], '3(00)', [314721319, 314721322], '3(00)', [316132890, 316132893], '3(00)', [316217470, 316217474], '(010)3', [316465705, 316465708], '3(00)', [316542790, 316542793], '(00)3', [320822347, 320822350], '3(00)', [321733242, 321733245], '3(00)', [324413970, 324413973], '(00)3', [325950140, 325950143], '(00)3', [326675884, 326675887], '(00)3', [326704208, 326704211], '3(00)', [327596247, 327596250], '3(00)', [328123172, 328123175], '3(00)', [328182212, 328182215], '(00)3', [328257498, 328257501], '3(00)', [328315836, 328315839], '(00)3', [328800974, 328800977], '(00)3', [328998509, 328998512], '3(00)', [329725370, 329725373], '(00)3', [332080601, 332080604], '(00)3', [332221246, 332221249], '(00)3', [332299899, 332299902], '(00)3', [332532822, 332532825], '(00)3', [333334544, 333334548], '(00)22', [333881266, 333881269], '3(00)', [334703267, 334703270], '3(00)', [334875138, 334875141], '3(00)', [336531451, 336531454], '3(00)', [336825907, 336825910], '(00)3', [336993167, 336993170], '(00)3', [337493998, 337494001], '3(00)', [337861034, 337861037], '3(00)', [337899191, 337899194], '(00)3', [337958123, 337958126], '(00)3', [342331982, 342331985], '3(00)', [342676068, 342676071], '3(00)', [347063781, 347063784], '3(00)', [347697348, 347697351], '3(00)', [347954319, 347954322], '3(00)', [348162775, 348162778], '3(00)', [349210702, 349210705], '(00)3', [349212913, 349212916], '3(00)', [349248650, 349248653], '(00)3', [349913500, 349913503], '3(00)', [350891529, 350891532], '3(00)', [351089323, 351089326], '3(00)', [351826158, 351826161], '3(00)', [352228580, 352228583], '(00)3', [352376244, 352376247], '3(00)', [352853758, 352853761], '(00)3', [355110439, 355110442], '(00)3', [355808090, 355808094], '(00)40', [355941556, 355941559], '3(00)', [356360231, 356360234], '(00)3', [356586657, 356586660], '3(00)', [356892926, 356892929], '(00)3', [356908232, 356908235], '3(00)', [357912730, 357912733], '3(00)', [358120344, 358120347], '3(00)', [359044096, 359044099], '(00)3', [360819357, 360819360], '3(00)', [361399662, 361399666], '(010)3', [362361315, 362361318], '(00)3', [363610112, 363610115], '(00)3', [363964804, 363964807], '3(00)', [364527375, 364527378], '(00)3', [365090327, 365090330], '(00)3', [365414539, 365414542], '3(00)', [366738474, 366738477], '3(00)', [368714778, 368714783], '04(010)', [368831545, 368831548], '(00)3', [368902387, 368902390], '(00)3', [370109769, 370109772], '3(00)', [370963333, 370963336], '3(00)', [372541136, 372541140], '3(010)', [372681562, 372681565], '(00)3', [373009410, 373009413], '(00)3', [373458970, 373458973], '3(00)', [375648658, 375648661], '3(00)', [376834728, 376834731], '3(00)', [377119945, 377119948], '(00)3', [377335703, 377335706], '(00)3', [378091745, 378091748], '3(00)', [379139522, 379139525], '3(00)', [380279160, 380279163], '(00)3', [380619442, 380619445], '3(00)', [381244231, 381244234], '3(00)', [382327446, 382327450], '(010)3', [382357073, 382357076], '3(00)', [383545479, 383545482], '3(00)', [384363766, 384363769], '(00)3', [384401786, 384401790], '22(00)', [385198212, 385198215], '3(00)', [385824476, 385824479], '(00)3', [385908194, 385908197], '3(00)', [386946806, 386946809], '3(00)', [387592175, 387592179], '22(00)', [388329293, 388329296], '(00)3', [388679566, 388679569], '3(00)', [388832142, 388832145], '3(00)', [390087103, 390087106], '(00)3', [390190926, 390190930], '(00)22', [390331207, 390331210], '3(00)', [391674495, 391674498], '3(00)', [391937831, 391937834], '3(00)', [391951632, 391951636], '(00)22', [392963986, 392963989], '(00)3', [393007921, 393007924], '3(00)', [393373210, 393373213], '3(00)', [393759572, 393759575], '(00)3', [394036662, 394036665], '(00)3', [395813866, 395813869], '(00)3', [395956690, 395956693], '3(00)', [396031670, 396031673], '3(00)', [397076433, 397076436], '3(00)', [397470601, 397470604], '3(00)', [398289458, 398289461], '3(00)', # [368714778, 368714783], '04(010)', [437953499, 437953504], '04(010)', [526196233, 526196238], '032(00)', [744719566, 744719571], '(010)40', [750375857, 750375862], '032(00)', [958241932, 958241937], '04(010)', [983377342, 983377347], '(00)410', [1003780080, 1003780085], '04(010)', [1070232754, 1070232759], '(00)230', [1209834865, 1209834870], '032(00)', [1257209100, 1257209105], '(00)410', [1368002233, 1368002238], '(00)230' ]
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/zetazeros.py
zetazeros.py
from .functions import defun, defun_wrapped def _hermite_param(ctx, n, z, parabolic_cylinder): """ Combined calculation of the Hermite polynomial H_n(z) (and its generalization to complex n) and the parabolic cylinder function D. """ n, ntyp = ctx._convert_param(n) z = ctx.convert(z) q = -ctx.mpq_1_2 # For re(z) > 0, 2F0 -- http://functions.wolfram.com/ # HypergeometricFunctions/HermiteHGeneral/06/02/0009/ # Otherwise, there is a reflection formula # 2F0 + http://functions.wolfram.com/HypergeometricFunctions/ # HermiteHGeneral/16/01/01/0006/ # # TODO: # An alternative would be to use # http://functions.wolfram.com/HypergeometricFunctions/ # HermiteHGeneral/06/02/0006/ # # Also, the 1F1 expansion # http://functions.wolfram.com/HypergeometricFunctions/ # HermiteHGeneral/26/01/02/0001/ # should probably be used for tiny z if not z: T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0 if parabolic_cylinder: T1[1][0] += q*n return T1, can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \ (ctx.re(z) == 0 and ctx.im(z) > 0) expprec = ctx.prec*4 + 20 if parabolic_cylinder: u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True) w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec) else: w = z w2 = ctx.fmul(w, w, prec=expprec) rw2 = ctx.fdiv(1, w2, prec=expprec) nrw2 = ctx.fneg(rw2, exact=True) nw = ctx.fneg(w, exact=True) if can_use_2f0: T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 terms = [T1] else: T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2 terms = [T1,T2] # Multiply by prefactor for D_n if parabolic_cylinder: expu = ctx.exp(u) for i in range(len(terms)): terms[i][1][0] += q*n terms[i][0].append(expu) terms[i][1].append(1) return tuple(terms) @defun def hermite(ctx, n, z, **kwargs): return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs) @defun def pcfd(ctx, n, z, **kwargs): r""" Gives the parabolic cylinder function in Whittaker's notation `D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`). It solves the differential equation .. math :: y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0. and can be represented in terms of Hermite polynomials (see :func:`~mpmath.hermite`) as .. math :: D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right). **Plots** .. literalinclude :: /plots/pcfd.py .. image :: /plots/pcfd.png **Examples** >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0) 1.0 0.0 -1.0 0.0 >>> pcfd(4,0); pcfd(-3,0) 3.0 0.6266570686577501256039413 >>> pcfd('1/2', 2+3j) (-5.363331161232920734849056 - 3.858877821790010714163487j) >>> pcfd(2, -10) 1.374906442631438038871515e-9 Verifying the differential equation:: >>> n = mpf(2.5) >>> y = lambda z: pcfd(n,z) >>> z = 1.75 >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z)) 0.0 Rational Taylor series expansion when `n` is an integer:: >>> taylor(lambda z: pcfd(5,z), 0, 7) [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625] """ return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs) @defun def pcfu(ctx, a, z, **kwargs): r""" Gives the parabolic cylinder function `U(a,z)`, which may be defined for `\Re(z) > 0` in terms of the confluent U-function (see :func:`~mpmath.hyperu`) by .. math :: U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2} U\left(\frac{a}{2}+\frac{1}{4}, \frac{1}{2}, \frac{1}{2}z^2\right) or, for arbitrary `z`, .. math :: e^{-\frac{1}{4}z^2} U(a,z) = U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4}; \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) + U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4}; \tfrac{3}{2}; -\tfrac{1}{2}z^2\right). **Examples** Connection to other functions:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> z = mpf(3) >>> pcfu(0.5,z) 0.03210358129311151450551963 >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2)) 0.03210358129311151450551963 >>> pcfu(0.5,-z) 23.75012332835297233711255 >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) 23.75012332835297233711255 >>> pcfu(0.5,-z) 23.75012332835297233711255 >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) 23.75012332835297233711255 """ n, _ = ctx._convert_param(a) return ctx.pcfd(-n-ctx.mpq_1_2, z) @defun def pcfv(ctx, a, z, **kwargs): r""" Gives the parabolic cylinder function `V(a,z)`, which can be represented in terms of :func:`~mpmath.pcfu` as .. math :: V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}. **Examples** Wronskian relation between `U` and `V`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a, z = 2, 3 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> sqrt(2/pi) 0.7978845608028653558798921 >>> a, z = 2.5, 3 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> a, z = 0.25, -1 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> a, z = 2+1j, 2+3j >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)) 0.7978845608028653558798921 """ n, ntype = ctx._convert_param(a) z = ctx.convert(z) q = ctx.mpq_1_2 r = ctx.mpq_1_4 if ntype == 'Q' and ctx.isint(n*2): # Faster for half-integers def h(): jz = ctx.fmul(z, -1j, exact=True) T1terms = _hermite_param(ctx, -n-q, z, 1) T2terms = _hermite_param(ctx, n-q, jz, 1) for T in T1terms: T[0].append(1j) T[1].append(1) T[3].append(q-n) u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi) for T in T2terms: T[0].append(u) T[1].append(1) return T1terms + T2terms v = ctx.hypercomb(h, [], **kwargs) if ctx._is_real_type(n) and ctx._is_real_type(z): v = ctx._re(v) return v else: def h(n): w = ctx.square_exp_arg(z, -0.25) u = ctx.square_exp_arg(z, 0.5) e = ctx.exp(w) l = [ctx.pi, q, ctx.exp(w)] Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u c, s = ctx.cospi_sinpi(r+q*n) Y1[0].append(s) Y2[0].append(c) for Y in (Y1, Y2): Y[1].append(1) Y[3].append(q-n) return Y1, Y2 return ctx.hypercomb(h, [n], **kwargs) @defun def pcfw(ctx, a, z, **kwargs): r""" Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14). **Examples** Value at the origin:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a = mpf(0.25) >>> pcfw(a,0) 0.9722833245718180765617104 >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a))) 0.9722833245718180765617104 >>> diff(pcfw,(a,0),(0,1)) -0.5142533944210078966003624 >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a))) -0.5142533944210078966003624 """ n, _ = ctx._convert_param(a) z = ctx.convert(z) def terms(): phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n)) phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j rho = ctx.pi/8 + 0.5*phi2 # XXX: cancellation computing k k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n) C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n) yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25)) yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25)) v = ctx.sum_accurately(terms) if ctx._is_real_type(n) and ctx._is_real_type(z): v = ctx._re(v) return v """ Even/odd PCFs. Useful? @defun def pcfy1(ctx, a, z, **kwargs): a, _ = ctx._convert_param(n) z = ctx.convert(z) def h(): w = ctx.square_exp_arg(z) w1 = ctx.fmul(w, -0.25, exact=True) w2 = ctx.fmul(w, 0.5, exact=True) e = ctx.exp(w1) return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2 return ctx.hypercomb(h, [], **kwargs) @defun def pcfy2(ctx, a, z, **kwargs): a, _ = ctx._convert_param(n) z = ctx.convert(z) def h(): w = ctx.square_exp_arg(z) w1 = ctx.fmul(w, -0.25, exact=True) w2 = ctx.fmul(w, 0.5, exact=True) e = ctx.exp(w1) return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \ [ctx.mpq_3_2], w2 return ctx.hypercomb(h, [], **kwargs) """ @defun_wrapped def gegenbauer(ctx, n, a, z, **kwargs): # Special cases: a+0.5, a*2 poles if ctx.isnpint(a): return 0*(z+n) if ctx.isnpint(a+0.5): # TODO: something else is required here # E.g.: gegenbauer(-2, -0.5, 3) == -12 if ctx.isnpint(n+1): raise NotImplementedError("Gegenbauer function with two limits") def h(a): a2 = 2*a T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) return [T] return ctx.hypercomb(h, [a], **kwargs) def h(n): a2 = 2*a T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) return [T] return ctx.hypercomb(h, [n], **kwargs) @defun_wrapped def jacobi(ctx, n, a, b, x, **kwargs): if not ctx.isnpint(a): def h(n): return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),) return ctx.hypercomb(h, [n], **kwargs) if not ctx.isint(b): def h(n, a): return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),) return ctx.hypercomb(h, [n, a], **kwargs) # XXX: determine appropriate limit return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs) @defun_wrapped def laguerre(ctx, n, a, z, **kwargs): # XXX: limits, poles #if ctx.isnpint(n): # return 0*(a+z) def h(a): return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),) return ctx.hypercomb(h, [a], **kwargs) @defun_wrapped def legendre(ctx, n, x, **kwargs): if ctx.isint(n): n = int(n) # Accuracy near zeros if (n + (n < 0)) & 1: if not x: return x mag = ctx.mag(x) if mag < -2*ctx.prec-10: return x if mag < -5: ctx.prec += -mag return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs) @defun def legenp(ctx, n, m, z, type=2, **kwargs): # Legendre function, 1st kind n = ctx.convert(n) m = ctx.convert(m) # Faster if not m: return ctx.legendre(n, z, **kwargs) # TODO: correct evaluation at singularities if type == 2: def h(n,m): g = m*0.5 T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) return (T,) return ctx.hypercomb(h, [n,m], **kwargs) if type == 3: def h(n,m): g = m*0.5 T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) return (T,) return ctx.hypercomb(h, [n,m], **kwargs) raise ValueError("requires type=2 or type=3") @defun def legenq(ctx, n, m, z, type=2, **kwargs): # Legendre function, 2nd kind n = ctx.convert(n) m = ctx.convert(m) z = ctx.convert(z) if z in (1, -1): #if ctx.isint(m): # return ctx.nan #return ctx.inf # unsigned return ctx.nan if type == 2: def h(n, m): cos, sin = ctx.cospi_sinpi(m) s = 2 * sin / ctx.pi c = cos a = 1+z b = 1-z u = m/2 w = (1-z)/2 T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ [-n, n+1], [1-m], w T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \ [-n, n+1], [m+1], w return T1, T2 return ctx.hypercomb(h, [n, m], **kwargs) if type == 3: # The following is faster when there only is a single series # Note: not valid for -1 < z < 0 (?) if abs(z) > 1: def h(n, m): T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \ [1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \ [n+m+1], [n+1.5], \ [0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2) return [T1] return ctx.hypercomb(h, [n, m], **kwargs) else: # not valid for 1 < z < inf ? def h(n, m): s = 2 * ctx.sinpi(m) / ctx.pi c = ctx.expjpi(m) a = 1+z b = z-1 u = m/2 w = (1-z)/2 T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ [-n, n+1], [1-m], w T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \ [-n, n+1], [m+1], w return T1, T2 return ctx.hypercomb(h, [n, m], **kwargs) raise ValueError("requires type=2 or type=3") @defun_wrapped def chebyt(ctx, n, x, **kwargs): if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: return x * 0 return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs) @defun_wrapped def chebyu(ctx, n, x, **kwargs): if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: return x * 0 return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs) @defun def spherharm(ctx, l, m, theta, phi, **kwargs): l = ctx.convert(l) m = ctx.convert(m) theta = ctx.convert(theta) phi = ctx.convert(phi) l_isint = ctx.isint(l) l_natural = l_isint and l >= 0 m_isint = ctx.isint(m) if l_isint and l < 0 and m_isint: return ctx.spherharm(-(l+1), m, theta, phi, **kwargs) if theta == 0 and m_isint and m < 0: return ctx.zero * 1j if l_natural and m_isint: if abs(m) > l: return ctx.zero * 1j # http://functions.wolfram.com/Polynomials/ # SphericalHarmonicY/26/01/02/0004/ def h(l,m): absm = abs(m) C = [-1, ctx.expj(m*phi), (2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm), ctx.sin(theta)**2, ctx.fac(absm), 2] P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1] return ((C, P, [], [], [absm-l, l+absm+1], [absm+1], ctx.sin(0.5*theta)**2),) else: # http://functions.wolfram.com/HypergeometricFunctions/ # SphericalHarmonicYGeneral/26/01/02/0001/ def h(l,m): if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m): return (([0], [-1], [], [], [], [], 0),) cos, sin = ctx.cos_sin(0.5*theta) C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi, ctx.gamma(l-m+1), ctx.gamma(l+m+1), cos**2, sin**2] P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m] return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),) return ctx.hypercomb(h, [l,m], **kwargs)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/orthogonal.py
orthogonal.py
from .functions import defun, defun_wrapped @defun def j0(ctx, x): """Computes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`.""" return ctx.besselj(0, x) @defun def j1(ctx, x): """Computes the Bessel function `J_1(x)`. See :func:`~mpmath.besselj`.""" return ctx.besselj(1, x) @defun def besselj(ctx, n, z, derivative=0, **kwargs): if type(n) is int: n_isint = True else: n = ctx.convert(n) n_isint = ctx.isint(n) if n_isint: n = int(ctx._re(n)) if n_isint and n < 0: return (-1)**n * ctx.besselj(-n, z, derivative, **kwargs) z = ctx.convert(z) M = ctx.mag(z) if derivative: d = ctx.convert(derivative) # TODO: the integer special-casing shouldn't be necessary. # However, the hypergeometric series gets inaccurate for large d # because of inaccurate pole cancellation at a pole far from # zero (needs to be fixed in hypercomb or hypsum) if ctx.isint(d) and d >= 0: d = int(d) orig = ctx.prec try: ctx.prec += 15 v = ctx.fsum((-1)**k * ctx.binomial(d,k) * ctx.besselj(2*k+n-d,z) for k in range(d+1)) finally: ctx.prec = orig v *= ctx.mpf(2)**(-d) else: def h(n,d): r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), -0.25, exact=True) B = [0.5*(n-d+1), 0.5*(n-d+2)] T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[],B,[(n+1)*0.5,(n+2)*0.5],B+[n+1],r)] return T v = ctx.hypercomb(h, [n,d], **kwargs) else: # Fast case: J_n(x), n int, appropriate magnitude for fixed-point calculation if (not derivative) and n_isint and abs(M) < 10 and abs(n) < 20: try: return ctx._besselj(n, z) except NotImplementedError: pass if not z: if not n: v = ctx.one + n+z elif ctx.re(n) > 0: v = n*z else: v = ctx.inf + z + n else: #v = 0 orig = ctx.prec try: # XXX: workaround for accuracy in low level hypergeometric series # when alternating, large arguments ctx.prec += min(3*abs(M), ctx.prec) w = ctx.fmul(z, 0.5, exact=True) def h(n): r = ctx.fneg(ctx.fmul(w, w, prec=max(0,ctx.prec+M)), exact=True) return [([w], [n], [], [n+1], [], [n+1], r)] v = ctx.hypercomb(h, [n], **kwargs) finally: ctx.prec = orig v = +v return v @defun def besseli(ctx, n, z, derivative=0, **kwargs): n = ctx.convert(n) z = ctx.convert(z) if not z: if derivative: raise ValueError if not n: # I(0,0) = 1 return 1+n+z if ctx.isint(n): return 0*(n+z) r = ctx.re(n) if r == 0: return ctx.nan*(n+z) elif r > 0: return 0*(n+z) else: return ctx.inf+(n+z) M = ctx.mag(z) if derivative: d = ctx.convert(derivative) def h(n,d): r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), 0.25, exact=True) B = [0.5*(n-d+1), 0.5*(n-d+2), n+1] T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[n+1],B,[(n+1)*0.5,(n+2)*0.5],B,r)] return T v = ctx.hypercomb(h, [n,d], **kwargs) else: def h(n): w = ctx.fmul(z, 0.5, exact=True) r = ctx.fmul(w, w, prec=max(0,ctx.prec+M)) return [([w], [n], [], [n+1], [], [n+1], r)] v = ctx.hypercomb(h, [n], **kwargs) return v @defun_wrapped def bessely(ctx, n, z, derivative=0, **kwargs): if not z: if derivative: # Not implemented raise ValueError if not n: # ~ log(z/2) return -ctx.inf + (n+z) if ctx.im(n): return nan * (n+z) r = ctx.re(n) q = n+0.5 if ctx.isint(q): if n > 0: return -ctx.inf + (n+z) else: return 0 * (n+z) if r < 0 and int(ctx.floor(q)) % 2: return ctx.inf + (n+z) else: return ctx.ninf + (n+z) # XXX: use hypercomb ctx.prec += 10 m, d = ctx.nint_distance(n) if d < -ctx.prec: h = +ctx.eps ctx.prec *= 2 n += h elif d < 0: ctx.prec -= d # TODO: avoid cancellation for imaginary arguments cos, sin = ctx.cospi_sinpi(n) return (ctx.besselj(n,z,derivative,**kwargs)*cos - \ ctx.besselj(-n,z,derivative,**kwargs))/sin @defun_wrapped def besselk(ctx, n, z, **kwargs): if not z: return ctx.inf M = ctx.mag(z) if M < 1: # Represent as limit definition def h(n): r = (z/2)**2 T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r return T1, T2 # We could use the limit definition always, but it leads # to very bad cancellation (of exponentially large terms) # for large real z # Instead represent in terms of 2F0 else: ctx.prec += M def h(n): return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \ [n+0.5, 0.5-n], [], -1/(2*z))] return ctx.hypercomb(h, [n], **kwargs) @defun_wrapped def hankel1(ctx,n,x,**kwargs): return ctx.besselj(n,x,**kwargs) + ctx.j*ctx.bessely(n,x,**kwargs) @defun_wrapped def hankel2(ctx,n,x,**kwargs): return ctx.besselj(n,x,**kwargs) - ctx.j*ctx.bessely(n,x,**kwargs) @defun_wrapped def whitm(ctx,k,m,z,**kwargs): if z == 0: # M(k,m,z) = 0^(1/2+m) if ctx.re(m) > -0.5: return z elif ctx.re(m) < -0.5: return ctx.inf + z else: return ctx.nan * z x = ctx.fmul(-0.5, z, exact=True) y = 0.5+m return ctx.exp(x) * z**y * ctx.hyp1f1(y-k, 1+2*m, z, **kwargs) @defun_wrapped def whitw(ctx,k,m,z,**kwargs): if z == 0: g = abs(ctx.re(m)) if g < 0.5: return z elif g > 0.5: return ctx.inf + z else: return ctx.nan * z x = ctx.fmul(-0.5, z, exact=True) y = 0.5+m return ctx.exp(x) * z**y * ctx.hyperu(y-k, 1+2*m, z, **kwargs) @defun def hyperu(ctx, a, b, z, **kwargs): a, atype = ctx._convert_param(a) b, btype = ctx._convert_param(b) z = ctx.convert(z) if not z: if ctx.re(b) <= 1: return ctx.gammaprod([1-b],[a-b+1]) else: return ctx.inf + z bb = 1+a-b bb, bbtype = ctx._convert_param(bb) try: orig = ctx.prec try: ctx.prec += 10 v = ctx.hypsum(2, 0, (atype, bbtype), [a, bb], -1/z, maxterms=ctx.prec) return v / z**a finally: ctx.prec = orig except ctx.NoConvergence: pass def h(a,b): w = ctx.sinpi(b) T1 = ([ctx.pi,w],[1,-1],[],[a-b+1,b],[a],[b],z) T2 = ([-ctx.pi,w,z],[1,-1,1-b],[],[a,2-b],[a-b+1],[2-b],z) return T1, T2 return ctx.hypercomb(h, [a,b], **kwargs) @defun def struveh(ctx,n,z, **kwargs): n = ctx.convert(n) z = ctx.convert(z) # http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/26/01/02/ def h(n): return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], -(z/2)**2)] return ctx.hypercomb(h, [n], **kwargs) @defun def struvel(ctx,n,z, **kwargs): n = ctx.convert(n) z = ctx.convert(z) # http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/26/01/02/ def h(n): return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], (z/2)**2)] return ctx.hypercomb(h, [n], **kwargs) def _anger(ctx,which,v,z,**kwargs): v = ctx._convert_param(v)[0] z = ctx.convert(z) def h(v): b = ctx.mpq_1_2 u = v*b m = b*3 a1,a2,b1,b2 = m-u, m+u, 1-u, 1+u c, s = ctx.cospi_sinpi(u) if which == 0: A, B = [b*z, s], [c] if which == 1: A, B = [b*z, -c], [s] w = ctx.square_exp_arg(z, mult=-0.25) T1 = A, [1, 1], [], [a1,a2], [1], [a1,a2], w T2 = B, [1], [], [b1,b2], [1], [b1,b2], w return T1, T2 return ctx.hypercomb(h, [v], **kwargs) @defun def angerj(ctx, v, z, **kwargs): return _anger(ctx, 0, v, z, **kwargs) @defun def webere(ctx, v, z, **kwargs): return _anger(ctx, 1, v, z, **kwargs) @defun def lommels1(ctx, u, v, z, **kwargs): u = ctx._convert_param(u)[0] v = ctx._convert_param(v)[0] z = ctx.convert(z) def h(u,v): b = ctx.mpq_1_2 w = ctx.square_exp_arg(z, mult=-0.25) return ([u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], \ [b*(u-v+3),b*(u+v+3)], w), return ctx.hypercomb(h, [u,v], **kwargs) @defun def lommels2(ctx, u, v, z, **kwargs): u = ctx._convert_param(u)[0] v = ctx._convert_param(v)[0] z = ctx.convert(z) # Asymptotic expansion (GR p. 947) -- need to be careful # not to use for small arguments # def h(u,v): # b = ctx.mpq_1_2 # w = -(z/2)**(-2) # return ([z], [u-1], [], [], [b*(1-u+v)], [b*(1-u-v)], w), def h(u,v): b = ctx.mpq_1_2 w = ctx.square_exp_arg(z, mult=-0.25) T1 = [u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], [b*(u-v+3),b*(u+v+3)], w T2 = [2, z], [u+v-1, -v], [v, b*(u+v+1)], [b*(v-u+1)], [], [1-v], w T3 = [2, z], [u-v-1, v], [-v, b*(u-v+1)], [b*(1-u-v)], [], [1+v], w #c1 = ctx.cospi((u-v)*b) #c2 = ctx.cospi((u+v)*b) #s = ctx.sinpi(v) #r1 = (u-v+1)*b #r2 = (u+v+1)*b #T2 = [c1, s, z, 2], [1, -1, -v, v], [], [-v+1], [], [-v+1], w #T3 = [-c2, s, z, 2], [1, -1, v, -v], [], [v+1], [], [v+1], w #T2 = [c1, s, z, 2], [1, -1, -v, v+u-1], [r1, r2], [-v+1], [], [-v+1], w #T3 = [-c2, s, z, 2], [1, -1, v, -v+u-1], [r1, r2], [v+1], [], [v+1], w return T1, T2, T3 return ctx.hypercomb(h, [u,v], **kwargs) @defun def ber(ctx, n, z, **kwargs): n = ctx.convert(n) z = ctx.convert(z) # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBer2/26/01/02/0001/ def h(n): r = -(z/4)**4 cos, sin = ctx.cospi_sinpi(-0.75*n) T1 = [cos, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r T2 = [sin, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r return T1, T2 return ctx.hypercomb(h, [n], **kwargs) @defun def bei(ctx, n, z, **kwargs): n = ctx.convert(n) z = ctx.convert(z) # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBei2/26/01/02/0001/ def h(n): r = -(z/4)**4 cos, sin = ctx.cospi_sinpi(0.75*n) T1 = [cos, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r T2 = [sin, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r return T1, T2 return ctx.hypercomb(h, [n], **kwargs) @defun def ker(ctx, n, z, **kwargs): n = ctx.convert(n) z = ctx.convert(z) # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKer2/26/01/02/0001/ def h(n): r = -(z/4)**4 cos1, sin1 = ctx.cospi_sinpi(0.25*n) cos2, sin2 = ctx.cospi_sinpi(0.75*n) T1 = [2, z, 4*cos1], [-n-3, n, 1], [-n], [], [], [0.5, 0.5*(1+n), 0.5*(n+2)], r T2 = [2, z, -sin1], [-n-3, 2+n, 1], [-n-1], [], [], [1.5, 0.5*(3+n), 0.5*(n+2)], r T3 = [2, z, 4*cos2], [n-3, -n, 1], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r T4 = [2, z, -sin2], [n-3, 2-n, 1], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r return T1, T2, T3, T4 return ctx.hypercomb(h, [n], **kwargs) @defun def kei(ctx, n, z, **kwargs): n = ctx.convert(n) z = ctx.convert(z) # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKei2/26/01/02/0001/ def h(n): r = -(z/4)**4 cos1, sin1 = ctx.cospi_sinpi(0.75*n) cos2, sin2 = ctx.cospi_sinpi(0.25*n) T1 = [-cos1, 2, z], [1, n-3, 2-n], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r T2 = [-sin1, 2, z], [1, n-1, -n], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r T3 = [-sin2, 2, z], [1, -n-1, n], [-n], [], [], [0.5, 0.5*(n+1), 0.5*(n+2)], r T4 = [-cos2, 2, z], [1, -n-3, n+2], [-n-1], [], [], [1.5, 0.5*(n+3), 0.5*(n+2)], r return T1, T2, T3, T4 return ctx.hypercomb(h, [n], **kwargs) # TODO: do this more generically? def c_memo(f): name = f.__name__ def f_wrapped(ctx): cache = ctx._misc_const_cache prec = ctx.prec p,v = cache.get(name, (-1,0)) if p >= prec: return +v else: cache[name] = (prec, f(ctx)) return cache[name][1] return f_wrapped @c_memo def _airyai_C1(ctx): return 1 / (ctx.cbrt(9) * ctx.gamma(ctx.mpf(2)/3)) @c_memo def _airyai_C2(ctx): return -1 / (ctx.cbrt(3) * ctx.gamma(ctx.mpf(1)/3)) @c_memo def _airybi_C1(ctx): return 1 / (ctx.nthroot(3,6) * ctx.gamma(ctx.mpf(2)/3)) @c_memo def _airybi_C2(ctx): return ctx.nthroot(3,6) / ctx.gamma(ctx.mpf(1)/3) def _airybi_n2_inf(ctx): prec = ctx.prec try: v = ctx.power(3,'2/3')*ctx.gamma('2/3')/(2*ctx.pi) finally: ctx.prec = prec return +v # Derivatives at z = 0 # TODO: could be expressed more elegantly using triple factorials def _airyderiv_0(ctx, z, n, ntype, which): if ntype == 'Z': if n < 0: return z r = ctx.mpq_1_3 prec = ctx.prec try: ctx.prec += 10 v = ctx.gamma((n+1)*r) * ctx.power(3,n*r) / ctx.pi if which == 0: v *= ctx.sinpi(2*(n+1)*r) v /= ctx.power(3,'2/3') else: v *= abs(ctx.sinpi(2*(n+1)*r)) v /= ctx.power(3,'1/6') finally: ctx.prec = prec return +v + z else: # singular (does the limit exist?) raise NotImplementedError @defun def airyai(ctx, z, derivative=0, **kwargs): z = ctx.convert(z) if derivative: n, ntype = ctx._convert_param(derivative) else: n = 0 # Values at infinities if not ctx.isnormal(z) and z: if n and ntype == 'Z': if n == -1: if z == ctx.inf: return ctx.mpf(1)/3 + 1/z if z == ctx.ninf: return ctx.mpf(-2)/3 + 1/z if n < -1: if z == ctx.inf: return z if z == ctx.ninf: return (-1)**n * (-z) if (not n) and z == ctx.inf or z == ctx.ninf: return 1/z # TODO: limits raise ValueError("essential singularity of Ai(z)") # Account for exponential scaling if z: extraprec = max(0, int(1.5*ctx.mag(z))) else: extraprec = 0 if n: if n == 1: def h(): # http://functions.wolfram.com/03.07.06.0005.01 if ctx._re(z) > 4: ctx.prec += extraprec w = z**1.5; r = -0.75/w; u = -2*w/3 ctx.prec -= extraprec C = -ctx.exp(u)/(2*ctx.sqrt(ctx.pi))*ctx.nthroot(z,4) return ([C],[1],[],[],[(-1,6),(7,6)],[],r), # http://functions.wolfram.com/03.07.26.0001.01 else: ctx.prec += extraprec w = z**3 / 9 ctx.prec -= extraprec C1 = _airyai_C1(ctx) * 0.5 C2 = _airyai_C2(ctx) T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w return T1, T2 return ctx.hypercomb(h, [], **kwargs) else: if z == 0: return _airyderiv_0(ctx, z, n, ntype, 0) # http://functions.wolfram.com/03.05.20.0004.01 def h(n): ctx.prec += extraprec w = z**3/9 ctx.prec -= extraprec q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3 a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13 T1 = [3, z], [n-q23, -n], [a1], [b1,b2,b3], \ [a1,a2], [b1,b2,b3], w a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13 T2 = [3, z, -z], [n-q43, -n, 1], [a1], [b1,b2,b3], \ [a1,a2], [b1,b2,b3], w return T1, T2 v = ctx.hypercomb(h, [n], **kwargs) if ctx._is_real_type(z) and ctx.isint(n): v = ctx._re(v) return v else: def h(): if ctx._re(z) > 4: # We could use 1F1, but it results in huge cancellation; # the following expansion is better. # TODO: asymptotic series for derivatives ctx.prec += extraprec w = z**1.5; r = -0.75/w; u = -2*w/3 ctx.prec -= extraprec C = ctx.exp(u)/(2*ctx.sqrt(ctx.pi)*ctx.nthroot(z,4)) return ([C],[1],[],[],[(1,6),(5,6)],[],r), else: ctx.prec += extraprec w = z**3 / 9 ctx.prec -= extraprec C1 = _airyai_C1(ctx) C2 = _airyai_C2(ctx) T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w return T1, T2 return ctx.hypercomb(h, [], **kwargs) @defun def airybi(ctx, z, derivative=0, **kwargs): z = ctx.convert(z) if derivative: n, ntype = ctx._convert_param(derivative) else: n = 0 # Values at infinities if not ctx.isnormal(z) and z: if n and ntype == 'Z': if z == ctx.inf: return z if z == ctx.ninf: if n == -1: return 1/z if n == -2: return _airybi_n2_inf(ctx) if n < -2: return (-1)**n * (-z) if not n: if z == ctx.inf: return z if z == ctx.ninf: return 1/z # TODO: limits raise ValueError("essential singularity of Bi(z)") if z: extraprec = max(0, int(1.5*ctx.mag(z))) else: extraprec = 0 if n: if n == 1: # http://functions.wolfram.com/03.08.26.0001.01 def h(): ctx.prec += extraprec w = z**3 / 9 ctx.prec -= extraprec C1 = _airybi_C1(ctx)*0.5 C2 = _airybi_C2(ctx) T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w return T1, T2 return ctx.hypercomb(h, [], **kwargs) else: if z == 0: return _airyderiv_0(ctx, z, n, ntype, 1) def h(n): ctx.prec += extraprec w = z**3/9 ctx.prec -= extraprec q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3 q16 = ctx.mpq_1_6 q56 = ctx.mpq_5_6 a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13 T1 = [3, z], [n-q16, -n], [a1], [b1,b2,b3], \ [a1,a2], [b1,b2,b3], w a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13 T2 = [3, z], [n-q56, 1-n], [a1], [b1,b2,b3], \ [a1,a2], [b1,b2,b3], w return T1, T2 v = ctx.hypercomb(h, [n], **kwargs) if ctx._is_real_type(z) and ctx.isint(n): v = ctx._re(v) return v else: def h(): ctx.prec += extraprec w = z**3 / 9 ctx.prec -= extraprec C1 = _airybi_C1(ctx) C2 = _airybi_C2(ctx) T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w return T1, T2 return ctx.hypercomb(h, [], **kwargs) def _airy_zero(ctx, which, k, derivative, complex=False): # Asymptotic formulas are given in DLMF section 9.9 def U(t): return t**(2/3.)*(1-7/(t**2*48)) def T(t): return t**(2/3.)*(1+5/(t**2*48)) k = int(k) assert k >= 1 assert derivative in (0,1) if which == 0: if derivative: return ctx.findroot(lambda z: ctx.airyai(z,1), -U(3*ctx.pi*(4*k-3)/8)) return ctx.findroot(ctx.airyai, -T(3*ctx.pi*(4*k-1)/8)) if which == 1 and complex == False: if derivative: return ctx.findroot(lambda z: ctx.airybi(z,1), -U(3*ctx.pi*(4*k-1)/8)) return ctx.findroot(ctx.airybi, -T(3*ctx.pi*(4*k-3)/8)) if which == 1 and complex == True: if derivative: t = 3*ctx.pi*(4*k-3)/8 + 0.75j*ctx.ln2 s = ctx.expjpi(ctx.mpf(1)/3) * T(t) return ctx.findroot(lambda z: ctx.airybi(z,1), s) t = 3*ctx.pi*(4*k-1)/8 + 0.75j*ctx.ln2 s = ctx.expjpi(ctx.mpf(1)/3) * U(t) return ctx.findroot(ctx.airybi, s) @defun def airyaizero(ctx, k, derivative=0): return _airy_zero(ctx, 0, k, derivative, False) @defun def airybizero(ctx, k, derivative=0, complex=False): return _airy_zero(ctx, 1, k, derivative, complex) def _scorer(ctx, z, which, kwargs): z = ctx.convert(z) if ctx.isinf(z): if z == ctx.inf: if which == 0: return 1/z if which == 1: return z if z == ctx.ninf: return 1/z raise ValueError("essential singularity") if z: extraprec = max(0, int(1.5*ctx.mag(z))) else: extraprec = 0 if kwargs.get('derivative'): raise NotImplementedError # Direct asymptotic expansions, to avoid # exponentially large cancellation try: if ctx.mag(z) > 3: if which == 0 and abs(ctx.arg(z)) < ctx.pi/3 * 0.999: def h(): return (([ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),) return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True) if which == 1 and abs(ctx.arg(-z)) < 2*ctx.pi/3 * 0.999: def h(): return (([-ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),) return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True) except ctx.NoConvergence: pass def h(): A = ctx.airybi(z, **kwargs)/3 B = -2*ctx.pi if which == 1: A *= 2 B *= -1 ctx.prec += extraprec w = z**3/9 ctx.prec -= extraprec T1 = [A], [1], [], [], [], [], 0 T2 = [B,z], [-1,2], [], [], [1], [ctx.mpq_4_3,ctx.mpq_5_3], w return T1, T2 return ctx.hypercomb(h, [], **kwargs) @defun def scorergi(ctx, z, **kwargs): return _scorer(ctx, z, 0, kwargs) @defun def scorerhi(ctx, z, **kwargs): return _scorer(ctx, z, 1, kwargs) @defun_wrapped def coulombc(ctx, l, eta, _cache={}): if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec: return +_cache[l,eta][1] G3 = ctx.loggamma(2*l+2) G1 = ctx.loggamma(1+l+ctx.j*eta) G2 = ctx.loggamma(1+l-ctx.j*eta) v = 2**l * ctx.exp((-ctx.pi*eta+G1+G2)/2 - G3) if not (ctx.im(l) or ctx.im(eta)): v = ctx.re(v) _cache[l,eta] = (ctx.prec, v) return v @defun_wrapped def coulombf(ctx, l, eta, z, w=1, chop=True, **kwargs): # Regular Coulomb wave function # Note: w can be either 1 or -1; the other may be better in some cases # TODO: check that chop=True chops when and only when it should #ctx.prec += 10 def h(l, eta): try: jw = ctx.j*w jwz = ctx.fmul(jw, z, exact=True) jwz2 = ctx.fmul(jwz, -2, exact=True) C = ctx.coulombc(l, eta) T1 = [C, z, ctx.exp(jwz)], [1, l+1, 1], [], [], [1+l+jw*eta], \ [2*l+2], jwz2 except ValueError: T1 = [0], [-1], [], [], [], [], 0 return (T1,) v = ctx.hypercomb(h, [l,eta], **kwargs) if chop and (not ctx.im(l)) and (not ctx.im(eta)) and (not ctx.im(z)) and \ (ctx.re(z) >= 0): v = ctx.re(v) return v @defun_wrapped def _coulomb_chi(ctx, l, eta, _cache={}): if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec: return _cache[l,eta][1] def terms(): l2 = -l-1 jeta = ctx.j*eta return [ctx.loggamma(1+l+jeta) * (-0.5j), ctx.loggamma(1+l-jeta) * (0.5j), ctx.loggamma(1+l2+jeta) * (0.5j), ctx.loggamma(1+l2-jeta) * (-0.5j), -(l+0.5)*ctx.pi] v = ctx.sum_accurately(terms, 1) _cache[l,eta] = (ctx.prec, v) return v @defun_wrapped def coulombg(ctx, l, eta, z, w=1, chop=True, **kwargs): # Irregular Coulomb wave function # Note: w can be either 1 or -1; the other may be better in some cases # TODO: check that chop=True chops when and only when it should if not ctx._im(l): l = ctx._re(l) # XXX: for isint def h(l, eta): # Force perturbation for integers and half-integers if ctx.isint(l*2): T1 = [0], [-1], [], [], [], [], 0 return (T1,) l2 = -l-1 try: chi = ctx._coulomb_chi(l, eta) jw = ctx.j*w s = ctx.sin(chi); c = ctx.cos(chi) C1 = ctx.coulombc(l,eta) C2 = ctx.coulombc(l2,eta) u = ctx.exp(jw*z) x = -2*jw*z T1 = [s, C1, z, u, c], [-1, 1, l+1, 1, 1], [], [], \ [1+l+jw*eta], [2*l+2], x T2 = [-s, C2, z, u], [-1, 1, l2+1, 1], [], [], \ [1+l2+jw*eta], [2*l2+2], x return T1, T2 except ValueError: T1 = [0], [-1], [], [], [], [], 0 return (T1,) v = ctx.hypercomb(h, [l,eta], **kwargs) if chop and (not ctx._im(l)) and (not ctx._im(eta)) and (not ctx._im(z)) and \ (ctx._re(z) >= 0): v = ctx._re(v) return v def mcmahon(ctx,kind,prime,v,m): """ Computes an estimate for the location of the Bessel function zero j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)). Returns (r,err) where r is the estimated location of the root and err is a positive number estimating the error of the asymptotic expansion. """ u = 4*v**2 if kind == 1 and not prime: b = (4*m+2*v-1)*ctx.pi/4 if kind == 2 and not prime: b = (4*m+2*v-3)*ctx.pi/4 if kind == 1 and prime: b = (4*m+2*v-3)*ctx.pi/4 if kind == 2 and prime: b = (4*m+2*v-1)*ctx.pi/4 if not prime: s1 = b s2 = -(u-1)/(8*b) s3 = -4*(u-1)*(7*u-31)/(3*(8*b)**3) s4 = -32*(u-1)*(83*u**2-982*u+3779)/(15*(8*b)**5) s5 = -64*(u-1)*(6949*u**3-153855*u**2+1585743*u-6277237)/(105*(8*b)**7) if prime: s1 = b s2 = -(u+3)/(8*b) s3 = -4*(7*u**2+82*u-9)/(3*(8*b)**3) s4 = -32*(83*u**3+2075*u**2-3039*u+3537)/(15*(8*b)**5) s5 = -64*(6949*u**4+296492*u**3-1248002*u**2+7414380*u-5853627)/(105*(8*b)**7) terms = [s1,s2,s3,s4,s5] s = s1 err = 0.0 for i in range(1,len(terms)): if abs(terms[i]) < abs(terms[i-1]): s += terms[i] else: err = abs(terms[i]) if i == len(terms)-1: err = abs(terms[-1]) return s, err def generalized_bisection(ctx,f,a,b,n): """ Given f known to have exactly n simple roots within [a,b], return a list of n intervals isolating the roots and having opposite signs at the endpoints. TODO: this can be optimized, e.g. by reusing evaluation points. """ assert n >= 1 N = n+1 points = [] signs = [] while 1: points = ctx.linspace(a,b,N) signs = [ctx.sign(f(x)) for x in points] ok_intervals = [(points[i],points[i+1]) for i in range(N-1) \ if signs[i]*signs[i+1] == -1] if len(ok_intervals) == n: return ok_intervals N = N*2 def find_in_interval(ctx, f, ab): return ctx.findroot(f, ab, solver='illinois', verify=False) def bessel_zero(ctx, kind, prime, v, m, isoltol=0.01, _interval_cache={}): prec = ctx.prec workprec = max(prec, ctx.mag(v), ctx.mag(m))+10 try: ctx.prec = workprec v = ctx.mpf(v) m = int(m) prime = int(prime) assert v >= 0 assert m >= 1 assert prime in (0,1) if kind == 1: if prime: f = lambda x: ctx.besselj(v,x,derivative=1) else: f = lambda x: ctx.besselj(v,x) if kind == 2: if prime: f = lambda x: ctx.bessely(v,x,derivative=1) else: f = lambda x: ctx.bessely(v,x) # The first root of J' is very close to 0 for small # orders, and this needs to be special-cased if kind == 1 and prime and m == 1: if v == 0: return ctx.zero if v <= 1: # TODO: use v <= j'_{v,1} < y_{v,1}? r = 2*ctx.sqrt(v*(1+v)/(v+2)) return find_in_interval(ctx, f, (r/10, 2*r)) if (kind,prime,v,m) in _interval_cache: return find_in_interval(ctx, f, _interval_cache[kind,prime,v,m]) r, err = mcmahon(ctx, kind, prime, v, m) if err < isoltol: return find_in_interval(ctx, f, (r-isoltol, r+isoltol)) # An x such that 0 < x < r_{v,1} if kind == 1 and not prime: low = 2.4 if kind == 1 and prime: low = 1.8 if kind == 2 and not prime: low = 0.8 if kind == 2 and prime: low = 2.0 n = m+1 while 1: r1, err = mcmahon(ctx, kind, prime, v, n) if err < isoltol: r2, err2 = mcmahon(ctx, kind, prime, v, n+1) intervals = generalized_bisection(ctx, f, low, 0.5*(r1+r2), n) for k, ab in enumerate(intervals): _interval_cache[kind,prime,v,k+1] = ab return find_in_interval(ctx, f, intervals[m-1]) else: n = n*2 finally: ctx.prec = prec @defun def besseljzero(ctx, v, m, derivative=0): r""" For a real order `\nu \ge 0` and a positive integer `m`, returns `j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively, with *derivative=1*, gives the first nonnegative simple zero `j'_{\nu,m}` of `J'_{\nu}(z)`. The indexing convention is that used by Abramowitz & Stegun and the DLMF. Note the special case `j'_{0,1} = 0`, while all other zeros are positive. In effect, only simple zeros are counted (all zeros of Bessel functions are simple except possibly `z = 0`) and `j_{\nu,m}` becomes a monotonic function of both `\nu` and `m`. The zeros are interlaced according to the inequalities .. math :: j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1} j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots **Examples** Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3) 2.404825557695772768621632 5.520078110286310649596604 8.653727912911012216954199 >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3) 3.831705970207512315614436 7.01558666981561875353705 10.17346813506272207718571 >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3) 5.135622301840682556301402 8.417244140399864857783614 11.61984117214905942709415 Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`:: 0.0 3.831705970207512315614436 7.01558666981561875353705 >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1) 1.84118378134065930264363 5.331442773525032636884016 8.536316366346285834358961 >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1) 3.054236928227140322755932 6.706133194158459146634394 9.969467823087595793179143 Zeros with large index:: >>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000) 313.3742660775278447196902 3140.807295225078628895545 31415.14114171350798533666 >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000) 321.1893195676003157339222 3148.657306813047523500494 31422.9947255486291798943 >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1) 311.8018681873704508125112 3139.236339643802482833973 31413.57032947022399485808 Zeros of functions with large order:: >>> besseljzero(50,1) 57.11689916011917411936228 >>> besseljzero(50,2) 62.80769876483536093435393 >>> besseljzero(50,100) 388.6936600656058834640981 >>> besseljzero(50,1,1) 52.99764038731665010944037 >>> besseljzero(50,2,1) 60.02631933279942589882363 >>> besseljzero(50,100,1) 387.1083151608726181086283 Zeros of functions with fractional order:: >>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4) 3.141592653589793238462643 4.493409457909064175307881 15.15657692957458622921634 Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite products over their zeros:: >>> v,z = 2, mpf(1) >>> (z/2)**v/gamma(v+1) * \ ... nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf]) ... 0.1149034849319004804696469 >>> besselj(v,z) 0.1149034849319004804696469 >>> (z/2)**(v-1)/2/gamma(v) * \ ... nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf]) ... 0.2102436158811325550203884 >>> besselj(v,z,1) 0.2102436158811325550203884 """ return +bessel_zero(ctx, 1, derivative, v, m) @defun def besselyzero(ctx, v, m, derivative=0): r""" For a real order `\nu \ge 0` and a positive integer `m`, returns `y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively, with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of `Y'_{\nu}(z)`. The zeros are interlaced according to the inequalities .. math :: y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1} y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots **Examples** Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3) 0.8935769662791675215848871 3.957678419314857868375677 7.086051060301772697623625 >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3) 2.197141326031017035149034 5.429681040794135132772005 8.596005868331168926429606 >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3) 3.384241767149593472701426 6.793807513268267538291167 10.02347797936003797850539 Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`:: >>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1) 2.197141326031017035149034 5.429681040794135132772005 8.596005868331168926429606 >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1) 3.683022856585177699898967 6.941499953654175655751944 10.12340465543661307978775 >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1) 5.002582931446063945200176 8.350724701413079526349714 11.57419546521764654624265 Zeros with large index:: >>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000) 311.8034717601871549333419 3139.236498918198006794026 31413.57034538691205229188 >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000) 319.6183338562782156235062 3147.086508524556404473186 31421.42392920214673402828 >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1) 313.3726705426359345050449 3140.807136030340213610065 31415.14112579761578220175 Zeros of functions with large order:: >>> besselyzero(50,1) 53.50285882040036394680237 >>> besselyzero(50,2) 60.11244442774058114686022 >>> besselyzero(50,100) 387.1096509824943957706835 >>> besselyzero(50,1,1) 56.96290427516751320063605 >>> besselyzero(50,2,1) 62.74888166945933944036623 >>> besselyzero(50,100,1) 388.6923300548309258355475 Zeros of functions with fractional order:: >>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4) 1.570796326794896619231322 2.798386045783887136720249 13.56721208770735123376018 """ return +bessel_zero(ctx, 2, derivative, v, m)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/bessel.py
bessel.py
from .functions import defun, defun_wrapped @defun_wrapped def _erf_complex(ctx, z): z2 = ctx.square_exp_arg(z, -1) #z2 = -z**2 v = (2/ctx.sqrt(ctx.pi))*z * ctx.hyp1f1((1,2),(3,2), z2) if not ctx._re(z): v = ctx._im(v)*ctx.j return v @defun_wrapped def _erfc_complex(ctx, z): if ctx.re(z) > 2: z2 = ctx.square_exp_arg(z) nz2 = ctx.fneg(z2, exact=True) v = ctx.exp(nz2)/ctx.sqrt(ctx.pi) * ctx.hyperu((1,2),(1,2), z2) else: v = 1 - ctx._erf_complex(z) if not ctx._re(z): v = 1+ctx._im(v)*ctx.j return v @defun def erf(ctx, z): z = ctx.convert(z) if ctx._is_real_type(z): try: return ctx._erf(z) except NotImplementedError: pass if ctx._is_complex_type(z) and not z.imag: try: return type(z)(ctx._erf(z.real)) except NotImplementedError: pass return ctx._erf_complex(z) @defun def erfc(ctx, z): z = ctx.convert(z) if ctx._is_real_type(z): try: return ctx._erfc(z) except NotImplementedError: pass if ctx._is_complex_type(z) and not z.imag: try: return type(z)(ctx._erfc(z.real)) except NotImplementedError: pass return ctx._erfc_complex(z) @defun def square_exp_arg(ctx, z, mult=1, reciprocal=False): prec = ctx.prec*4+20 if reciprocal: z2 = ctx.fmul(z, z, prec=prec) z2 = ctx.fdiv(ctx.one, z2, prec=prec) else: z2 = ctx.fmul(z, z, prec=prec) if mult != 1: z2 = ctx.fmul(z2, mult, exact=True) return z2 @defun_wrapped def erfi(ctx, z): if not z: return z z2 = ctx.square_exp_arg(z) v = (2/ctx.sqrt(ctx.pi)*z) * ctx.hyp1f1((1,2), (3,2), z2) if not ctx._re(z): v = ctx._im(v)*ctx.j return v @defun_wrapped def erfinv(ctx, x): xre = ctx._re(x) if (xre != x) or (xre < -1) or (xre > 1): return ctx.bad_domain("erfinv(x) is defined only for -1 <= x <= 1") x = xre #if ctx.isnan(x): return x if not x: return x if x == 1: return ctx.inf if x == -1: return ctx.ninf if abs(x) < 0.9: a = 0.53728*x**3 + 0.813198*x else: # An asymptotic formula u = ctx.ln(2/ctx.pi/(abs(x)-1)**2) a = ctx.sign(x) * ctx.sqrt(u - ctx.ln(u))/ctx.sqrt(2) ctx.prec += 10 return ctx.findroot(lambda t: ctx.erf(t)-x, a) @defun_wrapped def npdf(ctx, x, mu=0, sigma=1): sigma = ctx.convert(sigma) return ctx.exp(-(x-mu)**2/(2*sigma**2)) / (sigma*ctx.sqrt(2*ctx.pi)) @defun_wrapped def ncdf(ctx, x, mu=0, sigma=1): a = (x-mu)/(sigma*ctx.sqrt(2)) if a < 0: return ctx.erfc(-a)/2 else: return (1+ctx.erf(a))/2 @defun_wrapped def betainc(ctx, a, b, x1=0, x2=1, regularized=False): if x1 == x2: v = 0 elif not x1: if x1 == 0 and x2 == 1: v = ctx.beta(a, b) else: v = x2**a * ctx.hyp2f1(a, 1-b, a+1, x2) / a else: m, d = ctx.nint_distance(a) if m <= 0: if d < -ctx.prec: h = +ctx.eps ctx.prec *= 2 a += h elif d < -4: ctx.prec -= d s1 = x2**a * ctx.hyp2f1(a,1-b,a+1,x2) s2 = x1**a * ctx.hyp2f1(a,1-b,a+1,x1) v = (s1 - s2) / a if regularized: v /= ctx.beta(a,b) return v @defun def gammainc(ctx, z, a=0, b=None, regularized=False): regularized = bool(regularized) z = ctx.convert(z) if a is None: a = ctx.zero lower_modified = False else: a = ctx.convert(a) lower_modified = a != ctx.zero if b is None: b = ctx.inf upper_modified = False else: b = ctx.convert(b) upper_modified = b != ctx.inf # Complete gamma function if not (upper_modified or lower_modified): if regularized: if ctx.re(z) < 0: return ctx.inf elif ctx.re(z) > 0: return ctx.one else: return ctx.nan return ctx.gamma(z) if a == b: return ctx.zero # Standardize if ctx.re(a) > ctx.re(b): return -ctx.gammainc(z, b, a, regularized) # Generalized gamma if upper_modified and lower_modified: return +ctx._gamma3(z, a, b, regularized) # Upper gamma elif lower_modified: return ctx._upper_gamma(z, a, regularized) # Lower gamma elif upper_modified: return ctx._lower_gamma(z, b, regularized) @defun def _lower_gamma(ctx, z, b, regularized=False): # Pole if ctx.isnpint(z): return type(z)(ctx.inf) G = [z] * regularized negb = ctx.fneg(b, exact=True) def h(z): T1 = [ctx.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b return (T1,) return ctx.hypercomb(h, [z]) @defun def _upper_gamma(ctx, z, a, regularized=False): # Fast integer case, when available if ctx.isint(z): try: if regularized: # Gamma pole if ctx.isnpint(z): return type(z)(ctx.zero) orig = ctx.prec try: ctx.prec += 10 return ctx._gamma_upper_int(z, a) / ctx.gamma(z) finally: ctx.prec = orig else: return ctx._gamma_upper_int(z, a) except NotImplementedError: pass nega = ctx.fneg(a, exact=True) G = [z] * regularized # Use 2F0 series when possible; fall back to lower gamma representation try: def h(z): r = z-1 return [([ctx.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)] return ctx.hypercomb(h, [z], force_series=True) except ctx.NoConvergence: def h(z): T1 = [], [1, z-1], [z], G, [], [], 0 T2 = [-ctx.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a return T1, T2 return ctx.hypercomb(h, [z]) @defun def _gamma3(ctx, z, a, b, regularized=False): pole = ctx.isnpint(z) if regularized and pole: return ctx.zero try: ctx.prec += 15 # We don't know in advance whether it's better to write as a difference # of lower or upper gamma functions, so try both T1 = ctx.gammainc(z, a, regularized=regularized) T2 = ctx.gammainc(z, b, regularized=regularized) R = T1 - T2 if ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10: return R if not pole: T1 = ctx.gammainc(z, 0, b, regularized=regularized) T2 = ctx.gammainc(z, 0, a, regularized=regularized) R = T1 - T2 # May be ok, but should probably at least print a warning # about possible cancellation if 1: #ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10: return R finally: ctx.prec -= 15 raise NotImplementedError @defun_wrapped def expint(ctx, n, z): if ctx.isint(n) and ctx._is_real_type(z): try: return ctx._expint_int(n, z) except NotImplementedError: pass if ctx.isnan(n) or ctx.isnan(z): return z*n if z == ctx.inf: return 1/z if z == 0: # integral from 1 to infinity of t^n if ctx.re(n) <= 1: # TODO: reasonable sign of infinity return type(z)(ctx.inf) else: return ctx.one/(n-1) if n == 0: return ctx.exp(-z)/z if n == -1: return ctx.exp(-z)*(z+1)/z**2 return z**(n-1) * ctx.gammainc(1-n, z) @defun_wrapped def li(ctx, z, offset=False): if offset: if z == 2: return ctx.zero return ctx.ei(ctx.ln(z)) - ctx.ei(ctx.ln2) if not z: return z if z == 1: return ctx.ninf return ctx.ei(ctx.ln(z)) @defun def ei(ctx, z): try: return ctx._ei(z) except NotImplementedError: return ctx._ei_generic(z) @defun_wrapped def _ei_generic(ctx, z): # Note: the following is currently untested because mp and fp # both use special-case ei code if z == ctx.inf: return z if z == ctx.ninf: return ctx.zero if ctx.mag(z) > 1: try: r = ctx.one/z v = ctx.exp(z)*ctx.hyper([1,1],[],r, maxterms=ctx.prec, force_series=True)/z im = ctx._im(z) if im > 0: v += ctx.pi*ctx.j if im < 0: v -= ctx.pi*ctx.j return v except ctx.NoConvergence: pass v = z*ctx.hyp2f2(1,1,2,2,z) + ctx.euler if ctx._im(z): v += 0.5*(ctx.log(z) - ctx.log(ctx.one/z)) else: v += ctx.log(abs(z)) return v @defun def e1(ctx, z): try: return ctx._e1(z) except NotImplementedError: return ctx.expint(1, z) @defun def ci(ctx, z): try: return ctx._ci(z) except NotImplementedError: return ctx._ci_generic(z) @defun_wrapped def _ci_generic(ctx, z): if ctx.isinf(z): if z == ctx.inf: return ctx.zero if z == ctx.ninf: return ctx.pi*1j jz = ctx.fmul(ctx.j,z,exact=True) njz = ctx.fneg(jz,exact=True) v = 0.5*(ctx.ei(jz) + ctx.ei(njz)) zreal = ctx._re(z) zimag = ctx._im(z) if zreal == 0: if zimag > 0: v += ctx.pi*0.5j if zimag < 0: v -= ctx.pi*0.5j if zreal < 0: if zimag >= 0: v += ctx.pi*1j if zimag < 0: v -= ctx.pi*1j if ctx._is_real_type(z) and zreal > 0: v = ctx._re(v) return v @defun def si(ctx, z): try: return ctx._si(z) except NotImplementedError: return ctx._si_generic(z) @defun_wrapped def _si_generic(ctx, z): if ctx.isinf(z): if z == ctx.inf: return 0.5*ctx.pi if z == ctx.ninf: return -0.5*ctx.pi # Suffers from cancellation near 0 if ctx.mag(z) >= -1: jz = ctx.fmul(ctx.j,z,exact=True) njz = ctx.fneg(jz,exact=True) v = (-0.5j)*(ctx.ei(jz) - ctx.ei(njz)) zreal = ctx._re(z) if zreal > 0: v -= 0.5*ctx.pi if zreal < 0: v += 0.5*ctx.pi if ctx._is_real_type(z): v = ctx._re(v) return v else: return z*ctx.hyp1f2((1,2),(3,2),(3,2),-0.25*z*z) @defun_wrapped def chi(ctx, z): nz = ctx.fneg(z, exact=True) v = 0.5*(ctx.ei(z) + ctx.ei(nz)) zreal = ctx._re(z) zimag = ctx._im(z) if zimag > 0: v += ctx.pi*0.5j elif zimag < 0: v -= ctx.pi*0.5j elif zreal < 0: v += ctx.pi*1j return v @defun_wrapped def shi(ctx, z): # Suffers from cancellation near 0 if ctx.mag(z) >= -1: nz = ctx.fneg(z, exact=True) v = 0.5*(ctx.ei(z) - ctx.ei(nz)) zimag = ctx._im(z) if zimag > 0: v -= 0.5j*ctx.pi if zimag < 0: v += 0.5j*ctx.pi return v else: return z * ctx.hyp1f2((1,2),(3,2),(3,2),0.25*z*z) @defun_wrapped def fresnels(ctx, z): if z == ctx.inf: return ctx.mpf(0.5) if z == ctx.ninf: return ctx.mpf(-0.5) return ctx.pi*z**3/6*ctx.hyp1f2((3,4),(3,2),(7,4),-ctx.pi**2*z**4/16) @defun_wrapped def fresnelc(ctx, z): if z == ctx.inf: return ctx.mpf(0.5) if z == ctx.ninf: return ctx.mpf(-0.5) return z*ctx.hyp1f2((1,4),(1,2),(5,4),-ctx.pi**2*z**4/16)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/expintegrals.py
expintegrals.py
import math class RSCache: def __init__(ctx): ctx._rs_cache = [0, 10, {}, {}] from .functions import defun #-------------------------------------------------------------------------------# # # # coef(ctx, J, eps, _cache=[0, 10, {} ] ) # # # #-------------------------------------------------------------------------------# # This function computes the coefficients c[n] defined on (I, equation (47)) # but see also (II, section 3.14). # # Since these coefficients are very difficult to compute we save the values # in a cache. So if we compute several values of the functions Rzeta(s) for # near values of s, we do not recompute these coefficients. # # c[n] are the Taylor coefficients of the function: # # F(z):= (exp(pi*j*(z*z/2+3/8))-j* sqrt(2) cos(pi*z/2))/(2*cos(pi *z)) # # def _coef(ctx, J, eps): r""" Computes the coefficients `c_n` for `0\le n\le 2J` with error less than eps **Definition** The coefficients c_n are defined by .. math :: \begin{equation} F(z)=\frac{e^{\pi i \bigl(\frac{z^2}{2}+\frac38\bigr)}-i\sqrt{2}\cos\frac{\pi}{2}z}{2\cos\pi z}=\sum_{n=0}^\infty c_{2n} z^{2n} \end{equation} they are computed applying the relation .. math :: \begin{multline} c_{2n}=-\frac{i}{\sqrt{2}}\Bigl(\frac{\pi}{2}\Bigr)^{2n} \sum_{k=0}^n\frac{(-1)^k}{(2k)!} 2^{2n-2k}\frac{(-1)^{n-k}E_{2n-2k}}{(2n-2k)!}+\\ +e^{3\pi i/8}\sum_{j=0}^n(-1)^j\frac{ E_{2j}}{(2j)!}\frac{i^{n-j}\pi^{n+j}}{(n-j)!2^{n-j+1}}. \end{multline} """ newJ = J+2 # compute more coefficients that are needed neweps6 = eps/2. # compute with a slight more precision # that are needed # PREPARATION FOR THE COMPUTATION OF V(N) AND W(N) # See II Section 3.16 # # Computing the exponent wpvw of the error II equation (81) wpvw = max(ctx.mag(10*(newJ+3)), 4*newJ+5-ctx.mag(neweps6)) # Preparation of Euler numbers (we need until the 2*RS_NEWJ) E = ctx._eulernum(2*newJ) # Now we have in the cache all the needed Euler numbers. # # Computing the powers of pi # # We need to compute the powers pi**n for 1<= n <= 2*J # with relative error less than 2**(-wpvw) # it is easy to show that this is obtained # taking wppi as the least d with # 2**d>40*J and 2**d> 4.24 *newJ + 2**wpvw # In II Section 3.9 we need also that # wppi > wptcoef[0], and that the powers # here computed 0<= k <= 2*newJ are more # than those needed there that are 2*L-2. # so we need J >= L this will be checked # before computing tcoef[] wppi = max(ctx.mag(40*newJ), ctx.mag(newJ)+3 +wpvw) ctx.prec = wppi pipower = {} pipower[0] = ctx.one pipower[1] = ctx.pi for n in range(2,2*newJ+1): pipower[n] = pipower[n-1]*ctx.pi # COMPUTING THE COEFFICIENTS v(n) AND w(n) # see II equation (61) and equations (81) and (82) ctx.prec = wpvw+2 v={} w={} for n in range(0,newJ+1): va = (-1)**n * ctx._eulernum(2*n) va = ctx.mpf(va)/ctx.fac(2*n) v[n]=va*pipower[2*n] for n in range(0,2*newJ+1): wa = ctx.one/ctx.fac(n) wa=wa/(2**n) w[n]=wa*pipower[n] # COMPUTATION OF THE CONVOLUTIONS RS_P1 AND RS_P2 # See II Section 3.16 ctx.prec = 15 wpp1a = 9 - ctx.mag(neweps6) P1 = {} for n in range(0,newJ+1): ctx.prec = 15 wpp1 = max(ctx.mag(10*(n+4)),4*n+wpp1a) ctx.prec = wpp1 sump = 0 for k in range(0,n+1): sump += ((-1)**k) * v[k]*w[2*n-2*k] P1[n]=((-1)**(n+1))*ctx.j*sump P2={} for n in range(0,newJ+1): ctx.prec = 15 wpp2 = max(ctx.mag(10*(n+4)),4*n+wpp1a) ctx.prec = wpp2 sump = 0 for k in range(0,n+1): sump += (ctx.j**(n-k)) * v[k]*w[n-k] P2[n]=sump # COMPUTING THE COEFFICIENTS c[2n] # See II Section 3.14 ctx.prec = 15 wpc0 = 5 - ctx.mag(neweps6) wpc = max(6,4*newJ+wpc0) ctx.prec = wpc mu = ctx.sqrt(ctx.mpf('2'))/2 nu = ctx.expjpi(3./8)/2 c={} for n in range(0,newJ): ctx.prec = 15 wpc = max(6,4*n+wpc0) ctx.prec = wpc c[2*n] = mu*P1[n]+nu*P2[n] for n in range(1,2*newJ,2): c[n] = 0 return [newJ, neweps6, c, pipower] def coef(ctx, J, eps): _cache = ctx._rs_cache if J <= _cache[0] and eps >= _cache[1]: return _cache[2], _cache[3] orig = ctx._mp.prec try: data = _coef(ctx._mp, J, eps) finally: ctx._mp.prec = orig if ctx is not ctx._mp: data[2] = dict((k,ctx.convert(v)) for (k,v) in data[2].items()) data[3] = dict((k,ctx.convert(v)) for (k,v) in data[3].items()) ctx._rs_cache[:] = data return ctx._rs_cache[2], ctx._rs_cache[3] #-------------------------------------------------------------------------------# # # # Rzeta_simul(s,k=0) # # # #-------------------------------------------------------------------------------# # This function return a list with the values: # Rzeta(sigma+it), conj(Rzeta(1-sigma+it)),Rzeta'(sigma+it), conj(Rzeta'(1-sigma+it)), # .... , Rzeta^{(k)}(sigma+it), conj(Rzeta^{(k)}(1-sigma+it)) # # Useful to compute the function zeta(s) and Z(w) or its derivatives. # def aux_M_Fp(ctx, xA, xeps4, a, xB1, xL): # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE # See II Section 3.11 equations (47) and (48) aux1 = 126.0657606*xA/xeps4 # 126.06.. = 316/sqrt(2*pi) aux1 = ctx.ln(aux1) aux2 = (2*ctx.ln(ctx.pi)+ctx.ln(xB1)+ctx.ln(a))/3 -ctx.ln(2*ctx.pi)/2 m = 3*xL-3 aux3= (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) while((aux1 < m*aux2+ aux3)and (m>1)): m = m - 1 aux3 = (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) xM = m return xM def aux_J_needed(ctx, xA, xeps4, a, xB1, xM): # DETERMINATION OF J THE NUMBER OF TERMS NEEDED # IN THE TAYLOR SERIES OF F. # See II Section 3.11 equation (49)) # Only determine one h1 = xeps4/(632*xA) h2 = xB1*a * 126.31337419529260248 # = pi^2*e^2*sqrt(3) h2 = h1 * ctx.power((h2/xM**2),(xM-1)/3) / xM h3 = min(h1,h2) return h3 def Rzeta_simul(ctx, s, der=0): # First we take the value of ctx.prec wpinitial = ctx.prec # INITIALIZATION # Take the real and imaginary part of s t = ctx._im(s) xsigma = ctx._re(s) ysigma = 1 - xsigma # Now compute several parameter that appear on the program ctx.prec = 15 a = ctx.sqrt(t/(2*ctx.pi)) xasigma = a ** xsigma yasigma = a ** ysigma # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3) xA1=ctx.power(2, ctx.mag(xasigma)-1) yA1=ctx.power(2, ctx.mag(yasigma)-1) # We compute various epsilon's (see II end of Section 3.1) eps = ctx.power(2, -wpinitial) eps1 = eps/6. xeps2 = eps * xA1/3. yeps2 = eps * yA1/3. # COMPUTING SOME COEFFICIENTS THAT DEPENDS # ON sigma # constant b and c (see I Theorem 2 formula (26) ) # coefficients A and B1 (see I Section 6.1 equation (50)) # # here we not need high precision ctx.prec = 15 if xsigma > 0: xb = 2. xc = math.pow(9,xsigma)/4.44288 # 4.44288 =(math.sqrt(2)*math.pi) xA = math.pow(9,xsigma) xB1 = 1 else: xb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) xc = math.pow(2,-xsigma)/4.44288 xA = math.pow(2,-xsigma) xB1 = 1.10789 # = 2*sqrt(1-log(2)) if(ysigma > 0): yb = 2. yc = math.pow(9,ysigma)/4.44288 # 4.44288 =(math.sqrt(2)*math.pi) yA = math.pow(9,ysigma) yB1 = 1 else: yb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) yc = math.pow(2,-ysigma)/4.44288 yA = math.pow(2,-ysigma) yB1 = 1.10789 # = 2*sqrt(1-log(2)) # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL # CORRECTION # See II Section 3.2 ctx.prec = 15 xL = 1 while 3*xc*ctx.gamma(xL*0.5) * ctx.power(xb*a,-xL) >= xeps2: xL = xL+1 xL = max(2,xL) yL = 1 while 3*yc*ctx.gamma(yL*0.5) * ctx.power(yb*a,-yL) >= yeps2: yL = yL+1 yL = max(2,yL) # The number L has to satify some conditions. # If not RS can not compute Rzeta(s) with the prescribed precision # (see II, Section 3.2 condition (20) ) and # (II, Section 3.3 condition (22) ). Also we have added # an additional technical condition in Section 3.17 Proposition 17 if ((3*xL >= 2*a*a/25.) or (3*xL+2+xsigma<0) or (abs(xsigma) > a/2.) or \ (3*yL >= 2*a*a/25.) or (3*yL+2+ysigma<0) or (abs(ysigma) > a/2.)): ctx.prec = wpinitial raise NotImplementedError("Riemann-Siegel can not compute with such precision") # We take the maximum of the two values L = max(xL, yL) # INITIALIZATION (CONTINUATION) # # eps3 is the constant defined on (II, Section 3.5 equation (27) ) # each term of the RS correction must be computed with error <= eps3 xeps3 = xeps2/(4*xL) yeps3 = yeps2/(4*yL) # eps4 is defined on (II Section 3.6 equation (30) ) # each component of the formula (II Section 3.6 equation (29) ) # must be computed with error <= eps4 xeps4 = xeps3/(3*xL) yeps4 = yeps3/(3*yL) # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE xM = aux_M_Fp(ctx, xA, xeps4, a, xB1, xL) yM = aux_M_Fp(ctx, yA, yeps4, a, yB1, yL) M = max(xM, yM) # COMPUTING NUMBER OF TERMS J NEEDED h3 = aux_J_needed(ctx, xA, xeps4, a, xB1, xM) h4 = aux_J_needed(ctx, yA, yeps4, a, yB1, yM) h3 = min(h3,h4) J = 12 jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) while jvalue > h3: J = J+1 jvalue = (2*ctx.pi)*jvalue/J # COMPUTING eps5[m] for 1 <= m <= 21 # See II Section 10 equation (43) # We choose the minimum of the two possibilities eps5={} xforeps5 = math.pi*math.pi*xB1*a yforeps5 = math.pi*math.pi*yB1*a for m in range(0,22): xaux1 = math.pow(xforeps5, m/3)/(316.*xA) yaux1 = math.pow(yforeps5, m/3)/(316.*yA) aux1 = min(xaux1, yaux1) aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) aux2 = math.sqrt(aux2) eps5[m] = (aux1*aux2*min(xeps4,yeps4)) # COMPUTING wpfp # See II Section 3.13 equation (59) twenty = min(3*L-3, 21)+1 aux = 6812*J wpfp = ctx.mag(44*J) for m in range(0,twenty): wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) # COMPUTING N AND p # See II Section ctx.prec = wpfp + ctx.mag(t)+20 a = ctx.sqrt(t/(2*ctx.pi)) N = ctx.floor(a) p = 1-2*(a-N) # now we get a rounded version of p # to the precision wpfp # this possibly is not necessary num=ctx.floor(p*(ctx.mpf('2')**wpfp)) difference = p * (ctx.mpf('2')**wpfp)-num if (difference < 0.5): num = num else: num = num+1 p = ctx.convert(num * (ctx.mpf('2')**(-wpfp))) # COMPUTING THE COEFFICIENTS c[n] = cc[n] # We shall use the notation cc[n], since there is # a constant that is called c # See II Section 3.14 # We compute the coefficients and also save then in a # cache. The bulk of the computation is passed to # the function coef() # # eps6 is defined in II Section 3.13 equation (58) eps6 = ctx.power(ctx.convert(2*ctx.pi), J)/(ctx.gamma(J+1)*3*J) # Now we compute the coefficients cc = {} cont = {} cont, pipowers = coef(ctx, J, eps6) cc=cont.copy() # we need a copy since we have # to change his values. Fp={} # this is the adequate locus of this for n in range(M, 3*L-2): Fp[n] = 0 Fp={} ctx.prec = wpfp for m in range(0,M+1): sumP = 0 for k in range(2*J-m-1,-1,-1): sumP = (sumP * p)+ cc[k] Fp[m] = sumP # preparation of the new coefficients for k in range(0,2*J-m-1): cc[k] = (k+1)* cc[k+1] # COMPUTING THE NUMBERS xd[u,n,k], yd[u,n,k] # See II Section 3.17 # # First we compute the working precisions xwpd[k] # Se II equation (92) xwpd={} d1 = max(6,ctx.mag(40*L*L)) xd2 = 13+ctx.mag((1+abs(xsigma))*xA)-ctx.mag(xeps4)-1 xconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*xB1*xB1)) /2 for n in range(0,L): xd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*xconst)+xd2 xwpd[n]=max(xd3,d1) # procedure of II Section 3.17 ctx.prec = xwpd[1]+10 xpsigma = 1-(2*xsigma) xd = {} xd[0,0,-2]=0; xd[0,0,-1]=0; xd[0,0,0]=1; xd[0,0,1]=0 xd[0,-1,-2]=0; xd[0,-1,-1]=0; xd[0,-1,0]=1; xd[0,-1,1]=0 for n in range(1,L): ctx.prec = xwpd[n]+10 for k in range(0,3*n//2+1): m = 3*n-2*k if(m!=0): m1 = ctx.one/m c1= m1/4 c2=(xpsigma*m1)/2 c3=-(m+1) xd[0,n,k]=c3*xd[0,n-1,k-2]+c1*xd[0,n-1,k]+c2*xd[0,n-1,k-1] else: xd[0,n,k]=0 for r in range(0,k): add=xd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) xd[0,n,k] -= ((-1)**(k-r))*add xd[0,n,-2]=0; xd[0,n,-1]=0; xd[0,n,3*n//2+1]=0 for mu in range(-2,der+1): for n in range(-2,L): for k in range(-3,max(1,3*n//2+2)): if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): xd[mu,n,k] = 0 for mu in range(1,der+1): for n in range(0,L): ctx.prec = xwpd[n]+10 for k in range(0,3*n//2+1): aux=(2*mu-2)*xd[mu-2,n-2,k-3]+2*(xsigma+n-2)*xd[mu-1,n-2,k-3] xd[mu,n,k] = aux - xd[mu-1,n-1,k-1] # Now we compute the working precisions ywpd[k] # Se II equation (92) ywpd={} d1 = max(6,ctx.mag(40*L*L)) yd2 = 13+ctx.mag((1+abs(ysigma))*yA)-ctx.mag(yeps4)-1 yconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*yB1*yB1)) /2 for n in range(0,L): yd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*yconst)+yd2 ywpd[n]=max(yd3,d1) # procedure of II Section 3.17 ctx.prec = ywpd[1]+10 ypsigma = 1-(2*ysigma) yd = {} yd[0,0,-2]=0; yd[0,0,-1]=0; yd[0,0,0]=1; yd[0,0,1]=0 yd[0,-1,-2]=0; yd[0,-1,-1]=0; yd[0,-1,0]=1; yd[0,-1,1]=0 for n in range(1,L): ctx.prec = ywpd[n]+10 for k in range(0,3*n//2+1): m = 3*n-2*k if(m!=0): m1 = ctx.one/m c1= m1/4 c2=(ypsigma*m1)/2 c3=-(m+1) yd[0,n,k]=c3*yd[0,n-1,k-2]+c1*yd[0,n-1,k]+c2*yd[0,n-1,k-1] else: yd[0,n,k]=0 for r in range(0,k): add=yd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) yd[0,n,k] -= ((-1)**(k-r))*add yd[0,n,-2]=0; yd[0,n,-1]=0; yd[0,n,3*n//2+1]=0 for mu in range(-2,der+1): for n in range(-2,L): for k in range(-3,max(1,3*n//2+2)): if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): yd[mu,n,k] = 0 for mu in range(1,der+1): for n in range(0,L): ctx.prec = ywpd[n]+10 for k in range(0,3*n//2+1): aux=(2*mu-2)*yd[mu-2,n-2,k-3]+2*(ysigma+n-2)*yd[mu-1,n-2,k-3] yd[mu,n,k] = aux - yd[mu-1,n-1,k-1] # COMPUTING THE COEFFICIENTS xtcoef[k,l] # See II Section 3.9 # # computing the needed wp xwptcoef={} xwpterm={} ctx.prec = 15 c1 = ctx.mag(40*(L+2)) xc2 = ctx.mag(68*(L+2)*xA) xc4 = ctx.mag(xB1*a*math.sqrt(ctx.pi))-1 for k in range(0,L): xc3 = xc2 - k*xc4+ctx.mag(ctx.fac(k+0.5))/2. xwptcoef[k] = (max(c1,xc3-ctx.mag(xeps4)+1)+1 +20)*1.5 xwpterm[k] = (max(c1,ctx.mag(L+2)+xc3-ctx.mag(xeps3)+1)+1 +20) ywptcoef={} ywpterm={} ctx.prec = 15 c1 = ctx.mag(40*(L+2)) yc2 = ctx.mag(68*(L+2)*yA) yc4 = ctx.mag(yB1*a*math.sqrt(ctx.pi))-1 for k in range(0,L): yc3 = yc2 - k*yc4+ctx.mag(ctx.fac(k+0.5))/2. ywptcoef[k] = ((max(c1,yc3-ctx.mag(yeps4)+1))+10)*1.5 ywpterm[k] = (max(c1,ctx.mag(L+2)+yc3-ctx.mag(yeps3)+1)+1)+10 # check of power of pi # computing the fortcoef[mu,k,ell] xfortcoef={} for mu in range(0,der+1): for k in range(0,L): for ell in range(-2,3*k//2+1): xfortcoef[mu,k,ell]=0 for mu in range(0,der+1): for k in range(0,L): ctx.prec = xwptcoef[k] for ell in range(0,3*k//2+1): xfortcoef[mu,k,ell]=xd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] xfortcoef[mu,k,ell]=xfortcoef[mu,k,ell]/((2*ctx.j)**ell) def trunc_a(t): wp = ctx.prec ctx.prec = wp + 2 aa = ctx.sqrt(t/(2*ctx.pi)) ctx.prec = wp return aa # computing the tcoef[k,ell] xtcoef={} for mu in range(0,der+1): for k in range(0,L): for ell in range(-2,3*k//2+1): xtcoef[mu,k,ell]=0 ctx.prec = max(xwptcoef[0],ywptcoef[0])+3 aa= trunc_a(t) la = -ctx.ln(aa) for chi in range(0,der+1): for k in range(0,L): ctx.prec = xwptcoef[k] for ell in range(0,3*k//2+1): xtcoef[chi,k,ell] =0 for mu in range(0, chi+1): tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*xfortcoef[chi-mu,k,ell] xtcoef[chi,k,ell] += tcoefter # COMPUTING THE COEFFICIENTS ytcoef[k,l] # See II Section 3.9 # # computing the needed wp # check of power of pi # computing the fortcoef[mu,k,ell] yfortcoef={} for mu in range(0,der+1): for k in range(0,L): for ell in range(-2,3*k//2+1): yfortcoef[mu,k,ell]=0 for mu in range(0,der+1): for k in range(0,L): ctx.prec = ywptcoef[k] for ell in range(0,3*k//2+1): yfortcoef[mu,k,ell]=yd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] yfortcoef[mu,k,ell]=yfortcoef[mu,k,ell]/((2*ctx.j)**ell) # computing the tcoef[k,ell] ytcoef={} for chi in range(0,der+1): for k in range(0,L): for ell in range(-2,3*k//2+1): ytcoef[chi,k,ell]=0 for chi in range(0,der+1): for k in range(0,L): ctx.prec = ywptcoef[k] for ell in range(0,3*k//2+1): ytcoef[chi,k,ell] =0 for mu in range(0, chi+1): tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*yfortcoef[chi-mu,k,ell] ytcoef[chi,k,ell] += tcoefter # COMPUTING tv[k,ell] # See II Section 3.8 # # a has a good value ctx.prec = max(xwptcoef[0], ywptcoef[0])+2 av = {} av[0] = 1 av[1] = av[0]/a ctx.prec = max(xwptcoef[0],ywptcoef[0]) for k in range(2,L): av[k] = av[k-1] * av[1] # Computing the quotients xtv = {} for chi in range(0,der+1): for k in range(0,L): ctx.prec = xwptcoef[k] for ell in range(0,3*k//2+1): xtv[chi,k,ell] = xtcoef[chi,k,ell]* av[k] # Computing the quotients ytv = {} for chi in range(0,der+1): for k in range(0,L): ctx.prec = ywptcoef[k] for ell in range(0,3*k//2+1): ytv[chi,k,ell] = ytcoef[chi,k,ell]* av[k] # COMPUTING THE TERMS xterm[k] # See II Section 3.6 xterm = {} for chi in range(0,der+1): for n in range(0,L): ctx.prec = xwpterm[n] te = 0 for k in range(0, 3*n//2+1): te += xtv[chi,n,k] xterm[chi,n] = te # COMPUTING THE TERMS yterm[k] # See II Section 3.6 yterm = {} for chi in range(0,der+1): for n in range(0,L): ctx.prec = ywpterm[n] te = 0 for k in range(0, 3*n//2+1): te += ytv[chi,n,k] yterm[chi,n] = te # COMPUTING rssum # See II Section 3.5 xrssum={} ctx.prec=15 xrsbound = math.sqrt(ctx.pi) * xc /(xb*a) ctx.prec=15 xwprssum = ctx.mag(4.4*((L+3)**2)*xrsbound / xeps2) xwprssum = max(xwprssum, ctx.mag(10*(L+1))) ctx.prec = xwprssum for chi in range(0,der+1): xrssum[chi] = 0 for k in range(1,L+1): xrssum[chi] += xterm[chi,L-k] yrssum={} ctx.prec=15 yrsbound = math.sqrt(ctx.pi) * yc /(yb*a) ctx.prec=15 ywprssum = ctx.mag(4.4*((L+3)**2)*yrsbound / yeps2) ywprssum = max(ywprssum, ctx.mag(10*(L+1))) ctx.prec = ywprssum for chi in range(0,der+1): yrssum[chi] = 0 for k in range(1,L+1): yrssum[chi] += yterm[chi,L-k] # COMPUTING S3 # See II Section 3.19 ctx.prec = 15 A2 = 2**(max(ctx.mag(abs(xrssum[0])), ctx.mag(abs(yrssum[0])))) eps8 = eps/(3*A2) T = t *ctx.ln(t/(2*ctx.pi)) xwps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-xsigma))*T) ywps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-ysigma))*T) ctx.prec = max(xwps3, ywps3) tpi = t/(2*ctx.pi) arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 U = ctx.expj(-arg) a = trunc_a(t) xasigma = ctx.power(a, -xsigma) yasigma = ctx.power(a, -ysigma) xS3 = ((-1)**(N-1)) * xasigma * U yS3 = ((-1)**(N-1)) * yasigma * U # COMPUTING S1 the zetasum # See II Section 3.18 ctx.prec = 15 xwpsum = 4+ ctx.mag((N+ctx.power(N,1-xsigma))*ctx.ln(N) /eps1) ywpsum = 4+ ctx.mag((N+ctx.power(N,1-ysigma))*ctx.ln(N) /eps1) wpsum = max(xwpsum, ywpsum) ctx.prec = wpsum +10 ''' # This can be improved xS1={} yS1={} for chi in range(0,der+1): xS1[chi] = 0 yS1[chi] = 0 for n in range(1,int(N)+1): ln = ctx.ln(n) xexpn = ctx.exp(-ln*(xsigma+ctx.j*t)) yexpn = ctx.conj(1/(n*xexpn)) for chi in range(0,der+1): pown = ctx.power(-ln, chi) xterm = pown*xexpn yterm = pown*yexpn xS1[chi] += xterm yS1[chi] += yterm ''' xS1, yS1 = ctx._zetasum(s, 1, int(N)-1, range(0,der+1), True) # END OF COMPUTATION of xrz, yrz # See II Section 3.1 ctx.prec = 15 xabsS1 = abs(xS1[der]) xabsS2 = abs(xrssum[der] * xS3) xwpend = max(6, wpinitial+ctx.mag(6*(3*xabsS1+7*xabsS2) ) ) ctx.prec = xwpend xrz={} for chi in range(0,der+1): xrz[chi] = xS1[chi]+xrssum[chi]*xS3 ctx.prec = 15 yabsS1 = abs(yS1[der]) yabsS2 = abs(yrssum[der] * yS3) ywpend = max(6, wpinitial+ctx.mag(6*(3*yabsS1+7*yabsS2) ) ) ctx.prec = ywpend yrz={} for chi in range(0,der+1): yrz[chi] = yS1[chi]+yrssum[chi]*yS3 yrz[chi] = ctx.conj(yrz[chi]) ctx.prec = wpinitial return xrz, yrz def Rzeta_set(ctx, s, derivatives=[0]): r""" Computes several derivatives of the auxiliary function of Riemann `R(s)`. **Definition** The function is defined by .. math :: \begin{equation} {\mathop{\mathcal R }\nolimits}(s)= \int_{0\swarrow1}\frac{x^{-s} e^{\pi i x^2}}{e^{\pi i x}- e^{-\pi i x}}\,dx \end{equation} To this function we apply the Riemann-Siegel expansion. """ der = max(derivatives) # First we take the value of ctx.prec # During the computation we will change ctx.prec, and finally we will # restaurate the initial value wpinitial = ctx.prec # Take the real and imaginary part of s t = ctx._im(s) sigma = ctx._re(s) # Now compute several parameter that appear on the program ctx.prec = 15 a = ctx.sqrt(t/(2*ctx.pi)) # Careful asigma = ctx.power(a, sigma) # Careful # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3) A1 = ctx.power(2, ctx.mag(asigma)-1) # We compute various epsilon's (see II end of Section 3.1) eps = ctx.power(2, -wpinitial) eps1 = eps/6. eps2 = eps * A1/3. # COMPUTING SOME COEFFICIENTS THAT DEPENDS # ON sigma # constant b and c (see I Theorem 2 formula (26) ) # coefficients A and B1 (see I Section 6.1 equation (50)) # here we not need high precision ctx.prec = 15 if sigma > 0: b = 2. c = math.pow(9,sigma)/4.44288 # 4.44288 =(math.sqrt(2)*math.pi) A = math.pow(9,sigma) B1 = 1 else: b = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) c = math.pow(2,-sigma)/4.44288 A = math.pow(2,-sigma) B1 = 1.10789 # = 2*sqrt(1-log(2)) # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL # CORRECTION # See II Section 3.2 ctx.prec = 15 L = 1 while 3*c*ctx.gamma(L*0.5) * ctx.power(b*a,-L) >= eps2: L = L+1 L = max(2,L) # The number L has to satify some conditions. # If not RS can not compute Rzeta(s) with the prescribed precision # (see II, Section 3.2 condition (20) ) and # (II, Section 3.3 condition (22) ). Also we have added # an additional technical condition in Section 3.17 Proposition 17 if ((3*L >= 2*a*a/25.) or (3*L+2+sigma<0) or (abs(sigma)> a/2.)): #print 'Error Riemann-Siegel can not compute with such precision' ctx.prec = wpinitial raise NotImplementedError("Riemann-Siegel can not compute with such precision") # INITIALIZATION (CONTINUATION) # # eps3 is the constant defined on (II, Section 3.5 equation (27) ) # each term of the RS correction must be computed with error <= eps3 eps3 = eps2/(4*L) # eps4 is defined on (II Section 3.6 equation (30) ) # each component of the formula (II Section 3.6 equation (29) ) # must be computed with error <= eps4 eps4 = eps3/(3*L) # COMPUTING M. NUMBER OF DERIVATIVES Fp[m] TO COMPUTE M = aux_M_Fp(ctx, A, eps4, a, B1, L) Fp = {} for n in range(M, 3*L-2): Fp[n] = 0 # But I have not seen an instance of M != 3*L-3 # # DETERMINATION OF J THE NUMBER OF TERMS NEEDED # IN THE TAYLOR SERIES OF F. # See II Section 3.11 equation (49)) h1 = eps4/(632*A) h2 = ctx.pi*ctx.pi*B1*a *ctx.sqrt(3)*math.e*math.e h2 = h1 * ctx.power((h2/M**2),(M-1)/3) / M h3 = min(h1,h2) J=12 jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) while jvalue > h3: J = J+1 jvalue = (2*ctx.pi)*jvalue/J # COMPUTING eps5[m] for 1 <= m <= 21 # See II Section 10 equation (43) eps5={} foreps5 = math.pi*math.pi*B1*a for m in range(0,22): aux1 = math.pow(foreps5, m/3)/(316.*A) aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) aux2 = math.sqrt(aux2) eps5[m] = aux1*aux2*eps4 # COMPUTING wpfp # See II Section 3.13 equation (59) twenty = min(3*L-3, 21)+1 aux = 6812*J wpfp = ctx.mag(44*J) for m in range(0, twenty): wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) # COMPUTING N AND p # See II Section ctx.prec = wpfp + ctx.mag(t) + 20 a = ctx.sqrt(t/(2*ctx.pi)) N = ctx.floor(a) p = 1-2*(a-N) # now we get a rounded version of p to the precision wpfp # this possibly is not necessary num = ctx.floor(p*(ctx.mpf(2)**wpfp)) difference = p * (ctx.mpf(2)**wpfp)-num if difference < 0.5: num = num else: num = num+1 p = ctx.convert(num * (ctx.mpf(2)**(-wpfp))) # COMPUTING THE COEFFICIENTS c[n] = cc[n] # We shall use the notation cc[n], since there is # a constant that is called c # See II Section 3.14 # We compute the coefficients and also save then in a # cache. The bulk of the computation is passed to # the function coef() # # eps6 is defined in II Section 3.13 equation (58) eps6 = ctx.power(2*ctx.pi, J)/(ctx.gamma(J+1)*3*J) # Now we compute the coefficients cc={} cont={} cont, pipowers = coef(ctx, J, eps6) cc = cont.copy() # we need a copy since we have Fp={} for n in range(M, 3*L-2): Fp[n] = 0 ctx.prec = wpfp for m in range(0,M+1): sumP = 0 for k in range(2*J-m-1,-1,-1): sumP = (sumP * p) + cc[k] Fp[m] = sumP # preparation of the new coefficients for k in range(0, 2*J-m-1): cc[k] = (k+1) * cc[k+1] # COMPUTING THE NUMBERS d[n,k] # See II Section 3.17 # First we compute the working precisions wpd[k] # Se II equation (92) wpd = {} d1 = max(6, ctx.mag(40*L*L)) d2 = 13+ctx.mag((1+abs(sigma))*A)-ctx.mag(eps4)-1 const = ctx.ln(8/(ctx.pi*ctx.pi*a*a*B1*B1)) /2 for n in range(0,L): d3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*const)+d2 wpd[n] = max(d3,d1) # procedure of II Section 3.17 ctx.prec = wpd[1]+10 psigma = 1-(2*sigma) d = {} d[0,0,-2]=0; d[0,0,-1]=0; d[0,0,0]=1; d[0,0,1]=0 d[0,-1,-2]=0; d[0,-1,-1]=0; d[0,-1,0]=1; d[0,-1,1]=0 for n in range(1,L): ctx.prec = wpd[n]+10 for k in range(0,3*n//2+1): m = 3*n-2*k if (m!=0): m1 = ctx.one/m c1 = m1/4 c2 = (psigma*m1)/2 c3 = -(m+1) d[0,n,k] = c3*d[0,n-1,k-2]+c1*d[0,n-1,k]+c2*d[0,n-1,k-1] else: d[0,n,k]=0 for r in range(0,k): add = d[0,n,r]*(ctx.one*ctx.fac(2*k-2*r)/ctx.fac(k-r)) d[0,n,k] -= ((-1)**(k-r))*add d[0,n,-2]=0; d[0,n,-1]=0; d[0,n,3*n//2+1]=0 for mu in range(-2,der+1): for n in range(-2,L): for k in range(-3,max(1,3*n//2+2)): if ((mu<0)or (n<0) or(k<0)or (k>3*n//2)): d[mu,n,k] = 0 for mu in range(1,der+1): for n in range(0,L): ctx.prec = wpd[n]+10 for k in range(0,3*n//2+1): aux=(2*mu-2)*d[mu-2,n-2,k-3]+2*(sigma+n-2)*d[mu-1,n-2,k-3] d[mu,n,k] = aux - d[mu-1,n-1,k-1] # COMPUTING THE COEFFICIENTS t[k,l] # See II Section 3.9 # # computing the needed wp wptcoef = {} wpterm = {} ctx.prec = 15 c1 = ctx.mag(40*(L+2)) c2 = ctx.mag(68*(L+2)*A) c4 = ctx.mag(B1*a*math.sqrt(ctx.pi))-1 for k in range(0,L): c3 = c2 - k*c4+ctx.mag(ctx.fac(k+0.5))/2. wptcoef[k] = max(c1,c3-ctx.mag(eps4)+1)+1 +10 wpterm[k] = max(c1,ctx.mag(L+2)+c3-ctx.mag(eps3)+1)+1 +10 # check of power of pi # computing the fortcoef[mu,k,ell] fortcoef={} for mu in derivatives: for k in range(0,L): for ell in range(-2,3*k//2+1): fortcoef[mu,k,ell]=0 for mu in derivatives: for k in range(0,L): ctx.prec = wptcoef[k] for ell in range(0,3*k//2+1): fortcoef[mu,k,ell]=d[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] fortcoef[mu,k,ell]=fortcoef[mu,k,ell]/((2*ctx.j)**ell) def trunc_a(t): wp = ctx.prec ctx.prec = wp + 2 aa = ctx.sqrt(t/(2*ctx.pi)) ctx.prec = wp return aa # computing the tcoef[chi,k,ell] tcoef={} for chi in derivatives: for k in range(0,L): for ell in range(-2,3*k//2+1): tcoef[chi,k,ell]=0 ctx.prec = wptcoef[0]+3 aa = trunc_a(t) la = -ctx.ln(aa) for chi in derivatives: for k in range(0,L): ctx.prec = wptcoef[k] for ell in range(0,3*k//2+1): tcoef[chi,k,ell] = 0 for mu in range(0, chi+1): tcoefter = ctx.binomial(chi,mu) * la**mu * \ fortcoef[chi-mu,k,ell] tcoef[chi,k,ell] += tcoefter # COMPUTING tv[k,ell] # See II Section 3.8 # Computing the powers av[k] = a**(-k) ctx.prec = wptcoef[0] + 2 # a has a good value of a. # See II Section 3.6 av = {} av[0] = 1 av[1] = av[0]/a ctx.prec = wptcoef[0] for k in range(2,L): av[k] = av[k-1] * av[1] # Computing the quotients tv = {} for chi in derivatives: for k in range(0,L): ctx.prec = wptcoef[k] for ell in range(0,3*k//2+1): tv[chi,k,ell] = tcoef[chi,k,ell]* av[k] # COMPUTING THE TERMS term[k] # See II Section 3.6 term = {} for chi in derivatives: for n in range(0,L): ctx.prec = wpterm[n] te = 0 for k in range(0, 3*n//2+1): te += tv[chi,n,k] term[chi,n] = te # COMPUTING rssum # See II Section 3.5 rssum={} ctx.prec=15 rsbound = math.sqrt(ctx.pi) * c /(b*a) ctx.prec=15 wprssum = ctx.mag(4.4*((L+3)**2)*rsbound / eps2) wprssum = max(wprssum, ctx.mag(10*(L+1))) ctx.prec = wprssum for chi in derivatives: rssum[chi] = 0 for k in range(1,L+1): rssum[chi] += term[chi,L-k] # COMPUTING S3 # See II Section 3.19 ctx.prec = 15 A2 = 2**(ctx.mag(rssum[0])) eps8 = eps/(3* A2) T = t * ctx.ln(t/(2*ctx.pi)) wps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-sigma))*T) ctx.prec = wps3 tpi = t/(2*ctx.pi) arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 U = ctx.expj(-arg) a = trunc_a(t) asigma = ctx.power(a, -sigma) S3 = ((-1)**(N-1)) * asigma * U # COMPUTING S1 the zetasum # See II Section 3.18 ctx.prec = 15 wpsum = 4 + ctx.mag((N+ctx.power(N,1-sigma))*ctx.ln(N)/eps1) ctx.prec = wpsum + 10 ''' # This can be improved S1 = {} for chi in derivatives: S1[chi] = 0 for n in range(1,int(N)+1): ln = ctx.ln(n) expn = ctx.exp(-ln*(sigma+ctx.j*t)) for chi in derivatives: term = ctx.power(-ln, chi)*expn S1[chi] += term ''' S1 = ctx._zetasum(s, 1, int(N)-1, derivatives)[0] # END OF COMPUTATION # See II Section 3.1 ctx.prec = 15 absS1 = abs(S1[der]) absS2 = abs(rssum[der] * S3) wpend = max(6, wpinitial + ctx.mag(6*(3*absS1+7*absS2))) ctx.prec = wpend rz = {} for chi in derivatives: rz[chi] = S1[chi]+rssum[chi]*S3 ctx.prec = wpinitial return rz def z_half(ctx,t,der=0): r""" z_half(t,der=0) Computes Z^(der)(t) """ s=ctx.mpf('0.5')+ctx.j*t wpinitial = ctx.prec ctx.prec = 15 tt = t/(2*ctx.pi) wptheta = wpinitial +1 + ctx.mag(3*(tt**1.5)*ctx.ln(tt)) wpz = wpinitial + 1 + ctx.mag(12*tt*ctx.ln(tt)) ctx.prec = wptheta theta = ctx.siegeltheta(t) ctx.prec = wpz rz = Rzeta_set(ctx,s, range(der+1)) if der > 0: ps1 = ctx._re(ctx.psi(0,s/2)/2 - ctx.ln(ctx.pi)/2) if der > 1: ps2 = ctx._re(ctx.j*ctx.psi(1,s/2)/4) if der > 2: ps3 = ctx._re(-ctx.psi(2,s/2)/8) if der > 3: ps4 = ctx._re(-ctx.j*ctx.psi(3,s/2)/16) exptheta = ctx.expj(theta) if der == 0: z = 2*exptheta*rz[0] if der == 1: zf = 2j*exptheta z = zf*(ps1*rz[0]+rz[1]) if der == 2: zf = 2 * exptheta z = -zf*(2*rz[1]*ps1+rz[0]*ps1**2+rz[2]-ctx.j*rz[0]*ps2) if der == 3: zf = -2j*exptheta z = 3*rz[1]*ps1**2+rz[0]*ps1**3+3*ps1*rz[2] z = zf*(z-3j*rz[1]*ps2-3j*rz[0]*ps1*ps2+rz[3]-rz[0]*ps3) if der == 4: zf = 2*exptheta z = 4*rz[1]*ps1**3+rz[0]*ps1**4+6*ps1**2*rz[2] z = z-12j*rz[1]*ps1*ps2-6j*rz[0]*ps1**2*ps2-6j*rz[2]*ps2-3*rz[0]*ps2*ps2 z = z + 4*ps1*rz[3]-4*rz[1]*ps3-4*rz[0]*ps1*ps3+rz[4]+ctx.j*rz[0]*ps4 z = zf*z ctx.prec = wpinitial return ctx._re(z) def zeta_half(ctx, s, k=0): """ zeta_half(s,k=0) Computes zeta^(k)(s) when Re s = 0.5 """ wpinitial = ctx.prec sigma = ctx._re(s) t = ctx._im(s) #--- compute wptheta, wpR, wpbasic --- ctx.prec = 53 # X see II Section 3.21 (109) and (110) if sigma > 0: X = ctx.sqrt(abs(s)) else: X = (2*ctx.pi)**(sigma-1) * abs(1-s)**(0.5-sigma) # M1 see II Section 3.21 (111) and (112) if sigma > 0: M1 = 2*ctx.sqrt(t/(2*ctx.pi)) else: M1 = 4 * t * X # T see II Section 3.21 (113) abst = abs(0.5-s) T = 2* abst*math.log(abst) # computing wpbasic, wptheta, wpR see II Section 3.21 wpbasic = max(6,3+ctx.mag(t)) wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M1*X+1.3*M1*X*T)+wpinitial+1 wpbasic = max(wpbasic, wpbasic2) wptheta = max(4, 3+ctx.mag(2.7*M1*X)+wpinitial+1) wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 ctx.prec = wptheta theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) if k > 0: ps1 = (ctx._re(ctx.psi(0,s/2)))/2 - ctx.ln(ctx.pi)/2 if k > 1: ps2 = -(ctx._im(ctx.psi(1,s/2)))/4 if k > 2: ps3 = -(ctx._re(ctx.psi(2,s/2)))/8 if k > 3: ps4 = (ctx._im(ctx.psi(3,s/2)))/16 ctx.prec = wpR xrz = Rzeta_set(ctx,s,range(k+1)) yrz={} for chi in range(0,k+1): yrz[chi] = ctx.conj(xrz[chi]) ctx.prec = wpbasic exptheta = ctx.expj(-2*theta) if k==0: zv = xrz[0]+exptheta*yrz[0] if k==1: zv1 = -yrz[1] - 2*yrz[0]*ps1 zv = xrz[1] + exptheta*zv1 if k==2: zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2)+yrz[2]+2j*yrz[0]*ps2 zv = xrz[2]+exptheta*zv1 if k==3: zv1 = -12*yrz[1]*ps1**2-8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 zv = xrz[3]+exptheta*zv1 if k == 4: zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 zv = xrz[4]+exptheta*zv1 ctx.prec = wpinitial return zv def zeta_offline(ctx, s, k=0): """ Computes zeta^(k)(s) off the line """ wpinitial = ctx.prec sigma = ctx._re(s) t = ctx._im(s) #--- compute wptheta, wpR, wpbasic --- ctx.prec = 53 # X see II Section 3.21 (109) and (110) if sigma > 0: X = ctx.power(abs(s), 0.5) else: X = ctx.power(2*ctx.pi, sigma-1)*ctx.power(abs(1-s),0.5-sigma) # M1 see II Section 3.21 (111) and (112) if (sigma > 0): M1 = 2*ctx.sqrt(t/(2*ctx.pi)) else: M1 = 4 * t * X # M2 see II Section 3.21 (111) and (112) if (1-sigma > 0): M2 = 2*ctx.sqrt(t/(2*ctx.pi)) else: M2 = 4*t*ctx.power(2*ctx.pi, -sigma)*ctx.power(abs(s),sigma-0.5) # T see II Section 3.21 (113) abst = abs(0.5-s) T = 2* abst*math.log(abst) # computing wpbasic, wptheta, wpR see II Section 3.21 wpbasic = max(6,3+ctx.mag(t)) wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M2*X+1.3*M2*X*T)+wpinitial+1 wpbasic = max(wpbasic, wpbasic2) wptheta = max(4, 3+ctx.mag(2.7*M2*X)+wpinitial+1) wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 ctx.prec = wptheta theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) s1 = s s2 = ctx.conj(1-s1) ctx.prec = wpR xrz, yrz = Rzeta_simul(ctx, s, k) if k > 0: ps1 = (ctx.psi(0,s1/2)+ctx.psi(0,(1-s1)/2))/4 - ctx.ln(ctx.pi)/2 if k > 1: ps2 = ctx.j*(ctx.psi(1,s1/2)-ctx.psi(1,(1-s1)/2))/8 if k > 2: ps3 = -(ctx.psi(2,s1/2)+ctx.psi(2,(1-s1)/2))/16 if k > 3: ps4 = -ctx.j*(ctx.psi(3,s1/2)-ctx.psi(3,(1-s1)/2))/32 ctx.prec = wpbasic exptheta = ctx.expj(-2*theta) if k == 0: zv = xrz[0]+exptheta*yrz[0] if k == 1: zv1 = -yrz[1]-2*yrz[0]*ps1 zv = xrz[1]+exptheta*zv1 if k == 2: zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2) +yrz[2]+2j*yrz[0]*ps2 zv = xrz[2]+exptheta*zv1 if k == 3: zv1 = -12*yrz[1]*ps1**2 -8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 zv = xrz[3]+exptheta*zv1 if k == 4: zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 zv = xrz[4]+exptheta*zv1 ctx.prec = wpinitial return zv def z_offline(ctx, w, k=0): r""" Computes Z(w) and its derivatives off the line """ s = ctx.mpf('0.5')+ctx.j*w s1 = s s2 = ctx.conj(1-s1) wpinitial = ctx.prec ctx.prec = 35 # X see II Section 3.21 (109) and (110) # M1 see II Section 3.21 (111) and (112) if (ctx._re(s1) >= 0): M1 = 2*ctx.sqrt(ctx._im(s1)/(2 * ctx.pi)) X = ctx.sqrt(abs(s1)) else: X = (2*ctx.pi)**(ctx._re(s1)-1) * abs(1-s1)**(0.5-ctx._re(s1)) M1 = 4 * ctx._im(s1)*X # M2 see II Section 3.21 (111) and (112) if (ctx._re(s2) >= 0): M2 = 2*ctx.sqrt(ctx._im(s2)/(2 * ctx.pi)) else: M2 = 4 * ctx._im(s2)*(2*ctx.pi)**(ctx._re(s2)-1)*abs(1-s2)**(0.5-ctx._re(s2)) # T see II Section 3.21 Prop. 27 T = 2*abs(ctx.siegeltheta(w)) # defining some precisions # see II Section 3.22 (115), (116), (117) aux1 = ctx.sqrt(X) aux2 = aux1*(M1+M2) aux3 = 3 +wpinitial wpbasic = max(6, 3+ctx.mag(T), ctx.mag(aux2*(26+2*T))+aux3) wptheta = max(4,ctx.mag(2.04*aux2)+aux3) wpR = ctx.mag(4*aux1)+aux3 # now the computations ctx.prec = wptheta theta = ctx.siegeltheta(w) ctx.prec = wpR xrz, yrz = Rzeta_simul(ctx,s,k) pta = 0.25 + 0.5j*w ptb = 0.25 - 0.5j*w if k > 0: ps1 = 0.25*(ctx.psi(0,pta)+ctx.psi(0,ptb)) - ctx.ln(ctx.pi)/2 if k > 1: ps2 = (1j/8)*(ctx.psi(1,pta)-ctx.psi(1,ptb)) if k > 2: ps3 = (-1./16)*(ctx.psi(2,pta)+ctx.psi(2,ptb)) if k > 3: ps4 = (-1j/32)*(ctx.psi(3,pta)-ctx.psi(3,ptb)) ctx.prec = wpbasic exptheta = ctx.expj(theta) if k == 0: zv = exptheta*xrz[0]+yrz[0]/exptheta j = ctx.j if k == 1: zv = j*exptheta*(xrz[1]+xrz[0]*ps1)-j*(yrz[1]+yrz[0]*ps1)/exptheta if k == 2: zv = exptheta*(-2*xrz[1]*ps1-xrz[0]*ps1**2-xrz[2]+j*xrz[0]*ps2) zv =zv + (-2*yrz[1]*ps1-yrz[0]*ps1**2-yrz[2]-j*yrz[0]*ps2)/exptheta if k == 3: zv1 = -3*xrz[1]*ps1**2-xrz[0]*ps1**3-3*xrz[2]*ps1+j*3*xrz[1]*ps2 zv1 = (zv1+ 3j*xrz[0]*ps1*ps2-xrz[3]+xrz[0]*ps3)*j*exptheta zv2 = 3*yrz[1]*ps1**2+yrz[0]*ps1**3+3*yrz[2]*ps1+j*3*yrz[1]*ps2 zv2 = j*(zv2 + 3j*yrz[0]*ps1*ps2+ yrz[3]-yrz[0]*ps3)/exptheta zv = zv1+zv2 if k == 4: zv1 = 4*xrz[1]*ps1**3+xrz[0]*ps1**4 + 6*xrz[2]*ps1**2 zv1 = zv1-12j*xrz[1]*ps1*ps2-6j*xrz[0]*ps1**2*ps2-6j*xrz[2]*ps2 zv1 = zv1-3*xrz[0]*ps2*ps2+4*xrz[3]*ps1-4*xrz[1]*ps3-4*xrz[0]*ps1*ps3 zv1 = zv1+xrz[4]+j*xrz[0]*ps4 zv2 = 4*yrz[1]*ps1**3+yrz[0]*ps1**4 + 6*yrz[2]*ps1**2 zv2 = zv2+12j*yrz[1]*ps1*ps2+6j*yrz[0]*ps1**2*ps2+6j*yrz[2]*ps2 zv2 = zv2-3*yrz[0]*ps2*ps2+4*yrz[3]*ps1-4*yrz[1]*ps3-4*yrz[0]*ps1*ps3 zv2 = zv2+yrz[4]-j*yrz[0]*ps4 zv = exptheta*zv1+zv2/exptheta ctx.prec = wpinitial return zv @defun def rs_zeta(ctx, s, derivative=0, **kwargs): if derivative > 4: raise NotImplementedError s = ctx.convert(s) re = ctx._re(s); im = ctx._im(s) if im < 0: z = ctx.conj(ctx.rs_zeta(ctx.conj(s), derivative)) return z critical_line = (re == 0.5) if critical_line: return zeta_half(ctx, s, derivative) else: return zeta_offline(ctx, s, derivative) @defun def rs_z(ctx, w, derivative=0): w = ctx.convert(w) re = ctx._re(w); im = ctx._im(w) if re < 0: return rs_z(ctx, -w, derivative) critical_line = (im == 0) if critical_line : return z_half(ctx, w, derivative) else: return z_offline(ctx, w, derivative)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/rszeta.py
rszeta.py
from ..libmp.backend import xrange class SpecialFunctions(object): """ This class implements special functions using high-level code. Elementary and some other functions (e.g. gamma function, basecase hypergeometric series) are assumed to be predefined by the context as "builtins" or "low-level" functions. """ defined_functions = {} # The series for the Jacobi theta functions converge for |q| < 1; # in the current implementation they throw a ValueError for # abs(q) > THETA_Q_LIM THETA_Q_LIM = 1 - 10**-7 def __init__(self): cls = self.__class__ for name in cls.defined_functions: f, wrap = cls.defined_functions[name] cls._wrap_specfun(name, f, wrap) self.mpq_1 = self._mpq((1,1)) self.mpq_0 = self._mpq((0,1)) self.mpq_1_2 = self._mpq((1,2)) self.mpq_3_2 = self._mpq((3,2)) self.mpq_1_4 = self._mpq((1,4)) self.mpq_1_16 = self._mpq((1,16)) self.mpq_3_16 = self._mpq((3,16)) self.mpq_5_2 = self._mpq((5,2)) self.mpq_3_4 = self._mpq((3,4)) self.mpq_7_4 = self._mpq((7,4)) self.mpq_5_4 = self._mpq((5,4)) self.mpq_1_3 = self._mpq((1,3)) self.mpq_2_3 = self._mpq((2,3)) self.mpq_4_3 = self._mpq((4,3)) self.mpq_1_6 = self._mpq((1,6)) self.mpq_5_6 = self._mpq((5,6)) self.mpq_5_3 = self._mpq((5,3)) self._misc_const_cache = {} self._aliases.update({ 'phase' : 'arg', 'conjugate' : 'conj', 'nthroot' : 'root', 'polygamma' : 'psi', 'hurwitz' : 'zeta', #'digamma' : 'psi0', #'trigamma' : 'psi1', #'tetragamma' : 'psi2', #'pentagamma' : 'psi3', 'fibonacci' : 'fib', 'factorial' : 'fac', }) self.zetazero_memoized = self.memoize(self.zetazero) # Default -- do nothing @classmethod def _wrap_specfun(cls, name, f, wrap): setattr(cls, name, f) # Optional fast versions of common functions in common cases. # If not overridden, default (generic hypergeometric series) # implementations will be used def _besselj(ctx, n, z): raise NotImplementedError def _erf(ctx, z): raise NotImplementedError def _erfc(ctx, z): raise NotImplementedError def _gamma_upper_int(ctx, z, a): raise NotImplementedError def _expint_int(ctx, n, z): raise NotImplementedError def _zeta(ctx, s): raise NotImplementedError def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError def _ei(ctx, z): raise NotImplementedError def _e1(ctx, z): raise NotImplementedError def _ci(ctx, z): raise NotImplementedError def _si(ctx, z): raise NotImplementedError def _altzeta(ctx, s): raise NotImplementedError def defun_wrapped(f): SpecialFunctions.defined_functions[f.__name__] = f, True def defun(f): SpecialFunctions.defined_functions[f.__name__] = f, False def defun_static(f): setattr(SpecialFunctions, f.__name__, f) @defun_wrapped def cot(ctx, z): return ctx.one / ctx.tan(z) @defun_wrapped def sec(ctx, z): return ctx.one / ctx.cos(z) @defun_wrapped def csc(ctx, z): return ctx.one / ctx.sin(z) @defun_wrapped def coth(ctx, z): return ctx.one / ctx.tanh(z) @defun_wrapped def sech(ctx, z): return ctx.one / ctx.cosh(z) @defun_wrapped def csch(ctx, z): return ctx.one / ctx.sinh(z) @defun_wrapped def acot(ctx, z): return ctx.atan(ctx.one / z) @defun_wrapped def asec(ctx, z): return ctx.acos(ctx.one / z) @defun_wrapped def acsc(ctx, z): return ctx.asin(ctx.one / z) @defun_wrapped def acoth(ctx, z): return ctx.atanh(ctx.one / z) @defun_wrapped def asech(ctx, z): return ctx.acosh(ctx.one / z) @defun_wrapped def acsch(ctx, z): return ctx.asinh(ctx.one / z) @defun def sign(ctx, x): x = ctx.convert(x) if not x or ctx.isnan(x): return x if ctx._is_real_type(x): if x > 0: return ctx.one else: return -ctx.one return x / abs(x) @defun def agm(ctx, a, b=1): if b == 1: return ctx.agm1(a) a = ctx.convert(a) b = ctx.convert(b) return ctx._agm(a, b) @defun_wrapped def sinc(ctx, x): if ctx.isinf(x): return 1/x if not x: return x+1 return ctx.sin(x)/x @defun_wrapped def sincpi(ctx, x): if ctx.isinf(x): return 1/x if not x: return x+1 return ctx.sinpi(x)/(ctx.pi*x) # TODO: tests; improve implementation @defun_wrapped def expm1(ctx, x): if not x: return ctx.zero # exp(x) - 1 ~ x if ctx.mag(x) < -ctx.prec: return x + 0.5*x**2 # TODO: accurately eval the smaller of the real/imag parts return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1) @defun_wrapped def powm1(ctx, x, y): mag = ctx.mag one = ctx.one w = x**y - one M = mag(w) # Only moderate cancellation if M > -8: return w # Check for the only possible exact cases if not w: if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)): return w x1 = x - one magy = mag(y) lnx = ctx.ln(x) # Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2) if magy + mag(lnx) < -ctx.prec: return lnx*y + (lnx*y)**2/2 # TODO: accurately eval the smaller of the real/imag part return ctx.sum_accurately(lambda: iter([x**y, -1]), 1) @defun def _rootof1(ctx, k, n): k = int(k) n = int(n) k %= n if not k: return ctx.one elif 2*k == n: return -ctx.one elif 4*k == n: return ctx.j elif 4*k == 3*n: return -ctx.j return ctx.expjpi(2*ctx.mpf(k)/n) @defun def root(ctx, x, n, k=0): n = int(n) x = ctx.convert(x) if k: # Special case: there is an exact real root if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0): return -ctx.root(-x, n) # Multiply by root of unity prec = ctx.prec try: ctx.prec += 10 v = ctx.root(x, n, 0) * ctx._rootof1(k, n) finally: ctx.prec = prec return +v return ctx._nthroot(x, n) @defun def unitroots(ctx, n, primitive=False): gcd = ctx._gcd prec = ctx.prec try: ctx.prec += 10 if primitive: v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1] else: # TODO: this can be done *much* faster v = [ctx._rootof1(k,n) for k in range(n)] finally: ctx.prec = prec return [+x for x in v] @defun def arg(ctx, x): x = ctx.convert(x) re = ctx._re(x) im = ctx._im(x) return ctx.atan2(im, re) @defun def fabs(ctx, x): return abs(ctx.convert(x)) @defun def re(ctx, x): x = ctx.convert(x) if hasattr(x, "real"): # py2.5 doesn't have .real/.imag for all numbers return x.real return x @defun def im(ctx, x): x = ctx.convert(x) if hasattr(x, "imag"): # py2.5 doesn't have .real/.imag for all numbers return x.imag return ctx.zero @defun def conj(ctx, x): x = ctx.convert(x) try: return x.conjugate() except AttributeError: return x @defun def polar(ctx, z): return (ctx.fabs(z), ctx.arg(z)) @defun_wrapped def rect(ctx, r, phi): return r * ctx.mpc(*ctx.cos_sin(phi)) @defun def log(ctx, x, b=None): if b is None: return ctx.ln(x) wp = ctx.prec + 20 return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp) @defun def log10(ctx, x): return ctx.log(x, 10) @defun def fmod(ctx, x, y): return ctx.convert(x) % ctx.convert(y) @defun def degrees(ctx, x): return x / ctx.degree @defun def radians(ctx, x): return x * ctx.degree def _lambertw_special(ctx, z, k): # W(0,0) = 0; all other branches are singular if not z: if not k: return z return ctx.ninf + z if z == ctx.inf: if k == 0: return z else: return z + 2*k*ctx.pi*ctx.j if z == ctx.ninf: return (-z) + (2*k+1)*ctx.pi*ctx.j # Some kind of nan or complex inf/nan? return ctx.ln(z) import math import cmath def _lambertw_approx_hybrid(z, k): imag_sign = 0 if hasattr(z, "imag"): x = float(z.real) y = z.imag if y: imag_sign = (-1) ** (y < 0) y = float(y) else: x = float(z) y = 0.0 imag_sign = 0 # hack to work regardless of whether Python supports -0.0 if not y: y = 0.0 z = complex(x,y) if k == 0: if -4.0 < y < 4.0 and -1.0 < x < 2.5: if imag_sign: # Taylor series in upper/lower half-plane if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j)) if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j)) if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j)) if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j)) # Taylor series near -1 if x < -0.5: if imag_sign >= 0: return (-0.318+1.34j) + (-0.697-0.593j)*(z+1) else: return (-0.318-1.34j) + (-0.697+0.593j)*(z+1) # return real type r = -0.367879441171442 if (not imag_sign) and x > r: z = x # Singularity near -1/e if x < -0.2: return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r) # Taylor series near 0 if x < 0.5: return z # Simple linear approximation return 0.2 + 0.3*z if (not imag_sign) and x > 0.0: L1 = math.log(x); L2 = math.log(L1) else: L1 = cmath.log(z); L2 = cmath.log(L1) elif k == -1: # return real type r = -0.367879441171442 if (not imag_sign) and r < x < 0.0: z = x if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2: return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r) if (not imag_sign) and -0.2 <= x < 0.0: L1 = math.log(-x) return L1 - math.log(-L1) else: if imag_sign == -1 and (not y) and x < 0.0: L1 = cmath.log(z) - 3.1415926535897932j else: L1 = cmath.log(z) - 6.2831853071795865j L2 = cmath.log(L1) return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2) def _lambertw_series(ctx, z, k, tol): """ Return rough approximation for W_k(z) from an asymptotic series, sufficiently accurate for the Halley iteration to converge to the correct value. """ magz = ctx.mag(z) if (-10 < magz < 900) and (-1000 < k < 1000): # Near the branch point at -1/e if magz < 1 and abs(z+0.36787944117144) < 0.05: if k == 0 or (k == -1 and ctx._im(z) >= 0) or \ (k == 1 and ctx._im(z) < 0): delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)]) cancellation = -ctx.mag(delta) ctx.prec += cancellation # Use series given in Corless et al. p = ctx.sqrt(2*(ctx.e*z+1)) ctx.prec -= cancellation u = {0:ctx.mpf(-1), 1:ctx.mpf(1)} a = {0:ctx.mpf(2), 1:ctx.mpf(-1)} if k != 0: p = -p s = ctx.zero # The series converges, so we could use it directly, but unless # *extremely* close, it is better to just use the first few # terms to get a good approximation for the iteration for l in xrange(max(2,cancellation)): if l not in u: a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l)) u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1) term = u[l] * p**l s += term if ctx.mag(term) < -tol: return s, True l += 1 ctx.prec += cancellation//2 return s, False if k == 0 or k == -1: return _lambertw_approx_hybrid(z, k), False if k == 0: if magz < -1: return z*(1-z), False L1 = ctx.ln(z) L2 = ctx.ln(L1) elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0): L1 = ctx.ln(-z) return L1 - ctx.ln(-L1), False else: # This holds both as z -> 0 and z -> inf. # Relative error is O(1/log(z)). L1 = ctx.ln(z) + 2j*ctx.pi*k L2 = ctx.ln(L1) return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False @defun def lambertw(ctx, z, k=0): z = ctx.convert(z) k = int(k) if not ctx.isnormal(z): return _lambertw_special(ctx, z, k) prec = ctx.prec ctx.prec += 20 + ctx.mag(k or 1) wp = ctx.prec tol = wp - 5 w, done = _lambertw_series(ctx, z, k, tol) if not done: # Use Halley iteration to solve w*exp(w) = z two = ctx.mpf(2) for i in xrange(100): ew = ctx.exp(w) wew = w*ew wewz = wew-z wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two)) if ctx.mag(wn-w) <= ctx.mag(wn) - tol: w = wn break else: w = wn if i == 100: ctx.warn("Lambert W iteration failed to converge for z = %s" % z) ctx.prec = prec return +w @defun_wrapped def bell(ctx, n, x=1): x = ctx.convert(x) if not n: if ctx.isnan(x): return x return type(x)(1) if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n): return x**n if n == 1: return x if n == 2: return x*(x+1) if x == 0: return ctx.sincpi(n) return _polyexp(ctx, n, x, True) / ctx.exp(x) def _polyexp(ctx, n, x, extra=False): def _terms(): if extra: yield ctx.sincpi(n) t = x k = 1 while 1: yield k**n * t k += 1 t = t*x/k return ctx.sum_accurately(_terms, check_step=4) @defun_wrapped def polyexp(ctx, s, z): if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s): return z**s if z == 0: return z*s if s == 0: return ctx.expm1(z) if s == 1: return ctx.exp(z)*z if s == 2: return ctx.exp(z)*z*(z+1) return _polyexp(ctx, s, z) @defun_wrapped def cyclotomic(ctx, n, z): n = int(n) assert n >= 0 p = ctx.one if n == 0: return p if n == 1: return z - p if n == 2: return z + p # Use divisor product representation. Unfortunately, this sometimes # includes singularities for roots of unity, which we have to cancel out. # Matching zeros/poles pairwise, we have (1-z^a)/(1-z^b) ~ a/b + O(z-1). a_prod = 1 b_prod = 1 num_zeros = 0 num_poles = 0 for d in range(1,n+1): if not n % d: w = ctx.moebius(n//d) # Use powm1 because it is important that we get 0 only # if it really is exactly 0 b = -ctx.powm1(z, d) if b: p *= b**w else: if w == 1: a_prod *= d num_zeros += 1 elif w == -1: b_prod *= d num_poles += 1 #print n, num_zeros, num_poles if num_zeros: if num_zeros > num_poles: p *= 0 else: p *= a_prod p /= b_prod return p @defun def mangoldt(ctx, n): r""" Evaluates the von Mangoldt function `\Lambda(n) = \log p` if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise. **Examples** >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> [mangoldt(n) for n in range(-2,3)] [0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321] >>> mangoldt(6) 0.0 >>> mangoldt(7) 1.945910149055313305105353 >>> mangoldt(8) 0.6931471805599453094172321 >>> fsum(mangoldt(n) for n in range(101)) 94.04531122935739224600493 >>> fsum(mangoldt(n) for n in range(10001)) 10013.39669326311478372032 """ n = int(n) if n < 2: return ctx.zero if n % 2 == 0: # Must be a power of two if n & (n-1) == 0: return +ctx.ln2 else: return ctx.zero # TODO: the following could be generalized into a perfect # power testing function # --- # Look for a small factor for p in (3,5,7,11,13,17,19,23,29,31): if not n % p: q, r = n // p, 0 while q > 1: q, r = divmod(q, p) if r: return ctx.zero return ctx.ln(p) if ctx.isprime(n): return ctx.ln(n) # Obviously, we could use arbitrary-precision arithmetic for this... if n > 10**30: raise NotImplementedError k = 2 while 1: p = int(n**(1./k) + 0.5) if p < 2: return ctx.zero if p ** k == n: if ctx.isprime(p): return ctx.ln(p) k += 1
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/functions.py
functions.py
from ..libmp.backend import xrange from .functions import defun, defun_wrapped, defun_static @defun def stieltjes(ctx, n, a=1): n = ctx.convert(n) a = ctx.convert(a) if n < 0: return ctx.bad_domain("Stieltjes constants defined for n >= 0") if hasattr(ctx, "stieltjes_cache"): stieltjes_cache = ctx.stieltjes_cache else: stieltjes_cache = ctx.stieltjes_cache = {} if a == 1: if n == 0: return +ctx.euler if n in stieltjes_cache: prec, s = stieltjes_cache[n] if prec >= ctx.prec: return +s mag = 1 def f(x): xa = x/a v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1) return ctx._re(v) / mag orig = ctx.prec try: # Normalize integrand by approx. magnitude to # speed up quadrature (which uses absolute error) if n > 50: ctx.prec = 20 mag = ctx.quad(f, [0,ctx.inf], maxdegree=3) ctx.prec = orig + 10 + int(n**0.5) s = ctx.quad(f, [0,ctx.inf], maxdegree=20) v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag finally: ctx.prec = orig if a == 1 and ctx.isint(n): stieltjes_cache[n] = (ctx.prec, v) return +v @defun_wrapped def siegeltheta(ctx, t, derivative=0): d = int(derivative) if (t == ctx.inf or t == ctx.ninf): if d < 2: if t == ctx.ninf and d == 0: return ctx.ninf return ctx.inf else: return ctx.zero if d == 0: if ctx._im(t): # XXX: cancellation occurs a = ctx.loggamma(0.25+0.5j*t) b = ctx.loggamma(0.25-0.5j*t) return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b) else: if ctx.isinf(t): return t return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t if d > 0: a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t) b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t) if ctx._im(t): if d == 1: return -0.5*ctx.log(ctx.pi)+0.25*(a+b) else: return 0.25*(a+b) else: if d == 1: return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b)) else: return ctx._re(0.25*(a+b)) @defun_wrapped def grampoint(ctx, n): # asymptotic expansion, from # http://mathworld.wolfram.com/GramPoint.html g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e))) return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g) @defun_wrapped def siegelz(ctx, t, **kwargs): d = int(kwargs.get("derivative", 0)) t = ctx.convert(t) t1 = ctx._re(t) t2 = ctx._im(t) prec = ctx.prec try: if abs(t1) > 500*prec and t2**2 < t1: v = ctx.rs_z(t, d) if ctx._is_real_type(t): return ctx._re(v) return v except NotImplementedError: pass ctx.prec += 21 e1 = ctx.expj(ctx.siegeltheta(t)) z = ctx.zeta(0.5+ctx.j*t) if d == 0: v = e1*z ctx.prec=prec if ctx._is_real_type(t): return ctx._re(v) return +v z1 = ctx.zeta(0.5+ctx.j*t, derivative=1) theta1 = ctx.siegeltheta(t, derivative=1) if d == 1: v = ctx.j*e1*(z1+z*theta1) ctx.prec=prec if ctx._is_real_type(t): return ctx._re(v) return +v z2 = ctx.zeta(0.5+ctx.j*t, derivative=2) theta2 = ctx.siegeltheta(t, derivative=2) comb1 = theta1**2-ctx.j*theta2 if d == 2: def terms(): return [2*z1*theta1, z2, z*comb1] v = ctx.sum_accurately(terms, 1) v = -e1*v ctx.prec = prec if ctx._is_real_type(t): return ctx._re(v) return +v ctx.prec += 10 z3 = ctx.zeta(0.5+ctx.j*t, derivative=3) theta3 = ctx.siegeltheta(t, derivative=3) comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3 if d == 3: def terms(): return [3*theta1*z2, 3*z1*comb1, z3+z*comb2] v = ctx.sum_accurately(terms, 1) v = -ctx.j*e1*v ctx.prec = prec if ctx._is_real_type(t): return ctx._re(v) return +v z4 = ctx.zeta(0.5+ctx.j*t, derivative=4) theta4 = ctx.siegeltheta(t, derivative=4) def terms(): return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2, -4*theta1*theta3, ctx.j*theta4] comb3 = ctx.sum_accurately(terms, 1) if d == 4: def terms(): return [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3, 4*z1*comb2, z4, z*comb3] v = ctx.sum_accurately(terms, 1) v = e1*v ctx.prec = prec if ctx._is_real_type(t): return ctx._re(v) return +v if d > 4: h = lambda x: ctx.siegelz(x, derivative=4) return ctx.diff(h, t, n=d-4) _zeta_zeros = [ 14.134725142,21.022039639,25.010857580,30.424876126,32.935061588, 37.586178159,40.918719012,43.327073281,48.005150881,49.773832478, 52.970321478,56.446247697,59.347044003,60.831778525,65.112544048, 67.079810529,69.546401711,72.067157674,75.704690699,77.144840069, 79.337375020,82.910380854,84.735492981,87.425274613,88.809111208, 92.491899271,94.651344041,95.870634228,98.831194218,101.317851006, 103.725538040,105.446623052,107.168611184,111.029535543,111.874659177, 114.320220915,116.226680321,118.790782866,121.370125002,122.946829294, 124.256818554,127.516683880,129.578704200,131.087688531,133.497737203, 134.756509753,138.116042055,139.736208952,141.123707404,143.111845808, 146.000982487,147.422765343,150.053520421,150.925257612,153.024693811, 156.112909294,157.597591818,158.849988171,161.188964138,163.030709687, 165.537069188,167.184439978,169.094515416,169.911976479,173.411536520, 174.754191523,176.441434298,178.377407776,179.916484020,182.207078484, 184.874467848,185.598783678,187.228922584,189.416158656,192.026656361, 193.079726604,195.265396680,196.876481841,198.015309676,201.264751944, 202.493594514,204.189671803,205.394697202,207.906258888,209.576509717, 211.690862595,213.347919360,214.547044783,216.169538508,219.067596349, 220.714918839,221.430705555,224.007000255,224.983324670,227.421444280, 229.337413306,231.250188700,231.987235253,233.693404179,236.524229666, ] def _load_zeta_zeros(url): import urllib d = urllib.urlopen(url) L = [float(x) for x in d.readlines()] # Sanity check assert round(L[0]) == 14 _zeta_zeros[:] = L @defun def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'): n = int(n) if n < 0: return ctx.zetazero(-n).conjugate() if n == 0: raise ValueError("n must be nonzero") if n > len(_zeta_zeros) and n <= 100000: _load_zeta_zeros(url) if n > len(_zeta_zeros): raise NotImplementedError("n too large for zetazeros") return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1])) @defun_wrapped def riemannr(ctx, x): if x == 0: return ctx.zero # Check if a simple asymptotic estimate is accurate enough if abs(x) > 1000: a = ctx.li(x) b = 0.5*ctx.li(ctx.sqrt(x)) if abs(b) < abs(a)*ctx.eps: return a if abs(x) < 0.01: # XXX ctx.prec += int(-ctx.log(abs(x),2)) # Sum Gram's series s = t = ctx.one u = ctx.ln(x) k = 1 while abs(t) > abs(s)*ctx.eps: t = t * u / k s += t / (k * ctx._zeta_int(k+1)) k += 1 return s @defun_static def primepi(ctx, x): x = int(x) if x < 2: return 0 return len(ctx.list_primes(x)) # TODO: fix the interface wrt contexts @defun_wrapped def primepi2(ctx, x): x = int(x) if x < 2: return ctx._iv.zero if x < 2657: return ctx._iv.mpf(ctx.primepi(x)) mid = ctx.li(x) # Schoenfeld's estimate for x >= 2657, assuming RH err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d') a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d') b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u') return ctx._iv.mpf([a,b]) @defun_wrapped def primezeta(ctx, s): if ctx.isnan(s): return s if ctx.re(s) <= 0: raise ValueError("prime zeta function defined only for re(s) > 0") if s == 1: return ctx.inf if s == 0.5: return ctx.mpc(ctx.ninf, ctx.pi) r = ctx.re(s) if r > ctx.prec: return 0.5**s else: wp = ctx.prec + int(r) def terms(): orig = ctx.prec # zeta ~ 1+eps; need to set precision # to get logarithm accurately k = 0 while 1: k += 1 u = ctx.moebius(k) if not u: continue ctx.prec = wp t = u*ctx.ln(ctx.zeta(k*s))/k if not t: return #print ctx.prec, ctx.nstr(t) ctx.prec = orig yield t return ctx.sum_accurately(terms) # TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered @defun_wrapped def bernpoly(ctx, n, z): # Slow implementation: #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1)) n = int(n) if n < 0: raise ValueError("Bernoulli polynomials only defined for n >= 0") if z == 0 or (z == 1 and n > 1): return ctx.bernoulli(n) if z == 0.5: return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n) if n <= 3: if n == 0: return z ** 0 if n == 1: return z - 0.5 if n == 2: return (6*z*(z-1)+1)/6 if n == 3: return z*(z*(z-1.5)+0.5) if ctx.isinf(z): return z ** n if ctx.isnan(z): return z if abs(z) > 2: def terms(): t = ctx.one yield t r = ctx.one/z k = 1 while k <= n: t = t*(n+1-k)/k*r if not (k > 2 and k & 1): yield t*ctx.bernoulli(k) k += 1 return ctx.sum_accurately(terms) * z**n else: def terms(): yield ctx.bernoulli(n) t = ctx.one k = 1 while k <= n: t = t*(n+1-k)/k * z m = n-k if not (m > 2 and m & 1): yield t*ctx.bernoulli(m) k += 1 return ctx.sum_accurately(terms) @defun_wrapped def eulerpoly(ctx, n, z): n = int(n) if n < 0: raise ValueError("Euler polynomials only defined for n >= 0") if n <= 2: if n == 0: return z ** 0 if n == 1: return z - 0.5 if n == 2: return z*(z-1) if ctx.isinf(z): return z**n if ctx.isnan(z): return z m = n+1 if z == 0: return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0 if z == 1: return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0 if z == 0.5: if n % 2: return ctx.zero # Use exact code for Euler numbers if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25: return ctx.ldexp(ctx._eulernum(n), -n) # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/ def terms(): t = ctx.one k = 0 w = ctx.ldexp(1,n+2) while 1: v = n-k+1 if not (v > 2 and v & 1): yield (2-w)*ctx.bernoulli(v)*t k += 1 if k > n: break t = t*z*(n-k+2)/k w *= 0.5 return ctx.sum_accurately(terms) / m @defun def eulernum(ctx, n, exact=False): n = int(n) if exact: return int(ctx._eulernum(n)) if n < 100: return ctx.mpf(ctx._eulernum(n)) if n % 2: return ctx.zero return ctx.ldexp(ctx.eulerpoly(n,0.5), n) # TODO: this should be implemented low-level def polylog_series(ctx, s, z): tol = +ctx.eps l = ctx.zero k = 1 zk = z while 1: term = zk / k**s l += term if abs(term) < tol: break zk *= z k += 1 return l def polylog_continuation(ctx, n, z): if n < 0: return z*0 twopij = 2j * ctx.pi a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij) if ctx._is_real_type(z) and z < 0: a = ctx._re(a) if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1): a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1) return a def polylog_unitcircle(ctx, n, z): tol = +ctx.eps if n > 1: l = ctx.zero logz = ctx.ln(z) logmz = ctx.one m = 0 while 1: if (n-m) != 1: term = ctx.zeta(n-m) * logmz / ctx.fac(m) if term and abs(term) < tol: break l += term logmz *= logz m += 1 l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z))) elif n < 1: # else l = ctx.fac(-n)*(-ctx.ln(z))**(n-1) logz = ctx.ln(z) logkz = ctx.one k = 0 while 1: b = ctx.bernoulli(k-n+1) if b: term = b*logkz/(ctx.fac(k)*(k-n+1)) if abs(term) < tol: break l -= term logkz *= logz k += 1 else: raise ValueError if ctx._is_real_type(z) and z < 0: l = ctx._re(l) return l def polylog_general(ctx, s, z): v = ctx.zero u = ctx.ln(z) if not abs(u) < 5: # theoretically |u| < 2*pi raise NotImplementedError("polylog for arbitrary s and z") t = 1 k = 0 while 1: term = ctx.zeta(s-k) * t if abs(term) < ctx.eps: break v += term k += 1 t *= u t /= k return ctx.gamma(1-s)*(-u)**(s-1) + v @defun_wrapped def polylog(ctx, s, z): s = ctx.convert(s) z = ctx.convert(z) if z == 1: return ctx.zeta(s) if z == -1: return -ctx.altzeta(s) if s == 0: return z/(1-z) if s == 1: return -ctx.ln(1-z) if s == -1: return z/(1-z)**2 if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9): return polylog_series(ctx, s, z) if abs(z) >= 1.4 and ctx.isint(s): return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, s, z) if ctx.isint(s): return polylog_unitcircle(ctx, int(s), z) return polylog_general(ctx, s, z) #raise NotImplementedError("polylog for arbitrary s and z") # This could perhaps be used in some cases #from quadrature import quad #return quad(lambda t: t**(s-1)/(exp(t)/z-1),[0,inf])/gamma(s) @defun_wrapped def clsin(ctx, s, z, pi=False): if ctx.isint(s) and s < 0 and int(s) % 2 == 1: return z*0 if pi: a = ctx.expjpi(z) else: a = ctx.expj(z) if ctx._is_real_type(z) and ctx._is_real_type(s): return ctx.im(ctx.polylog(s,a)) b = 1/a return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b)) @defun_wrapped def clcos(ctx, s, z, pi=False): if ctx.isint(s) and s < 0 and int(s) % 2 == 0: return z*0 if pi: a = ctx.expjpi(z) else: a = ctx.expj(z) if ctx._is_real_type(z) and ctx._is_real_type(s): return ctx.re(ctx.polylog(s,a)) b = 1/a return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b)) @defun def altzeta(ctx, s, **kwargs): try: return ctx._altzeta(s, **kwargs) except NotImplementedError: return ctx._altzeta_generic(s) @defun_wrapped def _altzeta_generic(ctx, s): if s == 1: return ctx.ln2 + 0*s return -ctx.powm1(2, 1-s) * ctx.zeta(s) @defun def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs): d = int(derivative) if a == 1 and not (d or method): try: return ctx._zeta(s, **kwargs) except NotImplementedError: pass s = ctx.convert(s) prec = ctx.prec method = kwargs.get('method') verbose = kwargs.get('verbose') if a == 1 and method != 'euler-maclaurin': im = abs(ctx._im(s)) re = abs(ctx._re(s)) #if (im < prec or method == 'borwein') and not derivative: # try: # if verbose: # print "zeta: Attempting to use the Borwein algorithm" # return ctx._zeta(s, **kwargs) # except NotImplementedError: # if verbose: # print "zeta: Could not use the Borwein algorithm" # pass if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \ method == 'riemann-siegel': try: # py2.4 compatible try block try: if verbose: print("zeta: Attempting to use the Riemann-Siegel algorithm") return ctx.rs_zeta(s, derivative, **kwargs) except NotImplementedError: if verbose: print("zeta: Could not use the Riemann-Siegel algorithm") pass finally: ctx.prec = prec if s == 1: return ctx.inf abss = abs(s) if abss == ctx.inf: if ctx.re(s) == ctx.inf: if d == 0: return ctx.one return ctx.zero return s*0 elif ctx.isnan(abss): return 1/s if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative: return ctx.one + ctx.power(2, -s) return +ctx._hurwitz(s, a, d, **kwargs) @defun def _hurwitz(ctx, s, a=1, d=0, **kwargs): prec = ctx.prec verbose = kwargs.get('verbose') try: extraprec = 10 ctx.prec += extraprec # We strongly want to special-case rational a a, atype = ctx._convert_param(a) if ctx.re(s) < 0: if verbose: print("zeta: Attempting reflection formula") try: return _hurwitz_reflection(ctx, s, a, d, atype) except NotImplementedError: pass if verbose: print("zeta: Reflection formula failed") if verbose: print("zeta: Using the Euler-Maclaurin algorithm") while 1: ctx.prec = prec + extraprec T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose) cancellation = ctx.mag(T1) - ctx.mag(T1+T2) if verbose: print("Term 1:", T1) print("Term 2:", T2) print("Cancellation:", cancellation, "bits") if cancellation < extraprec: return T1 + T2 else: extraprec = max(2*extraprec, min(cancellation + 5, 100*prec)) if extraprec > kwargs.get('maxprec', 100*prec): raise ctx.NoConvergence("zeta: too much cancellation") finally: ctx.prec = prec def _hurwitz_reflection(ctx, s, a, d, atype): # TODO: implement for derivatives if d != 0: raise NotImplementedError res = ctx.re(s) negs = -s # Integer reflection formula if ctx.isnpint(s): n = int(res) if n <= 0: return ctx.bernpoly(1-n, a) / (n-1) t = 1-s # We now require a to be standardized v = 0 shift = 0 b = a while ctx.re(b) > 1: b -= 1 v -= b**negs shift -= 1 while ctx.re(b) <= 0: v += b**negs b += 1 shift += 1 # Rational reflection formula if atype == 'Q' or atype == 'Z': try: p, q = a._mpq_ except: assert a == int(a) p = int(a) q = 1 p += shift*q assert 1 <= p <= q g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \ for k in range(1,q+1)) g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t v += g return v # General reflection formula # Note: clcos/clsin can raise NotImplementedError else: C1, C2 = ctx.cospi_sinpi(0.5*t) # Clausen functions; could maybe use polylog directly if C1: C1 *= ctx.clcos(t, 2*a, pi=True) if C2: C2 *= ctx.clsin(t, 2*a, pi=True) v += 2*ctx.gamma(t)/(2*ctx.pi)**t*(C1+C2) return v def _hurwitz_em(ctx, s, a, d, prec, verbose): # May not be converted at this point a = ctx.convert(a) tol = -prec # Estimate number of terms for Euler-Maclaurin summation; could be improved M1 = 0 M2 = prec // 3 N = M2 lsum = 0 # This speeds up the recurrence for derivatives if ctx.isint(s): s = int(ctx._re(s)) s1 = s-1 while 1: # Truncated L-series l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0] #if d: # l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2)) #else: # l = ctx.fsum((n+a)**negs for n in range(M1,M2)) lsum += l M2a = M2+a logM2a = ctx.ln(M2a) logM2ad = logM2a**d logs = [logM2ad] logr = 1/logM2a rM2a = 1/M2a M2as = rM2a**s if d: tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1) else: tailsum = 1/((s1)*(M2a)**s1) tailsum += 0.5 * logM2ad * M2as U = [1] r = M2as fact = 2 for j in range(1, N+1): # TODO: the following could perhaps be tidied a bit j2 = 2*j if j == 1: upds = [1] else: upds = [j2-2, j2-1] for m in upds: D = min(m,d+1) if m <= d: logs.append(logs[-1] * logr) Un = [0]*(D+1) for i in xrange(D): Un[i] = (1-m-s)*U[i] for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1] U = Un r *= rM2a t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact) tailsum += t if ctx.mag(t) < tol: return lsum, (-1)**d * tailsum fact *= (j2+1)*(j2+2) if verbose: print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol) M1, M2 = M2, M2*2 if ctx.re(s) < 0: N += N//2 @defun def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False): """ Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s ) ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) ) D^k = kth derivative with respect to s, k ranges over the given list of derivatives (which should consist of either a single element or a range 0,1,...r). If reflect=False, the ydks are not computed. """ #print "zetasum", s, a, n try: return ctx._zetasum_fast(s, a, n, derivatives, reflect) except NotImplementedError: pass negs = ctx.fneg(s, exact=True) have_derivatives = derivatives != [0] have_one_derivative = len(derivatives) == 1 if not reflect: if not have_derivatives: return [ctx.fsum((a+k)**negs for k in xrange(n+1))], [] if have_one_derivative: d = derivatives[0] x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1)) return [(-1)**d * x], [] maxd = max(derivatives) if not have_one_derivative: derivatives = range(maxd+1) xs = [ctx.zero for d in derivatives] if reflect: ys = [ctx.zero for d in derivatives] else: ys = [] for k in xrange(n+1): w = a + k xterm = w ** negs if reflect: yterm = ctx.conj(ctx.one / (w * xterm)) if have_derivatives: logw = -ctx.ln(w) if have_one_derivative: logw = logw ** maxd xs[0] += xterm * logw if reflect: ys[0] += yterm * logw else: t = ctx.one for d in derivatives: xs[d] += xterm * t if reflect: ys[d] += yterm * t t *= logw else: xs[0] += xterm if reflect: ys[0] += yterm return xs, ys @defun def dirichlet(ctx, s, chi=[1], derivative=0): s = ctx.convert(s) q = len(chi) d = int(derivative) if d > 2: raise NotImplementedError("arbitrary order derivatives") prec = ctx.prec try: ctx.prec += 10 if s == 1: have_pole = True for x in chi: if x and x != 1: have_pole = False h = +ctx.eps ctx.prec *= 2*(d+1) s += h if have_pole: return +ctx.inf z = ctx.zero for p in range(1,q+1): if chi[p%q]: if d == 1: z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \ ctx.zeta(s, (p,q))*ctx.log(q)) else: z += chi[p%q] * ctx.zeta(s, (p,q)) z /= q**s finally: ctx.prec = prec return +z def secondzeta_main_term(ctx, s, a, **kwargs): tol = ctx.eps f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s) totsum = term = ctx.zero mg = ctx.inf n = 0 while mg > tol: totsum += term n += 1 gamm = ctx.im(ctx.zetazero_memoized(n)) term = f(n) mg = abs(term) err = 0 if kwargs.get("error"): sg = ctx.re(s) err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\ ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2)) err = abs(err) return +totsum, err, n def secondzeta_prime_term(ctx, s, a, **kwargs): tol = ctx.eps f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\ ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\ (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi)) totsum = term = ctx.zero mg = ctx.inf n = 1 while mg > tol or n < 9: totsum += term n += 1 term = f(n) if term == 0: mg = ctx.inf else: mg = abs(term) if kwargs.get("error"): err = mg return +totsum, err, n def secondzeta_exp_term(ctx, s, a): if ctx.isint(s) and ctx.re(s) <= 0: m = int(round(ctx.re(s))) if not m & 1: return ctx.mpf('-0.25')**(-m//2) tol = ctx.eps f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n)) totsum = ctx.zero term = f(0) mg = ctx.inf n = 0 while mg > tol: totsum += term n += 1 term = f(n) mg = abs(term) v = a**(0.5*s)*totsum/ctx.gamma(0.5*s) return v def secondzeta_singular_term(ctx, s, a, **kwargs): factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s)) extraprec = ctx.mag(factor) ctx.prec += extraprec factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s)) tol = ctx.eps f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\ ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n)) totsum = ctx.zero mg1 = ctx.inf n = 1 term = f(n) mg2 = abs(term) while mg2 > tol and mg2 <= mg1: totsum += term n += 1 term = f(n) totsum += term n +=1 term = f(n) mg1 = mg2 mg2 = abs(term) totsum += term pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1) st = factor*(pole+totsum) err = 0 if kwargs.get("error"): if not ((mg2 > tol) and (mg2 <= mg1)): if mg2 <= tol: err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10)) if mg2 > mg1: err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10)) err = max(err, ctx.eps*1.) ctx.prec -= extraprec return +st, err @defun def secondzeta(ctx, s, a = 0.015, **kwargs): r""" Evaluates the secondary zeta function `Z(s)`, defined for `\mathrm{Re}(s)>1` by .. math :: Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s} where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with imaginary part positive. `Z(s)` extends to a meromorphic function on `\mathbb{C}` with a double pole at `s=1` and simple poles at the points `-2n` for `n=0`, 1, 2, ... **Examples** >>> from mpmath import * >>> mp.pretty = True; mp.dps = 15 >>> secondzeta(2) 0.023104993115419 >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s) >>> Xi = lambda t: xi(0.5+t*j) >>> -0.5*diff(Xi,0,n=2)/Xi(0) (0.023104993115419 + 0.0j) We may ask for an approximate error value:: >>> secondzeta(0.5+100j, error=True) ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16) The function has poles at the negative odd integers, and dyadic rational values at the negative even integers:: >>> mp.dps = 30 >>> secondzeta(-8) -0.67236328125 >>> secondzeta(-7) +inf **Implementation notes** The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)` respectively main, prime, exponential and singular terms. The main term `A(s)` is computed from the zeros of zeta. The prime term depends on the von Mangoldt function. The singular term is responsible for the poles of the function. The four terms depends on a small parameter `a`. We may change the value of `a`. Theoretically this has no effect on the sum of the four terms, but in practice may be important. A smaller value of the parameter `a` makes `A(s)` depend on a smaller number of zeros of zeta, but `P(s)` uses more values of von Mangoldt function. We may also add a verbose option to obtain data about the values of the four terms. >>> mp.dps = 10 >>> secondzeta(0.5 + 40j, error=True, verbose=True) main term = (-30190318549.138656312556 - 13964804384.624622876523j) computed using 19 zeros of zeta prime term = (132717176.89212754625045 + 188980555.17563978290601j) computed using 9 values of the von Mangoldt function exponential term = (542447428666.07179812536 + 362434922978.80192435203j) singular term = (512124392939.98154322355 + 348281138038.65531023921j) ((0.059471043 + 0.3463514534j), 1.455191523e-11) >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True) main term = (-151962888.19606243907725 - 217930683.90210294051982j) computed using 9 zeros of zeta prime term = (2476659342.3038722372461 + 28711581821.921627163136j) computed using 37 values of the von Mangoldt function exponential term = (178506047114.7838188264 + 819674143244.45677330576j) singular term = (175877424884.22441310708 + 790744630738.28669174871j) ((0.059471043 + 0.3463514534j), 1.455191523e-11) Notice the great cancellation between the four terms. Changing `a`, the four terms are very different numbers but the cancellation gives the good value of Z(s). **References** A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier, 53, (2003) 665--699. A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes of the Unione Matematica Italiana, Springer, 2009. """ s = ctx.convert(s) a = ctx.convert(a) tol = ctx.eps if ctx.isint(s) and ctx.re(s) <= 1: if abs(s-1) < tol*1000: return ctx.inf m = int(round(ctx.re(s))) if m & 1: return ctx.inf else: return ((-1)**(-m//2)*\ ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3))) prec = ctx.prec try: t3 = secondzeta_exp_term(ctx, s, a) extraprec = max(ctx.mag(t3),0) ctx.prec += extraprec + 3 t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True') t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True') t4, r4 = secondzeta_singular_term(ctx,s,a,error='True') t3 = secondzeta_exp_term(ctx, s, a) err = r1+r2+r4 t = t1-t2+t3-t4 if kwargs.get("verbose"): print('main term =', t1) print(' computed using', gt, 'zeros of zeta') print('prime term =', t2) print(' computed using', pt, 'values of the von Mangoldt function') print('exponential term =', t3) print('singular term =', t4) finally: ctx.prec = prec if kwargs.get("error"): w = max(ctx.mag(abs(t)),0) err = max(err*2**w, ctx.eps*1.*2**w) return +t, err return +t @defun_wrapped def lerchphi(ctx, z, s, a): r""" Gives the Lerch transcendent, defined for `|z| < 1` and `\Re{a} > 0` by .. math :: \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s} and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}` along with the integral representation valid for `\Re{a} > 0` .. math :: \Phi(z,s,a) = \frac{1}{2 a^s} + \int_0^{\infty} \frac{z^t}{(a+t)^s} dt - 2 \int_0^{\infty} \frac{\sin(t \log z - s \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2} (e^{2 \pi t}-1)} dt. The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta` (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`). **Examples** Several evaluations in terms of simpler functions:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> lerchphi(-1,2,0.5); 4*catalan 3.663862376708876060218414 3.663862376708876060218414 >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2) 0.2131391994087528954617607 0.2131391994087528954617607 >>> lerchphi(-4,1,1); log(5)/4 0.4023594781085250936501898 0.4023594781085250936501898 >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j) (1.142423447120257137774002 + 0.2118232380980201350495795j) (1.142423447120257137774002 + 0.2118232380980201350495795j) Evaluation works for complex arguments and `|z| \ge 1`:: >>> lerchphi(1+2j, 3-j, 4+2j) (0.002025009957009908600539469 + 0.003327897536813558807438089j) >>> lerchphi(-2,2,-2.5) -12.28676272353094275265944 >>> lerchphi(10,10,10) (-4.462130727102185701817349e-11 + 1.575172198981096218823481e-12j) >>> lerchphi(10,10,-10.5) (112658784011940.5605789002 + 498113185.5756221777743631j) Some degenerate cases:: >>> lerchphi(0,1,2) 0.5 >>> lerchphi(0,1,-2) -0.5 **References** 1. [DLMF]_ section 25.14 """ if z == 0: return a ** (-s) """ # Faster, but these cases are useful for testing right now if z == 1: return ctx.zeta(s, a) if a == 1: return z * ctx.polylog(s, z) """ if ctx.re(a) < 1: if ctx.isnpint(a): raise ValueError("Lerch transcendent complex infinity") m = int(ctx.ceil(1-ctx.re(a))) v = ctx.zero zpow = ctx.one for n in xrange(m): v += zpow / (a+n)**s zpow *= z return zpow * ctx.lerchphi(z,s, a+m) + v g = ctx.ln(z) v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a h = s / 2 r = 2*ctx.pi f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \ ((a**2+t**2)**h * ctx.expm1(r*t)) v += 2*ctx.quad(f, [0, ctx.inf]) if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1: v = ctx.chop(v) return v
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/functions/zeta.py
zeta.py
import math from bisect import bisect from .backend import xrange from .backend import BACKEND, gmpy, sage, sage_utils, MPZ, MPZ_ONE, MPZ_ZERO def giant_steps(start, target, n=2): """ Return a list of integers ~= [start, n*start, ..., target/n^2, target/n, target] but conservatively rounded so that the quotient between two successive elements is actually slightly less than n. With n = 2, this describes suitable precision steps for a quadratically convergent algorithm such as Newton's method; with n = 3 steps for cubic convergence (Halley's method), etc. >>> giant_steps(50,1000) [66, 128, 253, 502, 1000] >>> giant_steps(50,1000,4) [65, 252, 1000] """ L = [target] while L[-1] > start*n: L = L + [L[-1]//n + 2] return L[::-1] def rshift(x, n): """For an integer x, calculate x >> n with the fastest (floor) rounding. Unlike the plain Python expression (x >> n), n is allowed to be negative, in which case a left shift is performed.""" if n >= 0: return x >> n else: return x << (-n) def lshift(x, n): """For an integer x, calculate x << n. Unlike the plain Python expression (x << n), n is allowed to be negative, in which case a right shift with default (floor) rounding is performed.""" if n >= 0: return x << n else: return x >> (-n) if BACKEND == 'sage': import operator rshift = operator.rshift lshift = operator.lshift def python_trailing(n): """Count the number of trailing zero bits in abs(n).""" if not n: return 0 t = 0 while not n & 1: n >>= 1 t += 1 return t if BACKEND == 'gmpy': if gmpy.version() >= '2': def gmpy_trailing(n): """Count the number of trailing zero bits in abs(n) using gmpy.""" if n: return MPZ(n).bit_scan1() else: return 0 else: def gmpy_trailing(n): """Count the number of trailing zero bits in abs(n) using gmpy.""" if n: return MPZ(n).scan1() else: return 0 # Small powers of 2 powers = [1<<_ for _ in range(300)] def python_bitcount(n): """Calculate bit size of the nonnegative integer n.""" bc = bisect(powers, n) if bc != 300: return bc bc = int(math.log(n, 2)) - 4 return bc + bctable[n>>bc] def gmpy_bitcount(n): """Calculate bit size of the nonnegative integer n.""" if n: return MPZ(n).numdigits(2) else: return 0 #def sage_bitcount(n): # if n: return MPZ(n).nbits() # else: return 0 def sage_trailing(n): return MPZ(n).trailing_zero_bits() if BACKEND == 'gmpy': bitcount = gmpy_bitcount trailing = gmpy_trailing elif BACKEND == 'sage': sage_bitcount = sage_utils.bitcount bitcount = sage_bitcount trailing = sage_trailing else: bitcount = python_bitcount trailing = python_trailing if BACKEND == 'gmpy' and 'bit_length' in dir(gmpy): bitcount = gmpy.bit_length # Used to avoid slow function calls as far as possible trailtable = [trailing(n) for n in range(256)] bctable = [bitcount(n) for n in range(1024)] # TODO: speed up for bases 2, 4, 8, 16, ... def bin_to_radix(x, xbits, base, bdigits): """Changes radix of a fixed-point number; i.e., converts x * 2**xbits to floor(x * 10**bdigits).""" return x * (MPZ(base)**bdigits) >> xbits stddigits = '0123456789abcdefghijklmnopqrstuvwxyz' def small_numeral(n, base=10, digits=stddigits): """Return the string numeral of a positive integer in an arbitrary base. Most efficient for small input.""" if base == 10: return str(n) digs = [] while n: n, digit = divmod(n, base) digs.append(digits[digit]) return "".join(digs[::-1]) def numeral_python(n, base=10, size=0, digits=stddigits): """Represent the integer n as a string of digits in the given base. Recursive division is used to make this function about 3x faster than Python's str() for converting integers to decimal strings. The 'size' parameters specifies the number of digits in n; this number is only used to determine splitting points and need not be exact.""" if n <= 0: if not n: return "0" return "-" + numeral(-n, base, size, digits) # Fast enough to do directly if size < 250: return small_numeral(n, base, digits) # Divide in half half = (size // 2) + (size & 1) A, B = divmod(n, base**half) ad = numeral(A, base, half, digits) bd = numeral(B, base, half, digits).rjust(half, "0") return ad + bd def numeral_gmpy(n, base=10, size=0, digits=stddigits): """Represent the integer n as a string of digits in the given base. Recursive division is used to make this function about 3x faster than Python's str() for converting integers to decimal strings. The 'size' parameters specifies the number of digits in n; this number is only used to determine splitting points and need not be exact.""" if n < 0: return "-" + numeral(-n, base, size, digits) # gmpy.digits() may cause a segmentation fault when trying to convert # extremely large values to a string. The size limit may need to be # adjusted on some platforms, but 1500000 works on Windows and Linux. if size < 1500000: return gmpy.digits(n, base) # Divide in half half = (size // 2) + (size & 1) A, B = divmod(n, MPZ(base)**half) ad = numeral(A, base, half, digits) bd = numeral(B, base, half, digits).rjust(half, "0") return ad + bd if BACKEND == "gmpy": numeral = numeral_gmpy else: numeral = numeral_python _1_800 = 1<<800 _1_600 = 1<<600 _1_400 = 1<<400 _1_200 = 1<<200 _1_100 = 1<<100 _1_50 = 1<<50 def isqrt_small_python(x): """ Correctly (floor) rounded integer square root, using division. Fast up to ~200 digits. """ if not x: return x if x < _1_800: # Exact with IEEE double precision arithmetic if x < _1_50: return int(x**0.5) # Initial estimate can be any integer >= the true root; round up r = int(x**0.5 * 1.00000000000001) + 1 else: bc = bitcount(x) n = bc//2 r = int((x>>(2*n-100))**0.5+2)<<(n-50) # +2 is to round up # The following iteration now precisely computes floor(sqrt(x)) # See e.g. Crandall & Pomerance, "Prime Numbers: A Computational # Perspective" while 1: y = (r+x//r)>>1 if y >= r: return r r = y def isqrt_fast_python(x): """ Fast approximate integer square root, computed using division-free Newton iteration for large x. For random integers the result is almost always correct (floor(sqrt(x))), but is 1 ulp too small with a roughly 0.1% probability. If x is very close to an exact square, the answer is 1 ulp wrong with high probability. With 0 guard bits, the largest error over a set of 10^5 random inputs of size 1-10^5 bits was 3 ulp. The use of 10 guard bits almost certainly guarantees a max 1 ulp error. """ # Use direct division-based iteration if sqrt(x) < 2^400 # Assume floating-point square root accurate to within 1 ulp, then: # 0 Newton iterations good to 52 bits # 1 Newton iterations good to 104 bits # 2 Newton iterations good to 208 bits # 3 Newton iterations good to 416 bits if x < _1_800: y = int(x**0.5) if x >= _1_100: y = (y + x//y) >> 1 if x >= _1_200: y = (y + x//y) >> 1 if x >= _1_400: y = (y + x//y) >> 1 return y bc = bitcount(x) guard_bits = 10 x <<= 2*guard_bits bc += 2*guard_bits bc += (bc&1) hbc = bc//2 startprec = min(50, hbc) # Newton iteration for 1/sqrt(x), with floating-point starting value r = int(2.0**(2*startprec) * (x >> (bc-2*startprec)) ** -0.5) pp = startprec for p in giant_steps(startprec, hbc): # r**2, scaled from real size 2**(-bc) to 2**p r2 = (r*r) >> (2*pp - p) # x*r**2, scaled from real size ~1.0 to 2**p xr2 = ((x >> (bc-p)) * r2) >> p # New value of r, scaled from real size 2**(-bc/2) to 2**p r = (r * ((3<<p) - xr2)) >> (pp+1) pp = p # (1/sqrt(x))*x = sqrt(x) return (r*(x>>hbc)) >> (p+guard_bits) def sqrtrem_python(x): """Correctly rounded integer (floor) square root with remainder.""" # to check cutoff: # plot(lambda x: timing(isqrt, 2**int(x)), [0,2000]) if x < _1_600: y = isqrt_small_python(x) return y, x - y*y y = isqrt_fast_python(x) + 1 rem = x - y*y # Correct remainder while rem < 0: y -= 1 rem += (1+2*y) else: if rem: while rem > 2*(1+y): y += 1 rem -= (1+2*y) return y, rem def isqrt_python(x): """Integer square root with correct (floor) rounding.""" return sqrtrem_python(x)[0] def sqrt_fixed(x, prec): return isqrt_fast(x<<prec) sqrt_fixed2 = sqrt_fixed if BACKEND == 'gmpy': isqrt_small = isqrt_fast = isqrt = gmpy.sqrt sqrtrem = gmpy.sqrtrem elif BACKEND == 'sage': isqrt_small = isqrt_fast = isqrt = \ getattr(sage_utils, "isqrt", lambda n: MPZ(n).isqrt()) sqrtrem = lambda n: MPZ(n).sqrtrem() else: isqrt_small = isqrt_small_python isqrt_fast = isqrt_fast_python isqrt = isqrt_python sqrtrem = sqrtrem_python def ifib(n, _cache={}): """Computes the nth Fibonacci number as an integer, for integer n.""" if n < 0: return (-1)**(-n+1) * ifib(-n) if n in _cache: return _cache[n] m = n # Use Dijkstra's logarithmic algorithm # The following implementation is basically equivalent to # http://en.literateprograms.org/Fibonacci_numbers_(Scheme) a, b, p, q = MPZ_ONE, MPZ_ZERO, MPZ_ZERO, MPZ_ONE while n: if n & 1: aq = a*q a, b = b*q+aq+a*p, b*p+aq n -= 1 else: qq = q*q p, q = p*p+qq, qq+2*p*q n >>= 1 if m < 250: _cache[m] = b return b MAX_FACTORIAL_CACHE = 1000 def ifac(n, memo={0:1, 1:1}): """Return n factorial (for integers n >= 0 only).""" f = memo.get(n) if f: return f k = len(memo) p = memo[k-1] MAX = MAX_FACTORIAL_CACHE while k <= n: p *= k if k <= MAX: memo[k] = p k += 1 return p def ifac2(n, memo_pair=[{0:1}, {1:1}]): """Return n!! (double factorial), integers n >= 0 only.""" memo = memo_pair[n&1] f = memo.get(n) if f: return f k = max(memo) p = memo[k] MAX = MAX_FACTORIAL_CACHE while k < n: k += 2 p *= k if k <= MAX: memo[k] = p return p if BACKEND == 'gmpy': ifac = gmpy.fac elif BACKEND == 'sage': ifac = lambda n: int(sage.factorial(n)) ifib = sage.fibonacci def list_primes(n): n = n + 1 sieve = list(xrange(n)) sieve[:2] = [0, 0] for i in xrange(2, int(n**0.5)+1): if sieve[i]: for j in xrange(i**2, n, i): sieve[j] = 0 return [p for p in sieve if p] if BACKEND == 'sage': # Note: it is *VERY* important for performance that we convert # the list to Python ints. def list_primes(n): return [int(_) for _ in sage.primes(n+1)] small_odd_primes = (3,5,7,11,13,17,19,23,29,31,37,41,43,47) small_odd_primes_set = set(small_odd_primes) def isprime(n): """ Determines whether n is a prime number. A probabilistic test is performed if n is very large. No special trick is used for detecting perfect powers. >>> sum(list_primes(100000)) 454396537 >>> sum(n*isprime(n) for n in range(100000)) 454396537 """ n = int(n) if not n & 1: return n == 2 if n < 50: return n in small_odd_primes_set for p in small_odd_primes: if not n % p: return False m = n-1 s = trailing(m) d = m >> s def test(a): x = pow(a,d,n) if x == 1 or x == m: return True for r in xrange(1,s): x = x**2 % n if x == m: return True return False # See http://primes.utm.edu/prove/prove2_3.html if n < 1373653: witnesses = [2,3] elif n < 341550071728321: witnesses = [2,3,5,7,11,13,17] else: witnesses = small_odd_primes for a in witnesses: if not test(a): return False return True def moebius(n): """ Evaluates the Moebius function which is `mu(n) = (-1)^k` if `n` is a product of `k` distinct primes and `mu(n) = 0` otherwise. TODO: speed up using factorization """ n = abs(int(n)) if n < 2: return n factors = [] for p in xrange(2, n+1): if not (n % p): if not (n % p**2): return 0 if not sum(p % f for f in factors): factors.append(p) return (-1)**len(factors) def gcd(*args): a = 0 for b in args: if a: while b: a, b = b, a % b else: a = b return a # Comment by Juan Arias de Reyna: # # I learn this method to compute EulerE[2n] from van de Lune. # # We apply the formula EulerE[2n] = (-1)^n 2**(-2n) sum_{j=0}^n a(2n,2j+1) # # where the numbers a(n,j) vanish for j > n+1 or j <= -1 and satisfies # # a(0,-1) = a(0,0) = 0; a(0,1)= 1; a(0,2) = a(0,3) = 0 # # a(n,j) = a(n-1,j) when n+j is even # a(n,j) = (j-1) a(n-1,j-1) + (j+1) a(n-1,j+1) when n+j is odd # # # But we can use only one array unidimensional a(j) since to compute # a(n,j) we only need to know a(n-1,k) where k and j are of different parity # and we have not to conserve the used values. # # We cached up the values of Euler numbers to sufficiently high order. # # Important Observation: If we pretend to use the numbers # EulerE[1], EulerE[2], ... , EulerE[n] # it is convenient to compute first EulerE[n], since the algorithm # computes first all # the previous ones, and keeps them in the CACHE MAX_EULER_CACHE = 500 def eulernum(m, _cache={0:MPZ_ONE}): r""" Computes the Euler numbers `E(n)`, which can be defined as coefficients of the Taylor expansion of `1/cosh x`: .. math :: \frac{1}{\cosh x} = \sum_{n=0}^\infty \frac{E_n}{n!} x^n Example:: >>> [int(eulernum(n)) for n in range(11)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] >>> [int(eulernum(n)) for n in range(11)] # test cache [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] """ # for odd m > 1, the Euler numbers are zero if m & 1: return MPZ_ZERO f = _cache.get(m) if f: return f MAX = MAX_EULER_CACHE n = m a = [MPZ(_) for _ in [0,0,1,0,0,0]] for n in range(1, m+1): for j in range(n+1, -1, -2): a[j+1] = (j-1)*a[j] + (j+1)*a[j+2] a.append(0) suma = 0 for k in range(n+1, -1, -2): suma += a[k+1] if n <= MAX: _cache[n] = ((-1)**(n//2))*(suma // 2**n) if n == m: return ((-1)**(n//2))*suma // 2**n
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/libintmath.py
libintmath.py
import sys from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND from .libmpf import (\ round_floor, round_ceiling, round_down, round_up, round_nearest, round_fast, bitcount, bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps, negative_rnd, to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int, fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone, mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot, mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac, mpf_sign, mpf_hash, ComplexResult ) from .libelefun import (\ mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int, mpf_log_hypot, mpf_cos_sin_pi, mpf_phi, mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi, mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh, mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci ) # An mpc value is a (real, imag) tuple mpc_one = fone, fzero mpc_zero = fzero, fzero mpc_two = ftwo, fzero mpc_half = (fhalf, fzero) _infs = (finf, fninf) _infs_nan = (finf, fninf, fnan) def mpc_is_inf(z): """Check if either real or imaginary part is infinite""" re, im = z if re in _infs: return True if im in _infs: return True return False def mpc_is_infnan(z): """Check if either real or imaginary part is infinite or nan""" re, im = z if re in _infs_nan: return True if im in _infs_nan: return True return False def mpc_to_str(z, dps, **kwargs): re, im = z rs = to_str(re, dps) if im[0]: return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j" else: return rs + " + " + to_str(im, dps, **kwargs) + "j" def mpc_to_complex(z, strict=False): re, im = z return complex(to_float(re, strict), to_float(im, strict)) def mpc_hash(z): if sys.version >= "3.2": re, im = z h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im) # Need to reduce either module 2^32 or 2^64 h = h % (2**sys.hash_info.width) return int(h) else: try: return hash(mpc_to_complex(z, strict=True)) except OverflowError: return hash(z) def mpc_conjugate(z, prec, rnd=round_fast): re, im = z return re, mpf_neg(im, prec, rnd) def mpc_is_nonzero(z): return z != mpc_zero def mpc_add(z, w, prec, rnd=round_fast): a, b = z c, d = w return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd) def mpc_add_mpf(z, x, prec, rnd=round_fast): a, b = z return mpf_add(a, x, prec, rnd), b def mpc_sub(z, w, prec=0, rnd=round_fast): a, b = z c, d = w return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd) def mpc_sub_mpf(z, p, prec=0, rnd=round_fast): a, b = z return mpf_sub(a, p, prec, rnd), b def mpc_pos(z, prec, rnd=round_fast): a, b = z return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd) def mpc_neg(z, prec=None, rnd=round_fast): a, b = z return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd) def mpc_shift(z, n): a, b = z return mpf_shift(a, n), mpf_shift(b, n) def mpc_abs(z, prec, rnd=round_fast): """Absolute value of a complex number, |a+bi|. Returns an mpf value.""" a, b = z return mpf_hypot(a, b, prec, rnd) def mpc_arg(z, prec, rnd=round_fast): """Argument of a complex number. Returns an mpf value.""" a, b = z return mpf_atan2(b, a, prec, rnd) def mpc_floor(z, prec, rnd=round_fast): a, b = z return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd) def mpc_ceil(z, prec, rnd=round_fast): a, b = z return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd) def mpc_nint(z, prec, rnd=round_fast): a, b = z return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd) def mpc_frac(z, prec, rnd=round_fast): a, b = z return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd) def mpc_mul(z, w, prec, rnd=round_fast): """ Complex multiplication. Returns the real and imaginary part of (a+bi)*(c+di), rounded to the specified precision. The rounding mode applies to the real and imaginary parts separately. """ a, b = z c, d = w p = mpf_mul(a, c) q = mpf_mul(b, d) r = mpf_mul(a, d) s = mpf_mul(b, c) re = mpf_sub(p, q, prec, rnd) im = mpf_add(r, s, prec, rnd) return re, im def mpc_square(z, prec, rnd=round_fast): # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b a, b = z p = mpf_mul(a,a) q = mpf_mul(b,b) r = mpf_mul(a,b, prec, rnd) re = mpf_sub(p, q, prec, rnd) im = mpf_shift(r, 1) return re, im def mpc_mul_mpf(z, p, prec, rnd=round_fast): a, b = z re = mpf_mul(a, p, prec, rnd) im = mpf_mul(b, p, prec, rnd) return re, im def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast): """ Multiply the mpc value z by I*x where x is an mpf value. """ a, b = z re = mpf_neg(mpf_mul(b, x, prec, rnd)) im = mpf_mul(a, x, prec, rnd) return re, im def mpc_mul_int(z, n, prec, rnd=round_fast): a, b = z re = mpf_mul_int(a, n, prec, rnd) im = mpf_mul_int(b, n, prec, rnd) return re, im def mpc_div(z, w, prec, rnd=round_fast): a, b = z c, d = w wp = prec + 10 # mag = c*c + d*d mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp) # (a*c+b*d)/mag, (b*c-a*d)/mag t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp) u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp) return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd) def mpc_div_mpf(z, p, prec, rnd=round_fast): """Calculate z/p where p is real""" a, b = z re = mpf_div(a, p, prec, rnd) im = mpf_div(b, p, prec, rnd) return re, im def mpc_reciprocal(z, prec, rnd=round_fast): """Calculate 1/z efficiently""" a, b = z m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10) re = mpf_div(a, m, prec, rnd) im = mpf_neg(mpf_div(b, m, prec, rnd)) return re, im def mpc_mpf_div(p, z, prec, rnd=round_fast): """Calculate p/z where p is real efficiently""" a, b = z m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10) re = mpf_div(mpf_mul(a,p), m, prec, rnd) im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd) return re, im def complex_int_pow(a, b, n): """Complex integer power: computes (a+b*I)**n exactly for nonnegative n (a and b must be Python ints).""" wre = 1 wim = 0 while n: if n & 1: wre, wim = wre*a - wim*b, wim*a + wre*b n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 return wre, wim def mpc_pow(z, w, prec, rnd=round_fast): if w[1] == fzero: return mpc_pow_mpf(z, w[0], prec, rnd) return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd) def mpc_pow_mpf(z, p, prec, rnd=round_fast): psign, pman, pexp, pbc = p if pexp >= 0: return mpc_pow_int(z, (-1)**psign * (pman<<pexp), prec, rnd) if pexp == -1: sqrtz = mpc_sqrt(z, prec+10) return mpc_pow_int(sqrtz, (-1)**psign * pman, prec, rnd) return mpc_exp(mpc_mul_mpf(mpc_log(z, prec+10), p, prec+10), prec, rnd) def mpc_pow_int(z, n, prec, rnd=round_fast): a, b = z if b == fzero: return mpf_pow_int(a, n, prec, rnd), fzero if a == fzero: v = mpf_pow_int(b, n, prec, rnd) n %= 4 if n == 0: return v, fzero elif n == 1: return fzero, v elif n == 2: return mpf_neg(v), fzero elif n == 3: return fzero, mpf_neg(v) if n == 0: return mpc_one if n == 1: return mpc_pos(z, prec, rnd) if n == 2: return mpc_square(z, prec, rnd) if n == -1: return mpc_reciprocal(z, prec, rnd) if n < 0: return mpc_reciprocal(mpc_pow_int(z, -n, prec+4), prec, rnd) asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if asign: aman = -aman if bsign: bman = -bman de = aexp - bexp abs_de = abs(de) exact_size = n*(abs_de + max(abc, bbc)) if exact_size < 10000: if de > 0: aman <<= de aexp = bexp else: bman <<= (-de) bexp = aexp re, im = complex_int_pow(aman, bman, n) re = from_man_exp(re, int(n*aexp), prec, rnd) im = from_man_exp(im, int(n*bexp), prec, rnd) return re, im return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd) def mpc_sqrt(z, prec, rnd=round_fast): """Complex square root (principal branch). We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where r = abs(a+bi), when a+bi is not a negative real number.""" a, b = z if b == fzero: if a == fzero: return (a, b) # When a+bi is a negative real number, we get a real sqrt times i if a[0]: im = mpf_sqrt(mpf_neg(a), prec, rnd) return (fzero, im) else: re = mpf_sqrt(a, prec, rnd) return (re, fzero) wp = prec+20 if not a[0]: # case a positive t = mpf_add(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) + a u = mpf_shift(t, -1) # u = t/2 re = mpf_sqrt(u, prec, rnd) # re = sqrt(u) v = mpf_shift(t, 1) # v = 2*t w = mpf_sqrt(v, wp) # w = sqrt(v) im = mpf_div(b, w, prec, rnd) # im = b / w else: # case a negative t = mpf_sub(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) - a u = mpf_shift(t, -1) # u = t/2 im = mpf_sqrt(u, prec, rnd) # im = sqrt(u) v = mpf_shift(t, 1) # v = 2*t w = mpf_sqrt(v, wp) # w = sqrt(v) re = mpf_div(b, w, prec, rnd) # re = b/w if b[0]: re = mpf_neg(re) im = mpf_neg(im) return re, im def mpc_nthroot_fixed(a, b, n, prec): # a, b signed integers at fixed precision prec start = 50 a1 = int(rshift(a, prec - n*start)) b1 = int(rshift(b, prec - n*start)) try: r = (a1 + 1j * b1)**(1.0/n) re = r.real im = r.imag re = MPZ(int(re)) im = MPZ(int(im)) except OverflowError: a1 = from_int(a1, start) b1 = from_int(b1, start) fn = from_int(n) nth = mpf_rdiv_int(1, fn, start) re, im = mpc_pow((a1, b1), (nth, fzero), start) re = to_int(re) im = to_int(im) extra = 10 prevp = start extra1 = n for p in giant_steps(start, prec+extra): # this is slow for large n, unlike int_pow_fixed re2, im2 = complex_int_pow(re, im, n-1) re2 = rshift(re2, (n-1)*prevp - p - extra1) im2 = rshift(im2, (n-1)*prevp - p - extra1) r4 = (re2*re2 + im2*im2) >> (p + extra1) ap = rshift(a, prec - p) bp = rshift(b, prec - p) rec = (ap * re2 + bp * im2) >> p imc = (-ap * im2 + bp * re2) >> p reb = (rec << p) // r4 imb = (imc << p) // r4 re = (reb + (n-1)*lshift(re, p-prevp))//n im = (imb + (n-1)*lshift(im, p-prevp))//n prevp = p return re, im def mpc_nthroot(z, n, prec, rnd=round_fast): """ Complex n-th root. Use Newton method as in the real case when it is faster, otherwise use z**(1/n) """ a, b = z if a[0] == 0 and b == fzero: re = mpf_nthroot(a, n, prec, rnd) return (re, fzero) if n < 2: if n == 0: return mpc_one if n == 1: return mpc_pos((a, b), prec, rnd) if n == -1: return mpc_div(mpc_one, (a, b), prec, rnd) inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd]) return mpc_div(mpc_one, inverse, prec, rnd) if n <= 20: prec2 = int(1.2 * (prec + 10)) asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b pf = mpc_abs((a,b), prec) if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec: af = to_fixed(a, prec2) bf = to_fixed(b, prec2) re, im = mpc_nthroot_fixed(af, bf, n, prec2) extra = 10 re = from_man_exp(re, -prec2-extra, prec2, rnd) im = from_man_exp(im, -prec2-extra, prec2, rnd) return re, im fn = from_int(n) prec2 = prec+10 + 10 nth = mpf_rdiv_int(1, fn, prec2) re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd) re = normalize(re[0], re[1], re[2], re[3], prec, rnd) im = normalize(im[0], im[1], im[2], im[3], prec, rnd) return re, im def mpc_cbrt(z, prec, rnd=round_fast): """ Complex cubic root. """ return mpc_nthroot(z, 3, prec, rnd) def mpc_exp(z, prec, rnd=round_fast): """ Complex exponential function. We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i) for the computation. This formula is very nice because it is pefectly stable; since we just do real multiplications, the only numerical errors that can creep in are single-ulp rounding errors. The formula is efficient since mpmath's real exp is quite fast and since we can compute cos and sin simultaneously. It is no problem if a and b are large; if the implementations of exp/cos/sin are accurate and efficient for all real numbers, then so is this function for all complex numbers. """ a, b = z if a == fzero: return mpf_cos_sin(b, prec, rnd) if b == fzero: return mpf_exp(a, prec, rnd), fzero mag = mpf_exp(a, prec+4, rnd) c, s = mpf_cos_sin(b, prec+4, rnd) re = mpf_mul(mag, c, prec, rnd) im = mpf_mul(mag, s, prec, rnd) return re, im def mpc_log(z, prec, rnd=round_fast): re = mpf_log_hypot(z[0], z[1], prec, rnd) im = mpc_arg(z, prec, rnd) return re, im def mpc_cos(z, prec, rnd=round_fast): """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) - sin(a)*sinh(b)*i. The same comments apply as for the complex exp: only real multiplications are pewrormed, so no cancellation errors are possible. The formula is also efficient since we can compute both pairs (cos, sin) and (cosh, sinh) in single stwps.""" a, b = z if b == fzero: return mpf_cos(a, prec, rnd), fzero if a == fzero: return mpf_cosh(b, prec, rnd), fzero wp = prec + 6 c, s = mpf_cos_sin(a, wp) ch, sh = mpf_cosh_sinh(b, wp) re = mpf_mul(c, ch, prec, rnd) im = mpf_mul(s, sh, prec, rnd) return re, mpf_neg(im) def mpc_sin(z, prec, rnd=round_fast): """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) + cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional comments.""" a, b = z if b == fzero: return mpf_sin(a, prec, rnd), fzero if a == fzero: return fzero, mpf_sinh(b, prec, rnd) wp = prec + 6 c, s = mpf_cos_sin(a, wp) ch, sh = mpf_cosh_sinh(b, wp) re = mpf_mul(s, ch, prec, rnd) im = mpf_mul(c, sh, prec, rnd) return re, im def mpc_tan(z, prec, rnd=round_fast): """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i where M = cos(2a) + cosh(2b).""" a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero: return mpf_tan(a, prec, rnd), fzero if a == fzero: return fzero, mpf_tanh(b, prec, rnd) wp = prec + 15 a = mpf_shift(a, 1) b = mpf_shift(b, 1) c, s = mpf_cos_sin(a, wp) ch, sh = mpf_cosh_sinh(b, wp) # TODO: handle cancellation when c ~= -1 and ch ~= 1 mag = mpf_add(c, ch, wp) re = mpf_div(s, mag, prec, rnd) im = mpf_div(sh, mag, prec, rnd) return re, im def mpc_cos_pi(z, prec, rnd=round_fast): a, b = z if b == fzero: return mpf_cos_pi(a, prec, rnd), fzero b = mpf_mul(b, mpf_pi(prec+5), prec+5) if a == fzero: return mpf_cosh(b, prec, rnd), fzero wp = prec + 6 c, s = mpf_cos_sin_pi(a, wp) ch, sh = mpf_cosh_sinh(b, wp) re = mpf_mul(c, ch, prec, rnd) im = mpf_mul(s, sh, prec, rnd) return re, mpf_neg(im) def mpc_sin_pi(z, prec, rnd=round_fast): a, b = z if b == fzero: return mpf_sin_pi(a, prec, rnd), fzero b = mpf_mul(b, mpf_pi(prec+5), prec+5) if a == fzero: return fzero, mpf_sinh(b, prec, rnd) wp = prec + 6 c, s = mpf_cos_sin_pi(a, wp) ch, sh = mpf_cosh_sinh(b, wp) re = mpf_mul(s, ch, prec, rnd) im = mpf_mul(c, sh, prec, rnd) return re, im def mpc_cos_sin(z, prec, rnd=round_fast): a, b = z if a == fzero: ch, sh = mpf_cosh_sinh(b, prec, rnd) return (ch, fzero), (fzero, sh) if b == fzero: c, s = mpf_cos_sin(a, prec, rnd) return (c, fzero), (s, fzero) wp = prec + 6 c, s = mpf_cos_sin(a, wp) ch, sh = mpf_cosh_sinh(b, wp) cre = mpf_mul(c, ch, prec, rnd) cim = mpf_mul(s, sh, prec, rnd) sre = mpf_mul(s, ch, prec, rnd) sim = mpf_mul(c, sh, prec, rnd) return (cre, mpf_neg(cim)), (sre, sim) def mpc_cos_sin_pi(z, prec, rnd=round_fast): a, b = z if b == fzero: c, s = mpf_cos_sin_pi(a, prec, rnd) return (c, fzero), (s, fzero) b = mpf_mul(b, mpf_pi(prec+5), prec+5) if a == fzero: ch, sh = mpf_cosh_sinh(b, prec, rnd) return (ch, fzero), (fzero, sh) wp = prec + 6 c, s = mpf_cos_sin_pi(a, wp) ch, sh = mpf_cosh_sinh(b, wp) cre = mpf_mul(c, ch, prec, rnd) cim = mpf_mul(s, sh, prec, rnd) sre = mpf_mul(s, ch, prec, rnd) sim = mpf_mul(c, sh, prec, rnd) return (cre, mpf_neg(cim)), (sre, sim) def mpc_cosh(z, prec, rnd=round_fast): """Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i).""" a, b = z return mpc_cos((b, mpf_neg(a)), prec, rnd) def mpc_sinh(z, prec, rnd=round_fast): """Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i).""" a, b = z b, a = mpc_sin((b, a), prec, rnd) return a, b def mpc_tanh(z, prec, rnd=round_fast): """Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i).""" a, b = z b, a = mpc_tan((b, a), prec, rnd) return a, b # TODO: avoid loss of accuracy def mpc_atan(z, prec, rnd=round_fast): a, b = z # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z)) # x = 1-I*z = 1 + b - I*a # y = 1+I*z = 1 - b + I*a wp = prec + 15 x = mpf_add(fone, b, wp), mpf_neg(a) y = mpf_sub(fone, b, wp), a l1 = mpc_log(x, wp) l2 = mpc_log(y, wp) a, b = mpc_sub(l1, l2, prec, rnd) # (I/2) * (a+b*I) = (-b/2 + a/2*I) v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1) # Subtraction at infinity gives correct real part but # wrong imaginary part (should be zero) if v[1] == fnan and mpc_is_inf(z): v = (v[0], fzero) return v beta_crossover = from_float(0.6417) alpha_crossover = from_float(1.5) def acos_asin(z, prec, rnd, n): """ complex acos for n = 0, asin for n = 1 The algorithm is described in T.E. Hull, T.F. Fairgrieve and P.T.P. Tang 'Implementing the Complex Arcsine and Arcosine Functions using Exception Handling', ACM Trans. on Math. Software Vol. 23 (1997), p299 The complex acos and asin can be defined as acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1)) asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1)) where z = a + I*b alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2) These expressions are rewritten in different ways in different regions, delimited by two crossovers alpha_crossover and beta_crossover, and by abs(a) <= 1, in order to improve the numerical accuracy. """ a, b = z wp = prec + 10 # special cases with real argument if b == fzero: am = mpf_sub(fone, mpf_abs(a), wp) # case abs(a) <= 1 if not am[0]: if n == 0: return mpf_acos(a, prec, rnd), fzero else: return mpf_asin(a, prec, rnd), fzero # cases abs(a) > 1 else: # case a < -1 if a[0]: pi = mpf_pi(prec, rnd) c = mpf_acosh(mpf_neg(a), prec, rnd) if n == 0: return pi, mpf_neg(c) else: return mpf_neg(mpf_shift(pi, -1)), c # case a > 1 else: c = mpf_acosh(a, prec, rnd) if n == 0: return fzero, c else: pi = mpf_pi(prec, rnd) return mpf_shift(pi, -1), mpf_neg(c) asign = bsign = 0 if a[0]: a = mpf_neg(a) asign = 1 if b[0]: b = mpf_neg(b) bsign = 1 am = mpf_sub(fone, a, wp) ap = mpf_add(fone, a, wp) r = mpf_hypot(ap, b, wp) s = mpf_hypot(am, b, wp) alpha = mpf_shift(mpf_add(r, s, wp), -1) beta = mpf_div(a, alpha, wp) b2 = mpf_mul(b,b, wp) # case beta <= beta_crossover if not mpf_sub(beta_crossover, beta, wp)[0]: if n == 0: re = mpf_acos(beta, wp) else: re = mpf_asin(beta, wp) else: # to compute the real part in this region use the identity # asin(beta) = atan(beta/sqrt(1-beta**2)) # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a) # alpha + a is numerically accurate; alpha - a can have # cancellations leading to numerical inaccuracies, so rewrite # it in differente ways according to the region Ax = mpf_add(alpha, a, wp) # case a <= 1 if not am[0]: # c = b*b/(r + (a+1)); d = (s + (1-a)) # alpha - a = (1/2)*(c + d) # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a) # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d))) c = mpf_div(b2, mpf_add(r, ap, wp), wp) d = mpf_add(s, am, wp) re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1) if n == 0: re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp) else: re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp) else: # c = Ax/(r + (a+1)); d = Ax/(s - (1-a)) # alpha - a = (1/2)*(c + d) # case n = 0: re = atan(b*sqrt(c + d)/2/a) # case n = 1: re = atan(a/(b*sqrt(c + d)/2) c = mpf_div(Ax, mpf_add(r, ap, wp), wp) d = mpf_div(Ax, mpf_sub(s, am, wp), wp) re = mpf_shift(mpf_add(c, d, wp), -1) re = mpf_mul(b, mpf_sqrt(re, wp), wp) if n == 0: re = mpf_atan(mpf_div(re, a, wp), wp) else: re = mpf_atan(mpf_div(a, re, wp), wp) # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover # replace it with 1 + Am1 + sqrt(Am1*(alpha+1))) # where Am1 = alpha -1 # if alpha <= alpha_crossover: if not mpf_sub(alpha_crossover, alpha, wp)[0]: c1 = mpf_div(b2, mpf_add(r, ap, wp), wp) # case a < 1 if mpf_neg(am)[0]: # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a)) c2 = mpf_add(s, am, wp) c2 = mpf_div(b2, c2, wp) Am1 = mpf_shift(mpf_add(c1, c2, wp), -1) else: # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a))) c2 = mpf_sub(s, am, wp) Am1 = mpf_shift(mpf_add(c1, c2, wp), -1) # im = log(1 + Am1 + sqrt(Am1*(alpha+1))) im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp) im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp) else: # im = log(alpha + sqrt(alpha*alpha - 1)) im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp) im = mpf_log(mpf_add(alpha, im, wp), wp) if asign: if n == 0: re = mpf_sub(mpf_pi(wp), re, wp) else: re = mpf_neg(re) if not bsign and n == 0: im = mpf_neg(im) if bsign and n == 1: im = mpf_neg(im) re = normalize(re[0], re[1], re[2], re[3], prec, rnd) im = normalize(im[0], im[1], im[2], im[3], prec, rnd) return re, im def mpc_acos(z, prec, rnd=round_fast): return acos_asin(z, prec, rnd, 0) def mpc_asin(z, prec, rnd=round_fast): return acos_asin(z, prec, rnd, 1) def mpc_asinh(z, prec, rnd=round_fast): # asinh(z) = I * asin(-I z) a, b = z a, b = mpc_asin((b, mpf_neg(a)), prec, rnd) return mpf_neg(b), a def mpc_acosh(z, prec, rnd=round_fast): # acosh(z) = -I * acos(z) for Im(acos(z)) <= 0 # +I * acos(z) otherwise a, b = mpc_acos(z, prec, rnd) if b[0] or b == fzero: return mpf_neg(b), a else: return b, mpf_neg(a) def mpc_atanh(z, prec, rnd=round_fast): # atanh(z) = (log(1+z)-log(1-z))/2 wp = prec + 15 a = mpc_add(z, mpc_one, wp) b = mpc_sub(mpc_one, z, wp) a = mpc_log(a, wp) b = mpc_log(b, wp) v = mpc_shift(mpc_sub(a, b, wp), -1) # Subtraction at infinity gives correct imaginary part but # wrong real part (should be zero) if v[0] == fnan and mpc_is_inf(z): v = (fzero, v[1]) return v def mpc_fibonacci(z, prec, rnd=round_fast): re, im = z if im == fzero: return (mpf_fibonacci(re, prec, rnd), fzero) size = max(abs(re[2]+re[3]), abs(re[2]+re[3])) wp = prec + size + 20 a = mpf_phi(wp) b = mpf_add(mpf_shift(a, 1), fnone, wp) u = mpc_pow((a, fzero), z, wp) v = mpc_cos_pi(z, wp) v = mpc_div(v, u, wp) u = mpc_sub(u, v, wp) u = mpc_div_mpf(u, b, prec, rnd) return u def mpf_expj(x, prec, rnd='f'): raise ComplexResult def mpc_expj(z, prec, rnd='f'): re, im = z if im == fzero: return mpf_cos_sin(re, prec, rnd) if re == fzero: return mpf_exp(mpf_neg(im), prec, rnd), fzero ey = mpf_exp(mpf_neg(im), prec+10) c, s = mpf_cos_sin(re, prec+10) re = mpf_mul(ey, c, prec, rnd) im = mpf_mul(ey, s, prec, rnd) return re, im def mpf_expjpi(x, prec, rnd='f'): raise ComplexResult def mpc_expjpi(z, prec, rnd='f'): re, im = z if im == fzero: return mpf_cos_sin_pi(re, prec, rnd) sign, man, exp, bc = im wp = prec+10 if man: wp += max(0, exp+bc) im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp)) if re == fzero: return mpf_exp(im, prec, rnd), fzero ey = mpf_exp(im, prec+10) c, s = mpf_cos_sin_pi(re, prec+10) re = mpf_mul(ey, c, prec, rnd) im = mpf_mul(ey, s, prec, rnd) return re, im if BACKEND == 'sage': try: import sage.libs.mpmath.ext_libmp as _lbmp mpc_exp = _lbmp.mpc_exp mpc_sqrt = _lbmp.mpc_sqrt except (ImportError, AttributeError): print("Warning: Sage imports in libmpc failed")
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/libmpc.py
libmpc.py
from .backend import xrange from .libmpf import ( ComplexResult, round_down, round_up, round_floor, round_ceiling, round_nearest, prec_to_dps, repr_dps, dps_to_prec, bitcount, from_float, fnan, finf, fninf, fzero, fhalf, fone, fnone, mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp, mpf_min_max, mpf_floor, from_int, to_int, to_str, from_str, mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, mpf_div, mpf_shift, mpf_pow_int, from_man_exp, MPZ_ONE) from .libelefun import ( mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2, mpf_pi, mod_pi2, mpf_cos_sin ) from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma def mpi_str(s, prec): sa, sb = s dps = prec_to_dps(prec) + 5 return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps)) #dps = prec_to_dps(prec) #m = mpi_mid(s, prec) #d = mpf_shift(mpi_delta(s, 20), -1) #return "%s +/- %s" % (to_str(m, dps), to_str(d, 3)) mpi_zero = (fzero, fzero) mpi_one = (fone, fone) def mpi_eq(s, t): return s == t def mpi_ne(s, t): return s != t def mpi_lt(s, t): sa, sb = s ta, tb = t if mpf_lt(sb, ta): return True if mpf_ge(sa, tb): return False return None def mpi_le(s, t): sa, sb = s ta, tb = t if mpf_le(sb, ta): return True if mpf_gt(sa, tb): return False return None def mpi_gt(s, t): return mpi_lt(t, s) def mpi_ge(s, t): return mpi_le(t, s) def mpi_add(s, t, prec=0): sa, sb = s ta, tb = t a = mpf_add(sa, ta, prec, round_floor) b = mpf_add(sb, tb, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = finf return a, b def mpi_sub(s, t, prec=0): sa, sb = s ta, tb = t a = mpf_sub(sa, tb, prec, round_floor) b = mpf_sub(sb, ta, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = finf return a, b def mpi_delta(s, prec): sa, sb = s return mpf_sub(sb, sa, prec, round_up) def mpi_mid(s, prec): sa, sb = s return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1) def mpi_pos(s, prec): sa, sb = s a = mpf_pos(sa, prec, round_floor) b = mpf_pos(sb, prec, round_ceiling) return a, b def mpi_neg(s, prec=0): sa, sb = s a = mpf_neg(sb, prec, round_floor) b = mpf_neg(sa, prec, round_ceiling) return a, b def mpi_abs(s, prec=0): sa, sb = s sas = mpf_sign(sa) sbs = mpf_sign(sb) # Both points nonnegative? if sas >= 0: a = mpf_pos(sa, prec, round_floor) b = mpf_pos(sb, prec, round_ceiling) # Upper point nonnegative? elif sbs >= 0: a = fzero negsa = mpf_neg(sa) if mpf_lt(negsa, sb): b = mpf_pos(sb, prec, round_ceiling) else: b = mpf_pos(negsa, prec, round_ceiling) # Both negative? else: a = mpf_neg(sb, prec, round_floor) b = mpf_neg(sa, prec, round_ceiling) return a, b # TODO: optimize def mpi_mul_mpf(s, t, prec): return mpi_mul(s, (t, t), prec) def mpi_div_mpf(s, t, prec): return mpi_div(s, (t, t), prec) def mpi_mul(s, t, prec=0): sa, sb = s ta, tb = t sas = mpf_sign(sa) sbs = mpf_sign(sb) tas = mpf_sign(ta) tbs = mpf_sign(tb) if sas == sbs == 0: # Should maybe be undefined if ta == fninf or tb == finf: return fninf, finf return fzero, fzero if tas == tbs == 0: # Should maybe be undefined if sa == fninf or sb == finf: return fninf, finf return fzero, fzero if sas >= 0: # positive * positive if tas >= 0: a = mpf_mul(sa, ta, prec, round_floor) b = mpf_mul(sb, tb, prec, round_ceiling) if a == fnan: a = fzero if b == fnan: b = finf # positive * negative elif tbs <= 0: a = mpf_mul(sb, ta, prec, round_floor) b = mpf_mul(sa, tb, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = fzero # positive * both signs else: a = mpf_mul(sb, ta, prec, round_floor) b = mpf_mul(sb, tb, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = finf elif sbs <= 0: # negative * positive if tas >= 0: a = mpf_mul(sa, tb, prec, round_floor) b = mpf_mul(sb, ta, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = fzero # negative * negative elif tbs <= 0: a = mpf_mul(sb, tb, prec, round_floor) b = mpf_mul(sa, ta, prec, round_ceiling) if a == fnan: a = fzero if b == fnan: b = finf # negative * both signs else: a = mpf_mul(sa, tb, prec, round_floor) b = mpf_mul(sa, ta, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = finf else: # General case: perform all cross-multiplications and compare # Since the multiplications can be done exactly, we need only # do 4 (instead of 8: two for each rounding mode) cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)] if fnan in cases: a, b = (fninf, finf) else: a, b = mpf_min_max(cases) a = mpf_pos(a, prec, round_floor) b = mpf_pos(b, prec, round_ceiling) return a, b def mpi_square(s, prec=0): sa, sb = s if mpf_ge(sa, fzero): a = mpf_mul(sa, sa, prec, round_floor) b = mpf_mul(sb, sb, prec, round_ceiling) elif mpf_le(sb, fzero): a = mpf_mul(sb, sb, prec, round_floor) b = mpf_mul(sa, sa, prec, round_ceiling) else: sa = mpf_neg(sa) sa, sb = mpf_min_max([sa, sb]) a = fzero b = mpf_mul(sb, sb, prec, round_ceiling) return a, b def mpi_div(s, t, prec): sa, sb = s ta, tb = t sas = mpf_sign(sa) sbs = mpf_sign(sb) tas = mpf_sign(ta) tbs = mpf_sign(tb) # 0 / X if sas == sbs == 0: # 0 / <interval containing 0> if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0): return fninf, finf return fzero, fzero # Denominator contains both negative and positive numbers; # this should properly be a multi-interval, but the closest # match is the entire (extended) real line if tas < 0 and tbs > 0: return fninf, finf # Assume denominator to be nonnegative if tas < 0: return mpi_div(mpi_neg(s), mpi_neg(t), prec) # Division by zero # XXX: make sure all results make sense if tas == 0: # Numerator contains both signs? if sas < 0 and sbs > 0: return fninf, finf if tas == tbs: return fninf, finf # Numerator positive? if sas >= 0: a = mpf_div(sa, tb, prec, round_floor) b = finf if sbs <= 0: a = fninf b = mpf_div(sb, tb, prec, round_ceiling) # Division with positive denominator # We still have to handle nans resulting from inf/0 or inf/inf else: # Nonnegative numerator if sas >= 0: a = mpf_div(sa, tb, prec, round_floor) b = mpf_div(sb, ta, prec, round_ceiling) if a == fnan: a = fzero if b == fnan: b = finf # Nonpositive numerator elif sbs <= 0: a = mpf_div(sa, ta, prec, round_floor) b = mpf_div(sb, tb, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = fzero # Numerator contains both signs? else: a = mpf_div(sa, ta, prec, round_floor) b = mpf_div(sb, ta, prec, round_ceiling) if a == fnan: a = fninf if b == fnan: b = finf return a, b def mpi_pi(prec): a = mpf_pi(prec, round_floor) b = mpf_pi(prec, round_ceiling) return a, b def mpi_exp(s, prec): sa, sb = s # exp is monotonic a = mpf_exp(sa, prec, round_floor) b = mpf_exp(sb, prec, round_ceiling) return a, b def mpi_log(s, prec): sa, sb = s # log is monotonic a = mpf_log(sa, prec, round_floor) b = mpf_log(sb, prec, round_ceiling) return a, b def mpi_sqrt(s, prec): sa, sb = s # sqrt is monotonic a = mpf_sqrt(sa, prec, round_floor) b = mpf_sqrt(sb, prec, round_ceiling) return a, b def mpi_atan(s, prec): sa, sb = s a = mpf_atan(sa, prec, round_floor) b = mpf_atan(sb, prec, round_ceiling) return a, b def mpi_pow_int(s, n, prec): sa, sb = s if n < 0: return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec) if n == 0: return (fone, fone) if n == 1: return s if n == 2: return mpi_square(s, prec) # Odd -- signs are preserved if n & 1: a = mpf_pow_int(sa, n, prec, round_floor) b = mpf_pow_int(sb, n, prec, round_ceiling) # Even -- important to ensure positivity else: sas = mpf_sign(sa) sbs = mpf_sign(sb) # Nonnegative? if sas >= 0: a = mpf_pow_int(sa, n, prec, round_floor) b = mpf_pow_int(sb, n, prec, round_ceiling) # Nonpositive? elif sbs <= 0: a = mpf_pow_int(sb, n, prec, round_floor) b = mpf_pow_int(sa, n, prec, round_ceiling) # Mixed signs? else: a = fzero # max(-a,b)**n sa = mpf_neg(sa) if mpf_ge(sa, sb): b = mpf_pow_int(sa, n, prec, round_ceiling) else: b = mpf_pow_int(sb, n, prec, round_ceiling) return a, b def mpi_pow(s, t, prec): ta, tb = t if ta == tb and ta not in (finf, fninf): if ta == from_int(to_int(ta)): return mpi_pow_int(s, to_int(ta), prec) if ta == fhalf: return mpi_sqrt(s, prec) u = mpi_log(s, prec + 20) v = mpi_mul(u, t, prec + 20) return mpi_exp(v, prec) def MIN(x, y): if mpf_le(x, y): return x return y def MAX(x, y): if mpf_ge(x, y): return x return y def cos_sin_quadrant(x, wp): sign, man, exp, bc = x if x == fzero: return fone, fzero, 0 # TODO: combine evaluation code to avoid duplicate modulo c, s = mpf_cos_sin(x, wp) t, n, wp_ = mod_pi2(man, exp, exp+bc, 15) if sign: n = -1-n return c, s, n def mpi_cos_sin(x, prec): a, b = x if a == b == fzero: return (fone, fone), (fzero, fzero) # Guaranteed to contain both -1 and 1 if (finf in x) or (fninf in x): return (fnone, fone), (fnone, fone) wp = prec + 20 ca, sa, na = cos_sin_quadrant(a, wp) cb, sb, nb = cos_sin_quadrant(b, wp) ca, cb = mpf_min_max([ca, cb]) sa, sb = mpf_min_max([sa, sb]) # Both functions are monotonic within one quadrant if na == nb: pass # Guaranteed to contain both -1 and 1 elif nb - na >= 4: return (fnone, fone), (fnone, fone) else: # cos has maximum between a and b if na//4 != nb//4: cb = fone # cos has minimum if (na-2)//4 != (nb-2)//4: ca = fnone # sin has maximum if (na-1)//4 != (nb-1)//4: sb = fone # sin has minimum if (na-3)//4 != (nb-3)//4: sa = fnone # Perturb to force interval rounding more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp) less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp) def finalize(v, rounding): if bool(v[0]) == (rounding == round_floor): p = more else: p = less v = mpf_mul(v, p, prec, rounding) sign, man, exp, bc = v if exp+bc >= 1: if sign: return fnone return fone return v ca = finalize(ca, round_floor) cb = finalize(cb, round_ceiling) sa = finalize(sa, round_floor) sb = finalize(sb, round_ceiling) return (ca,cb), (sa,sb) def mpi_cos(x, prec): return mpi_cos_sin(x, prec)[0] def mpi_sin(x, prec): return mpi_cos_sin(x, prec)[1] def mpi_tan(x, prec): cos, sin = mpi_cos_sin(x, prec+20) return mpi_div(sin, cos, prec) def mpi_cot(x, prec): cos, sin = mpi_cos_sin(x, prec+20) return mpi_div(cos, sin, prec) def mpi_from_str_a_b(x, y, percent, prec): wp = prec + 20 xa = from_str(x, wp, round_floor) xb = from_str(x, wp, round_ceiling) #ya = from_str(y, wp, round_floor) y = from_str(y, wp, round_ceiling) assert mpf_ge(y, fzero) if percent: y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling) y = mpf_div(y, from_int(100), wp, round_ceiling) a = mpf_sub(xa, y, prec, round_floor) b = mpf_add(xb, y, prec, round_ceiling) return a, b def mpi_from_str(s, prec): """ Parse an interval number given as a string. Allowed forms are "-1.23e-27" Any single decimal floating-point literal. "a +- b" or "a (b)" a is the midpoint of the interval and b is the half-width "a +- b%" or "a (b%)" a is the midpoint of the interval and the half-width is b percent of a (`a \times b / 100`). "[a, b]" The interval indicated directly. "x[y,z]e" x are shared digits, y and z are unequal digits, e is the exponent. """ e = ValueError("Improperly formed interval number '%s'" % s) s = s.replace(" ", "") wp = prec + 20 if "+-" in s: x, y = s.split("+-") return mpi_from_str_a_b(x, y, False, prec) # case 2 elif "(" in s: # Don't confuse with a complex number (x,y) if s[0] == "(" or ")" not in s: raise e s = s.replace(")", "") percent = False if "%" in s: if s[-1] != "%": raise e percent = True s = s.replace("%", "") x, y = s.split("(") return mpi_from_str_a_b(x, y, percent, prec) elif "," in s: if ('[' not in s) or (']' not in s): raise e if s[0] == '[': # case 3 s = s.replace("[", "") s = s.replace("]", "") a, b = s.split(",") a = from_str(a, prec, round_floor) b = from_str(b, prec, round_ceiling) return a, b else: # case 4 x, y = s.split('[') y, z = y.split(',') if 'e' in s: z, e = z.split(']') else: z, e = z.rstrip(']'), '' a = from_str(x+y+e, prec, round_floor) b = from_str(x+z+e, prec, round_ceiling) return a, b else: a = from_str(s, prec, round_floor) b = from_str(s, prec, round_ceiling) return a, b def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs): """ Convert a mpi interval to a string. **Arguments** *dps* decimal places to use for printing *use_spaces* use spaces for more readable output, defaults to true *brackets* pair of strings (or two-character string) giving left and right brackets *mode* mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff' *error_dps* limit the error to *error_dps* digits (mode 'plusminus and 'percent') Additional keyword arguments are forwarded to the mpf-to-string conversion for the components of the output. **Examples** >>> from mpmath import mpi, mp >>> mp.dps = 30 >>> x = mpi(1, 2) >>> mpi_to_str(x, mode='plusminus') '1.5 +- 5.0e-1' >>> mpi_to_str(x, mode='percent') '1.5 (33.33%)' >>> mpi_to_str(x, mode='brackets') '[1.0, 2.0]' >>> mpi_to_str(x, mode='brackets' , brackets=('<', '>')) '<1.0, 2.0>' >>> x = mpi('5.2582327113062393041', '5.2582327113062749951') >>> mpi_to_str(x, mode='diff') '5.2582327113062[4, 7]' >>> mpi_to_str(mpi(0), mode='percent') '0.0 (0%)' """ prec = dps_to_prec(dps) wp = prec + 20 a, b = x mid = mpi_mid(x, prec) delta = mpi_delta(x, prec) a_str = to_str(a, dps, **kwargs) b_str = to_str(b, dps, **kwargs) mid_str = to_str(mid, dps, **kwargs) sp = "" if use_spaces: sp = " " br1, br2 = brackets if mode == 'plusminus': delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs) s = mid_str + sp + "+-" + sp + delta_str elif mode == 'percent': if mid == fzero: p = fzero else: # p = 100 * delta(x) / (2*mid(x)) p = mpf_mul(delta, from_int(100)) p = mpf_div(p, mpf_mul(mid, from_int(2)), wp) s = mid_str + sp + "(" + to_str(p, error_dps) + "%)" elif mode == 'brackets': s = br1 + a_str + "," + sp + b_str + br2 elif mode == 'diff': # use more digits if str(x.a) and str(x.b) are equal if a_str == b_str: a_str = to_str(a, dps+3, **kwargs) b_str = to_str(b, dps+3, **kwargs) # separate mantissa and exponent a = a_str.split('e') if len(a) == 1: a.append('') b = b_str.split('e') if len(b) == 1: b.append('') if a[1] == b[1]: if a[0] != b[0]: for i in xrange(len(a[0]) + 1): if a[0][i] != b[0][i]: break s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2 + 'e'*min(len(a[1]), 1) + a[1]) else: # no difference s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1] else: s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2 else: raise ValueError("'%s' is unknown mode for printing mpi" % mode) return s def mpci_add(x, y, prec): a, b = x c, d = y return mpi_add(a, c, prec), mpi_add(b, d, prec) def mpci_sub(x, y, prec): a, b = x c, d = y return mpi_sub(a, c, prec), mpi_sub(b, d, prec) def mpci_neg(x, prec=0): a, b = x return mpi_neg(a, prec), mpi_neg(b, prec) def mpci_pos(x, prec): a, b = x return mpi_pos(a, prec), mpi_pos(b, prec) def mpci_mul(x, y, prec): # TODO: optimize for real/imag cases a, b = x c, d = y r1 = mpi_mul(a,c) r2 = mpi_mul(b,d) re = mpi_sub(r1,r2,prec) i1 = mpi_mul(a,d) i2 = mpi_mul(b,c) im = mpi_add(i1,i2,prec) return re, im def mpci_div(x, y, prec): # TODO: optimize for real/imag cases a, b = x c, d = y wp = prec+20 m1 = mpi_square(c) m2 = mpi_square(d) m = mpi_add(m1,m2,wp) re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp) im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp) re = mpi_div(re, m, prec) im = mpi_div(im, m, prec) return re, im def mpci_exp(x, prec): a, b = x wp = prec+20 r = mpi_exp(a, wp) c, s = mpi_cos_sin(b, wp) a = mpi_mul(r, c, prec) b = mpi_mul(r, s, prec) return a, b def mpi_shift(x, n): a, b = x return mpf_shift(a,n), mpf_shift(b,n) def mpi_cosh_sinh(x, prec): # TODO: accuracy for small x wp = prec+20 e1 = mpi_exp(x, wp) e2 = mpi_div(mpi_one, e1, wp) c = mpi_add(e1, e2, prec) s = mpi_sub(e1, e2, prec) c = mpi_shift(c, -1) s = mpi_shift(s, -1) return c, s def mpci_cos(x, prec): a, b = x wp = prec+10 c, s = mpi_cos_sin(a, wp) ch, sh = mpi_cosh_sinh(b, wp) re = mpi_mul(c, ch, prec) im = mpi_mul(s, sh, prec) return re, mpi_neg(im) def mpci_sin(x, prec): a, b = x wp = prec+10 c, s = mpi_cos_sin(a, wp) ch, sh = mpi_cosh_sinh(b, wp) re = mpi_mul(s, ch, prec) im = mpi_mul(c, sh, prec) return re, im def mpci_abs(x, prec): a, b = x if a == mpi_zero: return mpi_abs(b) if b == mpi_zero: return mpi_abs(a) # Important: nonnegative a = mpi_square(a) b = mpi_square(b) t = mpi_add(a, b, prec+20) return mpi_sqrt(t, prec) def mpi_atan2(y, x, prec): ya, yb = y xa, xb = x # Constrained to the real line if ya == yb == fzero: if mpf_ge(xa, fzero): return mpi_zero return mpi_pi(prec) # Right half-plane if mpf_ge(xa, fzero): if mpf_ge(ya, fzero): a = mpf_atan2(ya, xb, prec, round_floor) else: a = mpf_atan2(ya, xa, prec, round_floor) if mpf_ge(yb, fzero): b = mpf_atan2(yb, xa, prec, round_ceiling) else: b = mpf_atan2(yb, xb, prec, round_ceiling) # Upper half-plane elif mpf_ge(ya, fzero): b = mpf_atan2(ya, xa, prec, round_ceiling) if mpf_le(xb, fzero): a = mpf_atan2(yb, xb, prec, round_floor) else: a = mpf_atan2(ya, xb, prec, round_floor) # Lower half-plane elif mpf_le(yb, fzero): a = mpf_atan2(yb, xa, prec, round_floor) if mpf_le(xb, fzero): b = mpf_atan2(ya, xb, prec, round_ceiling) else: b = mpf_atan2(yb, xb, prec, round_ceiling) # Covering the origin else: b = mpf_pi(prec, round_ceiling) a = mpf_neg(b) return a, b def mpci_arg(z, prec): x, y = z return mpi_atan2(y, x, prec) def mpci_log(z, prec): x, y = z re = mpi_log(mpci_abs(z, prec+20), prec) im = mpci_arg(z, prec) return re, im def mpci_pow(x, y, prec): # TODO: recognize/speed up real cases, integer y yre, yim = y if yim == mpi_zero: ya, yb = yre if ya == yb: sign, man, exp, bc = yb if man and exp >= 0: return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec) # x^0 if yb == fzero: return mpci_pow_int(x, 0, prec) wp = prec+20 return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec) def mpci_square(x, prec): a, b = x # (a+bi)^2 = (a^2-b^2) + 2abi re = mpi_sub(mpi_square(a), mpi_square(b), prec) im = mpi_mul(a, b, prec) im = mpi_shift(im, 1) return re, im def mpci_pow_int(x, n, prec): if n < 0: return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec) if n == 0: return mpi_one, mpi_zero if n == 1: return mpci_pos(x, prec) if n == 2: return mpci_square(x, prec) wp = prec + 20 result = (mpi_one, mpi_zero) while n: if n & 1: result = mpci_mul(result, x, wp) n -= 1 x = mpci_square(x, wp) n >>= 1 return mpci_pos(result, prec) gamma_min_a = from_float(1.46163214496) gamma_min_b = from_float(1.46163214497) gamma_min = (gamma_min_a, gamma_min_b) gamma_mono_imag_a = from_float(-1.1) gamma_mono_imag_b = from_float(1.1) def mpi_overlap(x, y): a, b = x c, d = y if mpf_lt(d, a): return False if mpf_gt(c, b): return False return True # type = 0 -- gamma # type = 1 -- factorial # type = 2 -- 1/gamma # type = 3 -- log-gamma def mpi_gamma(z, prec, type=0): a, b = z wp = prec+20 if type == 1: return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0) # increasing if mpf_gt(a, gamma_min_b): if type == 0: c = mpf_gamma(a, prec, round_floor) d = mpf_gamma(b, prec, round_ceiling) elif type == 2: c = mpf_rgamma(b, prec, round_floor) d = mpf_rgamma(a, prec, round_ceiling) elif type == 3: c = mpf_loggamma(a, prec, round_floor) d = mpf_loggamma(b, prec, round_ceiling) # decreasing elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a): if type == 0: c = mpf_gamma(b, prec, round_floor) d = mpf_gamma(a, prec, round_ceiling) elif type == 2: c = mpf_rgamma(a, prec, round_floor) d = mpf_rgamma(b, prec, round_ceiling) elif type == 3: c = mpf_loggamma(b, prec, round_floor) d = mpf_loggamma(a, prec, round_ceiling) else: # TODO: reflection formula znew = mpi_add(z, mpi_one, wp) if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec) if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec) if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec) return c, d def mpci_gamma(z, prec, type=0): (a1,a2), (b1,b2) = z # Real case if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)): return mpi_gamma(z, prec, type), mpi_zero # Estimate precision wp = prec+20 if type != 3: amag = a2[2]+a2[3] bmag = b2[2]+b2[3] if a2 != fzero: mag = max(amag, bmag) else: mag = bmag an = abs(to_int(a2)) bn = abs(to_int(b2)) absn = max(an, bn) gamma_size = max(0,absn*mag) wp += bitcount(gamma_size) # Assume type != 1 if type == 1: (a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2) type = 0 # Avoid non-monotonic region near the negative real axis if mpf_lt(a1, gamma_min_b): if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)): # TODO: reflection formula #if mpf_lt(a2, mpf_shift(fone,-1)): # znew = mpci_sub((mpi_one,mpi_zero),z,wp) # ... # Recurrence: # gamma(z) = gamma(z+1)/z znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2) if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec) if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec) if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec) # Use monotonicity (except for a small region close to the # origin and near poles) # upper half-plane if mpf_ge(b1, fzero): minre = mpc_loggamma((a1,b2), wp, round_floor) maxre = mpc_loggamma((a2,b1), wp, round_ceiling) minim = mpc_loggamma((a1,b1), wp, round_floor) maxim = mpc_loggamma((a2,b2), wp, round_ceiling) # lower half-plane elif mpf_le(b2, fzero): minre = mpc_loggamma((a1,b1), wp, round_floor) maxre = mpc_loggamma((a2,b2), wp, round_ceiling) minim = mpc_loggamma((a2,b1), wp, round_floor) maxim = mpc_loggamma((a1,b2), wp, round_ceiling) # crosses real axis else: maxre = mpc_loggamma((a2,fzero), wp, round_ceiling) # stretches more into the lower half-plane if mpf_gt(mpf_neg(b1), b2): minre = mpc_loggamma((a1,b1), wp, round_ceiling) else: minre = mpc_loggamma((a1,b2), wp, round_ceiling) minim = mpc_loggamma((a2,b1), wp, round_floor) maxim = mpc_loggamma((a2,b2), wp, round_floor) w = (minre[0], maxre[0]), (minim[1], maxim[1]) if type == 3: return mpi_pos(w[0], prec), mpi_pos(w[1], prec) if type == 2: w = mpci_neg(w) return mpci_exp(w, prec) def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3) def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3) def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2) def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2) def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1) def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/libmpi.py
libmpi.py
import math from .backend import xrange from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_THREE, gmpy from .libintmath import list_primes, ifac, ifac2, moebius from .libmpf import (\ round_floor, round_ceiling, round_down, round_up, round_nearest, round_fast, lshift, sqrt_fixed, isqrt_fast, fzero, fone, fnone, fhalf, ftwo, finf, fninf, fnan, from_int, to_int, to_fixed, from_man_exp, from_rational, mpf_pos, mpf_neg, mpf_abs, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, mpf_div, mpf_sqrt, mpf_pow_int, mpf_rdiv_int, mpf_perturb, mpf_le, mpf_lt, mpf_gt, mpf_shift, negative_rnd, reciprocal_rnd, bitcount, to_float, mpf_floor, mpf_sign, ComplexResult ) from .libelefun import (\ constant_memo, def_mpf_constant, mpf_pi, pi_fixed, ln2_fixed, log_int_fixed, mpf_ln2, mpf_exp, mpf_log, mpf_pow, mpf_cosh, mpf_cos_sin, mpf_cosh_sinh, mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi, ln_sqrt2pi_fixed, mpf_ln_sqrt2pi, sqrtpi_fixed, mpf_sqrtpi, cos_sin_fixed, exp_fixed ) from .libmpc import (\ mpc_zero, mpc_one, mpc_half, mpc_two, mpc_abs, mpc_shift, mpc_pos, mpc_neg, mpc_add, mpc_sub, mpc_mul, mpc_div, mpc_add_mpf, mpc_mul_mpf, mpc_div_mpf, mpc_mpf_div, mpc_mul_int, mpc_pow_int, mpc_log, mpc_exp, mpc_pow, mpc_cos_pi, mpc_sin_pi, mpc_reciprocal, mpc_square, mpc_sub_mpf ) # Catalan's constant is computed using Lupas's rapidly convergent series # (listed on http://mathworld.wolfram.com/CatalansConstant.html) # oo # ___ n-1 8n 2 3 2 # 1 \ (-1) 2 (40n - 24n + 3) [(2n)!] (n!) # K = --- ) ----------------------------------------- # 64 /___ 3 2 # n (2n-1) [(4n)!] # n = 1 @constant_memo def catalan_fixed(prec): prec = prec + 20 a = one = MPZ_ONE << prec s, t, n = 0, 1, 1 while t: a *= 32 * n**3 * (2*n-1) a //= (3-16*n+16*n**2)**2 t = a * (-1)**(n-1) * (40*n**2-24*n+3) // (n**3 * (2*n-1)) s += t n += 1 return s >> (20 + 6) # Khinchin's constant is relatively difficult to compute. Here # we use the rational zeta series # oo 2*n-1 # ___ ___ # \ ` zeta(2*n)-1 \ ` (-1)^(k+1) # log(K)*log(2) = ) ------------ ) ---------- # /___. n /___. k # n = 1 k = 1 # which adds half a digit per term. The essential trick for achieving # reasonable efficiency is to recycle both the values of the zeta # function (essentially Bernoulli numbers) and the partial terms of # the inner sum. # An alternative might be to use K = 2*exp[1/log(2) X] where # / 1 1 [ pi*x*(1-x^2) ] # X = | ------ log [ ------------ ]. # / 0 x(1+x) [ sin(pi*x) ] # and integrate numerically. In practice, this seems to be slightly # slower than the zeta series at high precision. @constant_memo def khinchin_fixed(prec): wp = int(prec + prec**0.5 + 15) s = MPZ_ZERO fac = from_int(4) t = ONE = MPZ_ONE << wp pi = mpf_pi(wp) pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2) n = 1 while 1: zeta2n = mpf_abs(mpf_bernoulli(2*n, wp)) zeta2n = mpf_mul(zeta2n, pipow, wp) zeta2n = mpf_div(zeta2n, fac, wp) zeta2n = to_fixed(zeta2n, wp) term = (((zeta2n - ONE) * t) // n) >> wp if term < 100: break #if not n % 10: # print n, math.log(int(abs(term))) s += term t += ONE//(2*n+1) - ONE//(2*n) n += 1 fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp) pipow = mpf_mul(pipow, twopi2, wp) s = (s << wp) // ln2_fixed(wp) K = mpf_exp(from_man_exp(s, -wp), wp) K = to_fixed(K, prec) return K # Glaisher's constant is defined as A = exp(1/2 - zeta'(-1)). # One way to compute it would be to perform direct numerical # differentiation, but computing arbitrary Riemann zeta function # values at high precision is expensive. We instead use the formula # A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12) # and compute zeta'(2) from the series representation # oo # ___ # \ log k # -zeta'(2) = ) ----- # /___ 2 # k # k = 2 # This series converges exceptionally slowly, but can be accelerated # using Euler-Maclaurin formula. The important insight is that the # E-M integral can be done in closed form and that the high order # are given by # n / \ # d | log x | a + b log x # --- | ----- | = ----------- # n | 2 | 2 + n # dx \ x / x # where a and b are integers given by a simple recurrence. Note # that just one logarithm is needed. However, lots of integer # logarithms are required for the initial summation. # This algorithm could possibly be turned into a faster algorithm # for general evaluation of zeta(s) or zeta'(s); this should be # looked into. @constant_memo def glaisher_fixed(prec): wp = prec + 30 # Number of direct terms to sum before applying the Euler-Maclaurin # formula to the tail. TODO: choose more intelligently N = int(0.33*prec + 5) ONE = MPZ_ONE << wp # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1 s = MPZ_ZERO for k in range(2, N): #print k, N s += log_int_fixed(k, wp) // k**2 logN = log_int_fixed(N, wp) #logN = to_fixed(mpf_log(from_int(N), wp+20), wp) # E-M step 2: integral of log(x)/x**2 from N to inf s += (ONE + logN) // N # E-M step 3: endpoint correction term f(N)/2 s += logN // (N**2 * 2) # E-M step 4: the series of derivatives pN = N**3 a = 1 b = -2 j = 3 fac = from_int(2) k = 1 while 1: # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative] D = ((a << wp) + b*logN) // pN D = from_man_exp(D, -wp) B = mpf_bernoulli(2*k, wp) term = mpf_mul(B, D, wp) term = mpf_div(term, fac, wp) term = to_fixed(term, wp) if abs(term) < 100: break #if not k % 10: # print k, math.log(int(abs(term)), 10) s -= term # Advance derivative twice a, b, pN, j = b-a*j, -j*b, pN*N, j+1 a, b, pN, j = b-a*j, -j*b, pN*N, j+1 k += 1 fac = mpf_mul_int(fac, (2*k)*(2*k-1), wp) # A = exp((6*s/pi**2 + log(2*pi) + euler)/12) pi = pi_fixed(wp) s *= 6 s = (s << wp) // (pi**2 >> wp) s += euler_fixed(wp) s += to_fixed(mpf_log(from_man_exp(2*pi, -wp), wp), wp) s //= 12 A = mpf_exp(from_man_exp(s, -wp), wp) return to_fixed(A, prec) # Apery's constant can be computed using the very rapidly convergent # series # oo # ___ 2 10 # \ n 205 n + 250 n + 77 (n!) # zeta(3) = ) (-1) ------------------- ---------- # /___ 64 5 # n = 0 ((2n+1)!) @constant_memo def apery_fixed(prec): prec += 20 d = MPZ_ONE << prec term = MPZ(77) << prec n = 1 s = MPZ_ZERO while term: s += term d *= (n**10) d //= (((2*n+1)**5) * (2*n)**5) term = (-1)**n * (205*(n**2) + 250*n + 77) * d n += 1 return s >> (20 + 6) """ Euler's constant (gamma) is computed using the Brent-McMillan formula, gamma ~= I(n)/J(n) - log(n), where I(n) = sum_{k=0,1,2,...} (n**k / k!)**2 * H(k) J(n) = sum_{k=0,1,2,...} (n**k / k!)**2 H(k) = 1 + 1/2 + 1/3 + ... + 1/k The error is bounded by O(exp(-4n)). Choosing n to be a power of two, 2**p, the logarithm becomes particularly easy to calculate.[1] We use the formulation of Algorithm 3.9 in [2] to make the summation more efficient. Reference: [1] Xavier Gourdon & Pascal Sebah, The Euler constant: gamma http://numbers.computation.free.fr/Constants/Gamma/gamma.pdf [2] Jonathan Borwein & David Bailey, Mathematics by Experiment, A K Peters, 2003 """ @constant_memo def euler_fixed(prec): extra = 30 prec += extra # choose p such that exp(-4*(2**p)) < 2**-n p = int(math.log((prec/4) * math.log(2), 2)) + 1 n = 2**p A = U = -p*ln2_fixed(prec) B = V = MPZ_ONE << prec k = 1 while 1: B = B*n**2//k**2 A = (A*n**2//k + B)//k U += A V += B if max(abs(A), abs(B)) < 100: break k += 1 return (U<<(prec-extra))//V # Use zeta accelerated formulas for the Mertens and twin # prime constants; see # http://mathworld.wolfram.com/MertensConstant.html # http://mathworld.wolfram.com/TwinPrimesConstant.html @constant_memo def mertens_fixed(prec): wp = prec + 20 m = 2 s = mpf_euler(wp) while 1: t = mpf_zeta_int(m, wp) if t == fone: break t = mpf_log(t, wp) t = mpf_mul_int(t, moebius(m), wp) t = mpf_div(t, from_int(m), wp) s = mpf_add(s, t) m += 1 return to_fixed(s, prec) @constant_memo def twinprime_fixed(prec): def I(n): return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n wp = 2*prec + 30 res = fone primes = [from_rational(1,p,wp) for p in [2,3,5,7]] ppowers = [mpf_mul(p,p,wp) for p in primes] n = 2 while 1: a = mpf_zeta_int(n, wp) for i in range(4): a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp) ppowers[i] = mpf_mul(ppowers[i], primes[i], wp) a = mpf_pow_int(a, -I(n), wp) if mpf_pos(a, prec+10, 'n') == fone: break #from libmpf import to_str #print n, to_str(mpf_sub(fone, a), 6) res = mpf_mul(res, a, wp) n += 1 res = mpf_mul(res, from_int(3*15*35), wp) res = mpf_div(res, from_int(4*16*36), wp) return to_fixed(res, prec) mpf_euler = def_mpf_constant(euler_fixed) mpf_apery = def_mpf_constant(apery_fixed) mpf_khinchin = def_mpf_constant(khinchin_fixed) mpf_glaisher = def_mpf_constant(glaisher_fixed) mpf_catalan = def_mpf_constant(catalan_fixed) mpf_mertens = def_mpf_constant(mertens_fixed) mpf_twinprime = def_mpf_constant(twinprime_fixed) #-----------------------------------------------------------------------# # # # Bernoulli numbers # # # #-----------------------------------------------------------------------# MAX_BERNOULLI_CACHE = 3000 """ Small Bernoulli numbers and factorials are used in numerous summations, so it is critical for speed that sequential computation is fast and that values are cached up to a fairly high threshold. On the other hand, we also want to support fast computation of isolated large numbers. Currently, no such acceleration is provided for integer factorials (though it is for large floating-point factorials, which are computed via gamma if the precision is low enough). For sequential computation of Bernoulli numbers, we use Ramanujan's formula / n + 3 \ B = (A(n) - S(n)) / | | n \ n / where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6 when n = 4 (mod 6), and [n/6] ___ \ / n + 3 \ S(n) = ) | | * B /___ \ n - 6*k / n-6*k k = 1 For isolated large Bernoulli numbers, we use the Riemann zeta function to calculate a numerical value for B_n. The von Staudt-Clausen theorem can then be used to optionally find the exact value of the numerator and denominator. """ bernoulli_cache = {} f3 = from_int(3) f6 = from_int(6) def bernoulli_size(n): """Accurately estimate the size of B_n (even n > 2 only)""" lgn = math.log(n,2) return int(2.326 + 0.5*lgn + n*(lgn - 4.094)) BERNOULLI_PREC_CUTOFF = bernoulli_size(MAX_BERNOULLI_CACHE) def mpf_bernoulli(n, prec, rnd=None): """Computation of Bernoulli numbers (numerically)""" if n < 2: if n < 0: raise ValueError("Bernoulli numbers only defined for n >= 0") if n == 0: return fone if n == 1: return mpf_neg(fhalf) # For odd n > 1, the Bernoulli numbers are zero if n & 1: return fzero # If precision is extremely high, we can save time by computing # the Bernoulli number at a lower precision that is sufficient to # obtain the exact fraction, round to the exact fraction, and # convert the fraction back to an mpf value at the original precision if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000: p, q = bernfrac(n) return from_rational(p, q, prec, rnd or round_floor) if n > MAX_BERNOULLI_CACHE: return mpf_bernoulli_huge(n, prec, rnd) wp = prec + 30 # Reuse nearby precisions wp += 32 - (prec & 31) cached = bernoulli_cache.get(wp) if cached: numbers, state = cached if n in numbers: if not rnd: return numbers[n] return mpf_pos(numbers[n], prec, rnd) m, bin, bin1 = state if n - m > 10: return mpf_bernoulli_huge(n, prec, rnd) else: if n > 10: return mpf_bernoulli_huge(n, prec, rnd) numbers = {0:fone} m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE] bernoulli_cache[wp] = (numbers, state) while m <= n: #print m case = m % 6 # Accurately estimate size of B_m so we can use # fixed point math without using too much precision szbm = bernoulli_size(m) s = 0 sexp = max(0, szbm) - wp if m < 6: a = MPZ_ZERO else: a = bin1 for j in xrange(1, m//6+1): usign, uman, uexp, ubc = u = numbers[m-6*j] if usign: uman = -uman s += lshift(a*uman, uexp-sexp) # Update inner binomial coefficient j6 = 6*j a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6)) a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6)) if case == 0: b = mpf_rdiv_int(m+3, f3, wp) if case == 2: b = mpf_rdiv_int(m+3, f3, wp) if case == 4: b = mpf_rdiv_int(-m-3, f6, wp) s = from_man_exp(s, sexp, wp) b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp) numbers[m] = b m += 2 # Update outer binomial coefficient bin = bin * ((m+2)*(m+3)) // (m*(m-1)) if m > 6: bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6)) state[:] = [m, bin, bin1] return numbers[n] def mpf_bernoulli_huge(n, prec, rnd=None): wp = prec + 10 piprec = wp + int(math.log(n,2)) v = mpf_gamma_int(n+1, wp) v = mpf_mul(v, mpf_zeta_int(n, wp), wp) v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp)) v = mpf_shift(v, 1-n) if not n & 3: v = mpf_neg(v) return mpf_pos(v, prec, rnd or round_fast) def bernfrac(n): r""" Returns a tuple of integers `(p, q)` such that `p/q = B_n` exactly, where `B_n` denotes the `n`-th Bernoulli number. The fraction is always reduced to lowest terms. Note that for `n > 1` and `n` odd, `B_n = 0`, and `(0, 1)` is returned. **Examples** The first few Bernoulli numbers are exactly:: >>> from mpmath import * >>> for n in range(15): ... p, q = bernfrac(n) ... print("%s %s/%s" % (n, p, q)) ... 0 1/1 1 -1/2 2 1/6 3 0/1 4 -1/30 5 0/1 6 1/42 7 0/1 8 -1/30 9 0/1 10 5/66 11 0/1 12 -691/2730 13 0/1 14 7/6 This function works for arbitrarily large `n`:: >>> p, q = bernfrac(10**4) >>> print(q) 2338224387510 >>> print(len(str(p))) 27692 >>> mp.dps = 15 >>> print(mpf(p) / q) -9.04942396360948e+27677 >>> print(bernoulli(10**4)) -9.04942396360948e+27677 .. note :: :func:`~mpmath.bernoulli` computes a floating-point approximation directly, without computing the exact fraction first. This is much faster for large `n`. **Algorithm** :func:`~mpmath.bernfrac` works by computing the value of `B_n` numerically and then using the von Staudt-Clausen theorem [1] to reconstruct the exact fraction. For large `n`, this is significantly faster than computing `B_1, B_2, \ldots, B_2` recursively with exact arithmetic. The implementation has been tested for `n = 10^m` up to `m = 6`. In practice, :func:`~mpmath.bernfrac` appears to be about three times slower than the specialized program calcbn.exe [2] **References** 1. MathWorld, von Staudt-Clausen Theorem: http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html 2. The Bernoulli Number Page: http://www.bernoulli.org/ """ n = int(n) if n < 3: return [(1, 1), (-1, 2), (1, 6)][n] if n & 1: return (0, 1) q = 1 for k in list_primes(n+1): if not (n % (k-1)): q *= k prec = bernoulli_size(n) + int(math.log(q,2)) + 20 b = mpf_bernoulli(n, prec) p = mpf_mul(b, from_int(q)) pint = to_int(p, round_nearest) return (pint, q) #-----------------------------------------------------------------------# # # # The gamma function (OLD IMPLEMENTATION) # # # #-----------------------------------------------------------------------# """ We compute the real factorial / gamma function using Spouge's approximation x! = (x+a)**(x+1/2) * exp(-x-a) * [c_0 + S(x) + eps] where S(x) is the sum of c_k/(x+k) from k = 1 to a-1 and the coefficients are given by c_0 = sqrt(2*pi) (-1)**(k-1) c_k = ----------- (a-k)**(k-1/2) exp(-k+a), k = 1,2,...,a-1 (k - 1)! As proved by Spouge, if we choose a = log(2)/log(2*pi)*n = 0.38*n, the relative error eps is less than 2^(-n) for any x in the right complex half-plane (assuming a > 2). In practice, it seems that a can be chosen quite a bit lower still (30-50%); this possibility should be investigated. For negative x, we use the reflection formula. References: ----------- John L. Spouge, "Computation of the gamma, digamma, and trigamma functions", SIAM Journal on Numerical Analysis 31 (1994), no. 3, 931-944. """ spouge_cache = {} def calc_spouge_coefficients(a, prec): wp = prec + int(a*1.4) c = [0] * a # b = exp(a-1) b = mpf_exp(from_int(a-1), wp) # e = exp(1) e = mpf_exp(fone, wp) # sqrt(2*pi) sq2pi = mpf_sqrt(mpf_shift(mpf_pi(wp), 1), wp) c[0] = to_fixed(sq2pi, prec) for k in xrange(1, a): # c[k] = ((-1)**(k-1) * (a-k)**k) * b / sqrt(a-k) term = mpf_mul_int(b, ((-1)**(k-1) * (a-k)**k), wp) term = mpf_div(term, mpf_sqrt(from_int(a-k), wp), wp) c[k] = to_fixed(term, prec) # b = b / (e * k) b = mpf_div(b, mpf_mul(e, from_int(k), wp), wp) return c # Cached lookup of coefficients def get_spouge_coefficients(prec): # This exact precision has been used before if prec in spouge_cache: return spouge_cache[prec] for p in spouge_cache: if 0.8 <= prec/float(p) < 1: return spouge_cache[p] # Here we estimate the value of a based on Spouge's inequality for # the relative error a = max(3, int(0.38*prec)) # 0.38 = log(2)/log(2*pi), ~= 1.26*n coefs = calc_spouge_coefficients(a, prec) spouge_cache[prec] = (prec, a, coefs) return spouge_cache[prec] def spouge_sum_real(x, prec, a, c): x = to_fixed(x, prec) s = c[0] for k in xrange(1, a): s += (c[k] << prec) // (x + (k << prec)) return from_man_exp(s, -prec, prec, round_floor) # Unused: for fast computation of gamma(p/q) def spouge_sum_rational(p, q, prec, a, c): s = c[0] for k in xrange(1, a): s += c[k] * q // (p+q*k) return from_man_exp(s, -prec, prec, round_floor) # For a complex number a + b*I, we have # # c_k (a+k)*c_k b * c_k # ------------- = --------- - ------- * I # (a + b*I) + k M M # # 2 2 2 2 2 # where M = (a+k) + b = (a + b ) + (2*a*k + k ) def spouge_sum_complex(re, im, prec, a, c): re = to_fixed(re, prec) im = to_fixed(im, prec) sre, sim = c[0], 0 mag = ((re**2)>>prec) + ((im**2)>>prec) for k in xrange(1, a): M = mag + re*(2*k) + ((k**2) << prec) sre += (c[k] * (re + (k << prec))) // M sim -= (c[k] * im) // M re = from_man_exp(sre, -prec, prec, round_floor) im = from_man_exp(sim, -prec, prec, round_floor) return re, im def mpf_gamma_int_old(n, prec, rounding=round_fast): if n < 1000: return from_int(ifac(n-1), prec, rounding) # XXX: choose the cutoff less arbitrarily size = int(n*math.log(n,2)) if prec > size/20.0: return from_int(ifac(n-1), prec, rounding) return mpf_gamma(from_int(n), prec, rounding) def mpf_factorial_old(x, prec, rounding=round_fast): return mpf_gamma_old(x, prec, rounding, p1=0) def mpc_factorial_old(x, prec, rounding=round_fast): return mpc_gamma_old(x, prec, rounding, p1=0) def mpf_gamma_old(x, prec, rounding=round_fast, p1=1): """ Computes the gamma function of a real floating-point argument. With p1=0, computes a factorial instead. """ sign, man, exp, bc = x if not man: if x == finf: return finf if x == fninf or x == fnan: return fnan # More precision is needed for enormous x. TODO: # use Stirling's formula + Euler-Maclaurin summation size = exp + bc if size > 5: size = int(size * math.log(size,2)) wp = prec + max(0, size) + 15 if exp >= 0: if sign or (p1 and not man): raise ValueError("gamma function pole") # A direct factorial is fastest if exp + bc <= 10: return from_int(ifac((man<<exp)-p1), prec, rounding) reflect = sign or exp+bc < -1 if p1: # Should be done exactly! x = mpf_sub(x, fone) # x < 0.25 if reflect: # gamma = pi / (sin(pi*x) * gamma(1-x)) wp += 15 pix = mpf_mul(x, mpf_pi(wp), wp) t = mpf_sin_pi(x, wp) g = mpf_gamma_old(mpf_sub(fone, x), wp) return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding) sprec, a, c = get_spouge_coefficients(wp) s = spouge_sum_real(x, sprec, a, c) # gamma = exp(log(x+a)*(x+0.5) - xpa) * s xpa = mpf_add(x, from_int(a), wp) logxpa = mpf_log(xpa, wp) xph = mpf_add(x, fhalf, wp) t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp) t = mpf_mul(mpf_exp(t, wp), s, prec, rounding) return t def mpc_gamma_old(x, prec, rounding=round_fast, p1=1): re, im = x if im == fzero: return mpf_gamma_old(re, prec, rounding, p1), fzero # More precision is needed for enormous x. sign, man, exp, bc = re isign, iman, iexp, ibc = im if re == fzero: size = iexp+ibc else: size = max(exp+bc, iexp+ibc) if size > 5: size = int(size * math.log(size,2)) reflect = sign or (exp+bc < -1) wp = prec + max(0, size) + 25 # Near x = 0 pole (TODO: other poles) if p1: if size < -prec-5: return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \ mpf_neg(mpf_euler(2*prec+10)), prec, rounding) elif size < -5: wp += (-2*size) if p1: # Should be done exactly! re_orig = re re = mpf_sub(re, fone, bc+abs(exp)+2) x = re, im if reflect: # Reflection formula wp += 15 pi = mpf_pi(wp), fzero pix = mpc_mul(x, pi, wp) t = mpc_sin_pi(x, wp) u = mpc_sub(mpc_one, x, wp) g = mpc_gamma_old(u, wp) w = mpc_mul(t, g, wp) return mpc_div(pix, w, wp) # Extremely close to the real line? # XXX: reflection formula if iexp+ibc < -wp: a = mpf_gamma_old(re_orig, wp) b = mpf_psi0(re_orig, wp) gamma_diff = mpf_div(a, b, wp) return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec, rounding) sprec, a, c = get_spouge_coefficients(wp) s = spouge_sum_complex(re, im, sprec, a, c) # gamma = exp(log(x+a)*(x+0.5) - xpa) * s repa = mpf_add(re, from_int(a), wp) logxpa = mpc_log((repa, im), wp) reph = mpf_add(re, fhalf, wp) t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp) t = mpc_mul(mpc_exp(t, wp), s, prec, rounding) return t #-----------------------------------------------------------------------# # # # Polygamma functions # # # #-----------------------------------------------------------------------# """ For all polygamma (psi) functions, we use the Euler-Maclaurin summation formula. It looks slightly different in the m = 0 and m > 0 cases. For m = 0, we have oo ___ B (0) 1 \ 2 k -2 k psi (z) ~ log z + --- - ) ------ z 2 z /___ (2 k)! k = 1 Experiment shows that the minimum term of the asymptotic series reaches 2^(-p) when Re(z) > 0.11*p. So we simply use the recurrence for psi (equivalent, in fact, to summing to the first few terms directly before applying E-M) to obtain z large enough. Since, very crudely, log z ~= 1 for Re(z) > 1, we can use fixed-point arithmetic (if z is extremely large, log(z) itself is a sufficient approximation, so we can stop there already). For Re(z) << 0, we could use recurrence, but this is of course inefficient for large negative z, so there we use the reflection formula instead. For m > 0, we have N - 1 ___ ~~~(m) [ \ 1 ] 1 1 psi (z) ~ [ ) -------- ] + ---------- + -------- + [ /___ m+1 ] m+1 m k = 1 (z+k) ] 2 (z+N) m (z+N) oo ___ B \ 2 k (m+1) (m+2) ... (m+2k-1) + ) ------ ------------------------ /___ (2 k)! m + 2 k k = 1 (z+N) where ~~~ denotes the function rescaled by 1/((-1)^(m+1) m!). Here again N is chosen to make z+N large enough for the minimum term in the last series to become smaller than eps. TODO: the current estimation of N for m > 0 is *very suboptimal*. TODO: implement the reflection formula for m > 0, Re(z) << 0. It is generally a combination of multiple cotangents. Need to figure out a reasonably simple way to generate these formulas on the fly. TODO: maybe use exact algorithms to compute psi for integral and certain rational arguments, as this can be much more efficient. (On the other hand, the availability of these special values provides a convenient way to test the general algorithm.) """ # Harmonic numbers are just shifted digamma functions # We should calculate these exactly when x is an integer # and when doing so is faster. def mpf_harmonic(x, prec, rnd): if x in (fzero, fnan, finf): return x a = mpf_psi0(mpf_add(fone, x, prec+5), prec) return mpf_add(a, mpf_euler(prec+5, rnd), prec, rnd) def mpc_harmonic(z, prec, rnd): if z[1] == fzero: return (mpf_harmonic(z[0], prec, rnd), fzero) a = mpc_psi0(mpc_add_mpf(z, fone, prec+5), prec) return mpc_add_mpf(a, mpf_euler(prec+5, rnd), prec, rnd) def mpf_psi0(x, prec, rnd=round_fast): """ Computation of the digamma function (psi function of order 0) of a real argument. """ sign, man, exp, bc = x wp = prec + 10 if not man: if x == finf: return x if x == fninf or x == fnan: return fnan if x == fzero or (exp >= 0 and sign): raise ValueError("polygamma pole") # Reflection formula if sign and exp+bc > 3: c, s = mpf_cos_sin_pi(x, wp) q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp) p = mpf_psi0(mpf_sub(fone, x, wp), wp) return mpf_sub(p, q, prec, rnd) # The logarithmic term is accurate enough if (not sign) and bc + exp > wp: return mpf_log(mpf_sub(x, fone, wp), prec, rnd) # Initial recurrence to obtain a large enough x m = to_int(x) n = int(0.11*wp) + 2 s = MPZ_ZERO x = to_fixed(x, wp) one = MPZ_ONE << wp if m < n: for k in xrange(m, n): s -= (one << wp) // x x += one x -= one # Logarithmic term s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp) # Endpoint term in Euler-Maclaurin expansion s += (one << wp) // (2*x) # Euler-Maclaurin remainder sum x2 = (x*x) >> wp t = one prev = 0 k = 1 while 1: t = (t*x2) >> wp bsign, bman, bexp, bbc = mpf_bernoulli(2*k, wp) offset = (bexp + 2*wp) if offset >= 0: term = (bman << offset) // (t*(2*k)) else: term = (bman >> (-offset)) // (t*(2*k)) if k & 1: s -= term else: s += term if k > 2 and term >= prev: break prev = term k += 1 return from_man_exp(s, -wp, wp, rnd) def mpc_psi0(z, prec, rnd=round_fast): """ Computation of the digamma function (psi function of order 0) of a complex argument. """ re, im = z # Fall back to the real case if im == fzero: return (mpf_psi0(re, prec, rnd), fzero) wp = prec + 20 sign, man, exp, bc = re # Reflection formula if sign and exp+bc > 3: c = mpc_cos_pi(z, wp) s = mpc_sin_pi(z, wp) q = mpc_mul_mpf(mpc_div(c, s, wp), mpf_pi(wp), wp) p = mpc_psi0(mpc_sub(mpc_one, z, wp), wp) return mpc_sub(p, q, prec, rnd) # Just the logarithmic term if (not sign) and bc + exp > wp: return mpc_log(mpc_sub(z, mpc_one, wp), prec, rnd) # Initial recurrence to obtain a large enough z w = to_int(re) n = int(0.11*wp) + 2 s = mpc_zero if w < n: for k in xrange(w, n): s = mpc_sub(s, mpc_reciprocal(z, wp), wp) z = mpc_add_mpf(z, fone, wp) z = mpc_sub(z, mpc_one, wp) # Logarithmic and endpoint term s = mpc_add(s, mpc_log(z, wp), wp) s = mpc_add(s, mpc_div(mpc_half, z, wp), wp) # Euler-Maclaurin remainder sum z2 = mpc_square(z, wp) t = mpc_one prev = mpc_zero k = 1 eps = mpf_shift(fone, -wp+2) while 1: t = mpc_mul(t, z2, wp) bern = mpf_bernoulli(2*k, wp) term = mpc_mpf_div(bern, mpc_mul_int(t, 2*k, wp), wp) s = mpc_sub(s, term, wp) szterm = mpc_abs(term, 10) if k > 2 and mpf_le(szterm, eps): break prev = term k += 1 return s # Currently unoptimized def mpf_psi(m, x, prec, rnd=round_fast): """ Computation of the polygamma function of arbitrary integer order m >= 0, for a real argument x. """ if m == 0: return mpf_psi0(x, prec, rnd=round_fast) return mpc_psi(m, (x, fzero), prec, rnd)[0] def mpc_psi(m, z, prec, rnd=round_fast): """ Computation of the polygamma function of arbitrary integer order m >= 0, for a complex argument z. """ if m == 0: return mpc_psi0(z, prec, rnd) re, im = z wp = prec + 20 sign, man, exp, bc = re if not im[1]: if im in (finf, fninf, fnan): return (fnan, fnan) if not man: if re == finf and im == fzero: return (fzero, fzero) if re == fnan: return (fnan, fnan) # Recurrence w = to_int(re) n = int(0.4*wp + 4*m) s = mpc_zero if w < n: for k in xrange(w, n): t = mpc_pow_int(z, -m-1, wp) s = mpc_add(s, t, wp) z = mpc_add_mpf(z, fone, wp) zm = mpc_pow_int(z, -m, wp) z2 = mpc_pow_int(z, -2, wp) # 1/m*(z+N)^m integral_term = mpc_div_mpf(zm, from_int(m), wp) s = mpc_add(s, integral_term, wp) # 1/2*(z+N)^(-(m+1)) s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp) a = m + 1 b = 2 k = 1 # Important: we want to sum up to the *relative* error, # not the absolute error, because psi^(m)(z) might be tiny magn = mpc_abs(s, 10) magn = magn[2]+magn[3] eps = mpf_shift(fone, magn-wp+2) while 1: zm = mpc_mul(zm, z2, wp) bern = mpf_bernoulli(2*k, wp) scal = mpf_mul_int(bern, a, wp) scal = mpf_div(scal, from_int(b), wp) term = mpc_mul_mpf(zm, scal, wp) s = mpc_add(s, term, wp) szterm = mpc_abs(term, 10) if k > 2 and mpf_le(szterm, eps): break #print k, to_str(szterm, 10), to_str(eps, 10) a *= (m+2*k)*(m+2*k+1) b *= (2*k+1)*(2*k+2) k += 1 # Scale and sign factor v = mpc_mul_mpf(s, mpf_gamma(from_int(m+1), wp), prec, rnd) if not (m & 1): v = mpf_neg(v[0]), mpf_neg(v[1]) return v #-----------------------------------------------------------------------# # # # Riemann zeta function # # # #-----------------------------------------------------------------------# """ We use zeta(s) = eta(s) / (1 - 2**(1-s)) and Borwein's approximation n-1 ___ k -1 \ (-1) (d_k - d_n) eta(s) ~= ---- ) ------------------ d_n /___ s k = 0 (k + 1) where k ___ i \ (n + i - 1)! 4 d_k = n ) ---------------. /___ (n - i)! (2i)! i = 0 If s = a + b*I, the absolute error for eta(s) is bounded by 3 (1 + 2|b|) ------------ * exp(|b| pi/2) n (3+sqrt(8)) Disregarding the linear term, we have approximately, log(err) ~= log(exp(1.58*|b|)) - log(5.8**n) log(err) ~= 1.58*|b| - log(5.8)*n log(err) ~= 1.58*|b| - 1.76*n log2(err) ~= 2.28*|b| - 2.54*n So for p bits, we should choose n > (p + 2.28*|b|) / 2.54. References: ----------- Peter Borwein, "An Efficient Algorithm for the Riemann Zeta Function" http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P117.ps http://en.wikipedia.org/wiki/Dirichlet_eta_function """ borwein_cache = {} def borwein_coefficients(n): if n in borwein_cache: return borwein_cache[n] ds = [MPZ_ZERO] * (n+1) d = MPZ_ONE s = ds[0] = MPZ_ONE for i in range(1, n+1): d = d * 4 * (n+i-1) * (n-i+1) d //= ((2*i) * ((2*i)-1)) s += d ds[i] = s borwein_cache[n] = ds return ds ZETA_INT_CACHE_MAX_PREC = 1000 zeta_int_cache = {} def mpf_zeta_int(s, prec, rnd=round_fast): """ Optimized computation of zeta(s) for an integer s. """ wp = prec + 20 s = int(s) if s in zeta_int_cache and zeta_int_cache[s][0] >= wp: return mpf_pos(zeta_int_cache[s][1], prec, rnd) if s < 2: if s == 1: raise ValueError("zeta(1) pole") if not s: return mpf_neg(fhalf) return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd) # 2^-s term vanishes? if s >= wp: return mpf_perturb(fone, 0, prec, rnd) # 5^-s term vanishes? elif s >= wp*0.431: t = one = 1 << wp t += 1 << (wp - s) t += one // (MPZ_THREE ** s) t += 1 << max(0, wp - s*2) return from_man_exp(t, -wp, prec, rnd) else: # Fast enough to sum directly? # Even better, we use the Euler product (idea stolen from pari) m = (float(wp)/(s-1) + 1) if m < 30: needed_terms = int(2.0**m + 1) if needed_terms < int(wp/2.54 + 5) / 10: t = fone for k in list_primes(needed_terms): #print k, needed_terms powprec = int(wp - s*math.log(k,2)) if powprec < 2: break a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp) t = mpf_mul(t, a, wp) return mpf_div(fone, t, wp) # Use Borwein's algorithm n = int(wp/2.54 + 5) d = borwein_coefficients(n) t = MPZ_ZERO s = MPZ(s) for k in xrange(n): t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s t = (t << wp) // (-d[n]) t = (t << wp) // ((1 << wp) - (1 << (wp+1-s))) if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache): zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp)) return from_man_exp(t, -wp-wp, prec, rnd) def mpf_zeta(s, prec, rnd=round_fast, alt=0): sign, man, exp, bc = s if not man: if s == fzero: if alt: return fhalf else: return mpf_neg(fhalf) if s == finf: return fone return fnan wp = prec + 20 # First term vanishes? if (not sign) and (exp + bc > (math.log(wp,2) + 2)): return mpf_perturb(fone, alt, prec, rnd) # Optimize for integer arguments elif exp >= 0: if alt: if s == fone: return mpf_ln2(prec, rnd) z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd]) q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp) return mpf_mul(z, q, prec, rnd) else: return mpf_zeta_int(to_int(s), prec, rnd) # Negative: use the reflection formula # Borwein only proves the accuracy bound for x >= 1/2. However, based on # tests, the accuracy without reflection is quite good even some distance # to the left of 1/2. XXX: verify this. if sign: # XXX: could use the separate refl. formula for Dirichlet eta if alt: q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp) return mpf_mul(mpf_zeta(s, wp), q, prec, rnd) # XXX: -1 should be done exactly y = mpf_sub(fone, s, 10*wp) a = mpf_gamma(y, wp) b = mpf_zeta(y, wp) c = mpf_sin_pi(mpf_shift(s, -1), wp) wp2 = wp + (exp+bc) pi = mpf_pi(wp+wp2) d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2) return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd) # Near pole r = mpf_sub(fone, s, wp) asign, aman, aexp, abc = mpf_abs(r) pole_dist = -2*(aexp+abc) if pole_dist > wp: if alt: return mpf_ln2(prec, rnd) else: q = mpf_neg(mpf_div(fone, r, wp)) return mpf_add(q, mpf_euler(wp), prec, rnd) else: wp += max(0, pole_dist) t = MPZ_ZERO #wp += 16 - (prec & 15) # Use Borwein's algorithm n = int(wp/2.54 + 5) d = borwein_coefficients(n) t = MPZ_ZERO sf = to_fixed(s, wp) ln2 = ln2_fixed(wp) for k in xrange(n): u = (-sf*log_int_fixed(k+1, wp, ln2)) >> wp #esign, eman, eexp, ebc = mpf_exp(u, wp) #offset = eexp + wp #if offset >= 0: # w = ((d[k] - d[n]) * eman) << offset #else: # w = ((d[k] - d[n]) * eman) >> (-offset) eman = exp_fixed(u, wp, ln2) w = (d[k] - d[n]) * eman if k & 1: t -= w else: t += w t = t // (-d[n]) t = from_man_exp(t, -wp, wp) if alt: return mpf_pos(t, prec, rnd) else: q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp) return mpf_div(t, q, prec, rnd) def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False): re, im = s if im == fzero: return mpf_zeta(re, prec, rnd, alt), fzero # slow for large s if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)): raise NotImplementedError wp = prec + 20 # Near pole r = mpc_sub(mpc_one, s, wp) asign, aman, aexp, abc = mpc_abs(r, 10) pole_dist = -2*(aexp+abc) if pole_dist > wp: if alt: q = mpf_ln2(wp) y = mpf_mul(q, mpf_euler(wp), wp) g = mpf_shift(mpf_mul(q, q, wp), -1) g = mpf_sub(y, g) z = mpc_mul_mpf(r, mpf_neg(g), wp) z = mpc_add_mpf(z, q, wp) return mpc_pos(z, prec, rnd) else: q = mpc_neg(mpc_div(mpc_one, r, wp)) q = mpc_add_mpf(q, mpf_euler(wp), wp) return mpc_pos(q, prec, rnd) else: wp += max(0, pole_dist) # Reflection formula. To be rigorous, we should reflect to the left of # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary # slowdown for interesting values of s if mpf_lt(re, fzero): # XXX: could use the separate refl. formula for Dirichlet eta if alt: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_mul(mpc_zeta(s, wp), q, prec, rnd) # XXX: -1 should be done exactly y = mpc_sub(mpc_one, s, 10*wp) a = mpc_gamma(y, wp) b = mpc_zeta(y, wp) c = mpc_sin_pi(mpc_shift(s, -1), wp) rsign, rman, rexp, rbc = re isign, iman, iexp, ibc = im mag = max(rexp+rbc, iexp+ibc) wp2 = wp + mag pi = mpf_pi(wp+wp2) pi2 = (mpf_shift(pi, 1), fzero) d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2) return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd) n = int(wp/2.54 + 5) n += int(0.9*abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MPZ_ZERO tim = MPZ_ZERO one = MPZ_ONE << wp one_2wp = MPZ_ONE << (2*wp) critical_line = re == fhalf ln2 = ln2_fixed(wp) pi2 = pi_fixed(wp-1) wp2 = wp+wp for k in xrange(n): log = log_int_fixed(k+1, wp, ln2) # A square root is much cheaper than an exp if critical_line: w = one_2wp // isqrt_fast((k+1) << wp2) else: w = exp_fixed((-ref*log) >> wp, wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = cos_sin_fixed((-imf*log)>>wp, wp, pi2) tre += (w * wre) >> wp tim += (w * wim) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) if alt: return mpc_pos((tre, tim), prec, rnd) else: q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp) return mpc_div((tre, tim), q, prec, rnd) def mpf_altzeta(s, prec, rnd=round_fast): return mpf_zeta(s, prec, rnd, 1) def mpc_altzeta(s, prec, rnd=round_fast): return mpc_zeta(s, prec, rnd, 1) # Not optimized currently mpf_zetasum = None def pow_fixed(x, n, wp): if n == 1: return x y = MPZ_ONE << wp while n: if n & 1: y = (y*x) >> wp n -= 1 x = (x*x) >> wp n //= 2 return y # TODO: optimize / cleanup interface / unify with list_primes sieve_cache = [] primes_cache = [] mult_cache = [] def primesieve(n): global sieve_cache, primes_cache, mult_cache if n < len(sieve_cache): sieve = sieve_cache#[:n+1] primes = primes_cache[:primes_cache.index(max(sieve))+1] mult = mult_cache#[:n+1] return sieve, primes, mult sieve = [0] * (n+1) mult = [0] * (n+1) primes = list_primes(n) for p in primes: #sieve[p::p] = p for k in xrange(p,n+1,p): sieve[k] = p for i, p in enumerate(sieve): if i >= 2: m = 1 n = i // p while not n % p: n //= p m += 1 mult[i] = m sieve_cache = sieve primes_cache = primes mult_cache = mult return sieve, primes, mult def zetasum_sieved(critical_line, sre, sim, a, n, wp): assert a >= 1 sieve, primes, mult = primesieve(a+n) basic_powers = {} one = MPZ_ONE << wp one_2wp = MPZ_ONE << (2*wp) wp2 = wp+wp ln2 = ln2_fixed(wp) pi2 = pi_fixed(wp-1) for p in primes: if p*2 > a+n: break log = log_int_fixed(p, wp, ln2) cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2) if critical_line: u = one_2wp // isqrt_fast(p<<wp2) else: u = exp_fixed((-sre*log)>>wp, wp) pre = (u*cos) >> wp pim = (u*sin) >> wp basic_powers[p] = [(pre, pim)] tre, tim = pre, pim for m in range(1,int(math.log(a+n,p)+0.01)+1): tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp) basic_powers[p].append((tre,tim)) xre = MPZ_ZERO xim = MPZ_ZERO if a == 1: xre += one aa = max(a,2) for k in xrange(aa, a+n+1): p = sieve[k] if p in basic_powers: m = mult[k] tre, tim = basic_powers[p][m-1] while 1: k //= p**m if k == 1: break p = sieve[k] m = mult[k] pre, pim = basic_powers[p][m-1] tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp) else: log = log_int_fixed(k, wp, ln2) cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2) if critical_line: u = one_2wp // isqrt_fast(k<<wp2) else: u = exp_fixed((-sre*log)>>wp, wp) tre = (u*cos) >> wp tim = (u*sin) >> wp xre += tre xim += tim return xre, xim # Set to something large to disable ZETASUM_SIEVE_CUTOFF = 10 def mpc_zetasum(s, a, n, derivatives, reflect, prec): """ Fast version of mp._zetasum, assuming s = complex, a = integer. """ wp = prec + 10 have_derivatives = derivatives != [0] have_one_derivative = len(derivatives) == 1 # parse s sre, sim = s critical_line = (sre == fhalf) sre = to_fixed(sre, wp) sim = to_fixed(sim, wp) if a > 0 and n > ZETASUM_SIEVE_CUTOFF and not have_derivatives and not reflect: re, im = zetasum_sieved(critical_line, sre, sim, a, n, wp) xs = [(from_man_exp(re, -wp, prec, 'n'), from_man_exp(im, -wp, prec, 'n'))] return xs, [] maxd = max(derivatives) if not have_one_derivative: derivatives = range(maxd+1) # x_d = 0, y_d = 0 xre = [MPZ_ZERO for d in derivatives] xim = [MPZ_ZERO for d in derivatives] if reflect: yre = [MPZ_ZERO for d in derivatives] yim = [MPZ_ZERO for d in derivatives] else: yre = yim = [] one = MPZ_ONE << wp one_2wp = MPZ_ONE << (2*wp) ln2 = ln2_fixed(wp) pi2 = pi_fixed(wp-1) wp2 = wp+wp for w in xrange(a, a+n+1): log = log_int_fixed(w, wp, ln2) cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2) if critical_line: u = one_2wp // isqrt_fast(w<<wp2) else: u = exp_fixed((-sre*log)>>wp, wp) xterm_re = (u * cos) >> wp xterm_im = (u * sin) >> wp if reflect: reciprocal = (one_2wp // (u*w)) yterm_re = (reciprocal * cos) >> wp yterm_im = (reciprocal * sin) >> wp if have_derivatives: if have_one_derivative: log = pow_fixed(log, maxd, wp) xre[0] += (xterm_re * log) >> wp xim[0] += (xterm_im * log) >> wp if reflect: yre[0] += (yterm_re * log) >> wp yim[0] += (yterm_im * log) >> wp else: t = MPZ_ONE << wp for d in derivatives: xre[d] += (xterm_re * t) >> wp xim[d] += (xterm_im * t) >> wp if reflect: yre[d] += (yterm_re * t) >> wp yim[d] += (yterm_im * t) >> wp t = (t * log) >> wp else: xre[0] += xterm_re xim[0] += xterm_im if reflect: yre[0] += yterm_re yim[0] += yterm_im if have_derivatives: if have_one_derivative: if maxd % 2: xre[0] = -xre[0] xim[0] = -xim[0] if reflect: yre[0] = -yre[0] yim[0] = -yim[0] else: xre = [(-1)**d * xre[d] for d in derivatives] xim = [(-1)**d * xim[d] for d in derivatives] if reflect: yre = [(-1)**d * yre[d] for d in derivatives] yim = [(-1)**d * yim[d] for d in derivatives] xs = [(from_man_exp(xa, -wp, prec, 'n'), from_man_exp(xb, -wp, prec, 'n')) for (xa, xb) in zip(xre, xim)] ys = [(from_man_exp(ya, -wp, prec, 'n'), from_man_exp(yb, -wp, prec, 'n')) for (ya, yb) in zip(yre, yim)] return xs, ys #-----------------------------------------------------------------------# # # # The gamma function (NEW IMPLEMENTATION) # # # #-----------------------------------------------------------------------# # Higher means faster, but more precomputation time MAX_GAMMA_TAYLOR_PREC = 5000 # Need to derive higher bounds for Taylor series to go higher assert MAX_GAMMA_TAYLOR_PREC < 15000 # Use Stirling's series if abs(x) > beta*prec # Important: must be large enough for convergence! GAMMA_STIRLING_BETA = 0.2 SMALL_FACTORIAL_CACHE_SIZE = 150 gamma_taylor_cache = {} gamma_stirling_cache = {} small_factorial_cache = [from_int(ifac(n)) for \ n in range(SMALL_FACTORIAL_CACHE_SIZE+1)] def zeta_array(N, prec): """ zeta(n) = A * pi**n / n! + B where A is a rational number (A = Bernoulli number for n even) and B is an infinite sum over powers of exp(2*pi). (B = 0 for n even). TODO: this is currently only used for gamma, but could be very useful elsewhere. """ extra = 30 wp = prec+extra zeta_values = [MPZ_ZERO] * (N+2) pi = pi_fixed(wp) # STEP 1: one = MPZ_ONE << wp zeta_values[0] = -one//2 f_2pi = mpf_shift(mpf_pi(wp),1) exp_2pi_k = exp_2pi = mpf_exp(f_2pi, wp) # Compute exponential series # Store values of 1/(exp(2*pi*k)-1), # exp(2*pi*k)/(exp(2*pi*k)-1)**2, 1/(exp(2*pi*k)-1)**2 # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2 exps3 = [] k = 1 while 1: tp = wp - 9*k if tp < 1: break # 1/(exp(2*pi*k-1) q1 = mpf_div(fone, mpf_sub(exp_2pi_k, fone, tp), tp) # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2 q2 = mpf_mul(exp_2pi_k, mpf_mul(q1,q1,tp), tp) q1 = to_fixed(q1, wp) q2 = to_fixed(q2, wp) q2 = (k * q2 * pi) >> wp exps3.append((q1, q2)) # Multiply for next round exp_2pi_k = mpf_mul(exp_2pi_k, exp_2pi, wp) k += 1 # Exponential sum for n in xrange(3, N+1, 2): s = MPZ_ZERO k = 1 for e1, e2 in exps3: if n%4 == 3: t = e1 // k**n else: U = (n-1)//4 t = (e1 + e2//U) // k**n if not t: break s += t k += 1 zeta_values[n] = -2*s # Even zeta values B = [mpf_abs(mpf_bernoulli(k,wp)) for k in xrange(N+2)] pi_pow = fpi = mpf_pow_int(mpf_shift(mpf_pi(wp), 1), 2, wp) pi_pow = mpf_div(pi_pow, from_int(4), wp) for n in xrange(2,N+2,2): z = mpf_mul(B[n], pi_pow, wp) zeta_values[n] = to_fixed(z, wp) pi_pow = mpf_mul(pi_pow, fpi, wp) pi_pow = mpf_div(pi_pow, from_int((n+1)*(n+2)), wp) # Zeta sum reciprocal_pi = (one << wp) // pi for n in xrange(3, N+1, 4): U = (n-3)//4 s = zeta_values[4*U+4]*(4*U+7)//4 for k in xrange(1, U+1): s -= (zeta_values[4*k] * zeta_values[4*U+4-4*k]) >> wp zeta_values[n] += (2*s*reciprocal_pi) >> wp for n in xrange(5, N+1, 4): U = (n-1)//4 s = zeta_values[4*U+2]*(2*U+1) for k in xrange(1, 2*U+1): s += ((-1)**k*2*k* zeta_values[2*k] * zeta_values[4*U+2-2*k])>>wp zeta_values[n] += ((s*reciprocal_pi)>>wp)//(2*U) return [x>>extra for x in zeta_values] def gamma_taylor_coefficients(inprec): """ Gives the Taylor coefficients of 1/gamma(1+x) as a list of fixed-point numbers. Enough coefficients are returned to ensure that the series converges to the given precision when x is in [0.5, 1.5]. """ # Reuse nearby cache values (small case) if inprec < 400: prec = inprec + (10-(inprec%10)) elif inprec < 1000: prec = inprec + (30-(inprec%30)) else: prec = inprec if prec in gamma_taylor_cache: return gamma_taylor_cache[prec], prec # Experimentally determined bounds if prec < 1000: N = int(prec**0.76 + 2) else: # Valid to at least 15000 bits N = int(prec**0.787 + 2) # Reuse higher precision values for cprec in gamma_taylor_cache: if cprec > prec: coeffs = [x>>(cprec-prec) for x in gamma_taylor_cache[cprec][-N:]] if inprec < 1000: gamma_taylor_cache[prec] = coeffs return coeffs, prec # Cache at a higher precision (large case) if prec > 1000: prec = int(prec * 1.2) wp = prec + 20 A = [0] * N A[0] = MPZ_ZERO A[1] = MPZ_ONE << wp A[2] = euler_fixed(wp) # SLOW, reference implementation #zeta_values = [0,0]+[to_fixed(mpf_zeta_int(k,wp),wp) for k in xrange(2,N)] zeta_values = zeta_array(N, wp) for k in xrange(3, N): a = (-A[2]*A[k-1])>>wp for j in xrange(2,k): a += ((-1)**j * zeta_values[j] * A[k-j]) >> wp a //= (1-k) A[k] = a A = [a>>20 for a in A] A = A[::-1] A = A[:-1] gamma_taylor_cache[prec] = A #return A, prec return gamma_taylor_coefficients(inprec) def gamma_fixed_taylor(xmpf, x, wp, prec, rnd, type): # Determine nearest multiple of N/2 #n = int(x >> (wp-1)) #steps = (n-1)>>1 nearest_int = ((x >> (wp-1)) + MPZ_ONE) >> 1 one = MPZ_ONE << wp coeffs, cwp = gamma_taylor_coefficients(wp) if nearest_int > 0: r = one for i in xrange(nearest_int-1): x -= one r = (r*x) >> wp x -= one p = MPZ_ZERO for c in coeffs: p = c + ((x*p)>>wp) p >>= (cwp-wp) if type == 0: return from_man_exp((r<<wp)//p, -wp, prec, rnd) if type == 2: return mpf_shift(from_rational(p, (r<<wp), prec, rnd), wp) if type == 3: return mpf_log(mpf_abs(from_man_exp((r<<wp)//p, -wp)), prec, rnd) else: r = one for i in xrange(-nearest_int): r = (r*x) >> wp x += one p = MPZ_ZERO for c in coeffs: p = c + ((x*p)>>wp) p >>= (cwp-wp) if wp - bitcount(abs(x)) > 10: # pass very close to 0, so do floating-point multiply g = mpf_add(xmpf, from_int(-nearest_int)) # exact r = from_man_exp(p*r,-wp-wp) r = mpf_mul(r, g, wp) if type == 0: return mpf_div(fone, r, prec, rnd) if type == 2: return mpf_pos(r, prec, rnd) if type == 3: return mpf_log(mpf_abs(mpf_div(fone, r, wp)), prec, rnd) else: r = from_man_exp(x*p*r,-3*wp) if type == 0: return mpf_div(fone, r, prec, rnd) if type == 2: return mpf_pos(r, prec, rnd) if type == 3: return mpf_neg(mpf_log(mpf_abs(r), prec, rnd)) def stirling_coefficient(n): if n in gamma_stirling_cache: return gamma_stirling_cache[n] p, q = bernfrac(n) q *= MPZ(n*(n-1)) gamma_stirling_cache[n] = p, q, bitcount(abs(p)), bitcount(q) return gamma_stirling_cache[n] def real_stirling_series(x, prec): """ Sums the rational part of Stirling's expansion, log(sqrt(2*pi)) - z + 1/(12*z) - 1/(360*z^3) + ... """ t = (MPZ_ONE<<(prec+prec)) // x # t = 1/x u = (t*t)>>prec # u = 1/x**2 s = ln_sqrt2pi_fixed(prec) - x # Add initial terms of Stirling's series s += t//12; t = (t*u)>>prec s -= t//360; t = (t*u)>>prec s += t//1260; t = (t*u)>>prec s -= t//1680; t = (t*u)>>prec if not t: return s s += t//1188; t = (t*u)>>prec s -= 691*t//360360; t = (t*u)>>prec s += t//156; t = (t*u)>>prec if not t: return s s -= 3617*t//122400; t = (t*u)>>prec s += 43867*t//244188; t = (t*u)>>prec s -= 174611*t//125400; t = (t*u)>>prec if not t: return s k = 22 # From here on, the coefficients are growing, so we # have to keep t at a roughly constant size usize = bitcount(abs(u)) tsize = bitcount(abs(t)) texp = 0 while 1: p, q, pb, qb = stirling_coefficient(k) term_mag = tsize + pb + texp shift = -texp m = pb - term_mag if m > 0 and shift < m: p >>= m shift -= m m = tsize - term_mag if m > 0 and shift < m: w = t >> m shift -= m else: w = t term = (t*p//q) >> shift if not term: break s += term t = (t*u) >> usize texp -= (prec - usize) k += 2 return s def complex_stirling_series(x, y, prec): # t = 1/z _m = (x*x + y*y) >> prec tre = (x << prec) // _m tim = (-y << prec) // _m # u = 1/z**2 ure = (tre*tre - tim*tim) >> prec uim = tim*tre >> (prec-1) # s = log(sqrt(2*pi)) - z sre = ln_sqrt2pi_fixed(prec) - x sim = -y # Add initial terms of Stirling's series sre += tre//12; sim += tim//12; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre -= tre//360; sim -= tim//360; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre += tre//1260; sim += tim//1260; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre -= tre//1680; sim -= tim//1680; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) if abs(tre) + abs(tim) < 5: return sre, sim sre += tre//1188; sim += tim//1188; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre -= 691*tre//360360; sim -= 691*tim//360360; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre += tre//156; sim += tim//156; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) if abs(tre) + abs(tim) < 5: return sre, sim sre -= 3617*tre//122400; sim -= 3617*tim//122400; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre += 43867*tre//244188; sim += 43867*tim//244188; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) sre -= 174611*tre//125400; sim -= 174611*tim//125400; tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) if abs(tre) + abs(tim) < 5: return sre, sim k = 22 # From here on, the coefficients are growing, so we # have to keep t at a roughly constant size usize = bitcount(max(abs(ure), abs(uim))) tsize = bitcount(max(abs(tre), abs(tim))) texp = 0 while 1: p, q, pb, qb = stirling_coefficient(k) term_mag = tsize + pb + texp shift = -texp m = pb - term_mag if m > 0 and shift < m: p >>= m shift -= m m = tsize - term_mag if m > 0 and shift < m: wre = tre >> m wim = tim >> m shift -= m else: wre = tre wim = tim termre = (tre*p//q) >> shift termim = (tim*p//q) >> shift if abs(termre) + abs(termim) < 5: break sre += termre sim += termim tre, tim = ((tre*ure - tim*uim)>>usize), \ ((tre*uim + tim*ure)>>usize) texp -= (prec - usize) k += 2 return sre, sim def mpf_gamma(x, prec, rnd='d', type=0): """ This function implements multipurpose evaluation of the gamma function, G(x), as well as the following versions of the same: type = 0 -- G(x) [standard gamma function] type = 1 -- G(x+1) = x*G(x+1) = x! [factorial] type = 2 -- 1/G(x) [reciprocal gamma function] type = 3 -- log(|G(x)|) [log-gamma function, real part] """ # Specal values sign, man, exp, bc = x if not man: if x == fzero: if type == 1: return fone if type == 2: return fzero raise ValueError("gamma function pole") if x == finf: if type == 2: return fzero return finf return fnan # First of all, for log gamma, numbers can be well beyond the fixed-point # range, so we must take care of huge numbers before e.g. trying # to convert x to the nearest integer if type == 3: wp = prec+20 if exp+bc > wp and not sign: return mpf_sub(mpf_mul(x, mpf_log(x, wp), wp), x, prec, rnd) # We strongly want to special-case small integers is_integer = exp >= 0 if is_integer: # Poles if sign: if type == 2: return fzero raise ValueError("gamma function pole") # n = x n = man << exp if n < SMALL_FACTORIAL_CACHE_SIZE: if type == 0: return mpf_pos(small_factorial_cache[n-1], prec, rnd) if type == 1: return mpf_pos(small_factorial_cache[n], prec, rnd) if type == 2: return mpf_div(fone, small_factorial_cache[n-1], prec, rnd) if type == 3: return mpf_log(small_factorial_cache[n-1], prec, rnd) else: # floor(abs(x)) n = int(man >> (-exp)) # Estimate size and precision # Estimate log(gamma(|x|),2) as x*log(x,2) mag = exp + bc gamma_size = n*mag if type == 3: wp = prec + 20 else: wp = prec + bitcount(gamma_size) + 20 # Very close to 0, pole if mag < -wp: if type == 0: return mpf_sub(mpf_div(fone,x, wp),mpf_shift(fone,-wp),prec,rnd) if type == 1: return mpf_sub(fone, x, prec, rnd) if type == 2: return mpf_add(x, mpf_shift(fone,mag-wp), prec, rnd) if type == 3: return mpf_neg(mpf_log(mpf_abs(x), prec, rnd)) # From now on, we assume having a gamma function if type == 1: return mpf_gamma(mpf_add(x, fone), prec, rnd, 0) # Special case integers (those not small enough to be caught above, # but still small enough for an exact factorial to be faster # than an approximate algorithm), and half-integers if exp >= -1: if is_integer: if gamma_size < 10*wp: if type == 0: return from_int(ifac(n-1), prec, rnd) if type == 2: return from_rational(MPZ_ONE, ifac(n-1), prec, rnd) if type == 3: return mpf_log(from_int(ifac(n-1)), prec, rnd) # half-integer if n < 100 or gamma_size < 10*wp: if sign: w = sqrtpi_fixed(wp) if n % 2: f = ifac2(2*n+1) else: f = -ifac2(2*n+1) if type == 0: return mpf_shift(from_rational(w, f, prec, rnd), -wp+n+1) if type == 2: return mpf_shift(from_rational(f, w, prec, rnd), wp-n-1) if type == 3: return mpf_log(mpf_shift(from_rational(w, abs(f), prec, rnd), -wp+n+1), prec, rnd) elif n == 0: if type == 0: return mpf_sqrtpi(prec, rnd) if type == 2: return mpf_div(fone, mpf_sqrtpi(wp), prec, rnd) if type == 3: return mpf_log(mpf_sqrtpi(wp), prec, rnd) else: w = sqrtpi_fixed(wp) w = from_man_exp(w * ifac2(2*n-1), -wp-n) if type == 0: return mpf_pos(w, prec, rnd) if type == 2: return mpf_div(fone, w, prec, rnd) if type == 3: return mpf_log(mpf_abs(w), prec, rnd) # Convert to fixed point offset = exp + wp if offset >= 0: absxman = man << offset else: absxman = man >> (-offset) # For log gamma, provide accurate evaluation for x = 1+eps and 2+eps if type == 3 and not sign: one = MPZ_ONE << wp one_dist = abs(absxman-one) two_dist = abs(absxman-2*one) cancellation = (wp - bitcount(min(one_dist, two_dist))) if cancellation > 10: xsub1 = mpf_sub(fone, x) xsub2 = mpf_sub(ftwo, x) xsub1mag = xsub1[2]+xsub1[3] xsub2mag = xsub2[2]+xsub2[3] if xsub1mag < -wp: return mpf_mul(mpf_euler(wp), mpf_sub(fone, x), prec, rnd) if xsub2mag < -wp: return mpf_mul(mpf_sub(fone, mpf_euler(wp)), mpf_sub(x, ftwo), prec, rnd) # Proceed but increase precision wp += max(-xsub1mag, -xsub2mag) offset = exp + wp if offset >= 0: absxman = man << offset else: absxman = man >> (-offset) # Use Taylor series if appropriate n_for_stirling = int(GAMMA_STIRLING_BETA*wp) if n < max(100, n_for_stirling) and wp < MAX_GAMMA_TAYLOR_PREC: if sign: absxman = -absxman return gamma_fixed_taylor(x, absxman, wp, prec, rnd, type) # Use Stirling's series # First ensure that |x| is large enough for rapid convergence xorig = x # Argument reduction r = 0 if n < n_for_stirling: r = one = MPZ_ONE << wp d = n_for_stirling - n for k in xrange(d): r = (r * absxman) >> wp absxman += one x = xabs = from_man_exp(absxman, -wp) if sign: x = mpf_neg(x) else: xabs = mpf_abs(x) # Asymptotic series y = real_stirling_series(absxman, wp) u = to_fixed(mpf_log(xabs, wp), wp) u = ((absxman - (MPZ_ONE<<(wp-1))) * u) >> wp y += u w = from_man_exp(y, -wp) # Compute final value if sign: # Reflection formula A = mpf_mul(mpf_sin_pi(xorig, wp), xorig, wp) B = mpf_neg(mpf_pi(wp)) if type == 0 or type == 2: A = mpf_mul(A, mpf_exp(w, wp)) if r: B = mpf_mul(B, from_man_exp(r, -wp), wp) if type == 0: return mpf_div(B, A, prec, rnd) if type == 2: return mpf_div(A, B, prec, rnd) if type == 3: if r: B = mpf_mul(B, from_man_exp(r, -wp), wp) A = mpf_add(mpf_log(mpf_abs(A), wp), w, wp) return mpf_sub(mpf_log(mpf_abs(B), wp), A, prec, rnd) else: if type == 0: if r: return mpf_div(mpf_exp(w, wp), from_man_exp(r, -wp), prec, rnd) return mpf_exp(w, prec, rnd) if type == 2: if r: return mpf_div(from_man_exp(r, -wp), mpf_exp(w, wp), prec, rnd) return mpf_exp(mpf_neg(w), prec, rnd) if type == 3: if r: return mpf_sub(w, mpf_log(from_man_exp(r,-wp), wp), prec, rnd) return mpf_pos(w, prec, rnd) def mpc_gamma(z, prec, rnd='d', type=0): a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero: # Imaginary part on negative half-axis for log-gamma function if type == 3 and asign: re = mpf_gamma(a, prec, rnd, 3) n = (-aman) >> (-aexp) im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd) return re, im return mpf_gamma(a, prec, rnd, type), fzero # Some kind of complex inf/nan if (not aman and aexp) or (not bman and bexp): return (fnan, fnan) # Initial working precision wp = prec + 20 amag = aexp+abc bmag = bexp+bbc if aman: mag = max(amag, bmag) else: mag = bmag # Close to 0 if mag < -8: if mag < -wp: # 1/gamma(z) = z + euler*z^2 + O(z^3) v = mpc_add(z, mpc_mul_mpf(mpc_mul(z,z,wp),mpf_euler(wp),wp), wp) if type == 0: return mpc_reciprocal(v, prec, rnd) if type == 1: return mpc_div(z, v, prec, rnd) if type == 2: return mpc_pos(v, prec, rnd) if type == 3: return mpc_log(mpc_reciprocal(v, prec), prec, rnd) elif type != 1: wp += (-mag) # Handle huge log-gamma values; must do this before converting to # a fixed-point value. TODO: determine a precise cutoff of validity # depending on amag and bmag if type == 3 and mag > wp and ((not asign) or (bmag >= amag)): return mpc_sub(mpc_mul(z, mpc_log(z, wp), wp), z, prec, rnd) # From now on, we assume having a gamma function if type == 1: return mpc_gamma((mpf_add(a, fone), b), prec, rnd, 0) an = abs(to_int(a)) bn = abs(to_int(b)) absn = max(an, bn) gamma_size = absn*mag if type == 3: pass else: wp += bitcount(gamma_size) # Reflect to the right half-plane. Note that Stirling's expansion # is valid in the left half-plane too, as long as we're not too close # to the real axis, but in order to use this argument reduction # in the negative direction must be implemented. #need_reflection = asign and ((bmag < 0) or (amag-bmag > 4)) need_reflection = asign zorig = z if need_reflection: z = mpc_neg(z) asign, aman, aexp, abc = a = z[0] bsign, bman, bexp, bbc = b = z[1] # Imaginary part very small compared to real one? yfinal = 0 balance_prec = 0 if bmag < -10: # Check z ~= 1 and z ~= 2 for loggamma if type == 3: zsub1 = mpc_sub_mpf(z, fone) if zsub1[0] == fzero: cancel1 = -bmag else: cancel1 = -max(zsub1[0][2]+zsub1[0][3], bmag) if cancel1 > wp: pi = mpf_pi(wp) x = mpc_mul_mpf(zsub1, pi, wp) x = mpc_mul(x, x, wp) x = mpc_div_mpf(x, from_int(12), wp) y = mpc_mul_mpf(zsub1, mpf_neg(mpf_euler(wp)), wp) yfinal = mpc_add(x, y, wp) if not need_reflection: return mpc_pos(yfinal, prec, rnd) elif cancel1 > 0: wp += cancel1 zsub2 = mpc_sub_mpf(z, ftwo) if zsub2[0] == fzero: cancel2 = -bmag else: cancel2 = -max(zsub2[0][2]+zsub2[0][3], bmag) if cancel2 > wp: pi = mpf_pi(wp) t = mpf_sub(mpf_mul(pi, pi), from_int(6)) x = mpc_mul_mpf(mpc_mul(zsub2, zsub2, wp), t, wp) x = mpc_div_mpf(x, from_int(12), wp) y = mpc_mul_mpf(zsub2, mpf_sub(fone, mpf_euler(wp)), wp) yfinal = mpc_add(x, y, wp) if not need_reflection: return mpc_pos(yfinal, prec, rnd) elif cancel2 > 0: wp += cancel2 if bmag < -wp: # Compute directly from the real gamma function. pp = 2*(wp+10) aabs = mpf_abs(a) eps = mpf_shift(fone, amag-wp) x1 = mpf_gamma(aabs, pp, type=type) x2 = mpf_gamma(mpf_add(aabs, eps), pp, type=type) xprime = mpf_div(mpf_sub(x2, x1, pp), eps, pp) y = mpf_mul(b, xprime, prec, rnd) yfinal = (x1, y) # Note: we still need to use the reflection formula for # near-poles, and the correct branch of the log-gamma function if not need_reflection: return mpc_pos(yfinal, prec, rnd) else: balance_prec += (-bmag) wp += balance_prec n_for_stirling = int(GAMMA_STIRLING_BETA*wp) need_reduction = absn < n_for_stirling afix = to_fixed(a, wp) bfix = to_fixed(b, wp) r = 0 if not yfinal: zprered = z # Argument reduction if absn < n_for_stirling: absn = complex(an, bn) d = int((1 + n_for_stirling**2 - bn**2)**0.5 - an) rre = one = MPZ_ONE << wp rim = MPZ_ZERO for k in xrange(d): rre, rim = ((afix*rre-bfix*rim)>>wp), ((afix*rim + bfix*rre)>>wp) afix += one r = from_man_exp(rre, -wp), from_man_exp(rim, -wp) a = from_man_exp(afix, -wp) z = a, b yre, yim = complex_stirling_series(afix, bfix, wp) # (z-1/2)*log(z) + S lre, lim = mpc_log(z, wp) lre = to_fixed(lre, wp) lim = to_fixed(lim, wp) yre = ((lre*afix - lim*bfix)>>wp) - (lre>>1) + yre yim = ((lre*bfix + lim*afix)>>wp) - (lim>>1) + yim y = from_man_exp(yre, -wp), from_man_exp(yim, -wp) if r and type == 3: # If re(z) > 0 and abs(z) <= 4, the branches of loggamma(z) # and log(gamma(z)) coincide. Otherwise, use the zeroth order # Stirling expansion to compute the correct imaginary part. y = mpc_sub(y, mpc_log(r, wp), wp) zfa = to_float(zprered[0]) zfb = to_float(zprered[1]) zfabs = math.hypot(zfa,zfb) #if not (zfa > 0.0 and zfabs <= 4): yfb = to_float(y[1]) u = math.atan2(zfb, zfa) if zfabs <= 0.5: gi = 0.577216*zfb - u else: gi = -zfb - 0.5*u + zfa*u + zfb*math.log(zfabs) n = int(math.floor((gi-yfb)/(2*math.pi)+0.5)) y = (y[0], mpf_add(y[1], mpf_mul_int(mpf_pi(wp), 2*n, wp), wp)) if need_reflection: if type == 0 or type == 2: A = mpc_mul(mpc_sin_pi(zorig, wp), zorig, wp) B = (mpf_neg(mpf_pi(wp)), fzero) if yfinal: if type == 2: A = mpc_div(A, yfinal, wp) else: A = mpc_mul(A, yfinal, wp) else: A = mpc_mul(A, mpc_exp(y, wp), wp) if r: B = mpc_mul(B, r, wp) if type == 0: return mpc_div(B, A, prec, rnd) if type == 2: return mpc_div(A, B, prec, rnd) # Reflection formula for the log-gamma function with correct branch # http://functions.wolfram.com/GammaBetaErf/LogGamma/16/01/01/0006/ # LogGamma[z] == -LogGamma[-z] - Log[-z] + # Sign[Im[z]] Floor[Re[z]] Pi I + Log[Pi] - # Log[Sin[Pi (z - Floor[Re[z]])]] - # Pi I (1 - Abs[Sign[Im[z]]]) Abs[Floor[Re[z]]] if type == 3: if yfinal: s1 = mpc_neg(yfinal) else: s1 = mpc_neg(y) # s -= log(-z) s1 = mpc_sub(s1, mpc_log(mpc_neg(zorig), wp), wp) # floor(re(z)) rezfloor = mpf_floor(zorig[0]) imzsign = mpf_sign(zorig[1]) pi = mpf_pi(wp) t = mpf_mul(pi, rezfloor) t = mpf_mul_int(t, imzsign, wp) s1 = (s1[0], mpf_add(s1[1], t, wp)) s1 = mpc_add_mpf(s1, mpf_log(pi, wp), wp) t = mpc_sin_pi(mpc_sub_mpf(zorig, rezfloor), wp) t = mpc_log(t, wp) s1 = mpc_sub(s1, t, wp) # Note: may actually be unused, because we fall back # to the mpf_ function for real arguments if not imzsign: t = mpf_mul(pi, mpf_floor(rezfloor), wp) s1 = (s1[0], mpf_sub(s1[1], t, wp)) return mpc_pos(s1, prec, rnd) else: if type == 0: if r: return mpc_div(mpc_exp(y, wp), r, prec, rnd) return mpc_exp(y, prec, rnd) if type == 2: if r: return mpc_div(r, mpc_exp(y, wp), prec, rnd) return mpc_exp(mpc_neg(y), prec, rnd) if type == 3: return mpc_pos(y, prec, rnd) def mpf_factorial(x, prec, rnd='d'): return mpf_gamma(x, prec, rnd, 1) def mpc_factorial(x, prec, rnd='d'): return mpc_gamma(x, prec, rnd, 1) def mpf_rgamma(x, prec, rnd='d'): return mpf_gamma(x, prec, rnd, 2) def mpc_rgamma(x, prec, rnd='d'): return mpc_gamma(x, prec, rnd, 2) def mpf_loggamma(x, prec, rnd='d'): sign, man, exp, bc = x if sign: raise ComplexResult return mpf_gamma(x, prec, rnd, 3) def mpc_loggamma(z, prec, rnd='d'): a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero and asign: re = mpf_gamma(a, prec, rnd, 3) n = (-aman) >> (-aexp) im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd) return re, im return mpc_gamma(z, prec, rnd, 3) def mpf_gamma_int(n, prec, rnd=round_fast): if n < SMALL_FACTORIAL_CACHE_SIZE: return mpf_pos(small_factorial_cache[n-1], prec, rnd) return mpf_gamma(from_int(n), prec, rnd)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/gammazeta.py
gammazeta.py
import math from bisect import bisect from .backend import xrange from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND from .libmpf import ( round_floor, round_ceiling, round_down, round_up, round_nearest, round_fast, ComplexResult, bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed, from_int, to_int, from_man_exp, to_fixed, to_float, from_float, from_rational, normalize, fzero, fone, fnone, fhalf, finf, fninf, fnan, mpf_cmp, mpf_sign, mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift, mpf_rdiv_int, mpf_pow_int, mpf_sqrt, reciprocal_rnd, negative_rnd, mpf_perturb, isqrt_fast ) from .libintmath import ifib #------------------------------------------------------------------------------- # Tuning parameters #------------------------------------------------------------------------------- # Cutoff for computing exp from cosh+sinh. This reduces the # number of terms by half, but also requires a square root which # is expensive with the pure-Python square root code. if BACKEND == 'python': EXP_COSH_CUTOFF = 600 else: EXP_COSH_CUTOFF = 400 # Cutoff for using more than 2 series EXP_SERIES_U_CUTOFF = 1500 # Also basically determined by sqrt if BACKEND == 'python': COS_SIN_CACHE_PREC = 400 else: COS_SIN_CACHE_PREC = 200 COS_SIN_CACHE_STEP = 8 cos_sin_cache = {} # Number of integer logarithms to cache (for zeta sums) MAX_LOG_INT_CACHE = 2000 log_int_cache = {} LOG_TAYLOR_PREC = 2500 # Use Taylor series with caching up to this prec LOG_TAYLOR_SHIFT = 9 # Cache log values in steps of size 2^-N log_taylor_cache = {} # prec/size ratio of x for fastest convergence in AGM formula LOG_AGM_MAG_PREC_RATIO = 20 ATAN_TAYLOR_PREC = 3000 # Same as for log ATAN_TAYLOR_SHIFT = 7 # steps of size 2^-N atan_taylor_cache = {} # ~= next power of two + 20 cache_prec_steps = [22,22] for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1): cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1) #----------------------------------------------------------------------------# # # # Elementary mathematical constants # # # #----------------------------------------------------------------------------# def constant_memo(f): """ Decorator for caching computed values of mathematical constants. This decorator should be applied to a function taking a single argument prec as input and returning a fixed-point value with the given precision. """ f.memo_prec = -1 f.memo_val = None def g(prec, **kwargs): memo_prec = f.memo_prec if prec <= memo_prec: return f.memo_val >> (memo_prec-prec) newprec = int(prec*1.05+10) f.memo_val = f(newprec, **kwargs) f.memo_prec = newprec return f.memo_val >> (newprec-prec) g.__name__ = f.__name__ g.__doc__ = f.__doc__ return g def def_mpf_constant(fixed): """ Create a function that computes the mpf value for a mathematical constant, given a function that computes the fixed-point value. Assumptions: the constant is positive and has magnitude ~= 1; the fixed-point function rounds to floor. """ def f(prec, rnd=round_fast): wp = prec + 20 v = fixed(wp) if rnd in (round_up, round_ceiling): v += 1 return normalize(0, v, -wp, bitcount(v), prec, rnd) f.__doc__ = fixed.__doc__ return f def bsp_acot(q, a, b, hyperbolic): if b - a == 1: a1 = MPZ(2*a + 3) if hyperbolic or a&1: return MPZ_ONE, a1 * q**2, a1 else: return -MPZ_ONE, a1 * q**2, a1 m = (a+b)//2 p1, q1, r1 = bsp_acot(q, a, m, hyperbolic) p2, q2, r2 = bsp_acot(q, m, b, hyperbolic) return q2*p1 + r1*p2, q1*q2, r1*r2 # the acoth(x) series converges like the geometric series for x^2 # N = ceil(p*log(2)/(2*log(x))) def acot_fixed(a, prec, hyperbolic): """ Compute acot(a) or acoth(a) for an integer a with binary splitting; see http://numbers.computation.free.fr/Constants/Algorithms/splitting.html """ N = int(0.35 * prec/math.log(a) + 20) p, q, r = bsp_acot(a, 0,N, hyperbolic) return ((p+q)<<prec)//(q*a) def machin(coefs, prec, hyperbolic=False): """ Evaluate a Machin-like formula, i.e., a linear combination of acot(n) or acoth(n) for specific integer values of n, using fixed- point arithmetic. The input should be a list [(c, n), ...], giving c*acot[h](n) + ... """ extraprec = 10 s = MPZ_ZERO for a, b in coefs: s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic) return (s >> extraprec) # Logarithms of integers are needed for various computations involving # logarithms, powers, radix conversion, etc @constant_memo def ln2_fixed(prec): """ Computes ln(2). This is done with a hyperbolic Machin-type formula, with binary splitting at high precision. """ return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True) @constant_memo def ln10_fixed(prec): """ Computes ln(10). This is done with a hyperbolic Machin-type formula. """ return machin([(46, 31), (34, 49), (20, 161)], prec, True) """ For computation of pi, we use the Chudnovsky series: oo ___ k 1 \ (-1) (6 k)! (A + B k) ----- = ) ----------------------- 12 pi /___ 3 3k+3/2 (3 k)! (k!) C k = 0 where A, B, and C are certain integer constants. This series adds roughly 14 digits per term. Note that C^(3/2) can be extracted so that the series contains only rational terms. This makes binary splitting very efficient. The recurrence formulas for the binary splitting were taken from ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c Previously, Machin's formula was used at low precision and the AGM iteration was used at high precision. However, the Chudnovsky series is essentially as fast as the Machin formula at low precision and in practice about 3x faster than the AGM at high precision (despite theoretically having a worse asymptotic complexity), so there is no reason not to use it in all cases. """ # Constants in Chudnovsky's series CHUD_A = MPZ(13591409) CHUD_B = MPZ(545140134) CHUD_C = MPZ(640320) CHUD_D = MPZ(12) def bs_chudnovsky(a, b, level, verbose): """ Computes the sum from a to b of the series in the Chudnovsky formula. Returns g, p, q where p/q is the sum as an exact fraction and g is a temporary value used to save work for recursive calls. """ if b-a == 1: g = MPZ((6*b-5)*(2*b-1)*(6*b-1)) p = b**3 * CHUD_C**3 // 24 q = (-1)**b * g * (CHUD_A+CHUD_B*b) else: if verbose and level < 4: print(" binary splitting", a, b) mid = (a+b)//2 g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose) g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose) p = p1*p2 g = g1*g2 q = q1*p2 + q2*g1 return g, p, q @constant_memo def pi_fixed(prec, verbose=False, verbose_base=None): """ Compute floor(pi * 2**prec) as a big integer. This is done using Chudnovsky's series (see comments in libelefun.py for details). """ # The Chudnovsky series gives 14.18 digits per term N = int(prec/3.3219280948/14.181647462 + 2) if verbose: print("binary splitting with N =", N) g, p, q = bs_chudnovsky(0, N, 0, verbose) sqrtC = isqrt_fast(CHUD_C<<(2*prec)) v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D) return v def degree_fixed(prec): return pi_fixed(prec)//180 def bspe(a, b): """ Sum series for exp(1)-1 between a, b, returning the result as an exact fraction (p, q). """ if b-a == 1: return MPZ_ONE, MPZ(b) m = (a+b)//2 p1, q1 = bspe(a, m) p2, q2 = bspe(m, b) return p1*q2+p2, q1*q2 @constant_memo def e_fixed(prec): """ Computes exp(1). This is done using the ordinary Taylor series for exp, with binary splitting. For a description of the algorithm, see: http://numbers.computation.free.fr/Constants/ Algorithms/splitting.html """ # Slight overestimate of N needed for 1/N! < 2**(-prec) # This could be tightened for large N. N = int(1.1*prec/math.log(prec) + 20) p, q = bspe(0,N) return ((p+q)<<prec)//q @constant_memo def phi_fixed(prec): """ Computes the golden ratio, (1+sqrt(5))/2 """ prec += 10 a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec) return a >> 11 mpf_phi = def_mpf_constant(phi_fixed) mpf_pi = def_mpf_constant(pi_fixed) mpf_e = def_mpf_constant(e_fixed) mpf_degree = def_mpf_constant(degree_fixed) mpf_ln2 = def_mpf_constant(ln2_fixed) mpf_ln10 = def_mpf_constant(ln10_fixed) @constant_memo def ln_sqrt2pi_fixed(prec): wp = prec + 10 # ln(sqrt(2*pi)) = ln(2*pi)/2 return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1) @constant_memo def sqrtpi_fixed(prec): return sqrt_fixed(pi_fixed(prec), prec) mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed) mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed) #----------------------------------------------------------------------------# # # # Powers # # # #----------------------------------------------------------------------------# def mpf_pow(s, t, prec, rnd=round_fast): """ Compute s**t. Raises ComplexResult if s is negative and t is fractional. """ ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t if ssign and texp < 0: raise ComplexResult("negative number raised to a fractional power") if texp >= 0: return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd) # s**(n/2) = sqrt(s)**n if texp == -1: if tman == 1: if tsign: return mpf_div(fone, mpf_sqrt(s, prec+10, reciprocal_rnd[rnd]), prec, rnd) return mpf_sqrt(s, prec, rnd) else: if tsign: return mpf_pow_int(mpf_sqrt(s, prec+10, reciprocal_rnd[rnd]), -tman, prec, rnd) return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd) # General formula: s**t = exp(t*log(s)) # TODO: handle rnd direction of the logarithm carefully c = mpf_log(s, prec+10, rnd) return mpf_exp(mpf_mul(t, c), prec, rnd) def int_pow_fixed(y, n, prec): """n-th power of a fixed point number with precision prec Returns the power in the form man, exp, man * 2**exp ~= y**n """ if n == 2: return (y*y), 0 bc = bitcount(y) exp = 0 workprec = 2 * (prec + 4*bitcount(n) + 4) _, pm, pe, pbc = fone while 1: if n & 1: pm = pm*y pe = pe+exp pbc += bc - 2 pbc = pbc + bctable[int(pm >> pbc)] if pbc > workprec: pm = pm >> (pbc-workprec) pe += pbc - workprec pbc = workprec n -= 1 if not n: break y = y*y exp = exp+exp bc = bc + bc - 2 bc = bc + bctable[int(y >> bc)] if bc > workprec: y = y >> (bc-workprec) exp += bc - workprec bc = workprec n = n // 2 return pm, pe # froot(s, n, prec, rnd) computes the real n-th root of a # positive mpf tuple s. # To compute the root we start from a 50-bit estimate for r # generated with ordinary floating-point arithmetic, and then refine # the value to full accuracy using the iteration # 1 / y \ # r = --- | (n-1) * r + ---------- | # n+1 n \ n r_n**(n-1) / # which is simply Newton's method applied to the equation r**n = y. # With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra] # and y = man * 2**-shift one has # (man * 2**exp)**(1/n) = # y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) * # 2**((exp+shift-(n-1)*prec)/n -extra)) # The last factor is accounted for in the last line of froot. def nthroot_fixed(y, n, prec, exp1): start = 50 try: y1 = rshift(y, prec - n*start) r = MPZ(int(y1**(1.0/n))) except OverflowError: y1 = from_int(y1, start) fn = from_int(n) fn = mpf_rdiv_int(1, fn, start) r = mpf_pow(y1, fn, start) r = to_int(r) extra = 10 extra1 = n prevp = start for p in giant_steps(start, prec+extra): pm, pe = int_pow_fixed(r, n-1, prevp) r2 = rshift(pm, (n-1)*prevp - p - pe - extra1) B = lshift(y, 2*p-prec+extra1)//r2 r = (B + (n-1) * lshift(r, p-prevp))//n prevp = p return r def mpf_nthroot(s, n, prec, rnd=round_fast): """nth-root of a positive number Use the Newton method when faster, otherwise use x**(1/n) """ sign, man, exp, bc = s if sign: raise ComplexResult("nth root of a negative number") if not man: if s == fnan: return fnan if s == fzero: if n > 0: return fzero if n == 0: return fone return finf # Infinity if not n: return fnan if n < 0: return fzero return finf flag_inverse = False if n < 2: if n == 0: return fone if n == 1: return mpf_pos(s, prec, rnd) if n == -1: return mpf_div(fone, s, prec, rnd) # n < 0 rnd = reciprocal_rnd[rnd] flag_inverse = True extra_inverse = 5 prec += extra_inverse n = -n if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)): prec2 = prec + 10 fn = from_int(n) nth = mpf_rdiv_int(1, fn, prec2) r = mpf_pow(s, nth, prec2, rnd) s = normalize(r[0], r[1], r[2], r[3], prec, rnd) if flag_inverse: return mpf_div(fone, s, prec-extra_inverse, rnd) else: return s # Convert to a fixed-point number with prec2 bits. prec2 = prec + 2*n - (prec%n) # a few tests indicate that # for 10 < n < 10**4 a bit more precision is needed if n > 10: prec2 += prec2//10 prec2 = prec2 - prec2%n # Mantissa may have more bits than we need. Trim it down. shift = bc - prec2 # Adjust exponents to make prec2 and exp+shift multiples of n. sign1 = 0 es = exp+shift if es < 0: sign1 = 1 es = -es if sign1: shift += es%n else: shift -= es%n man = rshift(man, shift) extra = 10 exp1 = ((exp+shift-(n-1)*prec2)//n) - extra rnd_shift = 0 if flag_inverse: if rnd == 'u' or rnd == 'c': rnd_shift = 1 else: if rnd == 'd' or rnd == 'f': rnd_shift = 1 man = nthroot_fixed(man+rnd_shift, n, prec2, exp1) s = from_man_exp(man, exp1, prec, rnd) if flag_inverse: return mpf_div(fone, s, prec-extra_inverse, rnd) else: return s def mpf_cbrt(s, prec, rnd=round_fast): """cubic root of a positive number""" return mpf_nthroot(s, 3, prec, rnd) #----------------------------------------------------------------------------# # # # Logarithms # # # #----------------------------------------------------------------------------# def log_int_fixed(n, prec, ln2=None): """ Fast computation of log(n), caching the value for small n, intended for zeta sums. """ if n in log_int_cache: value, vprec = log_int_cache[n] if vprec >= prec: return value >> (vprec - prec) wp = prec + 10 if wp <= LOG_TAYLOR_SHIFT: if ln2 is None: ln2 = ln2_fixed(wp) r = bitcount(n) x = n << (wp-r) v = log_taylor_cached(x, wp) + r*ln2 else: v = to_fixed(mpf_log(from_int(n), wp+5), wp) if n < MAX_LOG_INT_CACHE: log_int_cache[n] = (v, wp) return v >> (wp-prec) def agm_fixed(a, b, prec): """ Fixed-point computation of agm(a,b), assuming a, b both close to unit magnitude. """ i = 0 while 1: anew = (a+b)>>1 if i > 4 and abs(a-anew) < 8: return a b = isqrt_fast(a*b) a = anew i += 1 return a def log_agm(x, prec): """ Fixed-point computation of -log(x) = log(1/x), suitable for large precision. It is required that 0 < x < 1. The algorithm used is the Sasaki-Kanada formula -log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1] For faster convergence in the theta functions, x should be chosen closer to 0. Guard bits must be added by the caller. HYPOTHESIS: if x = 2^(-n), n bits need to be added to account for the truncation to a fixed-point number, and this is the only significant cancellation error. The number of bits lost to roundoff is small and can be considered constant. [1] Richard P. Brent, "Fast Algorithms for High-Precision Computation of Elementary Functions (extended abstract)", http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf """ x2 = (x*x) >> prec # Compute jtheta2(x)**2 s = a = b = x2 while a: b = (b*x2) >> prec a = (a*b) >> prec s += a s += (MPZ_ONE<<prec) s = (s*s)>>(prec-2) s = (s*isqrt_fast(x<<prec))>>prec # Compute jtheta3(x)**2 t = a = b = x while a: b = (b*x2) >> prec a = (a*b) >> prec t += a t = (MPZ_ONE<<prec) + (t<<1) t = (t*t)>>prec # Final formula p = agm_fixed(s, t, prec) return (pi_fixed(prec) << prec) // p def log_taylor(x, prec, r=0): """ Fixed-point calculation of log(x). It is assumed that x is close enough to 1 for the Taylor series to converge quickly. Convergence can be improved by specifying r > 0 to compute log(x^(1/2^r))*2^r, at the cost of performing r square roots. The caller must provide sufficient guard bits. """ for i in xrange(r): x = isqrt_fast(x<<prec) one = MPZ_ONE << prec v = ((x-one)<<prec)//(x+one) sign = v < 0 if sign: v = -v v2 = (v*v) >> prec v4 = (v2*v2) >> prec s0 = v s1 = v//3 v = (v*v4) >> prec k = 5 while v: s0 += v // k k += 2 s1 += v // k v = (v*v4) >> prec k += 2 s1 = (s1*v2) >> prec s = (s0+s1) << (1+r) if sign: return -s return s def log_taylor_cached(x, prec): """ Fixed-point computation of log(x), assuming x in (0.5, 2) and prec <= LOG_TAYLOR_PREC. """ n = x >> (prec-LOG_TAYLOR_SHIFT) cached_prec = cache_prec_steps[prec] dprec = cached_prec - prec if (n, cached_prec) in log_taylor_cache: a, log_a = log_taylor_cache[n, cached_prec] else: a = n << (cached_prec - LOG_TAYLOR_SHIFT) log_a = log_taylor(a, cached_prec, 8) log_taylor_cache[n, cached_prec] = (a, log_a) a >>= dprec log_a >>= dprec u = ((x - a) << prec) // a v = (u << prec) // ((MPZ_TWO << prec) + u) v2 = (v*v) >> prec v4 = (v2*v2) >> prec s0 = v s1 = v//3 v = (v*v4) >> prec k = 5 while v: s0 += v//k k += 2 s1 += v//k v = (v*v4) >> prec k += 2 s1 = (s1*v2) >> prec s = (s0+s1) << 1 return log_a + s def mpf_log(x, prec, rnd=round_fast): """ Compute the natural logarithm of the mpf value x. If x is negative, ComplexResult is raised. """ sign, man, exp, bc = x #------------------------------------------------------------------ # Handle special values if not man: if x == fzero: return fninf if x == finf: return finf if x == fnan: return fnan if sign: raise ComplexResult("logarithm of a negative number") wp = prec + 20 #------------------------------------------------------------------ # Handle log(2^n) = log(n)*2. # Here we catch the only possible exact value, log(1) = 0 if man == 1: if not exp: return fzero return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) mag = exp+bc abs_mag = abs(mag) #------------------------------------------------------------------ # Handle x = 1+eps, where log(x) ~ x. We need to check for # cancellation when moving to fixed-point math and compensate # by increasing the precision. Note that abs_mag in (0, 1) <=> # 0.5 < x < 2 and x != 1 if abs_mag <= 1: # Calculate t = x-1 to measure distance from 1 in bits tsign = 1-abs_mag if tsign: tman = (MPZ_ONE<<bc) - man else: tman = man - (MPZ_ONE<<(bc-1)) tbc = bitcount(tman) cancellation = bc - tbc if cancellation > wp: t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n') return mpf_perturb(t, tsign, prec, rnd) else: wp += cancellation # TODO: if close enough to 1, we could use Taylor series # even in the AGM precision range, since the Taylor series # converges rapidly #------------------------------------------------------------------ # Another special case: # n*log(2) is a good enough approximation if abs_mag > 10000: if bitcount(abs_mag) > wp: return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) #------------------------------------------------------------------ # General case. # Perform argument reduction using log(x) = log(x*2^n) - n*log(2): # If we are in the Taylor precision range, choose magnitude 0 or 1. # If we are in the AGM precision range, choose magnitude -m for # some large m; benchmarking on one machine showed m = prec/20 to be # optimal between 1000 and 100,000 digits. if wp <= LOG_TAYLOR_PREC: m = log_taylor_cached(lshift(man, wp-bc), wp) if mag: m += mag*ln2_fixed(wp) else: optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO n = optimal_mag - mag x = mpf_shift(x, n) wp += (-optimal_mag) m = -log_agm(to_fixed(x, wp), wp) m -= n*ln2_fixed(wp) return from_man_exp(m, -wp, prec, rnd) def mpf_log_hypot(a, b, prec, rnd): """ Computes log(sqrt(a^2+b^2)) accurately. """ # If either a or b is inf/nan/0, assume it to be a if not b[1]: a, b = b, a # a is inf/nan/0 if not a[1]: # both are inf/nan/0 if not b[1]: if a == b == fzero: return fninf if fnan in (a, b): return fnan # at least one term is (+/- inf)^2 return finf # only a is inf/nan/0 if a == fzero: # log(sqrt(0+b^2)) = log(|b|) return mpf_log(mpf_abs(b), prec, rnd) if a == fnan: return fnan return finf # Exact a2 = mpf_mul(a,a) b2 = mpf_mul(b,b) extra = 20 # Not exact h2 = mpf_add(a2, b2, prec+extra) cancelled = mpf_add(h2, fnone, 10) mag_cancelled = cancelled[2]+cancelled[3] # Just redo the sum exactly if necessary (could be smarter # and avoid memory allocation when a or b is precisely 1 # and the other is tiny...) if cancelled == fzero or mag_cancelled < -extra//2: h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2])) return mpf_shift(mpf_log(h2, prec, rnd), -1) #---------------------------------------------------------------------- # Inverse tangent # def atan_newton(x, prec): if prec >= 100: r = math.atan((x>>(prec-53))/2.0**53) else: r = math.atan(x/2.0**prec) prevp = 50 r = MPZ(int(r * 2.0**53) >> (53-prevp)) extra_p = 50 for wp in giant_steps(prevp, prec): wp += extra_p r = r << (wp-prevp) cos, sin = cos_sin_fixed(r, wp) tan = (sin << wp) // cos a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp)) r = r - a prevp = wp return rshift(r, prevp-prec) def atan_taylor_get_cached(n, prec): # Taylor series with caching wins up to huge precisions # To avoid unnecessary precomputation at low precision, we # do it in steps # Round to next power of 2 prec2 = (1<<(bitcount(prec-1))) + 20 dprec = prec2 - prec if (n, prec2) in atan_taylor_cache: a, atan_a = atan_taylor_cache[n, prec2] else: a = n << (prec2 - ATAN_TAYLOR_SHIFT) atan_a = atan_newton(a, prec2) atan_taylor_cache[n, prec2] = (a, atan_a) return (a >> dprec), (atan_a >> dprec) def atan_taylor(x, prec): n = (x >> (prec-ATAN_TAYLOR_SHIFT)) a, atan_a = atan_taylor_get_cached(n, prec) d = x - a s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec)) v2 = (v**2 >> prec) v4 = (v2 * v2) >> prec s1 = v//3 v = (v * v4) >> prec k = 5 while v: s0 += v // k k += 2 s1 += v // k v = (v * v4) >> prec k += 2 s1 = (s1 * v2) >> prec s = s0 - s1 return atan_a + s def atan_inf(sign, prec, rnd): if not sign: return mpf_shift(mpf_pi(prec, rnd), -1) return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) def mpf_atan(x, prec, rnd=round_fast): sign, man, exp, bc = x if not man: if x == fzero: return fzero if x == finf: return atan_inf(0, prec, rnd) if x == fninf: return atan_inf(1, prec, rnd) return fnan mag = exp + bc # Essentially infinity if mag > prec+20: return atan_inf(sign, prec, rnd) # Essentially ~ x if -mag > prec+20: return mpf_perturb(x, 1-sign, prec, rnd) wp = prec + 30 + abs(mag) # For large x, use atan(x) = pi/2 - atan(1/x) if mag >= 2: x = mpf_rdiv_int(1, x, wp) reciprocal = True else: reciprocal = False t = to_fixed(x, wp) if sign: t = -t if wp < ATAN_TAYLOR_PREC: a = atan_taylor(t, wp) else: a = atan_newton(t, wp) if reciprocal: a = ((pi_fixed(wp)>>1)+1) - a if sign: a = -a return from_man_exp(a, -wp, prec, rnd) # TODO: cleanup the special cases def mpf_atan2(y, x, prec, rnd=round_fast): xsign, xman, xexp, xbc = x ysign, yman, yexp, ybc = y if not yman: if y == fzero and x != fnan: if mpf_sign(x) >= 0: return fzero return mpf_pi(prec, rnd) if y in (finf, fninf): if x in (finf, fninf): return fnan # pi/2 if y == finf: return mpf_shift(mpf_pi(prec, rnd), -1) # -pi/2 return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) return fnan if ysign: return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd])) if not xman: if x == fnan: return fnan if x == finf: return fzero if x == fninf: return mpf_pi(prec, rnd) if y == fzero: return fzero return mpf_shift(mpf_pi(prec, rnd), -1) tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4) if xsign: return mpf_add(mpf_pi(prec+4), tquo, prec, rnd) else: return mpf_pos(tquo, prec, rnd) def mpf_asin(x, prec, rnd=round_fast): sign, man, exp, bc = x if bc+exp > 0 and x not in (fone, fnone): raise ComplexResult("asin(x) is real only for -1 <= x <= 1") # asin(x) = 2*atan(x/(1+sqrt(1-x**2))) wp = prec + 15 a = mpf_mul(x, x) b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp) c = mpf_div(x, b, wp) return mpf_shift(mpf_atan(c, prec, rnd), 1) def mpf_acos(x, prec, rnd=round_fast): # acos(x) = 2*atan(sqrt(1-x**2)/(1+x)) sign, man, exp, bc = x if bc + exp > 0: if x not in (fone, fnone): raise ComplexResult("acos(x) is real only for -1 <= x <= 1") if x == fnone: return mpf_pi(prec, rnd) wp = prec + 15 a = mpf_mul(x, x) b = mpf_sqrt(mpf_sub(fone, a, wp), wp) c = mpf_div(b, mpf_add(fone, x, wp), wp) return mpf_shift(mpf_atan(c, prec, rnd), 1) def mpf_asinh(x, prec, rnd=round_fast): wp = prec + 20 sign, man, exp, bc = x mag = exp+bc if mag < -8: if mag < -wp: return mpf_perturb(x, 1-sign, prec, rnd) wp += (-mag) # asinh(x) = log(x+sqrt(x**2+1)) # use reflection symmetry to avoid cancellation q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp) q = mpf_add(mpf_abs(x), q, wp) if sign: return mpf_neg(mpf_log(q, prec, negative_rnd[rnd])) else: return mpf_log(q, prec, rnd) def mpf_acosh(x, prec, rnd=round_fast): # acosh(x) = log(x+sqrt(x**2-1)) wp = prec + 15 if mpf_cmp(x, fone) == -1: raise ComplexResult("acosh(x) is real only for x >= 1") q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp) return mpf_log(mpf_add(x, q, wp), prec, rnd) def mpf_atanh(x, prec, rnd=round_fast): # atanh(x) = log((1+x)/(1-x))/2 sign, man, exp, bc = x if (not man) and exp: if x in (fzero, fnan): return x raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") mag = bc + exp if mag > 0: if mag == 1 and man == 1: return [finf, fninf][sign] raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") wp = prec + 15 if mag < -8: if mag < -wp: return mpf_perturb(x, sign, prec, rnd) wp += (-mag) a = mpf_add(x, fone, wp) b = mpf_sub(fone, x, wp) return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1) def mpf_fibonacci(x, prec, rnd=round_fast): sign, man, exp, bc = x if not man: if x == fninf: return fnan return x # F(2^n) ~= 2^(2^n) size = abs(exp+bc) if exp >= 0: # Exact if size < 10 or size <= bitcount(prec): return from_int(ifib(to_int(x)), prec, rnd) # Use the modified Binet formula wp = prec + size + 20 a = mpf_phi(wp) b = mpf_add(mpf_shift(a, 1), fnone, wp) u = mpf_pow(a, x, wp) v = mpf_cos_pi(x, wp) v = mpf_div(v, u, wp) u = mpf_sub(u, v, wp) u = mpf_div(u, b, prec, rnd) return u #------------------------------------------------------------------------------- # Exponential-type functions #------------------------------------------------------------------------------- def exponential_series(x, prec, type=0): """ Taylor series for cosh/sinh or cos/sin. type = 0 -- returns exp(x) (slightly faster than cosh+sinh) type = 1 -- returns (cosh(x), sinh(x)) type = 2 -- returns (cos(x), sin(x)) """ if x < 0: x = -x sign = 1 else: sign = 0 r = int(0.5*prec**0.5) xmag = bitcount(x) - prec r = max(0, xmag + r) extra = 10 + 2*max(r,-xmag) wp = prec + extra x <<= (extra - r) one = MPZ_ONE << wp alt = (type == 2) if prec < EXP_SERIES_U_CUTOFF: x2 = a = (x*x) >> wp x4 = (x2*x2) >> wp s0 = s1 = MPZ_ZERO k = 2 while a: a //= (k-1)*k; s0 += a; k += 2 a //= (k-1)*k; s1 += a; k += 2 a = (a*x4) >> wp s1 = (x2*s1) >> wp if alt: c = s1 - s0 + one else: c = s1 + s0 + one else: u = int(0.3*prec**0.35) x2 = a = (x*x) >> wp xpowers = [one, x2] for i in xrange(1, u): xpowers.append((xpowers[-1]*x2)>>wp) sums = [MPZ_ZERO] * u k = 2 while a: for i in xrange(u): a //= (k-1)*k if alt and k & 2: sums[i] -= a else: sums[i] += a k += 2 a = (a*xpowers[-1]) >> wp for i in xrange(1, u): sums[i] = (sums[i]*xpowers[i]) >> wp c = sum(sums) + one if type == 0: s = isqrt_fast(c*c - (one<<wp)) if sign: v = c - s else: v = c + s for i in xrange(r): v = (v*v) >> wp return v >> extra else: # Repeatedly apply the double-angle formula # cosh(2*x) = 2*cosh(x)^2 - 1 # cos(2*x) = 2*cos(x)^2 - 1 pshift = wp-1 for i in xrange(r): c = ((c*c) >> pshift) - one # With the abs, this is the same for sinh and sin s = isqrt_fast(abs((one<<wp) - c*c)) if sign: s = -s return (c>>extra), (s>>extra) def exp_basecase(x, prec): """ Compute exp(x) as a fixed-point number. Works for any x, but for speed should have |x| < 1. For an arbitrary number, use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)). """ if prec > EXP_COSH_CUTOFF: return exponential_series(x, prec, 0) r = int(prec**0.5) prec += r s0 = s1 = (MPZ_ONE << prec) k = 2 a = x2 = (x*x) >> prec while a: a //= k; s0 += a; k += 1 a //= k; s1 += a; k += 1 a = (a*x2) >> prec s1 = (s1*x) >> prec s = s0 + s1 u = r while r: s = (s*s) >> prec r -= 1 return s >> u def exp_expneg_basecase(x, prec): """ Computation of exp(x), exp(-x) """ if prec > EXP_COSH_CUTOFF: cosh, sinh = exponential_series(x, prec, 1) return cosh+sinh, cosh-sinh a = exp_basecase(x, prec) b = (MPZ_ONE << (prec+prec)) // a return a, b def cos_sin_basecase(x, prec): """ Compute cos(x), sin(x) as fixed-point numbers, assuming x in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2) where m = floor(x/(pi/2)) along with quarter-period symmetries. """ if prec > COS_SIN_CACHE_PREC: return exponential_series(x, prec, 2) precs = prec - COS_SIN_CACHE_STEP t = x >> precs n = int(t) if n not in cos_sin_cache: w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP) cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2) cos_sin_cache[n] = (cos_t>>10), (sin_t>>10) cos_t, sin_t = cos_sin_cache[n] offset = COS_SIN_CACHE_PREC - prec cos_t >>= offset sin_t >>= offset x -= t << precs cos = MPZ_ONE << prec sin = x k = 2 a = -((x*x) >> prec) while a: a //= k; cos += a; k += 1; a = (a*x) >> prec a //= k; sin += a; k += 1; a = -((a*x) >> prec) return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec) def mpf_exp(x, prec, rnd=round_fast): sign, man, exp, bc = x if man: mag = bc + exp wp = prec + 14 if sign: man = -man # TODO: the best cutoff depends on both x and the precision. if prec > 600 and exp >= 0: # Need about log2(exp(n)) ~= 1.45*mag extra precision e = mpf_e(wp+int(1.45*mag)) return mpf_pow_int(e, man<<exp, prec, rnd) if mag < -wp: return mpf_perturb(fone, sign, prec, rnd) # |x| >= 2 if mag > 1: # For large arguments: exp(2^mag*(1+eps)) = # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...) # so about mag extra bits is required. wpmod = wp + mag offset = exp + wpmod if offset >= 0: t = man << offset else: t = man >> (-offset) lg2 = ln2_fixed(wpmod) n, t = divmod(t, lg2) n = int(n) t >>= mag else: offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) n = 0 man = exp_basecase(t, wp) return from_man_exp(man, n-wp, prec, rnd) if not exp: return fone if x == fninf: return fzero return x def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0): """Simultaneously compute (cosh(x), sinh(x)) for real x""" sign, man, exp, bc = x if (not man) and exp: if tanh: if x == finf: return fone if x == fninf: return fnone return fnan if x == finf: return (finf, finf) if x == fninf: return (finf, fninf) return fnan, fnan mag = exp+bc wp = prec+14 if mag < -4: # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1 if mag < -wp: if tanh: return mpf_perturb(x, 1-sign, prec, rnd) cosh = mpf_perturb(fone, 0, prec, rnd) sinh = mpf_perturb(x, sign, prec, rnd) return cosh, sinh # Fix for cancellation when computing sinh wp += (-mag) # Does exp(-2*x) vanish? if mag > 10: if 3*(1<<(mag-1)) > wp: # XXX: rounding if tanh: return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd) c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1) if sign: s = mpf_neg(s) return c, s # |x| > 1 if mag > 1: wpmod = wp + mag offset = exp + wpmod if offset >= 0: t = man << offset else: t = man >> (-offset) lg2 = ln2_fixed(wpmod) n, t = divmod(t, lg2) n = int(n) t >>= mag else: offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) n = 0 a, b = exp_expneg_basecase(t, wp) # TODO: optimize division precision cosh = a + (b>>(2*n)) sinh = a - (b>>(2*n)) if sign: sinh = -sinh if tanh: man = (sinh << wp) // cosh return from_man_exp(man, -wp, prec, rnd) else: cosh = from_man_exp(cosh, n-wp-1, prec, rnd) sinh = from_man_exp(sinh, n-wp-1, prec, rnd) return cosh, sinh def mod_pi2(man, exp, mag, wp): # Reduce to standard interval if mag > 0: i = 0 while 1: cancellation_prec = 20 << i wpmod = wp + mag + cancellation_prec pi2 = pi_fixed(wpmod-1) pi4 = pi2 >> 1 offset = wpmod + exp if offset >= 0: t = man << offset else: t = man >> (-offset) n, y = divmod(t, pi2) if y > pi4: small = pi2 - y else: small = y if small >> (wp+mag-10): n = int(n) t = y >> mag wp = wpmod - mag break i += 1 else: wp += (-mag) offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) n = 0 return t, n, wp def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False): """ which: 0 -- return cos(x), sin(x) 1 -- return cos(x) 2 -- return sin(x) 3 -- return tan(x) if pi=True, compute for pi*x """ sign, man, exp, bc = x if not man: if exp: c, s = fnan, fnan else: c, s = fone, fzero if which == 0: return c, s if which == 1: return c if which == 2: return s if which == 3: return s mag = bc + exp wp = prec + 10 # Extremely small? if mag < 0: if mag < -wp: if pi: x = mpf_mul(x, mpf_pi(wp)) c = mpf_perturb(fone, 1, prec, rnd) s = mpf_perturb(x, 1-sign, prec, rnd) if which == 0: return c, s if which == 1: return c if which == 2: return s if which == 3: return mpf_perturb(x, sign, prec, rnd) if pi: if exp >= -1: if exp == -1: c = fzero s = (fone, fnone)[bool(man & 2) ^ sign] elif exp == 0: c, s = (fnone, fzero) else: c, s = (fone, fzero) if which == 0: return c, s if which == 1: return c if which == 2: return s if which == 3: return mpf_div(s, c, prec, rnd) # Subtract nearest half-integer (= mod by pi/2) n = ((man >> (-exp-2)) + 1) >> 1 man = man - (n << (-exp-1)) mag2 = bitcount(man) + exp wp = prec + 10 - mag2 offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) t = (t*pi_fixed(wp)) >> wp else: t, n, wp = mod_pi2(man, exp, mag, wp) c, s = cos_sin_basecase(t, wp) m = n & 3 if m == 1: c, s = -s, c elif m == 2: c, s = -c, -s elif m == 3: c, s = s, -c if sign: s = -s if which == 0: c = from_man_exp(c, -wp, prec, rnd) s = from_man_exp(s, -wp, prec, rnd) return c, s if which == 1: return from_man_exp(c, -wp, prec, rnd) if which == 2: return from_man_exp(s, -wp, prec, rnd) if which == 3: return from_rational(s, c, prec, rnd) def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1) def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2) def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3) def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1) def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1) def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1) def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0] def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1] def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1) # Low-overhead fixed-point versions def cos_sin_fixed(x, prec, pi2=None): if pi2 is None: pi2 = pi_fixed(prec-1) n, t = divmod(x, pi2) n = int(n) c, s = cos_sin_basecase(t, prec) m = n & 3 if m == 0: return c, s if m == 1: return -s, c if m == 2: return -c, -s if m == 3: return s, -c def exp_fixed(x, prec, ln2=None): if ln2 is None: ln2 = ln2_fixed(prec) n, t = divmod(x, ln2) n = int(n) v = exp_basecase(t, prec) if n >= 0: return v << n else: return v >> (-n) if BACKEND == 'sage': try: import sage.libs.mpmath.ext_libmp as _lbmp mpf_sqrt = _lbmp.mpf_sqrt mpf_exp = _lbmp.mpf_exp mpf_log = _lbmp.mpf_log mpf_cos = _lbmp.mpf_cos mpf_sin = _lbmp.mpf_sin mpf_pow = _lbmp.mpf_pow exp_fixed = _lbmp.exp_fixed cos_sin_fixed = _lbmp.cos_sin_fixed log_int_fixed = _lbmp.log_int_fixed except (ImportError, AttributeError): print("Warning: Sage imports in libelefun failed")
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/libelefun.py
libelefun.py
import operator import math from .backend import MPZ_ZERO, MPZ_ONE, BACKEND, xrange, exec_ from .libintmath import gcd from .libmpf import (\ ComplexResult, round_fast, round_nearest, negative_rnd, bitcount, to_fixed, from_man_exp, from_int, to_int, from_rational, fzero, fone, fnone, ftwo, finf, fninf, fnan, mpf_sign, mpf_add, mpf_abs, mpf_pos, mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_min_max, mpf_perturb, mpf_neg, mpf_shift, mpf_sub, mpf_mul, mpf_div, sqrt_fixed, mpf_sqrt, mpf_rdiv_int, mpf_pow_int, to_rational, ) from .libelefun import (\ mpf_pi, mpf_exp, mpf_log, pi_fixed, mpf_cos_sin, mpf_cos, mpf_sin, mpf_sqrt, agm_fixed, ) from .libmpc import (\ mpc_one, mpc_sub, mpc_mul_mpf, mpc_mul, mpc_neg, complex_int_pow, mpc_div, mpc_add_mpf, mpc_sub_mpf, mpc_log, mpc_add, mpc_pos, mpc_shift, mpc_is_infnan, mpc_zero, mpc_sqrt, mpc_abs, mpc_mpf_div, mpc_square, mpc_exp ) from .libintmath import ifac from .gammazeta import mpf_gamma_int, mpf_euler, euler_fixed class NoConvergence(Exception): pass #-----------------------------------------------------------------------# # # # Generic hypergeometric series # # # #-----------------------------------------------------------------------# """ TODO: 1. proper mpq parsing 2. imaginary z special-cased (also: rational, integer?) 3. more clever handling of series that don't converge because of stupid upwards rounding 4. checking for cancellation """ def make_hyp_summator(key): """ Returns a function that sums a generalized hypergeometric series, for given parameter types (integer, rational, real, complex). """ p, q, param_types, ztype = key pstring = "".join(param_types) fname = "hypsum_%i_%i_%s_%s_%s" % (p, q, pstring[:p], pstring[p:], ztype) #print "generating hypsum", fname have_complex_param = 'C' in param_types have_complex_arg = ztype == 'C' have_complex = have_complex_param or have_complex_arg source = [] add = source.append aint = [] arat = [] bint = [] brat = [] areal = [] breal = [] acomplex = [] bcomplex = [] #add("wp = prec + 40") add("MAX = kwargs.get('maxterms', wp*100)") add("HIGH = MPZ_ONE<<epsshift") add("LOW = -HIGH") # Setup code add("SRE = PRE = one = (MPZ_ONE << wp)") if have_complex: add("SIM = PIM = MPZ_ZERO") if have_complex_arg: add("xsign, xm, xe, xbc = z[0]") add("if xsign: xm = -xm") add("ysign, ym, ye, ybc = z[1]") add("if ysign: ym = -ym") else: add("xsign, xm, xe, xbc = z") add("if xsign: xm = -xm") add("offset = xe + wp") add("if offset >= 0:") add(" ZRE = xm << offset") add("else:") add(" ZRE = xm >> (-offset)") if have_complex_arg: add("offset = ye + wp") add("if offset >= 0:") add(" ZIM = ym << offset") add("else:") add(" ZIM = ym >> (-offset)") for i, flag in enumerate(param_types): W = ["A", "B"][i >= p] if flag == 'Z': ([aint,bint][i >= p]).append(i) add("%sINT_%i = coeffs[%i]" % (W, i, i)) elif flag == 'Q': ([arat,brat][i >= p]).append(i) add("%sP_%i, %sQ_%i = coeffs[%i]._mpq_" % (W, i, W, i, i)) elif flag == 'R': ([areal,breal][i >= p]).append(i) add("xsign, xm, xe, xbc = coeffs[%i]._mpf_" % i) add("if xsign: xm = -xm") add("offset = xe + wp") add("if offset >= 0:") add(" %sREAL_%i = xm << offset" % (W, i)) add("else:") add(" %sREAL_%i = xm >> (-offset)" % (W, i)) elif flag == 'C': ([acomplex,bcomplex][i >= p]).append(i) add("__re, __im = coeffs[%i]._mpc_" % i) add("xsign, xm, xe, xbc = __re") add("if xsign: xm = -xm") add("ysign, ym, ye, ybc = __im") add("if ysign: ym = -ym") add("offset = xe + wp") add("if offset >= 0:") add(" %sCRE_%i = xm << offset" % (W, i)) add("else:") add(" %sCRE_%i = xm >> (-offset)" % (W, i)) add("offset = ye + wp") add("if offset >= 0:") add(" %sCIM_%i = ym << offset" % (W, i)) add("else:") add(" %sCIM_%i = ym >> (-offset)" % (W, i)) else: raise ValueError l_areal = len(areal) l_breal = len(breal) cancellable_real = min(l_areal, l_breal) noncancellable_real_num = areal[cancellable_real:] noncancellable_real_den = breal[cancellable_real:] # LOOP add("for n in xrange(1,10**8):") add(" if n in magnitude_check:") add(" p_mag = bitcount(abs(PRE))") if have_complex: add(" p_mag = max(p_mag, bitcount(abs(PIM)))") add(" magnitude_check[n] = wp-p_mag") # Real factors multiplier = " * ".join(["AINT_#".replace("#", str(i)) for i in aint] + \ ["AP_#".replace("#", str(i)) for i in arat] + \ ["BQ_#".replace("#", str(i)) for i in brat]) divisor = " * ".join(["BINT_#".replace("#", str(i)) for i in bint] + \ ["BP_#".replace("#", str(i)) for i in brat] + \ ["AQ_#".replace("#", str(i)) for i in arat] + ["n"]) if multiplier: add(" mul = " + multiplier) add(" div = " + divisor) # Check for singular terms add(" if not div:") if multiplier: add(" if not mul:") add(" break") add(" raise ZeroDivisionError") # Update product if have_complex: # TODO: when there are several real parameters and just a few complex # (maybe just the complex argument), we only need to do about # half as many ops if we accumulate the real factor in a single real variable for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) for k in range(cancellable_real): add(" PIM = PIM * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) for i in noncancellable_real_num: add(" PIM = (PIM * AREAL_#) >> wp".replace("#", str(i))) for i in noncancellable_real_den: add(" PIM = (PIM << wp) // BREAL_#".replace("#", str(i))) if multiplier: if have_complex_arg: add(" PRE, PIM = (mul*(PRE*ZRE-PIM*ZIM))//div, (mul*(PIM*ZRE+PRE*ZIM))//div") add(" PRE >>= wp") add(" PIM >>= wp") else: add(" PRE = ((mul * PRE * ZRE) >> wp) // div") add(" PIM = ((mul * PIM * ZRE) >> wp) // div") else: if have_complex_arg: add(" PRE, PIM = (PRE*ZRE-PIM*ZIM)//div, (PIM*ZRE+PRE*ZIM)//div") add(" PRE >>= wp") add(" PIM >>= wp") else: add(" PRE = ((PRE * ZRE) >> wp) // div") add(" PIM = ((PIM * ZRE) >> wp) // div") for i in acomplex: add(" PRE, PIM = PRE*ACRE_#-PIM*ACIM_#, PIM*ACRE_#+PRE*ACIM_#".replace("#", str(i))) add(" PRE >>= wp") add(" PIM >>= wp") for i in bcomplex: add(" mag = BCRE_#*BCRE_#+BCIM_#*BCIM_#".replace("#", str(i))) add(" re = PRE*BCRE_# + PIM*BCIM_#".replace("#", str(i))) add(" im = PIM*BCRE_# - PRE*BCIM_#".replace("#", str(i))) add(" PRE = (re << wp) // mag".replace("#", str(i))) add(" PIM = (im << wp) // mag".replace("#", str(i))) else: for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) if multiplier: add(" PRE = ((PRE * mul * ZRE) >> wp) // div") else: add(" PRE = ((PRE * ZRE) >> wp) // div") # Add product to sum if have_complex: add(" SRE += PRE") add(" SIM += PIM") add(" if (HIGH > PRE > LOW) and (HIGH > PIM > LOW):") add(" break") else: add(" SRE += PRE") add(" if HIGH > PRE > LOW:") add(" break") #add(" from mpmath import nprint, log, ldexp") #add(" nprint([n, log(abs(PRE),2), ldexp(PRE,-wp)])") add(" if n > MAX:") add(" raise NoConvergence('Hypergeometric series converges too slowly. Try increasing maxterms.')") # +1 all parameters for next loop for i in aint: add(" AINT_# += 1".replace("#", str(i))) for i in bint: add(" BINT_# += 1".replace("#", str(i))) for i in arat: add(" AP_# += AQ_#".replace("#", str(i))) for i in brat: add(" BP_# += BQ_#".replace("#", str(i))) for i in areal: add(" AREAL_# += one".replace("#", str(i))) for i in breal: add(" BREAL_# += one".replace("#", str(i))) for i in acomplex: add(" ACRE_# += one".replace("#", str(i))) for i in bcomplex: add(" BCRE_# += one".replace("#", str(i))) if have_complex: add("a = from_man_exp(SRE, -wp, prec, 'n')") add("b = from_man_exp(SIM, -wp, prec, 'n')") add("if SRE:") add(" if SIM:") add(" magn = max(a[2]+a[3], b[2]+b[3])") add(" else:") add(" magn = a[2]+a[3]") add("elif SIM:") add(" magn = b[2]+b[3]") add("else:") add(" magn = -wp+1") add("return (a, b), True, magn") else: add("a = from_man_exp(SRE, -wp, prec, 'n')") add("if SRE:") add(" magn = a[2]+a[3]") add("else:") add(" magn = -wp+1") add("return a, False, magn") source = "\n".join((" " + line) for line in source) source = ("def %s(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):\n" % fname) + source namespace = {} exec_(source, globals(), namespace) #print source return source, namespace[fname] if BACKEND == 'sage': def make_hyp_summator(key): """ Returns a function that sums a generalized hypergeometric series, for given parameter types (integer, rational, real, complex). """ from sage.libs.mpmath.ext_main import hypsum_internal p, q, param_types, ztype = key def _hypsum(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs): return hypsum_internal(p, q, param_types, ztype, coeffs, z, prec, wp, epsshift, magnitude_check, kwargs) return "(none)", _hypsum #-----------------------------------------------------------------------# # # # Error functions # # # #-----------------------------------------------------------------------# # TODO: mpf_erf should call mpf_erfc when appropriate (currently # only the converse delegation is implemented) def mpf_erf(x, prec, rnd=round_fast): sign, man, exp, bc = x if not man: if x == fzero: return fzero if x == finf: return fone if x== fninf: return fnone return fnan size = exp + bc lg = math.log # The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2): if sign: return mpf_perturb(fnone, 0, prec, rnd) else: return mpf_perturb(fone, 1, prec, rnd) # erf(x) ~ 2*x/sqrt(pi) close to 0 if size < -prec: # 2*x x = mpf_shift(x,1) c = mpf_sqrt(mpf_pi(prec+20), prec+20) # TODO: interval rounding return mpf_div(x, c, prec, rnd) wp = prec + abs(size) + 25 # Taylor series for erf, fixed-point summation t = abs(to_fixed(x, wp)) t2 = (t*t) >> wp s, term, k = t, 12345, 1 while term: t = ((t * t2) >> wp) // k term = t // (2*k+1) if k & 1: s -= term else: s += term k += 1 s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp) if sign: s = -s return from_man_exp(s, -wp, prec, rnd) # If possible, we use the asymptotic series for erfc. # This is an alternating divergent asymptotic series, so # the error is at most equal to the first omitted term. # Here we check if the smallest term is small enough # for a given x and precision def erfc_check_series(x, prec): n = to_int(x) if n**2 * 1.44 > prec: return True return False def mpf_erfc(x, prec, rnd=round_fast): sign, man, exp, bc = x if not man: if x == fzero: return fone if x == finf: return fzero if x == fninf: return ftwo return fnan wp = prec + 20 mag = bc+exp # Preserve full accuracy when exponent grows huge wp += max(0, 2*mag) regular_erf = sign or mag < 2 if regular_erf or not erfc_check_series(x, wp): if regular_erf: return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd) # 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation n = to_int(x)+1 return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd) s = term = MPZ_ONE << wp term_prev = 0 t = (2 * to_fixed(x, wp) ** 2) >> wp k = 1 while 1: term = ((term * (2*k - 1)) << wp) // t if k > 4 and term > term_prev or not term: break if k & 1: s -= term else: s += term term_prev = term #print k, to_str(from_man_exp(term, -wp, 50), 10) k += 1 s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp) s = from_man_exp(s, -wp, wp) z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp) y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd) return y #-----------------------------------------------------------------------# # # # Exponential integrals # # # #-----------------------------------------------------------------------# def ei_taylor(x, prec): s = t = x k = 2 while t: t = ((t*x) >> prec) // k s += t // k k += 1 return s def complex_ei_taylor(zre, zim, prec): _abs = abs sre = tre = zre sim = tim = zim k = 2 while _abs(tre) + _abs(tim) > 5: tre, tim = ((tre*zre-tim*zim)//k)>>prec, ((tre*zim+tim*zre)//k)>>prec sre += tre // k sim += tim // k k += 1 return sre, sim def ei_asymptotic(x, prec): one = MPZ_ONE << prec x = t = ((one << prec) // x) s = one + x k = 2 while t: t = (k*t*x) >> prec s += t k += 1 return s def complex_ei_asymptotic(zre, zim, prec): _abs = abs one = MPZ_ONE << prec M = (zim*zim + zre*zre) >> prec # 1 / z xre = tre = (zre << prec) // M xim = tim = ((-zim) << prec) // M sre = one + xre sim = xim k = 2 while _abs(tre) + _abs(tim) > 1000: #print tre, tim tre, tim = ((tre*xre-tim*xim)*k)>>prec, ((tre*xim+tim*xre)*k)>>prec sre += tre sim += tim k += 1 if k > prec: raise NoConvergence return sre, sim def mpf_ei(x, prec, rnd=round_fast, e1=False): if e1: x = mpf_neg(x) sign, man, exp, bc = x if e1 and not sign: if x == fzero: return finf raise ComplexResult("E1(x) for x < 0") if man: xabs = 0, man, exp, bc xmag = exp+bc wp = prec + 20 can_use_asymp = xmag > wp if not can_use_asymp: if exp >= 0: xabsint = man << exp else: xabsint = man >> (-exp) can_use_asymp = xabsint > int(wp*0.693) + 10 if can_use_asymp: if xmag > wp: v = fone else: v = from_man_exp(ei_asymptotic(to_fixed(x, wp), wp), -wp) v = mpf_mul(v, mpf_exp(x, wp), wp) v = mpf_div(v, x, prec, rnd) else: wp += 2*int(to_int(xabs)) u = to_fixed(x, wp) v = ei_taylor(u, wp) + euler_fixed(wp) t1 = from_man_exp(v,-wp) t2 = mpf_log(xabs,wp) v = mpf_add(t1, t2, prec, rnd) else: if x == fzero: v = fninf elif x == finf: v = finf elif x == fninf: v = fzero else: v = fnan if e1: v = mpf_neg(v) return v def mpc_ei(z, prec, rnd=round_fast, e1=False): if e1: z = mpc_neg(z) a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero: if e1: x = mpf_neg(mpf_ei(a, prec, rnd)) if not asign: y = mpf_neg(mpf_pi(prec, rnd)) else: y = fzero return x, y else: return mpf_ei(a, prec, rnd), fzero if a != fzero: if not aman or not bman: return (fnan, fnan) wp = prec + 40 amag = aexp+abc bmag = bexp+bbc zmag = max(amag, bmag) can_use_asymp = zmag > wp if not can_use_asymp: zabsint = abs(to_int(a)) + abs(to_int(b)) can_use_asymp = zabsint > int(wp*0.693) + 20 try: if can_use_asymp: if zmag > wp: v = fone, fzero else: zre = to_fixed(a, wp) zim = to_fixed(b, wp) vre, vim = complex_ei_asymptotic(zre, zim, wp) v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) v = mpc_mul(v, mpc_exp(z, wp), wp) v = mpc_div(v, z, wp) if e1: v = mpc_neg(v, prec, rnd) else: x, y = v if bsign: v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd) else: v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd) return v except NoConvergence: pass #wp += 2*max(0,zmag) wp += 2*int(to_int(mpc_abs(z, 5))) zre = to_fixed(a, wp) zim = to_fixed(b, wp) vre, vim = complex_ei_taylor(zre, zim, wp) vre += euler_fixed(wp) v = from_man_exp(vre,-wp), from_man_exp(vim,-wp) if e1: u = mpc_log(mpc_neg(z),wp) else: u = mpc_log(z,wp) v = mpc_add(v, u, prec, rnd) if e1: v = mpc_neg(v) return v def mpf_e1(x, prec, rnd=round_fast): return mpf_ei(x, prec, rnd, True) def mpc_e1(x, prec, rnd=round_fast): return mpc_ei(x, prec, rnd, True) def mpf_expint(n, x, prec, rnd=round_fast, gamma=False): """ E_n(x), n an integer, x real With gamma=True, computes Gamma(n,x) (upper incomplete gamma function) Returns (real, None) if real, otherwise (real, imag) The imaginary part is an optional branch cut term """ sign, man, exp, bc = x if not man: if gamma: if x == fzero: # Actually gamma function pole if n <= 0: return finf, None return mpf_gamma_int(n, prec, rnd), None if x == finf: return fzero, None # TODO: could return finite imaginary value at -inf return fnan, fnan else: if x == fzero: if n > 1: return from_rational(1, n-1, prec, rnd), None else: return finf, None if x == finf: return fzero, None return fnan, fnan n_orig = n if gamma: n = 1-n wp = prec + 20 xmag = exp + bc # Beware of near-poles if xmag < -10: raise NotImplementedError nmag = bitcount(abs(n)) have_imag = n > 0 and sign negx = mpf_neg(x) # Skip series if direct convergence if n == 0 or 2*nmag - xmag < -wp: if gamma: v = mpf_exp(negx, wp) re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd) else: v = mpf_exp(negx, wp) re = mpf_div(v, x, prec, rnd) else: # Finite number of terms, or... can_use_asymptotic_series = -3*wp < n <= 0 # ...large enough? if not can_use_asymptotic_series: xi = abs(to_int(x)) m = min(max(1, xi-n), 2*wp) siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100) tol = -wp-10 can_use_asymptotic_series = siz < tol if can_use_asymptotic_series: r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp) m = n t = r*m s = MPZ_ONE << wp while m and t: s += t m += 1 t = (m*r*t) >> wp v = mpf_exp(negx, wp) if gamma: # ~ exp(-x) * x^(n-1) * (1 + ...) v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp) else: # ~ exp(-x)/x * (1 + ...) v = mpf_div(v, x, wp) re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd) elif n == 1: re = mpf_neg(mpf_ei(negx, prec, rnd)) elif n > 0 and n < 3*wp: T1 = mpf_neg(mpf_ei(negx, wp)) if gamma: if n_orig & 1: T1 = mpf_neg(T1) else: T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp) r = t = to_fixed(x, wp) facs = [1] * (n-1) for k in range(1,n-1): facs[k] = facs[k-1] * k facs = facs[::-1] s = facs[0] << wp for k in range(1, n-1): if k & 1: s -= facs[k] * t else: s += facs[k] * t t = (t*r) >> wp T2 = from_man_exp(s, -wp, wp) T2 = mpf_mul(T2, mpf_exp(negx, wp)) if gamma: T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp) R = mpf_add(T1, T2) re = mpf_div(R, from_int(ifac(n-1)), prec, rnd) else: raise NotImplementedError if have_imag: M = from_int(-ifac(n-1)) if gamma: im = mpf_div(mpf_pi(wp), M, prec, rnd) else: im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd) return re, im else: return re, None def mpf_ci_si_taylor(x, wp, which=0): """ 0 - Ci(x) - (euler+log(x)) 1 - Si(x) """ x = to_fixed(x, wp) x2 = -(x*x) >> wp if which == 0: s, t, k = 0, (MPZ_ONE<<wp), 2 else: s, t, k = x, x, 3 while t: t = (t*x2//(k*(k-1)))>>wp s += t//k k += 2 return from_man_exp(s, -wp) def mpc_ci_si_taylor(re, im, wp, which=0): # The following code is only designed for small arguments, # and not too small arguments (for relative accuracy) if re[1]: mag = re[2]+re[3] elif im[1]: mag = im[2]+im[3] if im[1]: mag = max(mag, im[2]+im[3]) if mag > 2 or mag < -wp: raise NotImplementedError wp += (2-mag) zre = to_fixed(re, wp) zim = to_fixed(im, wp) z2re = (zim*zim-zre*zre)>>wp z2im = (-2*zre*zim)>>wp tre = zre tim = zim one = MPZ_ONE<<wp if which == 0: sre, sim, tre, tim, k = 0, 0, (MPZ_ONE<<wp), 0, 2 else: sre, sim, tre, tim, k = zre, zim, zre, zim, 3 while max(abs(tre), abs(tim)) > 2: f = k*(k-1) tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp sre += tre//k sim += tim//k k += 2 return from_man_exp(sre, -wp), from_man_exp(sim, -wp) def mpf_ci_si(x, prec, rnd=round_fast, which=2): """ Calculation of Ci(x), Si(x) for real x. which = 0 -- returns (Ci(x), -) which = 1 -- returns (Si(x), -) which = 2 -- returns (Ci(x), Si(x)) Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i. """ wp = prec + 20 sign, man, exp, bc = x ci, si = None, None if not man: if x == fzero: return (fninf, fzero) if x == fnan: return (x, x) ci = fzero if which != 0: if x == finf: si = mpf_shift(mpf_pi(prec, rnd), -1) if x == fninf: si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) return (ci, si) # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x mag = exp+bc if mag < -wp: if which != 0: si = mpf_perturb(x, 1-sign, prec, rnd) if which != 1: y = mpf_euler(wp) xabs = mpf_abs(x) ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd) return ci, si # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2 elif mag > wp: if which != 0: if sign: si = mpf_neg(mpf_pi(prec, negative_rnd[rnd])) else: si = mpf_pi(prec, rnd) si = mpf_shift(si, -1) if which != 1: ci = mpf_div(mpf_sin(x, wp), x, prec, rnd) return ci, si else: wp += abs(mag) # Use an asymptotic series? The smallest value of n!/x^n # occurs for n ~ x, where the magnitude is ~ exp(-x). asymptotic = mag-1 > math.log(wp, 2) # Case 1: convergent series near 0 if not asymptotic: if which != 0: si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd) if which != 1: ci = mpf_ci_si_taylor(x, wp, 0) ci = mpf_add(ci, mpf_euler(wp), wp) ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd) return ci, si x = mpf_abs(x) # Case 2: asymptotic series for x >> 1 xf = to_fixed(x, wp) xr = (MPZ_ONE<<(2*wp)) // xf # 1/x s1 = (MPZ_ONE << wp) s2 = xr t = xr k = 2 while t: t = -t t = (t*xr*k)>>wp k += 1 s1 += t t = (t*xr*k)>>wp k += 1 s2 += t s1 = from_man_exp(s1, -wp) s2 = from_man_exp(s2, -wp) s1 = mpf_div(s1, x, wp) s2 = mpf_div(s2, x, wp) cos, sin = mpf_cos_sin(x, wp) # Ci(x) = sin(x)*s1-cos(x)*s2 # Si(x) = pi/2-cos(x)*s1-sin(x)*s2 if which != 0: si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp) si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp) if sign: si = mpf_neg(si) si = mpf_pos(si, prec, rnd) if which != 1: ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd) return ci, si def mpf_ci(x, prec, rnd=round_fast): if mpf_sign(x) < 0: raise ComplexResult return mpf_ci_si(x, prec, rnd, 0)[0] def mpf_si(x, prec, rnd=round_fast): return mpf_ci_si(x, prec, rnd, 1)[1] def mpc_ci(z, prec, rnd=round_fast): re, im = z if im == fzero: ci = mpf_ci_si(re, prec, rnd, 0)[0] if mpf_sign(re) < 0: return (ci, mpf_pi(prec, rnd)) return (ci, fzero) wp = prec + 20 cre, cim = mpc_ci_si_taylor(re, im, wp, 0) cre = mpf_add(cre, mpf_euler(wp), wp) ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd) return ci def mpc_si(z, prec, rnd=round_fast): re, im = z if im == fzero: return (mpf_ci_si(re, prec, rnd, 1)[1], fzero) wp = prec + 20 z = mpc_ci_si_taylor(re, im, wp, 1) return mpc_pos(z, prec, rnd) #-----------------------------------------------------------------------# # # # Bessel functions # # # #-----------------------------------------------------------------------# # A Bessel function of the first kind of integer order, J_n(x), is # given by the power series # oo # ___ k 2 k + n # \ (-1) / x \ # J_n(x) = ) ----------- | - | # /___ k! (k + n)! \ 2 / # k = 0 # Simplifying the quotient between two successive terms gives the # ratio x^2 / (-4*k*(k+n)). Hence, we only need one full-precision # multiplication and one division by a small integer per term. # The complex version is very similar, the only difference being # that the multiplication is actually 4 multiplies. # In the general case, we have # J_v(x) = (x/2)**v / v! * 0F1(v+1, (-1/4)*z**2) # TODO: for extremely large x, we could use an asymptotic # trigonometric approximation. # TODO: recompute at higher precision if the fixed-point mantissa # is very small def mpf_besseljn(n, x, prec, rounding=round_fast): prec += 50 negate = n < 0 and n & 1 mag = x[2]+x[3] n = abs(n) wp = prec + 20 + n*bitcount(n) if mag < 0: wp -= n * mag x = to_fixed(x, wp) x2 = (x**2) >> wp if not n: s = t = MPZ_ONE << wp else: s = t = (x**n // ifac(n)) >> ((n-1)*wp + n) k = 1 while t: t = ((t * x2) // (-4*k*(k+n))) >> wp s += t k += 1 if negate: s = -s return from_man_exp(s, -wp, prec, rounding) def mpc_besseljn(n, z, prec, rounding=round_fast): negate = n < 0 and n & 1 n = abs(n) origprec = prec zre, zim = z mag = max(zre[2]+zre[3], zim[2]+zim[3]) prec += 20 + n*bitcount(n) + abs(mag) if mag < 0: prec -= n * mag zre = to_fixed(zre, prec) zim = to_fixed(zim, prec) z2re = (zre**2 - zim**2) >> prec z2im = (zre*zim) >> (prec-1) if not n: sre = tre = MPZ_ONE << prec sim = tim = MPZ_ZERO else: re, im = complex_int_pow(zre, zim, n) sre = tre = (re // ifac(n)) >> ((n-1)*prec + n) sim = tim = (im // ifac(n)) >> ((n-1)*prec + n) k = 1 while abs(tre) + abs(tim) > 3: p = -4*k*(k+n) tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im tre = (tre // p) >> prec tim = (tim // p) >> prec sre += tre sim += tim k += 1 if negate: sre = -sre sim = -sim re = from_man_exp(sre, -prec, origprec, rounding) im = from_man_exp(sim, -prec, origprec, rounding) return (re, im) def mpf_agm(a, b, prec, rnd=round_fast): """ Computes the arithmetic-geometric mean agm(a,b) for nonnegative mpf values a, b. """ asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if asign or bsign: raise ComplexResult("agm of a negative number") # Handle inf, nan or zero in either operand if not (aman and bman): if a == fnan or b == fnan: return fnan if a == finf: if b == fzero: return fnan return finf if b == finf: if a == fzero: return fnan return finf # agm(0,x) = agm(x,0) = 0 return fzero wp = prec + 20 amag = aexp+abc bmag = bexp+bbc mag_delta = amag - bmag # Reduce to roughly the same magnitude using floating-point AGM abs_mag_delta = abs(mag_delta) if abs_mag_delta > 10: while abs_mag_delta > 10: a, b = mpf_shift(mpf_add(a,b,wp),-1), \ mpf_sqrt(mpf_mul(a,b,wp),wp) abs_mag_delta //= 2 asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b amag = aexp+abc bmag = bexp+bbc mag_delta = amag - bmag #print to_float(a), to_float(b) # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1 min_mag = min(amag,bmag) max_mag = max(amag,bmag) n = 0 # If too small, we lose precision when going to fixed-point if min_mag < -8: n = -min_mag # If too large, we waste time using fixed-point with large numbers elif max_mag > 20: n = -max_mag if n: a = mpf_shift(a, n) b = mpf_shift(b, n) #print to_float(a), to_float(b) af = to_fixed(a, wp) bf = to_fixed(b, wp) g = agm_fixed(af, bf, wp) return from_man_exp(g, -wp-n, prec, rnd) def mpf_agm1(a, prec, rnd=round_fast): """ Computes the arithmetic-geometric mean agm(1,a) for a nonnegative mpf value a. """ return mpf_agm(fone, a, prec, rnd) def mpc_agm(a, b, prec, rnd=round_fast): """ Complex AGM. TODO: * check that convergence works as intended * optimize * select a nonarbitrary branch """ if mpc_is_infnan(a) or mpc_is_infnan(b): return fnan, fnan if mpc_zero in (a, b): return fzero, fzero if mpc_neg(a) == b: return fzero, fzero wp = prec+20 eps = mpf_shift(fone, -wp+10) while 1: a1 = mpc_shift(mpc_add(a, b, wp), -1) b1 = mpc_sqrt(mpc_mul(a, b, wp), wp) a, b = a1, b1 size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1] err = mpc_abs(mpc_sub(a, b, 10), 10) if size == fzero or mpf_lt(err, mpf_mul(eps, size)): return a def mpc_agm1(a, prec, rnd=round_fast): return mpc_agm(mpc_one, a, prec, rnd) def mpf_ellipk(x, prec, rnd=round_fast): if not x[1]: if x == fzero: return mpf_shift(mpf_pi(prec, rnd), -1) if x == fninf: return fzero if x == fnan: return x if x == fone: return finf # TODO: for |x| << 1/2, one could use fall back to # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x) wp = prec + 15 # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x) # The sqrt raises ComplexResult if x > 0 a = mpf_sqrt(mpf_sub(fone, x, wp), wp) v = mpf_agm1(a, wp) r = mpf_div(mpf_pi(wp), v, prec, rnd) return mpf_shift(r, -1) def mpc_ellipk(z, prec, rnd=round_fast): re, im = z if im == fzero: if re == finf: return mpc_zero if mpf_le(re, fone): return mpf_ellipk(re, prec, rnd), fzero wp = prec + 15 a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp) v = mpc_agm1(a, wp) r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd) return mpc_shift(r, -1) def mpf_ellipe(x, prec, rnd=round_fast): # http://functions.wolfram.com/EllipticIntegrals/ # EllipticK/20/01/0001/ # E = (1-m)*(K'(m)*2*m + K(m)) sign, man, exp, bc = x if not man: if x == fzero: return mpf_shift(mpf_pi(prec, rnd), -1) if x == fninf: return finf if x == fnan: return x if x == finf: raise ComplexResult if x == fone: return fone wp = prec+20 mag = exp+bc if mag < -wp: return mpf_shift(mpf_pi(prec, rnd), -1) # Compute a finite difference for K' p = max(mag, 0) - wp h = mpf_shift(fone, p) K = mpf_ellipk(x, 2*wp) Kh = mpf_ellipk(mpf_sub(x, h), 2*wp) Kdiff = mpf_shift(mpf_sub(K, Kh), -p) t = mpf_sub(fone, x) b = mpf_mul(Kdiff, mpf_shift(x,1), wp) return mpf_mul(t, mpf_add(K, b), prec, rnd) def mpc_ellipe(z, prec, rnd=round_fast): re, im = z if im == fzero: if re == finf: return (fzero, finf) if mpf_le(re, fone): return mpf_ellipe(re, prec, rnd), fzero wp = prec + 15 mag = mpc_abs(z, 1) p = max(mag[2]+mag[3], 0) - wp h = mpf_shift(fone, p) K = mpc_ellipk(z, 2*wp) Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp) Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p) t = mpc_sub(mpc_one, z, wp) b = mpc_mul(Kdiff, mpc_shift(z,1), wp) return mpc_mul(t, mpc_add(K, b, wp), prec, rnd)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/libhyper.py
libhyper.py
from .libmpf import (prec_to_dps, dps_to_prec, repr_dps, round_down, round_up, round_floor, round_ceiling, round_nearest, to_pickable, from_pickable, ComplexResult, fzero, fnzero, fone, fnone, ftwo, ften, fhalf, fnan, finf, fninf, math_float_inf, round_int, normalize, normalize1, from_man_exp, from_int, to_man_exp, to_int, mpf_ceil, mpf_floor, mpf_nint, mpf_frac, from_float, to_float, from_rational, to_rational, to_fixed, mpf_rand, mpf_eq, mpf_hash, mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_pos, mpf_neg, mpf_abs, mpf_sign, mpf_add, mpf_sub, mpf_sum, mpf_mul, mpf_mul_int, mpf_shift, mpf_frexp, mpf_div, mpf_rdiv_int, mpf_mod, mpf_pow_int, mpf_perturb, to_digits_exp, to_str, str_to_man_exp, from_str, from_bstr, to_bstr, mpf_sqrt, mpf_hypot) from .libmpc import (mpc_one, mpc_zero, mpc_two, mpc_half, mpc_is_inf, mpc_is_infnan, mpc_to_str, mpc_to_complex, mpc_hash, mpc_conjugate, mpc_is_nonzero, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_pos, mpc_neg, mpc_shift, mpc_abs, mpc_arg, mpc_floor, mpc_ceil, mpc_nint, mpc_frac, mpc_mul, mpc_square, mpc_mul_mpf, mpc_mul_imag_mpf, mpc_mul_int, mpc_div, mpc_div_mpf, mpc_reciprocal, mpc_mpf_div, complex_int_pow, mpc_pow, mpc_pow_mpf, mpc_pow_int, mpc_sqrt, mpc_nthroot, mpc_cbrt, mpc_exp, mpc_log, mpc_cos, mpc_sin, mpc_tan, mpc_cos_pi, mpc_sin_pi, mpc_cosh, mpc_sinh, mpc_tanh, mpc_atan, mpc_acos, mpc_asin, mpc_asinh, mpc_acosh, mpc_atanh, mpc_fibonacci, mpf_expj, mpf_expjpi, mpc_expj, mpc_expjpi, mpc_cos_sin, mpc_cos_sin_pi) from .libelefun import (ln2_fixed, mpf_ln2, ln10_fixed, mpf_ln10, pi_fixed, mpf_pi, e_fixed, mpf_e, phi_fixed, mpf_phi, degree_fixed, mpf_degree, mpf_pow, mpf_nthroot, mpf_cbrt, log_int_fixed, agm_fixed, mpf_log, mpf_log_hypot, mpf_exp, mpf_cos_sin, mpf_cos, mpf_sin, mpf_tan, mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi, mpf_cosh_sinh, mpf_cosh, mpf_sinh, mpf_tanh, mpf_atan, mpf_atan2, mpf_asin, mpf_acos, mpf_asinh, mpf_acosh, mpf_atanh, mpf_fibonacci) from .libhyper import (NoConvergence, make_hyp_summator, mpf_erf, mpf_erfc, mpf_ei, mpc_ei, mpf_e1, mpc_e1, mpf_expint, mpf_ci_si, mpf_ci, mpf_si, mpc_ci, mpc_si, mpf_besseljn, mpc_besseljn, mpf_agm, mpf_agm1, mpc_agm, mpc_agm1, mpf_ellipk, mpc_ellipk, mpf_ellipe, mpc_ellipe) from .gammazeta import (catalan_fixed, mpf_catalan, khinchin_fixed, mpf_khinchin, glaisher_fixed, mpf_glaisher, apery_fixed, mpf_apery, euler_fixed, mpf_euler, mertens_fixed, mpf_mertens, twinprime_fixed, mpf_twinprime, mpf_bernoulli, bernfrac, mpf_gamma_int, mpf_factorial, mpc_factorial, mpf_gamma, mpc_gamma, mpf_loggamma, mpc_loggamma, mpf_rgamma, mpc_rgamma, mpf_gamma_old, mpc_gamma_old, mpf_factorial_old, mpc_factorial_old, mpf_harmonic, mpc_harmonic, mpf_psi0, mpc_psi0, mpf_psi, mpc_psi, mpf_zeta_int, mpf_zeta, mpc_zeta, mpf_altzeta, mpc_altzeta, mpf_zetasum, mpc_zetasum) from .libmpi import (mpi_str, mpi_from_str, mpi_to_str, mpi_eq, mpi_ne, mpi_lt, mpi_le, mpi_gt, mpi_ge, mpi_add, mpi_sub, mpi_delta, mpi_mid, mpi_pos, mpi_neg, mpi_abs, mpi_mul, mpi_div, mpi_exp, mpi_log, mpi_sqrt, mpi_pow_int, mpi_pow, mpi_cos_sin, mpi_cos, mpi_sin, mpi_tan, mpi_cot, mpi_atan, mpi_atan2, mpci_pos, mpci_neg, mpci_add, mpci_sub, mpci_mul, mpci_div, mpci_pow, mpci_abs, mpci_pow, mpci_exp, mpci_log, mpci_cos, mpci_sin, mpi_gamma, mpci_gamma, mpi_loggamma, mpci_loggamma, mpi_rgamma, mpci_rgamma, mpi_factorial, mpci_factorial) from .libintmath import (trailing, bitcount, numeral, bin_to_radix, isqrt, isqrt_small, isqrt_fast, sqrt_fixed, sqrtrem, ifib, ifac, list_primes, isprime, moebius, gcd, eulernum) from .backend import (gmpy, sage, BACKEND, STRICT, MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_THREE, MPZ_FIVE, int_types, HASH_MODULUS, HASH_BITS)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/__init__.py
__init__.py
__docformat__ = 'plaintext' import math from bisect import bisect import sys # Importing random is slow #from random import getrandbits getrandbits = None from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils) from .libintmath import (giant_steps, trailtable, bctable, lshift, rshift, bitcount, trailing, sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem, bin_to_radix) # We don't pickle tuples directly for the following reasons: # 1: pickle uses str() for ints, which is inefficient when they are large # 2: pickle doesn't work for gmpy mpzs # Both problems are solved by using hex() if BACKEND == 'sage': def to_pickable(x): sign, man, exp, bc = x return sign, hex(man), exp, bc else: def to_pickable(x): sign, man, exp, bc = x return sign, hex(man)[2:], exp, bc def from_pickable(x): sign, man, exp, bc = x return (sign, MPZ(man, 16), exp, bc) class ComplexResult(ValueError): pass try: intern except NameError: intern = lambda x: x # All supported rounding modes round_nearest = intern('n') round_floor = intern('f') round_ceiling = intern('c') round_up = intern('u') round_down = intern('d') round_fast = round_down def prec_to_dps(n): """Return number of accurate decimals that can be represented with a precision of n bits.""" return max(1, int(round(int(n)/3.3219280948873626)-1)) def dps_to_prec(n): """Return the number of bits required to represent n decimals accurately.""" return max(1, int(round((int(n)+1)*3.3219280948873626))) def repr_dps(n): """Return the number of decimal digits required to represent a number with n-bit precision so that it can be uniquely reconstructed from the representation.""" dps = prec_to_dps(n) if dps == 15: return 17 return dps + 3 #----------------------------------------------------------------------------# # Some commonly needed float values # #----------------------------------------------------------------------------# # Regular number format: # (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa fzero = (0, MPZ_ZERO, 0, 0) fnzero = (1, MPZ_ZERO, 0, 0) fone = (0, MPZ_ONE, 0, 1) fnone = (1, MPZ_ONE, 0, 1) ftwo = (0, MPZ_ONE, 1, 1) ften = (0, MPZ_FIVE, 1, 3) fhalf = (0, MPZ_ONE, -1, 1) # Arbitrary encoding for special numbers: zero mantissa, nonzero exponent fnan = (0, MPZ_ZERO, -123, -1) finf = (0, MPZ_ZERO, -456, -2) fninf = (1, MPZ_ZERO, -789, -3) # Was 1e1000; this is broken in Python 2.4 math_float_inf = 1e300 * 1e300 #----------------------------------------------------------------------------# # Rounding # #----------------------------------------------------------------------------# # This function can be used to round a mantissa generally. However, # we will try to do most rounding inline for efficiency. def round_int(x, n, rnd): if rnd == round_nearest: if x >= 0: t = x >> (n-1) if t & 1 and ((t & 2) or (x & h_mask[n<300][n])): return (t>>1)+1 else: return t>>1 else: return -round_int(-x, n, rnd) if rnd == round_floor: return x >> n if rnd == round_ceiling: return -((-x) >> n) if rnd == round_down: if x >= 0: return x >> n return -((-x) >> n) if rnd == round_up: if x >= 0: return -((-x) >> n) return x >> n # These masks are used to pick out segments of numbers to determine # which direction to round when rounding to nearest. class h_mask_big: def __getitem__(self, n): return (MPZ_ONE<<(n-1))-1 h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)] h_mask = [h_mask_big(), h_mask_small] # The >> operator rounds to floor. shifts_down[rnd][sign] # tells whether this is the right direction to use, or if the # number should be negated before shifting shifts_down = {round_floor:(1,0), round_ceiling:(0,1), round_down:(1,1), round_up:(0,0)} #----------------------------------------------------------------------------# # Normalization of raw mpfs # #----------------------------------------------------------------------------# # This function is called almost every time an mpf is created. # It has been optimized accordingly. def _normalize(sign, man, exp, bc, prec, rnd): """ Create a raw mpf tuple with value (-1)**sign * man * 2**exp and normalized mantissa. The mantissa is rounded in the specified direction if its size exceeds the precision. Trailing zero bits are also stripped from the mantissa to ensure that the representation is canonical. Conditions on the input: * The input must represent a regular (finite) number * The sign bit must be 0 or 1 * The mantissa must be positive * The exponent must be an integer * The bitcount must be exact If these conditions are not met, use from_man_exp, mpf_pos, or any of the conversion functions to create normalized raw mpf tuples. """ if not man: return fzero # Cut mantissa down to size if larger than target precision n = bc - prec if n > 0: if rnd == round_nearest: t = man >> (n-1) if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): man = (t>>1)+1 else: man = t>>1 elif shifts_down[rnd][sign]: man >>= n else: man = -((-man)>>n) exp += n bc = prec # Strip trailing bits if not man & 1: t = trailtable[int(man & 255)] if not t: while not man & 255: man >>= 8 exp += 8 bc -= 8 t = trailtable[int(man & 255)] man >>= t exp += t bc -= t # Bit count can be wrong if the input mantissa was 1 less than # a power of 2 and got rounded up, thereby adding an extra bit. # With trailing bits removed, all powers of two have mantissa 1, # so this is easy to check for. if man == 1: bc = 1 return sign, man, exp, bc def _normalize1(sign, man, exp, bc, prec, rnd): """same as normalize, but with the added condition that man is odd or zero """ if not man: return fzero if bc <= prec: return sign, man, exp, bc n = bc - prec if rnd == round_nearest: t = man >> (n-1) if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): man = (t>>1)+1 else: man = t>>1 elif shifts_down[rnd][sign]: man >>= n else: man = -((-man)>>n) exp += n bc = prec # Strip trailing bits if not man & 1: t = trailtable[int(man & 255)] if not t: while not man & 255: man >>= 8 exp += 8 bc -= 8 t = trailtable[int(man & 255)] man >>= t exp += t bc -= t # Bit count can be wrong if the input mantissa was 1 less than # a power of 2 and got rounded up, thereby adding an extra bit. # With trailing bits removed, all powers of two have mantissa 1, # so this is easy to check for. if man == 1: bc = 1 return sign, man, exp, bc try: _exp_types = (int, long) except NameError: _exp_types = (int,) def strict_normalize(sign, man, exp, bc, prec, rnd): """Additional checks on the components of an mpf. Enable tests by setting the environment variable MPMATH_STRICT to Y.""" assert type(man) == MPZ_TYPE assert type(bc) in _exp_types assert type(exp) in _exp_types assert bc == bitcount(man) return _normalize(sign, man, exp, bc, prec, rnd) def strict_normalize1(sign, man, exp, bc, prec, rnd): """Additional checks on the components of an mpf. Enable tests by setting the environment variable MPMATH_STRICT to Y.""" assert type(man) == MPZ_TYPE assert type(bc) in _exp_types assert type(exp) in _exp_types assert bc == bitcount(man) assert (not man) or (man & 1) return _normalize1(sign, man, exp, bc, prec, rnd) if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy): _normalize = gmpy._mpmath_normalize _normalize1 = gmpy._mpmath_normalize if BACKEND == 'sage': _normalize = _normalize1 = sage_utils.normalize if STRICT: normalize = strict_normalize normalize1 = strict_normalize1 else: normalize = _normalize normalize1 = _normalize1 #----------------------------------------------------------------------------# # Conversion functions # #----------------------------------------------------------------------------# def from_man_exp(man, exp, prec=None, rnd=round_fast): """Create raw mpf from (man, exp) pair. The mantissa may be signed. If no precision is specified, the mantissa is stored exactly.""" man = MPZ(man) sign = 0 if man < 0: sign = 1 man = -man if man < 1024: bc = bctable[int(man)] else: bc = bitcount(man) if not prec: if not man: return fzero if not man & 1: if man & 2: return (sign, man >> 1, exp + 1, bc - 1) t = trailtable[int(man & 255)] if not t: while not man & 255: man >>= 8 exp += 8 bc -= 8 t = trailtable[int(man & 255)] man >>= t exp += t bc -= t return (sign, man, exp, bc) return normalize(sign, man, exp, bc, prec, rnd) int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257)) if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy): from_man_exp = gmpy._mpmath_create if BACKEND == 'sage': from_man_exp = sage_utils.from_man_exp def from_int(n, prec=0, rnd=round_fast): """Create a raw mpf from an integer. If no precision is specified, the mantissa is stored exactly.""" if not prec: if n in int_cache: return int_cache[n] return from_man_exp(n, 0, prec, rnd) def to_man_exp(s): """Return (man, exp) of a raw mpf. Raise an error if inf/nan.""" sign, man, exp, bc = s if (not man) and exp: raise ValueError("mantissa and exponent are undefined for %s" % man) return man, exp def to_int(s, rnd=None): """Convert a raw mpf to the nearest int. Rounding is done down by default (same as int(float) in Python), but can be changed. If the input is inf/nan, an exception is raised.""" sign, man, exp, bc = s if (not man) and exp: raise ValueError("cannot convert %s to int" % man) if exp >= 0: if sign: return (-man) << exp return man << exp # Make default rounding fast if not rnd: if sign: return -(man >> (-exp)) else: return man >> (-exp) if sign: return round_int(-man, -exp, rnd) else: return round_int(man, -exp, rnd) def mpf_round_int(s, rnd): sign, man, exp, bc = s if (not man) and exp: return s if exp >= 0: return s mag = exp+bc if mag < 1: if rnd == round_ceiling: if sign: return fzero else: return fone elif rnd == round_floor: if sign: return fnone else: return fzero elif rnd == round_nearest: if mag < 0 or man == MPZ_ONE: return fzero elif sign: return fnone else: return fone else: raise NotImplementedError return mpf_pos(s, min(bc, mag), rnd) def mpf_floor(s, prec=0, rnd=round_fast): v = mpf_round_int(s, round_floor) if prec: v = mpf_pos(v, prec, rnd) return v def mpf_ceil(s, prec=0, rnd=round_fast): v = mpf_round_int(s, round_ceiling) if prec: v = mpf_pos(v, prec, rnd) return v def mpf_nint(s, prec=0, rnd=round_fast): v = mpf_round_int(s, round_nearest) if prec: v = mpf_pos(v, prec, rnd) return v def mpf_frac(s, prec=0, rnd=round_fast): return mpf_sub(s, mpf_floor(s), prec, rnd) def from_float(x, prec=53, rnd=round_fast): """Create a raw mpf from a Python float, rounding if necessary. If prec >= 53, the result is guaranteed to represent exactly the same number as the input. If prec is not specified, use prec=53.""" # frexp only raises an exception for nan on some platforms if x != x: return fnan # in Python2.5 math.frexp gives an exception for float infinity # in Python2.6 it returns (float infinity, 0) try: m, e = math.frexp(x) except: if x == math_float_inf: return finf if x == -math_float_inf: return fninf return fnan if x == math_float_inf: return finf if x == -math_float_inf: return fninf return from_man_exp(int(m*(1<<53)), e-53, prec, rnd) def to_float(s, strict=False): """ Convert a raw mpf to a Python float. The result is exact if the bitcount of s is <= 53 and no underflow/overflow occurs. If the number is too large or too small to represent as a regular float, it will be converted to inf or 0.0. Setting strict=True forces an OverflowError to be raised instead. """ sign, man, exp, bc = s if not man: if s == fzero: return 0.0 if s == finf: return math_float_inf if s == fninf: return -math_float_inf return math_float_inf/math_float_inf if sign: man = -man try: if bc < 100: return math.ldexp(man, exp) # Try resizing the mantissa. Overflow may still happen here. n = bc - 53 m = man >> n return math.ldexp(m, exp + n) except OverflowError: if strict: raise # Overflow to infinity if exp + bc > 0: if sign: return -math_float_inf else: return math_float_inf # Underflow to zero return 0.0 def from_rational(p, q, prec, rnd=round_fast): """Create a raw mpf from a rational number p/q, round if necessary.""" return mpf_div(from_int(p), from_int(q), prec, rnd) def to_rational(s): """Convert a raw mpf to a rational number. Return integers (p, q) such that s = p/q exactly.""" sign, man, exp, bc = s if sign: man = -man if bc == -1: raise ValueError("cannot convert %s to a rational number" % man) if exp >= 0: return man * (1<<exp), 1 else: return man, 1<<(-exp) def to_fixed(s, prec): """Convert a raw mpf to a fixed-point big integer""" sign, man, exp, bc = s offset = exp + prec if sign: if offset >= 0: return (-man) << offset else: return (-man) >> (-offset) else: if offset >= 0: return man << offset else: return man >> (-offset) ############################################################################## ############################################################################## #----------------------------------------------------------------------------# # Arithmetic operations, etc. # #----------------------------------------------------------------------------# def mpf_rand(prec): """Return a raw mpf chosen randomly from [0, 1), with prec bits in the mantissa.""" global getrandbits if not getrandbits: import random getrandbits = random.getrandbits return from_man_exp(getrandbits(prec), -prec, prec, round_floor) def mpf_eq(s, t): """Test equality of two raw mpfs. This is simply tuple comparion unless either number is nan, in which case the result is False.""" if not s[1] or not t[1]: if s == fnan or t == fnan: return False return s == t def mpf_hash(s): # Duplicate the new hash algorithm introduces in Python 3.2. if sys.version >= "3.2": ssign, sman, sexp, sbc = s # Handle special numbers if not sman: if s == fnan: return sys.hash_info.nan if s == finf: return sys.hash_info.inf if s == fninf: return -sys.hash_info.inf h = sman % HASH_MODULUS if sexp >= 0: sexp = sexp % HASH_BITS else: sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS) h = (h << sexp) % HASH_MODULUS if ssign: h = -h if h == -1: h == -2 return int(h) else: try: # Try to be compatible with hash values for floats and ints return hash(to_float(s, strict=1)) except OverflowError: # We must unfortunately sacrifice compatibility with ints here. # We could do hash(man << exp) when the exponent is positive, but # this would cause unreasonable inefficiency for large numbers. return hash(s) def mpf_cmp(s, t): """Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t, and 1 if s > t. (Same convention as Python's cmp() function.)""" # In principle, a comparison amounts to determining the sign of s-t. # A full subtraction is relatively slow, however, so we first try to # look at the components. ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t # Handle zeros and special numbers if not sman or not tman: if s == fzero: return -mpf_sign(t) if t == fzero: return mpf_sign(s) if s == t: return 0 # Follow same convention as Python's cmp for float nan if t == fnan: return 1 if s == finf: return 1 if t == fninf: return 1 return -1 # Different sides of zero if ssign != tsign: if not ssign: return 1 return -1 # This reduces to direct integer comparison if sexp == texp: if sman == tman: return 0 if sman > tman: if ssign: return -1 else: return 1 else: if ssign: return 1 else: return -1 # Check position of the highest set bit in each number. If # different, there is certainly an inequality. a = sbc + sexp b = tbc + texp if ssign: if a < b: return 1 if a > b: return -1 else: if a < b: return -1 if a > b: return 1 # Both numbers have the same highest bit. Subtract to find # how the lower bits compare. delta = mpf_sub(s, t, 5, round_floor) if delta[0]: return -1 return 1 def mpf_lt(s, t): if s == fnan or t == fnan: return False return mpf_cmp(s, t) < 0 def mpf_le(s, t): if s == fnan or t == fnan: return False return mpf_cmp(s, t) <= 0 def mpf_gt(s, t): if s == fnan or t == fnan: return False return mpf_cmp(s, t) > 0 def mpf_ge(s, t): if s == fnan or t == fnan: return False return mpf_cmp(s, t) >= 0 def mpf_min_max(seq): min = max = seq[0] for x in seq[1:]: if mpf_lt(x, min): min = x if mpf_gt(x, max): max = x return min, max def mpf_pos(s, prec=0, rnd=round_fast): """Calculate 0+s for a raw mpf (i.e., just round s to the specified precision).""" if prec: sign, man, exp, bc = s if (not man) and exp: return s return normalize1(sign, man, exp, bc, prec, rnd) return s def mpf_neg(s, prec=None, rnd=round_fast): """Negate a raw mpf (return -s), rounding the result to the specified precision. The prec argument can be omitted to do the operation exactly.""" sign, man, exp, bc = s if not man: if exp: if s == finf: return fninf if s == fninf: return finf return s if not prec: return (1-sign, man, exp, bc) return normalize1(1-sign, man, exp, bc, prec, rnd) def mpf_abs(s, prec=None, rnd=round_fast): """Return abs(s) of the raw mpf s, rounded to the specified precision. The prec argument can be omitted to generate an exact result.""" sign, man, exp, bc = s if (not man) and exp: if s == fninf: return finf return s if not prec: if sign: return (0, man, exp, bc) return s return normalize1(0, man, exp, bc, prec, rnd) def mpf_sign(s): """Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on whether s is negative, zero, or positive. (Nan is taken to give 0.)""" sign, man, exp, bc = s if not man: if s == finf: return 1 if s == fninf: return -1 return 0 return (-1) ** sign def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0): """ Add the two raw mpf values s and t. With prec=0, no rounding is performed. Note that this can produce a very large mantissa (potentially too large to fit in memory) if exponents are far apart. """ ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t tsign ^= _sub # Standard case: two nonzero, regular numbers if sman and tman: offset = sexp - texp if offset: if offset > 0: # Outside precision range; only need to perturb if offset > 100 and prec: delta = sbc + sexp - tbc - texp if delta > prec + 4: offset = prec + 4 sman <<= offset if tsign == ssign: sman += 1 else: sman -= 1 return normalize1(ssign, sman, sexp-offset, bitcount(sman), prec, rnd) # Add if ssign == tsign: man = tman + (sman << offset) # Subtract else: if ssign: man = tman - (sman << offset) else: man = (sman << offset) - tman if man >= 0: ssign = 0 else: man = -man ssign = 1 bc = bitcount(man) return normalize1(ssign, man, texp, bc, prec or bc, rnd) elif offset < 0: # Outside precision range; only need to perturb if offset < -100 and prec: delta = tbc + texp - sbc - sexp if delta > prec + 4: offset = prec + 4 tman <<= offset if ssign == tsign: tman += 1 else: tman -= 1 return normalize1(tsign, tman, texp-offset, bitcount(tman), prec, rnd) # Add if ssign == tsign: man = sman + (tman << -offset) # Subtract else: if tsign: man = sman - (tman << -offset) else: man = (tman << -offset) - sman if man >= 0: ssign = 0 else: man = -man ssign = 1 bc = bitcount(man) return normalize1(ssign, man, sexp, bc, prec or bc, rnd) # Equal exponents; no shifting necessary if ssign == tsign: man = tman + sman else: if ssign: man = tman - sman else: man = sman - tman if man >= 0: ssign = 0 else: man = -man ssign = 1 bc = bitcount(man) return normalize(ssign, man, texp, bc, prec or bc, rnd) # Handle zeros and special numbers if _sub: t = mpf_neg(t) if not sman: if sexp: if s == t or tman or not texp: return s return fnan if tman: return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd) return t if texp: return t if sman: return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd) return s def mpf_sub(s, t, prec=0, rnd=round_fast): """Return the difference of two raw mpfs, s-t. This function is simply a wrapper of mpf_add that changes the sign of t.""" return mpf_add(s, t, prec, rnd, 1) def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False): """ Sum a list of mpf values efficiently and accurately (typically no temporary roundoff occurs). If prec=0, the final result will not be rounded either. There may be roundoff error or cancellation if extremely large exponent differences occur. With absolute=True, sums the absolute values. """ man = 0 exp = 0 max_extra_prec = prec*2 or 1000000 # XXX special = None for x in xs: xsign, xman, xexp, xbc = x if xman: if xsign and not absolute: xman = -xman delta = xexp - exp if xexp >= exp: # x much larger than existing sum? # first: quick test if (delta > max_extra_prec) and \ ((not man) or delta-bitcount(abs(man)) > max_extra_prec): man = xman exp = xexp else: man += (xman << delta) else: delta = -delta # x much smaller than existing sum? if delta-xbc > max_extra_prec: if not man: man, exp = xman, xexp else: man = (man << delta) + xman exp = xexp elif xexp: if absolute: x = mpf_abs(x) special = mpf_add(special or fzero, x, 1) # Will be inf or nan if special: return special return from_man_exp(man, exp, prec, rnd) def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast): """Multiply two raw mpfs""" ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t sign = ssign ^ tsign man = sman*tman if man: bc = bitcount(man) if prec: return normalize1(sign, man, sexp+texp, bc, prec, rnd) else: return (sign, man, sexp+texp, bc) s_special = (not sman) and sexp t_special = (not tman) and texp if not s_special and not t_special: return fzero if fnan in (s, t): return fnan if (not tman) and texp: s, t = t, s if t == fzero: return fnan return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast): """Multiply by a Python integer.""" sign, man, exp, bc = s if not man: return mpf_mul(s, from_int(n), prec, rnd) if not n: return fzero if n < 0: sign ^= 1 n = -n man *= n return normalize(sign, man, exp, bitcount(man), prec, rnd) def python_mpf_mul(s, t, prec=0, rnd=round_fast): """Multiply two raw mpfs""" ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t sign = ssign ^ tsign man = sman*tman if man: bc = sbc + tbc - 1 bc += int(man>>bc) if prec: return normalize1(sign, man, sexp+texp, bc, prec, rnd) else: return (sign, man, sexp+texp, bc) s_special = (not sman) and sexp t_special = (not tman) and texp if not s_special and not t_special: return fzero if fnan in (s, t): return fnan if (not tman) and texp: s, t = t, s if t == fzero: return fnan return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] def python_mpf_mul_int(s, n, prec, rnd=round_fast): """Multiply by a Python integer.""" sign, man, exp, bc = s if not man: return mpf_mul(s, from_int(n), prec, rnd) if not n: return fzero if n < 0: sign ^= 1 n = -n man *= n # Generally n will be small if n < 1024: bc += bctable[int(n)] - 1 else: bc += bitcount(n) - 1 bc += int(man>>bc) return normalize(sign, man, exp, bc, prec, rnd) if BACKEND == 'gmpy': mpf_mul = gmpy_mpf_mul mpf_mul_int = gmpy_mpf_mul_int else: mpf_mul = python_mpf_mul mpf_mul_int = python_mpf_mul_int def mpf_shift(s, n): """Quickly multiply the raw mpf s by 2**n without rounding.""" sign, man, exp, bc = s if not man: return s return sign, man, exp+n, bc def mpf_frexp(x): """Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero""" sign, man, exp, bc = x if not man: if x == fzero: return (fzero, 0) else: raise ValueError return mpf_shift(x, -bc-exp), bc+exp def mpf_div(s, t, prec, rnd=round_fast): """Floating-point division""" ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t if not sman or not tman: if s == fzero: if t == fzero: raise ZeroDivisionError if t == fnan: return fnan return fzero if t == fzero: raise ZeroDivisionError s_special = (not sman) and sexp t_special = (not tman) and texp if s_special and t_special: return fnan if s == fnan or t == fnan: return fnan if not t_special: if t == fzero: return fnan return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] return fzero sign = ssign ^ tsign if tman == 1: return normalize1(sign, sman, sexp-texp, sbc, prec, rnd) # Same strategy as for addition: if there is a remainder, perturb # the result a few bits outside the precision range before rounding extra = prec - sbc + tbc + 5 if extra < 5: extra = 5 quot, rem = divmod(sman<<extra, tman) if rem: quot = (quot<<1) + 1 extra += 1 return normalize1(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd) return normalize(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd) def mpf_rdiv_int(n, t, prec, rnd=round_fast): """Floating-point division n/t with a Python integer as numerator""" sign, man, exp, bc = t if not n or not man: return mpf_div(from_int(n), t, prec, rnd) if n < 0: sign ^= 1 n = -n extra = prec + bc + 5 quot, rem = divmod(n<<extra, man) if rem: quot = (quot<<1) + 1 extra += 1 return normalize1(sign, quot, -exp-extra, bitcount(quot), prec, rnd) return normalize(sign, quot, -exp-extra, bitcount(quot), prec, rnd) def mpf_mod(s, t, prec, rnd=round_fast): ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t if ((not sman) and sexp) or ((not tman) and texp): return fnan # Important special case: do nothing if t is larger if ssign == tsign and texp > sexp+sbc: return s # Another important special case: this allows us to do e.g. x % 1.0 # to find the fractional part of x, and it will work when x is huge. if tman == 1 and sexp > texp+tbc: return fzero base = min(sexp, texp) sman = (-1)**ssign * sman tman = (-1)**tsign * tman man = (sman << (sexp-base)) % (tman << (texp-base)) if man >= 0: sign = 0 else: man = -man sign = 1 return normalize(sign, man, base, bitcount(man), prec, rnd) reciprocal_rnd = { round_down : round_up, round_up : round_down, round_floor : round_ceiling, round_ceiling : round_floor, round_nearest : round_nearest } negative_rnd = { round_down : round_down, round_up : round_up, round_floor : round_ceiling, round_ceiling : round_floor, round_nearest : round_nearest } def mpf_pow_int(s, n, prec, rnd=round_fast): """Compute s**n, where s is a raw mpf and n is a Python integer.""" sign, man, exp, bc = s if (not man) and exp: if s == finf: if n > 0: return s if n == 0: return fnan return fzero if s == fninf: if n > 0: return [finf, fninf][n & 1] if n == 0: return fnan return fzero return fnan n = int(n) if n == 0: return fone if n == 1: return mpf_pos(s, prec, rnd) if n == 2: _, man, exp, bc = s if not man: return fzero man = man*man if man == 1: return (0, MPZ_ONE, exp+exp, 1) bc = bc + bc - 2 bc += bctable[int(man>>bc)] return normalize1(0, man, exp+exp, bc, prec, rnd) if n == -1: return mpf_div(fone, s, prec, rnd) if n < 0: inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd]) return mpf_div(fone, inverse, prec, rnd) result_sign = sign & n # Use exact integer power when the exact mantissa is small if man == 1: return (result_sign, MPZ_ONE, exp*n, 1) if bc*n < 1000: man **= n return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd) # Use directed rounding all the way through to maintain rigorous # bounds for interval arithmetic rounds_down = (rnd == round_nearest) or \ shifts_down[rnd][result_sign] # Now we perform binary exponentiation. Need to estimate precision # to avoid rounding errors from temporary operations. Roughly log_2(n) # operations are performed. workprec = prec + 4*bitcount(n) + 4 _, pm, pe, pbc = fone while 1: if n & 1: pm = pm*man pe = pe+exp pbc += bc - 2 pbc = pbc + bctable[int(pm >> pbc)] if pbc > workprec: if rounds_down: pm = pm >> (pbc-workprec) else: pm = -((-pm) >> (pbc-workprec)) pe += pbc - workprec pbc = workprec n -= 1 if not n: break man = man*man exp = exp+exp bc = bc + bc - 2 bc = bc + bctable[int(man >> bc)] if bc > workprec: if rounds_down: man = man >> (bc-workprec) else: man = -((-man) >> (bc-workprec)) exp += bc - workprec bc = workprec n = n // 2 return normalize(result_sign, pm, pe, pbc, prec, rnd) def mpf_perturb(x, eps_sign, prec, rnd): """ For nonzero x, calculate x + eps with directed rounding, where eps < prec relatively and eps has the given sign (0 for positive, 1 for negative). With rounding to nearest, this is taken to simply normalize x to the given precision. """ if rnd == round_nearest: return mpf_pos(x, prec, rnd) sign, man, exp, bc = x eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1) if sign: away = (rnd in (round_down, round_ceiling)) ^ eps_sign else: away = (rnd in (round_up, round_ceiling)) ^ eps_sign if away: return mpf_add(x, eps, prec, rnd) else: return mpf_pos(x, prec, rnd) #----------------------------------------------------------------------------# # Radix conversion # #----------------------------------------------------------------------------# def to_digits_exp(s, dps): """Helper function for representing the floating-point number s as a decimal with dps digits. Returns (sign, string, exponent) where sign is '' or '-', string is the digit string, and exponent is the decimal exponent as an int. If inexact, the decimal representation is rounded toward zero.""" # Extract sign first so it doesn't mess up the string digit count if s[0]: sign = '-' s = mpf_neg(s) else: sign = '' _sign, man, exp, bc = s if not man: return '', '0', 0 bitprec = int(dps * math.log(10,2)) + 10 # Cut down to size # TODO: account for precision when doing this exp_from_1 = exp + bc if abs(exp_from_1) > 3500: from .libelefun import mpf_ln2, mpf_ln10 # Set b = int(exp * log(2)/log(10)) # If exp is huge, we must use high-precision arithmetic to # find the nearest power of ten expprec = bitcount(abs(exp)) + 5 tmp = from_int(exp) tmp = mpf_mul(tmp, mpf_ln2(expprec)) tmp = mpf_div(tmp, mpf_ln10(expprec), expprec) b = to_int(tmp) s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec) _sign, man, exp, bc = s exponent = b else: exponent = 0 # First, calculate mantissa digits by converting to a binary # fixed-point number and then converting that number to # a decimal fixed-point number. fixprec = max(bitprec - exp - bc, 0) fixdps = int(fixprec / math.log(10,2) + 0.5) sf = to_fixed(s, fixprec) sd = bin_to_radix(sf, fixprec, 10, fixdps) digits = numeral(sd, base=10, size=dps) exponent += len(digits) - fixdps - 1 return sign, digits, exponent def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None, show_zero_exponent=False): """ Convert a raw mpf to a decimal floating-point literal with at most `dps` decimal digits in the mantissa (not counting extra zeros that may be inserted for visual purposes). The number will be printed in fixed-point format if the position of the leading digit is strictly between min_fixed (default = min(-dps/3,-5)) and max_fixed (default = dps). To force fixed-point format always, set min_fixed = -inf, max_fixed = +inf. To force floating-point format, set min_fixed >= max_fixed. The literal is formatted so that it can be parsed back to a number by to_str, float() or Decimal(). """ # Special numbers if not s[1]: if s == fzero: if dps: t = '0.0' else: t = '.0' if show_zero_exponent: t += 'e+0' return t if s == finf: return '+inf' if s == fninf: return '-inf' if s == fnan: return 'nan' raise ValueError if min_fixed is None: min_fixed = min(-(dps//3), -5) if max_fixed is None: max_fixed = dps # to_digits_exp rounds to floor. # This sometimes kills some instances of "...00001" sign, digits, exponent = to_digits_exp(s, dps+3) # No digits: show only .0; round exponent to nearest if not dps: if digits[0] in '56789': exponent += 1 digits = ".0" else: # Rounding up kills some instances of "...99999" if len(digits) > dps and digits[dps] in '56789' and \ (dps < 500 or digits[dps-4:dps] == '9999'): digits2 = str(int(digits[:dps]) + 1) if len(digits2) > dps: digits2 = digits2[:dps] exponent += 1 digits = digits2 else: digits = digits[:dps] # Prettify numbers close to unit magnitude if min_fixed < exponent < max_fixed: if exponent < 0: digits = ("0"*int(-exponent)) + digits split = 1 else: split = exponent + 1 if split > dps: digits += "0"*(split-dps) exponent = 0 else: split = 1 digits = (digits[:split] + "." + digits[split:]) if strip_zeros: # Clean up trailing zeros digits = digits.rstrip('0') if digits[-1] == ".": digits += "0" if exponent == 0 and dps and not show_zero_exponent: return sign + digits if exponent >= 0: return sign + digits + "e+" + str(exponent) if exponent < 0: return sign + digits + "e" + str(exponent) def str_to_man_exp(x, base=10): """Helper function for from_str.""" # Verify that the input is a valid float literal float(x) # Split into mantissa, exponent x = x.lower() parts = x.split('e') if len(parts) == 1: exp = 0 else: # == 2 x = parts[0] exp = int(parts[1]) # Look for radix point in mantissa parts = x.split('.') if len(parts) == 2: a, b = parts[0], parts[1].rstrip('0') exp -= len(b) x = a + b x = MPZ(int(x, base)) return x, exp special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan} def from_str(x, prec, rnd=round_fast): """Create a raw mpf from a decimal literal, rounding in the specified direction if the input number cannot be represented exactly as a binary floating-point number with the given number of bits. The literal syntax accepted is the same as for Python floats. TODO: the rounding does not work properly for large exponents. """ x = x.strip() if x in special_str: return special_str[x] if '/' in x: p, q = x.split('/') return from_rational(int(p), int(q), prec, rnd) man, exp = str_to_man_exp(x, base=10) # XXX: appropriate cutoffs & track direction # note no factors of 5 if abs(exp) > 400: s = from_int(man, prec+10) s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd) else: if exp >= 0: s = from_int(man * 10**exp, prec, rnd) else: s = from_rational(man, 10**-exp, prec, rnd) return s # Binary string conversion. These are currently mainly used for debugging # and could use some improvement in the future def from_bstr(x): man, exp = str_to_man_exp(x, base=2) man = MPZ(man) sign = 0 if man < 0: man = -man sign = 1 bc = bitcount(man) return normalize(sign, man, exp, bc, bc, round_floor) def to_bstr(x): sign, man, exp, bc = x return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp) #----------------------------------------------------------------------------# # Square roots # #----------------------------------------------------------------------------# def mpf_sqrt(s, prec, rnd=round_fast): """ Compute the square root of a nonnegative mpf value. The result is correctly rounded. """ sign, man, exp, bc = s if sign: raise ComplexResult("square root of a negative number") if not man: return s if exp & 1: exp -= 1 man <<= 1 bc += 1 elif man == 1: return normalize1(sign, man, exp//2, bc, prec, rnd) shift = max(4, 2*prec-bc+4) shift += shift & 1 if rnd in 'fd': man = isqrt(man<<shift) else: man, rem = sqrtrem(man<<shift) # Perturb up if rem: man = (man<<1)+1 shift += 2 return from_man_exp(man, (exp-shift)//2, prec, rnd) def mpf_hypot(x, y, prec, rnd=round_fast): """Compute the Euclidean norm sqrt(x**2 + y**2) of two raw mpfs x and y.""" if y == fzero: return mpf_abs(x, prec, rnd) if x == fzero: return mpf_abs(y, prec, rnd) hypot2 = mpf_add(mpf_mul(x,x), mpf_mul(y,y), prec+4) return mpf_sqrt(hypot2, prec, rnd) if BACKEND == 'sage': try: import sage.libs.mpmath.ext_libmp as ext_lib mpf_add = ext_lib.mpf_add mpf_sub = ext_lib.mpf_sub mpf_mul = ext_lib.mpf_mul mpf_div = ext_lib.mpf_div mpf_sqrt = ext_lib.mpf_sqrt except ImportError: pass
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/libmpf.py
libmpf.py
import os import sys #----------------------------------------------------------------------------# # Support GMPY for high-speed large integer arithmetic. # # # # To allow an external module to handle arithmetic, we need to make sure # # that all high-precision variables are declared of the correct type. MPZ # # is the constructor for the high-precision type. It defaults to Python's # # long type but can be assinged another type, typically gmpy.mpz. # # # # MPZ must be used for the mantissa component of an mpf and must be used # # for internal fixed-point operations. # # # # Side-effects # # 1) "is" cannot be used to test for special values. Must use "==". # # 2) There are bugs in GMPY prior to v1.02 so we must use v1.03 or later. # #----------------------------------------------------------------------------# # So we can import it from this module gmpy = None sage = None sage_utils = None try: xrange python3 = False except NameError: python3 = True BACKEND = 'python' if not python3: MPZ = long xrange = xrange basestring = basestring from .exec_py2 import exec_ else: MPZ = int xrange = range basestring = str from .exec_py3 import exec_ # Define constants for calculating hash on Python 3.2. if sys.version >= "3.2": HASH_MODULUS = sys.hash_info.modulus if sys.hash_info.width == 32: HASH_BITS = 31 else: HASH_BITS = 61 else: HASH_MODULUS = None HASH_BITS = None if 'MPMATH_NOGMPY' not in os.environ: try: try: import gmpy2 as gmpy except ImportError: try: import gmpy except ImportError: raise ImportError if gmpy.version() >= '1.03': BACKEND = 'gmpy' MPZ = gmpy.mpz except: pass if 'MPMATH_NOSAGE' not in os.environ: try: import sage.all import sage.libs.mpmath.utils as _sage_utils sage = sage.all sage_utils = _sage_utils BACKEND = 'sage' MPZ = sage.Integer except: pass if 'MPMATH_STRICT' in os.environ: STRICT = True else: STRICT = False MPZ_TYPE = type(MPZ(0)) MPZ_ZERO = MPZ(0) MPZ_ONE = MPZ(1) MPZ_TWO = MPZ(2) MPZ_THREE = MPZ(3) MPZ_FIVE = MPZ(5) try: if BACKEND == 'python': int_types = (int, long) else: int_types = (int, long, MPZ_TYPE) except NameError: if BACKEND == 'python': int_types = (int,) else: int_types = (int, MPZ_TYPE)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/libmp/backend.py
backend.py
from ..libmp.backend import xrange # TODO: should use diagonalization-based algorithms class MatrixCalculusMethods: def _exp_pade(ctx, a): """ Exponential of a matrix using Pade approximants. See G. H. Golub, C. F. van Loan 'Matrix Computations', third Ed., page 572 TODO: - find a good estimate for q - reduce the number of matrix multiplications to improve performance """ def eps_pade(p): return ctx.mpf(2)**(3-2*p) * \ ctx.factorial(p)**2/(ctx.factorial(2*p)**2 * (2*p + 1)) q = 4 extraq = 8 while 1: if eps_pade(q) < ctx.eps: break q += 1 q += extraq j = int(max(1, ctx.mag(ctx.mnorm(a,'inf')))) extra = q prec = ctx.prec ctx.dps += extra + 3 try: a = a/2**j na = a.rows den = ctx.eye(na) num = ctx.eye(na) x = ctx.eye(na) c = ctx.mpf(1) for k in range(1, q+1): c *= ctx.mpf(q - k + 1)/((2*q - k + 1) * k) x = a*x cx = c*x num += cx den += (-1)**k * cx f = ctx.lu_solve_mat(den, num) for k in range(j): f = f*f finally: ctx.prec = prec return f*1 def expm(ctx, A, method='taylor'): r""" Computes the matrix exponential of a square matrix `A`, which is defined by the power series .. math :: \exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots With method='taylor', the matrix exponential is computed using the Taylor series. With method='pade', Pade approximants are used instead. **Examples** Basic examples:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> expm(zeros(3)) [1.0 0.0 0.0] [0.0 1.0 0.0] [0.0 0.0 1.0] >>> expm(eye(3)) [2.71828182845905 0.0 0.0] [ 0.0 2.71828182845905 0.0] [ 0.0 0.0 2.71828182845905] >>> expm([[1,1,0],[1,0,1],[0,1,0]]) [ 3.86814500615414 2.26812870852145 0.841130841230196] [ 2.26812870852145 2.44114713886289 1.42699786729125] [0.841130841230196 1.42699786729125 1.6000162976327] >>> expm([[1,1,0],[1,0,1],[0,1,0]], method='pade') [ 3.86814500615414 2.26812870852145 0.841130841230196] [ 2.26812870852145 2.44114713886289 1.42699786729125] [0.841130841230196 1.42699786729125 1.6000162976327] >>> expm([[1+j, 0], [1+j,1]]) [(1.46869393991589 + 2.28735528717884j) 0.0] [ (1.03776739863568 + 3.536943175722j) (2.71828182845905 + 0.0j)] Matrices with large entries are allowed:: >>> expm(matrix([[1,2],[2,3]])**25) [5.65024064048415e+2050488462815550 9.14228140091932e+2050488462815550] [9.14228140091932e+2050488462815550 1.47925220414035e+2050488462815551] The identity `\exp(A+B) = \exp(A) \exp(B)` does not hold for noncommuting matrices:: >>> A = hilbert(3) >>> B = A + eye(3) >>> chop(mnorm(A*B - B*A)) 0.0 >>> chop(mnorm(expm(A+B) - expm(A)*expm(B))) 0.0 >>> B = A + ones(3) >>> mnorm(A*B - B*A) 1.8 >>> mnorm(expm(A+B) - expm(A)*expm(B)) 42.0927851137247 """ A = ctx.matrix(A) if method == 'pade': return ctx._exp_pade(A) prec = ctx.prec j = int(max(1, ctx.mag(ctx.mnorm(A,'inf')))) j += int(0.5*prec**0.5) try: ctx.prec += 10 + 2*j tol = +ctx.eps A = A/2**j T = A Y = A**0 + A k = 2 while 1: T *= A * (1/ctx.mpf(k)) if ctx.mnorm(T, 'inf') < tol: break Y += T k += 1 for k in xrange(j): Y = Y*Y finally: ctx.prec = prec Y *= 1 return Y def cosm(ctx, A): r""" Gives the cosine of a square matrix `A`, defined in analogy with the matrix exponential. Examples:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> X = eye(3) >>> cosm(X) [0.54030230586814 0.0 0.0] [ 0.0 0.54030230586814 0.0] [ 0.0 0.0 0.54030230586814] >>> X = hilbert(3) >>> cosm(X) [ 0.424403834569555 -0.316643413047167 -0.221474945949293] [-0.316643413047167 0.820646708837824 -0.127183694770039] [-0.221474945949293 -0.127183694770039 0.909236687217541] >>> X = matrix([[1+j,-2],[0,-j]]) >>> cosm(X) [(0.833730025131149 - 0.988897705762865j) (1.07485840848393 - 0.17192140544213j)] [ 0.0 (1.54308063481524 + 0.0j)] """ B = 0.5 * (ctx.expm(A*ctx.j) + ctx.expm(A*(-ctx.j))) if not sum(A.apply(ctx.im).apply(abs)): B = B.apply(ctx.re) return B def sinm(ctx, A): r""" Gives the sine of a square matrix `A`, defined in analogy with the matrix exponential. Examples:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> X = eye(3) >>> sinm(X) [0.841470984807897 0.0 0.0] [ 0.0 0.841470984807897 0.0] [ 0.0 0.0 0.841470984807897] >>> X = hilbert(3) >>> sinm(X) [0.711608512150994 0.339783913247439 0.220742837314741] [0.339783913247439 0.244113865695532 0.187231271174372] [0.220742837314741 0.187231271174372 0.155816730769635] >>> X = matrix([[1+j,-2],[0,-j]]) >>> sinm(X) [(1.29845758141598 + 0.634963914784736j) (-1.96751511930922 + 0.314700021761367j)] [ 0.0 (0.0 - 1.1752011936438j)] """ B = (-0.5j) * (ctx.expm(A*ctx.j) - ctx.expm(A*(-ctx.j))) if not sum(A.apply(ctx.im).apply(abs)): B = B.apply(ctx.re) return B def _sqrtm_rot(ctx, A, _may_rotate): # If the iteration fails to converge, cheat by performing # a rotation by a complex number u = ctx.j**0.3 return ctx.sqrtm(u*A, _may_rotate) / ctx.sqrt(u) def sqrtm(ctx, A, _may_rotate=2): r""" Computes a square root of the square matrix `A`, i.e. returns a matrix `B = A^{1/2}` such that `B^2 = A`. The square root of a matrix, if it exists, is not unique. **Examples** Square roots of some simple matrices:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> sqrtm([[1,0], [0,1]]) [1.0 0.0] [0.0 1.0] >>> sqrtm([[0,0], [0,0]]) [0.0 0.0] [0.0 0.0] >>> sqrtm([[2,0],[0,1]]) [1.4142135623731 0.0] [ 0.0 1.0] >>> sqrtm([[1,1],[1,0]]) [ (0.920442065259926 - 0.21728689675164j) (0.568864481005783 + 0.351577584254143j)] [(0.568864481005783 + 0.351577584254143j) (0.351577584254143 - 0.568864481005783j)] >>> sqrtm([[1,0],[0,1]]) [1.0 0.0] [0.0 1.0] >>> sqrtm([[-1,0],[0,1]]) [(0.0 - 1.0j) 0.0] [ 0.0 (1.0 + 0.0j)] >>> sqrtm([[j,0],[0,j]]) [(0.707106781186547 + 0.707106781186547j) 0.0] [ 0.0 (0.707106781186547 + 0.707106781186547j)] A square root of a rotation matrix, giving the corresponding half-angle rotation matrix:: >>> t1 = 0.75 >>> t2 = t1 * 0.5 >>> A1 = matrix([[cos(t1), -sin(t1)], [sin(t1), cos(t1)]]) >>> A2 = matrix([[cos(t2), -sin(t2)], [sin(t2), cos(t2)]]) >>> sqrtm(A1) [0.930507621912314 -0.366272529086048] [0.366272529086048 0.930507621912314] >>> A2 [0.930507621912314 -0.366272529086048] [0.366272529086048 0.930507621912314] The identity `(A^2)^{1/2} = A` does not necessarily hold:: >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]]) >>> sqrtm(A**2) [ 4.0 1.0 4.0] [ 7.0 8.0 9.0] [10.0 2.0 11.0] >>> sqrtm(A)**2 [ 4.0 1.0 4.0] [ 7.0 8.0 9.0] [10.0 2.0 11.0] >>> A = matrix([[-4,1,4],[7,-8,9],[10,2,11]]) >>> sqrtm(A**2) [ 7.43715112194995 -0.324127569985474 1.8481718827526] [-0.251549715716942 9.32699765900402 2.48221180985147] [ 4.11609388833616 0.775751877098258 13.017955697342] >>> chop(sqrtm(A)**2) [-4.0 1.0 4.0] [ 7.0 -8.0 9.0] [10.0 2.0 11.0] For some matrices, a square root does not exist:: >>> sqrtm([[0,1], [0,0]]) Traceback (most recent call last): ... ZeroDivisionError: matrix is numerically singular Two examples from the documentation for Matlab's ``sqrtm``:: >>> mp.dps = 15; mp.pretty = True >>> sqrtm([[7,10],[15,22]]) [1.56669890360128 1.74077655955698] [2.61116483933547 4.17786374293675] >>> >>> X = matrix(\ ... [[5,-4,1,0,0], ... [-4,6,-4,1,0], ... [1,-4,6,-4,1], ... [0,1,-4,6,-4], ... [0,0,1,-4,5]]) >>> Y = matrix(\ ... [[2,-1,-0,-0,-0], ... [-1,2,-1,0,-0], ... [0,-1,2,-1,0], ... [-0,0,-1,2,-1], ... [-0,-0,-0,-1,2]]) >>> mnorm(sqrtm(X) - Y) 4.53155328326114e-19 """ A = ctx.matrix(A) # Trivial if A*0 == A: return A prec = ctx.prec if _may_rotate: d = ctx.det(A) if abs(ctx.im(d)) < 16*ctx.eps and ctx.re(d) < 0: return ctx._sqrtm_rot(A, _may_rotate-1) try: ctx.prec += 10 tol = ctx.eps * 128 Y = A Z = I = A**0 k = 0 # Denman-Beavers iteration while 1: Yprev = Y try: Y, Z = 0.5*(Y+ctx.inverse(Z)), 0.5*(Z+ctx.inverse(Y)) except ZeroDivisionError: if _may_rotate: Y = ctx._sqrtm_rot(A, _may_rotate-1) break else: raise mag1 = ctx.mnorm(Y-Yprev, 'inf') mag2 = ctx.mnorm(Y, 'inf') if mag1 <= mag2*tol: break if _may_rotate and k > 6 and not mag1 < mag2 * 0.001: return ctx._sqrtm_rot(A, _may_rotate-1) k += 1 if k > ctx.prec: raise ctx.NoConvergence finally: ctx.prec = prec Y *= 1 return Y def logm(ctx, A): r""" Computes a logarithm of the square matrix `A`, i.e. returns a matrix `B = \log(A)` such that `\exp(B) = A`. The logarithm of a matrix, if it exists, is not unique. **Examples** Logarithms of some simple matrices:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> X = eye(3) >>> logm(X) [0.0 0.0 0.0] [0.0 0.0 0.0] [0.0 0.0 0.0] >>> logm(2*X) [0.693147180559945 0.0 0.0] [ 0.0 0.693147180559945 0.0] [ 0.0 0.0 0.693147180559945] >>> logm(expm(X)) [1.0 0.0 0.0] [0.0 1.0 0.0] [0.0 0.0 1.0] A logarithm of a complex matrix:: >>> X = matrix([[2+j, 1, 3], [1-j, 1-2*j, 1], [-4, -5, j]]) >>> B = logm(X) >>> nprint(B) [ (0.808757 + 0.107759j) (2.20752 + 0.202762j) (1.07376 - 0.773874j)] [ (0.905709 - 0.107795j) (0.0287395 - 0.824993j) (0.111619 + 0.514272j)] [(-0.930151 + 0.399512j) (-2.06266 - 0.674397j) (0.791552 + 0.519839j)] >>> chop(expm(B)) [(2.0 + 1.0j) 1.0 3.0] [(1.0 - 1.0j) (1.0 - 2.0j) 1.0] [ -4.0 -5.0 (0.0 + 1.0j)] A matrix `X` close to the identity matrix, for which `\log(\exp(X)) = \exp(\log(X)) = X` holds:: >>> X = eye(3) + hilbert(3)/4 >>> X [ 1.25 0.125 0.0833333333333333] [ 0.125 1.08333333333333 0.0625] [0.0833333333333333 0.0625 1.05] >>> logm(expm(X)) [ 1.25 0.125 0.0833333333333333] [ 0.125 1.08333333333333 0.0625] [0.0833333333333333 0.0625 1.05] >>> expm(logm(X)) [ 1.25 0.125 0.0833333333333333] [ 0.125 1.08333333333333 0.0625] [0.0833333333333333 0.0625 1.05] A logarithm of a rotation matrix, giving back the angle of the rotation:: >>> t = 3.7 >>> A = matrix([[cos(t),sin(t)],[-sin(t),cos(t)]]) >>> chop(logm(A)) [ 0.0 -2.58318530717959] [2.58318530717959 0.0] >>> (2*pi-t) 2.58318530717959 For some matrices, a logarithm does not exist:: >>> logm([[1,0], [0,0]]) Traceback (most recent call last): ... ZeroDivisionError: matrix is numerically singular Logarithm of a matrix with large entries:: >>> logm(hilbert(3) * 10**20).apply(re) [ 45.5597513593433 1.27721006042799 0.317662687717978] [ 1.27721006042799 42.5222778973542 2.24003708791604] [0.317662687717978 2.24003708791604 42.395212822267] """ A = ctx.matrix(A) prec = ctx.prec try: ctx.prec += 10 tol = ctx.eps * 128 I = A**0 B = A n = 0 while 1: B = ctx.sqrtm(B) n += 1 if ctx.mnorm(B-I, 'inf') < 0.125: break T = X = B-I L = X*0 k = 1 while 1: if k & 1: L += T / k else: L -= T / k T *= X if ctx.mnorm(T, 'inf') < tol: break k += 1 if k > ctx.prec: raise ctx.NoConvergence finally: ctx.prec = prec L *= 2**n return L def powm(ctx, A, r): r""" Computes `A^r = \exp(A \log r)` for a matrix `A` and complex number `r`. **Examples** Powers and inverse powers of a matrix:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]]) >>> powm(A, 2) [ 63.0 20.0 69.0] [174.0 89.0 199.0] [164.0 48.0 179.0] >>> chop(powm(powm(A, 4), 1/4.)) [ 4.0 1.0 4.0] [ 7.0 8.0 9.0] [10.0 2.0 11.0] >>> powm(extraprec(20)(powm)(A, -4), -1/4.) [ 4.0 1.0 4.0] [ 7.0 8.0 9.0] [10.0 2.0 11.0] >>> chop(powm(powm(A, 1+0.5j), 1/(1+0.5j))) [ 4.0 1.0 4.0] [ 7.0 8.0 9.0] [10.0 2.0 11.0] >>> powm(extraprec(5)(powm)(A, -1.5), -1/(1.5)) [ 4.0 1.0 4.0] [ 7.0 8.0 9.0] [10.0 2.0 11.0] A Fibonacci-generating matrix:: >>> powm([[1,1],[1,0]], 10) [89.0 55.0] [55.0 34.0] >>> fib(10) 55.0 >>> powm([[1,1],[1,0]], 6.5) [(16.5166626964253 - 0.0121089837381789j) (10.2078589271083 + 0.0195927472575932j)] [(10.2078589271083 + 0.0195927472575932j) (6.30880376931698 - 0.0317017309957721j)] >>> (phi**6.5 - (1-phi)**6.5)/sqrt(5) (10.2078589271083 - 0.0195927472575932j) >>> powm([[1,1],[1,0]], 6.2) [ (14.3076953002666 - 0.008222855781077j) (8.81733464837593 + 0.0133048601383712j)] [(8.81733464837593 + 0.0133048601383712j) (5.49036065189071 - 0.0215277159194482j)] >>> (phi**6.2 - (1-phi)**6.2)/sqrt(5) (8.81733464837593 - 0.0133048601383712j) """ A = ctx.matrix(A) r = ctx.convert(r) prec = ctx.prec try: ctx.prec += 10 if ctx.isint(r): v = A ** int(r) elif ctx.isint(r*2): y = int(r*2) v = ctx.sqrtm(A) ** y else: v = ctx.expm(r*ctx.logm(A)) finally: ctx.prec = prec v *= 1 return v
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/matrices/calculus.py
calculus.py
from ..libmp.backend import xrange # TODO: interpret list as vectors (for multiplication) rowsep = '\n' colsep = ' ' class _matrix(object): """ Numerical matrix. Specify the dimensions or the data as a nested list. Elements default to zero. Use a flat list to create a column vector easily. By default, only mpf is used to store the data. You can specify another type using force_type=type. It's possible to specify None. Make sure force_type(force_type()) is fast. Creating matrices ----------------- Matrices in mpmath are implemented using dictionaries. Only non-zero values are stored, so it is cheap to represent sparse matrices. The most basic way to create one is to use the ``matrix`` class directly. You can create an empty matrix specifying the dimensions: >>> from mpmath import * >>> mp.dps = 15 >>> matrix(2) matrix( [['0.0', '0.0'], ['0.0', '0.0']]) >>> matrix(2, 3) matrix( [['0.0', '0.0', '0.0'], ['0.0', '0.0', '0.0']]) Calling ``matrix`` with one dimension will create a square matrix. To access the dimensions of a matrix, use the ``rows`` or ``cols`` keyword: >>> A = matrix(3, 2) >>> A matrix( [['0.0', '0.0'], ['0.0', '0.0'], ['0.0', '0.0']]) >>> A.rows 3 >>> A.cols 2 You can also change the dimension of an existing matrix. This will set the new elements to 0. If the new dimension is smaller than before, the concerning elements are discarded: >>> A.rows = 2 >>> A matrix( [['0.0', '0.0'], ['0.0', '0.0']]) Internally ``mpmathify`` is used every time an element is set. This is done using the syntax A[row,column], counting from 0: >>> A = matrix(2) >>> A[1,1] = 1 + 1j >>> A matrix( [['0.0', '0.0'], ['0.0', '(1.0 + 1.0j)']]) You can use the keyword ``force_type`` to change the function which is called on every new element: >>> matrix(2, 5, force_type=int) matrix( [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) A more comfortable way to create a matrix lets you use nested lists: >>> matrix([[1, 2], [3, 4]]) matrix( [['1.0', '2.0'], ['3.0', '4.0']]) If you want to preserve the type of the elements you can use ``force_type=None``: >>> matrix([[1, 2.5], [1j, mpf(2)]], force_type=None) matrix( [[1, 2.5], [1j, '2.0']]) Convenient advanced functions are available for creating various standard matrices, see ``zeros``, ``ones``, ``diag``, ``eye``, ``randmatrix`` and ``hilbert``. Vectors ....... Vectors may also be represented by the ``matrix`` class (with rows = 1 or cols = 1). For vectors there are some things which make life easier. A column vector can be created using a flat list, a row vectors using an almost flat nested list:: >>> matrix([1, 2, 3]) matrix( [['1.0'], ['2.0'], ['3.0']]) >>> matrix([[1, 2, 3]]) matrix( [['1.0', '2.0', '3.0']]) Optionally vectors can be accessed like lists, using only a single index:: >>> x = matrix([1, 2, 3]) >>> x[1] mpf('2.0') >>> x[1,0] mpf('2.0') Other ..... Like you probably expected, matrices can be printed:: >>> print randmatrix(3) # doctest:+SKIP [ 0.782963853573023 0.802057689719883 0.427895717335467] [0.0541876859348597 0.708243266653103 0.615134039977379] [ 0.856151514955773 0.544759264818486 0.686210904770947] Use ``nstr`` or ``nprint`` to specify the number of digits to print:: >>> nprint(randmatrix(5), 3) # doctest:+SKIP [2.07e-1 1.66e-1 5.06e-1 1.89e-1 8.29e-1] [6.62e-1 6.55e-1 4.47e-1 4.82e-1 2.06e-2] [4.33e-1 7.75e-1 6.93e-2 2.86e-1 5.71e-1] [1.01e-1 2.53e-1 6.13e-1 3.32e-1 2.59e-1] [1.56e-1 7.27e-2 6.05e-1 6.67e-2 2.79e-1] As matrices are mutable, you will need to copy them sometimes:: >>> A = matrix(2) >>> A matrix( [['0.0', '0.0'], ['0.0', '0.0']]) >>> B = A.copy() >>> B[0,0] = 1 >>> B matrix( [['1.0', '0.0'], ['0.0', '0.0']]) >>> A matrix( [['0.0', '0.0'], ['0.0', '0.0']]) Finally, it is possible to convert a matrix to a nested list. This is very useful, as most Python libraries involving matrices or arrays (namely NumPy or SymPy) support this format:: >>> B.tolist() [[mpf('1.0'), mpf('0.0')], [mpf('0.0'), mpf('0.0')]] Matrix operations ----------------- You can add and subtract matrices of compatible dimensions:: >>> A = matrix([[1, 2], [3, 4]]) >>> B = matrix([[-2, 4], [5, 9]]) >>> A + B matrix( [['-1.0', '6.0'], ['8.0', '13.0']]) >>> A - B matrix( [['3.0', '-2.0'], ['-2.0', '-5.0']]) >>> A + ones(3) # doctest:+ELLIPSIS Traceback (most recent call last): ... ValueError: incompatible dimensions for addition It is possible to multiply or add matrices and scalars. In the latter case the operation will be done element-wise:: >>> A * 2 matrix( [['2.0', '4.0'], ['6.0', '8.0']]) >>> A / 4 matrix( [['0.25', '0.5'], ['0.75', '1.0']]) >>> A - 1 matrix( [['0.0', '1.0'], ['2.0', '3.0']]) Of course you can perform matrix multiplication, if the dimensions are compatible:: >>> A * B matrix( [['8.0', '22.0'], ['14.0', '48.0']]) >>> matrix([[1, 2, 3]]) * matrix([[-6], [7], [-2]]) matrix( [['2.0']]) You can raise powers of square matrices:: >>> A**2 matrix( [['7.0', '10.0'], ['15.0', '22.0']]) Negative powers will calculate the inverse:: >>> A**-1 matrix( [['-2.0', '1.0'], ['1.5', '-0.5']]) >>> A * A**-1 matrix( [['1.0', '1.0842021724855e-19'], ['-2.16840434497101e-19', '1.0']]) Matrix transposition is straightforward:: >>> A = ones(2, 3) >>> A matrix( [['1.0', '1.0', '1.0'], ['1.0', '1.0', '1.0']]) >>> A.T matrix( [['1.0', '1.0'], ['1.0', '1.0'], ['1.0', '1.0']]) Norms ..... Sometimes you need to know how "large" a matrix or vector is. Due to their multidimensional nature it's not possible to compare them, but there are several functions to map a matrix or a vector to a positive real number, the so called norms. For vectors the p-norm is intended, usually the 1-, the 2- and the oo-norm are used. >>> x = matrix([-10, 2, 100]) >>> norm(x, 1) mpf('112.0') >>> norm(x, 2) mpf('100.5186549850325') >>> norm(x, inf) mpf('100.0') Please note that the 2-norm is the most used one, though it is more expensive to calculate than the 1- or oo-norm. It is possible to generalize some vector norms to matrix norm:: >>> A = matrix([[1, -1000], [100, 50]]) >>> mnorm(A, 1) mpf('1050.0') >>> mnorm(A, inf) mpf('1001.0') >>> mnorm(A, 'F') mpf('1006.2310867787777') The last norm (the "Frobenius-norm") is an approximation for the 2-norm, which is hard to calculate and not available. The Frobenius-norm lacks some mathematical properties you might expect from a norm. """ def __init__(self, *args, **kwargs): self.__data = {} # LU decompostion cache, this is useful when solving the same system # multiple times, when calculating the inverse and when calculating the # determinant self._LU = None convert = kwargs.get('force_type', self.ctx.convert) if isinstance(args[0], (list, tuple)): if isinstance(args[0][0], (list, tuple)): # interpret nested list as matrix A = args[0] self.__rows = len(A) self.__cols = len(A[0]) for i, row in enumerate(A): for j, a in enumerate(row): self[i, j] = convert(a) else: # interpret list as row vector v = args[0] self.__rows = len(v) self.__cols = 1 for i, e in enumerate(v): self[i, 0] = e elif isinstance(args[0], int): # create empty matrix of given dimensions if len(args) == 1: self.__rows = self.__cols = args[0] else: assert isinstance(args[1], int), 'expected int' self.__rows = args[0] self.__cols = args[1] elif isinstance(args[0], _matrix): A = args[0].copy() self.__data = A._matrix__data self.__rows = A._matrix__rows self.__cols = A._matrix__cols convert = kwargs.get('force_type', self.ctx.convert) for i in xrange(A.__rows): for j in xrange(A.__cols): A[i,j] = convert(A[i,j]) elif hasattr(args[0], 'tolist'): A = self.ctx.matrix(args[0].tolist()) self.__data = A._matrix__data self.__rows = A._matrix__rows self.__cols = A._matrix__cols else: raise TypeError('could not interpret given arguments') def apply(self, f): """ Return a copy of self with the function `f` applied elementwise. """ new = self.ctx.matrix(self.__rows, self.__cols) for i in xrange(self.__rows): for j in xrange(self.__cols): new[i,j] = f(self[i,j]) return new def __nstr__(self, n=None, **kwargs): # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): if n: string = self.ctx.nstr(self[i,j], n, **kwargs) else: string = str(self[i,j]) res[-1].append(string) maxlen[j] = max(len(string), maxlen[j]) # Patch strings together for i, row in enumerate(res): for j, elem in enumerate(row): # Pad each element up to maxlen so the columns line up row[j] = elem.rjust(maxlen[j]) res[i] = "[" + colsep.join(row) + "]" return rowsep.join(res) def __str__(self): return self.__nstr__() def _toliststr(self, avoid_type=False): """ Create a list string from a matrix. If avoid_type: avoid multiple 'mpf's. """ # XXX: should be something like self.ctx._types typ = self.ctx.mpf s = '[' for i in xrange(self.__rows): s += '[' for j in xrange(self.__cols): if not avoid_type or not isinstance(self[i,j], typ): a = repr(self[i,j]) else: a = "'" + str(self[i,j]) + "'" s += a + ', ' s = s[:-2] s += '],\n ' s = s[:-3] s += ']' return s def tolist(self): """ Convert the matrix to a nested list. """ return [[self[i,j] for j in range(self.__cols)] for i in range(self.__rows)] def __repr__(self): if self.ctx.pretty: return self.__str__() s = 'matrix(\n' s += self._toliststr(avoid_type=True) + ')' return s def __get_element(self, key): ''' Fast extraction of the i,j element from the matrix This function is for private use only because is unsafe: 1. Does not check on the value of key it expects key to be a integer tuple (i,j) 2. Does not check bounds ''' if key in self.__data: return self.__data[key] else: return self.ctx.zero def __set_element(self, key, value): ''' Fast assignment of the i,j element in the matrix This function is unsafe: 1. Does not check on the value of key it expects key to be a integer tuple (i,j) 2. Does not check bounds 3. Does not check the value type ''' if value: # only store non-zeros self.__data[key] = value elif key in self.__data: del self.__data[key] def __getitem__(self, key): ''' Getitem function for mp matrix class with slice index enabled it allows the following assingments scalar to a slice of the matrix B = A[:,2:6] ''' # Convert vector to matrix indexing if isinstance(key, int) or isinstance(key,slice): # only sufficent for vectors if self.__rows == 1: key = (0, key) elif self.__cols == 1: key = (key, 0) else: raise IndexError('insufficient indices for matrix') if isinstance(key[0],slice) or isinstance(key[1],slice): #Rows if isinstance(key[0],slice): #Check bounds if (key[0].start is None or key[0].start >= 0) and \ (key[0].stop is None or key[0].stop <= self.__rows+1): # Generate indices rows = xrange(*key[0].indices(self.__rows)) else: raise IndexError('Row index out of bounds') else: # Single row rows = [key[0]] # Columns if isinstance(key[1],slice): # Check bounds if (key[1].start is None or key[1].start >= 0) and \ (key[1].stop is None or key[1].stop <= self.__cols+1): # Generate indices columns = xrange(*key[1].indices(self.__cols)) else: raise IndexError('Column index out of bounds') else: # Single column columns = [key[1]] # Create matrix slice m = self.ctx.matrix(len(rows),len(columns)) # Assign elements to the output matrix for i,x in enumerate(rows): for j,y in enumerate(columns): m.__set_element((i,j),self.__get_element((x,y))) return m else: # single element extraction if key[0] >= self.__rows or key[1] >= self.__cols: raise IndexError('matrix index out of range') if key in self.__data: return self.__data[key] else: return self.ctx.zero def __setitem__(self, key, value): # setitem function for mp matrix class with slice index enabled # it allows the following assingments # scalar to a slice of the matrix # A[:,2:6] = 2.5 # submatrix to matrix (the value matrix should be the same size as the slice size) # A[3,:] = B where A is n x m and B is n x 1 # Convert vector to matrix indexing if isinstance(key, int) or isinstance(key,slice): # only sufficent for vectors if self.__rows == 1: key = (0, key) elif self.__cols == 1: key = (key, 0) else: raise IndexError('insufficient indices for matrix') # Slice indexing if isinstance(key[0],slice) or isinstance(key[1],slice): # Rows if isinstance(key[0],slice): # Check bounds if (key[0].start is None or key[0].start >= 0) and \ (key[0].stop is None or key[0].stop <= self.__rows+1): # generate row indices rows = xrange(*key[0].indices(self.__rows)) else: raise IndexError('Row index out of bounds') else: # Single row rows = [key[0]] # Columns if isinstance(key[1],slice): # Check bounds if (key[1].start is None or key[1].start >= 0) and \ (key[1].stop is None or key[1].stop <= self.__cols+1): # Generate column indices columns = xrange(*key[1].indices(self.__cols)) else: raise IndexError('Column index out of bounds') else: # Single column columns = [key[1]] # Assign slice with a scalar if isinstance(value,self.ctx.matrix): # Assign elements to matrix if input and output dimensions match if len(rows) == value.rows and len(columns) == value.cols: for i,x in enumerate(rows): for j,y in enumerate(columns): self.__set_element((x,y), value.__get_element((i,j))) else: raise ValueError('Dimensions do not match') else: # Assign slice with scalars value = self.ctx.convert(value) for i in rows: for j in columns: self.__set_element((i,j), value) else: # Single element assingment # Check bounds if key[0] >= self.__rows or key[1] >= self.__cols: raise IndexError('matrix index out of range') # Convert and store value value = self.ctx.convert(value) if value: # only store non-zeros self.__data[key] = value elif key in self.__data: del self.__data[key] if self._LU: self._LU = None return def __iter__(self): for i in xrange(self.__rows): for j in xrange(self.__cols): yield self[i,j] def __mul__(self, other): if isinstance(other, self.ctx.matrix): # dot multiplication TODO: use Strassen's method? if self.__cols != other.__rows: raise ValueError('dimensions not compatible for multiplication') new = self.ctx.matrix(self.__rows, other.__cols) for i in xrange(self.__rows): for j in xrange(other.__cols): new[i, j] = self.ctx.fdot((self[i,k], other[k,j]) for k in xrange(other.__rows)) return new else: # try scalar multiplication new = self.ctx.matrix(self.__rows, self.__cols) for i in xrange(self.__rows): for j in xrange(self.__cols): new[i, j] = other * self[i, j] return new def __rmul__(self, other): # assume other is scalar and thus commutative assert not isinstance(other, self.ctx.matrix) return self.__mul__(other) def __pow__(self, other): # avoid cyclic import problems #from linalg import inverse if not isinstance(other, int): raise ValueError('only integer exponents are supported') if not self.__rows == self.__cols: raise ValueError('only powers of square matrices are defined') n = other if n == 0: return self.ctx.eye(self.__rows) if n < 0: n = -n neg = True else: neg = False i = n y = 1 z = self.copy() while i != 0: if i % 2 == 1: y = y * z z = z*z i = i // 2 if neg: y = self.ctx.inverse(y) return y def __div__(self, other): # assume other is scalar and do element-wise divison assert not isinstance(other, self.ctx.matrix) new = self.ctx.matrix(self.__rows, self.__cols) for i in xrange(self.__rows): for j in xrange(self.__cols): new[i,j] = self[i,j] / other return new __truediv__ = __div__ def __add__(self, other): if isinstance(other, self.ctx.matrix): if not (self.__rows == other.__rows and self.__cols == other.__cols): raise ValueError('incompatible dimensions for addition') new = self.ctx.matrix(self.__rows, self.__cols) for i in xrange(self.__rows): for j in xrange(self.__cols): new[i,j] = self[i,j] + other[i,j] return new else: # assume other is scalar and add element-wise new = self.ctx.matrix(self.__rows, self.__cols) for i in xrange(self.__rows): for j in xrange(self.__cols): new[i,j] += self[i,j] + other return new def __radd__(self, other): return self.__add__(other) def __sub__(self, other): if isinstance(other, self.ctx.matrix) and not (self.__rows == other.__rows and self.__cols == other.__cols): raise ValueError('incompatible dimensions for substraction') return self.__add__(other * (-1)) def __neg__(self): return (-1) * self def __rsub__(self, other): return -self + other def __eq__(self, other): return self.__rows == other.__rows and self.__cols == other.__cols \ and self.__data == other.__data def __len__(self): if self.rows == 1: return self.cols elif self.cols == 1: return self.rows else: return self.rows # do it like numpy def __getrows(self): return self.__rows def __setrows(self, value): for key in self.__data.copy(): if key[0] >= value: del self.__data[key] self.__rows = value rows = property(__getrows, __setrows, doc='number of rows') def __getcols(self): return self.__cols def __setcols(self, value): for key in self.__data.copy(): if key[1] >= value: del self.__data[key] self.__cols = value cols = property(__getcols, __setcols, doc='number of columns') def transpose(self): new = self.ctx.matrix(self.__cols, self.__rows) for i in xrange(self.__rows): for j in xrange(self.__cols): new[j,i] = self[i,j] return new T = property(transpose) def conjugate(self): return self.apply(self.ctx.conj) def transpose_conj(self): return self.conjugate().transpose() H = property(transpose_conj) def copy(self): new = self.ctx.matrix(self.__rows, self.__cols) new.__data = self.__data.copy() return new __copy__ = copy def column(self, n): m = self.ctx.matrix(self.rows, 1) for i in range(self.rows): m[i] = self[i,n] return m class MatrixMethods(object): def __init__(ctx): # XXX: subclass ctx.matrix = type('matrix', (_matrix,), {}) ctx.matrix.ctx = ctx ctx.matrix.convert = ctx.convert def eye(ctx, n, **kwargs): """ Create square identity matrix n x n. """ A = ctx.matrix(n, **kwargs) for i in xrange(n): A[i,i] = 1 return A def diag(ctx, diagonal, **kwargs): """ Create square diagonal matrix using given list. Example: >>> from mpmath import diag, mp >>> mp.pretty = False >>> diag([1, 2, 3]) matrix( [['1.0', '0.0', '0.0'], ['0.0', '2.0', '0.0'], ['0.0', '0.0', '3.0']]) """ A = ctx.matrix(len(diagonal), **kwargs) for i in xrange(len(diagonal)): A[i,i] = diagonal[i] return A def zeros(ctx, *args, **kwargs): """ Create matrix m x n filled with zeros. One given dimension will create square matrix n x n. Example: >>> from mpmath import zeros, mp >>> mp.pretty = False >>> zeros(2) matrix( [['0.0', '0.0'], ['0.0', '0.0']]) """ if len(args) == 1: m = n = args[0] elif len(args) == 2: m = args[0] n = args[1] else: raise TypeError('zeros expected at most 2 arguments, got %i' % len(args)) A = ctx.matrix(m, n, **kwargs) for i in xrange(m): for j in xrange(n): A[i,j] = 0 return A def ones(ctx, *args, **kwargs): """ Create matrix m x n filled with ones. One given dimension will create square matrix n x n. Example: >>> from mpmath import ones, mp >>> mp.pretty = False >>> ones(2) matrix( [['1.0', '1.0'], ['1.0', '1.0']]) """ if len(args) == 1: m = n = args[0] elif len(args) == 2: m = args[0] n = args[1] else: raise TypeError('ones expected at most 2 arguments, got %i' % len(args)) A = ctx.matrix(m, n, **kwargs) for i in xrange(m): for j in xrange(n): A[i,j] = 1 return A def hilbert(ctx, m, n=None): """ Create (pseudo) hilbert matrix m x n. One given dimension will create hilbert matrix n x n. The matrix is very ill-conditioned and symmetric, positive definite if square. """ if n is None: n = m A = ctx.matrix(m, n) for i in xrange(m): for j in xrange(n): A[i,j] = ctx.one / (i + j + 1) return A def randmatrix(ctx, m, n=None, min=0, max=1, **kwargs): """ Create a random m x n matrix. All values are >= min and <max. n defaults to m. Example: >>> from mpmath import randmatrix >>> randmatrix(2) # doctest:+SKIP matrix( [['0.53491598236191806', '0.57195669543302752'], ['0.85589992269513615', '0.82444367501382143']]) """ if not n: n = m A = ctx.matrix(m, n, **kwargs) for i in xrange(m): for j in xrange(n): A[i,j] = ctx.rand() * (max - min) + min return A def swap_row(ctx, A, i, j): """ Swap row i with row j. """ if i == j: return if isinstance(A, ctx.matrix): for k in xrange(A.cols): A[i,k], A[j,k] = A[j,k], A[i,k] elif isinstance(A, list): A[i], A[j] = A[j], A[i] else: raise TypeError('could not interpret type') def extend(ctx, A, b): """ Extend matrix A with column b and return result. """ assert isinstance(A, ctx.matrix) assert A.rows == len(b) A = A.copy() A.cols += 1 for i in xrange(A.rows): A[i, A.cols-1] = b[i] return A def norm(ctx, x, p=2): r""" Gives the entrywise `p`-norm of an iterable *x*, i.e. the vector norm `\left(\sum_k |x_k|^p\right)^{1/p}`, for any given `1 \le p \le \infty`. Special cases: If *x* is not iterable, this just returns ``absmax(x)``. ``p=1`` gives the sum of absolute values. ``p=2`` is the standard Euclidean vector norm. ``p=inf`` gives the magnitude of the largest element. For *x* a matrix, ``p=2`` is the Frobenius norm. For operator matrix norms, use :func:`~mpmath.mnorm` instead. You can use the string 'inf' as well as float('inf') or mpf('inf') to specify the infinity norm. **Examples** >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> x = matrix([-10, 2, 100]) >>> norm(x, 1) mpf('112.0') >>> norm(x, 2) mpf('100.5186549850325') >>> norm(x, inf) mpf('100.0') """ try: iter(x) except TypeError: return ctx.absmax(x) if type(p) is not int: p = ctx.convert(p) if p == ctx.inf: return max(ctx.absmax(i) for i in x) elif p == 1: return ctx.fsum(x, absolute=1) elif p == 2: return ctx.sqrt(ctx.fsum(x, absolute=1, squared=1)) elif p > 1: return ctx.nthroot(ctx.fsum(abs(i)**p for i in x), p) else: raise ValueError('p has to be >= 1') def mnorm(ctx, A, p=1): r""" Gives the matrix (operator) `p`-norm of A. Currently ``p=1`` and ``p=inf`` are supported: ``p=1`` gives the 1-norm (maximal column sum) ``p=inf`` gives the `\infty`-norm (maximal row sum). You can use the string 'inf' as well as float('inf') or mpf('inf') ``p=2`` (not implemented) for a square matrix is the usual spectral matrix norm, i.e. the largest singular value. ``p='f'`` (or 'F', 'fro', 'Frobenius, 'frobenius') gives the Frobenius norm, which is the elementwise 2-norm. The Frobenius norm is an approximation of the spectral norm and satisfies .. math :: \frac{1}{\sqrt{\mathrm{rank}(A)}} \|A\|_F \le \|A\|_2 \le \|A\|_F The Frobenius norm lacks some mathematical properties that might be expected of a norm. For general elementwise `p`-norms, use :func:`~mpmath.norm` instead. **Examples** >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> A = matrix([[1, -1000], [100, 50]]) >>> mnorm(A, 1) mpf('1050.0') >>> mnorm(A, inf) mpf('1001.0') >>> mnorm(A, 'F') mpf('1006.2310867787777') """ A = ctx.matrix(A) if type(p) is not int: if type(p) is str and 'frobenius'.startswith(p.lower()): return ctx.norm(A, 2) p = ctx.convert(p) m, n = A.rows, A.cols if p == 1: return max(ctx.fsum((A[i,j] for i in xrange(m)), absolute=1) for j in xrange(n)) elif p == ctx.inf: return max(ctx.fsum((A[i,j] for j in xrange(n)), absolute=1) for i in xrange(m)) else: raise NotImplementedError("matrix p-norm for arbitrary p") if __name__ == '__main__': import doctest doctest.testmod()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/matrices/matrices.py
matrices.py
from copy import copy from ..libmp.backend import xrange class LinearAlgebraMethods(object): def LU_decomp(ctx, A, overwrite=False, use_cache=True): """ LU-factorization of a n*n matrix using the Gauss algorithm. Returns L and U in one matrix and the pivot indices. Use overwrite to specify whether A will be overwritten with L and U. """ if not A.rows == A.cols: raise ValueError('need n*n matrix') # get from cache if possible if use_cache and isinstance(A, ctx.matrix) and A._LU: return A._LU if not overwrite: orig = A A = A.copy() tol = ctx.absmin(ctx.mnorm(A,1) * ctx.eps) # each pivot element has to be bigger n = A.rows p = [None]*(n - 1) for j in xrange(n - 1): # pivoting, choose max(abs(reciprocal row sum)*abs(pivot element)) biggest = 0 for k in xrange(j, n): s = ctx.fsum([ctx.absmin(A[k,l]) for l in xrange(j, n)]) if ctx.absmin(s) <= tol: raise ZeroDivisionError('matrix is numerically singular') current = 1/s * ctx.absmin(A[k,j]) if current > biggest: # TODO: what if equal? biggest = current p[j] = k # swap rows according to p ctx.swap_row(A, j, p[j]) if ctx.absmin(A[j,j]) <= tol: raise ZeroDivisionError('matrix is numerically singular') # calculate elimination factors and add rows for i in xrange(j + 1, n): A[i,j] /= A[j,j] for k in xrange(j + 1, n): A[i,k] -= A[i,j]*A[j,k] if ctx.absmin(A[n - 1,n - 1]) <= tol: raise ZeroDivisionError('matrix is numerically singular') # cache decomposition if not overwrite and isinstance(orig, ctx.matrix): orig._LU = (A, p) return A, p def L_solve(ctx, L, b, p=None): """ Solve the lower part of a LU factorized matrix for y. """ assert L.rows == L.cols, 'need n*n matrix' n = L.rows assert len(b) == n b = copy(b) if p: # swap b according to p for k in xrange(0, len(p)): ctx.swap_row(b, k, p[k]) # solve for i in xrange(1, n): for j in xrange(i): b[i] -= L[i,j] * b[j] return b def U_solve(ctx, U, y): """ Solve the upper part of a LU factorized matrix for x. """ assert U.rows == U.cols, 'need n*n matrix' n = U.rows assert len(y) == n x = copy(y) for i in xrange(n - 1, -1, -1): for j in xrange(i + 1, n): x[i] -= U[i,j] * x[j] x[i] /= U[i,i] return x def lu_solve(ctx, A, b, **kwargs): """ Ax = b => x Solve a determined or overdetermined linear equations system. Fast LU decomposition is used, which is less accurate than QR decomposition (especially for overdetermined systems), but it's twice as efficient. Use qr_solve if you want more precision or have to solve a very ill- conditioned system. If you specify real=True, it does not check for overdeterminded complex systems. """ prec = ctx.prec try: ctx.prec += 10 # do not overwrite A nor b A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy() if A.rows < A.cols: raise ValueError('cannot solve underdetermined system') if A.rows > A.cols: # use least-squares method if overdetermined # (this increases errors) AH = A.H A = AH * A b = AH * b if (kwargs.get('real', False) or not sum(type(i) is ctx.mpc for i in A)): # TODO: necessary to check also b? x = ctx.cholesky_solve(A, b) else: x = ctx.lu_solve(A, b) else: # LU factorization A, p = ctx.LU_decomp(A) b = ctx.L_solve(A, b, p) x = ctx.U_solve(A, b) finally: ctx.prec = prec return x def improve_solution(ctx, A, x, b, maxsteps=1): """ Improve a solution to a linear equation system iteratively. This re-uses the LU decomposition and is thus cheap. Usually 3 up to 4 iterations are giving the maximal improvement. """ assert A.rows == A.cols, 'need n*n matrix' # TODO: really? for _ in xrange(maxsteps): r = ctx.residual(A, x, b) if ctx.norm(r, 2) < 10*ctx.eps: break # this uses cached LU decomposition and is thus cheap dx = ctx.lu_solve(A, -r) x += dx return x def lu(ctx, A): """ A -> P, L, U LU factorisation of a square matrix A. L is the lower, U the upper part. P is the permutation matrix indicating the row swaps. P*A = L*U If you need efficiency, use the low-level method LU_decomp instead, it's much more memory efficient. """ # get factorization A, p = ctx.LU_decomp(A) n = A.rows L = ctx.matrix(n) U = ctx.matrix(n) for i in xrange(n): for j in xrange(n): if i > j: L[i,j] = A[i,j] elif i == j: L[i,j] = 1 U[i,j] = A[i,j] else: U[i,j] = A[i,j] # calculate permutation matrix P = ctx.eye(n) for k in xrange(len(p)): ctx.swap_row(P, k, p[k]) return P, L, U def unitvector(ctx, n, i): """ Return the i-th n-dimensional unit vector. """ assert 0 < i <= n, 'this unit vector does not exist' return [ctx.zero]*(i-1) + [ctx.one] + [ctx.zero]*(n-i) def inverse(ctx, A, **kwargs): """ Calculate the inverse of a matrix. If you want to solve an equation system Ax = b, it's recommended to use solve(A, b) instead, it's about 3 times more efficient. """ prec = ctx.prec try: ctx.prec += 10 # do not overwrite A A = ctx.matrix(A, **kwargs).copy() n = A.rows # get LU factorisation A, p = ctx.LU_decomp(A) cols = [] # calculate unit vectors and solve corresponding system to get columns for i in xrange(1, n + 1): e = ctx.unitvector(n, i) y = ctx.L_solve(A, e, p) cols.append(ctx.U_solve(A, y)) # convert columns to matrix inv = [] for i in xrange(n): row = [] for j in xrange(n): row.append(cols[j][i]) inv.append(row) result = ctx.matrix(inv, **kwargs) finally: ctx.prec = prec return result def householder(ctx, A): """ (A|b) -> H, p, x, res (A|b) is the coefficient matrix with left hand side of an optionally overdetermined linear equation system. H and p contain all information about the transformation matrices. x is the solution, res the residual. """ assert isinstance(A, ctx.matrix) m = A.rows n = A.cols assert m >= n - 1 # calculate Householder matrix p = [] for j in xrange(0, n - 1): s = ctx.fsum((A[i,j])**2 for i in xrange(j, m)) if not abs(s) > ctx.eps: raise ValueError('matrix is numerically singular') p.append(-ctx.sign(A[j,j]) * ctx.sqrt(s)) kappa = ctx.one / (s - p[j] * A[j,j]) A[j,j] -= p[j] for k in xrange(j+1, n): y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j, m)) * kappa for i in xrange(j, m): A[i,k] -= A[i,j] * y # solve Rx = c1 x = [A[i,n - 1] for i in xrange(n - 1)] for i in xrange(n - 2, -1, -1): x[i] -= ctx.fsum(A[i,j] * x[j] for j in xrange(i + 1, n - 1)) x[i] /= p[i] # calculate residual if not m == n - 1: r = [A[m-1-i, n-1] for i in xrange(m - n + 1)] else: # determined system, residual should be 0 r = [0]*m # maybe a bad idea, changing r[i] will change all elements return A, p, x, r #def qr(ctx, A): # """ # A -> Q, R # # QR factorisation of a square matrix A using Householder decomposition. # Q is orthogonal, this leads to very few numerical errors. # # A = Q*R # """ # H, p, x, res = householder(A) # TODO: implement this def residual(ctx, A, x, b, **kwargs): """ Calculate the residual of a solution to a linear equation system. r = A*x - b for A*x = b """ oldprec = ctx.prec try: ctx.prec *= 2 A, x, b = ctx.matrix(A, **kwargs), ctx.matrix(x, **kwargs), ctx.matrix(b, **kwargs) return A*x - b finally: ctx.prec = oldprec def qr_solve(ctx, A, b, norm=None, **kwargs): """ Ax = b => x, ||Ax - b|| Solve a determined or overdetermined linear equations system and calculate the norm of the residual (error). QR decomposition using Householder factorization is applied, which gives very accurate results even for ill-conditioned matrices. qr_solve is twice as efficient. """ if norm is None: norm = ctx.norm prec = ctx.prec try: ctx.prec += 10 # do not overwrite A nor b A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy() if A.rows < A.cols: raise ValueError('cannot solve underdetermined system') H, p, x, r = ctx.householder(ctx.extend(A, b)) res = ctx.norm(r) # calculate residual "manually" for determined systems if res == 0: res = ctx.norm(ctx.residual(A, x, b)) return ctx.matrix(x, **kwargs), res finally: ctx.prec = prec def cholesky(ctx, A, tol=None): r""" Cholesky decomposition of a symmetric positive-definite matrix `A`. Returns a lower triangular matrix `L` such that `A = L \times L^T`. More generally, for a complex Hermitian positive-definite matrix, a Cholesky decomposition satisfying `A = L \times L^H` is returned. The Cholesky decomposition can be used to solve linear equation systems twice as efficiently as LU decomposition, or to test whether `A` is positive-definite. The optional parameter ``tol`` determines the tolerance for verifying positive-definiteness. **Examples** Cholesky decomposition of a positive-definite symmetric matrix:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> A = eye(3) + hilbert(3) >>> nprint(A) [ 2.0 0.5 0.333333] [ 0.5 1.33333 0.25] [0.333333 0.25 1.2] >>> L = cholesky(A) >>> nprint(L) [ 1.41421 0.0 0.0] [0.353553 1.09924 0.0] [0.235702 0.15162 1.05899] >>> chop(A - L*L.T) [0.0 0.0 0.0] [0.0 0.0 0.0] [0.0 0.0 0.0] Cholesky decomposition of a Hermitian matrix:: >>> A = eye(3) + matrix([[0,0.25j,-0.5j],[-0.25j,0,0],[0.5j,0,0]]) >>> L = cholesky(A) >>> nprint(L) [ 1.0 0.0 0.0] [(0.0 - 0.25j) (0.968246 + 0.0j) 0.0] [ (0.0 + 0.5j) (0.129099 + 0.0j) (0.856349 + 0.0j)] >>> chop(A - L*L.H) [0.0 0.0 0.0] [0.0 0.0 0.0] [0.0 0.0 0.0] Attempted Cholesky decomposition of a matrix that is not positive definite:: >>> A = -eye(3) + hilbert(3) >>> L = cholesky(A) Traceback (most recent call last): ... ValueError: matrix is not positive-definite **References** 1. [Wikipedia]_ http://en.wikipedia.org/wiki/Cholesky_decomposition """ assert isinstance(A, ctx.matrix) if not A.rows == A.cols: raise ValueError('need n*n matrix') if tol is None: tol = +ctx.eps n = A.rows L = ctx.matrix(n) for j in xrange(n): c = ctx.re(A[j,j]) if abs(c-A[j,j]) > tol: raise ValueError('matrix is not Hermitian') s = c - ctx.fsum((L[j,k] for k in xrange(j)), absolute=True, squared=True) if s < tol: raise ValueError('matrix is not positive-definite') L[j,j] = ctx.sqrt(s) for i in xrange(j, n): it1 = (L[i,k] for k in xrange(j)) it2 = (L[j,k] for k in xrange(j)) t = ctx.fdot(it1, it2, conjugate=True) L[i,j] = (A[i,j] - t) / L[j,j] return L def cholesky_solve(ctx, A, b, **kwargs): """ Ax = b => x Solve a symmetric positive-definite linear equation system. This is twice as efficient as lu_solve. Typical use cases: * A.T*A * Hessian matrix * differential equations """ prec = ctx.prec try: ctx.prec += 10 # do not overwrite A nor b A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy() if A.rows != A.cols: raise ValueError('can only solve determined system') # Cholesky factorization L = ctx.cholesky(A) # solve n = L.rows assert len(b) == n for i in xrange(n): b[i] -= ctx.fsum(L[i,j] * b[j] for j in xrange(i)) b[i] /= L[i,i] x = ctx.U_solve(L.T, b) return x finally: ctx.prec = prec def det(ctx, A): """ Calculate the determinant of a matrix. """ prec = ctx.prec try: # do not overwrite A A = ctx.matrix(A).copy() # use LU factorization to calculate determinant try: R, p = ctx.LU_decomp(A) except ZeroDivisionError: return 0 z = 1 for i, e in enumerate(p): if i != e: z *= -1 for i in xrange(A.rows): z *= R[i,i] return z finally: ctx.prec = prec def cond(ctx, A, norm=None): """ Calculate the condition number of a matrix using a specified matrix norm. The condition number estimates the sensitivity of a matrix to errors. Example: small input errors for ill-conditioned coefficient matrices alter the solution of the system dramatically. For ill-conditioned matrices it's recommended to use qr_solve() instead of lu_solve(). This does not help with input errors however, it just avoids to add additional errors. Definition: cond(A) = ||A|| * ||A**-1|| """ if norm is None: norm = lambda x: ctx.mnorm(x,1) return norm(A) * norm(ctx.inverse(A)) def lu_solve_mat(ctx, a, b): """Solve a * x = b where a and b are matrices.""" r = ctx.matrix(a.rows, b.cols) for i in range(b.cols): c = ctx.lu_solve(a, b.column(i)) for j in range(len(c)): r[j, i] = c[j] return r
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/matrices/linalg.py
linalg.py
from bisect import bisect from ..libmp.backend import xrange class ODEMethods(object): pass def ode_taylor(ctx, derivs, x0, y0, tol_prec, n): h = tol = ctx.ldexp(1, -tol_prec) dim = len(y0) xs = [x0] ys = [y0] x = x0 y = y0 orig = ctx.prec try: ctx.prec = orig*(1+n) # Use n steps with Euler's method to get # evaluation points for derivatives for i in range(n): fxy = derivs(x, y) y = [y[i]+h*fxy[i] for i in xrange(len(y))] x += h xs.append(x) ys.append(y) # Compute derivatives ser = [[] for d in range(dim)] for j in range(n+1): s = [0]*dim b = (-1) ** (j & 1) k = 1 for i in range(j+1): for d in range(dim): s[d] += b * ys[i][d] b = (b * (j-k+1)) // (-k) k += 1 scale = h**(-j) / ctx.fac(j) for d in range(dim): s[d] = s[d] * scale ser[d].append(s[d]) finally: ctx.prec = orig # Estimate radius for which we can get full accuracy. # XXX: do this right for zeros radius = ctx.one for ts in ser: if ts[-1]: radius = min(radius, ctx.nthroot(tol/abs(ts[-1]), n)) radius /= 2 # XXX return ser, x0+radius def odefun(ctx, F, x0, y0, tol=None, degree=None, method='taylor', verbose=False): r""" Returns a function `y(x) = [y_0(x), y_1(x), \ldots, y_n(x)]` that is a numerical solution of the `n+1`-dimensional first-order ordinary differential equation (ODE) system .. math :: y_0'(x) = F_0(x, [y_0(x), y_1(x), \ldots, y_n(x)]) y_1'(x) = F_1(x, [y_0(x), y_1(x), \ldots, y_n(x)]) \vdots y_n'(x) = F_n(x, [y_0(x), y_1(x), \ldots, y_n(x)]) The derivatives are specified by the vector-valued function *F* that evaluates `[y_0', \ldots, y_n'] = F(x, [y_0, \ldots, y_n])`. The initial point `x_0` is specified by the scalar argument *x0*, and the initial value `y(x_0) = [y_0(x_0), \ldots, y_n(x_0)]` is specified by the vector argument *y0*. For convenience, if the system is one-dimensional, you may optionally provide just a scalar value for *y0*. In this case, *F* should accept a scalar *y* argument and return a scalar. The solution function *y* will return scalar values instead of length-1 vectors. Evaluation of the solution function `y(x)` is permitted for any `x \ge x_0`. A high-order ODE can be solved by transforming it into first-order vector form. This transformation is described in standard texts on ODEs. Examples will also be given below. **Options, speed and accuracy** By default, :func:`~mpmath.odefun` uses a high-order Taylor series method. For reasonably well-behaved problems, the solution will be fully accurate to within the working precision. Note that *F* must be possible to evaluate to very high precision for the generation of Taylor series to work. To get a faster but less accurate solution, you can set a large value for *tol* (which defaults roughly to *eps*). If you just want to plot the solution or perform a basic simulation, *tol = 0.01* is likely sufficient. The *degree* argument controls the degree of the solver (with *method='taylor'*, this is the degree of the Taylor series expansion). A higher degree means that a longer step can be taken before a new local solution must be generated from *F*, meaning that fewer steps are required to get from `x_0` to a given `x_1`. On the other hand, a higher degree also means that each local solution becomes more expensive (i.e., more evaluations of *F* are required per step, and at higher precision). The optimal setting therefore involves a tradeoff. Generally, decreasing the *degree* for Taylor series is likely to give faster solution at low precision, while increasing is likely to be better at higher precision. The function object returned by :func:`~mpmath.odefun` caches the solutions at all step points and uses polynomial interpolation between step points. Therefore, once `y(x_1)` has been evaluated for some `x_1`, `y(x)` can be evaluated very quickly for any `x_0 \le x \le x_1`. and continuing the evaluation up to `x_2 > x_1` is also fast. **Examples of first-order ODEs** We will solve the standard test problem `y'(x) = y(x), y(0) = 1` which has explicit solution `y(x) = \exp(x)`:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> f = odefun(lambda x, y: y, 0, 1) >>> for x in [0, 1, 2.5]: ... print((f(x), exp(x))) ... (1.0, 1.0) (2.71828182845905, 2.71828182845905) (12.1824939607035, 12.1824939607035) The solution with high precision:: >>> mp.dps = 50 >>> f = odefun(lambda x, y: y, 0, 1) >>> f(1) 2.7182818284590452353602874713526624977572470937 >>> exp(1) 2.7182818284590452353602874713526624977572470937 Using the more general vectorized form, the test problem can be input as (note that *f* returns a 1-element vector):: >>> mp.dps = 15 >>> f = odefun(lambda x, y: [y[0]], 0, [1]) >>> f(1) [2.71828182845905] :func:`~mpmath.odefun` can solve nonlinear ODEs, which are generally impossible (and at best difficult) to solve analytically. As an example of a nonlinear ODE, we will solve `y'(x) = x \sin(y(x))` for `y(0) = \pi/2`. An exact solution happens to be known for this problem, and is given by `y(x) = 2 \tan^{-1}\left(\exp\left(x^2/2\right)\right)`:: >>> f = odefun(lambda x, y: x*sin(y), 0, pi/2) >>> for x in [2, 5, 10]: ... print((f(x), 2*atan(exp(mpf(x)**2/2)))) ... (2.87255666284091, 2.87255666284091) (3.14158520028345, 3.14158520028345) (3.14159265358979, 3.14159265358979) If `F` is independent of `y`, an ODE can be solved using direct integration. We can therefore obtain a reference solution with :func:`~mpmath.quad`:: >>> f = lambda x: (1+x**2)/(1+x**3) >>> g = odefun(lambda x, y: f(x), pi, 0) >>> g(2*pi) 0.72128263801696 >>> quad(f, [pi, 2*pi]) 0.72128263801696 **Examples of second-order ODEs** We will solve the harmonic oscillator equation `y''(x) + y(x) = 0`. To do this, we introduce the helper functions `y_0 = y, y_1 = y_0'` whereby the original equation can be written as `y_1' + y_0' = 0`. Put together, we get the first-order, two-dimensional vector ODE .. math :: \begin{cases} y_0' = y_1 \\ y_1' = -y_0 \end{cases} To get a well-defined IVP, we need two initial values. With `y(0) = y_0(0) = 1` and `-y'(0) = y_1(0) = 0`, the problem will of course be solved by `y(x) = y_0(x) = \cos(x)` and `-y'(x) = y_1(x) = \sin(x)`. We check this:: >>> f = odefun(lambda x, y: [-y[1], y[0]], 0, [1, 0]) >>> for x in [0, 1, 2.5, 10]: ... nprint(f(x), 15) ... nprint([cos(x), sin(x)], 15) ... print("---") ... [1.0, 0.0] [1.0, 0.0] --- [0.54030230586814, 0.841470984807897] [0.54030230586814, 0.841470984807897] --- [-0.801143615546934, 0.598472144103957] [-0.801143615546934, 0.598472144103957] --- [-0.839071529076452, -0.54402111088937] [-0.839071529076452, -0.54402111088937] --- Note that we get both the sine and the cosine solutions simultaneously. **TODO** * Better automatic choice of degree and step size * Make determination of Taylor series convergence radius more robust * Allow solution for `x < x_0` * Allow solution for complex `x` * Test for difficult (ill-conditioned) problems * Implement Runge-Kutta and other algorithms """ if tol: tol_prec = int(-ctx.log(tol, 2))+10 else: tol_prec = ctx.prec+10 degree = degree or (3 + int(3*ctx.dps/2.)) workprec = ctx.prec + 40 try: len(y0) return_vector = True except TypeError: F_ = F F = lambda x, y: [F_(x, y[0])] y0 = [y0] return_vector = False ser, xb = ode_taylor(ctx, F, x0, y0, tol_prec, degree) series_boundaries = [x0, xb] series_data = [(ser, x0, xb)] # We will be working with vectors of Taylor series def mpolyval(ser, a): return [ctx.polyval(s[::-1], a) for s in ser] # Find nearest expansion point; compute if necessary def get_series(x): if x < x0: raise ValueError n = bisect(series_boundaries, x) if n < len(series_boundaries): return series_data[n-1] while 1: ser, xa, xb = series_data[-1] if verbose: print("Computing Taylor series for [%f, %f]" % (xa, xb)) y = mpolyval(ser, xb-xa) xa = xb ser, xb = ode_taylor(ctx, F, xb, y, tol_prec, degree) series_boundaries.append(xb) series_data.append((ser, xa, xb)) if x <= xb: return series_data[-1] # Evaluation function def interpolant(x): x = ctx.convert(x) orig = ctx.prec try: ctx.prec = workprec ser, xa, xb = get_series(x) y = mpolyval(ser, x-xa) finally: ctx.prec = orig if return_vector: return [+yk for yk in y] else: return +y[0] return interpolant ODEMethods.odefun = odefun if __name__ == "__main__": import doctest doctest.testmod()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/odes.py
odes.py
from copy import copy from ..libmp.backend import xrange class OptimizationMethods(object): def __init__(ctx): pass ############## # 1D-SOLVERS # ############## class Newton: """ 1d-solver generating pairs of approximative root and error. Needs starting points x0 close to the root. Pro: * converges fast * sometimes more robust than secant with bad second starting point Contra: * converges slowly for multiple roots * needs first derivative * 2 function evaluations per iteration """ maxsteps = 20 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if len(x0) == 1: self.x0 = x0[0] else: raise ValueError('expected 1 starting point, got %i' % len(x0)) self.f = f if not 'df' in kwargs: def df(x): return self.ctx.diff(f, x) else: df = kwargs['df'] self.df = df def __iter__(self): f = self.f df = self.df x0 = self.x0 while True: x1 = x0 - f(x0) / df(x0) error = abs(x1 - x0) x0 = x1 yield (x1, error) class Secant: """ 1d-solver generating pairs of approximative root and error. Needs starting points x0 and x1 close to the root. x1 defaults to x0 + 0.25. Pro: * converges fast Contra: * converges slowly for multiple roots """ maxsteps = 30 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if len(x0) == 1: self.x0 = x0[0] self.x1 = self.x0 + 0.25 elif len(x0) == 2: self.x0 = x0[0] self.x1 = x0[1] else: raise ValueError('expected 1 or 2 starting points, got %i' % len(x0)) self.f = f def __iter__(self): f = self.f x0 = self.x0 x1 = self.x1 f0 = f(x0) while True: f1 = f(x1) l = x1 - x0 if not l: break s = (f1 - f0) / l if not s: break x0, x1 = x1, x1 - f1/s f0 = f1 yield x1, abs(l) class MNewton: """ 1d-solver generating pairs of approximative root and error. Needs starting point x0 close to the root. Uses modified Newton's method that converges fast regardless of the multiplicity of the root. Pro: * converges fast for multiple roots Contra: * needs first and second derivative of f * 3 function evaluations per iteration """ maxsteps = 20 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if not len(x0) == 1: raise ValueError('expected 1 starting point, got %i' % len(x0)) self.x0 = x0[0] self.f = f if not 'df' in kwargs: def df(x): return self.ctx.diff(f, x) else: df = kwargs['df'] self.df = df if not 'd2f' in kwargs: def d2f(x): return self.ctx.diff(df, x) else: d2f = kwargs['df'] self.d2f = d2f def __iter__(self): x = self.x0 f = self.f df = self.df d2f = self.d2f while True: prevx = x fx = f(x) if fx == 0: break dfx = df(x) d2fx = d2f(x) # x = x - F(x)/F'(x) with F(x) = f(x)/f'(x) x -= fx / (dfx - fx * d2fx / dfx) error = abs(x - prevx) yield x, error class Halley: """ 1d-solver generating pairs of approximative root and error. Needs a starting point x0 close to the root. Uses Halley's method with cubic convergence rate. Pro: * converges even faster the Newton's method * useful when computing with *many* digits Contra: * needs first and second derivative of f * 3 function evaluations per iteration * converges slowly for multiple roots """ maxsteps = 20 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if not len(x0) == 1: raise ValueError('expected 1 starting point, got %i' % len(x0)) self.x0 = x0[0] self.f = f if not 'df' in kwargs: def df(x): return self.ctx.diff(f, x) else: df = kwargs['df'] self.df = df if not 'd2f' in kwargs: def d2f(x): return self.ctx.diff(df, x) else: d2f = kwargs['df'] self.d2f = d2f def __iter__(self): x = self.x0 f = self.f df = self.df d2f = self.d2f while True: prevx = x fx = f(x) dfx = df(x) d2fx = d2f(x) x -= 2*fx*dfx / (2*dfx**2 - fx*d2fx) error = abs(x - prevx) yield x, error class Muller: """ 1d-solver generating pairs of approximative root and error. Needs starting points x0, x1 and x2 close to the root. x1 defaults to x0 + 0.25; x2 to x1 + 0.25. Uses Muller's method that converges towards complex roots. Pro: * converges fast (somewhat faster than secant) * can find complex roots Contra: * converges slowly for multiple roots * may have complex values for real starting points and real roots http://en.wikipedia.org/wiki/Muller's_method """ maxsteps = 30 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if len(x0) == 1: self.x0 = x0[0] self.x1 = self.x0 + 0.25 self.x2 = self.x1 + 0.25 elif len(x0) == 2: self.x0 = x0[0] self.x1 = x0[1] self.x2 = self.x1 + 0.25 elif len(x0) == 3: self.x0 = x0[0] self.x1 = x0[1] self.x2 = x0[2] else: raise ValueError('expected 1, 2 or 3 starting points, got %i' % len(x0)) self.f = f self.verbose = kwargs['verbose'] def __iter__(self): f = self.f x0 = self.x0 x1 = self.x1 x2 = self.x2 fx0 = f(x0) fx1 = f(x1) fx2 = f(x2) while True: # TODO: maybe refactoring with function for divided differences # calculate divided differences fx2x1 = (fx1 - fx2) / (x1 - x2) fx2x0 = (fx0 - fx2) / (x0 - x2) fx1x0 = (fx0 - fx1) / (x0 - x1) w = fx2x1 + fx2x0 - fx1x0 fx2x1x0 = (fx1x0 - fx2x1) / (x0 - x2) if w == 0 and fx2x1x0 == 0: if self.verbose: print('canceled with') print('x0 =', x0, ', x1 =', x1, 'and x2 =', x2) break x0 = x1 fx0 = fx1 x1 = x2 fx1 = fx2 # denominator should be as large as possible => choose sign r = self.ctx.sqrt(w**2 - 4*fx2*fx2x1x0) if abs(w - r) > abs(w + r): r = -r x2 -= 2*fx2 / (w + r) fx2 = f(x2) error = abs(x2 - x1) yield x2, error # TODO: consider raising a ValueError when there's no sign change in a and b class Bisection: """ 1d-solver generating pairs of approximative root and error. Uses bisection method to find a root of f in [a, b]. Might fail for multiple roots (needs sign change). Pro: * robust and reliable Contra: * converges slowly * needs sign change """ maxsteps = 100 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if len(x0) != 2: raise ValueError('expected interval of 2 points, got %i' % len(x0)) self.f = f self.a = x0[0] self.b = x0[1] def __iter__(self): f = self.f a = self.a b = self.b l = b - a fb = f(b) while True: m = self.ctx.ldexp(a + b, -1) fm = f(m) if fm * fb < 0: a = m else: b = m fb = fm l /= 2 yield (a + b)/2, abs(l) def _getm(method): """ Return a function to calculate m for Illinois-like methods. """ if method == 'illinois': def getm(fz, fb): return 0.5 elif method == 'pegasus': def getm(fz, fb): return fb/(fb + fz) elif method == 'anderson': def getm(fz, fb): m = 1 - fz/fb if m > 0: return m else: return 0.5 else: raise ValueError("method '%s' not recognized" % method) return getm class Illinois: """ 1d-solver generating pairs of approximative root and error. Uses Illinois method or similar to find a root of f in [a, b]. Might fail for multiple roots (needs sign change). Combines bisect with secant (improved regula falsi). The only difference between the methods is the scaling factor m, which is used to ensure convergence (you can choose one using the 'method' keyword): Illinois method ('illinois'): m = 0.5 Pegasus method ('pegasus'): m = fb/(fb + fz) Anderson-Bjoerk method ('anderson'): m = 1 - fz/fb if positive else 0.5 Pro: * converges very fast Contra: * has problems with multiple roots * needs sign change """ maxsteps = 30 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if len(x0) != 2: raise ValueError('expected interval of 2 points, got %i' % len(x0)) self.a = x0[0] self.b = x0[1] self.f = f self.tol = kwargs['tol'] self.verbose = kwargs['verbose'] self.method = kwargs.get('method', 'illinois') self.getm = _getm(self.method) if self.verbose: print('using %s method' % self.method) def __iter__(self): method = self.method f = self.f a = self.a b = self.b fa = f(a) fb = f(b) m = None while True: l = b - a if l == 0: break s = (fb - fa) / l z = a - fa/s fz = f(z) if abs(fz) < self.tol: # TODO: better condition (when f is very flat) if self.verbose: print('canceled with z =', z) yield z, l break if fz * fb < 0: # root in [z, b] a = b fa = fb b = z fb = fz else: # root in [a, z] m = self.getm(fz, fb) b = z fb = fz fa = m*fa # scale down to ensure convergence if self.verbose and m and not method == 'illinois': print('m:', m) yield (a + b)/2, abs(l) def Pegasus(*args, **kwargs): """ 1d-solver generating pairs of approximative root and error. Uses Pegasus method to find a root of f in [a, b]. Wrapper for illinois to use method='pegasus'. """ kwargs['method'] = 'pegasus' return Illinois(*args, **kwargs) def Anderson(*args, **kwargs): """ 1d-solver generating pairs of approximative root and error. Uses Anderson-Bjoerk method to find a root of f in [a, b]. Wrapper for illinois to use method='pegasus'. """ kwargs['method'] = 'anderson' return Illinois(*args, **kwargs) # TODO: check whether it's possible to combine it with Illinois stuff class Ridder: """ 1d-solver generating pairs of approximative root and error. Ridders' method to find a root of f in [a, b]. Is told to perform as well as Brent's method while being simpler. Pro: * very fast * simpler than Brent's method Contra: * two function evaluations per step * has problems with multiple roots * needs sign change http://en.wikipedia.org/wiki/Ridders'_method """ maxsteps = 30 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx self.f = f if len(x0) != 2: raise ValueError('expected interval of 2 points, got %i' % len(x0)) self.x1 = x0[0] self.x2 = x0[1] self.verbose = kwargs['verbose'] self.tol = kwargs['tol'] def __iter__(self): ctx = self.ctx f = self.f x1 = self.x1 fx1 = f(x1) x2 = self.x2 fx2 = f(x2) while True: x3 = 0.5*(x1 + x2) fx3 = f(x3) x4 = x3 + (x3 - x1) * ctx.sign(fx1 - fx2) * fx3 / ctx.sqrt(fx3**2 - fx1*fx2) fx4 = f(x4) if abs(fx4) < self.tol: # TODO: better condition (when f is very flat) if self.verbose: print('canceled with f(x4) =', fx4) yield x4, abs(x1 - x2) break if fx4 * fx2 < 0: # root in [x4, x2] x1 = x4 fx1 = fx4 else: # root in [x1, x4] x2 = x4 fx2 = fx4 error = abs(x1 - x2) yield (x1 + x2)/2, error class ANewton: """ EXPERIMENTAL 1d-solver generating pairs of approximative root and error. Uses Newton's method modified to use Steffensens method when convergence is slow. (I.e. for multiple roots.) """ maxsteps = 20 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx if not len(x0) == 1: raise ValueError('expected 1 starting point, got %i' % len(x0)) self.x0 = x0[0] self.f = f if not 'df' in kwargs: def df(x): return self.ctx.diff(f, x) else: df = kwargs['df'] self.df = df def phi(x): return x - f(x) / df(x) self.phi = phi self.verbose = kwargs['verbose'] def __iter__(self): x0 = self.x0 f = self.f df = self.df phi = self.phi error = 0 counter = 0 while True: prevx = x0 try: x0 = phi(x0) except ZeroDivisionError: if self.verbose: 'ZeroDivisionError: canceled with x =', x0 break preverror = error error = abs(prevx - x0) # TODO: decide not to use convergence acceleration if error and abs(error - preverror) / error < 1: if self.verbose: print('converging slowly') counter += 1 if counter >= 3: # accelerate convergence phi = steffensen(phi) counter = 0 if self.verbose: print('accelerating convergence') yield x0, error # TODO: add Brent ############################ # MULTIDIMENSIONAL SOLVERS # ############################ def jacobian(ctx, f, x): """ Calculate the Jacobian matrix of a function at the point x0. This is the first derivative of a vectorial function: f : R^m -> R^n with m >= n """ x = ctx.matrix(x) h = ctx.sqrt(ctx.eps) fx = ctx.matrix(f(*x)) m = len(fx) n = len(x) J = ctx.matrix(m, n) for j in xrange(n): xj = x.copy() xj[j] += h Jj = (ctx.matrix(f(*xj)) - fx) / h for i in xrange(m): J[i,j] = Jj[i] return J # TODO: test with user-specified jacobian matrix, support force_type class MDNewton: """ Find the root of a vector function numerically using Newton's method. f is a vector function representing a nonlinear equation system. x0 is the starting point close to the root. J is a function returning the Jacobian matrix for a point. Supports overdetermined systems. Use the 'norm' keyword to specify which norm to use. Defaults to max-norm. The function to calculate the Jacobian matrix can be given using the keyword 'J'. Otherwise it will be calculated numerically. Please note that this method converges only locally. Especially for high- dimensional systems it is not trivial to find a good starting point being close enough to the root. It is recommended to use a faster, low-precision solver from SciPy [1] or OpenOpt [2] to get an initial guess. Afterwards you can use this method for root-polishing to any precision. [1] http://scipy.org [2] http://openopt.org """ maxsteps = 10 def __init__(self, ctx, f, x0, **kwargs): self.ctx = ctx self.f = f if isinstance(x0, (tuple, list)): x0 = ctx.matrix(x0) assert x0.cols == 1, 'need a vector' self.x0 = x0 if 'J' in kwargs: self.J = kwargs['J'] else: def J(*x): return ctx.jacobian(f, x) self.J = J self.norm = kwargs['norm'] self.verbose = kwargs['verbose'] def __iter__(self): f = self.f x0 = self.x0 norm = self.norm J = self.J fx = self.ctx.matrix(f(*x0)) fxnorm = norm(fx) cancel = False while not cancel: # get direction of descent fxn = -fx Jx = J(*x0) s = self.ctx.lu_solve(Jx, fxn) if self.verbose: print('Jx:') print(Jx) print('s:', s) # damping step size TODO: better strategy (hard task) l = self.ctx.one x1 = x0 + s while True: if x1 == x0: if self.verbose: print("canceled, won't get more excact") cancel = True break fx = self.ctx.matrix(f(*x1)) newnorm = norm(fx) if newnorm < fxnorm: # new x accepted fxnorm = newnorm x0 = x1 break l /= 2 x1 = x0 + l*s yield (x0, fxnorm) ############# # UTILITIES # ############# str2solver = {'newton':Newton, 'secant':Secant,'mnewton':MNewton, 'halley':Halley, 'muller':Muller, 'bisect':Bisection, 'illinois':Illinois, 'pegasus':Pegasus, 'anderson':Anderson, 'ridder':Ridder, 'anewton':ANewton, 'mdnewton':MDNewton} def findroot(ctx, f, x0, solver=Secant, tol=None, verbose=False, verify=True, **kwargs): r""" Find a solution to `f(x) = 0`, using *x0* as starting point or interval for *x*. Multidimensional overdetermined systems are supported. You can specify them using a function or a list of functions. If the found root does not satisfy `|f(x)^2 < \mathrm{tol}|`, an exception is raised (this can be disabled with *verify=False*). **Arguments** *f* one dimensional function *x0* starting point, several starting points or interval (depends on solver) *tol* the returned solution has an error smaller than this *verbose* print additional information for each iteration if true *verify* verify the solution and raise a ValueError if `|f(x) > \mathrm{tol}|` *solver* a generator for *f* and *x0* returning approximative solution and error *maxsteps* after how many steps the solver will cancel *df* first derivative of *f* (used by some solvers) *d2f* second derivative of *f* (used by some solvers) *multidimensional* force multidimensional solving *J* Jacobian matrix of *f* (used by multidimensional solvers) *norm* used vector norm (used by multidimensional solvers) solver has to be callable with ``(f, x0, **kwargs)`` and return an generator yielding pairs of approximative solution and estimated error (which is expected to be positive). You can use the following string aliases: 'secant', 'mnewton', 'halley', 'muller', 'illinois', 'pegasus', 'anderson', 'ridder', 'anewton', 'bisect' See mpmath.optimization for their documentation. **Examples** The function :func:`~mpmath.findroot` locates a root of a given function using the secant method by default. A simple example use of the secant method is to compute `\pi` as the root of `\sin x` closest to `x_0 = 3`:: >>> from mpmath import * >>> mp.dps = 30; mp.pretty = True >>> findroot(sin, 3) 3.14159265358979323846264338328 The secant method can be used to find complex roots of analytic functions, although it must in that case generally be given a nonreal starting value (or else it will never leave the real line):: >>> mp.dps = 15 >>> findroot(lambda x: x**3 + 2*x + 1, j) (0.226698825758202 + 1.46771150871022j) A nice application is to compute nontrivial roots of the Riemann zeta function with many digits (good initial values are needed for convergence):: >>> mp.dps = 30 >>> findroot(zeta, 0.5+14j) (0.5 + 14.1347251417346937904572519836j) The secant method can also be used as an optimization algorithm, by passing it a derivative of a function. The following example locates the positive minimum of the gamma function:: >>> mp.dps = 20 >>> findroot(lambda x: diff(gamma, x), 1) 1.4616321449683623413 Finally, a useful application is to compute inverse functions, such as the Lambert W function which is the inverse of `w e^w`, given the first term of the solution's asymptotic expansion as the initial value. In basic cases, this gives identical results to mpmath's built-in ``lambertw`` function:: >>> def lambert(x): ... return findroot(lambda w: w*exp(w) - x, log(1+x)) ... >>> mp.dps = 15 >>> lambert(1); lambertw(1) 0.567143290409784 0.567143290409784 >>> lambert(1000); lambert(1000) 5.2496028524016 5.2496028524016 Multidimensional functions are also supported:: >>> f = [lambda x1, x2: x1**2 + x2, ... lambda x1, x2: 5*x1**2 - 3*x1 + 2*x2 - 3] >>> findroot(f, (0, 0)) [-0.618033988749895] [-0.381966011250105] >>> findroot(f, (10, 10)) [ 1.61803398874989] [-2.61803398874989] You can verify this by solving the system manually. Please note that the following (more general) syntax also works:: >>> def f(x1, x2): ... return x1**2 + x2, 5*x1**2 - 3*x1 + 2*x2 - 3 ... >>> findroot(f, (0, 0)) [-0.618033988749895] [-0.381966011250105] **Multiple roots** For multiple roots all methods of the Newtonian family (including secant) converge slowly. Consider this example:: >>> f = lambda x: (x - 1)**99 >>> findroot(f, 0.9, verify=False) 0.918073542444929 Even for a very close starting point the secant method converges very slowly. Use ``verbose=True`` to illustrate this. It is possible to modify Newton's method to make it converge regardless of the root's multiplicity:: >>> findroot(f, -10, solver='mnewton') 1.0 This variant uses the first and second derivative of the function, which is not very efficient. Alternatively you can use an experimental Newtonian solver that keeps track of the speed of convergence and accelerates it using Steffensen's method if necessary:: >>> findroot(f, -10, solver='anewton', verbose=True) x: -9.88888888888888888889 error: 0.111111111111111111111 converging slowly x: -9.77890011223344556678 error: 0.10998877665544332211 converging slowly x: -9.67002233332199662166 error: 0.108877778911448945119 converging slowly accelerating convergence x: -9.5622443299551077669 error: 0.107778003366888854764 converging slowly x: 0.99999999999999999214 error: 10.562244329955107759 x: 1.0 error: 7.8598304758094664213e-18 1.0 **Complex roots** For complex roots it's recommended to use Muller's method as it converges even for real starting points very fast:: >>> findroot(lambda x: x**4 + x + 1, (0, 1, 2), solver='muller') (0.727136084491197 + 0.934099289460529j) **Intersection methods** When you need to find a root in a known interval, it's highly recommended to use an intersection-based solver like ``'anderson'`` or ``'ridder'``. Usually they converge faster and more reliable. They have however problems with multiple roots and usually need a sign change to find a root:: >>> findroot(lambda x: x**3, (-1, 1), solver='anderson') 0.0 Be careful with symmetric functions:: >>> findroot(lambda x: x**2, (-1, 1), solver='anderson') #doctest:+ELLIPSIS Traceback (most recent call last): ... ZeroDivisionError It fails even for better starting points, because there is no sign change:: >>> findroot(lambda x: x**2, (-1, .5), solver='anderson') Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (1 > 2.1684e-19) Try another starting point or tweak arguments. """ prec = ctx.prec try: ctx.prec += 20 # initialize arguments if tol is None: tol = ctx.eps * 2**10 kwargs['verbose'] = kwargs.get('verbose', verbose) if 'd1f' in kwargs: kwargs['df'] = kwargs['d1f'] kwargs['tol'] = tol if isinstance(x0, (list, tuple)): x0 = [ctx.convert(x) for x in x0] else: x0 = [ctx.convert(x0)] if isinstance(solver, str): try: solver = str2solver[solver] except KeyError: raise ValueError('could not recognize solver') # accept list of functions if isinstance(f, (list, tuple)): f2 = copy(f) def tmp(*args): return [fn(*args) for fn in f2] f = tmp # detect multidimensional functions try: fx = f(*x0) multidimensional = isinstance(fx, (list, tuple, ctx.matrix)) except TypeError: fx = f(x0[0]) multidimensional = False if 'multidimensional' in kwargs: multidimensional = kwargs['multidimensional'] if multidimensional: # only one multidimensional solver available at the moment solver = MDNewton if not 'norm' in kwargs: norm = lambda x: ctx.norm(x, 'inf') kwargs['norm'] = norm else: norm = kwargs['norm'] else: norm = abs # happily return starting point if it's a root if norm(fx) == 0: if multidimensional: return ctx.matrix(x0) else: return x0[0] # use solver iterations = solver(ctx, f, x0, **kwargs) if 'maxsteps' in kwargs: maxsteps = kwargs['maxsteps'] else: maxsteps = iterations.maxsteps i = 0 for x, error in iterations: if verbose: print('x: ', x) print('error:', error) i += 1 if error < tol * max(1, norm(x)) or i >= maxsteps: break if not isinstance(x, (list, tuple, ctx.matrix)): xl = [x] else: xl = x if verify and norm(f(*xl))**2 > tol: # TODO: better condition? raise ValueError('Could not find root within given tolerance. ' '(%g > %g)\n' 'Try another starting point or tweak arguments.' % (norm(f(*xl))**2, tol)) return x finally: ctx.prec = prec def multiplicity(ctx, f, root, tol=None, maxsteps=10, **kwargs): """ Return the multiplicity of a given root of f. Internally, numerical derivatives are used. This might be inefficient for higher order derviatives. Due to this, ``multiplicity`` cancels after evaluating 10 derivatives by default. You can be specify the n-th derivative using the dnf keyword. >>> from mpmath import * >>> multiplicity(lambda x: sin(x) - 1, pi/2) 2 """ if tol is None: tol = ctx.eps ** 0.8 kwargs['d0f'] = f for i in xrange(maxsteps): dfstr = 'd' + str(i) + 'f' if dfstr in kwargs: df = kwargs[dfstr] else: df = lambda x: ctx.diff(f, x, i) if not abs(df(root)) < tol: break return i def steffensen(f): """ linear convergent function -> quadratic convergent function Steffensen's method for quadratic convergence of a linear converging sequence. Don not use it for higher rates of convergence. It may even work for divergent sequences. Definition: F(x) = (x*f(f(x)) - f(x)**2) / (f(f(x)) - 2*f(x) + x) Example ....... You can use Steffensen's method to accelerate a fixpoint iteration of linear (or less) convergence. x* is a fixpoint of the iteration x_{k+1} = phi(x_k) if x* = phi(x*). For phi(x) = x**2 there are two fixpoints: 0 and 1. Let's try Steffensen's method: >>> f = lambda x: x**2 >>> from mpmath.optimization import steffensen >>> F = steffensen(f) >>> for x in [0.5, 0.9, 2.0]: ... fx = Fx = x ... for i in xrange(10): ... try: ... fx = f(fx) ... except OverflowError: ... pass ... try: ... Fx = F(Fx) ... except ZeroDivisionError: ... pass ... print '%20g %20g' % (fx, Fx) 0.25 -0.5 0.0625 0.1 0.00390625 -0.0011236 1.52588e-005 1.41691e-009 2.32831e-010 -2.84465e-027 5.42101e-020 2.30189e-080 2.93874e-039 -1.2197e-239 8.63617e-078 0 7.45834e-155 0 5.56268e-309 0 0.81 1.02676 0.6561 1.00134 0.430467 1 0.185302 1 0.0343368 1 0.00117902 1 1.39008e-006 1 1.93233e-012 1 3.73392e-024 1 1.39421e-047 1 4 1.6 16 1.2962 256 1.10194 65536 1.01659 4.29497e+009 1.00053 1.84467e+019 1 3.40282e+038 1 1.15792e+077 1 1.34078e+154 1 1.34078e+154 1 Unmodified, the iteration converges only towards 0. Modified it converges not only much faster, it converges even to the repelling fixpoint 1. """ def F(x): fx = f(x) ffx = f(fx) return (x*ffx - fx**2) / (ffx - 2*fx + x) return F OptimizationMethods.jacobian = jacobian OptimizationMethods.findroot = findroot OptimizationMethods.multiplicity = multiplicity if __name__ == '__main__': import doctest doctest.testmod()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/optimization.py
optimization.py
from ..libmp.backend import xrange from .calculus import defun #----------------------------------------------------------------------------# # Polynomials # #----------------------------------------------------------------------------# # XXX: extra precision @defun def polyval(ctx, coeffs, x, derivative=False): r""" Given coefficients `[c_n, \ldots, c_2, c_1, c_0]` and a number `x`, :func:`~mpmath.polyval` evaluates the polynomial .. math :: P(x) = c_n x^n + \ldots + c_2 x^2 + c_1 x + c_0. If *derivative=True* is set, :func:`~mpmath.polyval` simultaneously evaluates `P(x)` with the derivative, `P'(x)`, and returns the tuple `(P(x), P'(x))`. >>> from mpmath import * >>> mp.pretty = True >>> polyval([3, 0, 2], 0.5) 2.75 >>> polyval([3, 0, 2], 0.5, derivative=True) (2.75, 3.0) The coefficients and the evaluation point may be any combination of real or complex numbers. """ if not coeffs: return ctx.zero p = ctx.convert(coeffs[0]) q = ctx.zero for c in coeffs[1:]: if derivative: q = p + x*q p = c + x*p if derivative: return p, q else: return p @defun def polyroots(ctx, coeffs, maxsteps=50, cleanup=True, extraprec=10, error=False): """ Computes all roots (real or complex) of a given polynomial. The roots are returned as a sorted list, where real roots appear first followed by complex conjugate roots as adjacent elements. The polynomial should be given as a list of coefficients, in the format used by :func:`~mpmath.polyval`. The leading coefficient must be nonzero. With *error=True*, :func:`~mpmath.polyroots` returns a tuple *(roots, err)* where *err* is an estimate of the maximum error among the computed roots. **Examples** Finding the three real roots of `x^3 - x^2 - 14x + 24`:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> nprint(polyroots([1,-1,-14,24]), 4) [-4.0, 2.0, 3.0] Finding the two complex conjugate roots of `4x^2 + 3x + 2`, with an error estimate:: >>> roots, err = polyroots([4,3,2], error=True) >>> for r in roots: ... print(r) ... (-0.375 + 0.59947894041409j) (-0.375 - 0.59947894041409j) >>> >>> err 2.22044604925031e-16 >>> >>> polyval([4,3,2], roots[0]) (2.22044604925031e-16 + 0.0j) >>> polyval([4,3,2], roots[1]) (2.22044604925031e-16 + 0.0j) The following example computes all the 5th roots of unity; that is, the roots of `x^5 - 1`:: >>> mp.dps = 20 >>> for r in polyroots([1, 0, 0, 0, 0, -1]): ... print(r) ... 1.0 (-0.8090169943749474241 + 0.58778525229247312917j) (-0.8090169943749474241 - 0.58778525229247312917j) (0.3090169943749474241 + 0.95105651629515357212j) (0.3090169943749474241 - 0.95105651629515357212j) **Precision and conditioning** Provided there are no repeated roots, :func:`~mpmath.polyroots` can typically compute all roots of an arbitrary polynomial to high precision:: >>> mp.dps = 60 >>> for r in polyroots([1, 0, -10, 0, 1]): ... print r ... -3.14626436994197234232913506571557044551247712918732870123249 -0.317837245195782244725757617296174288373133378433432554879127 0.317837245195782244725757617296174288373133378433432554879127 3.14626436994197234232913506571557044551247712918732870123249 >>> >>> sqrt(3) + sqrt(2) 3.14626436994197234232913506571557044551247712918732870123249 >>> sqrt(3) - sqrt(2) 0.317837245195782244725757617296174288373133378433432554879127 **Algorithm** :func:`~mpmath.polyroots` implements the Durand-Kerner method [1], which uses complex arithmetic to locate all roots simultaneously. The Durand-Kerner method can be viewed as approximately performing simultaneous Newton iteration for all the roots. In particular, the convergence to simple roots is quadratic, just like Newton's method. Although all roots are internally calculated using complex arithmetic, any root found to have an imaginary part smaller than the estimated numerical error is truncated to a real number. Real roots are placed first in the returned list, sorted by value. The remaining complex roots are sorted by real their parts so that conjugate roots end up next to each other. **References** 1. http://en.wikipedia.org/wiki/Durand-Kerner_method """ if len(coeffs) <= 1: if not coeffs or not coeffs[0]: raise ValueError("Input to polyroots must not be the zero polynomial") # Constant polynomial with no roots return [] orig = ctx.prec weps = +ctx.eps try: ctx.prec += 10 tol = ctx.eps * 128 deg = len(coeffs) - 1 # Must be monic lead = ctx.convert(coeffs[0]) if lead == 1: coeffs = [ctx.convert(c) for c in coeffs] else: coeffs = [c/lead for c in coeffs] f = lambda x: ctx.polyval(coeffs, x) roots = [ctx.mpc((0.4+0.9j)**n) for n in xrange(deg)] err = [ctx.one for n in xrange(deg)] # Durand-Kerner iteration until convergence for step in xrange(maxsteps): if abs(max(err)) < tol: break for i in xrange(deg): if not abs(err[i]) < tol: p = roots[i] x = f(p) for j in range(deg): if i != j: try: x /= (p-roots[j]) except ZeroDivisionError: continue roots[i] = p - x err[i] = abs(x) # Remove small imaginary parts if cleanup: for i in xrange(deg): if abs(ctx._im(roots[i])) < weps: roots[i] = roots[i].real elif abs(ctx._re(roots[i])) < weps: roots[i] = roots[i].imag * 1j roots.sort(key=lambda x: (abs(ctx._im(x)), ctx._re(x))) finally: ctx.prec = orig if error: err = max(err) err = max(err, ctx.ldexp(1, -orig+1)) return [+r for r in roots], +err else: return [+r for r in roots]
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/polynomials.py
polynomials.py
from ..libmp.backend import xrange from .calculus import defun #----------------------------------------------------------------------------# # Approximation methods # #----------------------------------------------------------------------------# # The Chebyshev approximation formula is given at: # http://mathworld.wolfram.com/ChebyshevApproximationFormula.html # The only major changes in the following code is that we return the # expanded polynomial coefficients instead of Chebyshev coefficients, # and that we automatically transform [a,b] -> [-1,1] and back # for convenience. # Coefficient in Chebyshev approximation def chebcoeff(ctx,f,a,b,j,N): s = ctx.mpf(0) h = ctx.mpf(0.5) for k in range(1, N+1): t = ctx.cospi((k-h)/N) s += f(t*(b-a)*h + (b+a)*h) * ctx.cospi(j*(k-h)/N) return 2*s/N # Generate Chebyshev polynomials T_n(ax+b) in expanded form def chebT(ctx, a=1, b=0): Tb = [1] yield Tb Ta = [b, a] while 1: yield Ta # Recurrence: T[n+1](ax+b) = 2*(ax+b)*T[n](ax+b) - T[n-1](ax+b) Tmp = [0] + [2*a*t for t in Ta] for i, c in enumerate(Ta): Tmp[i] += 2*b*c for i, c in enumerate(Tb): Tmp[i] -= c Ta, Tb = Tmp, Ta @defun def chebyfit(ctx, f, interval, N, error=False): r""" Computes a polynomial of degree `N-1` that approximates the given function `f` on the interval `[a, b]`. With ``error=True``, :func:`~mpmath.chebyfit` also returns an accurate estimate of the maximum absolute error; that is, the maximum value of `|f(x) - P(x)|` for `x \in [a, b]`. :func:`~mpmath.chebyfit` uses the Chebyshev approximation formula, which gives a nearly optimal solution: that is, the maximum error of the approximating polynomial is very close to the smallest possible for any polynomial of the same degree. Chebyshev approximation is very useful if one needs repeated evaluation of an expensive function, such as function defined implicitly by an integral or a differential equation. (For example, it could be used to turn a slow mpmath function into a fast machine-precision version of the same.) **Examples** Here we use :func:`~mpmath.chebyfit` to generate a low-degree approximation of `f(x) = \cos(x)`, valid on the interval `[1, 2]`:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> poly, err = chebyfit(cos, [1, 2], 5, error=True) >>> nprint(poly) [0.00291682, 0.146166, -0.732491, 0.174141, 0.949553] >>> nprint(err, 12) 1.61351758081e-5 The polynomial can be evaluated using ``polyval``:: >>> nprint(polyval(poly, 1.6), 12) -0.0291858904138 >>> nprint(cos(1.6), 12) -0.0291995223013 Sampling the true error at 1000 points shows that the error estimate generated by ``chebyfit`` is remarkably good:: >>> error = lambda x: abs(cos(x) - polyval(poly, x)) >>> nprint(max([error(1+n/1000.) for n in range(1000)]), 12) 1.61349954245e-5 **Choice of degree** The degree `N` can be set arbitrarily high, to obtain an arbitrarily good approximation. As a rule of thumb, an `N`-term Chebyshev approximation is good to `N/(b-a)` decimal places on a unit interval (although this depends on how well-behaved `f` is). The cost grows accordingly: ``chebyfit`` evaluates the function `(N^2)/2` times to compute the coefficients and an additional `N` times to estimate the error. **Possible issues** One should be careful to use a sufficiently high working precision both when calling ``chebyfit`` and when evaluating the resulting polynomial, as the polynomial is sometimes ill-conditioned. It is for example difficult to reach 15-digit accuracy when evaluating the polynomial using machine precision floats, no matter the theoretical accuracy of the polynomial. (The option to return the coefficients in Chebyshev form should be made available in the future.) It is important to note the Chebyshev approximation works poorly if `f` is not smooth. A function containing singularities, rapid oscillation, etc can be approximated more effectively by multiplying it by a weight function that cancels out the nonsmooth features, or by dividing the interval into several segments. """ a, b = ctx._as_points(interval) orig = ctx.prec try: ctx.prec = orig + int(N**0.5) + 20 c = [chebcoeff(ctx,f,a,b,k,N) for k in range(N)] d = [ctx.zero] * N d[0] = -c[0]/2 h = ctx.mpf(0.5) T = chebT(ctx, ctx.mpf(2)/(b-a), ctx.mpf(-1)*(b+a)/(b-a)) for (k, Tk) in zip(range(N), T): for i in range(len(Tk)): d[i] += c[k]*Tk[i] d = d[::-1] # Estimate maximum error err = ctx.zero for k in range(N): x = ctx.cos(ctx.pi*k/N) * (b-a)*h + (b+a)*h err = max(err, abs(f(x) - ctx.polyval(d, x))) finally: ctx.prec = orig if error: return d, +err else: return d @defun def fourier(ctx, f, interval, N): r""" Computes the Fourier series of degree `N` of the given function on the interval `[a, b]`. More precisely, :func:`~mpmath.fourier` returns two lists `(c, s)` of coefficients (the cosine series and sine series, respectively), such that .. math :: f(x) \sim \sum_{k=0}^N c_k \cos(k m) + s_k \sin(k m) where `m = 2 \pi / (b-a)`. Note that many texts define the first coefficient as `2 c_0` instead of `c_0`. The easiest way to evaluate the computed series correctly is to pass it to :func:`~mpmath.fourierval`. **Examples** The function `f(x) = x` has a simple Fourier series on the standard interval `[-\pi, \pi]`. The cosine coefficients are all zero (because the function has odd symmetry), and the sine coefficients are rational numbers:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> c, s = fourier(lambda x: x, [-pi, pi], 5) >>> nprint(c) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] >>> nprint(s) [0.0, 2.0, -1.0, 0.666667, -0.5, 0.4] This computes a Fourier series of a nonsymmetric function on a nonstandard interval:: >>> I = [-1, 1.5] >>> f = lambda x: x**2 - 4*x + 1 >>> cs = fourier(f, I, 4) >>> nprint(cs[0]) [0.583333, 1.12479, -1.27552, 0.904708, -0.441296] >>> nprint(cs[1]) [0.0, -2.6255, 0.580905, 0.219974, -0.540057] It is instructive to plot a function along with its truncated Fourier series:: >>> plot([f, lambda x: fourierval(cs, I, x)], I) #doctest: +SKIP Fourier series generally converge slowly (and may not converge pointwise). For example, if `f(x) = \cosh(x)`, a 10-term Fourier series gives an `L^2` error corresponding to 2-digit accuracy:: >>> I = [-1, 1] >>> cs = fourier(cosh, I, 9) >>> g = lambda x: (cosh(x) - fourierval(cs, I, x))**2 >>> nprint(sqrt(quad(g, I))) 0.00467963 :func:`~mpmath.fourier` uses numerical quadrature. For nonsmooth functions, the accuracy (and speed) can be improved by including all singular points in the interval specification:: >>> nprint(fourier(abs, [-1, 1], 0), 10) ([0.5000441648], [0.0]) >>> nprint(fourier(abs, [-1, 0, 1], 0), 10) ([0.5], [0.0]) """ interval = ctx._as_points(interval) a = interval[0] b = interval[-1] L = b-a cos_series = [] sin_series = [] cutoff = ctx.eps*10 for n in xrange(N+1): m = 2*n*ctx.pi/L an = 2*ctx.quadgl(lambda t: f(t)*ctx.cos(m*t), interval)/L bn = 2*ctx.quadgl(lambda t: f(t)*ctx.sin(m*t), interval)/L if n == 0: an /= 2 if abs(an) < cutoff: an = ctx.zero if abs(bn) < cutoff: bn = ctx.zero cos_series.append(an) sin_series.append(bn) return cos_series, sin_series @defun def fourierval(ctx, series, interval, x): """ Evaluates a Fourier series (in the format computed by by :func:`~mpmath.fourier` for the given interval) at the point `x`. The series should be a pair `(c, s)` where `c` is the cosine series and `s` is the sine series. The two lists need not have the same length. """ cs, ss = series ab = ctx._as_points(interval) a = interval[0] b = interval[-1] m = 2*ctx.pi/(ab[-1]-ab[0]) s = ctx.zero s += ctx.fsum(cs[n]*ctx.cos(m*n*x) for n in xrange(len(cs)) if cs[n]) s += ctx.fsum(ss[n]*ctx.sin(m*n*x) for n in xrange(len(ss)) if ss[n]) return s
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/approximation.py
approximation.py
try: from itertools import izip except ImportError: izip = zip from ..libmp.backend import xrange from .calculus import defun try: next = next except NameError: next = lambda _: _.next() @defun def richardson(ctx, seq): r""" Given a list ``seq`` of the first `N` elements of a slowly convergent infinite sequence, :func:`~mpmath.richardson` computes the `N`-term Richardson extrapolate for the limit. :func:`~mpmath.richardson` returns `(v, c)` where `v` is the estimated limit and `c` is the magnitude of the largest weight used during the computation. The weight provides an estimate of the precision lost to cancellation. Due to cancellation effects, the sequence must be typically be computed at a much higher precision than the target accuracy of the extrapolation. **Applicability and issues** The `N`-step Richardson extrapolation algorithm used by :func:`~mpmath.richardson` is described in [1]. Richardson extrapolation only works for a specific type of sequence, namely one converging like partial sums of `P(1)/Q(1) + P(2)/Q(2) + \ldots` where `P` and `Q` are polynomials. When the sequence does not convergence at such a rate :func:`~mpmath.richardson` generally produces garbage. Richardson extrapolation has the advantage of being fast: the `N`-term extrapolate requires only `O(N)` arithmetic operations, and usually produces an estimate that is accurate to `O(N)` digits. Contrast with the Shanks transformation (see :func:`~mpmath.shanks`), which requires `O(N^2)` operations. :func:`~mpmath.richardson` is unable to produce an estimate for the approximation error. One way to estimate the error is to perform two extrapolations with slightly different `N` and comparing the results. Richardson extrapolation does not work for oscillating sequences. As a simple workaround, :func:`~mpmath.richardson` detects if the last three elements do not differ monotonically, and in that case applies extrapolation only to the even-index elements. **Example** Applying Richardson extrapolation to the Leibniz series for `\pi`:: >>> from mpmath import * >>> mp.dps = 30; mp.pretty = True >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m)) ... for m in range(1,30)] >>> v, c = richardson(S[:10]) >>> v 3.2126984126984126984126984127 >>> nprint([v-pi, c]) [0.0711058, 2.0] >>> v, c = richardson(S[:30]) >>> v 3.14159265468624052829954206226 >>> nprint([v-pi, c]) [1.09645e-9, 20833.3] **References** 1. [BenderOrszag]_ pp. 375-376 """ assert len(seq) >= 3 if ctx.sign(seq[-1]-seq[-2]) != ctx.sign(seq[-2]-seq[-3]): seq = seq[::2] N = len(seq)//2-1 s = ctx.zero # The general weight is c[k] = (N+k)**N * (-1)**(k+N) / k! / (N-k)! # To avoid repeated factorials, we simplify the quotient # of successive weights to obtain a recurrence relation c = (-1)**N * N**N / ctx.mpf(ctx._ifac(N)) maxc = 1 for k in xrange(N+1): s += c * seq[N+k] maxc = max(abs(c), maxc) c *= (k-N)*ctx.mpf(k+N+1)**N c /= ((1+k)*ctx.mpf(k+N)**N) return s, maxc @defun def shanks(ctx, seq, table=None, randomized=False): r""" Given a list ``seq`` of the first `N` elements of a slowly convergent infinite sequence `(A_k)`, :func:`~mpmath.shanks` computes the iterated Shanks transformation `S(A), S(S(A)), \ldots, S^{N/2}(A)`. The Shanks transformation often provides strong convergence acceleration, especially if the sequence is oscillating. The iterated Shanks transformation is computed using the Wynn epsilon algorithm (see [1]). :func:`~mpmath.shanks` returns the full epsilon table generated by Wynn's algorithm, which can be read off as follows: * The table is a list of lists forming a lower triangular matrix, where higher row and column indices correspond to more accurate values. * The columns with even index hold dummy entries (required for the computation) and the columns with odd index hold the actual extrapolates. * The last element in the last row is typically the most accurate estimate of the limit. * The difference to the third last element in the last row provides an estimate of the approximation error. * The magnitude of the second last element provides an estimate of the numerical accuracy lost to cancellation. For convenience, so the extrapolation is stopped at an odd index so that ``shanks(seq)[-1][-1]`` always gives an estimate of the limit. Optionally, an existing table can be passed to :func:`~mpmath.shanks`. This can be used to efficiently extend a previous computation after new elements have been appended to the sequence. The table will then be updated in-place. **The Shanks transformation** The Shanks transformation is defined as follows (see [2]): given the input sequence `(A_0, A_1, \ldots)`, the transformed sequence is given by .. math :: S(A_k) = \frac{A_{k+1}A_{k-1}-A_k^2}{A_{k+1}+A_{k-1}-2 A_k} The Shanks transformation gives the exact limit `A_{\infty}` in a single step if `A_k = A + a q^k`. Note in particular that it extrapolates the exact sum of a geometric series in a single step. Applying the Shanks transformation once often improves convergence substantially for an arbitrary sequence, but the optimal effect is obtained by applying it iteratively: `S(S(A_k)), S(S(S(A_k))), \ldots`. Wynn's epsilon algorithm provides an efficient way to generate the table of iterated Shanks transformations. It reduces the computation of each element to essentially a single division, at the cost of requiring dummy elements in the table. See [1] for details. **Precision issues** Due to cancellation effects, the sequence must be typically be computed at a much higher precision than the target accuracy of the extrapolation. If the Shanks transformation converges to the exact limit (such as if the sequence is a geometric series), then a division by zero occurs. By default, :func:`~mpmath.shanks` handles this case by terminating the iteration and returning the table it has generated so far. With *randomized=True*, it will instead replace the zero by a pseudorandom number close to zero. (TODO: find a better solution to this problem.) **Examples** We illustrate by applying Shanks transformation to the Leibniz series for `\pi`:: >>> from mpmath import * >>> mp.dps = 50 >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m)) ... for m in range(1,30)] >>> >>> T = shanks(S[:7]) >>> for row in T: ... nprint(row) ... [-0.75] [1.25, 3.16667] [-1.75, 3.13333, -28.75] [2.25, 3.14524, 82.25, 3.14234] [-2.75, 3.13968, -177.75, 3.14139, -969.937] [3.25, 3.14271, 327.25, 3.14166, 3515.06, 3.14161] The extrapolated accuracy is about 4 digits, and about 4 digits may have been lost due to cancellation:: >>> L = T[-1] >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])]) [2.22532e-5, 4.78309e-5, 3515.06] Now we extend the computation:: >>> T = shanks(S[:25], T) >>> L = T[-1] >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])]) [3.75527e-19, 1.48478e-19, 2.96014e+17] The value for pi is now accurate to 18 digits. About 18 digits may also have been lost to cancellation. Here is an example with a geometric series, where the convergence is immediate (the sum is exactly 1):: >>> mp.dps = 15 >>> for row in shanks([0.5, 0.75, 0.875, 0.9375, 0.96875]): ... nprint(row) [4.0] [8.0, 1.0] **References** 1. [GravesMorris]_ 2. [BenderOrszag]_ pp. 368-375 """ assert len(seq) >= 2 if table: START = len(table) else: START = 0 table = [] STOP = len(seq) - 1 if STOP & 1: STOP -= 1 one = ctx.one eps = +ctx.eps if randomized: from random import Random rnd = Random() rnd.seed(START) for i in xrange(START, STOP): row = [] for j in xrange(i+1): if j == 0: a, b = 0, seq[i+1]-seq[i] else: if j == 1: a = seq[i] else: a = table[i-1][j-2] b = row[j-1] - table[i-1][j-1] if not b: if randomized: b = rnd.getrandbits(10)*eps elif i & 1: return table[:-1] else: return table row.append(a + one/b) table.append(row) return table @defun def sumap(ctx, f, interval, integral=None, error=False): r""" Evaluates an infinite series of an analytic summand *f* using the Abel-Plana formula .. math :: \sum_{k=0}^{\infty} f(k) = \int_0^{\infty} f(t) dt + \frac{1}{2} f(0) + i \int_0^{\infty} \frac{f(it)-f(-it)}{e^{2\pi t}-1} dt. Unlike the Euler-Maclaurin formula (see :func:`~mpmath.sumem`), the Abel-Plana formula does not require derivatives. However, it only works when `|f(it)-f(-it)|` does not increase too rapidly with `t`. **Examples** The Abel-Plana formula is particularly useful when the summand decreases like a power of `k`; for example when the sum is a pure zeta function:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> sumap(lambda k: 1/k**2.5, [1,inf]) 1.34148725725091717975677 >>> zeta(2.5) 1.34148725725091717975677 >>> sumap(lambda k: 1/(k+1j)**(2.5+2.5j), [1,inf]) (-3.385361068546473342286084 - 0.7432082105196321803869551j) >>> zeta(2.5+2.5j, 1+1j) (-3.385361068546473342286084 - 0.7432082105196321803869551j) If the series is alternating, numerical quadrature along the real line is likely to give poor results, so it is better to evaluate the first term symbolically whenever possible: >>> n=3; z=-0.75 >>> I = expint(n,-log(z)) >>> chop(sumap(lambda k: z**k / k**n, [1,inf], integral=I)) -0.6917036036904594510141448 >>> polylog(n,z) -0.6917036036904594510141448 """ prec = ctx.prec try: ctx.prec += 10 a, b = interval assert b == ctx.inf g = lambda x: f(x+a) if integral is None: i1, err1 = ctx.quad(g, [0,ctx.inf], error=True) else: i1, err1 = integral, 0 j = ctx.j p = ctx.pi * 2 if ctx._is_real_type(i1): h = lambda t: -2 * ctx.im(g(j*t)) / ctx.expm1(p*t) else: h = lambda t: j*(g(j*t)-g(-j*t)) / ctx.expm1(p*t) i2, err2 = ctx.quad(h, [0,ctx.inf], error=True) err = err1+err2 v = i1+i2+0.5*g(ctx.mpf(0)) finally: ctx.prec = prec if error: return +v, err return +v @defun def sumem(ctx, f, interval, tol=None, reject=10, integral=None, adiffs=None, bdiffs=None, verbose=False, error=False, _fast_abort=False): r""" Uses the Euler-Maclaurin formula to compute an approximation accurate to within ``tol`` (which defaults to the present epsilon) of the sum .. math :: S = \sum_{k=a}^b f(k) where `(a,b)` are given by ``interval`` and `a` or `b` may be infinite. The approximation is .. math :: S \sim \int_a^b f(x) \,dx + \frac{f(a)+f(b)}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(b)-f^{(2k-1)}(a)\right). The last sum in the Euler-Maclaurin formula is not generally convergent (a notable exception is if `f` is a polynomial, in which case Euler-Maclaurin actually gives an exact result). The summation is stopped as soon as the quotient between two consecutive terms falls below *reject*. That is, by default (*reject* = 10), the summation is continued as long as each term adds at least one decimal. Although not convergent, convergence to a given tolerance can often be "forced" if `b = \infty` by summing up to `a+N` and then applying the Euler-Maclaurin formula to the sum over the range `(a+N+1, \ldots, \infty)`. This procedure is implemented by :func:`~mpmath.nsum`. By default numerical quadrature and differentiation is used. If the symbolic values of the integral and endpoint derivatives are known, it is more efficient to pass the value of the integral explicitly as ``integral`` and the derivatives explicitly as ``adiffs`` and ``bdiffs``. The derivatives should be given as iterables that yield `f(a), f'(a), f''(a), \ldots` (and the equivalent for `b`). **Examples** Summation of an infinite series, with automatic and symbolic integral and derivative values (the second should be much faster):: >>> from mpmath import * >>> mp.dps = 50; mp.pretty = True >>> sumem(lambda n: 1/n**2, [32, inf]) 0.03174336652030209012658168043874142714132886413417 >>> I = mpf(1)/32 >>> D = adiffs=((-1)**n*fac(n+1)*32**(-2-n) for n in range(999)) >>> sumem(lambda n: 1/n**2, [32, inf], integral=I, adiffs=D) 0.03174336652030209012658168043874142714132886413417 An exact evaluation of a finite polynomial sum:: >>> sumem(lambda n: n**5-12*n**2+3*n, [-100000, 200000]) 10500155000624963999742499550000.0 >>> print(sum(n**5-12*n**2+3*n for n in range(-100000, 200001))) 10500155000624963999742499550000 """ tol = tol or +ctx.eps interval = ctx._as_points(interval) a = ctx.convert(interval[0]) b = ctx.convert(interval[-1]) err = ctx.zero prev = 0 M = 10000 if a == ctx.ninf: adiffs = (0 for n in xrange(M)) else: adiffs = adiffs or ctx.diffs(f, a) if b == ctx.inf: bdiffs = (0 for n in xrange(M)) else: bdiffs = bdiffs or ctx.diffs(f, b) orig = ctx.prec #verbose = 1 try: ctx.prec += 10 s = ctx.zero for k, (da, db) in enumerate(izip(adiffs, bdiffs)): if k & 1: term = (db-da) * ctx.bernoulli(k+1) / ctx.factorial(k+1) mag = abs(term) if verbose: print("term", k, "magnitude =", ctx.nstr(mag)) if k > 4 and mag < tol: s += term break elif k > 4 and abs(prev) / mag < reject: err += mag if _fast_abort: return [s, (s, err)][error] if verbose: print("Failed to converge") break else: s += term prev = term # Endpoint correction if a != ctx.ninf: s += f(a)/2 if b != ctx.inf: s += f(b)/2 # Tail integral if verbose: print("Integrating f(x) from x = %s to %s" % (ctx.nstr(a), ctx.nstr(b))) if integral: s += integral else: integral, ierr = ctx.quad(f, interval, error=True) if verbose: print("Integration error:", ierr) s += integral err += ierr finally: ctx.prec = orig if error: return s, err else: return s @defun def adaptive_extrapolation(ctx, update, emfun, kwargs): option = kwargs.get if ctx._fixed_precision: tol = option('tol', ctx.eps*2**10) else: tol = option('tol', ctx.eps/2**10) verbose = option('verbose', False) maxterms = option('maxterms', ctx.dps*10) method = option('method', 'r+s').split('+') skip = option('skip', 0) steps = iter(option('steps', xrange(10, 10**9, 10))) strict = option('strict') #steps = (10 for i in xrange(1000)) if 'd' in method or 'direct' in method: TRY_RICHARDSON = TRY_SHANKS = TRY_EULER_MACLAURIN = False else: TRY_RICHARDSON = ('r' in method) or ('richardson' in method) TRY_SHANKS = ('s' in method) or ('shanks' in method) TRY_EULER_MACLAURIN = ('e' in method) or \ ('euler-maclaurin' in method) last_richardson_value = 0 shanks_table = [] index = 0 step = 10 partial = [] best = ctx.zero orig = ctx.prec try: if 'workprec' in kwargs: ctx.prec = kwargs['workprec'] elif TRY_RICHARDSON or TRY_SHANKS: ctx.prec = (ctx.prec+10) * 4 else: ctx.prec += 30 while 1: if index >= maxterms: break # Get new batch of terms try: step = next(steps) except StopIteration: pass if verbose: print("-"*70) print("Adding terms #%i-#%i" % (index, index+step)) update(partial, xrange(index, index+step)) index += step # Check direct error best = partial[-1] error = abs(best - partial[-2]) if verbose: print("Direct error: %s" % ctx.nstr(error)) if error <= tol: return best # Check each extrapolation method if TRY_RICHARDSON: value, maxc = ctx.richardson(partial) # Convergence richardson_error = abs(value - last_richardson_value) if verbose: print("Richardson error: %s" % ctx.nstr(richardson_error)) # Convergence if richardson_error <= tol: return value last_richardson_value = value # Unreliable due to cancellation if ctx.eps*maxc > tol: if verbose: print("Ran out of precision for Richardson") TRY_RICHARDSON = False if richardson_error < error: error = richardson_error best = value if TRY_SHANKS: shanks_table = ctx.shanks(partial, shanks_table, randomized=True) row = shanks_table[-1] if len(row) == 2: est1 = row[-1] shanks_error = 0 else: est1, maxc, est2 = row[-1], abs(row[-2]), row[-3] shanks_error = abs(est1-est2) if verbose: print("Shanks error: %s" % ctx.nstr(shanks_error)) if shanks_error <= tol: return est1 if ctx.eps*maxc > tol: if verbose: print("Ran out of precision for Shanks") TRY_SHANKS = False if shanks_error < error: error = shanks_error best = est1 if TRY_EULER_MACLAURIN: if ctx.mpc(ctx.sign(partial[-1]) / ctx.sign(partial[-2])).ae(-1): if verbose: print ("NOT using Euler-Maclaurin: the series appears" " to be alternating, so numerical\n quadrature" " will most likely fail") TRY_EULER_MACLAURIN = False else: value, em_error = emfun(index, tol) value += partial[-1] if verbose: print("Euler-Maclaurin error: %s" % ctx.nstr(em_error)) if em_error <= tol: return value if em_error < error: best = value finally: ctx.prec = orig if strict: raise ctx.NoConvergence if verbose: print("Warning: failed to converge to target accuracy") return best @defun def nsum(ctx, f, *intervals, **options): r""" Computes the sum .. math :: S = \sum_{k=a}^b f(k) where `(a, b)` = *interval*, and where `a = -\infty` and/or `b = \infty` are allowed, or more generally .. math :: S = \sum_{k_1=a_1}^{b_1} \cdots \sum_{k_n=a_n}^{b_n} f(k_1,\ldots,k_n) if multiple intervals are given. Two examples of infinite series that can be summed by :func:`~mpmath.nsum`, where the first converges rapidly and the second converges slowly, are:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> nsum(lambda n: 1/fac(n), [0, inf]) 2.71828182845905 >>> nsum(lambda n: 1/n**2, [1, inf]) 1.64493406684823 When appropriate, :func:`~mpmath.nsum` applies convergence acceleration to accurately estimate the sums of slowly convergent series. If the series is finite, :func:`~mpmath.nsum` currently does not attempt to perform any extrapolation, and simply calls :func:`~mpmath.fsum`. Multidimensional infinite series are reduced to a single-dimensional series over expanding hypercubes; if both infinite and finite dimensions are present, the finite ranges are moved innermost. For more advanced control over the summation order, use nested calls to :func:`~mpmath.nsum`, or manually rewrite the sum as a single-dimensional series. **Options** *tol* Desired maximum final error. Defaults roughly to the epsilon of the working precision. *method* Which summation algorithm to use (described below). Default: ``'richardson+shanks'``. *maxterms* Cancel after at most this many terms. Default: 10*dps. *steps* An iterable giving the number of terms to add between each extrapolation attempt. The default sequence is [10, 20, 30, 40, ...]. For example, if you know that approximately 100 terms will be required, efficiency might be improved by setting this to [100, 10]. Then the first extrapolation will be performed after 100 terms, the second after 110, etc. *verbose* Print details about progress. *ignore* If enabled, any term that raises ``ArithmeticError`` or ``ValueError`` (e.g. through division by zero) is replaced by a zero. This is convenient for lattice sums with a singular term near the origin. **Methods** Unfortunately, an algorithm that can efficiently sum any infinite series does not exist. :func:`~mpmath.nsum` implements several different algorithms that each work well in different cases. The *method* keyword argument selects a method. The default method is ``'r+s'``, i.e. both Richardson extrapolation and Shanks transformation is attempted. A slower method that handles more cases is ``'r+s+e'``. For very high precision summation, or if the summation needs to be fast (for example if multiple sums need to be evaluated), it is a good idea to investigate which one method works best and only use that. ``'richardson'`` / ``'r'``: Uses Richardson extrapolation. Provides useful extrapolation when `f(k) \sim P(k)/Q(k)` or when `f(k) \sim (-1)^k P(k)/Q(k)` for polynomials `P` and `Q`. See :func:`~mpmath.richardson` for additional information. ``'shanks'`` / ``'s'``: Uses Shanks transformation. Typically provides useful extrapolation when `f(k) \sim c^k` or when successive terms alternate signs. Is able to sum some divergent series. See :func:`~mpmath.shanks` for additional information. ``'euler-maclaurin'`` / ``'e'``: Uses the Euler-Maclaurin summation formula to approximate the remainder sum by an integral. This requires high-order numerical derivatives and numerical integration. The advantage of this algorithm is that it works regardless of the decay rate of `f`, as long as `f` is sufficiently smooth. See :func:`~mpmath.sumem` for additional information. ``'direct'`` / ``'d'``: Does not perform any extrapolation. This can be used (and should only be used for) rapidly convergent series. The summation automatically stops when the terms decrease below the target tolerance. **Basic examples** A finite sum:: >>> nsum(lambda k: 1/k, [1, 6]) 2.45 Summation of a series going to negative infinity and a doubly infinite series:: >>> nsum(lambda k: 1/k**2, [-inf, -1]) 1.64493406684823 >>> nsum(lambda k: 1/(1+k**2), [-inf, inf]) 3.15334809493716 :func:`~mpmath.nsum` handles sums of complex numbers:: >>> nsum(lambda k: (0.5+0.25j)**k, [0, inf]) (1.6 + 0.8j) The following sum converges very rapidly, so it is most efficient to sum it by disabling convergence acceleration:: >>> mp.dps = 1000 >>> a = nsum(lambda k: -(-1)**k * k**2 / fac(2*k), [1, inf], ... method='direct') >>> b = (cos(1)+sin(1))/4 >>> abs(a-b) < mpf('1e-998') True **Examples with Richardson extrapolation** Richardson extrapolation works well for sums over rational functions, as well as their alternating counterparts:: >>> mp.dps = 50 >>> nsum(lambda k: 1 / k**3, [1, inf], ... method='richardson') 1.2020569031595942853997381615114499907649862923405 >>> zeta(3) 1.2020569031595942853997381615114499907649862923405 >>> nsum(lambda n: (n + 3)/(n**3 + n**2), [1, inf], ... method='richardson') 2.9348022005446793094172454999380755676568497036204 >>> pi**2/2-2 2.9348022005446793094172454999380755676568497036204 >>> nsum(lambda k: (-1)**k / k**3, [1, inf], ... method='richardson') -0.90154267736969571404980362113358749307373971925537 >>> -3*zeta(3)/4 -0.90154267736969571404980362113358749307373971925538 **Examples with Shanks transformation** The Shanks transformation works well for geometric series and typically provides excellent acceleration for Taylor series near the border of their disk of convergence. Here we apply it to a series for `\log(2)`, which can be seen as the Taylor series for `\log(1+x)` with `x = 1`:: >>> nsum(lambda k: -(-1)**k/k, [1, inf], ... method='shanks') 0.69314718055994530941723212145817656807550013436025 >>> log(2) 0.69314718055994530941723212145817656807550013436025 Here we apply it to a slowly convergent geometric series:: >>> nsum(lambda k: mpf('0.995')**k, [0, inf], ... method='shanks') 200.0 Finally, Shanks' method works very well for alternating series where `f(k) = (-1)^k g(k)`, and often does so regardless of the exact decay rate of `g(k)`:: >>> mp.dps = 15 >>> nsum(lambda k: (-1)**(k+1) / k**1.5, [1, inf], ... method='shanks') 0.765147024625408 >>> (2-sqrt(2))*zeta(1.5)/2 0.765147024625408 The following slowly convergent alternating series has no known closed-form value. Evaluating the sum a second time at higher precision indicates that the value is probably correct:: >>> nsum(lambda k: (-1)**k / log(k), [2, inf], ... method='shanks') 0.924299897222939 >>> mp.dps = 30 >>> nsum(lambda k: (-1)**k / log(k), [2, inf], ... method='shanks') 0.92429989722293885595957018136 **Examples with Euler-Maclaurin summation** The sum in the following example has the wrong rate of convergence for either Richardson or Shanks to be effective. >>> f = lambda k: log(k)/k**2.5 >>> mp.dps = 15 >>> nsum(f, [1, inf], method='euler-maclaurin') 0.38734195032621 >>> -diff(zeta, 2.5) 0.38734195032621 Increasing ``steps`` improves speed at higher precision:: >>> mp.dps = 50 >>> nsum(f, [1, inf], method='euler-maclaurin', steps=[250]) 0.38734195032620997271199237593105101319948228874688 >>> -diff(zeta, 2.5) 0.38734195032620997271199237593105101319948228874688 **Divergent series** The Shanks transformation is able to sum some *divergent* series. In particular, it is often able to sum Taylor series beyond their radius of convergence (this is due to a relation between the Shanks transformation and Pade approximations; see :func:`~mpmath.pade` for an alternative way to evaluate divergent Taylor series). Here we apply it to `\log(1+x)` far outside the region of convergence:: >>> mp.dps = 50 >>> nsum(lambda k: -(-9)**k/k, [1, inf], ... method='shanks') 2.3025850929940456840179914546843642076011014886288 >>> log(10) 2.3025850929940456840179914546843642076011014886288 A particular type of divergent series that can be summed using the Shanks transformation is geometric series. The result is the same as using the closed-form formula for an infinite geometric series:: >>> mp.dps = 15 >>> for n in range(-8, 8): ... if n == 1: ... continue ... print("%s %s %s" % (mpf(n), mpf(1)/(1-n), ... nsum(lambda k: n**k, [0, inf], method='shanks'))) ... -8.0 0.111111111111111 0.111111111111111 -7.0 0.125 0.125 -6.0 0.142857142857143 0.142857142857143 -5.0 0.166666666666667 0.166666666666667 -4.0 0.2 0.2 -3.0 0.25 0.25 -2.0 0.333333333333333 0.333333333333333 -1.0 0.5 0.5 0.0 1.0 1.0 2.0 -1.0 -1.0 3.0 -0.5 -0.5 4.0 -0.333333333333333 -0.333333333333333 5.0 -0.25 -0.25 6.0 -0.2 -0.2 7.0 -0.166666666666667 -0.166666666666667 **Multidimensional sums** Any combination of finite and infinite ranges is allowed for the summation indices:: >>> mp.dps = 15 >>> nsum(lambda x,y: x+y, [2,3], [4,5]) 28.0 >>> nsum(lambda x,y: x/2**y, [1,3], [1,inf]) 6.0 >>> nsum(lambda x,y: y/2**x, [1,inf], [1,3]) 6.0 >>> nsum(lambda x,y,z: z/(2**x*2**y), [1,inf], [1,inf], [3,4]) 7.0 >>> nsum(lambda x,y,z: y/(2**x*2**z), [1,inf], [3,4], [1,inf]) 7.0 >>> nsum(lambda x,y,z: x/(2**z*2**y), [3,4], [1,inf], [1,inf]) 7.0 Some nice examples of double series with analytic solutions or reductions to single-dimensional series (see [1]):: >>> nsum(lambda m, n: 1/2**(m*n), [1,inf], [1,inf]) 1.60669515241529 >>> nsum(lambda n: 1/(2**n-1), [1,inf]) 1.60669515241529 >>> nsum(lambda i,j: (-1)**(i+j)/(i**2+j**2), [1,inf], [1,inf]) 0.278070510848213 >>> pi*(pi-3*ln2)/12 0.278070510848213 >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**2, [1,inf], [1,inf]) 0.129319852864168 >>> altzeta(2) - altzeta(1) 0.129319852864168 >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**3, [1,inf], [1,inf]) 0.0790756439455825 >>> altzeta(3) - altzeta(2) 0.0790756439455825 >>> nsum(lambda m,n: m**2*n/(3**m*(n*3**m+m*3**n)), ... [1,inf], [1,inf]) 0.28125 >>> mpf(9)/32 0.28125 >>> nsum(lambda i,j: fac(i-1)*fac(j-1)/fac(i+j), ... [1,inf], [1,inf], workprec=400) 1.64493406684823 >>> zeta(2) 1.64493406684823 A hard example of a multidimensional sum is the Madelung constant in three dimensions (see [2]). The defining sum converges very slowly and only conditionally, so :func:`~mpmath.nsum` is lucky to obtain an accurate value through convergence acceleration. The second evaluation below uses a much more efficient, rapidly convergent 2D sum:: >>> nsum(lambda x,y,z: (-1)**(x+y+z)/(x*x+y*y+z*z)**0.5, ... [-inf,inf], [-inf,inf], [-inf,inf], ignore=True) -1.74756459463318 >>> nsum(lambda x,y: -12*pi*sech(0.5*pi * \ ... sqrt((2*x+1)**2+(2*y+1)**2))**2, [0,inf], [0,inf]) -1.74756459463318 Another example of a lattice sum in 2D:: >>> nsum(lambda x,y: (-1)**(x+y) / (x**2+y**2), [-inf,inf], ... [-inf,inf], ignore=True) -2.1775860903036 >>> -pi*ln2 -2.1775860903036 An example of an Eisenstein series:: >>> nsum(lambda m,n: (m+n*1j)**(-4), [-inf,inf], [-inf,inf], ... ignore=True) (3.1512120021539 + 0.0j) **References** 1. [Weisstein]_ http://mathworld.wolfram.com/DoubleSeries.html, 2. [Weisstein]_ http://mathworld.wolfram.com/MadelungConstants.html """ infinite, g = standardize(ctx, f, intervals, options) if not infinite: return +g() def update(partial_sums, indices): if partial_sums: psum = partial_sums[-1] else: psum = ctx.zero for k in indices: psum = psum + g(ctx.mpf(k)) partial_sums.append(psum) prec = ctx.prec def emfun(point, tol): workprec = ctx.prec ctx.prec = prec + 10 v = ctx.sumem(g, [point, ctx.inf], tol, error=1) ctx.prec = workprec return v return +ctx.adaptive_extrapolation(update, emfun, options) def wrapsafe(f): def g(*args): try: return f(*args) except (ArithmeticError, ValueError): return 0 return g def standardize(ctx, f, intervals, options): if options.get("ignore"): f = wrapsafe(f) finite = [] infinite = [] for k, points in enumerate(intervals): a, b = ctx._as_points(points) if b < a: return False, (lambda: ctx.zero) if a == ctx.ninf or b == ctx.inf: infinite.append((k, (a,b))) else: finite.append((k, (int(a), int(b)))) if finite: f = fold_finite(ctx, f, finite) if not infinite: return False, lambda: f(*([0]*len(intervals))) if infinite: f = standardize_infinite(ctx, f, infinite) f = fold_infinite(ctx, f, infinite) args = [0] * len(intervals) d = infinite[0][0] def g(k): args[d] = k return f(*args) return True, g # backwards compatible itertools.product def cartesian_product(args): pools = map(tuple, args) result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod) def fold_finite(ctx, f, intervals): if not intervals: return f indices = [v[0] for v in intervals] points = [v[1] for v in intervals] ranges = [xrange(a, b+1) for (a,b) in points] def g(*args): args = list(args) s = ctx.zero for xs in cartesian_product(ranges): for dim, x in zip(indices, xs): args[dim] = ctx.mpf(x) s += f(*args) return s #print "Folded finite", indices return g # Standardize each interval to [0,inf] def standardize_infinite(ctx, f, intervals): if not intervals: return f dim, [a,b] = intervals[-1] if a == ctx.ninf: if b == ctx.inf: def g(*args): args = list(args) k = args[dim] if k: s = f(*args) args[dim] = -k s += f(*args) return s else: return f(*args) else: def g(*args): args = list(args) args[dim] = b - args[dim] return f(*args) else: def g(*args): args = list(args) args[dim] += a return f(*args) #print "Standardized infinity along dimension", dim, a, b return standardize_infinite(ctx, g, intervals[:-1]) def fold_infinite(ctx, f, intervals): if len(intervals) < 2: return f dim1 = intervals[-2][0] dim2 = intervals[-1][0] # Assume intervals are [0,inf] x [0,inf] x ... def g(*args): args = list(args) #args.insert(dim2, None) n = int(args[dim1]) s = ctx.zero #y = ctx.mpf(n) args[dim2] = ctx.mpf(n) #y for x in xrange(n+1): args[dim1] = ctx.mpf(x) s += f(*args) args[dim1] = ctx.mpf(n) #ctx.mpf(n) for y in xrange(n): args[dim2] = ctx.mpf(y) s += f(*args) return s #print "Folded infinite from", len(intervals), "to", (len(intervals)-1) return fold_infinite(ctx, g, intervals[:-1]) @defun def nprod(ctx, f, interval, nsum=False, **kwargs): r""" Computes the product .. math :: P = \prod_{k=a}^b f(k) where `(a, b)` = *interval*, and where `a = -\infty` and/or `b = \infty` are allowed. By default, :func:`~mpmath.nprod` uses the same extrapolation methods as :func:`~mpmath.nsum`, except applied to the partial products rather than partial sums, and the same keyword options as for :func:`~mpmath.nsum` are supported. If ``nsum=True``, the product is instead computed via :func:`~mpmath.nsum` as .. math :: P = \exp\left( \sum_{k=a}^b \log(f(k)) \right). This is slower, but can sometimes yield better results. It is also required (and used automatically) when Euler-Maclaurin summation is requested. **Examples** A simple finite product:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> nprod(lambda k: k, [1, 4]) 24.0 A large number of infinite products have known exact values, and can therefore be used as a reference. Most of the following examples are taken from MathWorld [1]. A few infinite products with simple values are:: >>> 2*nprod(lambda k: (4*k**2)/(4*k**2-1), [1, inf]) 3.141592653589793238462643 >>> nprod(lambda k: (1+1/k)**2/(1+2/k), [1, inf]) 2.0 >>> nprod(lambda k: (k**3-1)/(k**3+1), [2, inf]) 0.6666666666666666666666667 >>> nprod(lambda k: (1-1/k**2), [2, inf]) 0.5 Next, several more infinite products with more complicated values:: >>> nprod(lambda k: exp(1/k**2), [1, inf]); exp(pi**2/6) 5.180668317897115748416626 5.180668317897115748416626 >>> nprod(lambda k: (k**2-1)/(k**2+1), [2, inf]); pi*csch(pi) 0.2720290549821331629502366 0.2720290549821331629502366 >>> nprod(lambda k: (k**4-1)/(k**4+1), [2, inf]) 0.8480540493529003921296502 >>> pi*sinh(pi)/(cosh(sqrt(2)*pi)-cos(sqrt(2)*pi)) 0.8480540493529003921296502 >>> nprod(lambda k: (1+1/k+1/k**2)**2/(1+2/k+3/k**2), [1, inf]) 1.848936182858244485224927 >>> 3*sqrt(2)*cosh(pi*sqrt(3)/2)**2*csch(pi*sqrt(2))/pi 1.848936182858244485224927 >>> nprod(lambda k: (1-1/k**4), [2, inf]); sinh(pi)/(4*pi) 0.9190194775937444301739244 0.9190194775937444301739244 >>> nprod(lambda k: (1-1/k**6), [2, inf]) 0.9826842777421925183244759 >>> (1+cosh(pi*sqrt(3)))/(12*pi**2) 0.9826842777421925183244759 >>> nprod(lambda k: (1+1/k**2), [2, inf]); sinh(pi)/(2*pi) 1.838038955187488860347849 1.838038955187488860347849 >>> nprod(lambda n: (1+1/n)**n * exp(1/(2*n)-1), [1, inf]) 1.447255926890365298959138 >>> exp(1+euler/2)/sqrt(2*pi) 1.447255926890365298959138 The following two products are equivalent and can be evaluated in terms of a Jacobi theta function. Pi can be replaced by any value (as long as convergence is preserved):: >>> nprod(lambda k: (1-pi**-k)/(1+pi**-k), [1, inf]) 0.3838451207481672404778686 >>> nprod(lambda k: tanh(k*log(pi)/2), [1, inf]) 0.3838451207481672404778686 >>> jtheta(4,0,1/pi) 0.3838451207481672404778686 This product does not have a known closed form value:: >>> nprod(lambda k: (1-1/2**k), [1, inf]) 0.2887880950866024212788997 A product taken from `-\infty`:: >>> nprod(lambda k: 1-k**(-3), [-inf,-2]) 0.8093965973662901095786805 >>> cosh(pi*sqrt(3)/2)/(3*pi) 0.8093965973662901095786805 A doubly infinite product:: >>> nprod(lambda k: exp(1/(1+k**2)), [-inf, inf]) 23.41432688231864337420035 >>> exp(pi/tanh(pi)) 23.41432688231864337420035 A product requiring the use of Euler-Maclaurin summation to compute an accurate value:: >>> nprod(lambda k: (1-1/k**2.5), [2, inf], method='e') 0.696155111336231052898125 **References** 1. [Weisstein]_ http://mathworld.wolfram.com/InfiniteProduct.html """ if nsum or ('e' in kwargs.get('method', '')): orig = ctx.prec try: # TODO: we are evaluating log(1+eps) -> eps, which is # inaccurate. This currently works because nsum greatly # increases the working precision. But we should be # more intelligent and handle the precision here. ctx.prec += 10 v = ctx.nsum(lambda n: ctx.ln(f(n)), interval, **kwargs) finally: ctx.prec = orig return +ctx.exp(v) a, b = ctx._as_points(interval) if a == ctx.ninf: if b == ctx.inf: return f(0) * ctx.nprod(lambda k: f(-k) * f(k), [1, ctx.inf], **kwargs) return ctx.nprod(f, [-b, ctx.inf], **kwargs) elif b != ctx.inf: return ctx.fprod(f(ctx.mpf(k)) for k in xrange(int(a), int(b)+1)) a = int(a) def update(partial_products, indices): if partial_products: pprod = partial_products[-1] else: pprod = ctx.one for k in indices: pprod = pprod * f(a + ctx.mpf(k)) partial_products.append(pprod) return +ctx.adaptive_extrapolation(update, None, kwargs) @defun def limit(ctx, f, x, direction=1, exp=False, **kwargs): r""" Computes an estimate of the limit .. math :: \lim_{t \to x} f(t) where `x` may be finite or infinite. For finite `x`, :func:`~mpmath.limit` evaluates `f(x + d/n)` for consecutive integer values of `n`, where the approach direction `d` may be specified using the *direction* keyword argument. For infinite `x`, :func:`~mpmath.limit` evaluates values of `f(\mathrm{sign}(x) \cdot n)`. If the approach to the limit is not sufficiently fast to give an accurate estimate directly, :func:`~mpmath.limit` attempts to find the limit using Richardson extrapolation or the Shanks transformation. You can select between these methods using the *method* keyword (see documentation of :func:`~mpmath.nsum` for more information). **Options** The following options are available with essentially the same meaning as for :func:`~mpmath.nsum`: *tol*, *method*, *maxterms*, *steps*, *verbose*. If the option *exp=True* is set, `f` will be sampled at exponentially spaced points `n = 2^1, 2^2, 2^3, \ldots` instead of the linearly spaced points `n = 1, 2, 3, \ldots`. This can sometimes improve the rate of convergence so that :func:`~mpmath.limit` may return a more accurate answer (and faster). However, do note that this can only be used if `f` supports fast and accurate evaluation for arguments that are extremely close to the limit point (or if infinite, very large arguments). **Examples** A basic evaluation of a removable singularity:: >>> from mpmath import * >>> mp.dps = 30; mp.pretty = True >>> limit(lambda x: (x-sin(x))/x**3, 0) 0.166666666666666666666666666667 Computing the exponential function using its limit definition:: >>> limit(lambda n: (1+3/n)**n, inf) 20.0855369231876677409285296546 >>> exp(3) 20.0855369231876677409285296546 A limit for `\pi`:: >>> f = lambda n: 2**(4*n+1)*fac(n)**4/(2*n+1)/fac(2*n)**2 >>> limit(f, inf) 3.14159265358979323846264338328 Calculating the coefficient in Stirling's formula:: >>> limit(lambda n: fac(n) / (sqrt(n)*(n/e)**n), inf) 2.50662827463100050241576528481 >>> sqrt(2*pi) 2.50662827463100050241576528481 Evaluating Euler's constant `\gamma` using the limit representation .. math :: \gamma = \lim_{n \rightarrow \infty } \left[ \left( \sum_{k=1}^n \frac{1}{k} \right) - \log(n) \right] (which converges notoriously slowly):: >>> f = lambda n: sum([mpf(1)/k for k in range(1,int(n)+1)]) - log(n) >>> limit(f, inf) 0.577215664901532860606512090082 >>> +euler 0.577215664901532860606512090082 With default settings, the following limit converges too slowly to be evaluated accurately. Changing to exponential sampling however gives a perfect result:: >>> f = lambda x: sqrt(x**3+x**2)/(sqrt(x**3)+x) >>> limit(f, inf) 0.992831158558330281129249686491 >>> limit(f, inf, exp=True) 1.0 """ if ctx.isinf(x): direction = ctx.sign(x) g = lambda k: f(ctx.mpf(k+1)*direction) else: direction *= ctx.one g = lambda k: f(x + direction/(k+1)) if exp: h = g g = lambda k: h(2**k) def update(values, indices): for k in indices: values.append(g(k+1)) # XXX: steps used by nsum don't work well if not 'steps' in kwargs: kwargs['steps'] = [10] return +ctx.adaptive_extrapolation(update, None, kwargs)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/extrapolation.py
extrapolation.py
import math from ..libmp.backend import xrange class QuadratureRule(object): """ Quadrature rules are implemented using this class, in order to simplify the code and provide a common infrastructure for tasks such as error estimation and node caching. You can implement a custom quadrature rule by subclassing :class:`QuadratureRule` and implementing the appropriate methods. The subclass can then be used by :func:`~mpmath.quad` by passing it as the *method* argument. :class:`QuadratureRule` instances are supposed to be singletons. :class:`QuadratureRule` therefore implements instance caching in :func:`~mpmath.__new__`. """ def __init__(self, ctx): self.ctx = ctx self.standard_cache = {} self.transformed_cache = {} self.interval_count = {} def clear(self): """ Delete cached node data. """ self.standard_cache = {} self.transformed_cache = {} self.interval_count = {} def calc_nodes(self, degree, prec, verbose=False): r""" Compute nodes for the standard interval `[-1, 1]`. Subclasses should probably implement only this method, and use :func:`~mpmath.get_nodes` method to retrieve the nodes. """ raise NotImplementedError def get_nodes(self, a, b, degree, prec, verbose=False): """ Return nodes for given interval, degree and precision. The nodes are retrieved from a cache if already computed; otherwise they are computed by calling :func:`~mpmath.calc_nodes` and are then cached. Subclasses should probably not implement this method, but just implement :func:`~mpmath.calc_nodes` for the actual node computation. """ key = (a, b, degree, prec) if key in self.transformed_cache: return self.transformed_cache[key] orig = self.ctx.prec try: self.ctx.prec = prec+20 # Get nodes on standard interval if (degree, prec) in self.standard_cache: nodes = self.standard_cache[degree, prec] else: nodes = self.calc_nodes(degree, prec, verbose) self.standard_cache[degree, prec] = nodes # Transform to general interval nodes = self.transform_nodes(nodes, a, b, verbose) if key in self.interval_count: self.transformed_cache[key] = nodes else: self.interval_count[key] = True finally: self.ctx.prec = orig return nodes def transform_nodes(self, nodes, a, b, verbose=False): r""" Rescale standardized nodes (for `[-1, 1]`) to a general interval `[a, b]`. For a finite interval, a simple linear change of variables is used. Otherwise, the following transformations are used: .. math :: [a, \infty] : t = \frac{1}{x} + (a-1) [-\infty, b] : t = (b+1) - \frac{1}{x} [-\infty, \infty] : t = \frac{x}{\sqrt{1-x^2}} """ ctx = self.ctx a = ctx.convert(a) b = ctx.convert(b) one = ctx.one if (a, b) == (-one, one): return nodes half = ctx.mpf(0.5) new_nodes = [] if ctx.isinf(a) or ctx.isinf(b): if (a, b) == (ctx.ninf, ctx.inf): p05 = -half for x, w in nodes: x2 = x*x px1 = one-x2 spx1 = px1**p05 x = x*spx1 w *= spx1/px1 new_nodes.append((x, w)) elif a == ctx.ninf: b1 = b+1 for x, w in nodes: u = 2/(x+one) x = b1-u w *= half*u**2 new_nodes.append((x, w)) elif b == ctx.inf: a1 = a-1 for x, w in nodes: u = 2/(x+one) x = a1+u w *= half*u**2 new_nodes.append((x, w)) elif a == ctx.inf or b == ctx.ninf: return [(x,-w) for (x,w) in self.transform_nodes(nodes, b, a, verbose)] else: raise NotImplementedError else: # Simple linear change of variables C = (b-a)/2 D = (b+a)/2 for x, w in nodes: new_nodes.append((D+C*x, C*w)) return new_nodes def guess_degree(self, prec): """ Given a desired precision `p` in bits, estimate the degree `m` of the quadrature required to accomplish full accuracy for typical integrals. By default, :func:`~mpmath.quad` will perform up to `m` iterations. The value of `m` should be a slight overestimate, so that "slightly bad" integrals can be dealt with automatically using a few extra iterations. On the other hand, it should not be too big, so :func:`~mpmath.quad` can quit within a reasonable amount of time when it is given an "unsolvable" integral. The default formula used by :func:`~mpmath.guess_degree` is tuned for both :class:`TanhSinh` and :class:`GaussLegendre`. The output is roughly as follows: +---------+---------+ | `p` | `m` | +=========+=========+ | 50 | 6 | +---------+---------+ | 100 | 7 | +---------+---------+ | 500 | 10 | +---------+---------+ | 3000 | 12 | +---------+---------+ This formula is based purely on a limited amount of experimentation and will sometimes be wrong. """ # Expected degree # XXX: use mag g = int(4 + max(0, self.ctx.log(prec/30.0, 2))) # Reasonable "worst case" g += 2 return g def estimate_error(self, results, prec, epsilon): r""" Given results from integrations `[I_1, I_2, \ldots, I_k]` done with a quadrature of rule of degree `1, 2, \ldots, k`, estimate the error of `I_k`. For `k = 2`, we estimate `|I_{\infty}-I_2|` as `|I_2-I_1|`. For `k > 2`, we extrapolate `|I_{\infty}-I_k| \approx |I_{k+1}-I_k|` from `|I_k-I_{k-1}|` and `|I_k-I_{k-2}|` under the assumption that each degree increment roughly doubles the accuracy of the quadrature rule (this is true for both :class:`TanhSinh` and :class:`GaussLegendre`). The extrapolation formula is given by Borwein, Bailey & Girgensohn. Although not very conservative, this method seems to be very robust in practice. """ if len(results) == 2: return abs(results[0]-results[1]) try: if results[-1] == results[-2] == results[-3]: return self.ctx.zero D1 = self.ctx.log(abs(results[-1]-results[-2]), 10) D2 = self.ctx.log(abs(results[-1]-results[-3]), 10) except ValueError: return epsilon D3 = -prec D4 = min(0, max(D1**2/D2, 2*D1, D3)) return self.ctx.mpf(10) ** int(D4) def summation(self, f, points, prec, epsilon, max_degree, verbose=False): """ Main integration function. Computes the 1D integral over the interval specified by *points*. For each subinterval, performs quadrature of degree from 1 up to *max_degree* until :func:`~mpmath.estimate_error` signals convergence. :func:`~mpmath.summation` transforms each subintegration to the standard interval and then calls :func:`~mpmath.sum_next`. """ ctx = self.ctx I = err = ctx.zero for i in xrange(len(points)-1): a, b = points[i], points[i+1] if a == b: continue # XXX: we could use a single variable transformation, # but this is not good in practice. We get better accuracy # by having 0 as an endpoint. if (a, b) == (ctx.ninf, ctx.inf): _f = f f = lambda x: _f(-x) + _f(x) a, b = (ctx.zero, ctx.inf) results = [] for degree in xrange(1, max_degree+1): nodes = self.get_nodes(a, b, degree, prec, verbose) if verbose: print("Integrating from %s to %s (degree %s of %s)" % \ (ctx.nstr(a), ctx.nstr(b), degree, max_degree)) results.append(self.sum_next(f, nodes, degree, prec, results, verbose)) if degree > 1: err = self.estimate_error(results, prec, epsilon) if err <= epsilon: break if verbose: print("Estimated error:", ctx.nstr(err)) I += results[-1] if err > epsilon: if verbose: print("Failed to reach full accuracy. Estimated error:", ctx.nstr(err)) return I, err def sum_next(self, f, nodes, degree, prec, previous, verbose=False): r""" Evaluates the step sum `\sum w_k f(x_k)` where the *nodes* list contains the `(w_k, x_k)` pairs. :func:`~mpmath.summation` will supply the list *results* of values computed by :func:`~mpmath.sum_next` at previous degrees, in case the quadrature rule is able to reuse them. """ return self.ctx.fdot((w, f(x)) for (x,w) in nodes) class TanhSinh(QuadratureRule): r""" This class implements "tanh-sinh" or "doubly exponential" quadrature. This quadrature rule is based on the Euler-Maclaurin integral formula. By performing a change of variables involving nested exponentials / hyperbolic functions (hence the name), the derivatives at the endpoints vanish rapidly. Since the error term in the Euler-Maclaurin formula depends on the derivatives at the endpoints, a simple step sum becomes extremely accurate. In practice, this means that doubling the number of evaluation points roughly doubles the number of accurate digits. Comparison to Gauss-Legendre: * Initial computation of nodes is usually faster * Handles endpoint singularities better * Handles infinite integration intervals better * Is slower for smooth integrands once nodes have been computed The implementation of the tanh-sinh algorithm is based on the description given in Borwein, Bailey & Girgensohn, "Experimentation in Mathematics - Computational Paths to Discovery", A K Peters, 2003, pages 312-313. In the present implementation, a few improvements have been made: * A more efficient scheme is used to compute nodes (exploiting recurrence for the exponential function) * The nodes are computed successively instead of all at once Various documents describing the algorithm are available online, e.g.: * http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf * http://users.cs.dal.ca/~jborwein/tanh-sinh.pdf """ def sum_next(self, f, nodes, degree, prec, previous, verbose=False): """ Step sum for tanh-sinh quadrature of degree `m`. We exploit the fact that half of the abscissas at degree `m` are precisely the abscissas from degree `m-1`. Thus reusing the result from the previous level allows a 2x speedup. """ h = self.ctx.mpf(2)**(-degree) # Abscissas overlap, so reusing saves half of the time if previous: S = previous[-1]/(h*2) else: S = self.ctx.zero S += self.ctx.fdot((w,f(x)) for (x,w) in nodes) return h*S def calc_nodes(self, degree, prec, verbose=False): r""" The abscissas and weights for tanh-sinh quadrature of degree `m` are given by .. math:: x_k = \tanh(\pi/2 \sinh(t_k)) w_k = \pi/2 \cosh(t_k) / \cosh(\pi/2 \sinh(t_k))^2 where `t_k = t_0 + hk` for a step length `h \sim 2^{-m}`. The list of nodes is actually infinite, but the weights die off so rapidly that only a few are needed. """ ctx = self.ctx nodes = [] extra = 20 ctx.prec += extra tol = ctx.ldexp(1, -prec-10) pi4 = ctx.pi/4 # For simplicity, we work in steps h = 1/2^n, with the first point # offset so that we can reuse the sum from the previous degree # We define degree 1 to include the "degree 0" steps, including # the point x = 0. (It doesn't work well otherwise; not sure why.) t0 = ctx.ldexp(1, -degree) if degree == 1: #nodes.append((mpf(0), pi4)) #nodes.append((-mpf(0), pi4)) nodes.append((ctx.zero, ctx.pi/2)) h = t0 else: h = t0*2 # Since h is fixed, we can compute the next exponential # by simply multiplying by exp(h) expt0 = ctx.exp(t0) a = pi4 * expt0 b = pi4 / expt0 udelta = ctx.exp(h) urdelta = 1/udelta for k in xrange(0, 20*2**degree+1): # Reference implementation: # t = t0 + k*h # x = tanh(pi/2 * sinh(t)) # w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))**2 # Fast implementation. Note that c = exp(pi/2 * sinh(t)) c = ctx.exp(a-b) d = 1/c co = (c+d)/2 si = (c-d)/2 x = si / co w = (a+b) / co**2 diff = abs(x-1) if diff <= tol: break nodes.append((x, w)) nodes.append((-x, w)) a *= udelta b *= urdelta if verbose and k % 300 == 150: # Note: the number displayed is rather arbitrary. Should # figure out how to print something that looks more like a # percentage print("Calculating nodes:", ctx.nstr(-ctx.log(diff, 10) / prec)) ctx.prec -= extra return nodes class GaussLegendre(QuadratureRule): """ This class implements Gauss-Legendre quadrature, which is exceptionally efficient for polynomials and polynomial-like (i.e. very smooth) integrands. The abscissas and weights are given by roots and values of Legendre polynomials, which are the orthogonal polynomials on `[-1, 1]` with respect to the unit weight (see :func:`~mpmath.legendre`). In this implementation, we take the "degree" `m` of the quadrature to denote a Gauss-Legendre rule of degree `3 \cdot 2^m` (following Borwein, Bailey & Girgensohn). This way we get quadratic, rather than linear, convergence as the degree is incremented. Comparison to tanh-sinh quadrature: * Is faster for smooth integrands once nodes have been computed * Initial computation of nodes is usually slower * Handles endpoint singularities worse * Handles infinite integration intervals worse """ def calc_nodes(self, degree, prec, verbose=False): """ Calculates the abscissas and weights for Gauss-Legendre quadrature of degree of given degree (actually `3 \cdot 2^m`). """ ctx = self.ctx # It is important that the epsilon is set lower than the # "real" epsilon epsilon = ctx.ldexp(1, -prec-8) # Fairly high precision might be required for accurate # evaluation of the roots orig = ctx.prec ctx.prec = int(prec*1.5) if degree == 1: x = ctx.mpf(3)/5 w = ctx.mpf(5)/9 nodes = [(-x,w),(ctx.zero,ctx.mpf(8)/9),(x,w)] ctx.prec = orig return nodes nodes = [] n = 3*2**(degree-1) upto = n//2 + 1 for j in xrange(1, upto): # Asymptotic formula for the roots r = ctx.mpf(math.cos(math.pi*(j-0.25)/(n+0.5))) # Newton iteration while 1: t1, t2 = 1, 0 # Evaluates the Legendre polynomial using its defining # recurrence relation for j1 in xrange(1,n+1): t3, t2, t1 = t2, t1, ((2*j1-1)*r*t1 - (j1-1)*t2)/j1 t4 = n*(r*t1- t2)/(r**2-1) t5 = r a = t1/t4 r = r - a if abs(a) < epsilon: break x = r w = 2/((1-r**2)*t4**2) if verbose and j % 30 == 15: print("Computing nodes (%i of %i)" % (j, upto)) nodes.append((x, w)) nodes.append((-x, w)) ctx.prec = orig return nodes class QuadratureMethods: def __init__(ctx, *args, **kwargs): ctx._gauss_legendre = GaussLegendre(ctx) ctx._tanh_sinh = TanhSinh(ctx) def quad(ctx, f, *points, **kwargs): r""" Computes a single, double or triple integral over a given 1D interval, 2D rectangle, or 3D cuboid. A basic example:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> quad(sin, [0, pi]) 2.0 A basic 2D integral:: >>> f = lambda x, y: cos(x+y/2) >>> quad(f, [-pi/2, pi/2], [0, pi]) 4.0 **Interval format** The integration range for each dimension may be specified using a list or tuple. Arguments are interpreted as follows: ``quad(f, [x1, x2])`` -- calculates `\int_{x_1}^{x_2} f(x) \, dx` ``quad(f, [x1, x2], [y1, y2])`` -- calculates `\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x,y) \, dy \, dx` ``quad(f, [x1, x2], [y1, y2], [z1, z2])`` -- calculates `\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x,y,z) \, dz \, dy \, dx` Endpoints may be finite or infinite. An interval descriptor may also contain more than two points. In this case, the integration is split into subintervals, between each pair of consecutive points. This is useful for dealing with mid-interval discontinuities, or integrating over large intervals where the function is irregular or oscillates. **Options** :func:`~mpmath.quad` recognizes the following keyword arguments: *method* Chooses integration algorithm (described below). *error* If set to true, :func:`~mpmath.quad` returns `(v, e)` where `v` is the integral and `e` is the estimated error. *maxdegree* Maximum degree of the quadrature rule to try before quitting. *verbose* Print details about progress. **Algorithms** Mpmath presently implements two integration algorithms: tanh-sinh quadrature and Gauss-Legendre quadrature. These can be selected using *method='tanh-sinh'* or *method='gauss-legendre'* or by passing the classes *method=TanhSinh*, *method=GaussLegendre*. The functions :func:`~mpmath.quadts` and :func:`~mpmath.quadgl` are also available as shortcuts. Both algorithms have the property that doubling the number of evaluation points roughly doubles the accuracy, so both are ideal for high precision quadrature (hundreds or thousands of digits). At high precision, computing the nodes and weights for the integration can be expensive (more expensive than computing the function values). To make repeated integrations fast, nodes are automatically cached. The advantages of the tanh-sinh algorithm are that it tends to handle endpoint singularities well, and that the nodes are cheap to compute on the first run. For these reasons, it is used by :func:`~mpmath.quad` as the default algorithm. Gauss-Legendre quadrature often requires fewer function evaluations, and is therefore often faster for repeated use, but the algorithm does not handle endpoint singularities as well and the nodes are more expensive to compute. Gauss-Legendre quadrature can be a better choice if the integrand is smooth and repeated integrations are required (e.g. for multiple integrals). See the documentation for :class:`TanhSinh` and :class:`GaussLegendre` for additional details. **Examples of 1D integrals** Intervals may be infinite or half-infinite. The following two examples evaluate the limits of the inverse tangent function (`\int 1/(1+x^2) = \tan^{-1} x`), and the Gaussian integral `\int_{\infty}^{\infty} \exp(-x^2)\,dx = \sqrt{\pi}`:: >>> mp.dps = 15 >>> quad(lambda x: 2/(x**2+1), [0, inf]) 3.14159265358979 >>> quad(lambda x: exp(-x**2), [-inf, inf])**2 3.14159265358979 Integrals can typically be resolved to high precision. The following computes 50 digits of `\pi` by integrating the area of the half-circle defined by `x^2 + y^2 \le 1`, `-1 \le x \le 1`, `y \ge 0`:: >>> mp.dps = 50 >>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1]) 3.1415926535897932384626433832795028841971693993751 One can just as well compute 1000 digits (output truncated):: >>> mp.dps = 1000 >>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1]) #doctest:+ELLIPSIS 3.141592653589793238462643383279502884...216420198 Complex integrals are supported. The following computes a residue at `z = 0` by integrating counterclockwise along the diamond-shaped path from `1` to `+i` to `-1` to `-i` to `1`:: >>> mp.dps = 15 >>> chop(quad(lambda z: 1/z, [1,j,-1,-j,1])) (0.0 + 6.28318530717959j) **Examples of 2D and 3D integrals** Here are several nice examples of analytically solvable 2D integrals (taken from MathWorld [1]) that can be evaluated to high precision fairly rapidly by :func:`~mpmath.quad`:: >>> mp.dps = 30 >>> f = lambda x, y: (x-1)/((1-x*y)*log(x*y)) >>> quad(f, [0, 1], [0, 1]) 0.577215664901532860606512090082 >>> +euler 0.577215664901532860606512090082 >>> f = lambda x, y: 1/sqrt(1+x**2+y**2) >>> quad(f, [-1, 1], [-1, 1]) 3.17343648530607134219175646705 >>> 4*log(2+sqrt(3))-2*pi/3 3.17343648530607134219175646705 >>> f = lambda x, y: 1/(1-x**2 * y**2) >>> quad(f, [0, 1], [0, 1]) 1.23370055013616982735431137498 >>> pi**2 / 8 1.23370055013616982735431137498 >>> quad(lambda x, y: 1/(1-x*y), [0, 1], [0, 1]) 1.64493406684822643647241516665 >>> pi**2 / 6 1.64493406684822643647241516665 Multiple integrals may be done over infinite ranges:: >>> mp.dps = 15 >>> print(quad(lambda x,y: exp(-x-y), [0, inf], [1, inf])) 0.367879441171442 >>> print(1/e) 0.367879441171442 For nonrectangular areas, one can call :func:`~mpmath.quad` recursively. For example, we can replicate the earlier example of calculating `\pi` by integrating over the unit-circle, and actually use double quadrature to actually measure the area circle:: >>> f = lambda x: quad(lambda y: 1, [-sqrt(1-x**2), sqrt(1-x**2)]) >>> quad(f, [-1, 1]) 3.14159265358979 Here is a simple triple integral:: >>> mp.dps = 15 >>> f = lambda x,y,z: x*y/(1+z) >>> quad(f, [0,1], [0,1], [1,2], method='gauss-legendre') 0.101366277027041 >>> (log(3)-log(2))/4 0.101366277027041 **Singularities** Both tanh-sinh and Gauss-Legendre quadrature are designed to integrate smooth (infinitely differentiable) functions. Neither algorithm copes well with mid-interval singularities (such as mid-interval discontinuities in `f(x)` or `f'(x)`). The best solution is to split the integral into parts:: >>> mp.dps = 15 >>> quad(lambda x: abs(sin(x)), [0, 2*pi]) # Bad 3.99900894176779 >>> quad(lambda x: abs(sin(x)), [0, pi, 2*pi]) # Good 4.0 The tanh-sinh rule often works well for integrands having a singularity at one or both endpoints:: >>> mp.dps = 15 >>> quad(log, [0, 1], method='tanh-sinh') # Good -1.0 >>> quad(log, [0, 1], method='gauss-legendre') # Bad -0.999932197413801 However, the result may still be inaccurate for some functions:: >>> quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh') 1.99999999946942 This problem is not due to the quadrature rule per se, but to numerical amplification of errors in the nodes. The problem can be circumvented by temporarily increasing the precision:: >>> mp.dps = 30 >>> a = quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh') >>> mp.dps = 15 >>> +a 2.0 **Highly variable functions** For functions that are smooth (in the sense of being infinitely differentiable) but contain sharp mid-interval peaks or many "bumps", :func:`~mpmath.quad` may fail to provide full accuracy. For example, with default settings, :func:`~mpmath.quad` is able to integrate `\sin(x)` accurately over an interval of length 100 but not over length 1000:: >>> quad(sin, [0, 100]); 1-cos(100) # Good 0.137681127712316 0.137681127712316 >>> quad(sin, [0, 1000]); 1-cos(1000) # Bad -37.8587612408485 0.437620923709297 One solution is to break the integration into 10 intervals of length 100:: >>> quad(sin, linspace(0, 1000, 10)) # Good 0.437620923709297 Another is to increase the degree of the quadrature:: >>> quad(sin, [0, 1000], maxdegree=10) # Also good 0.437620923709297 Whether splitting the interval or increasing the degree is more efficient differs from case to case. Another example is the function `1/(1+x^2)`, which has a sharp peak centered around `x = 0`:: >>> f = lambda x: 1/(1+x**2) >>> quad(f, [-100, 100]) # Bad 3.64804647105268 >>> quad(f, [-100, 100], maxdegree=10) # Good 3.12159332021646 >>> quad(f, [-100, 0, 100]) # Also good 3.12159332021646 **References** 1. http://mathworld.wolfram.com/DoubleIntegral.html """ rule = kwargs.get('method', 'tanh-sinh') if type(rule) is str: if rule == 'tanh-sinh': rule = ctx._tanh_sinh elif rule == 'gauss-legendre': rule = ctx._gauss_legendre else: raise ValueError("unknown quadrature rule: %s" % rule) else: rule = rule(ctx) verbose = kwargs.get('verbose') dim = len(points) orig = prec = ctx.prec epsilon = ctx.eps/8 m = kwargs.get('maxdegree') or rule.guess_degree(prec) points = [ctx._as_points(p) for p in points] try: ctx.prec += 20 if dim == 1: v, err = rule.summation(f, points[0], prec, epsilon, m, verbose) elif dim == 2: v, err = rule.summation(lambda x: \ rule.summation(lambda y: f(x,y), \ points[1], prec, epsilon, m)[0], points[0], prec, epsilon, m, verbose) elif dim == 3: v, err = rule.summation(lambda x: \ rule.summation(lambda y: \ rule.summation(lambda z: f(x,y,z), \ points[2], prec, epsilon, m)[0], points[1], prec, epsilon, m)[0], points[0], prec, epsilon, m, verbose) else: raise NotImplementedError("quadrature must have dim 1, 2 or 3") finally: ctx.prec = orig if kwargs.get("error"): return +v, err return +v def quadts(ctx, *args, **kwargs): """ Performs tanh-sinh quadrature. The call quadts(func, *points, ...) is simply a shortcut for: quad(func, *points, ..., method=TanhSinh) For example, a single integral and a double integral: quadts(lambda x: exp(cos(x)), [0, 1]) quadts(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1]) See the documentation for quad for information about how points arguments and keyword arguments are parsed. See documentation for TanhSinh for algorithmic information about tanh-sinh quadrature. """ kwargs['method'] = 'tanh-sinh' return ctx.quad(*args, **kwargs) def quadgl(ctx, *args, **kwargs): """ Performs Gauss-Legendre quadrature. The call quadgl(func, *points, ...) is simply a shortcut for: quad(func, *points, ..., method=GaussLegendre) For example, a single integral and a double integral: quadgl(lambda x: exp(cos(x)), [0, 1]) quadgl(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1]) See the documentation for quad for information about how points arguments and keyword arguments are parsed. See documentation for TanhSinh for algorithmic information about tanh-sinh quadrature. """ kwargs['method'] = 'gauss-legendre' return ctx.quad(*args, **kwargs) def quadosc(ctx, f, interval, omega=None, period=None, zeros=None): r""" Calculates .. math :: I = \int_a^b f(x) dx where at least one of `a` and `b` is infinite and where `f(x) = g(x) \cos(\omega x + \phi)` for some slowly decreasing function `g(x)`. With proper input, :func:`~mpmath.quadosc` can also handle oscillatory integrals where the oscillation rate is different from a pure sine or cosine wave. In the standard case when `|a| < \infty, b = \infty`, :func:`~mpmath.quadosc` works by evaluating the infinite series .. math :: I = \int_a^{x_1} f(x) dx + \sum_{k=1}^{\infty} \int_{x_k}^{x_{k+1}} f(x) dx where `x_k` are consecutive zeros (alternatively some other periodic reference point) of `f(x)`. Accordingly, :func:`~mpmath.quadosc` requires information about the zeros of `f(x)`. For a periodic function, you can specify the zeros by either providing the angular frequency `\omega` (*omega*) or the *period* `2 \pi/\omega`. In general, you can specify the `n`-th zero by providing the *zeros* arguments. Below is an example of each:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> f = lambda x: sin(3*x)/(x**2+1) >>> quadosc(f, [0,inf], omega=3) 0.37833007080198 >>> quadosc(f, [0,inf], period=2*pi/3) 0.37833007080198 >>> quadosc(f, [0,inf], zeros=lambda n: pi*n/3) 0.37833007080198 >>> (ei(3)*exp(-3)-exp(3)*ei(-3))/2 # Computed by Mathematica 0.37833007080198 Note that *zeros* was specified to multiply `n` by the *half-period*, not the full period. In theory, it does not matter whether each partial integral is done over a half period or a full period. However, if done over half-periods, the infinite series passed to :func:`~mpmath.nsum` becomes an *alternating series* and this typically makes the extrapolation much more efficient. Here is an example of an integration over the entire real line, and a half-infinite integration starting at `-\infty`:: >>> quadosc(lambda x: cos(x)/(1+x**2), [-inf, inf], omega=1) 1.15572734979092 >>> pi/e 1.15572734979092 >>> quadosc(lambda x: cos(x)/x**2, [-inf, -1], period=2*pi) -0.0844109505595739 >>> cos(1)+si(1)-pi/2 -0.0844109505595738 Of course, the integrand may contain a complex exponential just as well as a real sine or cosine:: >>> quadosc(lambda x: exp(3*j*x)/(1+x**2), [-inf,inf], omega=3) (0.156410688228254 + 0.0j) >>> pi/e**3 0.156410688228254 >>> quadosc(lambda x: exp(3*j*x)/(2+x+x**2), [-inf,inf], omega=3) (0.00317486988463794 - 0.0447701735209082j) >>> 2*pi/sqrt(7)/exp(3*(j+sqrt(7))/2) (0.00317486988463794 - 0.0447701735209082j) **Non-periodic functions** If `f(x) = g(x) h(x)` for some function `h(x)` that is not strictly periodic, *omega* or *period* might not work, and it might be necessary to use *zeros*. A notable exception can be made for Bessel functions which, though not periodic, are "asymptotically periodic" in a sufficiently strong sense that the sum extrapolation will work out:: >>> quadosc(j0, [0, inf], period=2*pi) 1.0 >>> quadosc(j1, [0, inf], period=2*pi) 1.0 More properly, one should provide the exact Bessel function zeros:: >>> j0zero = lambda n: findroot(j0, pi*(n-0.25)) >>> quadosc(j0, [0, inf], zeros=j0zero) 1.0 For an example where *zeros* becomes necessary, consider the complete Fresnel integrals .. math :: \int_0^{\infty} \cos x^2\,dx = \int_0^{\infty} \sin x^2\,dx = \sqrt{\frac{\pi}{8}}. Although the integrands do not decrease in magnitude as `x \to \infty`, the integrals are convergent since the oscillation rate increases (causing consecutive periods to asymptotically cancel out). These integrals are virtually impossible to calculate to any kind of accuracy using standard quadrature rules. However, if one provides the correct asymptotic distribution of zeros (`x_n \sim \sqrt{n}`), :func:`~mpmath.quadosc` works:: >>> mp.dps = 30 >>> f = lambda x: cos(x**2) >>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n)) 0.626657068657750125603941321203 >>> f = lambda x: sin(x**2) >>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n)) 0.626657068657750125603941321203 >>> sqrt(pi/8) 0.626657068657750125603941321203 (Interestingly, these integrals can still be evaluated if one places some other constant than `\pi` in the square root sign.) In general, if `f(x) \sim g(x) \cos(h(x))`, the zeros follow the inverse-function distribution `h^{-1}(x)`:: >>> mp.dps = 15 >>> f = lambda x: sin(exp(x)) >>> quadosc(f, [1,inf], zeros=lambda n: log(n)) -0.25024394235267 >>> pi/2-si(e) -0.250243942352671 **Non-alternating functions** If the integrand oscillates around a positive value, without alternating signs, the extrapolation might fail. A simple trick that sometimes works is to multiply or divide the frequency by 2:: >>> f = lambda x: 1/x**2+sin(x)/x**4 >>> quadosc(f, [1,inf], omega=1) # Bad 1.28642190869861 >>> quadosc(f, [1,inf], omega=0.5) # Perfect 1.28652953559617 >>> 1+(cos(1)+ci(1)+sin(1))/6 1.28652953559617 **Fast decay** :func:`~mpmath.quadosc` is primarily useful for slowly decaying integrands. If the integrand decreases exponentially or faster, :func:`~mpmath.quad` will likely handle it without trouble (and generally be much faster than :func:`~mpmath.quadosc`):: >>> quadosc(lambda x: cos(x)/exp(x), [0, inf], omega=1) 0.5 >>> quad(lambda x: cos(x)/exp(x), [0, inf]) 0.5 """ a, b = ctx._as_points(interval) a = ctx.convert(a) b = ctx.convert(b) if [omega, period, zeros].count(None) != 2: raise ValueError( \ "must specify exactly one of omega, period, zeros") if a == ctx.ninf and b == ctx.inf: s1 = ctx.quadosc(f, [a, 0], omega=omega, zeros=zeros, period=period) s2 = ctx.quadosc(f, [0, b], omega=omega, zeros=zeros, period=period) return s1 + s2 if a == ctx.ninf: if zeros: return ctx.quadosc(lambda x:f(-x), [-b,-a], lambda n: zeros(-n)) else: return ctx.quadosc(lambda x:f(-x), [-b,-a], omega=omega, period=period) if b != ctx.inf: raise ValueError("quadosc requires an infinite integration interval") if not zeros: if omega: period = 2*ctx.pi/omega zeros = lambda n: n*period/2 #for n in range(1,10): # p = zeros(n) # if p > a: # break #if n >= 9: # raise ValueError("zeros do not appear to be correctly indexed") n = 1 s = ctx.quadgl(f, [a, zeros(n)]) def term(k): return ctx.quadgl(f, [zeros(k), zeros(k+1)]) s += ctx.nsum(term, [n, ctx.inf]) return s if __name__ == '__main__': import doctest doctest.testmod()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/quadrature.py
quadrature.py
from ..libmp.backend import xrange from .calculus import defun try: iteritems = dict.iteritems except AttributeError: iteritems = dict.items #----------------------------------------------------------------------------# # Differentiation # #----------------------------------------------------------------------------# @defun def difference(ctx, s, n): r""" Given a sequence `(s_k)` containing at least `n+1` items, returns the `n`-th forward difference, .. math :: \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k. """ n = int(n) d = ctx.zero b = (-1) ** (n & 1) for k in xrange(n+1): d += b * s[k] b = (b * (k-n)) // (k+1) return d def hsteps(ctx, f, x, n, prec, **options): singular = options.get('singular') addprec = options.get('addprec', 10) direction = options.get('direction', 0) workprec = (prec+2*addprec) * (n+1) orig = ctx.prec try: ctx.prec = workprec h = options.get('h') if h is None: if options.get('relative'): hextramag = int(ctx.mag(x)) else: hextramag = 0 h = ctx.ldexp(1, -prec-addprec-hextramag) else: h = ctx.convert(h) # Directed: steps x, x+h, ... x+n*h direction = options.get('direction', 0) if direction: h *= ctx.sign(direction) steps = xrange(n+1) norm = h # Central: steps x-n*h, x-(n-2)*h ..., x, ..., x+(n-2)*h, x+n*h else: steps = xrange(-n, n+1, 2) norm = (2*h) # Perturb if singular: x += 0.5*h values = [f(x+k*h) for k in steps] return values, norm, workprec finally: ctx.prec = orig @defun def diff(ctx, f, x, n=1, **options): r""" Numerically computes the derivative of `f`, `f'(x)`, or generally for an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`. A few basic examples are:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> diff(lambda x: x**2 + x, 1.0) 3.0 >>> diff(lambda x: x**2 + x, 1.0, 2) 2.0 >>> diff(lambda x: x**2 + x, 1.0, 3) 0.0 >>> nprint([diff(exp, 3, n) for n in range(5)]) # exp'(x) = exp(x) [20.0855, 20.0855, 20.0855, 20.0855, 20.0855] Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)` and order `(n_1, \ldots, n_k)`, the partial derivative `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example:: >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1)) 2.75 >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1)) 3.0 **Options** The following optional keyword arguments are recognized: ``method`` Supported methods are ``'step'`` or ``'quad'``: derivatives may be computed using either a finite difference with a small step size `h` (default), or numerical quadrature. ``direction`` Direction of finite difference: can be -1 for a left difference, 0 for a central difference (default), or +1 for a right difference; more generally can be any complex number. ``addprec`` Extra precision for `h` used to account for the function's sensitivity to perturbations (default = 10). ``relative`` Choose `h` relative to the magnitude of `x`, rather than an absolute value; useful for large or tiny `x` (default = False). ``h`` As an alternative to ``addprec`` and ``relative``, manually select the step size `h`. ``singular`` If True, evaluation exactly at the point `x` is avoided; this is useful for differentiating functions with removable singularities. Default = False. ``radius`` Radius of integration contour (with ``method = 'quad'``). Default = 0.25. A larger radius typically is faster and more accurate, but it must be chosen so that `f` has no singularities within the radius from the evaluation point. A finite difference requires `n+1` function evaluations and must be performed at `(n+1)` times the target precision. Accordingly, `f` must support fast evaluation at high precision. With integration, a larger number of function evaluations is required, but not much extra precision is required. For high order derivatives, this method may thus be faster if f is very expensive to evaluate at high precision. **Further examples** The direction option is useful for computing left- or right-sided derivatives of nonsmooth functions:: >>> diff(abs, 0, direction=0) 0.0 >>> diff(abs, 0, direction=1) 1.0 >>> diff(abs, 0, direction=-1) -1.0 More generally, if the direction is nonzero, a right difference is computed where the step size is multiplied by sign(direction). For example, with direction=+j, the derivative from the positive imaginary direction will be computed:: >>> diff(abs, 0, direction=j) (0.0 - 1.0j) With integration, the result may have a small imaginary part even even if the result is purely real:: >>> diff(sqrt, 1, method='quad') # doctest:+ELLIPSIS (0.5 - 4.59...e-26j) >>> chop(_) 0.5 Adding precision to obtain an accurate value:: >>> diff(cos, 1e-30) 0.0 >>> diff(cos, 1e-30, h=0.0001) -9.99999998328279e-31 >>> diff(cos, 1e-30, addprec=100) -1.0e-30 """ partial = False try: orders = list(n) x = list(x) partial = True except TypeError: pass if partial: x = [ctx.convert(_) for _ in x] return _partial_diff(ctx, f, x, orders, options) method = options.get('method', 'step') if n == 0 and method != 'quad' and not options.get('singular'): return f(ctx.convert(x)) prec = ctx.prec try: if method == 'step': values, norm, workprec = hsteps(ctx, f, x, n, prec, **options) ctx.prec = workprec v = ctx.difference(values, n) / norm**n elif method == 'quad': ctx.prec += 10 radius = ctx.convert(options.get('radius', 0.25)) def g(t): rei = radius*ctx.expj(t) z = x + rei return f(z) / rei**n d = ctx.quadts(g, [0, 2*ctx.pi]) v = d * ctx.factorial(n) / (2*ctx.pi) else: raise ValueError("unknown method: %r" % method) finally: ctx.prec = prec return +v def _partial_diff(ctx, f, xs, orders, options): if not orders: return f() if not sum(orders): return f(*xs) i = 0 for i in range(len(orders)): if orders[i]: break order = orders[i] def fdiff_inner(*f_args): def inner(t): return f(*(f_args[:i] + (t,) + f_args[i+1:])) return ctx.diff(inner, f_args[i], order, **options) orders[i] = 0 return _partial_diff(ctx, fdiff_inner, xs, orders, options) @defun def diffs(ctx, f, x, n=None, **options): r""" Returns a generator that yields the sequence of derivatives .. math :: f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)` function evaluations to generate the first `k` derivatives, rather than the roughly `O(k^2)` evaluations required if one calls :func:`~mpmath.diff` `k` separate times. With `n < \infty`, the generator stops as soon as the `n`-th derivative has been generated. If the exact number of needed derivatives is known in advance, this is further slightly more efficient. Options are the same as for :func:`~mpmath.diff`. **Examples** >>> from mpmath import * >>> mp.dps = 15 >>> nprint(list(diffs(cos, 1, 5))) [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471] >>> for i, d in zip(range(6), diffs(cos, 1)): ... print("%s %s" % (i, d)) ... 0 0.54030230586814 1 -0.841470984807897 2 -0.54030230586814 3 0.841470984807897 4 0.54030230586814 5 -0.841470984807897 """ if n is None: n = ctx.inf else: n = int(n) if options.get('method', 'step') != 'step': k = 0 while k < n: yield ctx.diff(f, x, k, **options) k += 1 return singular = options.get('singular') if singular: yield ctx.diff(f, x, 0, singular=True) else: yield f(ctx.convert(x)) if n < 1: return if n == ctx.inf: A, B = 1, 2 else: A, B = 1, n+1 while 1: callprec = ctx.prec y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options) for k in xrange(A, B): try: ctx.prec = workprec d = ctx.difference(y, k) / norm**k finally: ctx.prec = callprec yield +d if k >= n: return A, B = B, int(A*1.4+1) B = min(B, n) def iterable_to_function(gen): gen = iter(gen) data = [] def f(k): for i in xrange(len(data), k+1): data.append(next(gen)) return data[k] return f @defun def diffs_prod(ctx, factors): r""" Given a list of `N` iterables or generators yielding `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`, generate `g(x), g'(x), g''(x), \ldots` where `g(x) = f_1(x) f_2(x) \cdots f_N(x)`. At high precision and for large orders, this is typically more efficient than numerical differentiation if the derivatives of each `f_k(x)` admit direct computation. Note: This function does not increase the working precision internally, so guard digits may have to be added externally for full accuracy. **Examples** >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> f = lambda x: exp(x)*cos(x)*sin(x) >>> u = diffs(f, 1) >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)]) >>> next(u); next(v) 1.23586333600241 1.23586333600241 >>> next(u); next(v) 0.104658952245596 0.104658952245596 >>> next(u); next(v) -5.96999877552086 -5.96999877552086 >>> next(u); next(v) -12.4632923122697 -12.4632923122697 """ N = len(factors) if N == 1: for c in factors[0]: yield c else: u = iterable_to_function(ctx.diffs_prod(factors[:N//2])) v = iterable_to_function(ctx.diffs_prod(factors[N//2:])) n = 0 while 1: #yield sum(binomial(n,k)*u(n-k)*v(k) for k in xrange(n+1)) s = u(n) * v(0) a = 1 for k in xrange(1,n+1): a = a * (n-k+1) // k s += a * u(n-k) * v(k) yield s n += 1 def dpoly(n, _cache={}): """ nth differentiation polynomial for exp (Faa di Bruno's formula). TODO: most exponents are zero, so maybe a sparse representation would be better. """ if n in _cache: return _cache[n] if not _cache: _cache[0] = {(0,):1} R = dpoly(n-1) R = dict((c+(0,),v) for (c,v) in iteritems(R)) Ra = {} for powers, count in iteritems(R): powers1 = (powers[0]+1,) + powers[1:] if powers1 in Ra: Ra[powers1] += count else: Ra[powers1] = count for powers, count in iteritems(R): if not sum(powers): continue for k,p in enumerate(powers): if p: powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:] if powers2 in Ra: Ra[powers2] += p*count else: Ra[powers2] = p*count _cache[n] = Ra return _cache[n] @defun def diffs_exp(ctx, fdiffs): r""" Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots` generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`. At high precision and for large orders, this is typically more efficient than numerical differentiation if the derivatives of `f(x)` admit direct computation. Note: This function does not increase the working precision internally, so guard digits may have to be added externally for full accuracy. **Examples** The derivatives of the gamma function can be computed using logarithmic differentiation:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> >>> def diffs_loggamma(x): ... yield loggamma(x) ... i = 0 ... while 1: ... yield psi(i,x) ... i += 1 ... >>> u = diffs_exp(diffs_loggamma(3)) >>> v = diffs(gamma, 3) >>> next(u); next(v) 2.0 2.0 >>> next(u); next(v) 1.84556867019693 1.84556867019693 >>> next(u); next(v) 2.49292999190269 2.49292999190269 >>> next(u); next(v) 3.44996501352367 3.44996501352367 """ fn = iterable_to_function(fdiffs) f0 = ctx.exp(fn(0)) yield f0 i = 1 while 1: s = ctx.mpf(0) for powers, c in iteritems(dpoly(i)): s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p) yield s * f0 i += 1 @defun def differint(ctx, f, x, n=1, x0=0): r""" Calculates the Riemann-Liouville differintegral, or fractional derivative, defined by .. math :: \,_{x_0}{\mathbb{D}}^n_xf(x) \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m} \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt where `f` is a given (presumably well-behaved) function, `x` is the evaluation point, `n` is the order, and `x_0` is the reference point of integration (`m` is an arbitrary parameter selected automatically). With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`, the second derivative `f''(x)`, etc. With `n = -1`, it gives `\int_{x_0}^x f(t) dt`, with `n = -2` it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc. As `n` is permitted to be any number, this operator generalizes iterated differentiation and iterated integration to a single operator with a continuous order parameter. **Examples** There is an exact formula for the fractional derivative of a monomial `x^p`, which may be used as a reference. For example, the following gives a half-derivative (order 0.5):: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> x = mpf(3); p = 2; n = 0.5 >>> differint(lambda t: t**p, x, n) 7.81764019044672 >>> gamma(p+1)/gamma(p-n+1) * x**(p-n) 7.81764019044672 Another useful test function is the exponential function, whose integration / differentiation formula easy generalizes to arbitrary order. Here we first compute a third derivative, and then a triply nested integral. (The reference point `x_0` is set to `-\infty` to avoid nonzero endpoint terms.):: >>> differint(lambda x: exp(pi*x), -1.5, 3) 0.278538406900792 >>> exp(pi*-1.5) * pi**3 0.278538406900792 >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf) 1922.50563031149 >>> exp(pi*3.5) / pi**3 1922.50563031149 However, for noninteger `n`, the differentiation formula for the exponential function must be modified to give the same result as the Riemann-Liouville differintegral:: >>> x = mpf(3.5) >>> c = pi >>> n = 1+2*j >>> differint(lambda x: exp(c*x), x, n) (-123295.005390743 + 140955.117867654j) >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n) (-123295.005390743 + 140955.117867654j) """ m = max(int(ctx.ceil(ctx.re(n)))+1, 1) r = m-n-1 g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x]) return ctx.diff(g, x, m) / ctx.gamma(m-n) @defun def diffun(ctx, f, n=1, **options): r""" Given a function `f`, returns a function `g(x)` that evaluates the nth derivative `f^{(n)}(x)`:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> cos2 = diffun(sin) >>> sin2 = diffun(sin, 4) >>> cos(1.3), cos2(1.3) (0.267498828624587, 0.267498828624587) >>> sin(1.3), sin2(1.3) (0.963558185417193, 0.963558185417193) The function `f` must support arbitrary precision evaluation. See :func:`~mpmath.diff` for additional details and supported keyword options. """ if n == 0: return f def g(x): return ctx.diff(f, x, n, **options) return g @defun def taylor(ctx, f, x, n, **options): r""" Produces a degree-`n` Taylor polynomial around the point `x` of the given function `f`. The coefficients are returned as a list. >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> nprint(chop(taylor(sin, 0, 5))) [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333] The coefficients are computed using high-order numerical differentiation. The function must be possible to evaluate to arbitrary precision. See :func:`~mpmath.diff` for additional details and supported keyword options. Note that to evaluate the Taylor polynomial as an approximation of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed, and the point of the Taylor expansion must be subtracted from the argument: >>> p = taylor(exp, 2.0, 10) >>> polyval(p[::-1], 2.5 - 2.0) 12.1824939606092 >>> exp(2.5) 12.1824939607035 """ gen = enumerate(ctx.diffs(f, x, n, **options)) if options.get("chop", True): return [ctx.chop(d)/ctx.factorial(i) for i, d in gen] else: return [d/ctx.factorial(i) for i, d in gen] @defun def pade(ctx, a, L, M): r""" Computes a Pade approximation of degree `(L, M)` to a function. Given at least `L+M+1` Taylor coefficients `a` approximating a function `A(x)`, :func:`~mpmath.pade` returns coefficients of polynomials `P, Q` satisfying .. math :: P = \sum_{k=0}^L p_k x^k Q = \sum_{k=0}^M q_k x^k Q_0 = 1 A(x) Q(x) = P(x) + O(x^{L+M+1}) `P(x)/Q(x)` can provide a good approximation to an analytic function beyond the radius of convergence of its Taylor series (example from G.A. Baker 'Essentials of Pade Approximants' Academic Press, Ch.1A):: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> one = mpf(1) >>> def f(x): ... return sqrt((one + 2*x)/(one + x)) ... >>> a = taylor(f, 0, 6) >>> p, q = pade(a, 3, 3) >>> x = 10 >>> polyval(p[::-1], x)/polyval(q[::-1], x) 1.38169105566806 >>> f(x) 1.38169855941551 """ # To determine L+1 coefficients of P and M coefficients of Q # L+M+1 coefficients of A must be provided assert(len(a) >= L+M+1) if M == 0: if L == 0: return [ctx.one], [ctx.one] else: return a[:L+1], [ctx.one] # Solve first # a[L]*q[1] + ... + a[L-M+1]*q[M] = -a[L+1] # ... # a[L+M-1]*q[1] + ... + a[L]*q[M] = -a[L+M] A = ctx.matrix(M) for j in range(M): for i in range(min(M, L+j+1)): A[j, i] = a[L+j-i] v = -ctx.matrix(a[(L+1):(L+M+1)]) x = ctx.lu_solve(A, v) q = [ctx.one] + list(x) # compute p p = [0]*(L+1) for i in range(L+1): s = a[i] for j in range(1, min(M,i) + 1): s += q[j]*a[i-j] p[i] = s return p, q
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/stats_scripts/mpmath/calculus/differentiation.py
differentiation.py
import os,sys,string,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) parentdir = os.path.dirname(parentdir) sys.path.insert(0,parentdir) import unique #Compare splicing annotations in LeafCutter and AltAnalyze's PSI EventAnnotation file def verifyFile(filename): status = False try: fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): status = True;break except Exception: status = False return status def importDatabaseEventAnnotations(species,platform): terminal_exons={} header=True count=0 fn = 'AltDatabase/'+species+'/'+platform+'/'+species+'_Ensembl_exons.txt' fn = unique.filepath(fn) for line in open(fn,'rU'): line = line.rstrip('\n') values = string.split(line,'\t') if header: eI = values.index('splice_events') header=False continue exon = values[0] event = values[eI] if 'alt-N-term' in event or 'altPromoter' in event: if 'cassette' not in event: terminal_exons[exon] = 'altPromoter' count+=1 elif 'alt-C-term' in event: if 'cassette' not in event: terminal_exons[exon] = 'alt-C-term' count+=1 """ elif 'bleedingExon' in event or 'altFinish' in event: terminal_exons[exon] = 'bleedingExon' count+=1""" print count, 'terminal exon annotations stored' return terminal_exons def formatFeatures(features): features2=[] for f in features: f = string.split(f,'|') direction = f[-1] annotation = f[0] f = '('+direction+')'+annotation features2.append(f) return features2 class SplicingAnnotations(object): def __init__(self, symbol, description,junc1,junc2,altExons,proteinPredictions,eventAnnotation,coordinates): self.symbol = symbol self.description = description self.junc1 = junc1 self.junc2 = junc2 self.altExons = altExons self.proteinPredictions = proteinPredictions self.eventAnnotation = eventAnnotation self.coordinates = coordinates def Symbol(self): return self.symbol def Description(self): return self.description def Junc1(self): return self.junc1 def Junc2(self): return self.junc2 def AltExons(self): return self.altExons def ProteinPredictions(self): return self.proteinPredictions def EventAnnotation(self): return self.eventAnnotation def Coordinates(self): return self.coordinates def importPSIAnnotations(PSIpath): header=True count=0 events={} for line in open(PSIpath,'rU').xreadlines(): line = line.rstrip('\n') values = string.split(line,'\t') if header: sI = values.index('Symbol') dI = values.index('Description') eI = values.index('Examined-Junction') bI = values.index('Background-Major-Junction') aI = values.index('AltExons') pI = values.index('ProteinPredictions') vI = values.index('EventAnnotation') cI = values.index('Coordinates') rI = values.index('rawp') header=False else: symbol = values[sI] description = values[dI] junc1 = values[eI] junc2 = values[bI] altExons = values[aI] proteinPredictions = values[pI] eventAnnotation = values[vI] coordinates = values[cI] key = symbol+':'+junc1+"|"+junc2 sa = SplicingAnnotations(symbol, description,junc1,junc2,altExons,proteinPredictions,eventAnnotation,coordinates) coord1,coord2 = string.split(coordinates,'|') events[coord1] = sa events[coord2] = sa return events def importLeafCutterJunctions(leafcutter_clusters): count=0 coordinate_clusters={} for line in open(leafcutter_clusters,'rU').xreadlines(): line = line.rstrip('\n') if ':' in line: cluster = string.split(line,' ')[0] cluster = string.split(cluster,':') cluster_id = cluster[-1] coordinates = cluster[0]+':'+cluster[1]+'-'+cluster[1] try: coordinate_clusters[cluster_id].append(coordinates) except Exception: coordinate_clusters[cluster_id] = [coordinates] return coordinate_clusters def importLeafSignificant(leafcutter_significant,coordinate_clusters): header=True count=0 significant_coordinates={} unique_clusters=0 for line in open(leafcutter_significant,'rU').xreadlines(): values = line.rstrip('\n') values = string.split(values,'\t') if header: pI = values.index('p') header=False else: cluster = string.split(values[0],':')[1] try: p = float(values[pI]) except Exception: p=1 coordinates = coordinate_clusters[cluster] if p<0.05: unique_clusters+=1 for coord in coordinates: significant_coordinates[coord] = cluster print unique_clusters,'significant clusters' return significant_coordinates def compare_algorithms(altanalyze_dir,leafcutter_significant,leafcutter_clusters,species,platform): """ Add splicing annotations for PSI results """ ### Get all splice-junction pairs coordinate_clusters = importLeafCutterJunctions(leafcutter_clusters) significant_coordinates = importLeafSignificant(leafcutter_significant,coordinate_clusters) eventAnnotations = importPSIAnnotations(altanalyze_dir) unique_clusters={} for i in significant_coordinates: if i not in eventAnnotations: print i;sys.exit() else: print 'a',i;sys.exit() ### Get all de novo junction anntations (includes novel junctions) psievents = importEventAnnotations(resultsDir,species,psievents,annotationType='de novo') ### Get all known junction annotations psievents = importEventAnnotations(resultsDir,species,psievents) ### Import the annotations that provide alternative terminal events terminal_exons = importDatabaseEventAnnotations(species,platform) ### Update our PSI annotation file with these improved predictions updatePSIAnnotations(PSIpath, species, psievents, terminal_exons, junctionPairFeatures) if __name__ == '__main__': import multiprocessing as mlp import getopt #bam_dir = "H9.102.2.6.bam" #outputExonCoordinateRefBEDfile = 'H9.102.2.6__exon.bed' platform = 'RNASeq' species = 'Hs' ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Insufficient command line flags supplied." sys.exit() else: analysisType = [] useMultiProcessing=False options, remainder = getopt.getopt(sys.argv[1:],'', ['altanalyze=','leafcutter=','leafclusters=','species=','platform=','array=']) for opt, arg in options: if opt == '--altanalyze': altanalyze_dir=arg elif opt == '--leafcutter': leafcutter_significant=arg elif opt == '--leafclusters': leafcutter_clusters=arg elif opt == '--species': species=arg elif opt == '--platform': platform=arg elif opt == '--array': platform=arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() compare_algorithms(altanalyze_dir,leafcutter_significant,leafcutter_clusters,species,platform)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/benchmarking/scripts/LeafCutterTranslation.py
LeafCutterTranslation.py
import os,sys,string,inspect ### Import python modules from an upstream directory currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) parentdir = os.path.dirname(parentdir) sys.path.insert(0,parentdir) import unique import export """Goal: Import de novo Cufflinks transcripts and expression to infer dPSI for junctions""" def verifyFile(filename): status = False try: fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): status = True;break except Exception: status = False return status def getJunctions(species,input_dir,fpkm_tracking_dir,gtf_dir): ensembl_chr_db={} gene_intron_db={} ### Get the chr for each Ensembl gene to carefully match to Cufflinks Symbol exon_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' fn = unique.filepath(exon_dir) header = True for line in open(fn,'rU').xreadlines(): line = line.rstrip('\n') t = string.split(line,'\t') if header: header = False else: ensembl = t[0] exon = t[1] chr = t[2] strand = t[3] start =int(t[4]) end = int(t[5]) ensembl_chr_db[ensembl]=chr,strand if 'I' in exon: intronID = ensembl+':'+exon coords = [start,end] coords.sort() coords.append(intronID) try: gene_intron_db[ensembl].append(coords) except Exception: gene_intron_db[ensembl] = [coords] symbol_ensembl_db={} altanalyze_gene_annot_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations.txt' fn = unique.filepath(altanalyze_gene_annot_dir) for line in open(fn,'rU').xreadlines(): line = line.rstrip('\n') ensemblID,symbol,description,null = string.split(line,'\t') if 'Ensembl Gene ID' != ensemblID: chr,strand = ensembl_chr_db[ensemblID] symbol_ensembl_db[symbol]=ensemblID,chr,strand ### Import gene, isoform and expression information isoform_fpkm={} isoform_annotation={} header = True for line in open(fpkm_tracking_dir,'rU').xreadlines(): line = line.rstrip('\n') t = string.split(line,'\t') if header: gi = t.index('gene_id') si = t.index('gene_short_name') ti = t.index('tracking_id') fi = t.index('FPKM') header = False else: geneID = t[gi] symbol = t[si] transcriptID = t[ti] fpkm = float(t[fi]) isoform_fpkm[transcriptID]=fpkm isoform_annotation[transcriptID]=symbol transcript_junctions={} transcript_exons = {} for line in open(gtf_dir,'rU').xreadlines(): line = line.rstrip('\n') t = string.split(line,'\t') chr = t[0] type = t[2] start = int(t[3]) stop = int(t[4]) strand = t[6] annotations = t[8] annotations = string.split(annotations,'"') geneID = annotations[1] transcriptID = annotations[3] if strand == '-': start, stop = stop, start if type == 'exon': try: transcript_exons[transcriptID,strand].append([chr,start,stop]) except Exception: transcript_exons[transcriptID,strand] = [[chr,start,stop]] parent = findParentDir(fpkm_tracking_dir) output_file = input_dir+'/'+parent+'__junction.bed' io = export.ExportFile(output_file) io.write('track name=junctions description="TopHat junctions"\n') unmatched_gene={} intron_retention=0 for (transcriptID,strand) in transcript_exons: exons = transcript_exons[transcriptID,strand] numExons = len(exons) fpkm = isoform_fpkm[transcriptID] symbol = isoform_annotation[transcriptID] chr,start,stop = exons[0] if len(symbol)>0 and symbol in symbol_ensembl_db: ensemblID, EnsChr,EnsStrand = symbol_ensembl_db[symbol] strand = EnsStrand ### Likely more accurate if strand == '-': exons.reverse() if chr == EnsChr: ### Double check this is the correct gene symbol for that gene ID i=0 while i<(numExons-1): chr,start,stop = exons[i] chr,next_start,next_stop = exons[i+1] junction = stop,next_start """ if stop == 63886987 or start == 63886987 or next_start == 63886987 or next_stop == 63886987: print junction, start, stop, next_start, next_stop""" if len(symbol)>0 and symbol in symbol_ensembl_db: if chr == EnsChr: ### Double check this is the correct gene symbol for that gene ID try: transcript_junctions[ensemblID,chr,junction,strand]+=fpkm except Exception: transcript_junctions[ensemblID,chr,junction,strand]=fpkm i+=1 ### Identify retained introns in transcripts fpkm = int(fpkm*10) increment=-1 for exon in exons: chr,start,end = exon if ensemblID in gene_intron_db and fpkm>0: for (intron5,intron3,intronID) in gene_intron_db[ensemblID]: start_end = [start,end]; start_end.sort(); start,end = start_end coords = [start,end]+[intron5,intron3] coords.sort() if coords[0] == start and coords[-1] == end: """ if ensemblID == 'ENSG00000167522': if strand == '+': print [start,end], [intron5,intron3];sys.exit() """ start = intron5 stop = intron3 if strand=='-': increment = -1 else: increment = -1 outlier_start = start-10+increment; outlier_end = start+10+increment junction_id = intronID+'-'+str(start) exon_lengths = '10,10'; dist = '0,0' entries = [chr,str(outlier_start),str(outlier_end),junction_id,str(fpkm),strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] io.write(string.join(entries,'\t')+'\n') ### 3' junction if strand=='-': increment = 0 else: increment = 0 outlier_start = stop-10+increment; outlier_end = stop+10+increment junction_id = intronID+'-'+str(stop) exon_lengths = '10,10'; dist = '0,0' entries = [chr,str(outlier_start),str(outlier_end),junction_id,str(fpkm),strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] io.write(string.join(entries,'\t')+'\n') intron_retention +=1 else: unmatched_gene[symbol]=None else: unmatched_gene[symbol]=None print len(unmatched_gene), 'Unmatched gene symbols' num_junctions=0 for (ensemblID,chr,junction,strand) in transcript_junctions: fpkm = int(transcript_junctions[ensemblID,chr,junction,strand]*10) if fpkm>0: fpkm = str(fpkm) junction = list(junction) junction.sort() junction_id = ensemblID+':'+str(junction[0])+'-'+str(junction[1]) start = int(junction[0]) end = int(junction[1]) if strand == '-': alt_start = start alt_end = end-1 else: alt_start = start alt_end = end-1 alt_start = str(alt_start) alt_end = str(alt_end) #exon_lengths = '10,10'; dist = '0,0' exon_lengths = '0,0'; dist = '0,0' entries = [chr,alt_start,alt_end,junction_id,fpkm,strand,alt_start,alt_end,'255,0,0\t2',exon_lengths,'0,'+dist] io.write(string.join(entries,'\t')+'\n') num_junctions+=1 io.close() print intron_retention, 'transcripts with intron retention' print num_junctions, 'junctions exported to:',output_file def findParentDir(filename): filename = string.replace(filename,'//','/') filename = string.replace(filename,'\\','/') return string.split(filename,'/')[-2] if __name__ == '__main__': import multiprocessing as mlp import getopt species = 'Hs' ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Insufficient command line flags supplied." sys.exit() else: analysisType = [] useMultiProcessing=False options, remainder = getopt.getopt(sys.argv[1:],'', ['i=']) for opt, arg in options: if opt == '--i': input_dir=arg elif opt == '--species': species=arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() dir_list = unique.read_directory(input_dir) for file in dir_list: if 'isoforms.fpkm_tracking' in file: fpkm_tracking_dir = input_dir+'/'+file elif 'transcripts.gtf' in file: gtf_dir = input_dir+'/'+file getJunctions(species,input_dir,fpkm_tracking_dir,gtf_dir)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/benchmarking/scripts/IsoformToJunctionCounts.py
IsoformToJunctionCounts.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import copy def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".dat": dir_list2.append(entry) return dir_list2 def importEnsemblUniprot(filename): fn=filepath(filename); x = 0 for line in open(fn,'r').xreadlines(): data, newline= string.split(line,'\n') t = string.split(data,'\t') if x==0: x=1 else: try: ensembl=t[0];uniprot=t[1] try: uniprot_ensembl_db[uniprot].append(ensembl) except KeyError: uniprot_ensembl_db[uniprot] = [ensembl] except Exception: null=[] ### Occurs when no file is located on the AltAnalyze server print len(uniprot_ensembl_db),"UniProt entries with Ensembl annotations" def exportEnsemblUniprot(filename): import export export_data = export.ExportFile(filename) export_data.write(string.join(['ensembl','uniprot'],'\t')+'\n') for uniprot in uniprot_ensembl_db: for ensembl in uniprot_ensembl_db[uniprot]: export_data.write(string.join([ensembl,uniprot],'\t')+'\n') export_data.close() def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def findSpeciesInUniProtFiles(force): ### Download all UniProt annotation files and grab all species names, TaxIDs and corresponding URLs import AltAnalyze ###Get species annotations from the GO-Elite config species_annot_db=AltAnalyze.importGOEliteSpeciesInfo(); tax_db={} for species_full in species_annot_db: taxid=species_annot_db[species_full].TaxID() tax_db[taxid]=species_full if force == 'yes': ### Should only need to be run if UniProt changes it's species to file associations or new species supported by Ensembl import export; import update filesearch = '_sprot_' all_swissprot = update.getFTPData('ftp.expasy.org','/databases/uniprot/current_release/knowledgebase/taxonomic_divisions',filesearch) for file in all_swissprot: gz_filepath, status = update.download(file,'uniprot_temp/','') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status species_uniprot_db={}; altanalyze_species_uniprot_db={} dir=read_directory('/uniprot_temp') for filename in dir: fn=filepath('uniprot_temp/'+filename) for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) if data[0:2] == 'OX': taxid = string.split(data,'=')[1][:-1] if taxid in tax_db: species_full = tax_db[taxid] elif data[0:2] == 'OS': species = data[5:] species = string.split(species,' ')[:2] species_full = string.join(species,' ') elif data[0] == '/': url = 'ftp.expasy.org/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/'+filename ss = string.split(species_full,' ') if len(ss)==2: ### Species name is in the format Homo sapiens - and '(' not in species_full and ')' not in species_full and '/' not in species_full try: species_uniprot_db[species_full].append((taxid,'ftp://'+url+'.gz')) except KeyError: species_uniprot_db[species_full] = [(taxid,'ftp://'+url+'.gz')] taxid = ''; species_full = '' from build_scripts import EnsemblImport species_uniprot_db = EnsemblImport.eliminate_redundant_dict_values(species_uniprot_db) ### Export all species to UniProt file relationships so this function needs to only be run once import export up = export.ExportFile('Config/uniprot-species-file.txt') for species_full in species_uniprot_db: values = species_uniprot_db[species_full] if len(values)>1: found = 'no' for (taxid,url) in values: if taxid in tax_db: if species_full == tax_db[taxid]: found='yes'; print 'ambiguity resolved:',species_full; break if found == 'yes': break else: (taxid,url) = values[0] up.write(string.join([species_full,taxid,url],'\t')+'\n') up.close() def getUniProtURLsForAllSupportedSpecies(): ### Import all UniProt supproted species and URLs species_uniprot_db={} fn=filepath('Config/uniprot-species-file.txt') for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) species_full,taxid,url = string.split(data,'\t') if 'Homo sapiens' not in species_full: ### There's a separate file for us humans (so egotistical!!!) species_uniprot_db[species_full] = taxid,url import AltAnalyze ###Get species annotations from the GO-Elite config species_annot_db=AltAnalyze.importGOEliteSpeciesInfo() ### Export all urls for currently supported species import UI file_location_defaults = UI.importDefaultFileLocations() location_db={}; species_added=[] for species_full in species_annot_db: if species_full in species_uniprot_db: taxid,url = species_uniprot_db[species_full] species_code = species_annot_db[species_full].SpeciesCode() try: location_db[url].append(species_code) except Exception: location_db[url] = [species_code] species_added.append(species_full) for species_full in species_annot_db: taxid = species_annot_db[species_full].TaxID() species_code = species_annot_db[species_full].SpeciesCode() if species_full not in species_added: for species_name in species_uniprot_db: tax,url = species_uniprot_db[species_name] if tax == taxid: location_db[url].append(species_code) print species_code for url in location_db: species = string.join(location_db[url],'|') fl = UI.FileLocationData('ftp', url, species) try: file_location_defaults['UniProt'].append(fl) except KeyError: file_location_defaults['UniProt'] = [fl] UI.exportDefaultFileLocations(file_location_defaults) def import_uniprot_db(filename): fn=filepath(filename); global species_not_imported; species_not_imported=[] ac = '';sm='';id = '';sq = '';osd = ''; gn = '';dr = '';de = '';ft_string = ''; kw = ''; ft = []; ensembl = []; mgi = []; unigene = []; embl = [] ft_call=''; rc=''; go=''; x = 0; y = 0; count = 0 for line in open(fn,'r').xreadlines(): data, newline= string.split(line,'\n'); #if x<3: print data #else: kill if 'SRSF1_HUMAN' in data: count = 0 if count == 1: print data if data[0:2] == 'ID': id += data[5:] elif "GO; GO:" in data: go += data[5:] elif data[0:2] == 'DE': de += data[5:] elif data[0:2] == 'KW': kw += data[5:] ### Keywords elif data[0:2] == 'AC': ac += data[5:] elif data[0:2] == 'OS': osd += data[5:] elif data[0:2] == 'RC': rc = rc + data[5:] elif data[0:2] == ' ': sq += data[5:] elif 'DR Ensembl;' in data: null,dr= string.split(data,'Ensembl; '); dr = string.split(dr,'; '); ensembl+=dr[:-1] elif 'DR MGI;' in data: null,dr,null= string.split(data,'; '); mgi.append(dr) elif 'DR UniGene;' in data: null,dr,null= string.split(data,'; '); unigene.append(dr) elif 'DR EMBL;' in data: null,dr,null,null,null= string.split(data,'; '); embl.append(dr) elif 'GN Name=' in data: null,gn = string.split(data,'GN Name='); gn = gn[0:-1] elif data[0:2] == 'FT': try: if len(ft_string) > 0 and data[5] == ' ': ft_string = ft_string + data[33:] elif len(ft_string) > 0 and data[5] != ' ': #if previous loop added data but the next ft line is a new piece of functional data ft.append(ft_string) #append the previous value ft_string = data[5:] else: ft_string = ft_string + data[5:] except IndexError: print ft_string;kill elif data[0:2] == 'CC': ###grab function description information if '-!-' in data: x=0;y=0 if x == 1: ft_call = ft_call + data[8:] if y == 1: sm = sm + data[8:] ###if the CC entry is function, begin adding data if '-!- FUNCTION:' in data: ft_call = ft_call + data[19:]; x = 1 if '-!- SIMILARITY' in data: sm = sm + data[21:]; y = 1 if data[0] == '/': ###Alternatively: if species_name in osd or 'trembl' in filename: if count == 1: count = 2 if species_name == 'Mus musculus': alt_osd = 'mouse' else: alt_osd = 'alt_osd' try: if species_name in osd or alt_osd in osd: null=[] except TypeError: print species_name,osd,alt_osd;kill if species_name in osd or alt_osd in osd: class_def,cellular_components = analyzeCommonProteinClassesAndCompartments(sm,kw,ft_call,ft_string,rc,de,go) ft_list2 = []; ac = string.split(ac,'; '); ac2=[] for i in ac: i = string.replace(i,';',''); ac2.append(i) ac = ac2 try: id = string.split(id,' ');id = id[0] except ValueError: id = id sq_str = ''; sq = string.split(sq,' ') for entry in sq: sq_str = sq_str + entry; sq = sq_str ft.append(ft_string) #always need to add the current ft_string if len(ft_string) > 0: # or len(ft_string) == 0: for entry in ft: entry = string.split(entry,' ') ft_list = [] for item in entry: if len(item)>0: try: item = int(item) except ValueError: if item[0] == ' ': item = item[1:] if item[-1] == ' ': item = item[0:-1] else: item = item ft_list.append(item) ft_list2.append(ft_list) if 'trembl' in filename: file_type = 'fragment' else: file_type = 'swissprot' alternate_ensembls=[] for secondary_ac in ac: if secondary_ac in uniprot_ensembl_db: for alt_ens in uniprot_ensembl_db[secondary_ac]: alternate_ensembls.append(alt_ens) secondary_to_primary_db[secondary_ac] = id ### Update this database with new annotations from the file for ens in ensembl: for secondary_ac in ac: try: if ens not in uniprot_ensembl_db[secondary_ac]: uniprot_ensembl_db[secondary_ac].append(ens) except KeyError: uniprot_ensembl_db[secondary_ac]=[ens] ensembl += alternate_ensembls y = UniProtAnnotations(id,ac,sq,ft_list2,ensembl,gn,file_type,de,embl,unigene,mgi,ft_call,class_def,cellular_components) uniprot_db[id] = y else: species_not_imported.append(osd) ac = '';id = '';sq = '';osd = '';gn = '';dr = '';de = ''; ft_call=''; rc='';sm='';go=''; kw='' ft_string = '';ft = []; ensembl = []; mgi = []; unigene = []; embl = [] x+=1 print "Number of imported swissprot entries:", len(uniprot_db) def analyzeCommonProteinClassesAndCompartments(sm,kw,ft_call,ft_string,rc,de,go): ### Used to assign "Common Protein Classes" annotations to Gene Expression summary file (ExpressionOutput folder) class_def=[]; annotation=[]; cellular_components = [] if 'DNA-binding domain' in sm or 'Transcription' in go or 'Transcription regulation' in kw: class_def.append('transcription regulator') if 'protein kinase superfamily' in sm or 'Kinase' in go: class_def.append('kinase') if 'mRNA splicing' in kw or 'mRNA processing' in kw: class_def.append('splicing regulator') if 'G-protein coupled receptor' in sm or 'LU7TM' in sm: g_type = [] if ('adenylate cyclase' in ft_call) or ('adenylyl cyclase'in ft_call): ###if both occur if (('stimulat' in ft_call) or ('activat' in ft_call)) and ('inhibit' in ft_call): if 'inhibit aden' in ft_call: g_type.append('Gi') if 'stimulate aden' in ft_call or 'activate aden' in ft_call: g_type.append('Gs') elif ('stimulat' in ft_call) or ('activat' in ft_call): g_type.append('Gs') elif ('inhibit' in ft_call): g_type.append('Gi') if ('cAMP' in ft_call): if ('stimulat' in ft_call) or ('activat' in ft_call): g_type.append('Gs') if ('inhibit' in ft_call): g_type.append('Gi') if ('G(s)' in ft_call): g_type.append('Gs') if ('G(i)' in ft_call): g_type.append('Gi') if ('pertussis' in ft_call and 'insensitive' not in ft_call): g_type.append('Gi') if ('G(i/0)' in ft_call) or ('G(i/o)' in ft_call): g_type.append('Gi') if ('G(o)' in ft_call): g_type.append('Go') if ('G(alpha)q' in ft_call): g_type.append('Gq') if ('G(11)' in ft_call): g_type.append('G11') if ('G(12)' in ft_call): g_type.append('G12') if ('G(13)' in ft_call): g_type.append('G13') if ('mobiliz' in ft_call and 'calcium' in ft_call and 'without formation' not in ft_call): g_type.append('Gq') if ('phosphatidyl' in ft_call and 'inositol' in ft_call) or ('G(q)' in ft_call) or ('phospholipase C' in ft_call): g_type.append('Gq') if ('inositol phos' in ft_call) or ('phosphoinositide' in ft_call) or ('PKC'in ft_call) or ('PLC' in ft_call): g_type.append('Gq') if ('intracellular' in ft_call and 'calcium' in ft_call) and 'nor induced' not in ft_call: g_type.append('Gq') if 'G-alpha-11' in ft_call: g_type.append('G11') if 'Orphan' in ft_call or 'orphan' in ft_call: g_type.append('orphan') if 'taste' in ft_call or 'Taste' in ft_call: g_type.append('taste') if 'vision' in ft_call or 'Vision' in ft_call: g_type.append('vision') if 'odorant' in ft_call or 'Odorant' in ft_call: g_type.append('oderant') if 'influx of extracellar calcium' in ft_call: g_type.append('Gq') if 'pheromone receptor' in ft_call or 'Pheromone receptor' in ft_call: g_type.append('pheromone') g_protein_list = unique.unique(g_type); g_protein_str = string.join(g_protein_list,'|') class_def.append('GPCR(%s)' % g_protein_str) elif 'receptor' in sm or 'Receptor' in go: class_def.append('receptor') if len(ft_string)>0: ### Add cellular component annotations if 'ecreted' in sm: k = 1; annotation.append('extracellular') if 'Extraceullar space' in sm: k = 1; annotation.append('extracellular') if 'ecreted' in go: k = 1; annotation.append('extracellular') if 'xtracellular' in go: k = 1; annotation.append('extracellular') if 'Membrane' in sm: k = 1; annotation.append('transmembrane') if 'TRANSMEM' in ft_string: k = 1; annotation.append('transmembrane') if 'integral to membrane' in go: k = 1; annotation.append('transmembrane') if 'Nucleus' in sm: k = 1; annotation.append('nucleus') if 'nucleus' in go: k = 1; annotation.append('nucleus') if 'Cytoplasm' in sm: k = 1; annotation.append('cytoplasm') if 'Mitochondrion' in sm: k = 1; annotation.append('mitochondrion') if 'SIGNAL' in ft_string: k = 1; annotation.append('signal') ###Generate probably secreted annotations if 'signal' in annotation and 'transmembrane' not in annotation: for entry in annotation: if entry != 'signal': cellular_components.append(entry) cellular_components.append('extracellular');annotation = cellular_components elif 'signal' in annotation and 'transmembrane' in annotation: for entry in annotation: if entry != 'signal': cellular_components.append(entry) annotation = cellular_components cellular_components = string.join(annotation,'|') class_def = string.join(class_def,'|') return class_def, cellular_components class UniProtAnnotations: def __init__(self,primary_id,secondary_ids,sequence,ft_list,ensembl,name,file_type,description,embl,unigene,mgi,ft_call,class_def,cellular_components): self._primary_id = primary_id; self._sequence = sequence; self._name = name; self._secondary_ids = secondary_ids; self._class_def = class_def self._file_type = file_type; self._description = description; self._ensembl = ensembl; self._ft_list = ft_list self._embl = embl; self._unigene = unigene; self._mgi = mgi; self._ft_call = ft_call; self._cellular_components = cellular_components def PrimaryID(self): return self._primary_id def SecondaryIDs(self): return self._secondary_ids def Sequence(self): return self._sequence def Name(self): return self._name def FTList(self): new_FTList = [] ### Transform this set of feature information into objects exlcusion_list = ['CHAIN','VARIANT','CONFLICT','VAR_SEQ'] for ft_entry in self._ft_list: try: if len(ft_entry)>3: feature, start, stop, description = ft_entry else: feature, start, stop = ft_entry; description = '' if feature not in exlcusion_list: ### Not informative annotations for AltAnalyze dd = DomainData(feature,start,stop,description) new_FTList.append(dd) except ValueError: new_FTList = new_FTList ### Occurs when no FT info present return new_FTList def FileType(self): return self._file_type def Description(self): return self._description def FunctionDescription(self): if 'yrighted' in self._ft_call: return '' else: return self._ft_call def CellularComponent(self): return self._cellular_components def ClassDefinition(self): return self._class_def def ReSetPrimarySecondaryType(self,primary_id,secondary_id,file_type): secondary_ids = [secondary_id] self._primary_id = primary_id self._secondary_ids = secondary_ids self._file_type = file_type def Ensembl(self): ens_list = unique.unique(self._ensembl) ens_str = string.join(ens_list,',') return ens_str def EnsemblList(self): return self._ensembl def EMBL(self): embl_str = string.join(self._embl,',') return embl_str def Unigene(self): unigene_str = string.join(self._unigene,',') return unigene_str def MGI(self): mgi_str = string.join(self._mgi,',') return mgi_str def DataValues(self): output = self.Name()+'|'+self.PrimaryID() return output def __repr__(self): return self.DataValues() class DomainData: def __init__(self,feature,start,stop,description): self._feature = feature; self._start = start; self._stop = stop; self._description = description def Feature(self): return self._feature def Start(self): return self._start def Stop(self): return self._stop def Description(self): return self._description def DataValues(self): output = self.Feature()+'|'+self.Description() return output def __repr__(self): return self.DataValues() def export(): fasta_data = uniprot_fildir + 'uniprot_sequence.txt' fasta_data2 = uniprot_fildir + 'uniprot_feature_file.txt' fn=filepath(fasta_data); fn2=filepath(fasta_data2) data = open(fn,'w'); data2 = open(fn2,'w') custom_annotations = {} for id in uniprot_db: y = uniprot_db[id]; ac = ''; ac_list = y.SecondaryIDs(); sq = y.Sequence() ft_list = y.FTList(); ft_call = y.FunctionDescription(); ens_list = y.EnsemblList() ensembl = y.Ensembl(); mgi = y.MGI();embl = y.EMBL(); unigene = y.Unigene() gn = y.Name();de = y.Description() file_type = y.FileType(); ac = string.join(ac_list,',') if '-' in id: ac2 = id; id = ac; ac = ac2 info = [id,ac,sq,gn,ensembl,de,file_type,unigene,mgi,embl] info = string.join(info,'\t')+'\n' data.write(info) for ens_gene in ens_list: if 'T0' not in ens_gene and 'P0' not in ens_gene: ### Exclude protein and transcript IDs custom_annot=string.join([ens_gene,y.CellularComponent(), y.ClassDefinition(),gn,de,id,ac,unigene],'\t')+'\n' if len(y.CellularComponent())>1 or len(y.ClassDefinition())>1: custom_annotations[ens_gene] = custom_annot if len(ft_list)>0: for dd in ft_list: ### Export domain annotations try: n = int(dd.Start()); n = int(dd.Stop()) ### Some now have ?. These are un-informative info2 = string.join([id,ac,dd.Feature(),str(dd.Start()),str(dd.Stop()),dd.Description()],'\t') +'\n' info2 = string.replace(info2,';,','') data2.write(info2) except ValueError: null=[] data.close();data2.close() ###Export custom annotations for Ensembl genes output_file = uniprot_fildir + 'custom_annotations.txt' fn=filepath(output_file); data = open(fn,'w') for entry in custom_annotations: data.write(custom_annotations[entry]) data.close() def runExtractUniProt(species,species_full,uniprot_filename_url,trembl_filename_url,force): global uniprot_ensembl_db;uniprot_ensembl_db={} global uniprot_db;uniprot_db={}; global species_name; global uniprot_fildir global secondary_to_primary_db; secondary_to_primary_db={} import update; reload(update) species_name = species_full import UI; species_names = UI.getSpeciesInfo() species_full = species_names[species] species_full = string.replace(species_full,' ','_') uniprot_file = string.split(uniprot_filename_url,'/')[-1]; uniprot_file = string.replace(uniprot_file,'.gz','') trembl_file = string.split(trembl_filename_url,'/')[-1]; trembl_file = string.replace(trembl_file,'.gz','') uniprot_fildir = 'AltDatabase/uniprot/'+species+'/' uniprot_download_fildir = 'AltDatabase/uniprot/' uniprot_ens_file = species+'_Ensembl-UniProt.txt'; uniprot_ens_location = uniprot_fildir+uniprot_ens_file uniprot_location = uniprot_download_fildir+uniprot_file trembl_location = uniprot_download_fildir+trembl_file add_trembl_annotations = 'no' ### Currently we don't need these annotations try: importEnsemblUniprot(uniprot_ens_location) except IOError: try: ### Download the data from the AltAnalyze website (if there) update.downloadCurrentVersion(uniprot_ens_location,species,'txt') importEnsemblUniprot(uniprot_ens_location) except Exception: null=[] try: uniprot_ens_location_built = string.replace(uniprot_ens_location,'UniProt','Uniprot-SWISSPROT') uniprot_ens_location_built = string.replace(uniprot_ens_location_built,'uniprot','Uniprot-SWISSPROT') importEnsemblUniprot(uniprot_ens_location_built) except Exception: null=[] ### Import UniProt annotations counts = update.verifyFile(uniprot_location,'counts') if force == 'no' or counts > 8: import_uniprot_db(uniprot_location) else: ### Directly download the data from UniProt gz_filepath, status = update.download(uniprot_filename_url,uniprot_download_fildir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status import_uniprot_db(uniprot_location) if add_trembl_annotations == 'yes': ### Import TreMBL annotations try: if force == 'yes': uniprot_location += '!!!!!' ### Force an IOError import_uniprot_db(trembl_location) except IOError: ### Directly download the data from UniProt update.download(trembl_filename_url,uniprot_download_fildir,'') import_uniprot_db(trembl_location) export() exportEnsemblUniprot(uniprot_ens_location) if __name__ == '__main__': #findSpeciesInUniProtFiles('no'); sys.exit() getUniProtURLsForAllSupportedSpecies() sys.exit()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ExtractUniProtFunctAnnot.py
ExtractUniProtFunctAnnot.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import math import reorder_arrays from build_scripts import ExonArray from build_scripts import EnsemblImport from build_scripts import ExonArrayEnsemblRules try: from build_scripts import JunctionArrayEnsemblRules except Exception: ### Path error issue which remains partially unresolved import JunctionArrayEnsemblRules import export import RNASeq def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def verifyFile(filename,server_folder): fn=filepath(filename) try: for line in open(fn,'rU').xreadlines():break except Exception: import update; reload(update) if server_folder == None: server_folder = 'AltMouse' continue_analysis = update.downloadCurrentVersion(filename,server_folder,'') if continue_analysis == 'no': print 'The file:\n',filename, '\nis missing and cannot be found online. Please save to the designated directory or contact AltAnalyze support.';sys.exit() ########### Recent code for dealing with comprehensive Affymetrix Junction Arrays ########### Begin Analyses ########### class ExonAnnotationData: def Probeset(self): return self._probeset def ProbesetName(self): return self._psr def ExonClusterID(self): return self._exon_cluster_id def setGeneID(self, geneID): self.geneid = geneID def GeneID(self): return self.geneid def setTransSplicing(self): self.trans_splicing = 'yes' def setSecondaryGeneID(self,secondary_geneid): self.secondary_geneid = secondary_geneid def SecondaryGeneID(self): return self.secondary_geneid def checkExonPosition(self,exon_pos): return 'left' def TransSplicing(self): return self.trans_splicing def EnsemblGeneID(self): geneid = self._geneid if 'ENS' in self._geneid: if ',' in self._geneid: ens=[] ids = string.split(self._geneid,',') for id in ids: if 'ENS' in id: ens.append(id) geneid = unique.unique(ens)[-1] else: geneid='' return geneid def EnsemblGeneIDs(self): geneid = self._geneid if 'ENS' in self._geneid: if ',' in self._geneid: ens=[] ids = string.split(self._geneid,',') for id in ids: if 'ENS' in id: ens.append(id) geneids = unique.unique(ens) else: geneids = [self._geneid] else: geneids=[] return geneids def Symbol(self): try: symbols = string.split(self._symbols,',') except Exception: symbols = self._symbols return symbols def setTranscriptClusterID(self,transcript_cluster): self._transcript_cluster = transcript_cluster def TranscriptCluster(self): if self._transcript_cluster[-2:] == '.1': self._transcript_cluster = self._transcript_cluster[:-2] return self._transcript_cluster def setTranscripts(self, transcripts): self.transcripts = transcripts def EnsemblTranscripts(self): return self.transcripts def ProbesetType(self): ###e.g. Exon, junction, constitutive(gene) return self._probeset_type def setStart(self, start): self.start = start def setEnd(self, end): self.end = end def Start(self): return self.start def End(self): return self.end def setChromosome(self,chr): self._chromosome_info = chr def Chromosome(self): if len(self._chromosome_info)>0: try: null,chr = string.split(self._chromosome_info,'=chr') chromosome,null=string.split(chr,':') except Exception: chromosome = self._chromosome_info if chromosome == 'chrM': chromosome = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chromosome == 'M': chromosome = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention else: chromosome = 'not-assinged' return chromosome def Strand(self): if self._strand == '-': self._strand = '-1' else: self._strand = '1' return self._strand def ProbesetClass(self): ###e.g. core, extendended, full #return self._probest_class return 'core' def ExternalExonClusterIDs(self): return self._exon_clusters def ExternalExonClusterIDList(self): external_exonid_list = string.split(self.ExternalExonClusterIDs(),'|') return external_exonid_list def Constitutive(self): return self._constitutive_status def Sequence(self): return string.lower(self._seq) def JunctionSequence(self): return string.replace(self.Sequence(),'|','') def JunctionSequences(self): try: seq1, seq2 = string.split(self.Sequence(),'|') except Exception: seq1 = self.Sequence()[:len(self.Sequence())/2] seq2 = self.Sequence()[-1*len(self.Sequence())/2:] return seq1, seq2 def Report(self): output = self.Probeset() return output def __repr__(self): return self.Report() class PSRAnnotation(ExonAnnotationData): def __init__(self,psr,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_clusters,constitutive,seq,probeset_type): self._transcript_cluster = transcript_cluster; self._geneid = geneids; self._exon_clusters = exon_clusters; self._constitutive_status = constitutive; self._symbols = symbols self._strand = strand; self._chromosome_info = ucsclink; self._probeset = probeset; self._psr = psr; self._seq = seq self._probeset_type = probeset_type class EnsemblInformation: def __init__(self, chr, strand, gene, symbol, description): self._chr = chr; self._strand = strand; self._gene = gene; self._description = description self._symbol = symbol def GeneID(self): return self._gene def Chromosome(self): if self._chr == 'chrM': self._chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if self._chr == 'M': self._chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention return self._chr def Strand(self): return self._strand def Description(self): return self._description def Symbol(self): return self._symbol def __repr__(self): return self.GeneID() def importEnsemblLiftOverData(filename): fn=filepath(filename); ens_translation_db={} print 'importing:',filename for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) tc, new_ens, new_coord = string.split(data,'\t') ens_translation_db[tc]=new_ens print len(ens_translation_db), 'Old versus new Ensembl IDs imported (from coordinate liftover and realignment)' return ens_translation_db def importJunctionArrayAnnotations(species,array_type,specific_array_type): filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_LiftOverEnsembl.txt' try: verifyFile(filename,array_type+'/'+specific_array_type) ### Downloads server file if not local except Exception: null=[] try: ens_translation_db = importEnsemblLiftOverData(filename) except Exception: ens_translation_db={}; print "No coordinate LiftOver file present (not supplied for HJAY or MJAY)!!!!" from build_scripts import EnsemblImport ens_gene_chr_db = EnsemblImport.importEnsGeneData(species) ### retrieves chromosome and strand info for each gene ensembl_annotations = 'AltDatabase/ensembl/'+ species + '/'+species+ '_Ensembl-annotations_simple.txt' ensembl_annotation_db = importGeneric(ensembl_annotations) extraction_type = 'Ensembl' tc_ensembl_annotations = importJunctionArrayAnnotationMappings(array_type,specific_array_type,species,extraction_type) if 'HTA' in specific_array_type or 'MTA' in specific_array_type: ens_trans_gene_db = importGenericReverse('AltDatabase/ensembl/Hs/Hs_Ensembl_transcript-annotations.txt') ensembl_symbol_db={}; ensembl_gene_db={} for ens_geneid in ensembl_annotation_db: description, symbol = ensembl_annotation_db[ens_geneid] if ens_geneid in ens_gene_chr_db: chr,strand = ens_gene_chr_db[ens_geneid] ei = EnsemblInformation(chr,strand,ens_geneid,symbol,description) if len(symbol)>0: try: ensembl_symbol_db[symbol].append(ei) except KeyError: ensembl_symbol_db[symbol] =[ei] ensembl_gene_db[ens_geneid] = ei primary_gene_annotation_export = 'AltDatabase/'+species +'/'+ array_type +'/'+ array_type+ '_gene_annotations.txt' ens_match=0; sym_match=0; ensembl_associations={}; gene_annotation_db={}; missing_count=0 ### We want to maximize accurate gene-transcript associations (given the poor state of annotations provided by Affymetrix in these files) for transcript_cluster_id in tc_ensembl_annotations: ti = tc_ensembl_annotations[transcript_cluster_id] try: ens_transcripts = ti.EnsemblTranscripts() except Exception: ens_transcripts = [] ens_geneids={}; ens_geneid_ls=[] for gene in ti.EnsemblGeneIDs(): if gene in ens_translation_db and gene not in ensembl_gene_db: ### This is the old lift over method where an old Ens in the annotation file is translated to a more recent ID gene = ens_translation_db[gene] ### translate the old to new Ensembl if gene in ensembl_gene_db: try: ens_geneids[gene]+=1 except Exception: ens_geneids[gene]=1 ens_match+=1 if len(ti.EnsemblGeneIDs())>0: for transcript in ens_transcripts: try: gene = ens_trans_gene_db[transcript] try: ens_geneids[gene]+=1 except Exception: ens_geneids[gene]=1 ens_match+=1 except Exception: pass #if transcript_cluster_id == 'TC01000626.hg.1': #print ti.EnsemblGeneIDs(), ti.EnsemblTranscripts(); sys.exit() if transcript_cluster_id in ens_translation_db: gene = ens_translation_db[transcript_cluster_id] ### translate the TC to new Ensembl if gene in ensembl_gene_db: try: ens_geneids[gene]+=1 except Exception: ens_geneids[gene]=1 ens_match+=1 for symbol in ti.Symbol(): if symbol in ensembl_symbol_db: for ei in ensembl_symbol_db[symbol]: #print [symbol, ei.GeneID(),ti.Chromosome()]; sys.exit() #print [ei.Chromosome(),ti.Chromosome(),ei.Strand(),ti.Strand()];kill if ti.Chromosome() != 'not-assinged': ### Valid for HJAY and MJAY arrays if ei.Chromosome() == ti.Chromosome() and ei.Strand() == ti.Strand(): try: ens_geneids[ei.GeneID()]+=1 except Exception: ens_geneids[ei.GeneID()]=1 sym_match+=1 else: ### Valid for GLU arrays (since Affymetrix decided to change the file formats and content!!!) try: ens_geneids[ei.GeneID()]+=1 except Exception: ens_geneids[ei.GeneID()]=1 sym_match+=1 for gene in ens_geneids: ens_geneid_ls.append([ens_geneids[gene],gene]) ### Rank these to get Ensembls that have symbol and ID evidence where possible ens_geneid_ls.sort(); ens_geneid_ls.reverse() if len(ens_geneid_ls)>0: ens_geneid = ens_geneid_ls[0][1] ### Best evidence gene association try: ensembl_associations[transcript_cluster_id].append(ens_geneid) except KeyError: ensembl_associations[transcript_cluster_id] = [ens_geneid] ei = ensembl_gene_db[ens_geneid] gene_annotation_db[transcript_cluster_id]=[ei.Description(),ens_geneid,ei.Symbol(),''] else: missing_count+=1 #if missing_count<20: print transcript_cluster_id,ti.EnsemblGeneIDs(),ti.Symbol() if 'HTA' in specific_array_type or 'MTA' in specific_array_type: ### Add TCs based on genomic overlap positions with Ensembl genes coordinates_to_annotate={}; added_genes=0 for transcript_cluster_id in tc_ensembl_annotations: ti = tc_ensembl_annotations[transcript_cluster_id] if ti.Strand() == '-1': strand = '-' else: strand = '+' try: coordinates_to_annotate[ti.Chromosome(),strand].append([(ti.Start(),ti.End()),ti]) except Exception: coordinates_to_annotate[ti.Chromosome(),strand] = [[(ti.Start(),ti.End()),ti]] import RNASeq limit = 0 RNASeq.alignCoordinatesToGeneExternal(species,coordinates_to_annotate) for transcript_cluster_id in tc_ensembl_annotations: ti = tc_ensembl_annotations[transcript_cluster_id] if transcript_cluster_id not in gene_annotation_db: try: if 'ENSG' in ti.GeneID() or 'ENSMUSG' in ti.GeneID(): gene_annotation_db[transcript_cluster_id]=['',ti.GeneID(),ti.Symbol()[0],''] try: ensembl_associations[transcript_cluster_id].append(ti.GeneID()) except KeyError: ensembl_associations[transcript_cluster_id] = [ti.GeneID()] added_genes+=1 except Exception: if limit < 0:# set to 20 - missing are typically retired Ensembl IDs print transcript_cluster_id limit+=1 else: try: if 'ENSG' in ti.GeneID() or 'ENSMUSG' in ti.GeneID(): added_genes+=1 except Exception: pass print added_genes exportDB(primary_gene_annotation_export,gene_annotation_db) ensembl_associations = eliminate_redundant_dict_values(ensembl_associations) print ens_match, 'direct Ensembl-Ensembl gene mapping and', sym_match, 'indirect Symbol-chromosome mapping' print len(tc_ensembl_annotations)-len(ensembl_associations),'unmapped transcript clusters' print len(gene_annotation_db), 'transcripts with associated valid Ensembl gene IDs'#; sys.exit() """ u=0 ### print transcript clusters without gene IDs for i in tc_ensembl_annotations: if i not in ensembl_associations: if u<15: print i, tc_ensembl_annotations[i].EnsemblGeneID(); u+=1 """ exportArrayIDEnsemblAssociations(ensembl_associations,species,array_type) ###Use these For LinkEST program return ensembl_associations def pickShortestExonIDDiff(exon_to_exon): if '|' in exon_to_exon: delim = '|' else: delim = '///' if delim not in exon_to_exon: try: five_exon,three_exon=string.split(exon_to_exon,'_to_') except Exception: print [exon_to_exon];sys.exit() return five_exon,three_exon else: exon_comps = string.split(exon_to_exon,delim); diff_list=[] for exon_comp in exon_comps: five_exon,three_exon=string.split(exon_comp,'_to_') try: diff=abs(int(five_exon[5:])-int(three_exon[5:])) except Exception: diff=abs(int(five_exon[4:-3])-int(three_exon[4:-3])) #hta diff_list.append((diff,[five_exon,three_exon])) diff_list.sort() return diff_list[0][1] def importJunctionArrayAnnotationMappings(array_type,specific_array_type,species,extraction_type): print 'Importing junction array sequence mapping' export_dir = 'AltDatabase/'+species+'/'+array_type+'/' filename = export_dir+string.lower(species[0])+'jay.r2.annotation_map' if 'lue' in specific_array_type: ### Grab an hGlue specific annotation file filename = export_dir+string.lower(species[0])+'Glue_3_0_v1.annotation_map_dt.v3.hg18.csv' elif 'HTA' in specific_array_type: try: psr_probeset_db = importGenericReverse(export_dir+'probeset-psr.txt') except Exception: psr_probeset_db = importGenericReverse(export_dir+species+'_probeset-psr.txt') if extraction_type == 'Ensembl': filename = export_dir+'HTA-2_0.na33.hg19.transcript.csv' type = 'TranscriptCluster' else: filename = export_dir+'HTA-2_0.na33.hg19.probeset.csv' #filename = export_dir+'test.csv' elif 'MTA' in specific_array_type: try: psr_probeset_db = importGenericReverse(export_dir+'probeset-psr.txt') except Exception: psr_probeset_db = importGenericReverse(export_dir+species+'_probeset-psr.txt') if extraction_type == 'Ensembl': filename = export_dir+'MTA-1_0.na35.mm10.transcript.csv' type = 'TranscriptCluster' else: filename = export_dir+'MTA-1_0.na35.mm10.probeset.csv' #filename = export_dir+'test.csv' verifyFile(filename,array_type) ### Check's to see if it is installed and if not, downloads or throws an error fn=filepath(filename) if extraction_type == 'sequence': probeset_junctionseq_export = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical-junction-seq.txt' fn2=filepath(probeset_junctionseq_export); dw = open(fn2,'w'); print "Exporting",probeset_junctionseq_export probeset_translation_db={}; x=0; tc=0; j=0; p=0; k=0; tc_db=(); transcript_cluster_count={}; transcript_cluster_count2={} global probeset_db; global junction_comp_db; junction_comp_db={}; global junction_alinging_probesets ps_db={}; jc_db={}; left_ec={}; right_ec={}; psr_ec={}; probeset_db={}; junction_alinging_probesets={}; nonconstitutive_junctions={} header_row = True; ct=0; probeset_types = {} for line in open(fn,'r').xreadlines(): #if 'PSR170003198' in line: if '.csv' in filename: data = altCleanUpLine(line) if '"' in data : t = string.split(data,'"') new_string = t[0] for i in t[1:-1]: if len(i)>1: if ',' in i[1:-1]: ### can have legitimate commas on the outsides i = string.replace(i,",",'|') new_string+=i new_string+=t[-1] t = string.split(new_string[:-1],',') else: t = string.split(data,',') else: data = cleanUpLine(line) t = string.split(data,'\t') if x<5 or '#' == data[0]: x+=1 elif x>2: if 'HTA' in specific_array_type or 'MTA' in specific_array_type: if extraction_type != 'Ensembl': type = 'PSR' ### This is the probeset file which has a different structure and up-to-date genomic coordinates (as of hg19) if header_row: psr_index = t.index('probeset_id'); si = t.index('strand'); sqi = t.index('seqname') starti = t.index('start'); endi = t.index('stop') if type == 'TranscriptCluster': ai = t.index('mrna_assignment'); gi = t.index('gene_assignment') else: pti = t.index('probeset_type'); jse = t.index('junction_start_edge'); jee = t.index('junction_stop_edge') jsi = t.index('junction_sequence'); tci = t.index('transcript_cluster_id'); xi = t.index('exon_id') csi = t.index('constituitive') header_row = False else: #probeset_type = t[pti] #try: probeset_types[probeset_type]+=1 #except Exception: probeset_types[probeset_type]=1 #if probeset_type == 'main': psr = t[psr_index] try: probeset = psr_probeset_db[psr] except Exception: probeset = psr if type == 'TranscriptCluster': transcript_annotation = t[ai]; gene_annotation = t[gi] chr = t[sqi] strand = t[si] symbols=[]; ens_transcripts = []; geneids=[] gene_annotation = string.split(gene_annotation,' /// ') for ga in gene_annotation: try: ga = string.split(ga,' // '); symbols = ga[1] except Exception: pass if 'ENSG' in transcript_annotation or 'ENSMUSG' in transcript_annotation: if 'ENSG' in transcript_annotation: delim = 'ENSG' if 'ENSMUSG' in transcript_annotation: delim = 'ENSMUSG' try: ta = string.split(transcript_annotation,delim)[1] try: ta = string.split(ta,' ')[0] except Exception: pass geneids=delim+ta except Exception: pass if 'ENST' in transcript_annotation or 'ENSMUST' in transcript_annotation: if 'ENST' in transcript_annotation: delim = 'ENST' if 'ENSMUST' in transcript_annotation: delim = 'ENSMUST' try: gene_annotation = string.split(transcript_annotation,delim)[1] try: gene_annotation = string.split(gene_annotation,' ')[0] except Exception: pass ens_transcripts = [delim+gene_annotation] except Exception: pass #if probeset == 'TC04000084.hg.1': #print transcript_annotation;sys.exit() #print probeset, strand, geneids, ens_transcripts, symbols probeset = probeset[:-2] # remove the .1 or .0 at the end - doesn't match to the probeset annotations psri = PSRAnnotation(psr,probeset,'',probeset,strand,geneids,symbols,'','','',type) psri.setChromosome(chr) try: psri.setStart(int(t[starti])) except Exception: continue psri.setEnd(int(t[endi])) psri.setTranscripts(ens_transcripts) elif 'JUC' in psr: type = 'Junction' exon_cluster = string.split(string.split(t[xi],'///')[0],'_to_') ### grab the first exonIDs constitutive = t[csi] transcript_cluster = string.split(t[tci],'///')[0] chr = t[sqi]; strand = t[si] if constitutive == 'Non-Constituitive': nonconstitutive_junctions[probeset]=[] try: five_exon,three_exon = pickShortestExonIDDiff(t[xi]) except Exception: five_exon,three_exon = exon_cluster five_EC,three_EC = five_exon,three_exon ### NOT SURE THIS IS CORRECT junction_alinging_probesets[probeset] = [five_exon,five_exon], [three_exon,three_exon] seq = t[jsi] seq = string.lower(string.replace(seq,'|','')) psri = PSRAnnotation(psr,probeset,'',transcript_cluster,strand,'','',exon_cluster,constitutive,seq,type) try: junction_start = int(t[jse]); junction_end = int(t[jee]) except Exception: print t;sys.exit() if '-' in strand: junction_start, junction_end = junction_end,junction_start exon1s = junction_start-16; exon1e = junction_start exon2s = junction_end; exon2e = junction_end+16 if '-' in strand: junction_start, junction_end = junction_end,junction_start exon1s = junction_start+16; exon1e = junction_start exon2s = junction_end; exon2e = junction_end-16 psri.setTranscriptClusterID(transcript_cluster) psri.setChromosome(chr) #print chr, transcript_cluster, exon1s, exon2s, seq, five_EC, three_EC;sys.exit() elif 'PSR' in psr: type = 'Exon' exon_cluster = string.split(t[xi],'///')[0] ### grab the first exonIDs constitutive = t[csi] transcript_cluster = string.split(t[tci],'///')[0] chr = t[sqi]; strand = t[si] if constitutive == 'Non-Constituitive': nonconstitutive_junctions[probeset]=[] five_EC,three_EC = five_exon,three_exon ### NOT SURE THIS IS CORRECT psri = PSRAnnotation(psr,probeset,'',transcript_cluster,strand,'','',exon_cluster,constitutive,'',type) exon_start = int(t[starti]); exon_end = int(t[endi]) if '-' in strand: exon_start, exon_end = exon_end,exon_start psri.setTranscriptClusterID(transcript_cluster) psri.setChromosome(chr) elif len(t)==15: ###Transcript Cluster ID Lines probeset, probeset_name, ucsclink, transcript_cluster, genome_pos, strand, transcripts, geneids, symbols, descriptions, TR_count, JUC_count, PSR_count, EXs_count, ECs_count = t type = 'TranscriptCluster'; seq=''; exon_cluster=''; constitutive='' if '|' in geneids: geneids = string.replace(geneids,'|',',') if '|' in symbols: symbols = string.replace(symbols,'|',',') psri = PSRAnnotation(probeset_name,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_cluster,constitutive,seq,type) elif 'TC' in t[0]: ###Transcript ID Lines - Glue array probeset, probeset_name, ucsclink, transcript_cluster, genome_pos, strand, transcripts, geneids, symbols, descriptions, TR_count, JUC_count, PSR_count, EXs_count, ECs_count = t[:15] type = 'TranscriptCluster'; seq=''; exon_cluster=''; constitutive=''; ucsclink = '' if '|' in geneids: geneids = string.replace(geneids,'|',',') if '|' in symbols: symbols = string.replace(symbols,'|',',') psri = PSRAnnotation(probeset_name,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_cluster,constitutive,seq,type) elif len(t)==28:###Junction ID Lines probeset, probeset_name, ucsclink, transcript_cluster, genome_pos, strand, transcripts, geneids, symbols, descriptions, TR_count, JUC_count, PSR_count, EXs_count, ECs_count, junction_number, original_seq, exon_to_exon, observed_speculative, strand, five_PSR, three_PSR, five_EC, three_EC, Rel_5EC, Rel_3EC, constitutive, blat_junction = t type = 'Junction'; exon_cluster = [five_EC,three_EC] if constitutive == 'alternative': nonconstitutive_junctions[probeset]=[] five_exon,three_exon = pickShortestExonIDDiff(exon_to_exon) junction_alinging_probesets[probeset] = [five_PSR,five_exon], [three_PSR,three_exon]; seq = blat_junction psri = PSRAnnotation(probeset_name,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_cluster,constitutive,seq,type) elif len(t)==31 and len(t[29])>0: ###Junction ID Lines - Glue array probeset, probeset_name, ucsclink, transcript_cluster, genome_pos, strand, transcripts, geneids, symbols, descriptions, TR_count, JUC_count, PSR_count, EXs_count, ECs_count, original_seq, genomic_position, exon_to_exon, observed_speculative, exon_cluster, constitutive, five_PSR, tr_hits, three_PSR, percent_tr_hits, five_EC, loc_5_3, three_EC, Rel_5EC, Rel_3EC, blat_junction = t if '|' in geneids: geneids = string.replace(geneids,'|',',') if '|' in symbols: symbols = string.replace(symbols,'|',',') type = 'Junction'; exon_cluster = [five_EC,three_EC]; ucsclink = '' if constitutive == 'alternative': nonconstitutive_junctions[probeset]=[] five_exon,three_exon = pickShortestExonIDDiff(exon_to_exon) junction_alinging_probesets[probeset] = [five_PSR,five_exon], [three_PSR,three_exon]; seq = blat_junction psri = PSRAnnotation(probeset_name,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_cluster,constitutive,seq,type) elif len(t)==24: ###Probeset ID Lines probeset, probeset_name, ucsclink, transcript_cluster, genome_pos, strand, transcripts, geneids, symbols, descriptions, TR_count, JUC_count, PSR_count, EXs_count, ECs_count, PSR_region, genome_pos2, strand, exon_cluster, constitutive, TR_hits, percent_TR_hits, location_5to3_percent,seq = t type = 'Exon' psri = PSRAnnotation(probeset_name,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_cluster,constitutive,seq,type) elif len(t)==31 and len(t[29])== 0:##Probeset ID Lines - Glue array probeset, probeset_name, ucsclink, transcript_cluster, genome_pos, strand, transcripts, geneids, symbols, descriptions, TR_count, JUC_count, PSR_count, EXs_count, ECs_count, original_seq, genomic_position, exon_to_exon, observed_speculative, exon_cluster, constitutive, five_PSR, tr_hits, three_PSR, percent_tr_hits, five_EC, loc_5_3, three_EC, Rel_5EC, Rel_3EC, seq = t if '|' in geneids: geneids = string.replace(geneids,'|',',') if '|' in symbols: symbols = string.replace(symbols,'|',',') type = 'Exon'; ucsclink = '' psri = PSRAnnotation(probeset_name,probeset,ucsclink,transcript_cluster,strand,geneids,symbols,exon_cluster,constitutive,seq,type) else: #if k<40 and len(t)>5: print len(t),t; k+=1 type = 'null' #print len(t),data;sys.exit() ### Exon clusters are equivalent to exon blocks in this schema and can be matched between junctions and exons #if x < 20: print len(t),t[0],type store = 'yes' if extraction_type == 'Ensembl': if type != 'TranscriptCluster': store = 'no' elif extraction_type == 'sequence': store = 'no' if type == 'Exon' or type == 'Junction': transcript_cluster_count[psri.TranscriptCluster()]=[] if psri.TranscriptCluster() in ensembl_associations: ens_geneid = ensembl_associations[psri.TranscriptCluster()][0] critical_junctions='' if type == 'Junction': dw.write(probeset+'\t'+psri.JunctionSequence()+'\t\t\n') seq = psri.JunctionSequences()[0]; exon_id = probeset+'|5' seq_data = ExonSeqData(exon_id,psri.TranscriptCluster(),psri.TranscriptCluster()+':'+exon_id,critical_junctions,seq) try: probeset_db[ens_geneid].append(seq_data) except Exception: probeset_db[ens_geneid] = [seq_data] try: seq_data.setExonStart(exon1s); seq_data.setExonStop(exon1e) ### HTA except Exception: pass seq = psri.JunctionSequences()[1]; exon_id = probeset+'|3' seq_data = ExonSeqData(exon_id,psri.TranscriptCluster(),psri.TranscriptCluster()+':'+exon_id,critical_junctions,seq) try: seq_data.setExonStart(exon2s); seq_data.setExonStop(exon2e) ### HTA except Exception: pass try: probeset_db[ens_geneid].append(seq_data) except Exception: probeset_db[ens_geneid] = [seq_data] transcript_cluster_count2[psri.TranscriptCluster()]=[] elif type == 'Exon': dw.write(probeset+'\t'+psri.Sequence()+'\t\t\n') seq = psri.Sequence(); exon_id = probeset seq_data = ExonSeqData(exon_id,psri.TranscriptCluster(),psri.TranscriptCluster()+':'+exon_id,critical_junctions,seq) try: seq_data.setExonStart(exon_start); seq_data.setExonStop(exon_end) ### HTA except Exception: pass try: probeset_db[ens_geneid].append(seq_data) except Exception: probeset_db[ens_geneid] = [seq_data] transcript_cluster_count2[psri.TranscriptCluster()]=[] if store == 'yes': #if probeset in probeset_db: print probeset; sys.exit() try: probeset_db[probeset] = psri except Exception: null=[] if type == 'TranscriptCluster': tc+=1 if type == 'Junction': #print 'here';sys.exit() j+=1 if extraction_type == 'comparisons': ### Store the left exon-cluster and right exon-cluster for each junction try: left_ec[five_EC].append(probeset) except KeyError: left_ec[five_EC]=[probeset] try: right_ec[three_EC].append(probeset) except KeyError: right_ec[three_EC]=[probeset] if type == 'Exon': p+=1 if extraction_type == 'comparisons': try: psr_ec[exon_cluster].append(probeset) except KeyError: psr_ec[exon_cluster]=[probeset] """ print 'psid',psid; print 'probeset',probeset; print 'ucsclink',ucsclink print 'transcript_cluster',transcript_cluster; print 'transcripts',transcripts print 'geneids',geneids; print 'symbols',symbols; print 'seq',seq; kill""" x+=1 print 'TCs:',tc, 'Junctions:',j, 'Exons:',p, 'Total:',x; #sys.exit() #print 'JUC0900017373',probeset_db['JUC0900017373'].Sequence() #print 'JUC0900017385',probeset_db['JUC0900017385'].Sequence();kill if extraction_type == 'sequence': dw.close() print len(probeset_db),'Entries exported from Junction annotation file' return probeset_db if extraction_type == 'Ensembl': print len(probeset_db),'Entries exported from Junction annotation file' return probeset_db if extraction_type == 'comparisons': global junction_inclusion_db; global ensembl_exon_db; global exon_gene_db junction_inclusion_db = JunctionArrayEnsemblRules.reimportJunctionComps(species,array_type,'original') ensembl_exon_db,exon_gene_db = JunctionArrayEnsemblRules.importAndReformatEnsemblJunctionAnnotations(species,array_type,nonconstitutive_junctions) global failed_db; failed_db={} global passed_db; passed_db={} print len(junction_inclusion_db) identifyCompetitiveJunctions(right_ec,"3'") identifyCompetitiveJunctions(left_ec,"5'") print 'len(passed_db)',len(passed_db),'len(failed_db)',len(failed_db) print 'len(junction_inclusion_db)',len(junction_inclusion_db) exportUpdatedJunctionComps(species,array_type) def exportUpdatedJunctionComps(species,array_type,searchChr=None): db_version = unique.getCurrentGeneDatabaseVersion() ### Only need this since we are exporting to root_dir for RNASeq if array_type == 'RNASeq': species,root_dir=species else: root_dir = '' lines_exported=0 if searchChr !=None: probeset_junction_export = root_dir+'AltDatabase/'+db_version+'/'+ species + '/'+array_type+'/comps/'+ species + '_junction_comps_updated.'+searchChr+'.txt' else: probeset_junction_export = root_dir+'AltDatabase/'+db_version+'/'+ species + '/'+array_type+'/'+ species + '_junction_comps_updated.txt' if array_type == 'RNASeq': data,status = RNASeq.AppendOrWrite(probeset_junction_export) ### Creates a new file or appends if already existing (import is chromosome by chromosome) else: data = export.ExportFile(probeset_junction_export); status = 'not found' if array_type != 'RNASeq': print "Exporting",probeset_junction_export if status == 'not found': title = 'gene'+'\t'+'critical_exon'+'\t'+'exclusion_junction_region'+'\t'+'inclusion_junction_region'+'\t'+'exclusion_probeset'+'\t'+'inclusion_probeset'+'\t'+'data_source'+'\n' data.write(title) for i in junction_inclusion_db: critical_exons=[] for ji in junction_inclusion_db[i]: #value = string.join([ji.GeneID(),ji.CriticalExon(),ji.ExclusionJunction(),ji.InclusionJunction(),ji.ExclusionProbeset(),ji.InclusionProbeset(),ji.DataSource()],'\t')+'\n' ### Combine all critical exons for a probeset pair critical_exons.append(ji.CriticalExon()) critical_exons = unique.unique(critical_exons); critical_exons = string.join(critical_exons,'|'); ji.setCriticalExons(critical_exons); lines_exported+=1 data.write(ji.OutputLine()) data.close() if array_type != 'RNASeq': print lines_exported,'for',probeset_junction_export def identifyCompetitiveJunctions(exon_cluster_db,junction_type): """To identify critical exons (e.g., the alternatively spliced exon sequence for two alternative exon-junctions), this script: 1) Finds pairs of junctions that contain the same 5' or 3' exon-cluster (genomic overlapping transcript exons) 2) Determines which junction has exons that are closes in genomic space, between the pair of junctions (based on exon-cluster ID number or exon ID) 3) Selects the non-common exon and stores the junction sequence for that exon 4) Selects any exon probeset ID that is annotated as overlapping with the critical exon The greatest assumption with this method is that the critical exon is choosen based on the numerical ID in the exon-cluster or exon ID (when the exon-clusters between the two junctions are the same). For example looked at, this appears to be true (e.g., two exons that make up a junction have a difference of 1 in their ID), but this may not always be the case. Ideally, this method is more extensively tested by evaluating junction and exon sequences mapped to genomic coordinates and AltAnalyze exon block and region coordinates to verify the critical exon selection.""" passed=0; failed=0; already_added=0 if junction_type == "5'": index = 1 else: index = 0 for ec in exon_cluster_db: if len(exon_cluster_db[ec])>1: junction_comps={} ### Calculate all possible pairwise-junction comparisons for junction1 in exon_cluster_db[ec]: for junction2 in exon_cluster_db[ec]: if junction1 != junction2: temp = [junction1,junction2]; temp.sort(); junction_comps[tuple(temp)]=[] for (junction1,junction2) in junction_comps: store_data = 'no' if (junction1,junction2) in junction_inclusion_db or (junction2,junction1) in junction_inclusion_db: already_added+=1 elif junction1 in ensembl_exon_db and junction2 in ensembl_exon_db: ### Thus, these are mapped to the genome ed1 = ensembl_exon_db[junction1]; ed2 = ensembl_exon_db[junction2] ensembl_gene_id = ed1.GeneID() try: diff1 = ed1.JunctionDistance(); diff2 = ed2.JunctionDistance() except Exception: print junction1,junction2 psri1 = probeset_db[junction1] psri2 = probeset_db[junction2] print psri1.Probeset(), psri2.Probeset() kill ### Using the ranked exon-cluster IDs psri1 = probeset_db[junction1]; exon1a = psri1.ExternalExonClusterIDs()[0]; exon1b = psri1.ExternalExonClusterIDs()[-1] psri2 = probeset_db[junction2]; exon2a = psri2.ExternalExonClusterIDs()[0]; exon2b = psri2.ExternalExonClusterIDs()[-1] try: diffX1 = abs(int(exon1a[5:])-int(exon1b[5:])); diffX2 = abs(int(exon2a[5:])-int(exon2b[5:])) except Exception: diffX1 = abs(int(exon1a[4:-4])-int(exon1b[4:-4])); diffX2 = abs(int(exon2a[4:-4])-int(exon2b[4:-4])) junction1_exon_id = ed1.ExonID(); junction2_exon_id = ed2.ExonID() if diffX1==0 or diffX2==0: null=[] ### splicing occurs within a single exon-cluster elif diff1<diff2: ### Thus the first junction contains the critical exon #critical_exon_seq = psri1.JunctionSequences()[index] ### if left most exon in junction is common, then choose the most proximal right exon as critical incl_junction_probeset = junction1; excl_junction_probeset = junction2 incl_junction_id = junction1_exon_id; excl_junction_id = junction2_exon_id incl_exon_probeset,incl_exon_id = junction_alinging_probesets[junction1][index] store_data = 'yes' elif diff2<diff1: incl_junction_probeset = junction2; excl_junction_probeset = junction1 incl_junction_id = junction2_exon_id; excl_junction_id = junction1_exon_id incl_exon_probeset,incl_exon_id = junction_alinging_probesets[junction2][index] store_data = 'yes' if store_data == 'yes': critical_exon_id = string.split(incl_junction_id,'-')[index]; critical_exon_id = string.replace(critical_exon_id,'.','-') if incl_exon_probeset in ensembl_exon_db: if (excl_junction_probeset,incl_exon_probeset) in junction_inclusion_db or (incl_exon_probeset,excl_junction_probeset) in junction_inclusion_db: already_added+=1 else: critical_exon_id = ensembl_exon_db[incl_exon_probeset] ji=JunctionArrayEnsemblRules.JunctionInformation(ensembl_gene_id,critical_exon_id,excl_junction_id,critical_exon_id,excl_junction_probeset,incl_exon_probeset,'Affymetrix') try: junction_inclusion_db[excl_junction_probeset,incl_exon_probeset].append(ji) except Exception: junction_inclusion_db[excl_junction_probeset,incl_exon_probeset] = [ji] #value = string.join([ji.GeneID(),ji.CriticalExon(),ji.ExclusionJunction(),ji.InclusionJunction(),ji.ExclusionProbeset(),ji.InclusionProbeset(),ji.DataSource()],'\t')+'\n' #print ji.OutputLine();kill #print [[critical_exon_id,junction2,ed2.ExonID(), ed1.JunctionCoordinates(), ed2.JunctionCoordinates(), diff1,diff2]] passed+=1 passed_db[junction1,junction2]=[] ji=JunctionArrayEnsemblRules.JunctionInformation(ensembl_gene_id,critical_exon_id,excl_junction_id,incl_junction_id,excl_junction_probeset,incl_junction_probeset,'Affymetrix') #print ensembl_gene_id,critical_exon_id,excl_junction_id,incl_junction_id,excl_junction_probeset,incl_junction_probeset;kill #print [critical_exon_id,junction1,junction2,ed1.ExonID(),ed2.ExonID(), ed1.JunctionCoordinates(), ed2.JunctionCoordinates(), diff1,diff2] try: junction_inclusion_db[exclusion_junction,inclusion_junction].append(ji) except Exception: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset] = [ji] print 'already_added:',already_added,'passed:',passed,'failed:',failed def identifyJunctionComps(species,array_type,specific_array_type): ### At this point, probeset-to-exon-region associations are built for exon and junction probesets along with critical exons and reciprocol junctions ### Now, associate the reciprocol junctions/critical exons (Ensembl/UCSC based) with junction array probesets and export to junction Hs_junction_comps.txt JunctionArrayEnsemblRules.getJunctionComparisonsFromExport(species,array_type) ### Next, do this for reciprocal junctions predicted directly from Affymetrix's annotations extraction_type = 'comparisons' tc_ensembl_annotations = importJunctionArrayAnnotationMappings(array_type,specific_array_type,species,extraction_type) inferJunctionComps(species,array_type) def filterForCriticalExons(species,array_type): filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+array_type+'_probesets.txt' importForFiltering(species,array_type,filename,'exclude_junction_psrs') filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_probeset_microRNAs_any.txt' importForFiltering(species,array_type,filename,'include_critical_exon_ids') filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_probeset_microRNAs_multiple.txt' importForFiltering(species,array_type,filename,'include_critical_exon_ids') filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_domain_aligning_probesets.txt' importForFiltering(species,array_type,filename,'include_critical_exon_ids') filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_indirect_domain_aligning_probesets.txt' importForFiltering(species,array_type,filename,'include_critical_exon_ids') filename = 'AltDatabase/'+species+'/'+array_type+'/exon/probeset-protein-annotations-exoncomp.txt' importForFiltering(species,array_type,filename,'exclude_critical_exon_ids') filename = 'AltDatabase/'+species+'/'+array_type+'/exon/probeset-domain-annotations-exoncomp.txt' importForFiltering(species,array_type,filename,'exclude_critical_exon_ids') def importForFiltering(species,array_type,filename,export_type): fn=filepath(filename); dbase={}; x = 0 print 'Filtering:',filename dbase['filename'] = filename ###Import expression data (non-log space) for line in open(fn,'r').xreadlines(): data = cleanUpLine(line); splitup = 'no' if x == 0: x=1; dbase['title'] = line; x+=1 ###Grab expression values if x !=0: key = string.split(data,'\t')[0] if ':' in key: old_key = key key = string.split(key,':')[1] line = string.replace(line,old_key,key) if '|' in key: ### Get rid of |5 or |3 line = string.replace(line,key,key[:-2]) if export_type == 'exclude_critical_exon_ids': splitup = 'yes' if splitup == 'no': try: dbase[key].append(line) except Exception: dbase[key] = [line] #print len(dbase) filterExistingFiles(species,array_type,dbase,export_type) def importGenericAppend(filename,key_db): fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') key_db[t[0]] = t[1:] return key_db def importGenericReverse(filename): db={} fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') db[t[-1]] = t[0] return db def importGenericAppendDBList(filename,key_db): fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') try: key_db[t[0]].append(t[1]) except KeyError: key_db[t[0]] = [t[1]] return key_db def combineExonJunctionAnnotations(species,array_type): ###Currently used for RNASeq databases to minimize the number of files supplied to the user collapseSequenceFiles(species,array_type) overRideJunctionEntriesWithExons(species,array_type) collapseDomainAlignmentFiles(species,array_type,species+'_Ensembl_domain_aligning_probesets.txt') collapseDomainAlignmentFiles(species,array_type,species+'_Ensembl_indirect_domain_aligning_probesets.txt') def collapseDomainAlignmentFiles(species,array_type,filename): original_filename = 'AltDatabase/'+species+'/'+array_type+'/'+filename domain_db = importGenericAppendDBList(original_filename,{}) filename = 'AltDatabase/'+species+'/'+array_type+'/junction/'+filename domain_db = importGenericAppendDBList(filename,domain_db); del domain_db['Probeset'] header = 'Probeset\tInterPro-Description\n' exportGenericList(domain_db,original_filename,header) def exportGenericList(db,filename,header): data_export = export.ExportFile(filename) if len(header)>0: data_export.write(header) print 'Re-writing',filename for key in db: for i in db[key]: data_export.write(string.join([key]+[i],'\t')+'\n') data_export.close() def collapseSequenceFiles(species,array_type): original_filename = 'AltDatabase/'+species+'/'+array_type+'/SEQUENCE-protein-dbase_exoncomp.txt' seq_db = importGenericAppend(original_filename,{}) filename = 'AltDatabase/'+species+'/'+array_type+'/exon/SEQUENCE-protein-dbase_exoncomp.txt' try: seq_db = importGenericAppend(filename,seq_db) except Exception: print 'SEQUENCE-protein-dbase_exoncomp.txt - exon version not found' filename = 'AltDatabase/'+species+'/'+array_type+'/junction/SEQUENCE-protein-dbase_exoncomp.txt' try: seq_db = importGenericAppend(filename,seq_db) except Exception: print 'SEQUENCE-protein-dbase_exoncomp.txt - junction version not found' exportGeneric(seq_db,original_filename,[]) def exportGeneric(db,filename,header): data_export = export.ExportFile(filename) if len(header)>0: data_export.write(header) print 'Re-writing',filename for key in db: data_export.write(string.join([key]+db[key],'\t')+'\n') data_export.close() def overRideJunctionEntriesWithExons(species,array_type): filename1 = 'AltDatabase/'+species+'/'+array_type+'/exon/probeset-protein-annotations-exoncomp.txt' filename2 = 'AltDatabase/'+species+'/'+array_type+'/junction/probeset-protein-annotations-exoncomp.txt' overRideExistingEntries(filename1,filename2) filename1 = 'AltDatabase/'+species+'/'+array_type+'/exon/probeset-domain-annotations-exoncomp.txt' filename2 = 'AltDatabase/'+species+'/'+array_type+'/junction/probeset-domain-annotations-exoncomp.txt' overRideExistingEntries(filename1,filename2) def overRideExonEntriesWithJunctions(species,array_type): filename1 = 'AltDatabase/'+species+'/'+array_type+'/junction/'+species+'_Ensembl_domain_aligning_probesets.txt' filename2 = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_domain_aligning_probesets-filtered.txt' overRideExistingEntries(filename1,filename2) filename1 = 'AltDatabase/'+species+'/'+array_type+'/junction/'+species+'_Ensembl_indirect_domain_aligning_probesets.txt' filename2 = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_indirect_domain_aligning_probesets-filtered.txt' overRideExistingEntries(filename1,filename2) filename1 = 'AltDatabase/'+species+'/'+array_type+'/junction/probeset-protein-annotations-exoncomp.txt' filename2 = 'AltDatabase/'+species+'/'+array_type+'/exon/probeset-protein-annotations-exoncomp-filtered.txt' overRideExistingEntries(filename1,filename2) filename1 = 'AltDatabase/'+species+'/'+array_type+'/junction/probeset-domain-annotations-exoncomp.txt' filename2 = 'AltDatabase/'+species+'/'+array_type+'/exon/probeset-domain-annotations-exoncomp-filtered.txt' overRideExistingEntries(filename1,filename2) def overRideExistingEntries(file_include,file_exclude): ### Imports two files and over-rides entries in one with another ### These are the filtered entries to replace fn=filepath(file_include); dbase_include={}; x = 0 for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) key = string.split(data,'\t')[0] try: dbase_include[key].append(line) except Exception: dbase_include[key] = [line] x+=1 print x;title='' fn=filepath(file_exclude); dbase_exclude={}; x = 0 for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) if x == 0: x=1; title = line; x+=1 if x != 0: key = string.split(data,'\t')[0] try: dbase_exclude[key].append(line) except Exception: dbase_exclude[key] = [line] x+=1 print x count=0 for key in dbase_exclude: count+=1 print file_exclude, count count=0 for key in dbase_include: dbase_exclude[key] = dbase_include[key] count+=1 print file_exclude, count dbase_exclude = eliminate_redundant_dict_values(dbase_exclude) data_export = export.ExportFile(file_exclude) count=0 print 'Re-writing',file_exclude,'with junction aligned entries.' try: data_export.write(title) except Exception: null=[] ### Occurs when no alternative isoforms present for this genome for key in dbase_exclude: for line in dbase_exclude[key]: data_export.write(line); count+=1 data_export.close() print count def clearObjectsFromMemory(db_to_clear): db_keys={} for key in db_to_clear: db_keys[key]=[] for key in db_keys: try: del db_to_clear[key] except Exception: try: for i in key: del i ### For lists of tuples except Exception: del key ### For plain lists class JunctionInformationSimple: def __init__(self,critical_exon,excl_junction,incl_junction,excl_probeset,incl_probeset): self._critical_exon = critical_exon; self.excl_junction = excl_junction; self.incl_junction = incl_junction self.excl_probeset = excl_probeset; self.incl_probeset = incl_probeset #self.critical_exon_sets = string.split(critical_exon,'|') self.critical_exon_sets = [critical_exon] def CriticalExon(self): ce = str(self._critical_exon) if '-' in ce: ce = string.replace(ce,'-','.') return ce def CriticalExonList(self): critical_exon_str = self.CriticalExon() critical_exons = string.split(critical_exon_str,'|') return critical_exons def setCriticalExons(self,critical_exons): self._critical_exon = critical_exons def setCriticalExonSets(self,critical_exon_sets): self.critical_exon_sets = critical_exon_sets def setInclusionProbeset(self,incl_probeset): self.incl_probeset = incl_probeset def setInclusionJunction(self,incl_junction): self.incl_junction = incl_junction def CriticalExonSets(self): return self.critical_exon_sets ### list of critical exons (can select any or all for functional analysis) def InclusionJunction(self): return self.incl_junction def ExclusionJunction(self): return self.excl_junction def InclusionProbeset(self): return self.incl_probeset def ExclusionProbeset(self): return self.excl_probeset def setNovelEvent(self,novel_event): self._novel_event = novel_event def NovelEvent(self): return self._novel_event def setInclusionLookup(self,incl_junction_probeset): self.incl_junction_probeset = incl_junction_probeset def InclusionLookup(self): return self.incl_junction_probeset def __repr__(self): return self.GeneID() def getPutativeSpliceEvents(species,array_type,exon_db,agglomerate_inclusion_probesets,root_dir): alt_junction_db={}; critical_exon_db={}; critical_agglomerated={}; exon_inclusion_agglom={}; incl_junctions_agglom={}; exon_dbase={} exon_inclusion_db={}; comparisons=0 ### Previously, JunctionArrayEnsemblRules.reimportJunctionComps (see above) used for import---> too memory intensive if array_type == 'junction': root_dir='' filename = root_dir+'AltDatabase/' + species + '/'+array_type+'/'+ species + '_junction_comps_updated.txt' fn=filepath(filename); junction_inclusion_db={}; x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); junction_info=[] gene,critical_exon,excl_junction,incl_junction,excl_probeset,incl_probeset,source = string.split(data,'\t') if source == 'AltAnalyze': novel_exon = 'known' else: novel_exon = 'novel' """ if gene == 'ENSG00000140464': a=0; b=0 if excl_probeset in exon_db: a = 1 if incl_probeset in exon_db: b = 1 #print incl_probeset, a, b, excl_probeset, critical_exon """ try: null=exon_db[excl_probeset] ### Exclusion needs to be present if incl_probeset in exon_db: ji = JunctionInformationSimple(critical_exon,excl_junction,incl_junction,excl_probeset,incl_probeset) junction_info.append(ji) ji.setNovelEvent(novel_exon) ### Indicates known or novel splicing event #print [ji.InclusionProbeset(),ji.ExclusionProbeset()] if array_type == 'RNASeq': critical_exons = string.split(critical_exon,'|') for ce in critical_exons: critical_exon_probeset = gene+':'+ce ji=JunctionInformationSimple(ce,excl_junction,ce,excl_probeset,critical_exon_probeset) junction_info.append(ji); ji.setInclusionLookup(incl_probeset) ### Use this ID to get protein and domain annotations ji.setNovelEvent(novel_exon) ### Indicates known or novel splicing event """ if gene == 'ENSG00000140464' and ce == 'E5.2': a=0; b=0 if ji.ExclusionProbeset() in exon_db: a = 1 if ji.InclusionProbeset() in exon_db: b = 1 print [ji.InclusionProbeset()],a,b;kill """ #print [ji.InclusionProbeset(),ji.ExclusionProbeset()];kill for ji in junction_info: try: geneid=exon_db[ji.InclusionProbeset()].GeneID() ### This inclusion needs to be present if agglomerate_inclusion_probesets == 'yes': exclProbeset = ji.ExclusionProbeset(); inclProbeset = ji.InclusionProbeset() exon_inclusion_agglom[exclProbeset] = ji ### Just need one example try: critical_exon_db[exclProbeset].append(ji.CriticalExon()) except Exception: critical_exon_db[exclProbeset]=[ji.CriticalExon()] try: critical_agglomerated[exclProbeset]+=ji.CriticalExonList() except Exception: critical_agglomerated[exclProbeset]=ji.CriticalExonList() try: incl_junctions_agglom[exclProbeset].append(ji.InclusionJunction()) except Exception: incl_junctions_agglom[exclProbeset]=[ji.InclusionJunction()] try: exon_inclusion_db[exclProbeset].append(inclProbeset) except Exception: exon_inclusion_db[exclProbeset]=[inclProbeset] else: try: alt_junction_db[geneid].append(ji) except Exception: alt_junction_db[geneid] = [ji] comparisons+=1 except KeyError: null=[] except KeyError: null=[] #print comparisons, "Junction comparisons in database" if agglomerate_inclusion_probesets == 'yes': alt_junction_agglom={} for excl in exon_inclusion_db: ji = exon_inclusion_agglom[excl] ed = exon_db[ji.InclusionProbeset()]; ed1 = ed geneid = ed.GeneID() ### If two genes are present for trans-splicing, over-ride with the one in the database critical_exon_sets = unique.unique(critical_exon_db[excl]) incl_probesets = unique.unique(exon_inclusion_db[excl]) exon_inclusion_db[excl] = incl_probesets critical_exons = unique.unique(critical_agglomerated[excl]); critical_exons.sort() incl_junctions = unique.unique(incl_junctions_agglom[excl]); incl_junctions.sort() ji.setCriticalExons(string.join(critical_exons,'|')) ji.setInclusionJunction(string.join(incl_junctions,'|')) ji.setInclusionProbeset(string.join(incl_probesets,'|')) ji.setCriticalExonSets(critical_exon_sets) ed1.setProbeset(string.replace(incl_probesets[0],'@',':')) ### Actually needs to be the first entry to match of re-import of a filtered list for exon_db (full not abbreviated) #if '|' in ji.InclusionProbeset(): print ji.InclusionProbeset(), string.replace(incl_probesets[0],'@',':');sys.exit() #print string.join(incl_probesets,'|'),ji.InclusionProbeset();kill ### Create new agglomerated inclusion probeset entry #ed1.setProbeset(ji.InclusionProbeset()) ### Agglomerated probesets ed1.setDisplayExonID(string.join(incl_junctions,'|')) exon_db[ji.InclusionProbeset()] = ed1 ### Agglomerated probesets #if 'ENSMUSG00000032497:E23.1-E24.1' in ji.InclusionProbeset(): #print ji.InclusionProbeset();sys.exit() #if '198878' in ji.InclusionProbeset(): print ji.InclusionProbeset(),excl try: alt_junction_db[geneid].append(ji) except Exception: alt_junction_db[geneid] = [ji] del exon_inclusion_agglom critical_exon_db={} if array_type == 'RNASeq': ### Need to remove the @ from the IDs for e in exon_inclusion_db: incl_probesets=[] for i in exon_inclusion_db[e]: incl_probesets.append(string.replace(i,'@',':')) exon_inclusion_db[e] = incl_probesets #clearObjectsFromMemory(junction_inclusion_db); junction_inclusion_db=[] critical_agglomerated=[];exon_inclusion_agglom={}; incl_junctions_agglom={} """ Not used for junction or RNASeq platforms if array_type == 'AltMouse': for probeset in array_id_db: try: geneid = exon_db[probeset].GeneID() exons = exon_db[probeset].ExonID() exon_dbase[geneid,exons] = probeset except Exception: null=[] """ #print '--------------------------------------------' ### Eliminate redundant entries objects_to_delete=[] for geneid in alt_junction_db: junction_temp_db={}; junction_temp_ls=[] for ji in alt_junction_db[geneid]: ### Redundant entries can be present id = ji.ExclusionProbeset(),ji.InclusionProbeset() if id in junction_temp_db: objects_to_delete.append(ji) else: junction_temp_db[id]=ji for i in junction_temp_db: ji = junction_temp_db[i]; junction_temp_ls.append(ji) alt_junction_db[geneid]=junction_temp_ls """ for ji in alt_junction_db['ENSG00000140464']: print ji.ExclusionProbeset(), ji.InclusionProbeset(), ji.CriticalExon(), ji.ExclusionJunction(), ji.InclusionJunction() kill """ clearObjectsFromMemory(objects_to_delete); objects_to_delete=[] return alt_junction_db,critical_exon_db,exon_dbase,exon_inclusion_db,exon_db def getPutativeSpliceEventsOriginal(species,array_type,exon_db,agglomerate_inclusion_probesets,root_dir): junction_inclusion_db = JunctionArrayEnsemblRules.reimportJunctionComps((species,root_dir),array_type,'updated') alt_junction_db={}; critical_exon_db={}; critical_agglomerated={}; exon_inclusion_agglom={}; incl_junctions_agglom={}; exon_dbase={} exon_inclusion_db={}; comparisons=0 for i in junction_inclusion_db: critical_exons=[] for ji in junction_inclusion_db[i]: #ji.GeneID(),ji.CriticalExon(),ji.ExclusionJunction(),ji.InclusionJunction(),ji.ExclusionProbeset(),ji.InclusionProbeset(),ji.DataSource() if agglomerate_inclusion_probesets == 'yes': if ji.InclusionProbeset() in exon_db and ji.ExclusionProbeset() in exon_db: if array_type == 'RNASeq': exclProbeset = ji.ExclusionProbeset(); inclProbeset=JunctionArrayEnsemblRules.formatID(ji.InclusionProbeset()) else: exclProbeset = ji.ExclusionProbeset(); inclProbeset = ji.InclusionProbeset() exon_inclusion_agglom[exclProbeset] = ji ### Just need one example try: critical_exon_db[exclProbeset].append(ji.CriticalExon()) except Exception: critical_exon_db[exclProbeset]=[ji.CriticalExon()] try: critical_agglomerated[exclProbeset]+=ji.CriticalExonList() except Exception: critical_agglomerated[exclProbeset]=ji.CriticalExonList() try: incl_junctions_agglom[exclProbeset].append(ji.InclusionJunction()) except Exception: incl_junctions_agglom[exclProbeset]=[ji.InclusionJunction()] try: exon_inclusion_db[exclProbeset].append(inclProbeset) except Exception: exon_inclusion_db[exclProbeset]=[inclProbeset] else: try: geneid = exon_db[ji.InclusionProbeset()].GeneID() ### If two genes are present for trans-splicing, over-ride with the one in the database try: alt_junction_db[geneid].append(ji) except Exception: alt_junction_db[geneid] = [ji] comparisons+=1 except Exception: geneid = ji.GeneID() ### If not in the local user datasets (don't think these genes need to be added) #print comparisons, "Junction comparisons in database" if agglomerate_inclusion_probesets == 'yes': alt_junction_agglom={} for excl in exon_inclusion_db: ji = exon_inclusion_agglom[excl] ed = exon_db[ji.InclusionProbeset()]; ed1 = ed geneid = ed.GeneID() ### If two genes are present for trans-splicing, over-ride with the one in the database critical_exon_sets = unique.unique(critical_exon_db[excl]) incl_probesets = unique.unique(exon_inclusion_db[excl]) exon_inclusion_db[excl] = incl_probesets critical_exons = unique.unique(critical_agglomerated[excl]); critical_exons.sort() incl_junctions = unique.unique(incl_junctions_agglom[excl]); incl_junctions.sort() ji.setCriticalExons(string.join(critical_exons,'|')) ji.setInclusionJunction(string.join(incl_junctions,'|')) ji.setInclusionProbeset(string.join(incl_probesets,'|')) ji.setCriticalExonSets(critical_exon_sets) ed1.setProbeset(string.replace(incl_probesets[0],'@',':')) ### Actually needs to be the first entry to match of re-import of a filtered list for exon_db (full not abbreviated) #if '|' in ji.InclusionProbeset(): print ji.InclusionProbeset(), string.replace(incl_probesets[0],'@',':');sys.exit() #print string.join(incl_probesets,'|'),ji.InclusionProbeset();kill ### Create new agglomerated inclusion probeset entry #ed1.setProbeset(ji.InclusionProbeset()) ### Agglomerated probesets ed1.setDisplayExonID(string.join(incl_junctions,'|')) exon_db[ji.InclusionProbeset()] = ed1 ### Agglomerated probesets #if 'ENSMUSG00000032497:E23.1-E24.1' in ji.InclusionProbeset(): #print ji.InclusionProbeset();sys.exit() #if '198878' in ji.InclusionProbeset(): print ji.InclusionProbeset(),excl try: alt_junction_db[geneid].append(ji) except Exception: alt_junction_db[geneid] = [ji] del exon_inclusion_agglom critical_exon_db={} if array_type == 'RNASeq': ### Need to remove the @ from the IDs for e in exon_inclusion_db: incl_probesets=[] for i in exon_inclusion_db[e]: incl_probesets.append(string.replace(i,'@',':')) exon_inclusion_db[e] = incl_probesets ### Eliminate redundant entries objects_to_delete=[] for geneid in alt_junction_db: junction_temp_db={}; junction_temp_ls=[] for ji in alt_junction_db[geneid]: ### Redundant entries can be present id = ji.ExclusionProbeset(),ji.InclusionProbeset() if id in junction_temp_db: objects_to_delete.append(ji) else: junction_temp_db[id]=ji for i in junction_temp_db: ji = junction_temp_db[i]; junction_temp_ls.append(ji) alt_junction_db[geneid]=junction_temp_ls clearObjectsFromMemory(objects_to_delete); objects_to_delete=[] return alt_junction_db,critical_exon_db,exon_dbase,exon_inclusion_db,exon_db def filterExistingFiles(species,array_type,db,export_type): """Remove probesets entries (including 5' and 3' junction exons) from the database that don't indicate possible critical exons""" export_exon_filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+array_type+'_probesets.txt' ensembl_probeset_db = ExonArrayEnsemblRules.reimportEnsemblProbesetsForSeqExtraction(export_exon_filename,'probesets',{}) critical_junction_db = {}; critical_probeset_db={}; crit1={} junction_inclusion_db = JunctionArrayEnsemblRules.reimportJunctionComps(species,array_type,'updated') for ids in junction_inclusion_db: for jd in junction_inclusion_db[ids]: critical_exon_id = jd.ParentCriticalExon() critical_id = jd.GeneID()+':'+jd.CriticalExon() critical_exon_ids = string.split(critical_exon_id,'|') critical_junction_db[jd.ExclusionProbeset(),jd.InclusionProbeset()]=critical_exon_ids,critical_id crit1[critical_id]=[] """ for id in crit1: if 'ENSMUSG00000066842' in id: print id stop """ #print len(crit1); crit2={} for (pX,probeset) in critical_junction_db: ###Keep only junction probesets that contain possible critical exons p1 = probeset+'|5'; p2 = probeset+'|3' c1s,critical_id = critical_junction_db[(pX,probeset)]; proceed = 'no' #print p1, p2, c1s, critical_id #for probeset in db: print [probeset];kill if probeset in ensembl_probeset_db and probeset in db: critical_probeset_db[probeset,critical_id]=db[probeset] crit2[probeset]=[] else: if p1 in ensembl_probeset_db and p1 in db: c2s = ensembl_probeset_db[p1]; p = p1 c2s = string.split(c2s,'|') for c1 in c1s: if c1 in c2s: critical_probeset_db[p,critical_id]=db[p] crit2[probeset]=[] if p2 in ensembl_probeset_db and p2 in db: c2s = ensembl_probeset_db[p2]; p = p2 c2s = string.split(c2s,'|') for c1 in c1s: if c1 in c2s: critical_probeset_db[p,critical_id]=db[p] crit2[probeset]=[] for probeset in ensembl_probeset_db: ### For non-junction probesets if '|' not in probeset: if probeset in db: critical_probeset_db[probeset,probeset]=db[probeset]; crit2[probeset]=[] critical_probeset_db = eliminate_redundant_dict_values(critical_probeset_db) print len(crit2),'len(crit2)' x=0 """ for probeset in db: if probeset not in crit2: x+=1 if x<20: print probeset """ print len(critical_probeset_db),': length of filtered db', len(db), ': length of db' """ for probeset in ensembl_probeset_db: ###Keep only probesets that contain possible critical exons if '|' in probeset: if probeset[:-2] in critical_junction_db and probeset in db: critical_probeset_db[probeset[:-2]]=db[probeset] elif probeset in db: critical_probeset_db[probeset]=db[probeset] """ """ for id in critical_probeset_db: if 'ENSMUSG00000066842' in id[1]: print id stop """ if export_type == 'exclude_junction_psrs': critical_probeset_db['title'] = db['title'] critical_probeset_db['filename'] = db['filename'] exportFiltered(critical_probeset_db) else: for p in db: if '|' not in p: probeset = p else: probeset = p[:-2] if probeset not in crit2: ### Add back any junction probesets that do not have a critical exon component critical_probeset_db[probeset,probeset]=db[p] if export_type == 'exclude_critical_exon_ids': critical_probeset_db2={} for (p,cid) in critical_probeset_db: if ':' in cid or '|' in p: critical_probeset_db2[p[:-2],p[:-2]] = critical_probeset_db[(p,cid)] else: critical_probeset_db2[p,p] = critical_probeset_db[(p,cid)] critical_probeset_db = critical_probeset_db2 critical_probeset_db['title'] = db['title'] critical_probeset_db['filename'] = db['filename'] exportFiltered(critical_probeset_db) ########### Code originally designed for AltMouseA array database builds (adapted for use with Mouse and Human Junction Arrays) def filterExpressionData(filename1,filename2,pre_filtered_db,constitutive_db): fn2=filepath(filename2) probeset_translation_db={} ###Import probeset number/id relationships (note: forced to use numeric IDs for Plier/Exact analysis) if analysis_method != 'rma': for line in open(fn2,'r').xreadlines(): data = cleanUpLine(line) probeset_number,probeset_id = string.split(data,'\t') probeset_translation_db[probeset_number]=probeset_id fn=filepath(filename1) exp_dbase={}; d = 0; x = 0 ###Import expression data (non-log space) try: for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) if data[0] != '#' and x == 1: ###Grab expression values tab_delimited_data = string.split(data,'\t') z = len(tab_delimited_data) probeset = tab_delimited_data[0] if analysis_method == 'rma': exp_vals = tab_delimited_data[1:] else: exp_vals = convertToLog2(tab_delimited_data[1:]) ###Filter results based on whether a sufficient number of samples where detected as Present if probeset in pre_filtered_db: if probeset in probeset_translation_db: original_probeset_id = probeset_translation_db[probeset] else: original_probeset_id = probeset ###When p-values are generated outside of Plier if original_probeset_id in constitutive_db: percent_present = pre_filtered_db[probeset] if percent_present > 0.99: exp_dbase[original_probeset_id] = exp_vals #else: print percent_present,original_probeset_id; kill else: exp_dbase[original_probeset_id] = exp_vals elif data[0] != '#' and x == 0: ###Grab labels array_names = [] tab_delimited_data = string.split(data,'\t') for entry in tab_delimited_data: array_names.append(entry) x += 1 except IOError: exp_dbase = exp_dbase print len(exp_dbase),"probesets imported with expression values" ###If the arrayid column header is missing, account for this if len(array_names) == z: array_names = array_names[1:] null,filename = string.split(filename1,'\\') filtered_exp_export = 'R_expression_raw_data\\'+filename[:-4]+'-filtered.txt' fn=filepath(filtered_exp_export); data = open(fn,'w'); title = 'probeset_id' for array in array_names: title = title +'\t'+ array data.write(title+'\n') for probeset in exp_dbase: exp_vals = probeset for exp_val in exp_dbase[probeset]: exp_vals = exp_vals +'\t'+ str(exp_val) data.write(exp_vals+'\n') data.close() #return filtered_exp_export def convertToLog2(data_list): new_list=[] for item in data_list: new_list.append(math.log(float(item)+1,2)) return new_list def getAnnotations(filename,p,Species,Analysis_Method,constitutive_db): global species; species = Species global analysis_method; analysis_method = Analysis_Method array_type = 'AltMouse' filtered_junctions_list = ExonArray.getFilteredExons(filename,p) probe_id_translation_file = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'-probeset_translation.txt' filtered_exp_export_file = filterExpressionData(filename,probe_id_translation_file,filtered_junctions_list,constitutive_db) return filtered_exp_export_file def altCleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') return data def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def importGeneric(filename): verifyFile(filename,None) fn=filepath(filename); key_db = {}; x = 0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if len(t[1:]) == 1: try: key_db[t[0]].append(t[1]) except KeyError: key_db[t[0]] = [t[1]] else: key_db[t[0]] = t[1:] return key_db def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def importAnnotateCriticalExonSequences(species,array_type): ensembl_associations = importArrayAnnotations(species,array_type) filename = 'AltDatabase/'+species+'/'+array_type+'/'+ array_type+'_critical-exon-seq.txt' critical_exon_seq_db = importCriticalExonSeq(filename,array_type,ensembl_associations) return critical_exon_seq_db def importArrayAnnotations(species,array_type): primary_gene_annotation_file = 'AltDatabase/'+species +'/'+ array_type +'/'+ array_type+ '_gene_annotations.txt' ensembl_array_gene_annotation_file = 'AltDatabase/'+species+'/'+ array_type + '/'+array_type+ '-Ensembl.txt' ensembl_annotations = 'AltDatabase/ensembl/'+ species + '/'+species+ '_Ensembl-annotations_simple.txt' verifyFile(primary_gene_annotation_file,array_type) verifyFile(ensembl_array_gene_annotation_file,array_type) verifyFile(ensembl_annotations,array_type) array_gene_annotations = importGeneric(primary_gene_annotation_file) ensembl_associations = importGeneric(ensembl_array_gene_annotation_file) ensembl_annotation_db = importGeneric(ensembl_annotations) ensembl_symbol_db={} for ens_geneid in ensembl_annotation_db: description, symbol = ensembl_annotation_db[ens_geneid] #print symbol;klll if len(symbol)>0: try: ensembl_symbol_db[symbol].append(ens_geneid) except KeyError: ensembl_symbol_db[symbol] =[ens_geneid] ### Update array Ensembl annotations for array_geneid in array_gene_annotations: t = array_gene_annotations[array_geneid]; description=t[0];entrez=t[1];symbol=t[2] if symbol in ensembl_symbol_db: ens_geneids = ensembl_symbol_db[symbol] for ens_geneid in ens_geneids: try: ensembl_associations[array_geneid].append(ens_geneid) except KeyError: ensembl_associations[array_geneid] = [ens_geneid] ensembl_associations = eliminate_redundant_dict_values(ensembl_associations) exportArrayIDEnsemblAssociations(ensembl_associations,species,array_type) ###Use these For LinkEST program return ensembl_associations def exportDB(filename,db): fn=filepath(filename); data = open(fn,'w') for key in db: try: values = string.join([key]+db[key],'\t')+'\n'; data.write(values) except Exception: print key,db[key];sys.exit() data.close() def exportFiltered(db): filename = db['filename']; title = db['title'] filename = string.replace(filename,'.txt','-filtered.txt') print 'Writing',filename del db['filename']; del db['title'] fn=filepath(filename); data = open(fn,'w'); data.write(title) for (old,new) in db: for line in db[(old,new)]: ### Replace the old ID with the new one if old not in line and '|' in old: old = old[:-2] if ('miR-'+new) in line: ### Occurs when the probeset is a number found in the miRNA name line = string.replace(line,'miR-'+new,'miR-'+old) line = string.replace(line,old,new); data.write(line) data.close() def exportArrayIDEnsemblAssociations(ensembl_associations,species,array_type): annotation_db_filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'-Ensembl_relationships.txt' fn=filepath(annotation_db_filename); data = open(fn,'w') title = ['ArrayGeneID','Ensembl']; title = string.join(title,'\t')+'\n' data.write(title) for array_geneid in ensembl_associations: for ens_geneid in ensembl_associations[array_geneid]: values = [array_geneid,ens_geneid]; values = string.join(values,'\t')+'\n'; data.write(values) data.close() def exportCriticalExonLocations(species,array_type,critical_exon_seq_db): location_db_filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical_exon_locations.txt' fn=filepath(location_db_filename); data = open(fn,'w') title = ['Affygene','ExonID','Ensembl','start','stop','gene-start','gene-stop','ExonSeq']; title = string.join(title,'\t')+'\n' data.write(title) for ens_geneid in critical_exon_seq_db: for cd in critical_exon_seq_db[ens_geneid]: try: values = [cd.ArrayGeneID(),cd.ExonID(),ens_geneid,cd.ExonStart(),cd.ExonStop(),cd.GeneStart(), cd.GeneStop(), cd.ExonSeq()] values = string.join(values,'\t')+'\n' data.write(values) except AttributeError: #print cd.ArrayGeneID(), cd.ExonID() #print cd.ExonStart(),cd.ExonStop(),cd.GeneStart(), cd.GeneStop(), cd.ExonSeq() #sys.exit() pass data.close() class ExonSeqData: def __init__(self,exon,array_geneid,probeset_id,critical_junctions,critical_exon_seq): self._exon = exon; self._array_geneid = array_geneid; self._critical_junctions = critical_junctions self._critical_exon_seq = critical_exon_seq; self._probeset_id = probeset_id def ProbesetID(self): return self._probeset_id def ArrayGeneID(self): return self._array_geneid def ExonID(self): return self._exon def CriticalJunctions(self): return self._critical_junctions def ExonSeq(self): return string.upper(self._critical_exon_seq) def setExonStart(self,exon_start): try: self._exon_start = self._exon_start ### If it already is set from the input file, keep it except Exception: self._exon_start = exon_start def setExonStop(self,exon_stop): try: self._exon_stop = self._exon_stop ### If it already is set from the input file, keep it except Exception: self._exon_stop = exon_stop def setGeneStart(self,gene_start): self._gene_start = gene_start def setGeneStop(self,gene_stop): self._gene_stop = gene_stop def ExonStart(self): return str(self._exon_start) def ExonStop(self): return str(self._exon_stop) def GeneStart(self): return str(self._gene_start) def GeneStop(self): return str(self._gene_stop) def importCriticalExonSeq(filename,array_type,ensembl_associations): verifyFile(filename,array_type) fn=filepath(filename); key_db = {}; x = 0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x = 1 else: arraygeneid_exon,critical_junctions,critical_exon_seq = string.split(data,'\t') if len(critical_exon_seq)>5: array_geneid, exon = string.split(arraygeneid_exon,':') if array_geneid in ensembl_associations: ens_geneids = ensembl_associations[array_geneid] for ens_geneid in ens_geneids: seq_data = ExonSeqData(exon,array_geneid,arraygeneid_exon,critical_junctions,critical_exon_seq) try: key_db[ens_geneid].append(seq_data) except KeyError: key_db[ens_geneid] = [seq_data] return key_db def updateCriticalExonSequences(array_type, filename,ensembl_probeset_db): exon_seq_db_filename = filename[:-4]+'_updated.txt' fn=filepath(exon_seq_db_filename); data = open(fn,'w') critical_exon_seq_db={} for ens_gene in ensembl_probeset_db: for probe_data in ensembl_probeset_db[ens_gene]: exon_id,((probe_start,probe_stop,probeset_id,exon_class,transcript_clust),ed) = probe_data try: critical_exon_seq_db[probeset_id] = ed.ExonSeq() except AttributeError: null=[] ### Occurs when no sequence data is associated with exon (probesets without exon associations) ensembl_probeset_db=[]; key_db = {}; x = 0 if array_type == 'AltMouse': fn1=filepath(filename) verifyFile(filename,array_type) for line in open(fn1,'rU').xreadlines(): line_data = cleanUpLine(line) if x == 0: x = 1; data.write(line) else: arraygeneid_exon,critical_junctions,critical_exon_seq = string.split(line_data,'\t') if arraygeneid_exon in critical_exon_seq_db: critical_exon_seq = critical_exon_seq_db[arraygeneid_exon] values = [arraygeneid_exon,critical_junctions,critical_exon_seq] values = string.join(values,'\t')+'\n' data.write(values) else: data.write(line) elif array_type == 'junction': ### We don't need any of the additional information used for AltMouse arrays for probeset in critical_exon_seq_db: critical_exon_seq = critical_exon_seq_db[probeset] if ':' in probeset: probeset = string.split(probeset,':')[1] values = [probeset,'',critical_exon_seq] values = string.join(values,'\t')+'\n' data.write(values) data.close() print exon_seq_db_filename, 'exported....' def inferJunctionComps(species,array_type,searchChr=None): if len(array_type) == 3: ### This indicates that the ensembl_probeset_db is already included array_type,ensembl_probeset_db,root_dir = array_type comps_type = '' else: export_exon_filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_probesets.txt' ensembl_probeset_db = ExonArrayEnsemblRules.reimportEnsemblProbesetsForSeqExtraction(export_exon_filename,'junction-regions',{}) comps_type = 'updated'; root_dir = '' if array_type != 'RNASeq': print "Import junction probeset region IDs for",species print "Preparing region IDs for analysis of possible reciprocal junctions" putative_as_junction_db={}; probeset_juntion_db={}; common_exon_blocks_exon={}; common_exon_blocks_intron={}; count=0 for gene in ensembl_probeset_db: for (probeset,regionid) in ensembl_probeset_db[gene]: regionids = string.split(regionid,'|') for regionid in regionids: if '-' in regionid: novel_5p=False; novel_3p=False if 'I' in regionid: exons_type = 'exon-intron' else: exons_type = 'exons' exon_5prime_original, exon_3prime_original = string.split(regionid,'-') exon_5prime = string.split(exon_5prime_original,'.') if '_' in exon_5prime[1]: exon_5prime[1] = float(string.replace(exon_5prime[1],'_','.')) novel_5p=True else: exon_5prime[1] = int(exon_5prime[1]) e1a3 = (int(exon_5prime[0][1:]),int(exon_5prime[1])) ### The first is an int for the region - since it hybs early e1a5 = (int(exon_5prime[0][1:]),exon_5prime[1]) e1 = e1a3, e1a5 exon_3prime = string.split(exon_3prime_original,'.') if '_' in exon_3prime[1]: exon_3prime[1] = float(string.replace(exon_3prime[1],'_','.')) novel_3p=True else: try: exon_3prime[1] = int(exon_3prime[1]) except Exception: print exon_3prime;kill e2a3 = (int(exon_3prime[0][1:]),exon_3prime[1]) e2a5 = (int(exon_3prime[0][1:]),int(exon_3prime[1])) ### The second is an int for the region - since it hybs late e2 = e2a3, e2a5 if exons_type == 'exons': if novel_5p and novel_3p: None ### Ignore junctions where both the 5' and 3' splice sites are novel -> like false positives ### If you include these with novel junction discovery in TopHat, you can get a huge memory issue in compareJunctions else: count+=1 try: putative_as_junction_db[gene].append((e1,e2)) except Exception: putative_as_junction_db[gene] = [(e1,e2)] ### This matches the recorded junction ID from EnsemblImport.compareJunctions() try: probeset_juntion_db[gene,(e1a5,e2a3)].append(probeset) except Exception: probeset_juntion_db[gene,(e1a5,e2a3)] = [probeset] ### Defines exon-intron and exon-exon reciprical junctions based on shared exon blocks block = e1a3[0]; side = 'left' try: common_exon_blocks_exon[side,gene,block].append([regionid,probeset]) except KeyError: common_exon_blocks_exon[side,gene,block] = [[regionid,probeset]] block = e2a3[0]; side = 'right' try: common_exon_blocks_exon[side,gene,block].append([regionid,probeset]) except KeyError: common_exon_blocks_exon[side,gene,block] = [[regionid,probeset]] else: ### Defines exon-intron and exon-exon reciprical junctions based on shared exon blocks ### In 2.0.8 we expanded the search criterion here so that each side and exon-block are searched for matching junctions (needed for confirmatory novel exons) if 'I' in exon_5prime or 'I' in exon_5prime[0]: ### Can be a list with the first object being the exon annotation block = e2a3[0]; side = 'right'; critical_intron = exon_5prime_original alt_block = e1a3[0]; alt_side = 'left' else: block = e1a3[0]; side = 'left'; critical_intron = exon_3prime_original alt_block = e2a3[0]; alt_side = 'right' #if gene == 'ENSG00000112695': #print critical_intron,regionid,probeset, exon_5prime_original, exon_3prime_original, exon_5prime try: common_exon_blocks_intron[side,gene,block].append([regionid,probeset,critical_intron]) except KeyError: common_exon_blocks_intron[side,gene,block] = [[regionid,probeset,critical_intron]] ### Below added in 2.0.8 to accomidate for a broader comparison of reciprocol splice junctions try: common_exon_blocks_intron[alt_side,gene,alt_block].append([regionid,probeset,critical_intron]) except KeyError: common_exon_blocks_intron[alt_side,gene,alt_block] = [[regionid,probeset,critical_intron]] if array_type != 'RNASeq': print count, 'probed junctions being compared to identify putative reciprocal junction comparisons' critical_exon_db, critical_gene_junction_db = EnsemblImport.compareJunctions(species,putative_as_junction_db,{},rootdir=root_dir, searchChr=searchChr) if array_type != 'RNASeq': print len(critical_exon_db),'genes with alternative reciprocal junctions pairs found' global junction_inclusion_db; count=0; redundant=0; junction_annotations={}; critical_exon_annotations={} junction_inclusion_db = JunctionArrayEnsemblRules.reimportJunctionComps(species,array_type,(comps_type,ensembl_probeset_db)) for gene in critical_exon_db: for sd in critical_exon_db[gene]: junction_pairs = getJunctionPairs(sd.Junctions()) """ if len(junction_pairs)>1 and len(sd.CriticalExonRegion())>1: print .Junctions() print sd.CriticalExonRegion();kill""" for (junction1,junction2) in junction_pairs: critical_exon = sd.CriticalExonRegion() excl_junction,incl_junction = determineExclIncl(junction1,junction2,critical_exon) incl_junction_probeset = probeset_juntion_db[gene,incl_junction][0] excl_junction_probeset = probeset_juntion_db[gene,excl_junction][0] source = 'Inferred' incl_junction=formatJunctions(incl_junction) excl_junction=formatJunctions(excl_junction) critical_exon=string.replace(formatJunctions(critical_exon),'-','|'); count+=1 ji=JunctionArrayEnsemblRules.JunctionInformation(gene,critical_exon,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source) #if gene == 'ENSG00000112695':# and 'I' in critical_exon: #print critical_exon,'\t', incl_junction,'\t',excl_junction_probeset,'\t',incl_junction_probeset if (excl_junction_probeset,incl_junction_probeset) not in junction_inclusion_db: try: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset].append(ji) except KeyError: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset] = [ji] junction_str = string.join([excl_junction,incl_junction],'|') #splice_event_str = string.join(sd.SpliceType(),'|') try: junction_annotations[ji.InclusionProbeset()].append((junction_str,sd.SpliceType())) except KeyError: junction_annotations[ji.InclusionProbeset()] = [(junction_str,sd.SpliceType())] try: junction_annotations[ji.ExclusionProbeset()].append((junction_str,sd.SpliceType())) except KeyError: junction_annotations[ji.ExclusionProbeset()] = [(junction_str,sd.SpliceType())] critical_exons = string.split(critical_exon,'|') for critical_exon in critical_exons: try: critical_exon_annotations[gene+':'+critical_exon].append((junction_str,sd.SpliceType())) except KeyError: critical_exon_annotations[gene+':'+critical_exon] = [(junction_str,sd.SpliceType())] else: redundant+=1 if array_type != 'RNASeq': print count, 'Inferred junctions identified with',redundant, 'redundant.' ### Compare exon and intron blocks for intron alinging junctions junction_inclusion_db = annotateNovelIntronSplicingEvents(common_exon_blocks_intron,common_exon_blocks_exon,junction_inclusion_db) if len(root_dir)>0: exportUpdatedJunctionComps((species,root_dir),array_type,searchChr=searchChr) else: exportUpdatedJunctionComps(species,array_type) clearObjectsFromMemory(junction_inclusion_db); junction_inclusion_db=[] if array_type == 'RNASeq': ### return these annotations for RNASeq analyses return junction_annotations,critical_exon_annotations def annotateNovelIntronSplicingEvents(common_exon_blocks_intron,common_exon_blocks_exon,junction_inclusion_db): ### Add exon-intron, exon-exon reciprical junctions determined based on common block exon (same side of the junction) new_intron_events=0 for key in common_exon_blocks_intron: (side,gene,block) = key; source='Inferred-Intron' if key in common_exon_blocks_exon: for (excl_junction,excl_junction_probeset) in common_exon_blocks_exon[key]: for (incl_junction,incl_junction_probeset,critical_intron) in common_exon_blocks_intron[key]: #if gene == 'ENSG00000112695':# and 'E2.9-E3.1' in excl_junction_probeset: #print critical_intron,'\t', incl_junction,'\t',excl_junction_probeset,'\t',incl_junction_probeset,'\t',side,'\t',gene,block ji=JunctionArrayEnsemblRules.JunctionInformation(gene,critical_intron,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source) if (excl_junction_probeset,incl_junction_probeset) not in junction_inclusion_db: try: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset].append(ji) except Exception: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset] = [ji] new_intron_events+=1 #print new_intron_events, 'novel intron-splicing events added to database' """ ### While the below code seemed like a good idea, the current state of RNA-seq alignment tools produced a rediculous amount of intron-intron junctions (usually in the same intron) ### Without supporting data (e.g., other junctions bridging these intron junction to a validated exon), we must assume these juncitons are not associated with the alinging gene new_intron_events=0 ### Compare Intron blocks to each other for key in common_exon_blocks_intron: (side,gene,block) = key; source='Inferred-Intron' for (excl_junction,excl_junction_probeset,critical_intron1) in common_exon_blocks_intron[key]: for (incl_junction,incl_junction_probeset,critical_intron2) in common_exon_blocks_intron[key]: if (excl_junction,excl_junction_probeset) != (incl_junction,incl_junction_probeset): ### If comparing entries in the same list, don't compare an single entry to itself ji=JunctionArrayEnsemblRules.JunctionInformation(gene,critical_intron1+'|'+critical_intron2,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source) if (excl_junction_probeset,incl_junction_probeset) not in junction_inclusion_db and (incl_junction_probeset,excl_junction_probeset) not in junction_inclusion_db: try: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset].append(ji) except Exception: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset] = [ji] new_intron_events+=1 """ #print new_intron_events, 'novel intron-splicing events added to database' return junction_inclusion_db def determineExclIncl(junction1,junction2,critical_exons): #((3, 2), (6, 1)) for critical_exon in critical_exons: if critical_exon in junction1: incl_junction = junction1; excl_junction = junction2 if critical_exon in junction2: incl_junction = junction2; excl_junction = junction1 try: return excl_junction,incl_junction except Exception: print critical_exons print junction1 print junction2 print 'Warning... Unknown error. Contact AltAnalyze support for assistance.' sys.exit() def formatJunctions(junction): #((3, 2), (6, 1)) exons_to_join=[] for i in junction: exons_to_join.append('E'+str(i[0])+'.'+string.replace(str(i[1]),'.','_')) junction_str = string.join(exons_to_join,'-') return junction_str def getJunctionPairs(junctions): ### Although the pairs of junctions (exclusion 1st, inclusion 2nd) are given, need to separate out the pairs to report reciprical junctions # (((3, 2), (6, 1)), ((4, 2), (6, 1)), ((3, 2), (6, 1)), ((4, 2), (6, 1)))) count = 0; pairs=[]; pairs_db={} for junction in junctions: count +=1; pairs.append(junction) if count==2: pairs_db[tuple(pairs)]=[]; count = 0; pairs=[] return pairs_db def getJunctionExonLocations(species,array_type,specific_array_type): global ensembl_associations ensembl_associations = importJunctionArrayAnnotations(species,array_type,specific_array_type) extraction_type = 'sequence' exon_seq_db=importJunctionArrayAnnotationMappings(array_type,specific_array_type,species,extraction_type) if 'HTA' in specific_array_type or 'MTA' in specific_array_type: exportImportedProbesetLocations(species,array_type,exon_seq_db,ensembl_associations) getLocations(species,array_type,exon_seq_db) def exportImportedProbesetLocations(species,array_type,critical_exon_seq_db,ensembl_associations): location_db_filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical_exon_locations-original.txt' fn=filepath(location_db_filename); data = open(fn,'w') title = ['Affygene','ExonID','Ensembl','start','stop','gene-start','gene-stop','ExonSeq']; title = string.join(title,'\t')+'\n' data.write(title) for ens_geneid in critical_exon_seq_db: for cd in critical_exon_seq_db[ens_geneid]: try: values = [cd.ArrayGeneID(),cd.ExonID(),ens_geneid,cd.ExonStart(),cd.ExonStop(),cd.GeneStart(), cd.GeneStop(), cd.ExonSeq()] values = string.join(values,'\t')+'\n' data.write(values) except AttributeError: null = [] data.close() def identifyCriticalExonLocations(species,array_type): critical_exon_seq_db = importAnnotateCriticalExonSequences(species,array_type) getLocations(species,array_type,critical_exon_seq_db) def getLocations(species,array_type,critical_exon_seq_db): analysis_type = 'get_locations' dir = 'AltDatabase/'+species+'/SequenceData/chr/'+species; gene_seq_filename = dir+'_gene-seq-2000_flank.fa' critical_exon_seq_db = EnsemblImport.import_sequence_data(gene_seq_filename,critical_exon_seq_db,species,analysis_type) exportCriticalExonLocations(species,array_type,critical_exon_seq_db) def reAnnotateCriticalExonSequences(species,array_type): export_exon_filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+array_type+'_probesets.txt' ensembl_probeset_db = ExonArrayEnsemblRules.reimportEnsemblProbesetsForSeqExtraction(export_exon_filename,'null',{}) #analysis_type = 'get_sequence' analysis_type = ('region_only','get_sequence') ### Added after EnsMart65 dir = 'AltDatabase/'+species+'/SequenceData/chr/'+species; gene_seq_filename = dir+'_gene-seq-2000_flank.fa' ensembl_probeset_db = EnsemblImport.import_sequence_data(gene_seq_filename,ensembl_probeset_db,species,analysis_type) critical_exon_file = 'AltDatabase/'+species+'/'+ array_type + '/' + array_type+'_critical-exon-seq.txt' if array_type == 'AltMouse': verifyFile(critical_exon_file,array_type) updateCriticalExonSequences(array_type, critical_exon_file, ensembl_probeset_db) if __name__ == '__main__': """Module has methods for annotating Junction associated critical exon sequences with up-to-date genome coordinates and analysis options for junciton arrays from AnalyzeExpressionDatasets""" m = 'Mm'; h = 'Hs'; species = h; array_type = 'junction' ###In theory, could be another type of junction or combination array specific_array_type = 'hGlue' extraction_type = 'comparisons' filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_LiftOverEnsembl.txt' verifyFile(filename,array_type+'/'+specific_array_type);sys.exit() tc_ensembl_annotations = importJunctionArrayAnnotationMappings(array_type,specific_array_type,species,extraction_type); sys.exit() combineExonJunctionAnnotations(species,array_type);sys.exit() filterForCriticalExons(species,array_type) overRideExonEntriesWithJunctions(species,array_type);sys.exit() #inferJunctionComps(species,array_type); sys.exit() identifyJunctionComps(species,array_type,specific_array_type);sys.exit() filterForCriticalExons(species,array_type);sys.exit() reAnnotateCriticalExonSequences(species,array_type) #getJunctionExonLocations(species,array_type,specific_array_type) sys.exit() import_dir = '/AltDatabase/exon/'+species; expr_file_dir = 'R_expression_raw_data\exp.altmouse_es-eb.dabg.rma.txt' dagb_p = 1; Analysis_Method = 'rma' #identifyCriticalExonLocations(species,array_type) #JunctionArrayEnsemblRules.getAnnotations(species,array_type) ### Only needs to be run once, to update the original #reAnnotateCriticalExonSequences(species,array_type); sys.exit() #getAnnotations(expr_file_dir,dagb_p,Species,Analysis_Method)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/JunctionArray.py
JunctionArray.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import platform def filepath(filename): #fn = unique.filepath(filename) return filename def read_directory(sub_dir): dir_list = os.listdir(sub_dir) return dir_list def eliminate_redundant_dict_values(database): db1={} for key in database: ls = list(set(database[key])) ls.sort() db1[key] = ls return db1 class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance file_dir,file = getDirectoryFiles(self.data,str(search_term)) if len(file)<1: print search_term,'not found' return file_dir,file def getDirectoryFiles(import_dir, search_term): exact_file = ''; exact_file_dir='' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory import_dir = filepath(import_dir) for data in dir_list: #loop through each file in the directory to output results if (':' in import_dir) or ('/Users/' == import_dir[:7]) or ('Linux' in platform.system()): affy_data_dir = import_dir+'/'+data else: affy_data_dir = import_dir[1:]+'/'+data if search_term in affy_data_dir: exact_file_dir = affy_data_dir; exact_file = data return exact_file_dir,exact_file def makeUnique(item): db1={}; list1=[]; k=0 for i in item: try: db1[i]=[] except TypeError: db1[tuple(i)]=[]; k=1 for i in db1: if k==0: list1.append(i) else: list1.append(list(i)) list1.sort() return list1 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def importPGF(dir,species,filename): fn=filepath(filename); probe_db = {}; x=0 psr_file = dir+'/'+species+'/'+array_type+'/'+species+'_probeset-psr.txt' psr_file = string.replace(psr_file,'affymetrix/LibraryFiles/','') try: eo = open(filepath(psr_file),'w') except Exception: eo = open(filepath(psr_file[1:]),'w') for line in open(fn,'rU').xreadlines(): if line[0] != '#': data = cleanUpLine(line); x+=1 t = string.split(data,'\t') if len(t)==2 or len(t)==3: if len(t[0])>0: probeset = t[0]; type = t[1] eo.write(probeset+'\t'+t[-1]+'\n') ### Used for HTA array where we need to have PSR to probeset IDs else: try: probe = t[2] #if probeset == '10701621': print probe try: probe_db[probeset].append(probe) except KeyError: probe_db[probeset] = [probe] except Exception: null=[] eo.close() new_file = dir+'/'+species+'/'+array_type+'/'+species+'_probeset-probes.txt' new_file = string.replace(new_file,'affymetrix/LibraryFiles/','') headers = 'probeset\t' + 'probe\n'; n=0 try: data = open(filepath(new_file),'w') except Exception: data = open(filepath(new_file[1:]),'w') data.write(headers) for probeset in probe_db: for probe in probe_db[probeset]: data.write(probeset+'\t'+probe+'\n'); n+=1 data.close() print n, 'Entries exported for', new_file if __name__ == '__main__': skip_intro = 'yes' array_type = 'gene' #array_type = 'exon' #array_type = 'junction' array_type = 'gene' species = 'Mm' parent_dir = 'AltDatabase/'+species+'/'+array_type+'/library' parent_dir = '/AltDatabase/affymetrix/LibraryFiles' e = GrabFiles(); e.setdirectory(parent_dir) pgf_dir,pgf_file = e.searchdirectory('MoGene-2_0-st.pgf') importPGF(parent_dir,species,pgf_dir)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ParsePGF.py
ParsePGF.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This module contains methods for reading the HMDB and storing relationships""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import export import time import update; reload(update) from import_scripts import OBO_import import gene_associations import traceback ############# Common file handling routines ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv": dir_list2.append(entry) return dir_list2 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def lowerSymbolDB(source_to_gene): source_to_gene2={} for symbol in source_to_gene: source_to_gene2[string.lower(symbol)]=source_to_gene[symbol] return source_to_gene2 def verifyFile(filename): fn=filepath(filename); file_found = 'yes' try: for line in open(fn,'rU').xreadlines():break except Exception: file_found = 'no' return file_found def importSpeciesData(): if program_type == 'GO-Elite': filename = 'Config/species_all.txt' ### species.txt can be cleared during updating else: filename = 'Config/goelite_species.txt' x=0 fn=filepath(filename);global species_list; species_list=[]; global species_codes; species_codes={} global species_names; species_names={} global species_taxids; species_taxids={} for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t'); abrev=t[0]; species=t[1] try: taxid = t[2] except Exception: taxid = None if x==0: x=1 else: species_list.append(species) species_codes[species] = abrev species_names[abrev] = species species_taxids[abrev] = taxid def getSourceData(): filename = 'Config/source_data.txt'; x=0 fn=filepath(filename) global source_types; source_types={} global system_codes; system_codes={} global mod_types; mod_types=[] for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t'); source=t[0] try: system_code=t[1] except IndexError: system_code = 'NuLL' if x==0: x=1 else: if len(t)>2: ### Therefore, this ID system is a potential MOD if t[2] == 'MOD': mod_types.append(source) source_types[source]=system_code system_codes[system_code] = source ###Used when users include system code data in their input file ############# File download/extraction ############# def downloadPAZARAssocations(): """ This database is no longer available - Will replace with TRRUST """ url = 'http://www.pazar.info/tftargets/tftargets.zip' print 'Downloading Transcription Factor to Target associations' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/tftargets/','') return 'raw' def downloadPAZARAssocationsOld(): """ This works fine, but is redundant with the new zip file that contains all files""" base_url = 'http://www.pazar.info/tftargets/' filenames = getPAZARFileNames() print 'Downloading Transcription Factor to Target associations' source = 'raw' r = 4; k = -1 for resource in filenames: filename = filenames[resource] url = base_url+filename start_time = time.time() fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/tftargets/','') end_time = time.time() if (end_time-start_time)>3: ### Hence the internet connection is very slow (will take forever to get everything) downloadPreCompiledPAZAR() ### Just get the compiled symbol data instead print '...access to source PAZAR files too slow, getting pre-compiled from genmapp.org' source = 'precompiled' break k+=1 if r==k: k=0 print '*', print '' return source def downloadPreCompiledPAZAR(): """ Downloads the already merged symbol to TF file from PAZAR files """ url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/tf-target.txt' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/tftargets/symbol/','') def downloadAmadeusPredictions(): url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/symbol-Metazoan-Amadeus.txt' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Amadeus/','') def downloadBioMarkers(output_dir): ensembl_version = unique.getCurrentGeneDatabaseVersion() #url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Hs_exon_tissue-specific_protein_coding.zip' url = 'http://altanalyze.org/archiveDBs/AltDatabase/updated/'+ensembl_version+'/Hs_LineageProfiler.zip' print 'Downloading BioMarker associations' fln,status = update.downloadSuppressPrintOuts(url,output_dir,'') #url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Mm_gene_tissue-specific_protein_coding.zip' url = 'http://altanalyze.org/archiveDBs/AltDatabase/updated/'+ensembl_version+'/Mm_LineageProfiler.zip' fln,status = update.downloadSuppressPrintOuts(url,output_dir,'') def downloadKEGGPathways(species): print "Integrating KEGG associations for "+species url = 'http://www.genmapp.org/go_elite/Databases/KEGG/'+species+'-KEGG_20110518.zip' ### This is a fixed date resource since KEGG licensed their material after this date fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/KEGG/','') def downloadDomainAssociations(selected_species): paths=[] if selected_species != None: ### Restrict to selected species only current_species_dirs=selected_species else: current_species_dirs = unique.read_directory('/'+database_dir) for species in current_species_dirs: url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Domains/'+species+'_Ensembl-Domain.gz' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Domains/','txt') if 'Internet' not in status: paths.append((species,fln)) return paths def downloadPhenotypeOntologyOBO(): print 'Downloading Phenotype Ontology structure and associations' url = 'ftp://ftp.informatics.jax.org/pub/reports/MPheno_OBO.ontology' fln,status = update.downloadSuppressPrintOuts(url,program_dir+'OBO/','') def downloadPhenotypeOntologyGeneAssociations(): url = 'ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt' #url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/HMD_HumanPhenotype.rpt' ### Mouse and human gene symbols and gene IDs (use the gene symbols) fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Pheno/','') def downloadBioGRIDAssociations(): print 'Downloading BioGRID associations' url = 'http://thebiogrid.org/downloads/archives/Latest%20Release/BIOGRID-ALL-LATEST.tab2.zip' fln,status = update.download(url,'BuildDBs/BioGRID/','') def downloadDrugBankAssociations(): print 'Downloading DrugBank associations' url = 'http://www.drugbank.ca/system/downloads/current/drugbank.txt.zip' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/DrugBank/','') def downloadPathwayCommons(): #### See - https://www.pathwaycommons.org/archives/PC2/v11/ print 'Downloading PathwayCommons associations' url = 'http://www.pathwaycommons.org/pc-snapshot/current-release/gsea/by_species/homo-sapiens-9606-gene-symbol.gmt.zip' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/PathwayCommons/','') def downloadDiseaseOntologyOBO(): print 'Downloading Disease Ontology structure and associations' """ Unfortunately, we have to download versions that are not as frequently updated, since RGDs server reliability is poor """ #url = 'ftp://rgd.mcw.edu/pub/data_release/ontology_obo_files/disease/CTD.obo' url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/CTD.obo' ### Includes congenital and environmental diseases - http://ctdbase.org/detail.go?type=disease&acc=MESH%3aD002318 fln,status = update.downloadSuppressPrintOuts(url,program_dir+'OBO/','') def downloadDiseaseOntologyGeneAssociations(selected_species): if selected_species == None: sc = [] else: sc = selected_species """ Unfortunately, we have to download versions that are not as frequently updated, since RGDs server reliability is poor """ if 'Hs' in sc or len(sc)==0: #url = 'ftp://rgd.mcw.edu/pub/data_release/annotated_rgd_objects_by_ontology/homo_genes_do' url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/homo_genes_do' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Disease/','') if 'Mm' in sc or len(sc)==0: #url = 'ftp://rgd.mcw.edu/pub/data_release/annotated_rgd_objects_by_ontology/mus_genes_do' url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/mus_genes_do' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Disease/','') if 'Rn' in sc or len(sc)==0: #url = 'ftp://rgd.mcw.edu/pub/data_release/annotated_rgd_objects_by_ontology/rattus_genes_do' url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/rattus_genes_do' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/Disease/','') def downloadMiRDatabases(species): url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/'+species+'_microRNA-Ensembl-GOElite_strict.txt' selected = ['Hs','Mm','Rn'] ### these are simply zipped where the others are not ### These files should be updated on a regular basis if species in selected: url = string.replace(url,'.txt','.zip') fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/microRNATargets/','') else: ### Where strict is too strict url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/'+species+'_microRNA-Ensembl-GOElite_lax.txt' fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/microRNATargets/','') fln = string.replace(fln,'.zip','.txt') return fln def downloadRvistaDatabases(species): ### Source files from http://hazelton.lbl.gov/pub/poliakov/wgrvista_paper/ url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/'+species+'_RVista_factors.zip' ### These files should be updated on a regular basis fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/RVista/','') fln = string.replace(fln,'.zip','.txt') return fln def remoteDownloadEnsemblTranscriptAssocations(species): global program_dir program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': program_dir = database_dir downloadEnsemblTranscriptAssociations(species) def downloadEnsemblTranscriptAssociations(species): url = 'http://www.genmapp.org/go_elite/Databases/ExternalSystems/Transcripts/'+species+'/Ensembl-EnsTranscript.txt' ### These files should be updated on a regular basis fln,status = update.downloadSuppressPrintOuts(url,program_dir+species+'/uid-gene/','') def downloadGOSlimOBO(): url = 'http://geneontology.org/ontology/subsets/goslim_pir.obo' #url = 'http://www.geneontology.org/GO_slims/goslim_generic.obo' ### Missing fln,status = update.downloadSuppressPrintOuts(url,database_dir+'OBO/','') def importUniProtAnnotations(species_db,force): base_url = 'http://www.altanalyze.org/archiveDBs/' uniprot_ensembl_db={} for species in species_db: url = base_url+species+'/custom_annotations.txt' if force=='yes': fln,status = update.downloadSuppressPrintOuts(url,'BuildDBs/UniProt/'+species+'/','') else: fln = 'BuildDBs/UniProt/'+species+'/custom_annotations.txt' for line in open(fln,'rU').xreadlines(): data = cleanUpLine(line) try: ens_gene,compartment,function,symbols,full_name,uniprot_name,uniprot_ids,unigene = string.split(data,'\t') symbols = string.split(string.replace(symbols,'; Synonyms=',', '),', ') uniprot_ensembl_db[species,uniprot_name] = ens_gene species_extension = string.split(uniprot_name,'_')[-1] full_name = string.split(full_name,';')[0] if 'Transcription factor' in full_name: symbols.append(string.split(full_name,'Transcription factor ')[-1]) ### Add this additional synonym to symbols ### Extend this database out to account for weird names in PAZAR for symbol in symbols: new_name = string.upper(symbol)+'_'+species_extension if new_name not in uniprot_ensembl_db: uniprot_ensembl_db[species,symbol+'_'+species_extension] = ens_gene uniprot_ensembl_db[species,string.upper(symbol)] = ens_gene except Exception: None return uniprot_ensembl_db ############# Import/processing/export ############# def getPAZARFileNames(): """ Filenames are manually and periodically downloaded from: http://www.pazar.info/cgi-bin/downloads_csv.pl""" fn = filepath('Config/PAZAR_list.txt') x=0 filenames = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x==0: x=1 else: resource, filename = string.split(data,'\t') filenames[resource]=filename return filenames class TFTargetInfo: def __init__(self,tf_name,ens_gene,project,pmid,analysis_method): self.tf_name=tf_name self.ens_gene=ens_gene self.project=project self.pmid=pmid self.analysis_method=analysis_method def TFName(self): return self.tf_name def Ensembl(self): return self.ens_gene def Project(self): if self.project[-1]=='_': return self.project[:-1] else: return self.project def PMID(self): return self.pmid def AnalysisMethod(self): return self.analysis_method def __repr__(self): return self.TFName() def importPAZARAssociations(force): pazar_files = unique.read_directory('/BuildDBs/tftargets') species_db={} tf_to_target={} tf_name_to_ID_db={} for file in pazar_files: if '.csv' in file: name = string.join(string.split(file,'_')[1:-1],'_') fn = filepath('BuildDBs/tftargets/'+file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) try: ### Each line contains the following 11 tab-delim fields: ### Fields are: <PAZAR TF ID> <TF Name> <PAZAR Gene ID> <ensembl gene accession> <chromosome> <gene start coordinate> <gene end coordinate> <species> <project name> <PMID> <analysis method> pazar_tf_id, ens_tf_transcript, tf_name, pazar_geneid, ens_gene, chr, gene_start,gene_end,species,project,pmid,analysis_method = string.split(data,'\t') if ens_tf_transcript == 'ENSMUST00000105345' and 'Pluripotency' in project: ### This is a specific error (TCF3 corresponds to TCF7L1 but poor nomenclature resulted in a mis-annotation here) ens_tf_transcript = 'ENSMUST00000069536' species,genus = string.split(species,' ') species = species[0]+genus[0] tft=TFTargetInfo(tf_name,ens_gene,project,pmid,analysis_method) try: tf_to_target[species,tf_name].append(tft) except Exception: tf_to_target[species,tf_name] = [tft] species_db[species]=[] tf_name_to_ID_db[tf_name] = ens_tf_transcript ### This is an Ensembl transcript ID -> convert to gene ID except Exception: None ### Occurs due to file formatting issues (during an update?) if determine_tf_geneids == 'yes': """ The below code is probably most useful for creation of complex regulatory inference networks in Cytoscape """ uniprot_ensembl_db = importUniProtAnnotations(species_db,force) ### Get UniProt IDs that often match Pazar TF names transcript_to_gene_db={} gene_to_symbol_db={} #species_db={} #species_db['Mm']=[] for species in species_db: try: try: gene_to_transcript_db = gene_associations.getGeneToUid(species,('hide','Ensembl-EnsTranscript')); #print mod_source, 'relationships imported.' except Exception: try: downloadEnsemblTranscriptAssociations(species) gene_to_transcript_db = gene_associations.getGeneToUid(species,('hide','Ensembl-EnsTranscript')) except Exception: gene_to_transcript_db={} try: gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: ### Download this base_url = 'http://www.altanalyze.org/archiveDBs/' url = base_url+species+'/Ensembl-Symbol.txt' update.downloadSuppressPrintOuts(url,'AltDatabase/goelite/'+species+'/uid-gene/','') gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_transcript_db={}; gene_to_symbol={} #print len(gene_to_transcript_db), species for gene in gene_to_transcript_db: for transcript in gene_to_transcript_db[gene]: transcript_to_gene_db[transcript]=gene for gene in gene_to_symbol: gene_to_symbol_db[gene] = gene_to_symbol[gene] missing=[] for (species,tf_name) in tf_to_target: original_tf_name = tf_name try: ens_tf_transcript = tf_name_to_ID_db[tf_name] ens_gene = transcript_to_gene_db[ens_tf_transcript] #if 'ENSMUST00000025271' == ens_tf_transcript: print ens_gene;kill #print gene_to_symbol_db[ens_gene];sys.exit() symbol = string.lower(gene_to_symbol_db[ens_gene][0]) ### covert gene ID to lower case symbol ID ### Store the original TF name and Ensembl symbol (different species TFs can have different symbols - store all) try: tf_to_target_symbol[original_tf_name].append(symbol) except Exception: tf_to_target_symbol[original_tf_name] = [symbol] except Exception: try: #ens_tf_transcript = tf_name_to_ID_db[tf_name] #print species, tf_name, ens_tf_transcript;sys.exit() ens_gene = uniprot_ensembl_db[species,tf_name] symbol = string.lower(gene_to_symbol_db[ens_gene][0]) ### covert gene ID to lower case symbol ID try: tf_to_target_symbol[original_tf_name].append(symbol) except Exception: tf_to_target_symbol[original_tf_name] = [symbol] except Exception: try: tf_name = string.split(tf_name,'_')[0] ens_gene = uniprot_ensembl_db[species,tf_name] symbol = string.lower(gene_to_symbol_db[ens_gene][0]) ### covert gene ID to lower case symbol ID try: tf_to_target_symbol[original_tf_name].append(symbol) except Exception: tf_to_target_symbol[original_tf_name] = [symbol] except Exception: try: tf_names=[] if '/' in tf_name: tf_names = string.split(tf_name,'/') elif ' ' in tf_name: tf_names = string.split(tf_name,' ') for tf_name in tf_names: ens_gene = uniprot_ensembl_db[species,tf_name] symbol = string.lower(gene_to_symbol_db[ens_gene][0]) ### covert gene ID to lower case symbol ID try: tf_to_target_symbol[original_tf_name].append(symbol) except Exception: tf_to_target_symbol[original_tf_name] = [symbol] except Exception: missing.append((tf_name,species)) print 'Ensembl IDs found for transcript or UniProt Transcription factor names:',len(tf_to_target_symbol),'and missing:', len(missing) #print missing[:20] ### Translate all species data to gene symbol to export for all species species_tf_targets={} for (species,tf_name) in tf_to_target: try: tf_db = species_tf_targets[species] tf_db[tf_name] = tf_to_target[species,tf_name] except Exception: tf_db = {} tf_db[tf_name] = tf_to_target[species,tf_name] species_tf_targets[species] = tf_db tf_dir = 'BuildDBs/tftargets/symbol/tf-target.txt' tf_data = export.ExportFile(tf_dir) tf_to_symbol={} #print 'Exporting:',tf_dir #print len(species_tf_targets) for species in species_tf_targets: try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_source_id={} tf_db = species_tf_targets[species] for tf_name in tf_db: for tft in tf_db[tf_name]: try: for symbol in gene_to_source_id[tft.Ensembl()]: symbol = string.lower(symbol) tf_id = tf_name+'(Source:'+tft.Project()+'-PAZAR'+')' tf_data.write(tf_id+'\t'+symbol+'\n') try: tf_to_symbol[tf_id].append(symbol) except Exception: tf_to_symbol[tf_id] = [symbol] except Exception: null=[]; tf_data.close() tf_to_symbol = gene_associations.eliminate_redundant_dict_values(tf_to_symbol) return tf_to_symbol def importPAZARcompiled(): """ Skips over the above function when these tf-target file is downlaoded directly """ tf_dir = 'BuildDBs/tftargets/symbol/tf-target.txt' tf_to_symbol={} fn = filepath(tf_dir) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) tf_id,symbol = string.split(data,'\t') try: tf_to_symbol[tf_id].append(symbol) except Exception: tf_to_symbol[tf_id] = [symbol] tf_to_symbol = gene_associations.eliminate_redundant_dict_values(tf_to_symbol) return tf_to_symbol def importPhenotypeOntologyGeneAssociations(): x=0 pheno_symbol={}; phen=[] fn = filepath('BuildDBs/Pheno/HMD_HumanPhenotype.rpt') for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') hs_symbol=t[0]; hs_entrez=t[1]; mm_symbol=t[2]; mgi=t[3]; pheno_ids=t[4] if 'MP' not in pheno_ids: try: pheno_ids = t[5] except Exception: pass hs_symbol = string.lower(hs_symbol) mm_symbol = string.lower(mm_symbol) symbols = [mm_symbol,hs_symbol] pheno_ids = string.split(pheno_ids,' '); phen+=pheno_ids for pheno_id in pheno_ids: if len(pheno_id)>0: for symbol in symbols: try: pheno_symbol[pheno_id].append(symbol) except Exception: pheno_symbol[pheno_id]=[symbol] phen = unique.unique(phen) pheno_symbol = gene_associations.eliminate_redundant_dict_values(pheno_symbol) return pheno_symbol def importAmandeusPredictions(force): if force == 'yes': downloadAmadeusPredictions() x=0 tf_symbol_db={} fn = filepath('BuildDBs/Amadeus/symbol-Metazoan-Amadeus.txt') for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x==0: x=1 else: symbol,system,tf_name = string.split(data,'\t') symbol = string.lower(symbol) if tf_name == 'Oct4': tf_name = 'Pou5f1' ### Known annotation issue try: tf_symbol_db[tf_name].append(symbol) except Exception: tf_symbol_db[tf_name]=[symbol] tf_symbol_db = gene_associations.eliminate_redundant_dict_values(tf_symbol_db) if determine_tf_geneids == 'yes': """ ### Since this data is species independent (not indicated in the current file) can't apply this yet uniprot_ensembl_db = importUniProtAnnotations(species_db,force) try: gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_symbol={} symbol_to_gene = OBO_import.swapKeyValues(gene_to_symbol) symbol_to_gene = lowerSymbolDB(symbol_to_gene) uniprot_ensembl_db = lowerSymbolDB(uniprot_ensembl_db) """ ### Build a TFname to Ensembl gene symbol database for Amadeus for tf_name in tf_symbol_db: symbol = string.lower(string.split(tf_name,'(')[0]) if 'miR' not in tf_name and 'let' not in tf_name: ### Exlude miRNAs try: tf_to_target_symbol[tf_name].append(symbol) except Exception: tf_to_target_symbol[tf_name] = [symbol] return tf_symbol_db def importDiseaseOntologyGeneAssocations(): disease_ontology_files = unique.read_directory('/BuildDBs/Disease') symbol_to_DO={} for file in disease_ontology_files: if '_do' in file: fn = filepath('BuildDBs/Disease/'+file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if len(t)>1: symbol=string.lower(t[2]); doid = t[4] try: symbol_to_DO[doid].append(symbol) except Exception: symbol_to_DO[doid]=[symbol] return symbol_to_DO def exportSymbolRelationships(pathway_to_symbol,selected_species,pathway_type,type): if selected_species != None: ### Restrict to selected species only current_species_dirs=selected_species else: current_species_dirs = unique.read_directory('/'+database_dir) for species in current_species_dirs: if '.' not in species: ens_dir = database_dir+'/'+species+'/gene-'+type+'/Ensembl-'+pathway_type+'.txt' ens_data = export.ExportFile(ens_dir) try: if determine_tf_geneids == 'yes': ### When TF data is exported and TF gene-gene interactions are defined, export them tf_network_dir = 'BuildDBs/TF_Interactions/'+species+'/interactions.txt' tf_network_data = export.ExportFile(tf_network_dir) tf_network_data.write('Symbol1\tInteractionType\tSymbol2\tGeneID1\tGeneID2\tSource\n') interaction = 'transcriptional_target' print 'Exporting TF-Target gene-gene relationships to',tf_network_dir tf_count=0; unique_interactions={} try: gene_chr_db = gene_associations.getGeneToUid(species,('hide','Ensembl-chr')) except Exception: try: ensembl_version = unique.getCurrentGeneDatabaseVersion() from build_scripts import EnsemblSQL EnsemblSQL.getChrGeneOnly(species,'Basic',ensembl_version,'yes') gene_chr_db = gene_associations.getGeneToUid(species,('hide','Ensembl-chr')) except Exception: gene_chr_db={} except Exception: None if 'mapp' in type: ens_data.write('GeneID\tSystem\tGeneSet\n') else: ens_data.write('GeneID\tGeneSet\n') try: ens_to_entrez = gene_associations.getGeneToUid(species,('hide','Ensembl-EntrezGene')) except Exception: ens_to_entrez ={} if len(ens_to_entrez)>0: entrez_dir = database_dir+'/'+species+'/gene-'+type+'/EntrezGene-'+pathway_type+'.txt' entrez_data = export.ExportFile(entrez_dir) if 'mapp' in type: entrez_data.write('GeneID\tSystem\tGeneSet\n') else: entrez_data.write('GeneID\tGeneSet\n') #print 'Exporting '+pathway_type+' databases for:',species try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_source_id={} source_to_gene = OBO_import.swapKeyValues(gene_to_source_id) source_to_gene = lowerSymbolDB(source_to_gene) for pathway in pathway_to_symbol: for symbol in pathway_to_symbol[pathway]: try: genes = source_to_gene[symbol] for gene in genes: if len(genes)<5: ### don't propagate redundant associations if 'mapp' in type: ens_data.write(gene+'\tEn\t'+pathway+'\n') else: ens_data.write(gene+'\t'+pathway+'\n') if gene in ens_to_entrez: for entrez in ens_to_entrez[gene]: if 'mapp' in type: entrez_data.write(entrez+'\tL\t'+pathway+'\n') else: entrez_data.write(entrez+'\t'+pathway+'\n') try: if determine_tf_geneids == 'yes': if '(' in pathway: source_name = string.split(pathway,'(')[0] else: source_name = pathway proceed = True if gene in gene_chr_db: if len(gene_chr_db[gene][0])>2: ### not a valid chromosome (e.g., HSCHR6_MHC_COX) proceed = False if proceed ==True or proceed == False: try: symbols = tf_to_target_symbol[source_name] except Exception: symbols = tf_to_target_symbol[pathway] for symbol in symbols: tf_gene = source_to_gene[symbol][0] ### meta-species converted symbol -> species Ensembl gene tf_symbol = gene_to_source_id[tf_gene][0] ### species formatted symbol for TF symbol = gene_to_source_id[gene][0] ### species formatted symbol for target if (tf_symbol,symbol,pathway) not in unique_interactions: tf_network_data.write(string.join([tf_symbol,interaction,symbol,tf_gene,gene,pathway],'\t')+'\n') unique_interactions[tf_symbol,symbol,pathway]=[] try: merged_tf_interactions[tf_symbol].append(string.lower(symbol)) except Exception: merged_tf_interactions[tf_symbol] = [string.lower(symbol)] tf_count+=1 except Exception: None except Exception: null=[] ens_data.close() try: entrez_data.close() except Exception: null=[] try: if determine_tf_geneids == 'yes': tf_network_data.close() print tf_count,'TF to target interactions exported..' except Exception: None def translateBioMarkersBetweenSpecies(input_dir,species): ### Convert the species Ensembl primary key IDs from the source to try: biomarker_files = unique.read_directory(input_dir) except Exception: biomarker_files = unique.read_directory(input_dir) try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_source_id={} source_to_gene = OBO_import.swapKeyValues(gene_to_source_id) source_to_gene = lowerSymbolDB(source_to_gene) print len(source_to_gene) marker_symbol_db={} for file in biomarker_files: if 'tissue-specific' in file and species not in file: ### Don't re-translate an already translated file export_dir = 'AltDatabase/ensembl/'+species+'/'+species+file[2:] export_data = export.ExportFile(export_dir) fn = filepath(input_dir+'/'+file) x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x = 1; y=0 for i in t: if 'Symbol' in i: sy = y y+=1 export_data.write(line) else: ensembl = t[0]; symbol = string.lower(t[sy]) #print symbol, len(source_to_gene);sys.exit() if symbol in source_to_gene: species_gene = source_to_gene[symbol][0] ### should only be one gene per symbol (hopefully) values = string.join([species_gene]+t[1:],'\t')+'\n' export_data.write(values) export_data.close() print export_dir,'written...' def extractKEGGAssociations(species,mod,system_codes): import_dir = filepath('/BuildDBs/KEGG') g = gene_associations.GrabFiles(); g.setdirectory(import_dir) filedir = g.getMatchingFolders(species) gpml_data,pathway_db = gene_associations.parseGPML(filepath(filedir)) gene_to_WP = gene_associations.unifyGeneSystems(gpml_data,species,mod) gene_associations.exportCustomPathwayMappings(gene_to_WP,mod,system_codes,filepath(database_dir+'/'+species+'/gene-mapp/'+mod+'-KEGG.txt')) if len(gene_to_WP)>0 and mod == 'Ensembl': ### Export all pathway interactions try: gene_associations.exportNodeInteractions(pathway_db,mod,filepath(filedir)) except Exception: null=[] elif len(gene_to_WP)>0 and mod == 'HMDB': ### Export all pathway interactions try: gene_associations.exportNodeInteractions(pathway_db,mod,filepath(filedir),appendToFile=True) except Exception: null=[] return filedir def extractGMTAssociations(species,mod,system_codes,data_type,customImportFile=None): if mod != 'HMDB': if customImportFile != None: import_dir = customImportFile else: import_dir = filepath('/BuildDBs/'+data_type) gmt_data = gene_associations.parseGMT(import_dir) gene_to_custom = gene_associations.unifyGeneSystems(gmt_data,species,mod) gene_associations.exportCustomPathwayMappings(gene_to_custom,mod,system_codes,filepath(database_dir+'/'+species+'/gene-mapp/'+mod+'-'+data_type+'.txt')) def transferGOSlimGeneAssociations(selected_species): if selected_species != None: ### Restrict to selected species only current_species_dirs=selected_species else: current_species_dirs = unique.read_directory('/'+database_dir) for species_code in current_species_dirs: try: ens_go_file_dir = filepath(database_dir+'/'+species_code+'/gene-go/Ensembl-GOSlim.txt') goslim_ens_file = filepath(database_dir+'/'+species_code+'/uid-gene/Ensembl-goslim_goa.txt') export.copyFile(goslim_ens_file,ens_go_file_dir) translateToEntrezGene(species_code,ens_go_file_dir) except Exception: null=[] def translateToEntrezGene(species,filename): x=0; type = 'pathway' try: ens_to_entrez = gene_associations.getGeneToUid(species,('hide','Ensembl-EntrezGene')) except Exception: ens_to_entrez ={} if len(ens_to_entrez)>0: export_file = string.replace(filename,'Ensembl','EntrezGene') export_data = export.ExportFile(export_file) export_data.write('EntrezGene\tOntologyID\n') fn = filepath(filename) for line in open(fn,'rU').xreadlines(): if x==0: x=1 else: data = cleanUpLine(line) try: ensembl,pathway = string.split(data,'\t') type = 'ontology' except Exception: ensembl,null,pathway = string.split(data,'\t') try: entrezs = ens_to_entrez[ensembl] for entrez in entrezs: if type == 'ontology': export_data.write(entrez+'\t'+pathway+'\n') else: export_data.write(entrez+'\tEn\t'+pathway+'\n') except Exception: null=[] export_data.close() def importRVistaGeneAssociations(species_code,source_path): x=0; tf_symbol_db={} fn = filepath(source_path) TF_symbol_db={} if species_code == 'Dm' or species_code == 'Mm': ### Dm IDs are Ensembl gene_to_symbol = gene_associations.getGeneToUid(species_code,('hide','Ensembl-Symbol')) increment = 10000 print 'Importing symbol-R Vista TF assocations (be patient)' x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) x+=1 #if x==increment: x=0; print '*', try: symbol,TF = string.split(data,'\t') if species_code == 'Dm' or species_code == 'Mm': ensembls = [symbol] try: symbol = gene_to_symbol[symbol][0] except Exception: forceError try: TF_symbol_db[TF].append(string.lower(symbol)) except Exception: TF_symbol_db[TF]=[string.lower(symbol)] except Exception: None TF_symbol_db = gene_associations.eliminate_redundant_dict_values(TF_symbol_db) return TF_symbol_db def importMiRGeneAssociations(species_code,source_path): try: destination_path = filepath(database_dir+'/'+species_code+'/gene-mapp/Ensembl-microRNATargets.txt') export.copyFile(source_path,destination_path) translateToEntrezGene(species_code,destination_path) except Exception: null=[] def importBioMarkerGeneAssociations(input_dir): try: biomarker_folder = unique.read_directory(input_dir) except Exception: biomarker_folder = unique.read_directory(input_dir) marker_symbol_db={} for folder in biomarker_folder: if '.' in folder: continue ### This is a file not a folder else: biomarker_files = unique.read_directory(input_dir+'/'+folder) for file in biomarker_files: x=0 if '.txt' in file and '-correlation' not in file and 'AltExon' not in file: fn = filepath('BuildDBs/BioMarkers/'+folder+'/'+file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x = 1; y=0 for i in t: if 'marker-in' in i: mi = y if 'Symbol' in i: sy = y y+=1 ensembl = t[0]; symbol = string.lower(t[sy]); marker = t[mi] markers = string.split(marker,'|') for marker in markers: try: marker_symbol_db[marker].append(symbol) except Exception: marker_symbol_db[marker]=[symbol] marker_symbol_db = gene_associations.eliminate_redundant_dict_values(marker_symbol_db) return marker_symbol_db def importDomainGeneAssociations(species_code,source_path): try: destination_path = filepath(database_dir+'/'+species_code+'/gene-mapp/Ensembl-Domains.txt') export.copyFile(source_path,destination_path) translateToEntrezGene(species_code,destination_path) except Exception: null=[] def importBioGRIDGeneAssociations(taxid,species): model_mammal_tax = {} model_mammal_tax['9606'] = 'Hs' model_mammal_tax['10090'] = 'Mm' model_mammal_tax['10116'] = 'Rn' filtered=considerOnlyMammalian([species]) ### See if the species is a mammal if len(filtered)==0: model_mammal_tax={} ### Don't inlcude the gold standard mammals if not a mammal model_mammal_tax[taxid]=species biogrid_files = unique.read_directory('/BuildDBs/BioGRID') latest_file = biogrid_files[-1] fn = filepath('BuildDBs/BioGRID/'+latest_file) ens_dir = database_dir+'/'+species+'/gene-interactions/Ensembl-BioGRID.txt' ens_data = export.ExportFile(ens_dir) ens_data.write('Symbol1\tInteractionType\tSymbol2\tGeneID1\tGeneID2\tSource\n') try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_source_id={} source_to_gene = OBO_import.swapKeyValues(gene_to_source_id) source_to_gene = lowerSymbolDB(source_to_gene) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') species_tax = t[15] if species_tax in model_mammal_tax: symbol1 = t[7]; symbol2 = t[8] source_exp = t[11]; interaction_type = t[12] try: ens1 = source_to_gene[string.lower(symbol1)][0] ens2 = source_to_gene[string.lower(symbol2)][0] values = string.join([symbol1,interaction_type,symbol2,ens1,ens2,source_exp],'\t')+'\n' ens_data.write(values) except Exception: None def importDrugBankAssociations(species): fn = filepath('BuildDBs/DrugBank/drugbank.txt') ens_dir = database_dir+'/'+species+'/gene-interactions/Ensembl-DrugBank.txt' ens_data = export.ExportFile(ens_dir) ens_data.write('DrugName\tMechanism\tGeneSymbol\tDrugBankDB-ID\tGeneID\tSource\n') try: gene_to_source_id = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) except Exception: gene_to_source_id={} source_to_gene = OBO_import.swapKeyValues(gene_to_source_id) source_to_gene = lowerSymbolDB(source_to_gene) getCAS=False getGenericName=False getMechanim = False getGeneName = False geneNames=[] mechanism='' for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if data == '# Primary_Accession_No:': getCAS=True ### switched this from CAS to Drug bank ID for consistency and namining simplicity elif getCAS: casID = data; getCAS=False if data == '# Generic_Name:': getGenericName=True elif getGenericName: genericName = data; getGenericName=False if data == '# Mechanism_Of_Action:': getMechanim=True elif getMechanim: if len(data)>0: mechanism += data + ' ' else: getMechanim=False if '# Drug_Target_' in data and '_Gene_Name' in data: getGeneName=True elif getGeneName: geneNames.append(data); getGeneName=False if '#END_DRUGCARD' in data: for symbol in geneNames: try: ens = source_to_gene[string.lower(symbol)][0] values = string.join([genericName,mechanism,symbol,casID,ens,'DrugBank'],'\t')+'\n' ens_data.write(values) except Exception: None casID=''; genericName=''; mechanism=''; geneNames=[] ############# Central buid functions ############# def importWikiPathways(selected_species,force): if selected_species == None: selected_species = unique.read_directory('/'+database_dir) importSpeciesData() getSourceData() all_species = 'no' if force == 'yes': try: gene_associations.convertAllGPML(selected_species,all_species) ### Downloads GPMLs and builds flat files for species_code in selected_species: interaction_file = 'GPML/Interactomes/interactions.txt' moveInteractionsToInteractionsDir(interaction_file,species_code,'WikiPathways') status = 'built' except IOError: print 'Unable to connect to http://www.wikipathways.org' status = 'failed' status = 'built' if status == 'built': from import_scripts import BuildAffymetrixAssociations for species_code in selected_species: species_name = species_names[species_code] if status == 'built': relationship_types = ['native','mapped'] for relationship_type in relationship_types: #print 'Processing',relationship_type,'relationships' index=0 integrate_affy_associations = 'no' incorporate_previous = 'yes' process_affygo = 'no' counts = BuildAffymetrixAssociations.importWikipathways(source_types,incorporate_previous,process_affygo,species_name,species_code,integrate_affy_associations,relationship_type,'over-write previous') index+=1 print 'Finished integrating updated WikiPathways' def moveInteractionsToInteractionsDir(source_file,species,name): destination_file = filepath('AltDatabase/goelite/'+species+'/gene-interactions/Ensembl-'+name+'.txt') source_file = filepath(source_file) try: export.copyFile(source_file,destination_file) except Exception: None ### No file to move def importKEGGAssociations(selected_species,force): supported_databases = ['Ag','At','Ce','Dm','Dr','Hs','Mm','Os','Rn'] getSourceData() if selected_species != None: ### Restrict by selected species supported_databases2=[] for species in selected_species: if species in supported_databases: supported_databases2.append(species) supported_databases = supported_databases2 mod_types_list=[] for i in mod_types: mod_types_list.append(i) mod_types_list.sort() for species in supported_databases: if force == 'yes': downloadKEGGPathways(species) for mod in mod_types_list: buildDB_dir = extractKEGGAssociations(species,mod,system_codes) interaction_file = buildDB_dir+'/Interactomes/interactions.txt' moveInteractionsToInteractionsDir(interaction_file,species,'KEGG') def importPathwayCommons(selected_species,force): original_species = selected_species selected_species = considerOnlyMammalian(selected_species) if len(selected_species) == 0: print 'PLEASE NOTE: %s does not support PathwayCommons update.' % string.join(original_species,',') else: if force == 'yes': downloadPathwayCommons() getSourceData() for species in selected_species: for mod in mod_types: extractGMTAssociations(species,mod,system_codes,'PathwayCommons') def importTranscriptionTargetAssociations(selected_species,force): original_species = selected_species selected_species = considerOnlyMammalian(selected_species) x=[] if len(selected_species) == 0: print 'PLEASE NOTE: %s does not support Transcription Factor association update.' % string.join(original_species,',') else: global determine_tf_geneids global tf_to_target_symbol ### Used for TF-target interaction networks global merged_tf_interactions tf_to_target_symbol={} source = 'raw'#'precompiled' merged_tf_interactions={} ### Stores the final merged PAZAR-Amadeus merged data determine_tf_geneids = 'yes' ### No need to specify a species since the database will be added only to currently installed species if force == 'yes': source = downloadPAZARAssocations() if source == 'raw': x = importPAZARAssociations(force) ### builds the PAZAR TF-symbol associations from resource.csv files if source == 'precompiled' or len(x)==0: x = importPAZARcompiled() ### imports from pre-compiled/downloaded TF-symbol associations y = importAmandeusPredictions(force) z = dict(x.items() + y.items()) geneset = 'TFTargets' if determine_tf_geneids == 'yes': tf_to_target_symbol = gene_associations.eliminate_redundant_dict_values(tf_to_target_symbol) exportSymbolRelationships(z,selected_species,geneset,'mapp') determine_tf_geneids = 'no' geneset = 'MergedTFTargets' z = merged_tf_interactions exportSymbolRelationships(merged_tf_interactions,selected_species,geneset,'mapp') for species in selected_species: interaction_file = 'BuildDBs/TF_Interactions/'+species+'/interactions.txt' moveInteractionsToInteractionsDir(interaction_file,species,'TFTargets') def importPhenotypeOntologyData(selected_species,force): original_species = selected_species selected_species = considerOnlyMammalian(selected_species) if len(selected_species) == 0: print 'PLEASE NOTE: %s does not support Phenotype Ontology update.' % string.join(original_species,',') else: ### No need to specify a species since the database will be added only to currently installed species if force == 'yes': downloadPhenotypeOntologyOBO() downloadPhenotypeOntologyGeneAssociations() x = importPhenotypeOntologyGeneAssociations() exportSymbolRelationships(x,selected_species,'MPhenoOntology','go') def importDiseaseOntologyAssociations(selected_species,force): original_species = selected_species selected_species = considerOnlyMammalian(selected_species) if len(selected_species) == 0: print 'PLEASE NOTE: %s does not support Disease Ontology update.' % string.join(original_species,',') else: if force == 'yes': downloadDiseaseOntologyOBO() downloadDiseaseOntologyGeneAssociations(selected_species) x = importDiseaseOntologyGeneAssocations() exportSymbolRelationships(x,selected_species,'CTDOntology','go') def importGOSlimAssociations(selected_species,force): if force == 'yes': downloadGOSlimOBO() transferGOSlimGeneAssociations(selected_species) def importRVistaAssocations(selected_species,force): supported_databases = ['Hs','Mm','Dm'] selected_supported_databases=[] for species in selected_species: if species in supported_databases: selected_supported_databases.append(species) missing_Rvista_associations=[] found_Rvista_associations=[] for species in selected_supported_databases: if force == 'yes': try: fn = downloadRvistaDatabases(species) found_Rvista_associations.append((species,fn)) except Exception: missing_Rvista_associations.append(species) else: fn = filepath('BuildDBs/RVista/'+species+'_RVista_factors.txt') found_Rvista_associations.append((species,fn)) for (species,fn) in found_Rvista_associations: TF_symbol_db = importRVistaGeneAssociations(species,fn) exportSymbolRelationships(TF_symbol_db,[species],'RVista_TFsites','mapp') def importMiRAssociations(selected_species,force): supported_databases = unique.read_directory('/'+database_dir) if selected_species != None: ### Restrict by selected species supported_databases=selected_species missing_miR_associations=[] found_miR_associations=[] for species in supported_databases: if force == 'yes': try: fn = downloadMiRDatabases(species) found_miR_associations.append((species,fn)) except Exception: missing_miR_associations.append(species) for (species,fn) in found_miR_associations: importMiRGeneAssociations(species,fn) interaction_file = 'AltDatabase/goelite/'+species+'/gene-mapp/Ensembl-microRNATargets.txt' moveInteractionsToInteractionsDir(interaction_file,species,'microRNATargets') def importBioMarkerAssociations(selected_species,force): original_species = selected_species selected_species = considerOnlyMammalian(selected_species) if len(selected_species) == 0: print 'PLEASE NOTE: %s does not support BioMarker association update.' % string.join(original_species,',') else: if force == 'yes': downloadBioMarkers('BuildDBs/BioMarkers/') x = importBioMarkerGeneAssociations('BuildDBs/BioMarkers') exportSymbolRelationships(x,selected_species,'BioMarkers','mapp') def importDrugBank(selected_species,force): if force == 'yes': downloadDrugBankAssociations() for species in selected_species: importDrugBankAssociations(species) def importBioGRID(selected_species,force): if force == 'yes': downloadBioGRIDAssociations() for species in selected_species: importSpeciesData() ### Creates the global species_taxids if species in species_taxids: taxid = species_taxids[species] importBioGRIDGeneAssociations(taxid,species) def importDomainAssociations(selected_species,force): if force == 'yes': paths = downloadDomainAssociations(selected_species) for (species,path) in paths: path = string.replace(path,'.gz','.txt') importDomainGeneAssociations(species, path) def considerOnlyMammalian(selected_species): supported_mammals = ['Am','Bt', 'Cf', 'Ch', 'Cj', 'Cp', 'Do', 'Ec', 'Ee', 'Et', 'Fc', 'Gg', 'Go', 'Hs', 'La', 'Ma', 'Md', 'Me', 'Mi', 'Ml', 'Mm', 'Oa', 'Oc','Og', 'Op', 'Pc', 'Pp', 'Pt', 'Pv', 'Rn', 'Sa', 'Ss', 'St', 'Tb', 'Tn', 'Tr', 'Ts', 'Tt', 'Vp'] filtered_species=[] if selected_species == None: selected_species = unique.read_directory('/'+database_dir) for i in selected_species: if i in supported_mammals: filtered_species.append(i) return filtered_species def buildInferrenceTables(selected_species): for species_code in selected_species: file_found = verifyFile(database_dir+'/'+species_code+'/uid-gene/Ensembl-Symbol'+'.txt') ### If file is present, the below is not needed if file_found == 'no': try: gene_associations.swapAndExportSystems(species_code,'Ensembl','EntrezGene') ### Allows for analysis of Ensembl IDs with EntrezGene based GO annotations (which can vary from Ensembl) except Exception: null=[] ### Occurs if EntrezGene not supported ### Build out these symbol association files try: gene_associations.importGeneData(species_code,('export','Ensembl')) except Exception: null=[] ### Occurs if EntrezGene not supported try: gene_associations.importGeneData(species_code,('export','EntrezGene')) except Exception: null=[] ### Occurs if EntrezGene not supported def exportBioTypes(selected_species): for species in selected_species: eo = export.ExportFile('AltDatabase/goelite/'+species+'/gene-mapp/Ensembl-Biotypes.txt') eo.write('Ensembl\tSystemCode\tClass\n') filename = 'AltDatabase/uniprot/'+species+'/custom_annotations.txt' fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') ens_gene,compartment,custom_class = t[:3] if 'GPCR' in custom_class: custom_class = ['GPCR'] else: custom_class = string.split(custom_class,'|') custom_class = string.split(compartment,'|')+custom_class for c in custom_class: if len(c)>0: eo.write(ens_gene+'\t\t'+c+'\n') eo.close() def buildAccessoryPathwayDatabases(selected_species,additional_resources,force): global database_dir global program_dir global program_type program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': program_dir = database_dir else: program_dir='' buildInferrenceTables(selected_species) ### Make sure these tables are present first!!! print 'Attempting to update:', string.join(additional_resources,',') if 'Latest WikiPathways' in additional_resources: try: importWikiPathways(selected_species,force) except Exception: #print traceback.format_exc() print 'WikiPathways import failed (cause unknown)' if 'KEGG' in additional_resources: try: importKEGGAssociations(selected_species,force) #print traceback.format_exc() except Exception: print 'KEGG import failed (cause unknown)' if 'Transcription Factor Targets' in additional_resources: try: importTranscriptionTargetAssociations(selected_species,force) except Exception: #print traceback.format_exc() print 'Transcription Factor Targets import failed (cause unknown)' if 'Phenotype Ontology' in additional_resources: try: importPhenotypeOntologyData(selected_species,force) except Exception: print 'Phenotype Ontology import failed (cause unknown)' if 'Disease Ontology' in additional_resources: try: importDiseaseOntologyAssociations(selected_species,force) except Exception: print 'Disease Ontology import failed (cause unknown)' if 'GOSlim' in additional_resources: try: importGOSlimAssociations(selected_species,force) except Exception: print 'GOSlim import failed (cause unknown)' if 'miRNA Targets' in additional_resources: try: importMiRAssociations(selected_species,force) except Exception: print 'miRNA Targets import failed (cause unknown)' if 'BioMarkers' in additional_resources: try: importBioMarkerAssociations(selected_species,force) except Exception: print 'BioMarkers import failed (cause unknown)'#,traceback.format_exc() if 'Domains2' in additional_resources: ### Currently disabled since it's utility is likely low but analysis time is long try: importDomainAssociations(selected_species,force) except Exception: print 'Domains import failed (cause unknown)' if 'PathwayCommons' in additional_resources: try: importPathwayCommons(selected_species,force) except Exception: #print traceback.format_exc() print 'PathwayCommons import failed (cause unknown)' if 'RVista Transcription Factor Sites' in additional_resources: try: importRVistaAssocations(selected_species,force) except Exception: print 'R Vista Transcription Factor Site import failed (cause unknown)' if 'BioGRID' in additional_resources: try: importBioGRID(selected_species,force) except Exception: #print traceback.format_exc() print 'BioGRID import failed (cause unknown)' if 'DrugBank' in additional_resources: try: importDrugBank(selected_species,force) except Exception: print 'Drug Bank import failed (cause unknown)' try: exportBioTypes(selected_species) except Exception: pass if __name__ == '__main__': selected_species = ['Mm'] force = 'yes' download_species = 'Hs' species = 'Hs' #species = 'Mm' mod = 'Ensembl' #""" getSourceData() program_type,database_dir = unique.whatProgramIsThis() extractGMTAssociations(species,mod,system_codes,'KidneyMouse',customImportFile='/Users/saljh8/Dropbox/scRNA-Seq Markers/Mouse/Markers/Kidney/gmt');sys.exit() #""" #exportBioTypes(selected_species);sys.exit() additional_resources=['Latest WikiPathways']#'KEGG','BioGRID','DrugBank','miRNA Targets','Transcription Factor Targets'] #translateBioMarkersBetweenSpecies('AltDatabase/ensembl/'+download_species,species);sys.exit() additional_resources=['Latest WikiPathways','PathwayCommons','Transcription Factor Targets','Domains','BioMarkers'] additional_resources+=['miRNA Targets','GOSlim','Disease Ontology','Phenotype Ontology','KEGG','RVista Transcription Factor Sites'] additional_resources=['Latest WikiPathways'] buildAccessoryPathwayDatabases(selected_species,additional_resources,force)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/GeneSetDownloader.py
GeneSetDownloader.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def import_refseq(filename): fn=filepath(filename) refseq_mRNA_db = {} seq_begin = 0 y = 0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if data[0:5] == 'LOCUS': y += 1 cds = '' seq = '' ac = data[12:] ac_ls= string.split(ac,' ') ac = ac_ls[0] elif data[5:8] == 'CDS': cds = cds + data[21:] try: cds_start,cds_end = string.split(cds,'..') except ValueError: if cds[0:4] == 'join': cds,second_cds = string.split(cds[5:],',') cds_start,cds_end = string.split(cds,'..') cds = int(cds_start),int(cds_end) elif seq_begin == 1: seq_temp = data[10:] seq_temp = string.split(seq_temp,' ') for sequence in seq_temp: seq = seq + sequence elif data[0:6] == 'ORIGIN': seq_begin = 1 if data[0:2] == '//': #new entry if len(seq) > 0 and len(cds)>0 and len(ac)>0: #refseq_mRNA_db[ac] = cds,seq if grab_sequence == "all": retrieved_seq = seq elif grab_sequence == "3UTR": retrieved_seq = seq[cds[1]:] elif grab_sequence == "5UTR": retrieved_seq = seq[0:cds[0]] elif grab_sequence == "first_last_coding_30": retrieved_seq = (seq[cds[0]-1:cds[0]-1+30],seq[cds[1]-30:cds[1]]) if len(retrieved_seq) > 0: refseq_mRNA_db[ac] = retrieved_seq ac = '' cds = '' seq = '' seq_begin = 0 print "Number of imported refseq entries:", len(refseq_mRNA_db),'out of',y fasta_data = 'refseq_mRNA_converted_'+grab_sequence+'.txt' fn=filepath(fasta_data) data = open(fn,'w') for ac in refseq_mRNA_db: retrieved_seq = refseq_mRNA_db[ac] if len(retrieved_seq[0])>0: ###Thus if there are two sequences stored as a tuple or list if grab_sequence == "first_last_coding_30": retrieved_seq = retrieved_seq[0] +'\t'+ retrieved_seq[1] info = ac +'\t'+ str(len(retrieved_seq)) +'\t'+ retrieved_seq +'\n' data.write(info) data.close() print fasta_data, 'written' if __name__ == '__main__': #grab_sequence = "5UTR" #grab_sequence = "3UTR" grab_sequence = "all" #grab_sequence = "first_last_coding_30" input_file = 'mouse.rna.gbff' #input_file = 'human.rna.gbff' import_refseq(input_file)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/RefSeqParser.py
RefSeqParser.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from stats_scripts import statistics import math def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list ################# Parse and Analyze Files def getConstitutiveProbesets(filename): """This function assumes that the probesets used by Affymetrix to calculate gene expression represent constitutive features. Examination of these annotations reveal discrepencies in this assumption (some constitutive probesets not used and others used instead). Note: The previous statement is not correct since it assumes core means constitutive, which is not the case. """ fn=filepath(filename) constutive={}; x = 0 for line in open(fn,'rU').xreadlines(): data,null = string.split(line,'\n') data = string.replace(data,'"','') if data[0] != '#' and 'probeset' not in data: probeset_id, transcript_cluster_id, probeset_list, probe_count = string.split(data,'\t') try: probeset_list = string.split(probeset_list,' ') except ValueError: probeset_list = [probeset_list] constutive[transcript_cluster_id] = probeset_list x += len(probeset_list) print "Constitutive transcript clusters:",len(constutive),"and probesets:",x return constutive def getTranscriptAnnotation(filename,Species,test_status,test_clusterid): """This function gathers transcript_cluster annotations. Since Affymetrix transcript_clusters appear to often cover more than one transcipt or have inconsistent mappings with other resources be wary. """ global species; species = Species; global test; global test_cluster; test = test_status; test_cluster=test_clusterid fn=filepath(filename);trans_annotation_db={};trans_annot_extended={} for line in open(fn,'rU').xreadlines(): data,null = string.split(line,'\n') if data[0] != '#' and 'seqname' not in data: tab_data = string.split(data[1:-1],'","'); tab_data2=[]; transcript_id = tab_data[0] try: strand = tab_data[3] except IndexError: continue ### Problems in the source file exist if this happens... mis-placed \n, skip line continue_analysis = 'no' if test=='yes': ###used to test the program for a single gene if transcript_id in test_cluster: continue_analysis='yes' else: continue_analysis='yes' if continue_analysis=='yes': gene_annot = tab_data[7]; gene_annot2 = tab_data[8] uniprot = tab_data[9]; unigene = tab_data[10] #start = tab_data[4]; stop = tab_data[5]; go_b = tab_data[11]; go_c = tab_data[12]; go_f = tab_data[13] try: pathway = tab_data[14]; domain = tab_data[15]; family = tab_data[16] except IndexError: pathway = tab_data[14]; domain = tab_data[15]; family = '' try: gene_annot = string.split(gene_annot,' // '); symbol=gene_annot[1]; definition=gene_annot[2] except IndexError: ref_seq = ''; symbol = ''; definition = '' uniprot_list=[]; uniprot_data = string.split(uniprot,' /// ') for entry in uniprot_data: if ' // ' in entry: other_id,uniprot_id = string.split(entry,' // '); uniprot_list.append(uniprot_id) unigene_list=[]; unigene_data = string.split(unigene,' /// ') for entry in unigene_data: if ' // ' in entry: other_id,unigene_id,tissue_exp = string.split(entry,' // '); unigene_list.append(unigene_id) ensembl_list=[]; ensembl_data = string.split(gene_annot2,'gene:ENSG') for entry in ensembl_data: if entry[0:2] == '00': ###Ensembl id's will have 0000 following the ENSG ensembl_data = string.split(entry,' '); ensembl_list.append('ENSG'+ensembl_data[0]) trans_annotation_db[transcript_id] = definition, symbol, ensembl_list trans_annot_extended[transcript_id] = ensembl_list,unigene_list,uniprot_list #strand,go_b,go_c,go_f,pathway,domain,family exportTranscriptAnnotations(trans_annot_extended) return trans_annotation_db def getProbesetAssociations(filename): #probeset_db[probeset] = affygene,exons,probe_type_call,ensembl fn=filepath(filename) probe_association_db={}; constitutive_ranking = {}; x = 0; exon_location={}; mRNA_associations = {} for line in open(fn,'rU').xreadlines(): data,null = string.split(line,'\n') data = string.replace(data,'"',''); y = 0 t = string.split(data,',') if data[0] != '#' and 'probeset' in data: affy_headers = t for header in affy_headers: index = 0 while index < len(affy_headers): if 'probeset_id' == affy_headers[index]: pi = index if 'start' == affy_headers[index]: st = index if 'stop' == affy_headers[index]: sp = index if 'level' == affy_headers[index]: lv = index if 'exon_id' == affy_headers[index]: ei = index if 'transcript_cluster_id' == affy_headers[index]: tc = index if 'seqname' == affy_headers[index]: sn = index if 'strand' == affy_headers[index]: sd = index if 'fl' == affy_headers[index]: fn = index if 'mrna' == affy_headers[index]: mr = index if 'est' == affy_headers[index]: es = index if 'ensGene' == affy_headers[index]: eg = index if 'mrna_assignment' == affy_headers[index]: ma = index index += 1 elif data[0] != '#' and 'probeset' not in data: probeset_id=t[pi];exon_cluster_id=t[ei];transcript_cluster_id=t[tc]; chr=t[sn];strand=t[sd]; mrna_assignment=t[ma] start=int(t[st]);stop=int(t[sp]); exon_type=t[lv]; fl=int(t[fn]); mRNA=int(t[mr]); est=int(t[es]); ensembl=int(t[eg]) if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention ###Extract out the mRNA identifiers from the mRNA_annotation field ensembl_ids, mRNA_ids = grabRNAIdentifiers(mrna_assignment) mRNA_associations[probeset_id] = ensembl_ids, mRNA_ids evidence_count = fl+mRNA if strand == "-": start = int(t[7]); stop = int(t[6]) if exons_to_grab == 'core' and exon_type == 'core': y = 1; x += 1 elif exons_to_grab == 'extended' and (exon_type == 'core' or exon_type == 'extended'): y = 1; x += 1 elif exons_to_grab == 'full': ### includes 'ambiguous' exon_type y = 1; x += 1 if y == 1: probe_association_db[probeset_id]=transcript_cluster_id,probeset_id,exon_type if strand == "-": new_start = stop; new_stop = start; start = new_start; stop = new_stop try: exon_location[transcript_cluster_id,chr,strand].append((start,stop,exon_type,probeset_id)) except KeyError: exon_location[transcript_cluster_id,chr,strand] = [(start,stop,exon_type,probeset_id)] const_info = [ensembl,evidence_count,est,probeset_id] try: constitutive_ranking[transcript_cluster_id].append(const_info) except KeyError: constitutive_ranking[transcript_cluster_id] = [const_info] print "Probeset Associations Parsed" ###Export probeset to transcript annotations exportProbesetAnnotations(mRNA_associations) ###Optionally grab constitutive annotations based on Ensembl, full-length and EST evidence only if constitutive_source != 'Affymetrix': print "Begining to assembl constitutive annotations (Based on Ensembl/FL/EST evidence)..." alt_constitutive_gene_db,const_probe_count = rankConstitutive(constitutive_ranking) print "Number of Constitutive genes:",len(alt_constitutive_gene_db),"Number of Constitutive probesets:",const_probe_count exon_location2 = annotateExons(exon_location) print "Selected",exons_to_grab,"Probesets:",x return probe_association_db,exon_location2,alt_constitutive_gene_db def grabRNAIdentifiers(mrna_assignment): ensembl_ids=[]; mRNA_ids=[] mRNA_entries = string.split(mrna_assignment,' /// ') for entry in mRNA_entries: mRNA_info = string.split(entry,' // '); mrna_ac = mRNA_info[0] if 'ENS' in mrna_ac: ensembl_ids.append(mrna_ac) else: try: int(mrna_ac[-3:]); mRNA_ids.append(mrna_ac) except ValueError: continue ensembl_ids = unique.unique(ensembl_ids) mRNA_ids = unique.unique(mRNA_ids) return ensembl_ids, mRNA_ids def rankConstitutive(constitutive_ranking): constitutive_gene_db = {} for key in constitutive_ranking: c = constitutive_ranking[key] ens_list=[]; fl_list=[]; est_list=[] for entry in c: ens = entry[0]; fl = entry[1]; est = entry[2]; probeset = entry[3] ens_list.append(ens); fl_list.append(fl); est_list.append(est) ens_list.sort();ens_list.reverse(); fl_list.sort(); fl_list.reverse(); est_list.sort(); est_list.reverse() top_ens = ens_list[0]; top_fl = fl_list[0]; top_est = est_list[0] ###Remove EST only gene entries and entries with no mRNA or EST alignment variation if (top_ens == ens_list[-1]) and (top_fl == fl_list[-1]): if (top_est != est_list[-1]) and ((top_fl > 0) or (top_ens > 0)): for entry in c: if entry[2] == top_est: const_probeset = entry[3] try:constitutive_gene_db[key].append(const_probeset) except KeyError:constitutive_gene_db[key] = [const_probeset] else: continue elif top_ens > 1 and top_fl > 1: for entry in c: if entry[0] == top_ens: const_probeset = entry[3] try:constitutive_gene_db[key].append(const_probeset) except KeyError:constitutive_gene_db[key] = [const_probeset] elif top_fl > 1: for entry in c: if entry[1] == top_fl: const_probeset = entry[3] try:constitutive_gene_db[key].append(const_probeset) except KeyError:constitutive_gene_db[key] = [const_probeset] elif top_ens > 1: for entry in c: if entry[0] == top_ens: const_probeset = entry[3] try:constitutive_gene_db[key].append(const_probeset) except KeyError:constitutive_gene_db[key] = [const_probeset] n=0; constitutive_probe_db={} for key in constitutive_gene_db: for entry in constitutive_gene_db[key]: n+=1 return constitutive_gene_db,n def annotateExons(exon_location): ###Annotate Affymetrix probesets independent of other annotations. A problem with this method ###Is that it fails to recognize distance probesets that probe different regions of the same exon. for key in exon_location: exon_location[key].sort() strand = key[2] if strand == "-": exon_location[key].reverse() alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','x','y','z'] exon_location2={} for key in exon_location: index = 1; index2 = 0; exon_list=[]; y = 0 for exon in exon_location[key]: if y == 0: exon_info = 'E'+str(index),exon exon_list.append(exon_info); y = 1; last_start = exon[0]; last_stop = exon[1]; index += 1; index2 = 0 elif y == 1: current_start = exon[0]; current_stop = exon[1] if (abs(last_stop - current_start) < 20) or (abs(last_start - current_start) < 20) or (abs(current_stop - last_stop) < 20): ###Therefore, the two exons are < 20bp away exon_info = 'E'+str(index-1)+alphabet[index2],exon exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index2 += 1 else: exon_info = 'E'+str(index),exon exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index += 1; index2 = 0 exon_location2[key] = exon_list """for key in exon_location2: if key[0] == '3242353': print key, exon_location2[key]""" return exon_location2 ################# Select files for analysis and output results def getDirectoryFiles(): dir = '/AltDatabase/'+species+'/exon' dir_list = read_directory(dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results affy_data_dir = dir[1:]+'/'+data if 'transcript-annot' in affy_data_dir: transcript_annotation_file = affy_data_dir elif '.annot' in affy_data_dir: probeset_transcript_file = affy_data_dir elif '.probeset' in affy_data_dir: probeset_annotation_file = affy_data_dir return probeset_transcript_file,probeset_annotation_file,transcript_annotation_file """ def getDirectoryFiles(dir,exons_to_grab): import_dir = '/AltDatabase/'+species+'/exon' probeset_annotation_file='' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results affy_data_dir = dir[1:]+'/'+data if 'transcript-annot' in affy_data_dir: transcript_annotation_file = affy_data_dir elif 'annot.hg' in affy_data_dir: probeset_transcript_file = affy_data_dir elif 'annot.hg' in affy_data_dir: probeset_annotation_file = affy_data_dir if exons_to_grab in affy_data_dir: ###this is the choosen constitutive list constitutive_probe_file = affy_data_dir return transcript_annotation_file,probeset_transcript_file,probeset_annotation_file,constitutive_probe_file """ def eliminateRedundant(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def getAnnotations(exons_to_grab,constitutive_source,process_from_scratch): """Annotate Affymetrix exon array data using files provided at http://www.Affymetrix.com. Filter these annotations based on the choice of 'core', 'extended', or 'full' annotations.""" probeset_transcript_file,probeset_annotation_file,transcript_annotation_file = getDirectoryFiles() probe_association_db, exon_location_db, alt_constitutive_gene_db = getProbesetAssociations(probeset_annotation_file) trans_annotation_db = getTranscriptAnnotation(transcript_annotation_file) constitutive_db = getConstitutiveProbesets(constitutive_probe_file) if constitutive_source != 'Affymetrix': return probe_association_db,alt_constitutive_gene_db,exon_location_db, trans_annotation_db, trans_annot_extended else: return probe_association_db,constitutive_db,exon_location_db, trans_annotation_db, trans_annot_extended def exportProbesetAnnotations(mRNA_associations): probeset_annotation_export = 'AltDatabase/ensembl/' + species + '/'+ species + '_probeset-mRNA_annot.txt' fn=filepath(probeset_annotation_export); data = open(fn,'w') title = 'probeset_id'+'\t'+'ensembl_transcript_ids'+'\t'+'mRNA_accession_ids'+'\n' data.write(title); y=0 for probeset_id in mRNA_associations: ensembl_ids, mRNA_ids = mRNA_associations[probeset_id] if len(ensembl_ids)>0 or len(mRNA_ids)>0: ensembl_ids = string.join(ensembl_ids,','); mRNA_ids = string.join(mRNA_ids,',') values = probeset_id +'\t'+ ensembl_ids +'\t'+ mRNA_ids +'\n' data.write(values); y+=1 data.close() print y, "Probesets linked to mRNA accession numbers exported to text file:",probeset_annotation_export def exportTranscriptAnnotations(transcript_annotation_db): transcript_annotation_export = 'AltDatabase/ensembl/' + species + '/'+ species + '_Affygene-external_annot.txt' fn=filepath(transcript_annotation_export); data = open(fn,'w') title = 'transcript_cluster_id'+'\t'+'ensembl_transcript_ids'+'\t'+'mRNA_accession_ids'+'\n' data.write(title); y=0 for transcript_cluster_id in transcript_annotation_db: ensembl_list,unigene_list,uniprot_list = transcript_annotation_db[transcript_cluster_id] if len(ensembl_list)>0 or len(unigene_list)>0 or len(uniprot_list)>0: ensembl_ids = string.join(ensembl_list,','); unigene_ids = string.join(unigene_list,','); uniprot_ids = string.join(uniprot_list,',') values = transcript_cluster_id +'\t'+ ensembl_ids +'\t'+ unigene_ids +'\t'+ uniprot_ids +'\n' data.write(values); y+=1 data.close() print y, "Transcript clusters linked to other gene annotations to text file:",transcript_annotation_export if __name__ == '__main__': species = 'Hs' exons_to_grab = "core" constitutive_source = 'custom' process_from_scratch = 'yes' getAnnotations(exons_to_grab,constitutive_source,process_from_scratch)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ExonArrayAffyRules.py
ExonArrayAffyRules.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from stats_scripts import statistics import copy import time import update def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".TXT" or entry[-3:] == ".fa": dir_list2.append(entry) return dir_list2 def importSplicingAnnotationDatabase(filename,array_type): global exon_db; fn=filepath(filename) print 'importing', filename exon_db={}; count = 0; x = 0 for line in open(fn,'r').readlines(): probeset_data,null = string.split(line,'\n') #remove endline if x == 0: x = 1 else: try: probeset_id, exon_id, ensembl_gene_id, transcript_cluster_id, chromosome, strand, probeset_start, probeset_stop, affy_class, constitutitive_probeset, ens_exon_ids, ens_const_exons, exon_region, exon_region_start, exon_region_stop, splicing_event, splice_junctions = string.split(probeset_data,'\t') except Exception: t = string.split(probeset_data,'\t'); print len(t), t;kill #probe_data = AffyExonSTData(probeset_id,ensembl_gene_id,exon_id,ens_exon_ids,transcript_cluster_id, chromosome, strand, probeset_start, probeset_stop, affy_class, constitutitive_probeset, exon_region, splicing_event, splice_junctions) if ':' in probeset_id: id1,id2 = string.split(probeset_id,':') if id2[0]=='E' or id2[0]=='I': probeset_id = probeset_id ### This import method applies to else: probeset_id = id2 ### Store exon region start and stop since this corresponds to the critical-exon-region-seq_update.txt file sequence coordinates probe_data = AffyExonSTDataSimple(probeset_id,ensembl_gene_id,exon_region,ens_exon_ids,probeset_start,probeset_stop,strand,chromosome) exon_db[probeset_id] = probe_data print len(exon_db), 'probesets imported' return exon_db class SplicingAnnotationData: def ArrayType(self): self._array_type = array_type return self._array_type def Probeset(self): return self._probeset def IncludeProbeset(self): include_probeset = 'yes' if self.ArrayType() == 'AltMouse': if filter_probesets_by == 'exon': if '-' in self.ExonID() or '|' in self.ExonID(): ###Therfore the probeset represents an exon-exon junction or multi-exon probeset include_probeset = 'no' if filter_probesets_by != 'exon': if '|' in self.ExonID(): include_probeset = 'no' if self.ArrayType() == 'exon': if filter_probesets_by == 'core': if self.ProbesetClass() != 'core': include_probeset = 'no' return include_probeset def ExonID(self): return self._exonid def GeneID(self): return self._geneid def ExternalGeneID(self): return self._external_gene def ProbesetType(self): ###e.g. Exon, junction, constitutive(gene) return self._probeset_type def GeneStructure(self): return self._block_structure def SecondaryExonID(self): return self._block_exon_ids def Chromosome(self): return self._chromosome def Strand(self): return self._strand def ProbeStart(self): return int(self._start) def ProbeStop(self): return int(self._stop) def ProbesetClass(self): ###e.g. core, extendended, full return self._probest_class def ExternalExonIDs(self): return self._external_exonids def ExternalExonIDList(self): external_exonid_list = string.split(self.ExternalExonIDs(),'|') return external_exonid_list def Constitutive(self): return self._constitutive_status def SecondaryGeneID(self): return self._secondary_geneid def SetExonSeq(self,seq): self._exon_seq = seq def ExonSeq(self): return string.upper(self._exon_seq) def SetJunctionSeq(self,seq): self._junction_seq = seq def JunctionSeq(self): return string.upper(self._junction_seq) def RecipricolProbesets(self): return self._junction_probesets def ExonRegionID(self): return self._exon_region def Report(self): output = self.Probeset() +'|'+ self.ExternalGeneID() return output def __repr__(self): return self.Report() class AffyExonSTData(SplicingAnnotationData): def __init__(self,probeset_id,ensembl_gene_id,exon_id,ens_exon_ids,transcript_cluster_id, chromosome, strand, probeset_start, probeset_stop, affy_class, constitutitive_probeset, exon_region, splicing_event, splice_junctions): self._geneid = ensembl_gene_id; self._external_gene = ensembl_gene_id; self._exonid = exon_id self._constitutive_status = constitutitive_probeset; self._start = probeset_start; self._stop = probeset_stop self._external_exonids = ens_exon_ids; self._secondary_geneid = transcript_cluster_id; self._chromosome = chromosome self._probest_class = affy_class; self._probeset=probeset_id self._exon_region=exon_region; self._splicing_event=splicing_event; self._splice_junctions=splice_junctions if self._exonid[0] == 'U': self._probeset_type = 'UTR' elif self._exonid[0] == 'E': self._probeset_type = 'exonic' elif self._exonid[0] == 'I': self._probeset_type = 'intronic' def ExonRegionID(self): return self._exon_region def SplicingEvent(self): return self._splicing_event def SpliceJunctions(self): return self._splice_junctions def Constitutive(self): if len(self._splicing_event)>0: return 'no' ###Over-ride affymetrix probeset file annotations if an exon is alternatively spliced else: return self._constitutive_status class AffyExonSTDataSimple(SplicingAnnotationData): def __init__(self,probeset_id,ensembl_gene_id,exon_region,ens_exon_ids,probeset_start,probeset_stop,strand,chr): self._geneid = ensembl_gene_id; self._external_gene = ensembl_gene_id; self._exon_region = exon_region self._external_exonids = ens_exon_ids; self._probeset=probeset_id self._chromosome = chr try: self._start=int(probeset_start); self._stop = int(probeset_stop) except Exception: self._start=probeset_start; self._stop = probeset_stop self._strand = strand class JunctionDataSimple(SplicingAnnotationData): def __init__(self,probeset_id,ensembl_gene_id,array_geneid,junction_probesets,critical_exons): self._geneid = ensembl_gene_id; self._junction_probesets = junction_probesets; self._exonid = critical_exons self._probeset=probeset_id; self._external_gene = array_geneid; self._external_exonids = '' def importProbesetSeqeunces(filename,array_type,exon_db,chromosome,species): #output_file = 'input/'+species+'/filtered_probeset_sequence.txt' #fn=filepath(output_file) #datar = open(fn,'w') print 'importing', filename probeset_seq_db={}; probesets_parsed=0; probesets_added=0 chromosome = 'chr'+str(chromosome) print "Begining generic fasta import of",filename fn=filepath(filename) sequence = ''; x = 0;count = 0 for line in open(fn,'r').xreadlines(): try: data, newline= string.split(line,'\n') except ValueError: continue try: if data[0] == '>': try: try: y = exon_db[probeset] sequence = string.upper(sequence) gene = y.GeneID(); y.SetExonSeq(sequence) try: probeset_seq_db[gene].append(y) except KeyError: probeset_seq_db[gene] = [y] sequence = ''; t= string.split(data,';'); probesets_added+=1 probeset=t[0]; probeset_data = string.split(probeset,':'); probeset = probeset_data[-1] chr = t[2]; chr = string.split(chr,'='); chr = chr[-1]; probesets_parsed +=1 except KeyError: sequence = ''; t= string.split(data,';') probeset=t[0]; probeset_data = string.split(probeset,':'); probeset = probeset_data[-1] chr = t[2]; chr = string.split(chr,'='); chr = chr[-1]; probesets_parsed +=1 #if chr == chromosome: go = 'yes' #else: go = 'no' except UnboundLocalError: ###Occurs for the first entry t= string.split(data,';') probeset=t[0]; probeset_data = string.split(probeset,':'); probeset = probeset_data[-1] chr = t[2]; chr = string.split(chr,'='); chr = chr[-1]; probesets_parsed +=1 #if chr == chromosome: go = 'yes' #else: go = 'no' else: sequence = sequence + data except IndexError: continue try: y = exon_db[probeset] sequence = string.upper(sequence) gene = y.GeneID(); y.SetExonSeq(sequence) try: probeset_seq_db[gene].append(y) except KeyError: probeset_seq_db[gene] = [y] except KeyError: null=[] #datar.close() #exportAssociations(probeset_seq_db,species) print len(probeset_seq_db), probesets_added, probesets_parsed, len(exon_db) #print probeset_seq_db['ENSG00000156006'] return probeset_seq_db def exportAssociations(probeset_seq_db,species): output_file = 'AltAnalyze/'+species+'/SequenceData/'+species+'/filtered_probeset_sequence.txt' fn=filepath(output_file) data = open(fn,'w') for probeset in probeset_seq_db: seq = probeset_seq_db[probeset] data.write(probeset+'\t'+seq+'\n') data.close() def getParametersAndExecute(probeset_seq_file,array_type,species): probeset_annotations_file = 'AltDatabase/'+species+'/exon/'+species+'_Ensembl_probesets.txt' ###Import probe-level associations exon_db = importSplicingAnnotationDatabase(probeset_annotations_file,array_type) start_time = time.time(); chromosome = 1 probeset_seq_db = importProbesetSeqeunces(probeset_seq_file,array_type,exon_db,chromosome,species) if array_type == 'gene': probeset_annotations_file = string.replace(probeset_annotations_file,'exon','gene') gene_exon_db = importSplicingAnnotationDatabase(probeset_annotations_file,array_type) translation_db = exportAllExonToGeneArrayAssociations(exon_db,gene_exon_db) probeset_seq_db = convertExonProbesetSequencesToGene(probeset_seq_db,gene_exon_db,translation_db) end_time = time.time(); time_diff = int(end_time-start_time) print "Analyses finished in %d seconds" % time_diff return probeset_seq_db def convertExonProbesetSequencesToGene(probeset_seq_db,gene_exon_db,translation_db): probeset_gene_seq_db={}; probeset_db = {} print len(probeset_seq_db), 'gene entries with exon probeset sequence' for probeset in gene_exon_db: y = gene_exon_db[probeset] if probeset in translation_db: try: for z in probeset_seq_db[y.GeneID()]: if z.Probeset() in translation_db[probeset]: y.SetExonSeq(z.ExonSeq()) ### Use the exon array sequence if the exon regions are the same try: probeset_gene_seq_db[y.GeneID()].append(y) except KeyError: probeset_gene_seq_db[y.GeneID()] = [y] probeset_db[probeset]=[] except KeyError: null=[] print len(probeset_db), 'gene probesets annotated with exon sequence' return probeset_gene_seq_db def exportAllExonToGeneArrayAssociations(exon_db,gene_exon_db): ### Above function basically does this but some exon array probesets may not be sequence matched (probably not necessary) output_file = 'AltDatabase/'+species+'/gene/'+species+'_gene-exon_probesets.txt' fn=filepath(output_file) data = open(fn,'w') data.write('gene_probeset\texon_probeset\n') exon_db_gene = {} for probeset in exon_db: y = exon_db[probeset] try: exon_db_gene[y.GeneID()].append(y) except KeyError: exon_db_gene[y.GeneID()] = [y] #print gene_exon_db['10411047'].ExonRegionID(),exon_db['4355948'].ExonRegionID() translation_db={} for probeset in gene_exon_db: y = gene_exon_db[probeset] try: for z in exon_db_gene[y.GeneID()]: if z.ExonRegionID() == y.ExonRegionID(): try: translation_db[probeset].append(z.Probeset()) except KeyError: translation_db[probeset] = [z.Probeset()] except KeyError: null=[] ### Mop-ups (get imperfect relationships) for probeset in gene_exon_db: if probeset not in translation_db: y = gene_exon_db[probeset] try: for z in exon_db_gene[y.GeneID()]: if (z.ExonRegionID()+'|') in (y.ExonRegionID()+'|') or (y.ExonRegionID()+'|') in (z.ExonRegionID()+'|'): #print z.ExonRegionID(), y.ExonRegionID();kill try: translation_db[probeset].append(z.Probeset()) except KeyError: translation_db[probeset] = [z.Probeset()] except KeyError: null=[] translation_db2={} for probeset in translation_db: y = gene_exon_db[probeset] #if probeset == '10411047': print '******',translation_db[probeset] for exon_probeset in translation_db[probeset]: z = exon_db[exon_probeset] coordinates = [y.ProbeStart(), y.ProbeStop(), z.ProbeStart(), z.ProbeStop()] coordinates.sort(); include = 'yes' ### Ensures that the coordinates overlap versus are separate if [y.ProbeStart(), y.ProbeStop()] == coordinates[:2]: include ='no' elif [y.ProbeStart(), y.ProbeStop()] == coordinates[-2:]: include = 'no' ### Include a probeset if the exon and gene probeset locations overlap or if there is only one associations if include == 'yes' or len(translation_db[probeset]) == 1: data.write(probeset+'\t'+exon_probeset+'\n') try: translation_db2[probeset].append(exon_probeset) except Exception: translation_db2[probeset] = [exon_probeset] if probeset not in translation_db2: ### If nothing got added, then just add the last match data.write(probeset+'\t'+exon_probeset+'\n') try: translation_db2[probeset].append(exon_probeset) except Exception: translation_db2[probeset] = [exon_probeset] data.close() print 'Out of all',len(gene_exon_db),'gene array probesets',len(translation_db2), 'had corresponding exon array probesets found.' return translation_db2 def getExonAnnotationsAndSequence(probeset_seq_file,array_type,species): probeset_annotations_file = 'AltDatabase/'+species+'/exon/'+species+'_Ensembl_probesets.txt' exon_db = importSplicingAnnotationDatabase(probeset_annotations_file,array_type) chromosome = 1 ###By running this next function, we can update exon_db to include probeset sequence data array_type='' try: probeset_seq_db = importProbesetSeqeunces(probeset_seq_file,array_type,exon_db,chromosome,species) except IOError: null = [] return exon_db def import_ensembl_unigene(species): filename = 'AltDatabase/'+species+'/SequenceData/'+species+'_Ensembl-Unigene.txt' fn=filepath(filename); unigene_ensembl={} print 'importing', filename for line in open(fn,'r').xreadlines(): data, newline= string.split(line,'\n') ensembl,unigene = string.split(data,'\t') if len(unigene)>1 and len(ensembl)>1: try: unigene_ensembl[unigene].append(ensembl) except KeyError: unigene_ensembl[unigene] = [ensembl] print 'len(unigene_ensembl)',len(unigene_ensembl) return unigene_ensembl def importEnsemblAnnotations(species): filename = 'AltDatabase/'+species+'/SequenceData/'+species+'_Ensembl-annotations.txt' fn=filepath(filename); symbol_ensembl={} print 'importing', filename for line in open(fn,'r').xreadlines(): data, newline= string.split(line,'\n') t = string.split(data,'\t'); ensembl = t[0] try: symbol = t[2] except IndexError: symbol = '' if len(symbol)>1 and len(ensembl)>1: try: symbol_ensembl[symbol].append(ensembl) except KeyError: symbol_ensembl[symbol] = [ensembl] print 'len(symbol_ensembl)',len(symbol_ensembl) symbol_ensembl = eliminate_redundant_dict_values(symbol_ensembl) return symbol_ensembl def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def importmiRNATargetPredictionsAdvanced(species): filename = 'AltDatabase/'+species+'/SequenceData/miRBS-combined_gene-target-sequences.txt' print 'importing', filename; count = 0 source_db={} ### collect stats on the input file sources fn=filepath(filename); ensembl_mirna_db={}; unigene_ids={}; x = 4000; z=0; nulls={} for line in open(fn,'r').xreadlines(): line = string.replace(line,"'",''); line = string.replace(line,'"','') data, newline = string.split(line,'\n') microrna,ensembl,three_prime_utr_anchor_site_seq,sources = string.split(data,'\t') sources_list = string.split(sources,'|') for source in sources_list: try: source_db[source]+=1 except Exception: source_db[source]=1 y = MicroRNAData(ensembl,microrna,three_prime_utr_anchor_site_seq,sources) count+=1 #y = microrna,three_prime_utr_anchor_site_seq,sources try: ensembl_mirna_db[ensembl].append(y) except KeyError: ensembl_mirna_db[ensembl] = [y] ensembl_mirna_db = eliminate_redundant_dict_values(ensembl_mirna_db) print count, "microRNA to target relationships imported" for source in source_db: print source,':',source_db[source], print '' return ensembl_mirna_db def importmiRNATargetPredictions(species): unigene_ensembl = import_ensembl_unigene(species) symbol_ensembl = importEnsemblAnnotations(species) filename = 'AltDatabase/'+species+'/SequenceData//microRNA-target-annotated.txt' print 'importing', filename fn=filepath(filename); ensembl_mirna_db={}; unigene_ids={}; x = 4000; z=0; nulls={};k=0 for line in open(fn,'r').xreadlines(): if k == 0:k=1 else: line = string.replace(line,"'",''); line = string.replace(line,'"','') data, newline = string.split(line,'\n') refseqid, unigene, symbol, symbol2, llid, llrepprotacc, microrna, rank, pictar_score, annotation, num_anchor_sites, three_prime_utr_anchor_site_seq = string.split(data,'\t') sequences = string.split(three_prime_utr_anchor_site_seq,' ') ensembls = [] unigene_ids[unigene]=[] if unigene in unigene_ensembl: ensembls = unigene_ensembl[unigene] elif symbol in symbol_ensembl: ensembls = symbol_ensembl[symbol] if len(ensembls)>5: print len(ensembls) for ensembl in ensembls: for sequence in sequences: y = MicroRNAData(ensembl,microrna,sequence,'') #y = microrna,three_prime_utr_anchor_site_seq,'' try: ensembl_mirna_db[ensembl].append(y) except KeyError: ensembl_mirna_db[ensembl] = [y] if len(ensembls)<1: nulls[unigene] = [] ensembl_mirna_db = eliminate_redundant_dict_values(ensembl_mirna_db) print len(ensembl_mirna_db), "genes with associated microRNA data out of",len(unigene_ids) return ensembl_mirna_db class MicroRNAData: def __init__(self, gene_id, microrna, sequence, source): self._gene_id = gene_id; self._microrna = microrna; self._sequence = sequence; self._source = source self.start_set = [] self.end_set = [] self.exon_sets=[] def GeneID(self): return self._gene_id def MicroRNA(self): return self._microrna def Sequence(self): return self._sequence def Source(self): return self._source def setEnsExons(self,ens_exons): self.exon_sets+=ens_exons def EnsExons(self): exonsets_unique = unique.unique(self.exon_sets) return string.join(exonsets_unique,'|') def setCoordinates(self,chr,strand,start,end): self.start_set.append(start) self.end_set.append(end) self.chr = chr self.strand = strand def Coordinates(self): x=0; coords=[] for i in self.start_set: coord = self.Chr()+':'+str(i)+'-'+str(self.end_set[x]) coords.append(coord) x+=1 coords = unique.unique(coords) coords = string.join(coords,'|') ###If multiple coordinates return coords def Chr(self): return self.chr def Strand(self): return self.strand def SummaryValues(self): output = self.GeneID()+'|'+self.MicroRNA()+'|'+self.Sequence() return output def __repr__(self): return self.SummaryValues() def alignmiRNAData(array_type,mir_source,species,stringency,ensembl_mirna_db,splice_event_db): output_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_ensembl_microRNAs.txt' if mir_source == 'pictar': fn=filepath(output_file); data = open(fn,'w') print "Aligning microRNAs to probesets" added = {} ###not sure where probeset_miRNA_db={} for gene in ensembl_mirna_db: for y in ensembl_mirna_db[gene]: miRNA = y.MicroRNA(); miRNA_seq = y.Sequence(); sources = y.Source() if mir_source == 'pictar': if (gene,miRNA,miRNA_seq) not in added: data.write(gene+'\t'+miRNA+'\t'+miRNA_seq+'\n'); added[(gene,miRNA,miRNA_seq)]=[] if gene in splice_event_db: for ed in splice_event_db[gene]: probeset = ed.Probeset() probeset_seq = ed.ExonSeq() #exonid = ed.ExonID() proceed = 'no'; hit = 'no' if len(miRNA_seq)>0 and len(probeset_seq)>0: miRNA_seqs = string.split(miRNA_seq,'|') ### Can be multiples for mseq in miRNA_seqs: if mseq in probeset_seq: hit = 'yes' if stringency == 'strict': if '|' in sources: proceed='yes' else: proceed='yes' if proceed == 'yes' and hit == 'yes': yc = getMicroRNAGenomicCoordinates(ed,y) ### Add's genomic coordinate information to these objects try: probeset_miRNA_db[probeset].append(yc) except KeyError: probeset_miRNA_db[probeset] = [yc] if mir_source == 'pictar': data.close() probeset_miRNA_db = eliminate_redundant_dict_values(probeset_miRNA_db) if stringency == 'lax': export_type = 'any' else: export_type = 'multiple' output_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_probeset_microRNAs_'+export_type+'.txt' coord_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_probeset_coord_microRNAs_'+export_type+'.txt' k=0 fn=filepath(output_file) cfn=filepath(coord_file) data = open(fn,'w'); coord_data = open(cfn,'w') for probeset in probeset_miRNA_db: for y in probeset_miRNA_db[probeset]: miRNA = y.MicroRNA(); miRNA_seq = y.Sequence(); sources = y.Source() data.write(probeset+'\t'+miRNA+'\t'+miRNA_seq+'\t'+sources+'\n') coord_data.write(probeset+'\t'+miRNA+'\t'+miRNA_seq+'\t'+sources+'\t'+y.GeneID()+'\t'+y.Coordinates()+'\t'+y.EnsExons()+'\n') k+=1 data.close(); coord_data.close() print k, 'entries written to', output_file def getMicroRNAGenomicCoordinates(ed,y): ### This function is used for internal QC miRNA = y.MicroRNA(); miRNA_seq = y.Sequence(); sources = y.Source() ps_start = ed.ProbeStart(); ps_end = ed.ProbeStop(); strand = ed.Strand(); chr = ed.Chromosome() probeset_seq = ed.ExonSeq() mi_start = string.find(probeset_seq,miRNA_seq) mi_end = mi_start+len(miRNA_seq) if strand == '+': genomic_start = ps_start+mi_start genomic_end = ps_start+mi_end else: genomic_start = ps_end-mi_start genomic_end = ps_end-mi_end yc = copy.deepcopy(y) ### Multiple sites for the same miRNA can exist per gene yc.setCoordinates(chr,strand,genomic_start,genomic_end) yc.setEnsExons(ed.ExternalExonIDList()) return yc def checkProbesetSequenceFile(species): """ Check to see if the probeset sequence file is present and otherwise download AltAnalyze hosted version""" probeset_seq_file = getProbesetSequenceFile(species) if probeset_seq_file == None: dir = '/AltDatabase/'+species+'/'+array_type filename = update.getFileLocations(species,'exon_seq') filename = dir[1:]+'/'+ filename update.downloadCurrentVersion(filename,'exon','.fa') probeset_seq_file = getProbesetSequenceFile(species) return probeset_seq_file def getProbesetSequenceFile(species): probeset_seq_file = None import_dir = '/AltDatabase'+'/'+species+'/exon' filedir = import_dir[1:]+'/' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for input_file in dir_list: #loop through each file in the directory to output results ### No probeset sequence file currently for gene arrays, so use the same exon region probeset sequence from the exon array if '.probeset.fa' in input_file: probeset_seq_file = filedir+input_file return probeset_seq_file def runProgram(Species,Array_type,Process_microRNA_predictions,miR_source,Stringency): global species; species = Species; global array_type; array_type = Array_type global process_microRNA_predictions; process_microRNA_predictions = Process_microRNA_predictions global mir_source; mir_source = miR_source global stringency; stringency = Stringency probeset_seq_file = checkProbesetSequenceFile(species) probeset_annotations_file = 'AltDatabase/'+species+'/exon/'+species+'_Ensembl_probesets.txt' splice_event_db = getParametersAndExecute(probeset_seq_file,array_type,species) if process_microRNA_predictions == 'yes': print 'stringency:',stringency if mir_source == 'pictar': ensembl_mirna_db = importmiRNATargetPredictions(species) else: ensembl_mirna_db = importmiRNATargetPredictionsAdvanced(species) alignmiRNAData(array_type,mir_source,species,stringency,ensembl_mirna_db,splice_event_db) if __name__ == '__main__': species = 'Hs'; array_type = 'exon' process_microRNA_predictions = 'yes' mir_source = 'multiple'; stringency = 'strict' print array_type runProgram(species,array_type,process_microRNA_predictions,mir_source,stringency) stringency = 'lax' runProgram(species,array_type,process_microRNA_predictions,mir_source,stringency); sys.exit() print "******Select Species*******" print "1) Human" print "2) Mouse" print "3) Rat" inp = sys.stdin.readline(); inp = inp.strip() if inp == '1': species = 'Hs' if inp == '2': species = 'Mm' if inp == '3': species = 'Rn' print "******Source Data*******" print "1) Multiple miR database sources" print "2) PicTar" inp = sys.stdin.readline(); inp = inp.strip() if inp == '1': mir_source = 'multiple' if inp == '2': mir_source = 'pictar' print "******Analysis Stringency*******" print "1) Atleast two overlapping probeset-miR binding site predictions" print "2) Any probeset-miR binding site predictions (lax)" inp = sys.stdin.readline(); inp = inp.strip() if inp == '1': stringency = 'strict' if inp == '2': stringency = 'lax'
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ExonSeqModule.py
ExonSeqModule.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import export dirfile = unique ############ File Import Functions ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) #add in code to prevent folder names from being included dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".all" or entry[-5:] == ".data" or entry[-3:] == ".fa": dir_list2.append(entry) return dir_list2 def returnDirectories(sub_dir): dir=os.path.dirname(dirfile.__file__) dir_list = os.listdir(dir + sub_dir) ###Below code used to prevent FILE names from being included dir_list2 = [] for entry in dir_list: if "." not in entry: dir_list2.append(entry) return dir_list2 class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term in data_dir: matches.append(data_dir) return matches def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data ############### Main Program ############### def importAnnotationData(filename): fn=filepath(filename); x=1 global gene_symbol_db; gene_symbol_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: gene = t[0] try: symbol = t[1] except IndexError: symbol = '' if len(symbol)>0: gene_symbol_db[gene] = symbol def importGeneData(filename,data_type): fn=filepath(filename); x=0; gene_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0:x=1 else: proceed = 'yes' if data_type == 'junction': gene, region5, region3 = t; value_str = region5+':'+region3 if data_type == 'feature': probeset, gene, feature, region = t; value_str = region,feature+':'+region+':'+probeset ###access region data later #if (gene,region) not in region_db: region_db[gene,region] = feature,probeset ### Needed for processed structure table (see two lines down) try: region_db[gene,region].append((feature,probeset)) ### Needed for processed structure table (see two lines down) except KeyError: region_db[gene,region] = [(feature,probeset)] try: region_count_db[(gene,region)]+=1 except KeyError: region_count_db[(gene,region)]=1 ###have to add in when parsing structure probeset values for nulls (equal to 0) if data_type == 'structure': gene, exon, type, block, region, const, start, annot = t; region_id = exon if len(annot)<1: annot = '---' if (gene,exon) in region_db: probeset_data = region_db[(gene,exon)] for (feature,probeset) in probeset_data: count = str(region_count_db[(gene,exon)]) ###here, feature is the label (reversed below) value_str = feature+':'+exon+':'+probeset+':'+type+':'+count+':'+const+':'+start+':'+annot if gene in gene_symbol_db: ###Only incorporate gene data with a gene symbol, since Cytoscape currently requires this try: gene_db[gene].append(value_str) except KeyError: gene_db[gene] = [value_str] proceed = 'no' else: ### Occurs when no probeset is present: E.g. the imaginary first and last UTR region if doesn't exit feature = exon ###feature contains the region information, exon is the label used in Cytoscape exon,null = string.split(exon,'.') probeset = '0' count = '1' null_value_str = exon,exon+':'+feature+':'+probeset ###This is how Alex has it... to display the label without the '.1' first try: feature_db[gene].append(null_value_str) except KeyError: feature_db[gene] = [null_value_str] value_str = exon+':'+feature+':'+probeset+':'+type+':'+count+':'+const+':'+start+':'+annot if gene in structure_region_db: order_db = structure_region_db[gene] order_db[exon] = block else: order_db = {} order_db[exon] = block structure_region_db[gene] = order_db if gene in gene_symbol_db and proceed == 'yes': ###Only incorporate gene data with a gene symbol, since Cytoscape currently requires this try: gene_db[gene].append(value_str) except KeyError: gene_db[gene] = [value_str] return gene_db def exportData(gene_db,data_type,species): export_file = 'AltDatabase/ensembl/SubGeneViewer/'+species+'/Xport_sgv_'+data_type+'.csv' if data_type == 'feature': title = 'gene'+'\t'+'symbol'+'\t'+'sgv_feature'+'\n' if data_type == 'structure': title = 'gene'+'\t'+'symbol'+'\t'+'sgv_structure'+'\n' if data_type == 'splice': title = 'gene'+'\t'+'symbol'+'\t'+'sgv_splice'+'\n' data = export.createExportFile(export_file,'AltDatabase/ensembl/SubGeneViewer/'+species) #fn=filepath(export_file); data = open(fn,'w') data.write(title) for gene in gene_db: try: symbol = gene_symbol_db[gene] value_str_list = gene_db[gene] value_str = string.join(value_str_list,',') values = string.join([gene,symbol,value_str],'\t')+'\n'; data.write(values) except KeyError: null = [] data.close() print "exported to",export_file def customLSDeepCopy(ls): ls2=[] for i in ls: ls2.append(i) return ls2 def reorganizeData(species): global region_db; global region_count_db; global structure_region_db; global feature_db region_db={}; region_count_db={}; structure_region_db={} import_dir = '/AltDatabase/ensembl/'+species g = GrabFiles(); g.setdirectory(import_dir) exon_struct_file = g.searchdirectory('exon-structure') feature_file = g.searchdirectory('feature-data') junction_file = g.searchdirectory('junction-data') annot_file = g.searchdirectory('Ensembl-annotations.') importAnnotationData(annot_file[0]) ### Run the files through the same function which has options for different pieces of data. Feature data is processed a bit differently ### since fake probeset data is supplied for intron and UTR features not probed for splice_db = importGeneData(junction_file[0],'junction') feature_db = importGeneData(feature_file[0],'feature') structure_db = importGeneData(exon_struct_file[0],'structure') for gene in feature_db: order_db = structure_region_db[gene] temp_list0 = []; temp_list = []; rank = 1 for (region,value_str) in feature_db[gene]: ###First, we have to get the existing order... this is important because when we sort, it screw up ranking within an intron with many probesets temp_list0.append((rank,region,value_str)); rank+=1 for (rank,region,value_str) in temp_list0: try: block_number = order_db[region] except KeyError: print gene, region, order_db;kill temp_list.append((int(block_number),rank,value_str)) ###Combine the original ranking plus the ranking included from taking into account regions not covered by probesets temp_list.sort() temp_list2 = [] for (block,rank,value_str) in temp_list: temp_list2.append(value_str) feature_db[gene] = temp_list2 exportData(splice_db,'splice',species) exportData(structure_db,'structure',species) exportData(feature_db,'feature',species) if __name__ == '__main__': dirfile = unique species = 'Hs' reorganizeData(species)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/SubGeneViewerExport.py
SubGeneViewerExport.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies def filepath(filename): return filename def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') #data = string.replace(data,'"','') return data def findParentDir(filename): ### :: reverses string filename = string.replace(filename,'//','/') filename = string.replace(filename,'//','/') ### If /// present filename = string.replace(filename,'\\','/') x = string.find(filename[::-1],'/')*-1 ### get just the parent directory return filename[:x] def findFilename(filename): filename = string.replace(filename,'//','/') filename = string.replace(filename,'//','/') ### If /// present filename = string.replace(filename,'\\','/') x = string.find(filename[::-1],'/')*-1 ### get just the parent directory return filename[x:] def covertAffyFormatToBED(filename, ConversionDB=None): print 'processing:',filename parent = findParentDir(filename) if ConversionDB==None: output_file = 'simple_chr.bed' else: output_file = findFilename(filename) output_file = string.replace(output_file,'mm9','mm10') export_obj = open(parent+'/'+output_file,'w') fn=filepath(filename); entry_count=0; readfiles = False for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if data[0]=='#': readfiles = False elif readfiles==False: readfiles = True if ConversionDB!=None: export_obj.write(line) ### Write header else: try: t = string.split(data[1:-1],'","') probeset_id,chr,strand,start,stop = t[:5] int(start) if ConversionDB==None: if 'chr' in chr: export_obj.write(chr+'\t'+start+'\t'+stop+'\t'+probeset_id+'\n') else: chr,start,stop = ConversionDB[probeset_id] t = [probeset_id,chr,strand,start,stop] + t[5:] values = '"'+string.join(t,'","')+'"\n' export_obj.write(values) entry_count+=1 except Exception: pass export_obj.close() print entry_count, 'entries saved to:',parent+'/'+output_file def importConvertedBED(filename): print 'processing:',filename parent = findParentDir(filename) fn=filepath(filename); entry_count=0; newCoordinates={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if data[0]!='#': try: t = string.split(data,'\t') chr,start,stop,probeset_id = t int(start) if 'chr' in chr: entry_count+=1 newCoordinates[probeset_id] = chr,start,stop except ZeroDivisionError: pass print entry_count, 'imported and saved.' return newCoordinates filename = '/Users/saljh8/Downloads/MoGene-1_0-st-v1-1/MoGene-1_0-st-v1.na33.2.mm9.probeset.csv' bed_output = '/Users/saljh8/Downloads/MoGene-1_0-st-v1-1/input.bed' #covertAffyFormatToBED(filename);sys.exit() newCoordinates = importConvertedBED(bed_output) covertAffyFormatToBED(filename,ConversionDB=newCoordinates)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/LiftOverAffy.py
LiftOverAffy.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This module contains methods for reading the Ensembl SQL FTP directory structure to identify appropriate species and systems for download for various versions of Ensembl, download the necessary database files to reconstruct any BioMart annotation files and determine genomic coordinates for the start and end positions of protein domains.""" try: clearall() except NameError: null = [] ### Occurs when re-running the script to clear all global variables import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import export import traceback import update; reload(update) def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv": dir_list2.append(entry) return dir_list2 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def getChrGeneOnly(Species,configType,ensembl_version,force): global species; species = Species global rewrite_existing; rewrite_existing = 'yes' print 'Downloading Ensembl flat files for parsing from Ensembl SQL FTP server...' global ensembl_build ensembl_sql_dir, ensembl_sql_description_dir = getEnsemblSQLDir(ensembl_version) print ensembl_sql_dir ensembl_build = string.split(ensembl_sql_dir,'core')[-1][:-1] sql_file_db,sql_group_db = importEnsemblSQLInfo(configType) ###Import the Config file with the files and fields to parse from the downloaded SQL files filtered_sql_group_db={} ### Get only these tables filtered_sql_group_db['Primary'] = ['gene.txt','gene_stable_id.txt','seq_region.txt'] filtered_sql_group_db['Description'] = [ensembl_sql_description_dir] sq = EnsemblSQLInfo(ensembl_sql_description_dir, 'EnsemblSQLDescriptions', 'Description', '', '', '') sql_file_db['Primary',ensembl_sql_description_dir] = sq output_dir = 'AltDatabase/ensembl/'+species+'/EnsemblSQL/' importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,filtered_sql_group_db,sql_file_db,output_dir,'Primary',force) ###Download and import the Ensembl SQL files program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' else: parent_dir = 'Databases/' output_dir = parent_dir+species+'/uid-gene/Ensembl-chr.txt' headers = ['Ensembl Gene ID', 'Chromosome'] values_list=[] for geneid in gene_db: gi = gene_db[geneid] try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() seq_region_id = gi.SeqRegionId() chr = seq_region_db[seq_region_id].Name() values = [ens_gene,chr] values_list.append(values) exportEnsemblTable(values_list,headers,output_dir) def getGeneTranscriptOnly(Species,configType,ensembl_version,force): global species; species = Species global rewrite_existing; rewrite_existing = 'yes' print 'Downloading Ensembl flat files for parsing from Ensembl SQL FTP server...' global ensembl_build ensembl_sql_dir, ensembl_sql_description_dir = getEnsemblSQLDir(ensembl_version) print ensembl_sql_dir ensembl_build = string.split(ensembl_sql_dir,'core')[-1][:-1] sql_file_db,sql_group_db = importEnsemblSQLInfo(configType) ###Import the Config file with the files and fields to parse from the downloaded SQL files filtered_sql_group_db={} ### Get only these tables filtered_sql_group_db['Primary'] = ['gene.txt','gene_stable_id.txt','transcript.txt','transcript_stable_id.txt'] filtered_sql_group_db['Description'] = [ensembl_sql_description_dir] sq = EnsemblSQLInfo(ensembl_sql_description_dir, 'EnsemblSQLDescriptions', 'Description', '', '', '') sql_file_db['Primary',ensembl_sql_description_dir] = sq output_dir = 'AltDatabase/ensembl/'+species+'/EnsemblSQL/' additionalFilter = ['transcript','gene'] importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,filtered_sql_group_db,sql_file_db,output_dir,'Primary',force) ###Download and import the Ensembl SQL files program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' else: parent_dir = 'Databases/' output_dir = parent_dir+species+'/uid-gene/Ensembl-EnsTranscript.txt' headers = ['Ensembl Gene ID', 'Ensembl Transcript ID'] values_list=[] for transcript_id in transcript_db: ti = transcript_db[transcript_id] try: ens_gene = gene_db[ti.GeneId()].StableId() except Exception: ens_gene = gene_stable_id_db[ti.GeneId()].StableId() try: ens_transcript = transcript_db[transcript_id].StableId() except Exception: ens_transcript = transcript_stable_id_db[transcript_id].StableId() values = [ens_gene,ens_transcript] values_list.append(values) exportEnsemblTable(values_list,headers,output_dir) def getEnsemblSQLDir(ensembl_version): if 'Plus' in ensembl_version: ensembl_version = string.replace(ensembl_version,'Plus','') if 'EnsMart' in ensembl_version: ensembl_version = string.replace(ensembl_version, 'EnsMart','') original_version = ensembl_version if 'Plant' in ensembl_version: ensembl_version = string.replace(ensembl_version, 'Plant','') if 'Bacteria' in ensembl_version: ensembl_version = string.replace(ensembl_version, 'Bacteria','') if 'Fungi' in ensembl_version: ensembl_version = string.replace(ensembl_version, 'Fungi','') try: check = int(ensembl_version) import UI; UI.exportDBversion('EnsMart'+ensembl_version) ensembl_version = 'release-'+ensembl_version except Exception: print 'EnsMart version name is incorrect (e.g., should be "60")'; sys.exit() import UI; species_names = UI.getSpeciesInfo() try: species_full = species_names[species] ens_species = string.replace(string.lower(species_full),' ','_') except Exception: ens_species = species species_full = species try: child_dirs, ensembl_species, ensembl_versions = getCurrentEnsemblSpecies(original_version) except Exception: print "\nPlease try a different version. This one does not appear to be valid." print traceback.format_exc();sys.exit() ensembl_sql_dir,ensembl_sql_description_dir = child_dirs[species_full] return ensembl_sql_dir, ensembl_sql_description_dir def buildEnsemblRelationalTablesFromSQL(Species,configType,analysisType,externalDBName,ensembl_version,force,buildCommand=None): import UI; import update; global external_xref_key_db; global species; species = Species global system_synonym_db; system_synonym_db={} ### Currently only used by GO-Elite global rewrite_existing; rewrite_existing = 'yes'; global all_external_ids; all_external_ids={}; global added_systems; added_systems={} original_version = ensembl_version print 'Downloading Ensembl flat files for parsing from Ensembl SQL FTP server...' ### Get version directories for Ensembl global ensembl_build ensembl_sql_dir, ensembl_sql_description_dir = getEnsemblSQLDir(ensembl_version) ensembl_build = string.split(ensembl_sql_dir,'core')[-1][:-1] sql_file_db,sql_group_db = importEnsemblSQLInfo(configType) ###Import the Config file with the files and fields to parse from the downloaded SQL files sql_group_db['Description'] = [ensembl_sql_description_dir] sq = EnsemblSQLInfo(ensembl_sql_description_dir, 'EnsemblSQLDescriptions', 'Description', '', '', '') sql_file_db['Primary',ensembl_sql_description_dir] = sq output_dir = 'AltDatabase/ensembl/'+species+'/EnsemblSQL/' importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Primary',force) ###Download and import the Ensembl SQL files if analysisType != 'ExternalOnly': ### Build and export the basic Ensembl gene annotation table xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Xref',force) buildEnsemblGeneAnnotationTable(species,xref_db) if analysisType == 'ExternalOnly': ###Export data for Ensembl-External gene system buildFilterDBForExternalDB(externalDBName) xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Xref',force) external_xref_key_db = xref_db; #resetExternalFilterDB() object_xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Object-Xref',force) export_status='yes';output_id_type='Gene' buildEnsemblExternalDBRelationshipTable(externalDBName,xref_db,object_xref_db,output_id_type,species) if analysisType == 'AltAnalyzeDBs': ###Export data for Ensembl-External gene system buildTranscriptStructureTable() if buildCommand == 'exon': return None ###Export transcript biotype annotations (e.g., NMD) exportTranscriptBioType() ###Get Interpro AC display name buildFilterDBForExternalDB('Interpro') xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Xref',force) getDomainGenomicCoordinates(species,xref_db) if force == 'yes': ### Download Transcript seqeunces getEnsemblTranscriptSequences(original_version,species) def getEnsemblTranscriptSequences(ensembl_version,species,restrictTo=None): ### Download Seqeunce data import UI; species_names = UI.getSpeciesInfo() species_full = species_names[species] ens_species = string.replace(string.lower(species_full),' ','_') if 'release-' not in ensembl_version: ensembl_version = 'release-'+ensembl_version if restrictTo == None or restrictTo == 'protein': dirtype = 'fasta/'+ens_species+'/pep' if 'Plant' in ensembl_version or 'Bacteria' in ensembl_version or 'Fungi' in ensembl_version: ensembl_protseq_dir = getCurrentEnsemblGenomesSequences(ensembl_version,dirtype,ens_species) else: ensembl_protseq_dir = getCurrentEnsemblSequences(ensembl_version,dirtype,ens_species) output_dir = 'AltDatabase/ensembl/'+species + '/' gz_filepath, status = update.download(ensembl_protseq_dir,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status if restrictTo == None or restrictTo == 'cDNA': dirtype = 'fasta/'+ens_species+'/cdna' if 'Plant' in ensembl_version or 'Bacteria' in ensembl_version or 'Fungi' in ensembl_version: ensembl_cdnaseq_dir = getCurrentEnsemblGenomesSequences(ensembl_version,dirtype,ens_species) else: ensembl_cdnaseq_dir = getCurrentEnsemblSequences(ensembl_version,dirtype,ens_species) output_dir = 'AltDatabase/'+species + '/SequenceData/' #print [ensembl_cdnaseq_dir] gz_filepath, status = update.download(ensembl_cdnaseq_dir,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status def getFullGeneSequences(ensembl_version,species): import UI; species_names = UI.getSpeciesInfo() try: species_full = species_names[species] ens_species = string.replace(string.lower(species_full),' ','_') except Exception: ens_species = species species_full = species if 'EnsMart' in ensembl_version: ensembl_version = string.replace(ensembl_version, 'EnsMart','') if 'release-' not in ensembl_version: ensembl_version = 'release-'+ensembl_version dirtype = 'fasta/'+ens_species+'/dna' if 'Plant' in ensembl_version or 'Bacteria' in ensembl_version or 'Fungi' in ensembl_version: ensembl_dnaseq_dirs = getCurrentEnsemblGenomesSequences(ensembl_version,dirtype,ens_species) else: ensembl_dnaseq_dirs = getCurrentEnsemblSequences(ensembl_version,dirtype,ens_species) output_dir = 'AltDatabase/'+species + '/SequenceData/chr/' global dna dna = export.ExportFile(output_dir+species+'_gene-seq-2000_flank.fa') print 'Writing gene sequence file plus 2000 flanking base-pairs' from build_scripts import EnsemblImport chr_gene_db,location_gene_db = EnsemblImport.getEnsemblGeneLocations(species,'','key_by_chromosome') for (chr_file,chr_url) in ensembl_dnaseq_dirs: #if 'MT' in chr_file: if 'toplevel' in chr_file: gz_filepath, status = update.download(chr_url,output_dir,'') dna_db = divideUpTopLevelChrFASTA(output_dir+chr_file[:-3],output_dir,'store') ### Would work nice, but too file intensive print len(dna_db), 'scaffolds read into memory' for chr in chr_gene_db: if chr in dna_db: #print chr,'found' parseChrFASTA(dna_db[chr],chr,chr_gene_db[chr],location_gene_db) else: print chr,'not found' try: os.remove(gz_filepath) ### Not sure why this works now and not before except Exception: null=[] try: os.remove(gz_filepath[:-3]) ### Delete the chromosome sequence file except Exception: null=[] else: chr=string.split(chr_file,'.')[-3] if chr in chr_gene_db: gz_filepath, status = update.download(chr_url,output_dir,'') parseChrFASTA(output_dir+chr_file[:-3],chr,chr_gene_db[chr],location_gene_db) try: os.remove(gz_filepath) ### Not sure why this works now and not before except Exception: null=[] try: os.remove(gz_filepath[:-3]) ### Delete the chromosome sequence file except Exception: null=[] dna.close() def divideUpTopLevelChrFASTA(filename,output_dir,action): """ When individual chromosome files are not present, parse the TopLevel file which contains segments divided by scaffold rather than individual chromosomes. Since the Scaffolds are reported rather than the chromosomes for genes in the other Ensembl annotation files, the scaffolds can serve as a surrogate for individual chromosome files when parsed out.""" fn=filepath(filename); fasta=[]; sdna=None for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if '>' == data[0]: ### Save values from previous scaffold if sdna != None: if action == 'write': for ln in fasta: sdna.write(ln) sdna.close() else: sdna[scaffold_id] = [scaffold_line]+fasta #if scaffold_id == 'scaffold_753': print scaffold_id, scaffold_line, fasta;kill fasta=[] else: sdna = {} ### performed once ### Create new export object scaffold_id=string.split(data[1:],' ')[0]; scaffold_line = line if action == 'write': export_dir = string.replace(filename,'toplevel','chromosome.'+scaffold_id) sdna = export.ExportFile(export_dir) sdna.write(line) else: fasta.append(line) if action == 'write': for ln in fasta: sdna.write(ln) sdna.close() else: sdna[scaffold_id] = [scaffold_line]+fasta return sdna def parseChrFASTA(filename,chr,chr_gene_locations,location_gene_db): """ This function parses FASTA formatted chromosomal sequence, storing only sequence needed to get the next gene plus any buffer seqence, in memory. Note: not straight forward to follow initially, as some tricks are needed to get the gene plus buffer sequence at the ends of the chromosome""" genes_to_be_examined={} for (ch,cs,ce) in location_gene_db: gene,strand = location_gene_db[ch,cs,ce] if ch==chr: genes_to_be_examined[gene]=[ch,cs,ce] from build_scripts import EnsemblImport if ('/' in filename) or ('\\' in filename): ### Occurs when parsing a toplevel chromosome sequence file print "Parsing chromosome %s sequence..." % chr fn=filepath(filename) sequence_data = open(fn,'rU').xreadlines() readtype = 'file' else: """The scaffold architecture of some species sequence files creates a challenge to integrate non-chromosomal sequence, however, we still want to analyze it in the same way as chromosomal sequence. One alternative is to write out each scaffold it's own fasta file. The problem with this is that it creates dozens of thousands of files which is time consuming and messy - see divideUpTopLevelChrFASTA(). To resolve this, we instead store the sequence in a dictionary as sequence lines, but read in the sequence lines just like they are directly read from the fasta sequence, allowing both pipelines to work the same (rather than maintain two complex functions that do the same thing).""" scaffold_line_db = filename sequence_data = scaffold_line_db #print len(scaffold_line_db) readtype = 'dictionary' chr_gene_locations.sort() cs=chr_gene_locations[0][0]; ce=chr_gene_locations[0][1]; buffer=2000; failed=0; gene_count=0; terminate_chr_analysis='no' max_ce = chr_gene_locations[-1][1]; genes_analyzed={} gene,strand = location_gene_db[chr,cs,ce] x=0; sequence=''; running_seq_length=0; tr=0 ### tr is the total number of nucleotides removed (only store sequence following the last gene) for line in sequence_data: data = cleanUpLine(line) if x==0: #>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 max_chr_length = int(string.split(data,':')[-2])-70 x=1 else: iterate = 'yes' ### Since the buffer region can itself contain multiple genes, we may need to iterature through the last stored sequence set for multiple genes sequence += data; running_seq_length+=len(data) if (ce+buffer)>=max_chr_length: target_seq_length = max_chr_length else: target_seq_length = ce+buffer if running_seq_length>=target_seq_length: while iterate == 'yes': internal_buffer = buffer adj_start = cs-tr-buffer-1; adj_end = ce-tr+buffer; original_adj_start=adj_start if adj_start<0: original_adj_start = abs(adj_start); internal_buffer=buffer-(adj_start*-1); adj_start=0 try: gene_seq = sequence[adj_start:adj_end] ### Add "N" to the sequence, before and after, if the gene starts to close the chromosome end for the buffer if adj_start==0: gene_seq=original_adj_start*'N'+gene_seq elif len(gene_seq) != (adj_end-adj_start): gene_seq+=((adj_end-adj_start)-len(gene_seq))*'N' start=str(cs-buffer); end=str(ce+buffer) ### write this out if strand=='-': gene_seq=EnsemblImport.reverse_orientation(gene_seq) header = string.join(['>'+gene,chr,str(cs),str(ce)],'|') #['>'+gene,chr,start,end] #print header, cs, ce, strand,adj_start,adj_end,len(sequence),len(gene_seq) #print x,[gene_seq] if gene not in genes_analyzed: ### Indicates something is iterating where it shouldn't be, but doesn't seem to create a signficant data handling issue dna.write(header+'\n'); dna.write(gene_seq+'\n'); x+=1 genes_analyzed[gene]=[] except KeyError: failed+=1; kill ### gene is too close to chromosome end to add buffer seq_start = adj_start; tr = cs-internal_buffer-1; sequence=sequence[seq_start:]; gene_count+=1 try: cs=chr_gene_locations[gene_count][0]; ce=chr_gene_locations[gene_count][1] gene,strand = location_gene_db[chr,cs,ce] except IndexError: terminate_chr_analysis = 'yes'; iterate='no'; break ### no more genes to examine on this chromosome if len(data)<60: iterate='yes' ### Forces re-iteration through the last stored sequence set else: iterate='no' if terminate_chr_analysis == 'yes': break if ('/' in filename) or ('\\' in filename): print "Sequence for",len(genes_analyzed),"out of",len(genes_to_be_examined),"genes exported..." """ for gene in genes_to_be_examined: if gene not in genes_analyzed: print gene, genes_to_be_examined[gene] sys.exit()""" elif len(genes_analyzed) != len(genes_to_be_examined): print len(genes_to_be_examined)-len(genes_analyzed), 'not found for',chr def buildTranscriptStructureTable(): ### Function for building Ensembl transcription annotation file temp_values_list = []; output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' headers = ['Ensembl Gene ID', 'Chromosome', 'Strand', 'Exon Start (bp)', 'Exon End (bp)', 'Ensembl Exon ID', 'Constitutive Exon', 'Ensembl Transcript ID'] for eti in exon_transcript_db: exonid = eti.ExonId(); transcript_id = eti.TranscriptId(); rank = eti.Rank() ei = exon_db[exonid]; seq_region_start = ei.SeqRegionStart(); seq_region_end = ei.SeqRegionEnd() try: constitutive_call = str(ei.IsConstitutive()) except Exception: constitutive_call = '0' try: ens_exon = exon_db[exonid].StableId() except Exception: ens_exon = exon_stable_id_db[exonid].StableId() ti = transcript_db[transcript_id]; geneid = ti.GeneId() try: ens_transcript = transcript_db[transcript_id].StableId() except Exception: ens_transcript = transcript_stable_id_db[transcript_id].StableId() gi = gene_db[geneid]; seq_region_id = gi.SeqRegionId(); strand = gi.SeqRegionStrand() chr = seq_region_db[seq_region_id].Name() try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() values = [geneid,transcript_id,rank,ens_gene,chr,str(strand),str(seq_region_start),str(seq_region_end),ens_exon,constitutive_call,ens_transcript] temp_values_list.append(values) values_list=[]; temp_values_list.sort() ###Make sure the gene, transcripts and exons are grouped and ranked appropriately for values in temp_values_list: values_list.append(values[3:]) temp_values_list=[] exportEnsemblTable(values_list,headers,output_dir) def exportTranscriptBioType(): ### Function for extracting biotype annotations for transcripts transcript_protein_id={} for protein_id in translation_db: ti = translation_db[protein_id]; transcript_id = ti.TranscriptId() transcript_protein_id[transcript_id] = protein_id values_list = []; output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-biotypes.txt' headers = ['Ensembl Gene ID','Ensembl Translation ID', 'Biotype'] for transcript_id in transcript_db: ti = transcript_db[transcript_id] try: ens_transcript = transcript_db[transcript_id].StableId() except Exception: ens_transcript = transcript_stable_id_db[transcript_id].StableId() try: try: protein_id = transcript_protein_id[transcript_id]; ens_protein = translation_db[protein_id].StableId() except Exception: protein_id = transcript_protein_id[transcript_id]; ens_protein = translation_stable_id_db[protein_id].StableId() except Exception: ens_protein = ens_transcript+'-PEP' geneid = ti.GeneId(); geneid = ti.GeneId() try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() values = [ens_gene,ens_protein,ti.Biotype()] values_list.append(values) exportEnsemblTable(values_list,headers,output_dir) def aaselect(nt_length): ### Convert to protein length if (float(nt_length)/3) == (int(nt_length)/3): return nt_length/3 else: return int(string.split(str(float(nt_length)/3),'.')[0])+1 def getDomainGenomicCoordinates(species,xref_db): ### Get all transcripts relative to genes to export gene, transcript and protein ID relationships transcript_protein_id={} for protein_id in translation_db: ti = translation_db[protein_id]; transcript_id = ti.TranscriptId() transcript_protein_id[transcript_id] = protein_id output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_Protein_'+ensembl_build+'.tab' headers = ['Gene', 'Trans', 'Protein']; values_list=[] for transcript_id in transcript_db: geneid = transcript_db[transcript_id].GeneId() try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() try: try: protein_id = transcript_protein_id[transcript_id]; ens_protein = translation_db[protein_id].StableId() except Exception: protein_id = transcript_protein_id[transcript_id]; ens_protein = translation_stable_id_db[protein_id].StableId() except KeyError: ens_protein = '' try: ens_transcript = transcript_db[transcript_id].StableId() except Exception: ens_transcript = transcript_stable_id_db[transcript_id].StableId() values_list.append([ens_gene,ens_transcript,ens_protein]) exportEnsemblTable(values_list,headers,output_dir) ### Function for building Ensembl transcription annotation file exon_transcript_db2={} ### exon_transcript_db has data stored as a list, so store as a ranked db for eti in exon_transcript_db: transcript_id = eti.TranscriptId(); rank = eti.Rank() try: exon_transcript_db2[transcript_id].append((rank,eti)) except KeyError: exon_transcript_db2[transcript_id] = [(rank,eti)] interpro_annotation_db={} for xref_id in xref_db: interprot_id = xref_db[xref_id].DbprimaryAcc(); display_label = xref_db[xref_id].DisplayLabel() interpro_annotation_db[interprot_id] = display_label ### Get the protein coding positions for each exon, to later determine the genomic position of non-InterPro features (way downstream) ### This code was adapted from the following paragraph to get InterPro locations (this is simpiler) output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_ProteinCoordinates_build'+ensembl_build+'.tab' headers = ['protienID', 'exonID', 'AA_NT_Start', 'AA_NT_Stop', 'Genomic_Start', 'Genomic_Stop']; values_list=[] cds_output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_EnsemblTranscriptCDSPositions.tab' cds_headers = ['transcriptID', 'CDS_Start', 'CDS_Stop']; cds_values_list=[] protein_coding_exon_db={}; protein_length_db={} ### Get the bp position (relative to the exon not genomic) for each transcript, where protein translation begins and ends. Store with the exon data. for protein_id in translation_db: ti = translation_db[protein_id]; transcript_id = ti.TranscriptId() seq_start = ti.SeqStart(); start_exon_id = ti.StartExonId(); seq_end = ti.SeqEnd(); end_exon_id = ti.EndExonId() eti_list = exon_transcript_db2[transcript_id]; eti_list.sort() ### Get info for exporting exon protein coordinate data try: ens_protein = translation_db[protein_id].StableId() except Exception: ens_protein = translation_stable_id_db[protein_id].StableId() try: ens_transcript = transcript_db[transcript_id].StableId() except Exception: ens_transcript = transcript_stable_id_db[transcript_id].StableId() #if ens_protein == 'ENSDARP00000087122': cumulative_exon_length = 0 tis = transcript_db[transcript_id]; geneid = tis.GeneId(); gi = gene_db[geneid]; strand = gi.SeqRegionStrand() #Get strand if strand == '-1': start_correction = -3; end_correction = 2 else: start_correction = 0; end_correction = 0 translation_pos1=0; translation_pos2=0 ### Indicate amino acid positions in nt space, begining and ending in the exon coding_exons = []; ce=0 for (rank,eti) in eti_list: exonid = eti.ExonId() try: ens_exon = exon_db[exonid].StableId() except Exception: ens_exon = exon_stable_id_db[exonid].StableId() ei = exon_db[exonid]; genomic_exon_start = ei.SeqRegionStart(); genomic_exon_end = ei.SeqRegionEnd() exon_length = abs(genomic_exon_end-genomic_exon_start)+1 #print exonid,start_exon_id,end_exon_id if exonid == start_exon_id: ### Thus we are in the start exon for this transcript coding_bp_in_exon = exon_length - seq_start; eti.setCodingBpInExon(coding_bp_in_exon) ### -1 since coding can't start at 0, but rather 1 at a minimum #print 'start',genomic_exon_start,genomic_exon_end,exon_length,seq_start;kill coding_exons.append(eti); ce+=1; translation_pos2=coding_bp_in_exon+1 if strand == -1: genomic_translation_start = ei.SeqRegionStart()+coding_bp_in_exon+start_correction genomic_exon_end = ei.SeqRegionStart()+end_correction else: genomic_translation_start = ei.SeqRegionEnd()-coding_bp_in_exon genomic_exon_end = ei.SeqRegionEnd() #print 'trans1:',float(translation_pos1)/3, float(translation_pos2)/3 values_list.append([ens_protein,ens_exon,1,aaselect(translation_pos2),genomic_translation_start,genomic_exon_end]) cds_start = seq_start+cumulative_exon_length ### start position in this exon plus last exon cumulative length elif exonid == end_exon_id: ### Thus we are in the end exon for this transcript coding_bp_in_exon = seq_end; eti.setCodingBpInExon(coding_bp_in_exon) coding_exons.append(eti); ce = 0 translation_pos1=translation_pos2+1 translation_pos2=translation_pos1+coding_bp_in_exon-4 if strand == -1: genomic_translation_start = ei.SeqRegionEnd()+end_correction+start_correction genomic_exon_end = ei.SeqRegionEnd()-coding_bp_in_exon+end_correction else: genomic_translation_start = ei.SeqRegionStart() genomic_exon_end = ei.SeqRegionStart()+coding_bp_in_exon #print 'trans1:',float(translation_pos1)/3, float(translation_pos2)/3 values_list.append([ens_protein,ens_exon,aaselect(translation_pos1),aaselect(translation_pos2),genomic_translation_start,genomic_exon_end]) cds_end = seq_end+cumulative_exon_length ### start position in this exon plus last exon cumulative length cds_values_list.append([ens_transcript,cds_start,cds_end]) #ens_exon = exon_stable_id_db[exonid].StableId() elif ce != 0: ###If we are in coding exons eti.setCodingBpInExon(exon_length) coding_exons.append(eti) translation_pos1=translation_pos2+1 ### 1 nucleotide difference from the last exon position translation_pos2=translation_pos1+exon_length-1 if strand == -1: genomic_translation_start = ei.SeqRegionEnd()+start_correction genomic_exon_end = ei.SeqRegionStart()+end_correction else: genomic_translation_start = ei.SeqRegionStart() genomic_exon_end = ei.SeqRegionEnd() #print 'trans1:',float(translation_pos1)/3,float(translation_pos2)/3 values_list.append([ens_protein,ens_exon,aaselect(translation_pos1),aaselect(translation_pos2),genomic_translation_start,genomic_exon_end]) cumulative_exon_length += exon_length #ti = transcript_db[transcript_id]; geneid = ti.GeneId(); ens_gene = gene_stable_id_db[geneid].StableId() #ens_exon = exon_stable_id_db[exonid].StableId() #if ens_gene == 'ENSG00000106785': #if ens_exon == 'ENSE00001381077': #print exon_length, seq_start, coding_bp_in_exon;kill #print 'start',ens_gene,rank,len(eti_list),exonid,ens_exon,start_exon_id,end_exon_id,genomic_exon_start,genomic_exon_end,exon_length,seq_start,coding_bp_in_exon,seq_end protein_coding_exon_db[protein_id] = coding_exons print 'Exporting protein-to-exon genomic position translations',len(values_list) exportEnsemblTable(values_list,headers,output_dir) exportEnsemblTable(cds_values_list,cds_headers,cds_output_dir) #sys.exit() ### Using the exon coding positions, determine InterPro coding genomic locations output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_ProteinFeatures_build'+ensembl_build+'.tab' headers = ['ID', 'AA_Start', 'AA_Stop', 'Start', 'Stop', 'Name', 'Interpro', 'Description'] interprot_match=0; values_list=[] #print len(protein_feature_db),len(translation_db),len(interpro_db),len(interpro_annotation_db);sys.exit() for protein_feature_id in protein_feature_db: pfi = protein_feature_db[protein_feature_id]; protein_id = pfi.TranslationId(); evalue = pfi.Evalue() try: ens_protein = translation_db[protein_id].StableId() except Exception: ens_protein = translation_stable_id_db[protein_id].StableId() seq_start = pfi.SeqStart(); seq_end = pfi.SeqEnd(); hit_id = pfi.HitId() ### hit_id is the domain accession which maps to 'id' in interpro seq_start = seq_start*3-2; seq_end = seq_end*3 ###convert to transcript basepair positions coding_exons = protein_coding_exon_db[protein_id] cumulative_coding_length = 0; last_exon_cumulative_coding_length = 1 ti = translation_db[protein_id]; transcript_id = ti.TranscriptId() ### Get transcript ID, to look up strand ti = transcript_db[transcript_id]; geneid = ti.GeneId(); gi = gene_db[geneid]; strand = gi.SeqRegionStrand() #Get strand if strand == '-1': start_correction = -3; end_correction = 2 else: start_correction = 0; end_correction = 0 if hit_id in interpro_db and evalue<1: ### Only analyze domain-level features that correspond to known protein feature IDs interpro_ac = interpro_db[hit_id].InterproAc(); interprot_match+=1 if interpro_ac in interpro_annotation_db: interpro_name = interpro_annotation_db[interpro_ac] ###Built this annotation database using the xref database #print interpro_name,ens_protein,seq_start,seq_end genomic_domain_start = 0; genomic_domain_end = 0; domain_in_first_exon = 'no'; non_coding_seq_len = 0 for eti in coding_exons: domain_in_first_exon = 'no' coding_bp_in_exon = eti.CodingBpInExon(); cumulative_coding_length += coding_bp_in_exon if seq_start <= cumulative_coding_length and seq_start >= last_exon_cumulative_coding_length: ### Thus, domain starts in this exon var = 'start' exonid = eti.ExonId(); ei = exon_db[exonid] if abs(ei.SeqRegionEnd()-ei.SeqRegionStart()+1) != coding_bp_in_exon: ### Can occur in the first exon if last_exon_cumulative_coding_length<2: domain_in_first_exon = 'yes' non_coding_seq_len = abs(ei.SeqRegionEnd()-ei.SeqRegionStart()+1) - coding_bp_in_exon genomic_bp_exon_offset = seq_start - last_exon_cumulative_coding_length + non_coding_seq_len else: genomic_bp_exon_offset = seq_start - last_exon_cumulative_coding_length else: genomic_bp_exon_offset = seq_start - last_exon_cumulative_coding_length if strand == -1: genomic_exon_start = ei.SeqRegionEnd() ### This needs to be reversed if reverse strand genomic_domain_start = genomic_exon_start-genomic_bp_exon_offset+start_correction ### This is what we want! (minus 3 so that we start at the first bp of that codon, not the first of the next (don't count the starting coding as 3bp) else: genomic_exon_start = ei.SeqRegionStart() genomic_domain_start = genomic_bp_exon_offset+genomic_exon_start+start_correction ### This is what we want! (minus 3 so that we start at the first bp of that codon, not the first of the next (don't count the starting coding as 3bp) #print genomic_exon_start,last_exon_cumulative_coding_length,genomic_domain_start,genomic_bp_exon_offset;kill #pfi.setGenomicStart(genomic_domain_start) if seq_end <= cumulative_coding_length and seq_end >= last_exon_cumulative_coding_length: ### Thus, domain ends in this exon var = 'end' exonid = eti.ExonId(); ei = exon_db[exonid] genomic_bp_exon_offset = seq_end - last_exon_cumulative_coding_length if (abs(ei.SeqRegionEnd()-ei.SeqRegionStart()+1) != coding_bp_in_exon) and domain_in_first_exon == 'yes': genomic_bp_exon_offset += non_coding_seq_len ### If the domain starts/ends in the first exon if strand == -1: genomic_exon_start = ei.SeqRegionEnd() ### This needs to be reversed if reverse strand genomic_domain_end = genomic_exon_start-genomic_bp_exon_offset+end_correction ### This is what we want! else: genomic_exon_start = ei.SeqRegionStart() genomic_domain_end = genomic_bp_exon_offset+genomic_exon_start+end_correction ### This is what we want! #pfi.setGenomicEnd(genomic_domain_end) #""" #ens_exon = exon_stable_id_db[eti.ExonId()].StableId() #if cumulative_coding_length == seq_end and strand == -1 and seq_start == 1 and domain_in_first_exon == 'yes': #print interpro_name,protein_id,eti.ExonId(),ens_protein,ens_exon,seq_end,genomic_domain_start,genomic_domain_end;kill if ens_protein == 'ENSMUSP00000097740': print interpro_name, genomic_domain_start, genomic_domain_end, last_exon_cumulative_coding_length, seq_end, seq_start, non_coding_seq_len #print 'coding_bp_in_exon, cumulative_coding_length, genomic_bp_exon_offset',exon_db[exonid].StableId(), coding_bp_in_exon, cumulative_coding_length, genomic_bp_exon_offset if var == 'start': print interpro_name, var,genomic_exon_start,genomic_bp_exon_offset,start_correction, ei.SeqRegionStart(), ei.SeqRegionEnd() else: print interpro_name, var,genomic_exon_start,genomic_bp_exon_offset,end_correction, ei.SeqRegionStart(), ei.SeqRegionEnd() #print 'exon',ens_exon,eti.ExonId(),ei.SeqRegionStart(), ei.SeqRegionEnd()#""" #print non_coding_seq_len, domain_in_first_exon, coding_bp_in_exon, genomic_exon_start, genomic_domain_start, genomic_bp_exon_offset, start_correction #print seq_start, interpro_name,seq_end, cumulative_coding_length,last_exon_cumulative_coding_length, genomic_domain_start, genomic_domain_end, ei.SeqRegionStart(), ei.SeqRegionEnd() last_exon_cumulative_coding_length = cumulative_coding_length + 1 if genomic_domain_start !=0 and genomic_domain_end !=0: values = [ens_protein,(seq_start/3)+1,seq_end/3,genomic_domain_start,genomic_domain_end,hit_id,interpro_ac,interpro_name] values_list.append(values) print 'interprot_matches:',interprot_match exportEnsemblTable(values_list,headers,output_dir) def buildFilterDBForExternalDB(externalDBName): ### Generic function for pulling out any specific type of Xref without storing the whole database in memory global external_filter_db external_filter_db={}; key_filter_db={} ### Reset key_filter_db, otherwise this would cause importPrimaryEnsemblSQLTables to import the wrong entries for external_db_id in external_db_db: db_name = external_db_db[external_db_id].DbName() if db_name == externalDBName: external_filter_db[external_db_id]=[] def buildFilterDBForArrayDB(externalDBName): ### Generic function for pulling out any specific type of Xref without storing the whole database in memory global external_filter_db external_filter_db={}; key_filter_db={} ### Reset key_filter_db, otherwise this would cause importPrimaryEnsemblSQLTables to import the wrong entries for array_chip_id in array_chip_db: array_id = array_chip_db[array_chip_id].ArrayID() try: name = array_db[array_id].Name() vendor = array_db[array_id].Vendor() format = array_db[array_id].Format() if name == externalDBName and (format != 'TILED' and '\\N' not in vendor): external_filter_db[array_chip_id]=[vendor] except KeyError: null=[] def resetExternalFilterDB(): global external_filter_db; external_filter_db={} external_filter_db=external_filter_db def buildEnsemblGeneAnnotationTable(species,xref_db): ### Get Definitions and Symbol for each Ensembl gene ID values_list = []; output_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations_simple.txt' headers = ['Ensembl Gene ID','Description','Gene name'] for geneid in gene_db: gi = gene_db[geneid]; display_xref_id = gi.DisplayXrefId(); description = gi.Description() if description == '\\N': description = '' try: symbol = xref_db[display_xref_id].DisplayLabel() except KeyError: symbol = '' try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() values = [ens_gene,description,symbol] values_list.append(values) ###Also, create a filter_db that allows for the creation of Ensembl-external gene db tables exportEnsemblTable(values_list,headers,output_dir) def buildEnsemblExternalDBRelationshipTable(external_system,xref_db,object_xref_db,output_id_type,species,writeToGOEliteFolder=False): ### Get xref annotations (e.g., external geneID) for a set of Ensembl IDs (e.g. gene IDs) external_system = string.replace(external_system,'/','-') ###Some external relationship systems have a slash in them which will create unwanted directories program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze' and writeToGOEliteFolder == False: output_dir = 'AltDatabase/'+external_system+'/'+species+'/'+species+'_Ensembl-'+external_system+'.txt' else: if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' ### Build directly with the AltAnalyze database elif 'over-write previous' in overwrite_previous: parent_dir = 'Databases' else: parent_dir = 'NewDatabases' if external_system == 'GO': output_dir = parent_dir+'/'+species+'/gene-go/Ensembl-GeneOntology.txt' elif 'meta' in external_system: output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl_EntrezGene-meta.txt' elif external_system in system_synonym_db: system_name = system_synonym_db[external_system] output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-'+system_name+'.txt' elif 'Uniprot' in external_system: ### Needed for AltAnalyze output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-Uniprot.txt' else: output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-'+external_system+'.txt' version_info = species+' Ensembl relationships downloaded from EnsemblSQL server, build '+ensembl_build try: exportVersionInfo(output_dir,version_info) except Exception: null=[] headers = ['Ensembl ID',external_system + ' ID']; id_type_db={}; index=0 id_type_db={}; gene_relationship_db={}; transcript_relationship_db={}; translation_relationship_db={} for xref_id in object_xref_db: for ox in object_xref_db[xref_id]: ens_numeric_id = ox.EnsemblId() try: index+=1 try: dbprimary_acc = xref_db[xref_id].DbprimaryAcc() except Exception: print external_system, xref_id, xref_db[xref_id], len(xref_db);sys.exit() external_db_id = xref_db[xref_id].ExternalDbId() ens_object_type = ox.EnsemblObjectType() #print len(xref_db),len(object_xref_db),len(external_filter_db),xref_id,dbprimary_acc,external_db_id,ens_object_type;kill #if '13065181' == external_db_id or '13065181' == xref_id or '13065181' == dbprimary_acc: print 'blah';kill if external_db_id in external_filter_db: ###Make sure other gene systems are not included ### For testing determine the most likely system linked to by the xref (e.g. gene, transcript or translation ID). try: id_type_db[ox.EnsemblObjectType()]+=1 except KeyError: id_type_db[ox.EnsemblObjectType()]=1 if ens_object_type == 'Gene': gene_relationship_db[ens_numeric_id,dbprimary_acc]=[] if ens_object_type == 'Transcript': transcript_relationship_db[ens_numeric_id,dbprimary_acc]=[] if ens_object_type == 'Translation': translation_relationship_db[ens_numeric_id,dbprimary_acc]=[] except KeyError: null=[] ids=['ID types linked to '+external_system+' are: '] for id_type in id_type_db: ### Tells us which ID types are most connected to a given external reference ID (don't often know) ids+=[str(id_type),': ',str(id_type_db[id_type]),'\t'] ids = string.join(ids,''); print ids values_list = convertBetweenEnsemblIDTypes(output_id_type,transcript_relationship_db,translation_relationship_db,gene_relationship_db) if 'meta' in external_system: values_list2=[] for values in values_list: values_list2.append([values[1],values[0]]); values_list2.append(values) values_list = values_list2 if len(values_list)>0: exportEnsemblTable(values_list,headers,output_dir) added_systems[external_system]=[] return len(values_list) def exportVersionInfo(dir,version_info): dirs = string.split(dir,'/') dir = string.join(dirs[:-1],'/') ### Remove the filename data = export.ExportFile(dir+'/Ensembl_version.txt') data.write(version_info+'\n') def convertBetweenEnsemblIDTypes(output_id_type,transcript_relationship_db,translation_relationship_db,gene_relationship_db): ### Starting with gene, transcript or protein relationships to an xref, convert to a single bio-type values_list=[] ### Get all proteins relative to transcripts transcript_to_protein_db = {} for protein_id in translation_db: transcript_id = translation_db[protein_id].TranscriptId() transcript_to_protein_db[transcript_id] = protein_id ### Get all transcripts relative to genes gene_to_transcript_db={} for transcript_id in transcript_db: geneid = transcript_db[transcript_id].GeneId() try: gene_to_transcript_db[geneid].append(transcript_id) except KeyError: gene_to_transcript_db[geneid] = [transcript_id] for (ens_numeric_id,dbprimary_acc) in transcript_relationship_db: if output_id_type == 'Gene': geneid = transcript_db[ens_numeric_id].GeneId(); try: try: ens_id = gene_db[geneid].StableId() except Exception: ens_id = gene_stable_id_db[geneid].StableId() except KeyError: null = [] ### Again, this occurs in version 47 elif output_id_type == 'Transcription': try: ens_id = transcript_db[ens_numeric_id].StableId() except Exception: ens_id = transcript_stable_id_db[ens_numeric_id].StableId() elif output_id_type == 'Translation': try: try: protein_id = transcript_to_protein_db[ens_numeric_id]; ens_id = translation_db[protein_id].StableId() except Exception: protein_id = transcript_to_protein_db[ens_numeric_id]; ens_id = translation_stable_id_db[protein_id].StableId() except KeyError: null = [] try: values = [ens_id,dbprimary_acc]; values_list.append(values) except NameError: null = [] for (ens_numeric_id,dbprimary_acc) in translation_relationship_db: if output_id_type == 'Gene': transcript_id = translation_db[ens_numeric_id].TranscriptId() geneid = transcript_db[transcript_id].GeneId() try: try: ens_id = gene_db[geneid].StableId() except Exception: ens_id = gene_stable_id_db[geneid].StableId() except KeyError: null = [] ### Again, this occurs in version 47 elif output_id_type == 'Transcription': transcript_id = translation_db[ens_numeric_id].TranscriptId() try: ens_id = transcript_db[transcript_id].StableId() except Exception: ens_id = transcript_stable_id_db[transcript_id].StableId() elif output_id_type == 'Translation': ens_id = translation_stable_id_db[ens_numeric_id].StableId() try: values = [ens_id,dbprimary_acc]; values_list.append(values) except NameError: null = [] for (ens_numeric_id,dbprimary_acc) in gene_relationship_db: if output_id_type == 'Gene': try: ens_id = gene_db[ens_numeric_id].StableId() except Exception: ens_id = gene_stable_id_db[ens_numeric_id].StableId() values = [ens_id,dbprimary_acc]; values_list.append(values) elif output_id_type == 'Transcription': transcript_ids = gene_to_transcript_db[ens_numeric_id] for transcript_id in transcript_ids: try: ens_id = transcript_db[transcript_id].StableId() except Exception: ens_id = transcript_stable_id_db[transcript_id].StableId() values = [ens_id,dbprimary_acc]; values_list.append(values) elif output_id_type == 'Translation': transcript_ids = gene_to_transcript_db[ens_numeric_id] for transcript_id in transcript_ids: try: ### Translate between transcripts to protein IDs protein_id = transcript_to_protein_db[ens_numeric_id] try: ens_id = translation_db[protein_id].StableId() except Exception: ens_id = translation_stable_id_db[protein_id].StableId() values = [ens_id,dbprimary_acc]; values_list.append(values) except KeyError: null = [] values_list = unique.unique(values_list) return values_list def exportListstoFiles(values_list,headers,output_dir,rewrite): global rewrite_existing; rewrite_existing = rewrite exportEnsemblTable(values_list,headers,output_dir) def exportEnsemblTable(values_list,headers,output_dir): if rewrite_existing == 'no': print 'Appending new data to',output_dir try:values_list = combineEnsemblTables(values_list,output_dir) ###Combine with previous except Exception: null=[] data = export.ExportFile(output_dir) if len(headers)>0: headers = string.join(headers,'\t')+'\n' data.write(headers) for values in values_list: try: values = string.join(values,'\t')+'\n' except TypeError: values_temp = values; values = [] for value in values_temp: values.append(str(value)) values = string.join(values,'\t')+'\n' data.write(values) data.close() print 'File:',output_dir,'exported.' def combineEnsemblTables(values_list,filename): fn=filepath(filename); x=0 for line in open(fn,'rU').readlines(): data = cleanUpLine(line) if x==0: x=1 else: t = string.split(data,'\t') values_list.append(t) values_list = unique.unique(values_list) return values_list class EnsemblSQLInfo: def __init__(self, filename, url_type, importGroup, key, values, comments): self._filename = filename; self._url_type = url_type; self._importGroup = importGroup self._key = key; self._values = values; self._comments = comments def Filename(self): return self._filename def URLType(self): return self._url_type def ImportGroup(self): return self._importGroup def Key(self): return self._key def Values(self): value_list = string.split(self._values,'|') return value_list def FieldNames(self): ### These are fields in the description file to parse from downloaded files field_names = self.Values() field_names.append(self.Key()) return field_names def setIndexDB(self,index_db): self._index_db = index_db def IndexDB(self): return self._index_db def Comments(self): return self._comments def Report(self): return self.Key()+'|'+self.Values() def __repr__(self): return self.Report() class EnsemblSQLEntryData: def setSQLValue(self,header,value): if header == "seq_region_start": self.seq_region_start = value elif header == "transcript_id": self.transcript_id = value elif header == "stable_id": self.stable_id = value elif header == "gene_id": self.gene_id = value elif header == "biotype": self.biotype = value elif header == "translation_id": self.translation_id = value elif header == "id": self.id = value elif header == "synonym": self.synonym = value elif header == "external_db_id": self.external_db_id = value elif header == "object_xref_id": self.object_xref_id = value elif header == "db_name": self.db_name = value elif header == "seq_end": self.seq_end = value elif header == "end_exon_id": self.end_exon_id = value elif header == "description": self.description = value elif header == "hit_id": self.hit_id = value elif header == "hit_name": self.hit_id = value elif header == "ensembl_object_type": self.ensembl_object_type = value elif header == "start_exon_id": self.start_exon_id = value elif header == "seq_region_end": self.seq_region_end = value elif header == "dbprimary_acc": self.dbprimary_acc = value elif header == "seq_start": self.seq_start = value elif header == "display_xref_id": self.display_xref_id = value elif header == "display_label": self.display_label = value elif header == "ensembl_id": self.ensembl_id = value elif header == "seq_region_strand": self.seq_region_strand = value elif header == "rank": self.rank = value elif header == "seq_region_id": self.seq_region_id = value elif header == "name": self.name = value elif header == "exon_id": self.exon_id = value elif header == "is_constitutive": self.is_constitutive = value elif header == "interpro_ac": self.interpro_ac = value elif header == "xref_id": self.xref_id = value elif header == "evalue": try: self.evalue = float(value) except Exception: self.evalue = 0 ### For yeast, can be NA (likely a problem with Ensembl) elif header == "vendor": self.vendor = value elif header == "array_id": self.array_id = value elif header == "array_chip_id": self.array_chip_id = value elif header == "probe_set_id": self.probe_set_id = value elif header == "format": self.format = value else: ###Shouldn't occur, unless we didn't account for an object type print 'Warning!!! An object type has been imported which does not exist in this class' print 'Object type =',header;sys.exit() ### Create objects specified in the SQL Description and Configuration file def SeqRegionStart(self): return self.seq_region_start def TranscriptId(self): return self.transcript_id def StableId(self): return self.stable_id def GeneId(self): return self.gene_id def Biotype(self): return self.biotype def TranslationId(self): return self.translation_id def Id(self): return self.id def Synonym(self): return self.synonym def ExternalDbId(self): return self.external_db_id def ObjectXrefId(self): return self.object_xref_id def DbName(self): return self.db_name def ExonId(self): return self.exon_id def IsConstitutive(self): return self.is_constitutive def SeqEnd(self): return self.seq_end def EndExonId(self): return self.end_exon_id def Description(self): return self.description def HitId(self): return self.hit_id def EnsemblObjectType(self): return self.ensembl_object_type def StartExonId(self): return self.start_exon_id def SeqRegionEnd(self): return self.seq_region_end def DbprimaryAcc(self): return self.dbprimary_acc def SeqStart(self): return self.seq_start def DisplayXrefId(self): return self.display_xref_id def DisplayLabel(self): return self.display_label def EnsemblId(self): return self.ensembl_id def SeqRegionStrand(self): return self.seq_region_strand def Rank(self): return self.rank def Name(self): return self.name def SeqRegionId(self): return self.seq_region_id ### Create new objects designated by downstream custom code def setCodingBpInExon(self,coding_bp_in_exon): self.coding_bp_in_exon = coding_bp_in_exon def CodingBpInExon(self): return self.coding_bp_in_exon def setGenomicStart(self,genomic_start): self.genomic_start = genomic_start def GenomicStart(self): return self.genomic_start def setGenomicEnd(self,genomic_end): self.genomic_end = genomic_end def GenomicEnd(self): return self.genomic_end def InterproAc(self): return self.interpro_ac def XrefId(self): return self.xref_id def Evalue(self): return self.evalue def Vendor(self): return self.vendor def ArrayID(self): return self.array_id def ArrayChipID(self): return self.array_chip_id def ProbeSetID(self): return self.probe_set_id def Format(self): return self.format def setProbeSetID(self,probe_set_id): self.probe_set_id = probe_set_id def importEnsemblSQLInfo(configType): filename = 'Config/EnsemblSQL.txt' fn=filepath(filename); sql_file_db={}; sql_group_db={}; x=0 for line in open(fn,'rU').readlines(): data = cleanUpLine(line) filename, url_type, importGroup, configGroup, key, values, comments = string.split(data,'\t') if x==0: x=1 else: sq = EnsemblSQLInfo(filename, url_type, importGroup, key, values, comments) sql_file_db[importGroup,filename] = sq ### To conserve memory, only import necessary files for each run (results in 1/5th the memory usage) if configType == 'Basic' and configGroup == 'Basic': proceed = 'yes' elif configType == 'Basic': proceed = 'no' else: proceed = 'yes' if proceed == 'yes': try: sql_group_db[importGroup].append(filename) except KeyError: sql_group_db[importGroup] = [filename] return sql_file_db,sql_group_db def importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_description_dir,sql_group_db,sql_file_db,output_dir,import_group,force): if 'Primary' in import_group: global exon_db; global transcript_db; global translation_stable_id_db global exon_transcript_db; global transcript_stable_id_db; global gene_db global exon_stable_id_db; global translation_db; global gene_stable_id_db global protein_feature_db; global interpro_db; global external_synonym_db global external_db_db; global key_filter_db; global external_filter_db global seq_region_db; global array_db; global array_chip_db global probe_set_db; global probe_db; global probe_feature_db key_filter_db={}; external_filter_db={}; probe_set_db={} ###Generic function for importing all EnsemblSQL tables based on the SQLDescription tabl for filename in sql_group_db['Description']: ### Gets the SQL description table try: sql_filepaths = updateFiles(ensembl_sql_description_dir,output_dir,filename,force) except Exception: ### Try again... can be a server problem sql_filepaths = updateFiles(ensembl_sql_description_dir,output_dir,filename,force) #print ensembl_sql_description_dir,output_dir,filename; print e; sys.exit() for sql_filepath in sql_filepaths: sql_file_db = importSQLDescriptions(import_group,sql_filepath,sql_file_db) for filename in sql_group_db[import_group]: sql_filepaths = updateFiles(ensembl_sql_dir,output_dir,filename,force) if sql_filepaths == 'stable-combined-version': ### Hence, the file was not downloaded print filename, 'not present in this version of Ensembl' ### Stable files are merged with the indexed files in Ensembl 65 and later else: #if 'object' in filename and 'Func' in output_dir: sql_filepaths = ['BuildDBs/EnsemblSQL/Dr/FuncGen/object_xref.001.txt','BuildDBs/EnsemblSQL/Dr/FuncGen/object_xref.002.txt'] for sql_filepath in sql_filepaths: ### If multiple files for a single table, run all files (retain orginal filename) print 'Processing:',filename try: try: key_value_db = importPrimaryEnsemblSQLTables(sql_filepath,filename,sql_file_db[import_group,filename]) except Exception: if key_value_db == 'stable-combined-version': sql_filepaths == 'stable-combined-version' ### This is a new issue in version 2.1.1 - temporary fix continue """except IOError: sql_filepaths = updateFiles(ensembl_sql_dir,output_dir,filename,'yes') key_value_db = importPrimaryEnsemblSQLTables(sql_filepath,filename,sql_file_db[import_group,filename])""" if filename == "exon.txt": exon_db = key_value_db elif filename == "exon_transcript.txt": exon_transcript_db = key_value_db elif filename == "exon_stable_id.txt": exon_stable_id_db = key_value_db elif filename == "transcript.txt": transcript_db = key_value_db elif filename == "transcript_stable_id.txt": transcript_stable_id_db = key_value_db elif filename == "translation.txt": translation_db = key_value_db elif filename == "translation_stable_id.txt": translation_stable_id_db = key_value_db elif filename == "gene.txt": gene_db = key_value_db elif filename == "gene_stable_id.txt": gene_stable_id_db = key_value_db elif filename == "protein_feature.txt": protein_feature_db = key_value_db elif filename == "interpro.txt": interpro_db = key_value_db elif filename == "external_synonym.txt": external_synonym_db = key_value_db elif filename == "external_db.txt": external_db_db = key_value_db elif filename == "seq_region.txt": seq_region_db = key_value_db elif filename == "array.txt": array_db = key_value_db elif filename == "array_chip.txt": ### Add chip type and vendor to external_filter_db to filter probe.txt array_chip_db = key_value_db; buildFilterDBForArrayDB(externalDBName) elif filename == "xref.txt": try: xref_db = combineDBs(xref_db,key_value_db,'string') except Exception: xref_db = key_value_db if '.0' in sql_filepath: print 'Entries in xref_db', len(xref_db) elif filename == "object_xref.txt": try: object_xref_db = combineDBs(object_xref_db,key_value_db,'list') except Exception: object_xref_db = key_value_db if '.0' in sql_filepath: print 'Entries in object_xref_db', len(object_xref_db) elif filename == "probe.txt": try: probe_db = combineDBs(probe_db,key_value_db,'list') except Exception: probe_db = key_value_db if '.0' in sql_filepath: print 'Entries in probe_db', len(probe_db) if 'AFFY' in manufacturer and 'ProbeLevel' in analysisType: for probe_id in probe_db: for pd in probe_db[probe_id]: probe_set_db[pd.ProbeSetID()]=[] ### this dictionary is introduced prior to prob_set.txt import when annotating probe genome location elif filename == "probe_set.txt": if 'AFFY' in manufacturer and 'ProbeLevel' in analysisType: for probe_id in probe_db: for pi in probe_db[probe_id]: pi.setProbeSetID(key_value_db[pi.ProbeSetID()].Name()) ### Add the probeset annotation name del probe_set_db ### this object is only temporarily created during probe_db addition - used to restrict to probesets in probe_db elif 'AFFY' in manufacturer: probe_set_db = key_value_db del probe_db else: probe_set_db = probe_db del probe_db elif filename == "probe_feature.txt": try: probe_feature_db = key_value_db except Exception: key_value_db = key_value_db else: ###Shouldn't occur, unless we didn't account for a file type print 'Warning!!! A file has been imported which does not exist in the program space' print 'Filename =',filename;sys.exit() except IOError,e: print e print '...Likely due to present SQL tables from a prior Ensembl version run that are no longer supported for this version. Ignoring and proceeding..' if sql_filepaths != 'stable-combined-version': if import_group == 'Primary': key_filter_db={} for geneid in gene_db: gi = gene_db[geneid]; display_xref_id = gi.DisplayXrefId() key_filter_db[display_xref_id]=[] elif 'Object-Xref' in import_group: return object_xref_db elif 'Xref' in import_group: return xref_db elif 'PrimaryFunc' in import_group: return xref_db def combineDBs(db1,db2,type): if type == 'string': for key in db2: db1[key] = db2[key] ### No common keys ever with string if type == 'list': for key in db2: try: db1[key] = db1[key]+db2[key] ### Occurs when same key exists, but different lists except KeyError: db1[key] = db2[key] return db1 def updateFiles(ensembl_sql_dir,output_dir,filename,force): if force == 'no': file_found = verifyFile(output_dir+filename) #print file_found,output_dir+filename if file_found == 'no': index=1; sql_filepaths = [] while index<10: filename_new = string.replace(filename,'.txt','.00'+str(index)+'.txt') file_found = verifyFile(output_dir+filename_new); index+=1 if file_found == 'yes': sql_filepaths.append(output_dir + filename_new) if len(sql_filepaths)<1: force = 'yes' else: sql_filepaths = [output_dir + filename] if force == 'yes': ### Download the files, rather than re-use existing ftp_url = ensembl_sql_dir+filename + '.gz' try: gz_filepath, status = update.download(ftp_url,output_dir,'') except Exception: if 'stable' in filename: sql_filepaths=[] if 'Internet' in status: index=1; status = ''; sql_filepaths=[] while index<10: if 'Internet' not in status: ### sometimes, instead of object_xref.txt the file will be name of object_xref.001.txt ftp_url_new = string.replace(ftp_url,'.txt','.00'+str(index)+'.txt') gz_filepath, status = update.download(ftp_url_new,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status sql_filepaths.append(gz_filepath[:-3]) index+=1 #print [[[sql_filepaths]]] else: sql_filepaths=sql_filepaths[:-1]; print '' #print [[sql_filepaths]] break else: if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status sql_filepaths = [gz_filepath[:-3]] #print [sql_filepaths] if len(sql_filepaths)==0: if 'stable' in filename: sql_filepaths = 'stable-combined-version' ### For Ensembl 65 and later (changed table organization from previous versions) else: print '\nThe file:',filename, 'is missing from Ensembl FTP directory for this version of Ensembl. Contact [email protected] to inform our developers of this change to the Ensembl database table structure or download the latest version of this software.'; force_exit return sql_filepaths def importPrimaryEnsemblSQLTables(sql_filepath,filename,sfd): fn=filepath(sql_filepath) index=0; key_value_db={}; data_types={} if len(key_filter_db)>0: key_filter = 'yes' else: key_filter = 'no' if len(external_filter_db)>0: external_filter = 'yes' else: external_filter = 'no' try: if len(external_xref_key_db)>0: external_xref_key_filter = 'yes' else: external_xref_key_filter = 'no' except NameError: external_xref_key_filter = 'no' #print filename, key_filter, external_filter, external_xref_key_filter try: index_db = sfd.IndexDB(); key_name = sfd.Key(); entries=0 except Exception: return 'stable-combined-version' if len(key_name)<1: key_value_db=[] ### No key, so store data in a list for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); data = string.split(data,'\t') ese = EnsemblSQLEntryData(); skip = 'no'; entries+=1 if len(line)>3: ### In the most recent version (plant-16) encountered lines with just a single / for index in index_db: header_name,value_type = index_db[index] try: value = data[index] except Exception: if 'array.' in filename: skip = 'yes'; value = '' """ ### This will often occur due to prior lines having a premature end of line (bad formatting in source data) creating a bad line (just skip it) else: ### Likely occurs when Ensembl adds new line types to their SQL file (bastards) print index_db,data, index, len(data),header_name,value_type kill""" try: if value_type == 'integer': value = int(value) # Integers will take up less space in memory except ValueError: if value == '\\N': value = value elif 'array.' in filename: skip = 'yes' ### There can be formatting issues with this file when read in python else: skip = 'yes'; value = '' #print filename,[header_name], index,value_type,[value];kill ###Although we are setting each index to value, the distinct headers will instruct ###EnsemblSQLEntryData to assign the value to a distinct object if header_name != key_name: ese.setSQLValue(header_name,value) else: key = value ### Filtering primarily used for all Xref, since this database is very large #if filename == 'xref.txt':print len(key_name), key_filter,external_filter, external_xref_key_filter;kill if skip == 'yes': null = [] elif 'probe.' in filename: ### For all array types (Affy & Other) - used to select specific array types - also stores non-Affy probe-data ### Each array has a specific ID - determine if this ID is the one we set in external_filter_db if ese.ArrayChipID() in external_filter_db: vendor = external_filter_db[ese.ArrayChipID()][0] if vendor == 'AFFY' and analysisType != 'ProbeLevel': key_value_db[ese.ProbeSetID()] = [] ### key is the probe_id - used for Affy probe ID location analysis else: try: key_value_db[key].append(ese) ### probe_set.txt only appears to contain AFFY IDs, the remainder are saved in probe.txt under probe_id except KeyError: key_value_db[key] = [ese] elif 'probe_set.' in filename: if analysisType == 'ProbeLevel': if key in probe_set_db: key_value_db[key] = ese else: if key in probe_db: key_value_db[key] = [ese] elif 'probe_feature.' in filename: if key in probe_db: key_value_db[key] = ese elif len(key_name)<1: key_value_db.append(ese) elif key_filter == 'no' and external_filter == 'no': key_value_db[key] = ese elif external_xref_key_filter == 'yes': if key in external_xref_key_db: try: key_value_db[key].append(ese) except KeyError: key_value_db[key] = [ese] elif 'object_xref' in filename: try: if key in probe_set_db: if (manufacturer == 'AFFY' and ese.EnsemblObjectType() == 'ProbeSet') or (manufacturer != 'AFFY' and ese.EnsemblObjectType() == 'Probe'): try: key_value_db[key].append(ese) except KeyError: key_value_db[key] = [ese] data_types[ese.EnsemblObjectType()]=[] except Exception: print external_xref_key_filter, key_filter, filename;kill elif key in key_filter_db: key_value_db[key] = ese elif 'seq_region.' in filename: key_value_db[key] = ese ### Specifically applies to ProbeLevel analyses elif external_filter == 'yes': ### For example, if UniGene's dbase ID is in the external_filter_db (when parsing xref) #if 'xref' in filename: print filename,[header_name], index,value_type,[value],ese.ExternalDbId(),external_filter_db;kill try: #print key, [ese.ExternalDbId()], [ese.DbprimaryAcc()], [ese.DisplayLabel()];kill #if key == 1214287: print [ese.ExternalDbId()], [ese.DbprimaryAcc()], [ese.DisplayLabel()] if ese.ExternalDbId() in external_filter_db: key_value_db[key] = ese all_external_ids[ese.ExternalDbId()]=[] except AttributeError: print len(external_filter_db),len(key_filter_db) print 'index_db',index_db,'\n' print 'key_name',key_name print len(external_filter_db) print len(key_value_db);kill #key_filter_db={}; external_filter_db={}; external_xref_key_db={} if 'object_xref' in filename: print external_xref_key_filter, key_filter, filename print "Extracted",len(key_value_db),"out of",entries,"entries for",filename print 'Data types linked to probes:', for data_type in data_types: print data_type, print '' return key_value_db def importSQLDescriptions(import_group,filename,sql_file_db): fn=filepath(filename) index_db={}; index=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if 'CREATE TABLE' in data: ###New file descriptions file_broken = string.split(data,'`'); filename = file_broken[1]+".txt" if (import_group,filename) in sql_file_db: sql_data = sql_file_db[import_group,filename] target_field_names = sql_data.FieldNames() else: target_field_names=[] elif data[:3] == ' `': field_broken = string.split(data,'`'); field_name = field_broken[1] if 'int(' in data: type = 'integer' else: type = 'string' if field_name in target_field_names: index_db[index]=field_name,type index+=1 elif len(data)<2: ###Write out previous data here and clear entries if len(index_db)>0: ### Thus fields in the Config file are found in the description file sql_data.setIndexDB(index_db) index_db = {}; index=0 ### re-set elif '/*' in data or 'DROP TABLE IF EXISTS' in data: None ### Not sure what this line is that has recently been added else: index+=1 if len(index_db)>0: asql_data.setIndexDB(index_db) return sql_file_db def storeFTPDirs(ftp_server,subdir,dirtype): from ftplib import FTP ftp = FTP(ftp_server); ftp.login() try: ftp.cwd(subdir) except Exception: subdir = string.replace(subdir,'/mysql','') ### Older version don't have this subdir ftp.cwd(subdir) data = []; child_dirs={};species_list=[] ftp.dir(data.append); ftp.quit() for line in data: line = string.split(line,' '); file_dir = line[-1] if dirtype in file_dir: species_name_data = string.split(file_dir,dirtype) species_name = species_name_data[0] if 'bacteria' not in species_name: ### Occurs for Bacteria Genomes species_name = string.replace(string.upper(species_name[0])+species_name[1:],'_',' ') ensembl_sql_dir = 'ftp://'+ftp_server+subdir+'/'+file_dir+'/' ensembl_sql_description_dir = file_dir+'.sql' child_dirs[species_name] = ensembl_sql_dir,ensembl_sql_description_dir species_list.append(species_name) species_list.sort() return child_dirs,species_list def getEnsemblVersions(ftp_server,subdir): from ftplib import FTP ftp = FTP(ftp_server); ftp.login() ftp.cwd(subdir) data = []; ensembl_versions=[] ftp.dir(data.append); ftp.quit() for line in data: line = string.split(line,' '); file_dir = line[-1] if 'release' in file_dir and '/' not in file_dir: version_number = int(string.replace(file_dir,'release-','')) if version_number>46: ###Before this version, the SQL FTP folder structure differed substantially ensembl_versions.append(file_dir) return ensembl_versions def clearall(): all = [var for var in globals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: del globals()[var] def clearvar(varname): all = [var for var in globals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: if var == varname: del globals()[var] def getCurrentEnsemblSpecies(version): original_version = version if 'EnsMart' in version: version = string.replace(version,'EnsMart','') ### User may enter EnsMart65, but we want 65 (release- is added before the number) version = string.replace(version,'Plus','') if 'Plant' in version: version = string.replace(version,'Plant','') if 'Fungi' in version: version = string.replace(version,'Fungi','') if 'Bacteria' in version: version = string.replace(version,'Bacteria','') if 'release' not in version and 'current' not in version: version = 'release-'+version if 'Plant' in original_version or 'Bacteria' in original_version or 'Fungi' in original_version: ftp_server = 'ftp.ensemblgenomes.org' else: ftp_server = 'ftp.ensembl.org' if version == 'current': subdir = '/pub/current_mysql' elif 'Plant' in original_version: subdir = '/pub/plants/'+version+'/mysql' elif 'Bacteria' in original_version: subdir = '/pub/'+version+'/bacteria/mysql' elif 'Fungi' in original_version: subdir = '/pub/'+version+'/fungi/mysql' else: subdir = '/pub/'+version+'/mysql' dirtype = '_core_' ensembl_versions = getEnsemblVersions(ftp_server,'/pub') child_dirs, species_list = storeFTPDirs(ftp_server,subdir,dirtype) return child_dirs, species_list, ensembl_versions def getCurrentEnsemblSequences(version,dirtype,species): ftp_server = 'ftp.ensembl.org' if version == 'current': subdir = '/pub/current_'+dirtype else: subdir = '/pub/'+version+'/'+dirtype seq_dir = storeSeqFTPDirs(ftp_server,species,subdir,dirtype) return seq_dir def getCurrentEnsemblGenomesSequences(version,dirtype,species): original_version = version if 'Fungi' in version: version = string.replace(version,'Fungi','') if 'Plant' in version: version = string.replace(version,'Plant','') if 'Bacteria' in version: version = string.replace(version,'Bacteria','') ftp_server = 'ftp.ensemblgenomes.org' if version == 'current': subdir = '/pub/current_'+dirtype elif 'Bacteria' in original_version: subdir = '/pub/'+version+'/bacteria/'+dirtype elif 'Fungi' in original_version: subdir = '/pub/'+version+'/fungi/'+dirtype else: subdir = '/pub/plants/'+version+'/'+dirtype seq_dir = storeSeqFTPDirs(ftp_server,species,subdir,dirtype) return seq_dir def storeSeqFTPDirs(ftp_server,species,subdir,dirtype): from ftplib import FTP ftp = FTP(ftp_server); ftp.login() #print subdir;sys.exit() try: ftp.cwd(subdir) except Exception: subdir = string.replace(subdir,'/'+dirtype,'') ### Older version don't have this subdir ftp.cwd(subdir) data = []; seq_dir=[]; ftp.dir(data.append); ftp.quit() for line in data: line = string.split(line,' '); file_dir = line[-1] if species[1:] in file_dir: if '.fa' in file_dir and '.all' in file_dir: seq_dir = 'ftp://'+ftp_server+subdir+'/'+file_dir elif '.fa' in file_dir and 'dna.chromosome' in file_dir: try: seq_dir.append((file_dir,'ftp://'+ftp_server+subdir+'/'+file_dir)) except Exception: seq_dir=[]; seq_dir.append((file_dir,'ftp://'+ftp_server+subdir+'/'+file_dir)) elif '.fa' in file_dir and 'dna.' in file_dir and 'nonchromosomal' not in file_dir: ### This is needed when there are numbered chromosomes (e.g., ftp://ftp.ensembl.org/pub/release-60/fasta/anolis_carolinensis/dna/) try: seq_dir2.append((file_dir,'ftp://'+ftp_server+subdir+'/'+file_dir)) except Exception: seq_dir2=[]; seq_dir2.append((file_dir,'ftp://'+ftp_server+subdir+'/'+file_dir)) if len(seq_dir)==0: seq_dir = seq_dir2 return seq_dir """ def getExternalDBs(Species,ensembl_sql_dir,ensembl_sql_description_dir): global species; species = Species; configType = 'Basic' sql_file_db,sql_group_db = importEnsemblSQLInfo(configType) ###Import the Config file with the files and fields to parse from the donwloaded SQL files sql_group_db['Description'] = [ensembl_sql_description_dir] info = string.split(ensembl_sql_description_dir,'_'); ensembl_build = info[-2] sq = EnsemblSQLInfo(ensembl_sql_description_dir, 'EnsemblSQLDescriptions', 'Description', '', '', '') sql_file_db['Primary',ensembl_sql_description_dir] = sq output_dir = 'BuildDBs/EnsemblSQL/'+species+'/' importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Primary',force) ###Download and import the Ensembl SQL files """ class SystemData: def __init__(self, syscode, sysname, mod): self._syscode = syscode; self._sysname = sysname; self._mod = mod def SystemCode(self): return self._syscode def SystemName(self): return self._sysname def MOD(self): return self._mod def __repr__(self): return self.SystemCode()+'|'+self.SystemName()+'|'+self.MOD() def importSystemInfo(): filename = 'Config/source_data.txt'; x=0 system_list=[]; system_codes={} fn=filepath(filename); mod_list=[] for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t') if '!DOCTYPE' in data: fn2 = string.replace(fn,'.txt','_archive.txt') import shutil; shutil.copyfile(fn2,fn) ### Bad file was downloaded (with warning) importSystemInfo(); break else: try: sysname=t[0];syscode=t[1] except Exception: sysname='' try: mod = t[2] except Exception: mod = '' if x==0: x=1 elif sysname != '': system_list.append(sysname) ad = SystemData(syscode,sysname,mod) if len(mod)>1: mod_list.append(sysname) system_codes[sysname] = ad return system_codes,system_list,mod_list def buildGOEliteDBs(Species,ensembl_sql_dir,ensembl_sql_description_dir,ExternalDBName,configType,analysis_type,Overwrite_previous,Rewrite_existing,external_system_db,force): global external_xref_key_db; global species; species = Species; global overwrite_previous; overwrite_previous = Overwrite_previous global rewrite_existing; rewrite_existing = Rewrite_existing; global ensembl_build; global externalDBName; externalDBName = ExternalDBName global ensembl_build; ensembl_build = string.split(ensembl_sql_dir,'core')[-1][:-1]; global analysisType; analysisType = analysis_type global manufacturer; global system_synonym_db; global added_systems; added_systems={}; global all_external_ids; all_external_ids={} ### Get System Code info and create DBs for automatically formatting system output names ### This is necessary to ensure similiar systems with different names are saved and referenced ### by the same system name and system code import UI; try: system_codes,source_types,mod_types = UI.remoteSystemInfo() except Exception: system_codes,source_types,mod_types = importSystemInfo() system_synonym_db = {}; system_code_db={}; new_system_codes={} for system_name in system_codes: system_code_db[system_codes[system_name].SystemCode()] = system_name if externalDBName != 'GO': system_code = external_system_db[externalDBName] try: system_name = system_code_db[system_code] except Exception: system_name = externalDBName ad = UI.SystemData(system_code,system_name,'') new_system_codes[externalDBName] = ad ### Add these to the source_data file if relationships added (see below) system_code_db[system_code] = system_name ### Make sure that only one new system name for the code is added system_synonym_db[externalDBName] = system_name ### Get Ensembl Data sql_file_db,sql_group_db = importEnsemblSQLInfo(configType) ###Import the Config file with the files and fields to parse from the donwloaded SQL files sql_group_db['Description'] = [ensembl_sql_description_dir] info = string.split(ensembl_sql_description_dir,'_'); ensembl_build = info[-2] sq = EnsemblSQLInfo(ensembl_sql_description_dir, 'EnsemblSQLDescriptions', 'Description', '', '', '') sql_file_db['Primary',ensembl_sql_description_dir] = sq output_dir = 'BuildDBs/EnsemblSQL/'+species+'/' importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Primary',force) ###Download and import the Ensembl SQL files export_status='yes';output_id_type='Gene' if analysisType == 'GeneAndExternal': if 'over-write previous' in overwrite_previous: output_ens_dir = 'Databases/'+species+'/gene/Ensembl.txt' else: output_ens_dir = 'NewDatabases/'+species+'/gene/Ensembl.txt' file_found = verifyFile(output_ens_dir) revert_force = 'no' if file_found == 'no': if force == 'yes': force = 'no'; revert_force = 'yes' xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Xref',force) buildEnsemblGeneGOEliteTable(species,xref_db,overwrite_previous) ###Export data for Ensembl-External gene system buildFilterDBForExternalDB(externalDBName) xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Xref',force) external_xref_key_db = xref_db if revert_force == 'yes': force = 'yes' object_xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Object-Xref',force) num_relationships_exported = buildEnsemblExternalDBRelationshipTable(externalDBName,xref_db, object_xref_db,output_id_type,species,writeToGOEliteFolder=True) if 'EntrezGene' in externalDBName: ### Make a meta DB table for translating WikiPathway primary IDs buildEnsemblExternalDBRelationshipTable('meta',xref_db,object_xref_db, output_id_type,species,writeToGOEliteFolder=True) ### Add New Systems to the source_data relationships file (only when valid relationships found) for externalDBName in new_system_codes: if externalDBName in added_systems: ad = new_system_codes[externalDBName] system_codes[ad.SystemName()] = ad UI.exportSystemInfoRemote(system_codes) if analysisType == 'FuncGen' or analysisType == 'ProbeLevel': sl = string.split(externalDBName,'_'); manufacturer=sl[0];externalDBName=string.replace(externalDBName,manufacturer+'_','') ensembl_sql_dir = string.replace(ensembl_sql_dir,'_core_', '_funcgen_') ensembl_sql_description_dir = string.replace(ensembl_sql_description_dir,'_core_', '_funcgen_') sql_file_db,sql_group_db = importEnsemblSQLInfo('FuncGen') ###Import the Config file with the files and fields to parse from the donwloaded SQL files sql_group_db['Description'] = [ensembl_sql_description_dir] info = string.split(ensembl_sql_description_dir,'_'); ensembl_build = info[-2] sq = EnsemblSQLInfo(ensembl_sql_description_dir, 'EnsemblSQLFuncDescriptions', 'Description', '', '', '') sql_file_db['PrimaryFunc',ensembl_sql_description_dir] = sq output_dir = 'BuildDBs/EnsemblSQL/'+species+'/FuncGen/' xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'PrimaryFunc',force) ###Download and import the Ensembl SQL files if analysisType == 'FuncGen': #print len(probe_set_db), len(transcript_stable_id_db), len(xref_db) object_xref_db = importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'Object-XrefFunc',force) buildEnsemblArrayDBRelationshipTable(xref_db,object_xref_db,output_id_type,externalDBName,species) if analysisType == 'ProbeLevel': ### There is alot of unnecessary data imported for this specific analysis but this strategy is likely the most straight forward code addition sql_file_db['ProbeFeature',ensembl_sql_description_dir] = sq importEnsemblSQLFiles(ensembl_sql_dir,ensembl_sql_dir,sql_group_db,sql_file_db,output_dir,'ProbeFeature',force) outputProbeGenomicLocations(externalDBName,species) return all_external_ids def buildEnsemblArrayDBRelationshipTable(xref_db,object_xref_db,output_id_type,externalDBName,species): ### Get xref annotations (e.g., external geneID) for a set of Ensembl IDs (e.g. gene IDs) external_system = manufacturer external_system = external_system[0]+string.lower(external_system[1:]) print 'Exporting',externalDBName program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' elif 'over-write previous' in overwrite_previous: parent_dir = 'Databases' else: parent_dir = 'NewDatabases' if 'Affy' in external_system: output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-Affymetrix.txt' elif 'Agilent' in external_system: output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-Agilent.txt' elif 'Illumina' in external_system: output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-Illumina.txt' else: output_dir = parent_dir+'/'+species+'/uid-gene/Ensembl-MiscArray.txt' version_info = species+' Ensembl relationships downloaded from EnsemblSQL server, build '+ensembl_build exportVersionInfo(output_dir,version_info) headers = ['Ensembl ID',external_system + ' ID']; id_type_db={}; index=0 id_type_db={}; gene_relationship_db={}; transcript_relationship_db={}; translation_relationship_db={} ### Get Ensembl gene-transcript relationships from core files ens_transcript_db={} for transcript_id in transcript_db: ti = transcript_db[transcript_id] try: ens_transcript = transcript_db[transcript_id].StableId() except Exception: ens_transcript = transcript_stable_id_db[transcript_id].StableId() ens_transcript_db[ens_transcript] = ti values_list=[]; nulls=0; type_errors=[] ### Get array ID-gene relationships from exref and probe dbs if len(probe_set_db)>0: for probe_set_id in object_xref_db: try: for ox in object_xref_db[probe_set_id]: try: transcript_id = ox.XrefId() ens_transcript = xref_db[transcript_id].DbprimaryAcc() ti = ens_transcript_db[ens_transcript]; geneid = ti.GeneId() try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() for ps in probe_set_db[probe_set_id]: probeset = ps.Name() ### The same probe ID shouldn't exist more than once, but for some arrays it does (associaed with multiple probe names) values_list.append([ens_gene,probeset]) except Exception: nulls+=1 except TypeError,e: null=[] print probe_set_id, len(probe_set_db), len(probe_set_db[probe_set_id]) for ps in probe_set_db[probe_set_id]: probeset = ps.Name() print probeset print 'ERROR ENCOUNTERED.',e; sys.exit() values_list = unique.unique(values_list) print 'ID types linked to '+external_system+' are: Gene:',len(values_list),'... not linked:',nulls if len(values_list)>0: exportEnsemblTable(values_list,headers,output_dir) else: print "****** Unknown problem encountered with the parsing of:", externalDBName def outputProbeGenomicLocations(externalDBName,species): external_system = manufacturer external_system = external_system[0]+string.lower(external_system[1:]) print 'Exporting',externalDBName output_dir = 'Affymetrix/'+species+'/'+externalDBName+'.txt' if 'Affy' in external_system: headers = ['ProbeXY','ProbesetName','Chr','Start','End','Strand']; values_list=[] print len(probe_db), ':Probes in Ensembl', len(probe_feature_db),':Probes with genomic locations' for probe_id in probe_db: for pi in probe_db[probe_id]: ### probe ID probe_set_name = pi.ProbeSetID() ### probe_set_id is only a superfluous annotation - not used downstream probe_name = pi.Name() try: pl = probe_feature_db[probe_id] ### probe genomic location data chr = seq_region_db[pl.SeqRegionId()].Name() seq_region_start = pl.SeqRegionStart(); seq_region_end = pl.SeqRegionEnd(); strand = pl.SeqRegionStrand() values_list.append([probe_name,probe_set_name,chr,seq_region_start,seq_region_end,strand]) except Exception: null=[] values_list = unique.unique(values_list) print 'ID types linked to '+external_system+' are: Probe:',len(values_list) if len(values_list)>0: exportEnsemblTable(values_list,headers,output_dir) def buildEnsemblGeneGOEliteTable(species,xref_db,overwrite_previous): ### Get Definitions and Symbol for each Ensembl gene ID values_list = [] program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': output_dir = 'AltDatabase/goelite/'+species+'/gene/Ensembl.txt' elif 'over-write previous' in overwrite_previous: output_dir = 'Databases/'+species+'/gene/Ensembl.txt' else: output_dir = 'NewDatabases/'+species+'/gene/Ensembl.txt' headers = ['ID','Symbol','Description'] for geneid in gene_db: gi = gene_db[geneid]; display_xref_id = gi.DisplayXrefId(); description = gi.Description() if description == '\\N': description = '' try: symbol = xref_db[display_xref_id].DisplayLabel() except KeyError: symbol = '' try: try: ens_gene = gene_db[geneid].StableId() except Exception: ens_gene = gene_stable_id_db[geneid].StableId() values = [ens_gene,symbol,description] values_list.append(values) except KeyError: null=[] ### In version 47, discovered that some geneids are not in the gene_stable - inclear why this is ###Also, create a filter_db that allows for the creation of Ensembl-external gene db tables exportEnsemblTable(values_list,headers,output_dir) def verifyFile(filename): fn=filepath(filename); file_found = 'yes' try: for line in open(fn,'rU').xreadlines():break except Exception: file_found = 'no' return file_found if __name__ == '__main__': import update dp = update.download_protocol('ftp://ftp.ensembl.org/pub/release-72/mysql/macaca_mulatta_core_72_10/gene.txt.gz','AltDatabase/ensembl/Ma/EnsemblSQL/','') reload(update) dp = update.download_protocol('ftp://ftp.ensembl.org/pub/release-72/mysql/macaca_mulatta_core_72_10/gene.txt.gz','AltDatabase/ensembl/Ma/EnsemblSQL/','');sys.exit() getGeneTranscriptOnly('Gg','Basic','EnsMart65','yes');sys.exit() #getChrGeneOnly('Hs','Basic','EnsMart65','yes');sys.exit() analysisType = 'GeneAndExternal'; externalDBName_list = ['Ens_Gg_transcript'] force = 'yes'; configType = 'Basic'; overwrite_previous = 'no'; iteration=0; version = 'current' print 'proceeding' analysisType = 'ExternalOnly' ensembl_version = '65' species = 'Gg' #ensembl_version = 'Fungi27' #species = 'Nc' #print string.replace(unique.getCurrentGeneDatabaseVersion(),'EnsMart','');sys.exit() #getEnsemblTranscriptSequences(ensembl_version,species,restrictTo='cDNA');sys.exit() #getFullGeneSequences('Bacteria18','bacteria_1_collection'); sys.exit() #for i in child_dirs: print child_dirs[i] #""" ### WON'T WORK FOR MORE THAN ONE EXTERNAL DATABASE -- WHEN RUN WITHIN THIS MOD species_full = 'Neurospora crassa' species_full = 'Gallus gallus' species_full = 'Mus musculus'; ensembl_version = '72'; force = 'no'; species = 'Mm'; analysisType = 'AltAnalyzeDBs'; configType = 'Advanced' #child_dirs, ensembl_species, ensembl_versions = getCurrentEnsemblSpecies(ensembl_version) #genus,species = string.split(species_full,' '); species = genus[0]+species[0] #ensembl_sql_dir,ensembl_sql_description_dir = child_dirs[species_full] rewrite_existing = 'no' external_system_db = {'Ens_Gg_transcript':'Et'} for externalDBName in externalDBName_list: if force == 'yes' and iteration == 1: force = 'no' #buildGOEliteDBs(species,ensembl_sql_dir,ensembl_sql_description_dir,externalDBName,configType,analysisType,overwrite_previous,rewrite_existing,external_system_db,force); iteration+=1 buildEnsemblRelationalTablesFromSQL(species,configType,analysisType,externalDBName,ensembl_version,force)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/EnsemblSQL.py
EnsemblSQL.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from build_scripts import GO_parsing import copy import time try: from build_scripts import alignToKnownAlt except Exception: pass ### circular import error import export import traceback def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def makeUnique(item): db1={}; list1=[]; k=0 for i in item: try: db1[i]=[] except TypeError: db1[tuple(i)]=[]; k=1 for i in db1: if k==0: list1.append(i) else: list1.append(list(i)) list1.sort() return list1 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def findAligningIntronBlock(ed,intron_block_db,exon_block_db,last_region_db): aligned_region = 'no' for block in intron_block_db: for rd in intron_block_db[block]: intron_pos = [rd.ExonStart(), rd.ExonStop()]; intron_pos.sort() intronid = rd.IntronRegionID() ### The intron block (relative to the exon block) is assigned in the function exon_clustering retained_pos = [ed.ExonStart(), ed.ExonStop()]; retained_pos.sort() aligned_region = 'no' #print ed.GeneID(), rd.GeneID(), retained_pos,intron_pos,intronid if intron_pos == retained_pos: aligned_region = 'yes' elif intron_pos[0] == retained_pos[0] or intron_pos[1] == retained_pos[1]: aligned_region = 'yes' elif (intron_pos[0]<retained_pos[0] and intron_pos[1]>retained_pos[0]) or (intron_pos[0]<retained_pos[1] and intron_pos[1]>retained_pos[1]): aligned_region = 'yes' elif (retained_pos[0]<intron_pos[0] and retained_pos[1]>intron_pos[0]) or (retained_pos[0]<intron_pos[1] and retained_pos[1]>intron_pos[1]): aligned_region = 'yes' if aligned_region == 'yes': #print 'intron-aligned',intronid ed.setAssociatedSplicingEvent('intron-retention') rd.updateDistalIntronRegion() intronid = intronid[:-1]+str(rd.DistalIntronRegion()) intronid = string.replace(intronid,'-','.') ed.setNewIntronRegion(intronid); break if aligned_region == 'yes': break if aligned_region == 'no': for block in exon_block_db: for rd in exon_block_db[block]: exonregion_pos = [rd.ExonStart(), rd.ExonStop()]; exonregion_pos.sort() exonid = rd.ExonRegionID() ### The exon block (relative to the exon block) is assigned in the function exon_clustering retained_pos = [ed.ExonStart(), ed.ExonStop()]; retained_pos.sort() aligned_region = 'no' #print ed.GeneID(),rd.GeneID(), retained_pos,exonregion_pos,exonid if exonregion_pos == retained_pos: aligned_region = 'yes' elif exonregion_pos[0] == retained_pos[0] or exonregion_pos[1] == retained_pos[1]: aligned_region = 'yes' elif (exonregion_pos[0]<retained_pos[0] and exonregion_pos[1]>retained_pos[0]) or (exonregion_pos[0]<retained_pos[1] and exonregion_pos[1]>retained_pos[1]): aligned_region = 'yes' elif (retained_pos[0]<exonregion_pos[0] and retained_pos[1]>exonregion_pos[0]) or (retained_pos[0]<exonregion_pos[1] and retained_pos[1]>exonregion_pos[1]): aligned_region = 'yes' if aligned_region == 'yes': #print 'exon aligned',exonid #print len(last_region_db),last_region_db[rd.ExonNumber()] last_region_db[rd.ExonNumber()].sort(); last_region = last_region_db[rd.ExonNumber()][-1] last_region_db[rd.ExonNumber()].append(last_region+1) #print len(last_region_db),last_region_db[rd.ExonNumber()],'E'+str(rd.ExonNumber())+'.'+str(last_region+1) ed.setAssociatedSplicingEvent('exon-region-exclusion') exonid = 'E'+str(rd.ExonNumber())+'.'+str(last_region+1) ed.setNewIntronRegion(exonid); break if aligned_region == 'yes': break return ed,last_region_db def getUCSCSplicingAnnotations(ucsc_events,splice_events,start,stop): splice_events = string.split(splice_events,'|') for (r_start,r_stop,splice_event) in ucsc_events: if ((start >= r_start) and (start < r_stop)) or ((stop > r_start) and (stop <= r_stop)): splice_events.append(splice_event) elif ((r_start >= start) and (r_start <= stop)) or ((r_stop >= start) and (r_stop <= stop)): ### Applicable to polyA annotations splice_events.append(splice_event) unique.unique(splice_events) splice_events = string.join(splice_events,'|') try: if splice_events[0] == '|': splice_events=splice_events[1:] except IndexError: null=[] return splice_events def exportSubGeneViewerData(exon_regions,exon_annotation_db2,critical_gene_junction_db,intron_region_db,intron_retention_db,full_junction_db,excluded_intronic_junctions,ucsc_splicing_annot_db): intron_retention_db2={} for (gene,chr,strand) in intron_retention_db: for intron_info in intron_retention_db[(gene,chr,strand)]: pos1,pos2,ed = intron_info; pos_list=[pos1,pos2]; pos_list.sort() try: intron_retention_db2[gene].append(pos_list) except KeyError: intron_retention_db2[gene] = [pos_list] exon_annotation_export = 'AltDatabase/ensembl/'+species+'/'+species+'_SubGeneViewer_exon-structure-data.txt' print 'Writing the file:',exon_annotation_export fn=filepath(exon_annotation_export); sgvdata = open(fn,'w') title = ['gene','exon-id','type','block','region','constitutive','start-exon','annotation'] title = string.join(title,'\t')+'\n'; sgvdata.write(title) full_exon_structure_export = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' full_junction_structure_export = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_junction.txt' exondata = export.ExportFile(full_exon_structure_export); junctiondata = export.ExportFile(full_junction_structure_export) exontitle = ['gene', 'exon-id', 'chromosome', 'strand', 'exon-region-start(s)', 'exon-region-stop(s)', 'constitutive_call', 'ens_exon_ids', 'splice_events', 'splice_junctions'] exontitle = string.join(exontitle,'\t')+'\n'; exondata.write(exontitle); junctiondata.write(exontitle) export_annotation = '_intronic' alt_junction_export = 'AltDatabase/ensembl/'+species+'/'+species+'_alternative_junctions'+export_annotation+'.txt' print 'Writing the file:',alt_junction_export fn=filepath(alt_junction_export); reciprocol_junction_data = open(fn,'w') title = ['gene','critical-exon-id','junction1','junction2'] title = string.join(title,'\t')+'\n'; reciprocol_junction_data.write(title) ### exon_annotation_db2 contains coordinates and ensembl exon IDs for each exon - extract out just this data exon_coordinate_db={} for key in exon_annotation_db2: gene=key[0]; exon_coords={} for exon_data in exon_annotation_db2[key]: exon_start = exon_data[1][0]; exon_stop = exon_data[1][1]; ed = exon_data[1][2] exon_coords[exon_start,exon_stop] = ed.ExonID() exon_coordinate_db[gene] = exon_coords intron_coordinate_db={}; exon_region_annotations={}; intron_junction_db={} for key in intron_retention_db: gene=key[0]; exon_coords={} for exon_data in intron_retention_db[key]: exon_start = exon_data[0]; exon_stop = exon_data[1]; ed = exon_data[2] exon_coords[exon_start,exon_stop] = ed.ExonID() intron_coordinate_db[gene] = exon_coords for gene in exon_regions: previous_exonid=''; previous_intronid='' block_db = exon_regions[gene] try:intron_block_db = intron_region_db[gene]; introns = 'yes' except KeyError: introns = 'no' if gene in ucsc_splicing_annot_db: ucsc_events = ucsc_splicing_annot_db[gene] else: ucsc_events = [] utr_data = [gene,'U0.1','u','0','1','n','n',''] values = string.join(utr_data,'\t')+'\n'; sgvdata.write(values) index=1 for block in block_db: for rd in block_db[block]: splice_event = rd.AssociatedSplicingEvent();exon_pos = [rd.ExonStart(), rd.ExonStop()]; exon_pos.sort() if gene in intron_retention_db2: for retained_pos in intron_retention_db2[gene]: if exon_pos == retained_pos: splice_event = 'exon-region-exclusion' elif exon_pos[0] == retained_pos[0] or exon_pos[1] == retained_pos[1]: splice_event = 'exon-region-exclusion' elif exon_pos[0]>retained_pos[0] and exon_pos[0]<retained_pos[1] and exon_pos[1]>retained_pos[0] and exon_pos[1]<retained_pos[1]: splice_event = 'exon-region-exclusion' if 'exon-region-exclusion' in splice_event: rd.setAssociatedSplicingEvent(splice_event); id = rd if len(splice_event)>0: constitutive_call = 'no' ### If a splice-event is associated with a recommended constitutive region, over-ride it else: constitutive_call = rd.ConstitutiveCallAbrev() values = [gene,rd.ExonRegionID2(),'e',str(index),str(rd.RegionNumber()),constitutive_call[0],'n',splice_event]#,str(exon_pos[0]),str(exon_pos[1])] values = string.join(values,'\t')+'\n'; sgvdata.write(values) ens_exons = getMatchingEnsExons(rd.ExonStart(),rd.ExonStop(),exon_coordinate_db[gene]) start_stop = [rd.ExonStart(),rd.ExonStop()]; start_stop.sort(); start,stop = start_stop splice_event = getUCSCSplicingAnnotations(ucsc_events,splice_event,start,stop) if len(splice_event)>0: constitutive_call = 'no' ### If a splice-event is associated with a recommended constitutive region, over-ride it else: constitutive_call = rd.ConstitutiveCallAbrev() values = [gene,rd.ExonRegionID2(),'chr'+rd.Chr(),rd.Strand(),str(start),str(stop),constitutive_call,ens_exons,splice_event,rd.AssociatedSplicingJunctions()] values = string.join(values,'\t')+'\n'; exondata.write(values) exon_region_annotations[gene,rd.ExonRegionID2()]=ens_exons if len(previous_intronid)>0: ### Intron junctions are not stored and are thus not analyzed as recipricol junctions (thus add them hear for RNASeq) try: intron_junction_db[gene].append((previous_exonid,previous_intronid)) except Exception: intron_junction_db[gene] = [(previous_exonid,previous_intronid)] intron_junction_db[gene].append((previous_intronid,rd.ExonRegionID2())) values = [gene,previous_intronid,previous_exonid+'-'+previous_intronid,previous_exonid+'-'+rd.ExonRegionID2(),id.AssociatedSplicingEvent()] values = string.join(values,'\t')+'\n'; reciprocol_junction_data.write(values) values = [gene,previous_intronid,previous_intronid+'-'+rd.ExonRegionID2(),previous_exonid+'-'+rd.ExonRegionID2(),id.AssociatedSplicingEvent()] values = string.join(values,'\t')+'\n'; reciprocol_junction_data.write(values) id.setAssociatedSplicingJunctions(previous_exonid+'-'+previous_intronid+'|'+previous_intronid+'-'+rd.ExonRegionID2()) previous_intronid='' if splice_event == 'exon-region-exclusion': previous_intronid = rd.ExonRegionID2() else: previous_exonid=rd.ExonRegionID2() index+=1 if introns == 'yes': try: intronid = rd.IntronRegionID() ### The intron block (relative to the exon block) is assigned in the function exon_clustering for rd in intron_block_db[block]: intron_pos = [rd.ExonStart(), rd.ExonStop()]; intron_pos.sort() splice_event = rd.AssociatedSplicingEvent() if gene in intron_retention_db2: for retained_pos in intron_retention_db2[gene]: #if '15' in intronid: print intron_pos,retained_pos;kill if intron_pos == retained_pos: splice_event = 'intron-retention' elif intron_pos[0] == retained_pos[0] or intron_pos[1] == retained_pos[1]: splice_event = 'intron-retention' elif intron_pos[0]>retained_pos[0] and intron_pos[0]<retained_pos[1] and intron_pos[1]>retained_pos[0] and intron_pos[1]<retained_pos[1]: splice_event = 'intron-retention' if 'intron' in splice_event: rd.setAssociatedSplicingEvent(splice_event); id = rd if len(splice_event)>0: constitutive_call = 'no' ### If a splice-event is associated with a recommended constitutive region, over-ride it else: constitutive_call = rd.ConstitutiveCallAbrev() values = [gene,intronid,'i',str(index),str(rd.RegionNumber()),constitutive_call[0],'n',splice_event]#,str(intron_pos[0]),str(intron_pos[1])] values = string.join(values,'\t')+'\n'; sgvdata.write(values); ens_exons='' if len(splice_event)>0: ens_exons = getMatchingEnsExons(rd.ExonStart(),rd.ExonStop(),intron_coordinate_db[gene]) exon_region_annotations[gene,intronid]=ens_exons previous_intronid=intronid start_stop = [rd.ExonStart(),rd.ExonStop()]; start_stop.sort(); start,stop = start_stop splice_event = getUCSCSplicingAnnotations(ucsc_events,splice_event,start,stop) if len(splice_event)>0: constitutive_call = 'no' ### If a splice-event is associated with a recommended constitutive region, over-ride it else: constitutive_call = rd.ConstitutiveCallAbrev() values = [gene,intronid,'chr'+rd.Chr(),rd.Strand(),str(start),str(stop),constitutive_call,ens_exons,splice_event,rd.AssociatedSplicingJunctions()] values = string.join(values,'\t')+'\n'; exondata.write(values) index+=1 except KeyError: null=[] last_exon_region,null = string.split(rd.ExonRegionID2(),'.') ### e.g. E13.1 becomes E13, 1 utr_data = [gene,'U'+last_exon_region[1:]+'.1','u',str(index),'1','n','n',''] values = string.join(utr_data,'\t')+'\n'; sgvdata.write(values) sgvdata.close(); reciprocol_junction_data.close() for gene in excluded_intronic_junctions: excluded_junction_exons=[] last_region_db={} exon_block_db=exon_regions[gene] for block in exon_block_db: for rd in exon_block_db[block]: try: last_region_db[rd.ExonNumber()].append(rd.RegionNumber()) except KeyError: last_region_db[rd.ExonNumber()] = [rd.RegionNumber()] ###excluded_intronic_junctions These are Ensembl exons reclassified as belonging to a retained intron ### Nonetheless, we need to store the original junctions since they are not novel for (ed1,ed2) in excluded_intronic_junctions[gene]: #print ed1.ExonStop(),ed2.ExonStart() ### Store all exons aligning to retained introns and sort by position (needed for ordering) if ed1.IntronDeletionStatus()== 'yes': if ed1.Strand() == '-': start = ed1.ExonStop(); stop = ed1.ExonStart() else: start = ed1.ExonStart(); stop = ed1.ExonStop() excluded_junction_exons.append((start,stop,ed1)) if ed2.IntronDeletionStatus()== 'yes': if ed2.Strand() == '-': start = ed2.ExonStop(); stop = ed2.ExonStart() else: start = ed2.ExonStart(); stop = ed2.ExonStop() excluded_junction_exons.append((start,stop,ed2)) excluded_junction_exons = unique.unique(excluded_junction_exons); excluded_junction_exons.sort() for (start,stop,ed) in excluded_junction_exons: ### update the IntronIDs and annotations for each exon (could be present in multiple junctions) #print gene, ed.GeneID(), len(intron_region_db[gene]), len(exon_regions[gene]), len(last_region_db) try: intron_regions = intron_region_db[gene] except KeyError: intron_regions = [] ### In very rare cases where we have merged exons with <500bp introns, no introns for the gene will 'exist' ed,last_region_db=findAligningIntronBlock(ed,intron_regions,exon_regions[gene],last_region_db) #print [[ed.ExonID(), ed.NewIntronRegion(), start, stop]] ens_exons = getMatchingEnsExons(ed.ExonStart(),ed.ExonStop(),exon_coordinate_db[gene]) start_stop = [ed.ExonStart(),ed.ExonStop()]; start_stop.sort(); start,stop = start_stop splice_event = getUCSCSplicingAnnotations(ucsc_events,ed.AssociatedSplicingEvent(),start,stop) try: values = [gene,ed.NewIntronRegion(),'chr'+ed.Chr(),ed.Strand(),str(start),str(stop),'no',ens_exons,splice_event,ed.AssociatedSplicingJunctions()] except Exception: print gene, 'chr'+ed.Chr(),ed.Strand(),str(start),str(stop),'no',ens_exons,splice_event,ed.AssociatedSplicingJunctions() print len(exon_regions[gene]), len(intron_regions), len(exon_regions[gene]), len(last_region_db); kill values = string.join(values,'\t')+'\n'; exondata.write(values) ###Export the two individual exon regions for each exon junction critical_gene_junction_db = eliminate_redundant_dict_values(critical_gene_junction_db) exon_annotation_export = 'AltDatabase/ensembl/' +species+'/'+species+ '_SubGeneViewer_junction-data.txt' fn=filepath(exon_annotation_export); sgvjdata = open(fn,'w') title = ['gene',"5'exon-region","3'exon-region"] title = string.join(title,'\t')+'\n'; sgvjdata.write(title) alt_junction={} for gene in critical_gene_junction_db: for junction_ls in critical_gene_junction_db[gene]: values = [gene,junction_ls[0],junction_ls[1]] values = string.join(values,'\t')+'\n'; sgvjdata.write(values) try: alt_junction[gene].append((junction_ls[0],junction_ls[1])) except KeyError: alt_junction[gene]=[(junction_ls[0],junction_ls[1])] ### Include junctions for intron retention and exon-exclusion if gene in intron_junction_db: for junction_ls in intron_junction_db[gene]: values = [gene,junction_ls[0],junction_ls[1]] values = string.join(values,'\t')+'\n'; sgvjdata.write(values) try: full_junction_db[gene].append((junction_ls[0],junction_ls[1])) except KeyError: full_junction_db[gene] = [(junction_ls[0],junction_ls[1])] try: alt_junction[gene].append((junction_ls[0],junction_ls[1])) except KeyError: alt_junction[gene]=[(junction_ls[0],junction_ls[1])] for gene in full_junction_db: ### Add junctions to the exon database block_db = exon_regions[gene] try: intron_block_db = intron_region_db[gene] except KeyError: intron_block_db={} for (exon1,exon2) in full_junction_db[gene]: found1='no'; found2='no' for block in block_db: if found1 == 'no' or found2 == 'no': for rd in block_db[block]: if rd.ExonRegionID2() == exon1: le = rd; found1 = 'yes' ### Left exon found if rd.ExonRegionID2() == exon2: re = rd; found2 = 'yes' ### Right exon found if found1 == 'no' or found2 == 'no': for block in intron_block_db: for rd in intron_block_db[block]: if rd.IntronRegionID() == exon1: le = rd; found1 = 'yes' ### Left exon found if rd.IntronRegionID() == exon2: re = rd; found2 = 'yes' ### Right exon found if found1 == 'yes' and found2 == 'yes': ens_exons1 = exon_region_annotations[gene,exon1] ens_exons2 = exon_region_annotations[gene,exon2] const_call = 'no' if gene in alt_junction: if (exon1,exon2) in alt_junction[gene]: const_call = 'no' elif le.ConstitutiveCall() == 'yes' and re.ConstitutiveCall() == 'yes': const_call = 'yes' elif le.ConstitutiveCall() == 'yes' and re.ConstitutiveCall() == 'yes': const_call = 'yes' ens_exons=combineAnnotations([ens_exons1,ens_exons2]) splice_event=combineAnnotations([le.AssociatedSplicingEvent(),re.AssociatedSplicingEvent()]) splice_junctions=combineAnnotations([le.AssociatedSplicingJunctions(),re.AssociatedSplicingJunctions()]) le_start_stop = [le.ExonStart(),le.ExonStop()]; le_start_stop.sort(); le_start,le_stop = le_start_stop re_start_stop = [re.ExonStart(),re.ExonStop()]; re_start_stop.sort(); re_start,re_stop = re_start_stop splice_event = getUCSCSplicingAnnotations(ucsc_events,splice_event,le_start,le_stop) splice_event = getUCSCSplicingAnnotations(ucsc_events,splice_event,re_start,re_stop) if len(splice_event)>0: const_call = 'no' values = [gene,exon1+'-'+exon2,'chr'+le.Chr(),le.Strand(),str(le_start)+'|'+str(le_stop),str(re_start)+'|'+str(re_stop),const_call,ens_exons,splice_event,splice_junctions] values = string.join(values,'\t')+'\n'; junctiondata.write(values) #print exon1+'-'+exon2, le_start_stop,re_start_stop if gene in excluded_intronic_junctions: ### Repeat for junctions that occur in AltAnalyze determined retained introns for (le,re) in excluded_intronic_junctions[gene]: if le.IntronDeletionStatus()== 'yes': exon1 = le.NewIntronRegion() else: exon1 = le.ExonRegionID2() if re.IntronDeletionStatus()== 'yes': exon2 = re.NewIntronRegion() else: exon2 = re.ExonRegionID2() ens_exons1 = le.ExonID() ens_exons2 = re.ExonID() const_call = 'no' ens_exons=combineAnnotations([ens_exons1,ens_exons2]) splice_event=combineAnnotations([le.AssociatedSplicingEvent(),re.AssociatedSplicingEvent()]) splice_junctions=combineAnnotations([le.AssociatedSplicingJunctions(),re.AssociatedSplicingJunctions()]) le_start_stop = [le.ExonStart(),le.ExonStop()]; le_start_stop.sort(); le_start,le_stop = le_start_stop re_start_stop = [re.ExonStart(),re.ExonStop()]; re_start_stop.sort(); re_start,re_stop = re_start_stop splice_event = getUCSCSplicingAnnotations(ucsc_events,splice_event,le_start,le_stop) splice_event = getUCSCSplicingAnnotations(ucsc_events,splice_event,re_start,re_stop) values = [gene,exon1+'-'+exon2,'chr'+le.Chr(),le.Strand(),str(le_start)+'|'+str(le_stop),str(re_start)+'|'+str(re_stop),const_call,ens_exons,splice_event,splice_junctions] values = string.join(values,'\t')+'\n'; junctiondata.write(values) #print exon1, le_start_stop, exon2, re_start_stop sgvjdata.close(); exondata.close(); junctiondata.close() def combineAnnotations(annotation_list): annotation_list2=[] for annotations in annotation_list: annotations = string.split(annotations,'|') for annotation in annotations: if len(annotation)>0: annotation_list2.append(annotation) annotation_list = unique.unique(annotation_list2) annotation_list = string.join(annotation_list,'|') return annotation_list def getMatchingEnsExons(region_start,region_stop,exon_coord_db): region_coord=[region_start,region_stop]; ens_exons=[] region_coord.sort(); region_start,region_stop = region_coord for exon_coord in exon_coord_db: combined=region_coord+list(exon_coord) combined.sort() if region_start==combined[1] and region_stop==combined[-2]: ens_exons.append(exon_coord_db[exon_coord]) ens_exons = string.join(ens_exons,'|') return ens_exons ################# Begin Analysis from parsing files class EnsemblInformation: def __init__(self, chr, gene_start, gene_stop, strand, ensembl_gene_id, ensembl_exon_id, exon_start, exon_stop, constitutive_exon, new_exon_start, new_exon_stop, new_gene_start, new_gene_stop): self._geneid = ensembl_gene_id; self._exonid = ensembl_exon_id; self._chr = chr self._genestart = gene_start; self._genestop = gene_stop self._exonstart = exon_start; self._exonstop = exon_stop self._constitutive_exon = constitutive_exon; self._strand = strand self._newgenestart = new_gene_start; self._newgenestop = new_gene_stop self._newexonstart = new_exon_start; self._newexonstop = new_exon_stop self._del_status = 'no' #default value self._distal_intron_region = 1 #default value self.mx='no' def GeneID(self): return self._geneid def ExonID(self): return self._exonid def reSetExonID(self,exonid): self._exonid = exonid def Chr(self): return self._chr def Strand(self): return self._strand def GeneStart(self): return self._genestart def GeneStop(self): return self._genestop def ExonStart(self): return self._exonstart def ExonStop(self): return self._exonstop def NewGeneStart(self): return self._newgenestart def NewGeneStop(self): return self._newgenestop def NewExonStart(self): return self._newexonstart def NewExonStop(self): return self._newexonstop def setConstitutive(self,constitutive_exon): self._constitutive_exon = constitutive_exon def Constitutive(self): return self._constitutive_exon def ConstitutiveCall(self): if self.Constitutive() == '1': call = 'yes' else: call = 'no' return call def ConstitutiveCallAbrev(self): if self.Constitutive() == 'yes': call = 'yes' elif self.Constitutive() == '1': call = 'yes' else: call = 'no' return call def setSpliceData(self,splice_event,splice_junctions): self._splice_event = splice_event; self._splice_junctions = splice_junctions def setMutuallyExclusive(self): self.mx='yes' def setIntronDeletionStatus(self,del_status): self._del_status = del_status def setAssociatedSplicingEvent(self,splice_event): self._splice_event = splice_event def AssociatedSplicingEvent(self): if self.mx == 'yes': try: self._splice_event = string.replace(self._splice_event,'cassette-exon','mutually-exclusive-exon') self._splice_event = string.join(unique.unique(string.split(self._splice_event,'|')),'|') except AttributeError: return 'mutually-exclusive-exon' try: return self._splice_event except AttributeError: return '' def updateDistalIntronRegion(self): self._distal_intron_region+=1 def DistalIntronRegion(self): return self._distal_intron_region def setNewIntronRegion(self,new_intron_region): self.new_intron_region = new_intron_region def NewIntronRegion(self): return self.new_intron_region def IntronDeletionStatus(self): try: return self._del_status except AttributeError: return 'no' def setAssociatedSplicingJunctions(self,splice_junctions): self._splice_junctions = splice_junctions def AssociatedSplicingJunctions(self): try: return self._splice_junctions except AttributeError: return '' def setExonRegionIDs(self,id): self._exon_region_ids = id def ExonRegionIDs(self): return self._exon_region_ids def setJunctionCoordinates(self,start1,stop1,start2,stop2): self.start1=start1;self.stop1=stop1;self.start2=start2;self.stop2=stop2 def JunctionCoordinates(self): return [self.start1,self.stop1,self.start2,self.stop2] def JunctionDistance(self): jc = self.JunctionCoordinates(); jc.sort(); distance = int(jc[2])-int(jc[1]) return distance def ExonNumber(self): return self._exon_num def RegionNumber(self): return self._region_num def ExonRegionNumbers(self): return (self._exon_num,self._region_num) def ExonRegionID(self): return 'E'+str(self._exon_num)+'-'+str(self._region_num) def ExonRegionID2(self): return 'E'+str(self._exon_num)+'.'+str(self._region_num) def IntronRegionID(self): return 'I'+str(self._exon_num)+'.1' def setExonSeq(self,exon_seq): self._exon_seq = exon_seq def ExonSeq(self): return self._exon_seq def setPrevExonSeq(self,prev_exon_seq): self._prev_exon_seq = prev_exon_seq def PrevExonSeq(self): try: return self._prev_exon_seq except Exception: return '' def setNextExonSeq(self,next_exon_seq): self._next_exon_seq = next_exon_seq def NextExonSeq(self): try: return self._next_exon_seq except Exception: return '' def setPrevIntronSeq(self,prev_intron_seq): self._prev_intron_seq = prev_intron_seq def PrevIntronSeq(self): return self._prev_intron_seq def setNextIntronSeq(self,next_intron_seq): self._next_intron_seq = next_intron_seq def NextIntronSeq(self): return self._next_intron_seq def setPromoterSeq(self,promoter_seq): self._promoter_seq = promoter_seq def PromoterSeq(self): return self._promoter_seq def AllGeneValues(self): output = str(self.ExonID()) return output def __repr__(self): return self.AllGeneValues() class ExonStructureData(EnsemblInformation): def __init__(self, ensembl_gene_id, chr, strand, exon_start, exon_stop, constitutive_exon, ensembl_exon_id, transcriptid): self._transcriptid = transcriptid self._geneid = ensembl_gene_id; self._exonid = ensembl_exon_id; self._chr = chr self._exonstart = exon_start; self._exonstop = exon_stop self._constitutive_exon = constitutive_exon; self._strand = strand self._distal_intron_region = 1; self.mx='no' def TranscriptID(self): return self._transcriptid class ExonRegionData(EnsemblInformation): def __init__(self, ensembl_gene_id, chr, strand, exon_start, exon_stop, ensembl_exon_id, exon_region_id, exon_num, region_num, constitutive_exon): self._exon_region_id = exon_region_id; self._constitutive_exon = constitutive_exon self._geneid = ensembl_gene_id; self._exonid = ensembl_exon_id; self._chr = chr self._exonstart = exon_start; self._exonstop = exon_stop; self._distal_intron_region = 1; self.mx='no' self._exon_num = exon_num; self._region_num = region_num; self._strand = strand class ProbesetAnnotation(EnsemblInformation): def __init__(self, ensembl_exon_id, constitutive_exon, exon_region_id, splice_event, splice_junctions, exon_start, exon_stop): self._region_num = exon_region_id; self._constitutive_exon = constitutive_exon;self._splice_event = splice_event self._splice_junctions = splice_junctions; self._exonid = ensembl_exon_id self._exonstart = exon_start; self._exonstop = exon_stop; self.mx='no' class ExonAnnotationsSimple(EnsemblInformation): def __init__(self, chr, strand, exon_start, exon_stop, ensembl_gene_id, ensembl_exon_id ,constitutive_exon, exon_region_id, splice_event, splice_junctions): self._exon_region_ids = exon_region_id; self._constitutive_exon = constitutive_exon;self._splice_event =splice_event self._splice_junctions = splice_junctions; self._exonid = ensembl_exon_id; self._geneid = ensembl_gene_id self._chr = chr; self._exonstart = exon_start; self._exonstop = exon_stop; self._strand = strand; self.mx='no' class CriticalExonInfo: def __init__(self,geneid,critical_exon,splice_type,junctions): self._geneid = geneid; self._junctions = junctions self._critical_exon = critical_exon; self._splice_type = splice_type def GeneID(self): return self._geneid def Junctions(self): return self._junctions def CriticalExonRegion(self): return self._critical_exon def SpliceType(self): return self._splice_type class RelativeExonLocations: def __init__(self,exonid,pes,pee,nes,nee): self._exonid = exonid; self._pes = pes; self._pee = pee self._nes = nes; self._nee = nee def ExonID(self): return self._exonid def PrevExonCoor(self): return (self._pes,self._pee) def NextExonCoor(self): return (self._nes,self._nee) def __repr__(self): return self.ExonID() ################### Import exon coordinate/transcript data from BIOMART def importEnsExonStructureDataSimple(species,type,gene_strand_db,exon_location_db,adjacent_exon_locations): if type == 'ensembl': filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' elif type == 'ucsc': filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_filtered_mrna.txt' elif type == 'ncRNA': filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_filtered_ncRNA.txt' start_time = time.time() fn=filepath(filename); x=0; k=[]; relative_exon_locations={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if 'Chromosome' in t[0]: type = 'old'###when using older builds of EnsMart versus BioMart else: type = 'current' x=1 else: if type == 'old': chr, strand, gene, ens_transcriptid, ens_exonid, exon_start, exon_end, constitutive_exon = t else: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t ###switch exon-start and stop if in the reverse orientation if strand == '-1' or strand == '-': strand = '-'#; exon_start2 = int(exon_end); exon_end2 = int(exon_start); exon_start=exon_start2; exon_end=exon_end2 else: strand = '+'; exon_end = int(exon_end)#; exon_start = int(exon_start) if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention exon_end = int(exon_end); exon_start = int(exon_start) exon_data = (exon_start,exon_end,ens_exonid) try: relative_exon_locations[ens_transcriptid,gene,strand].append(exon_data) except KeyError: relative_exon_locations[ens_transcriptid,gene,strand] = [exon_data] gene_strand_db[gene] = strand exon_location_db[ens_exonid] = exon_start,exon_end ###Generate a list of exon possitions for adjacent exons for all exons first_exon_dbase={} for (transcript,gene,strand) in relative_exon_locations: relative_exon_locations[(transcript,gene,strand)].sort() if strand == '-': relative_exon_locations[(transcript,gene,strand)].reverse() i = 0 ex_ls = relative_exon_locations[(transcript,gene,strand)] for exon_data in ex_ls: exonid = exon_data[-1] if i == 0: ### first exon pes = -1; pee = -1 ###Thus, Index should be out of range, but since -1 is valid, it won't be if strand == '-': ces = ex_ls[i][1] else: ces = ex_ls[i][0] try: first_exon_dbase[gene].append([ces,exonid]) except KeyError: first_exon_dbase[gene] = [[ces,exonid]] else: pes = ex_ls[i-1][0]; pee = ex_ls[i-1][1] ###pes: previous exon start, pee: previous exon end try: nes = ex_ls[i+1][0]; nee = ex_ls[i+1][1] except IndexError: nes = -1; nee = -1 rel = RelativeExonLocations(exonid,pes,pee,nes,nee) """if exonid in adjacent_exon_locations: rel1 = adjacent_exon_locations[exonid] prev_exon_start,prev_exon_stop = rel1.NextExonCoor() next_exon_start,next_exon_stop = rel1.PrevExonCoor() if prev_exon_start == -1 or next_exon_start == -1: adjacent_exon_locations[exonid] = rel ###Don't over-ride the exisitng entry if no exon is proceeding or following else: adjacent_exon_locations[exonid] = rel""" adjacent_exon_locations[exonid] = rel i+=1 for gene in first_exon_dbase: first_exon_dbase[gene].sort() strand = gene_strand_db[gene] if strand == '-': first_exon_dbase[gene].reverse() first_exon_dbase[gene] = first_exon_dbase[gene][0][1] ### select the most 5' of the start exons for the gene #print relative_exon_locations['ENSMUST00000025142','ENSMUSG00000024293','-']; kill end_time = time.time(); time_diff = int(end_time-start_time) print filename,"parsed in %d seconds" % time_diff print len(gene_strand_db),'genes imported' return gene_strand_db,exon_location_db,adjacent_exon_locations,first_exon_dbase def importEnsExonStructureDataSimpler(species,type,relative_exon_locations): if type == 'ensembl': filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' elif type == 'ucsc': filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_COMPLETE-mrna.txt' start_time = time.time() fn=filepath(filename); x=0; k=[] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if 'Chromosome' in t[0]: type = 'old'###when using older builds of EnsMart versus BioMart else: type = 'current' x=1 else: if type == 'old': chr, strand, gene, ens_transcriptid, ens_exonid, exon_start, exon_end, constitutive_exon = t else: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t #if gene == 'ENSG00000143776' ###switch exon-start and stop if in the reverse orientation if strand == '-1' or strand == '-': strand = '-'#; exon_start2 = int(exon_end); exon_end2 = int(exon_start); exon_start=exon_start2; exon_end=exon_end2 else: strand = '+'; exon_end = int(exon_end)#; exon_start = int(exon_start) if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention exon_end = int(exon_end); exon_start = int(exon_start) exon_data = (exon_start,exon_end,ens_exonid) try: relative_exon_locations[ens_transcriptid,gene,strand].append(exon_data) except KeyError: relative_exon_locations[ens_transcriptid,gene,strand] = [exon_data] return relative_exon_locations def importEnsGeneData(species): filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' global ens_gene_db; ens_gene_db={} importEnsExonStructureData(filename,species,'gene') return ens_gene_db def importEnsExonStructureData(filename,species,data2process): start_time = time.time() fn=filepath(filename); x=0; k=[] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if data2process == 'all': ###switch exon-start and stop if in the reverse orientation if strand == '-1' or strand == '-': strand = '-'; exon_start2 = int(exon_end); exon_end2 = int(exon_start); exon_start=exon_start2; exon_end=exon_end2 else: strand = '+'; exon_end = int(exon_end); exon_start = int(exon_start) if 'ENS' in gene: ens_exonid_data = string.split(ens_exonid,'.'); ens_exonid = ens_exonid_data[0] if abs(exon_end-exon_start)>-1: if abs(exon_end-exon_start)<1: try: too_short[gene].append(exon_start) except KeyError: too_short[gene] = [exon_start] exon_coordinates = [exon_start,exon_end] continue_analysis = 'no' if test=='yes': ###used to test the program for a single gene if gene in test_gene: continue_analysis='yes' else: continue_analysis='yes' if continue_analysis=='yes': ###Create temporary databases storing just exon and just trascript and then combine in the next block of code initial_exon_annotation_db[ens_exonid] = gene,chr,strand,exon_start,exon_end,constitutive_exon try: exon_transcript_db[ens_exonid].append(ens_transcriptid) except KeyError: exon_transcript_db[ens_exonid] = [ens_transcriptid] ###Use this database to figure out which ensembl exons represent intron retention as a special case down-stream try: transcript_exon_db[gene,chr,strand,ens_transcriptid].append(exon_coordinates) except KeyError: transcript_exon_db[gene,chr,strand,ens_transcriptid] = [exon_coordinates] ###Store transcript data for downstream analyses transcript_gene_db[ens_transcriptid] = gene,chr,strand try: gene_transcript[gene].append(ens_transcriptid) except KeyError: gene_transcript[gene] = [ens_transcriptid] #print ens_exonid, exon_end elif data2process == 'exon-transcript': continue_analysis = 'yes' if test=='yes': ###used to test the program for a single gene if gene not in test_gene: continue_analysis='no' if continue_analysis == 'yes': try: exon_transcript_db[ens_exonid].append(ens_transcriptid) except KeyError: exon_transcript_db[ens_exonid] = [ens_transcriptid] elif data2process == 'gene': ens_gene_db[gene] = chr,strand end_time = time.time(); time_diff = int(end_time-start_time) try: print len(transcript_gene_db), "number of transcripts included" except Exception: null=[] print filename,"parsed in %d seconds" % time_diff def getEnsExonStructureData(species,data_type): start_time = time.time() ###Simple function to import and organize exon/transcript data filename1 = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' filename2 = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_filtered_mrna.txt' filename3 = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_filtered_ncRNA.txt' data2process = 'all' global initial_exon_annotation_db; initial_exon_annotation_db={} global exon_transcript_db; exon_transcript_db={} global transcript_gene_db; transcript_gene_db={} global gene_transcript; gene_transcript={} global transcript_exon_db; transcript_exon_db={} global initial_junction_db; initial_junction_db = {}; global too_short; too_short={} global ensembl_annotations; ensembl_annotations={}; global ensembl_gene_coordinates; ensembl_gene_coordinates = {} if data_type == 'mRNA' or data_type == 'gene': importEnsExonStructureData(filename2,species,data2process) importEnsExonStructureData(filename1,species,data2process) elif data_type == 'ncRNA': ###Builds database based on a mix of Ensembl, GenBank and UID ncRNA IDs importEnsExonStructureData(filename3,species,data2process) global exon_annotation_db; exon_annotation_db={} ###Agglomerate the data from above and store as an instance of the ExonStructureData class for ens_exonid in initial_exon_annotation_db: gene,chr,strand,exon_start,exon_end,constitutive_exon = initial_exon_annotation_db[ens_exonid] ens_transcript_list = exon_transcript_db[ens_exonid] ###Record the coordiantes for matching up UCSC exon annotations with Ensembl genes try: ensembl_gene_coordinates[gene].append(exon_start) except KeyError: ensembl_gene_coordinates[gene] = [exon_start] ensembl_gene_coordinates[gene].append(exon_end) ensembl_annotations[gene] = chr,strand y = ExonStructureData(gene, chr, strand, exon_start, exon_end, constitutive_exon, ens_exonid, ens_transcript_list) exon_info = [exon_start,exon_end,y] if gene in too_short: too_short_list = too_short[gene] else: too_short_list=[] if exon_start in too_short_list:# and exon_end in too_short_list: pass ###Ensembl exons that are one bp (start and stop the same) - fixed minor issue in 2.0.9 pass else: try: exon_annotation_db[(gene,chr,strand)].append(exon_info) except KeyError: exon_annotation_db[(gene,chr,strand)] = [exon_info] initial_exon_annotation_db={}; exon_transcript_db={} print 'Exon and transcript data obtained for %d genes' % len(exon_annotation_db) ###Grab the junction data for (gene,chr,strand,transcript) in transcript_exon_db: exon_list_data = transcript_exon_db[(gene,chr,strand,transcript)];exon_list_data.sort() if strand == '-': exon_list_data.reverse() index=0 if gene in too_short: too_short_list = too_short[gene] else: too_short_list=[] while index+1 <len(exon_list_data): junction_data = exon_list_data[index],exon_list_data[index+1] if junction_data[0][0] not in too_short_list and junction_data[0][1] not in too_short_list and junction_data[1][0] not in too_short_list and junction_data[1][1] not in too_short_list: ###Ensembl exons that are one bp (start and stop the same) try: initial_junction_db[(gene,chr,strand)].append(junction_data) except KeyError: initial_junction_db[(gene,chr,strand)] = [junction_data] index+=1 print 'Exon-junction data obtained for %d genes' % len(initial_junction_db) ###Find exons that suggest intron retention: Within a junction database, find exons that overlapp with junction boundaries intron_retention_db={}; retained_intron_exons={}; delete_db={} for key in initial_junction_db: for junction_info in initial_junction_db[key]: e5_pos = junction_info[0][1]; e3_pos = junction_info[1][0] ###grab the junction coordiantes for exon_info in exon_annotation_db[key]: exon_start,exon_stop,ed = exon_info loc = [e5_pos,e3_pos]; loc.sort() ###The downstream functions need these two sorted new_exon_info = loc[0],loc[1],ed retained = compareExonLocations(e5_pos,e3_pos,exon_start,exon_stop) exonid = ed.ExonID() if retained == 'yes': #print exonid,e5_pos,e3_pos,exon_start,exon_stop intron_length = abs(e5_pos-e3_pos) if intron_length>500: ed.setIntronDeletionStatus('yes') try: delete_db[key].append(exon_info) except KeyError: delete_db[key] = [exon_info] try: intron_retention_db[key].append(new_exon_info) except KeyError: intron_retention_db[key]=[new_exon_info] retained_intron_exons[exonid]=[] #print key,ed.ExonID(),len(exon_annotation_db[key]) k=0 ### Below code removes exons that have been classified as retained introns - not needed when we can selective remove these exons with ed.IntronDeletionStatus() #exon_annotation_db2={} for key in exon_annotation_db: for exon_info in exon_annotation_db[key]: if key in delete_db: delete_info = delete_db[key] ### coordinates and objects... looks like you can match up based on object memory locations if exon_info in delete_info: k+=1 """else: try: exon_annotation_db2[key].append(exon_info) except KeyError: exon_annotation_db2[key]=[exon_info]""" """else: try: exon_annotation_db2[key].append(exon_info) except KeyError: exon_annotation_db2[key]=[exon_info]""" #exon_annotation_db = exon_annotation_db2; exon_annotation_db2=[] transcript_exon_db=[] print k, 'exon entries removed from primary exon structure, which occur in predicted retained introns' initial_junction_db={} print len(retained_intron_exons),"ensembl exons in %d genes, show evidence of being retained introns (only sequences > 500bp are removed from the database" % len(intron_retention_db) end_time = time.time(); time_diff = int(end_time-start_time) print "Primary databases built in %d seconds" % time_diff ucsc_splicing_annot_db = alignToKnownAlt.importEnsExonStructureData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_db) ### Should be able to exclude #except Exception: ucsc_splicing_annot_db={} return exon_annotation_db,transcript_gene_db,gene_transcript,intron_retention_db,ucsc_splicing_annot_db def compareExonLocations(e5_pos,e3_pos,exon_start,exon_stop): sort_list = [e5_pos,e3_pos,exon_start,exon_stop]; sort_list.sort() new_sort = sort_list[1:-1] if e5_pos in new_sort and e3_pos in new_sort: retained = 'yes' else: retained = 'no' return retained ################### Import exon sequence data from BIOMART (more flexible alternative function to above) def getSeqLocations(sequence,ed,strand,start,stop,original_start,original_stop): cd = seqSearch(sequence,ed.ExonSeq()) if cd != -1: if strand == '-': exon_stop = stop - cd; exon_start = exon_stop - len(ed.ExonSeq()) + 1 else: exon_start = start + cd; exon_stop = exon_start + len(ed.ExonSeq())-1 ed.setExonStart(exon_start); ed.setExonStop(exon_stop); ed.setGeneStart(original_start); ed.setGeneStop(original_stop) #if ed.ExonID() == 'E10' and ed.ArrayGeneID() == 'G7225860': #print exon_start, exon_stop,len(ed.ExonSeq()),ed.ExonSeq();kill else: cd = seqSearch(sequence,ed.ExonSeq()[:15]) #print ed.ExonSeq()[:15],ed.ExonSeq();kill if cd == -1: cd = seqSearch(sequence,ed.ExonSeq()[-15:]) if cd != -1: if strand == '-': exon_stop = stop - cd; exon_start = exon_stop - len(ed.ExonSeq()) + 1 else: exon_start = start + cd; exon_stop = exon_start + len(ed.ExonSeq())-1 ed.setExonStart(exon_start); ed.setExonStop(exon_stop); ed.setGeneStart(original_start); ed.setGeneStop(original_stop) else: ed.setGeneStart(original_start); ed.setGeneStop(original_stop) ### set these at a minimum for HTA arrays so that the pre-set exon coordinates are reported return ed def import_sequence_data(filename,filter_db,species,analysis_type): """Note: A current bug in this module is that the last gene is not analyzed""" print "Begining generic fasta import of",filename fn=filepath(filename);fasta = {}; exon_db = {}; gene_db = {}; cDNA_db = {};sequence = '';count = 0; seq_assigned=0 global temp_seq; temp_seq=''; damned =0; global failed; failed={} addition_seq_len = 2000; var = 1000 if len(analysis_type)==2: analysis_parameter,analysis_type = analysis_type else: analysis_parameter = 'null' if 'gene' in fn or 'chromosome' in fn: gene_strand_db,exon_location_db,adjacent_exon_locations,null = importEnsExonStructureDataSimple(species,'ucsc',{},{},{}) gene_strand_db,exon_location_db,adjacent_exon_locations,first_exon_db = importEnsExonStructureDataSimple(species,'ensembl',gene_strand_db,exon_location_db,adjacent_exon_locations) null=[] for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) try: if data[0] == '>': if len(sequence) > 0: if 'gene' in fn or 'chromosome' in fn: start = int(start); stop = int(stop) else: try: exon_start = int(exon_start); exon_stop = int(exon_stop) except ValueError: exon_start = exon_start if strand == '-1': strand = '-' else: strand = '+' if strand == '-': new_exon_start = exon_stop; new_exon_stop = exon_start; exon_start = new_exon_start; exon_stop = new_exon_stop #""" if 'exon' in fn: exon_info = [exon_start,exon_stop,exon_id,exon_annot] try: exon_db[(gene,chr,strand)].append(exon_info) except KeyError: exon_db[(gene,chr,strand)] = [exon_info] #exon_info = (exon_start,exon_stop,exon_id,exon_annot) fasta[geneid]=description if 'cDNA' in fn: cDNA_info = [transid,sequence] try: cDNA_db[(gene,strand)].append(cDNA_info) except KeyError: cDNA_db[(gene,strand)] = [cDNA_info] if 'gene' in fn or 'chromosome' in fn: temp_seq = sequence if analysis_type == 'gene_count': fasta[gene]=[] if gene in filter_db: count += 1 if count == var: print var,'genes examined...'; var+=1000 #print gene, filter_db[gene][0].ArrayGeneID();kill if (len(sequence) -(stop-start)) != ((addition_seq_len*2) +1): ###multiple issues can occur with trying to grab sequence up and downstream - for now, exlcude these ###some can be accounted for by being at the end of a chromosome, but not all. damned +=1 try: failed[chr]+=1 except KeyError: failed[chr]=1 """if chr in failed: gene_len = (stop-start); new_start = start - addition_seq_len null = sequence[(gene_len+2000):]""" else: original_start = start; original_stop = stop start = start - addition_seq_len stop = stop + addition_seq_len strand = gene_strand_db[gene] first_exonid = first_exon_db[gene] fexon_start,fexon_stop = exon_location_db[first_exonid] for ed in filter_db[gene]: if analysis_type == 'get_locations': ed = getSeqLocations(sequence,ed,strand,start,stop,original_start,original_stop) if analysis_type == 'get_sequence': exon_id,((probe_start,probe_stop,probeset_id,exon_class,transcript_clust),ed) = ed if analysis_parameter == 'region_only': ens_exon_list = [exon_id] else: ens_exon_list = ed.ExonID() for ens_exon in ens_exon_list: if len(ens_exon)>0: if analysis_parameter == 'region_only': ### Only extract the specific region exon sequence exon_start,exon_stop = int(probe_start),int(probe_stop) #if ':440657' in probeset_id: print ens_exon_list,probe_start,probe_stop #probe_coord = [int(probe_start),int(probe_stop)]; probe_coord.sort() #exon_start,exon_stop = probe_coord else: exon_start,exon_stop = exon_location_db[ens_exon] #if ':440657' in probeset_id: print [exon_start,exon_stop] exon_sequence = grabSeq(sequence,strand,start,stop,exon_start,exon_stop,'exon') #print [exon_id,exon_sequence, start,stop,exon_start,exon_stop];kill """Could repeat if we build another dictionary with exon->adjacent exon positions (store in a class where you designate last and next exon posiitons for each transcript relative to that exon), to grab downstream, upsteam exon and intron sequences""" try: rel = adjacent_exon_locations[ens_exon] prev_exon_start,prev_exon_stop = rel.PrevExonCoor() next_exon_start,next_exon_stop = rel.NextExonCoor() prev_exon_sequence = grabSeq(sequence,strand,start,stop,prev_exon_start,prev_exon_stop,'exon') next_exon_sequence = grabSeq(sequence,strand,start,stop,next_exon_start,next_exon_stop,'exon') seq_type = 'intron' if strand == '-': if 'alt-N-term' in ed.AssociatedSplicingEvent() or 'altPromoter' in ed.AssociatedSplicingEvent(): seq_type = 'promoter' ### Thus prev_intron_seq is used to designate an alternative promoter sequence prev_intron_sequence = grabSeq(sequence,strand,start,stop,exon_stop,prev_exon_start,seq_type) promoter_sequence = grabSeq(sequence,strand,start,stop,fexon_stop,-1,"promoter") next_intron_sequence = grabSeq(sequence,strand,start,stop,next_exon_stop,exon_start,'intron') else: prev_intron_sequence = grabSeq(sequence,strand,start,stop,prev_exon_stop,exon_start,seq_type) promoter_sequence = grabSeq(sequence,strand,start,stop,-1,fexon_start,"promoter") next_intron_sequence = grabSeq(sequence,strand,start,stop,exon_stop,next_exon_start,'intron') """if 'ENS' in ens_exon: print ens_exon, strand print '1)',exon_sequence print '2)',prev_intron_sequence[:20],prev_intron_sequence[-20:], len(prev_intron_sequence), strand,start,stop,prev_exon_stop,exon_start,seq_type, ed.AssociatedSplicingEvent() print '3)',next_intron_sequence[:20],next_intron_sequence[-20:], len(next_intron_sequence) print '4)',promoter_sequence[:20],promoter_sequence[-20:], len(promoter_sequence);kill""" ###Intron sequences can be extreemly long so just include the first and last 1kb if len(prev_intron_sequence)>2001 and seq_type == 'promoter': prev_intron_sequence = prev_intron_sequence[-2001:] elif len(prev_intron_sequence)>2001: prev_intron_sequence = prev_intron_sequence[:1000]+'|'+prev_intron_sequence[-1000:] if len(next_intron_sequence)>2001: next_intron_sequence = next_intron_sequence[:1000]+'|'+next_intron_sequence[-1000:] if len(promoter_sequence)>2001: promoter_sequence = promoter_sequence[-2001:] except Exception: ### When analysis_parameter == 'region_only' an exception is desired since we only want exon_sequence prev_exon_sequence=''; next_intron_sequence=''; next_exon_sequence=''; promoter_sequence='' if analysis_parameter != 'region_only': if strand == '-': promoter_sequence = grabSeq(sequence,strand,start,stop,fexon_stop,-1,"promoter") else: promoter_sequence = grabSeq(sequence,strand,start,stop,-1,fexon_start,"promoter") if len(promoter_sequence)>2001: promoter_sequence = promoter_sequence[-2001:] ed.setExonSeq(exon_sequence) ### Use to replace the previous probeset/critical exon sequence with sequence corresponding to the full exon seq_assigned+=1 if len(prev_exon_sequence)>0: ### Use to output sequence for ESE/ISE type motif searches ed.setPrevExonSeq(prev_exon_sequence); if len(next_exon_sequence)>0: ed.setNextExonSeq(next_exon_sequence) if analysis_parameter != 'region_only': ed.setPrevIntronSeq(prev_intron_sequence[1:-1]); ed.setNextIntronSeq(next_intron_sequence[1:-1]) ed.setPromoterSeq(promoter_sequence[1:-1]) else: if strand == '-': promoter_sequence = grabSeq(sequence,strand,start,stop,fexon_stop,-1,"promoter") else: promoter_sequence = grabSeq(sequence,strand,start,stop,-1,fexon_start,"promoter") if len(promoter_sequence)>2001: promoter_sequence = promoter_sequence[-2001:] ed.setPromoterSeq(promoter_sequence[1:-1]) sequence = ''; data2 = data[1:]; t= string.split(data2,'|'); gene,chr,start,stop = t else: data2 = data[1:]; t= string.split(data2,'|'); gene,chr,start,stop = t except IndexError: continue try: if data[0] != '>': sequence = sequence + data except IndexError: continue if analysis_type == 'get_locations': ### Applies to the last gene sequence read if ('gene' in fn or 'chromosome' in fn) and len(sequence) > 0: start = int(start); stop = int(stop) if analysis_type == 'gene_count': fasta[gene]=[] if gene in filter_db: original_start = start; original_stop = stop start = start - addition_seq_len stop = stop + addition_seq_len strand = gene_strand_db[gene] first_exonid = first_exon_db[gene] fexon_start,fexon_stop = exon_location_db[first_exonid] for ed in filter_db[gene]: try: print ed.ExonStart(),'1' except Exception: null=[] ed = getSeqLocations(sequence,ed,strand,start,stop,original_start,original_stop) for ed in filter_db[gene]: print ed.ExonStart(),'2' probesets_analyzed=0 for gene in filter_db: for probe_data in filter_db[gene]: probesets_analyzed+=1 print "Number of imported sequences:", len(fasta),count print "Number of assigned probeset sequences:",seq_assigned,"out of",probesets_analyzed if len(exon_db) > 0: return exon_db,fasta elif len(cDNA_db) > 0: return cDNA_db elif len(fasta) > 0: return fasta else: return filter_db def grabSeq(sequence,strand,start,stop,exon_start,exon_stop,type): proceed = 'yes' if type != 'promoter' and (exon_start == -1 or exon_stop == -1): proceed = 'no' ###Thus no preceeding or succedding exons and thus no seq reported if proceed == 'yes': if strand == '-': if exon_stop == -1: exon_stop = stop exon_sequence = sequence[(stop-exon_stop):(stop-exon_stop)+(exon_stop-exon_start)+1] else: #print type, exon_start,start,exon_stop if exon_start == -1: exon_start = start ### For last intron exon_sequence = sequence[(exon_start-start):(exon_stop-start+1)] else: exon_sequence = '' return exon_sequence def seqSearch(sequence,exon_seq): cd = string.find(sequence,exon_seq) if cd == -1: rev_seq = reverse_orientation(exon_seq); cd = string.find(sequence,rev_seq) return cd def reverse_string(astring): "http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65225" revchars = list(astring) # string -> list of chars revchars.reverse() # inplace reverse the list revchars = ''.join(revchars) # list of strings -> string return revchars def reverse_orientation(sequence): """reverse the orientation of a sequence (opposite strand)""" exchange = [] for nucleotide in sequence: if nucleotide == 'A': nucleotide = 'T' elif nucleotide == 'T': nucleotide = 'A' elif nucleotide == 'G': nucleotide = 'C' elif nucleotide == 'C': nucleotide = 'G' exchange.append(nucleotide) complementary_sequence = reverse_string(exchange) return complementary_sequence ############# First pass for annotating exons into destict, ordered regions for further annotation def annotate_exons(exon_location): print "Begining to assign intial exon block and region annotations" ### Sort and reverse exon orientation for transcript_cluster exons original_neg_strand_coord={} ###make negative strand coordinates look like positive strand to identify overlapping exons for (geneid,chr,strand) in exon_location: exon_location[(geneid,chr,strand)].sort() if strand == '-': exon_location[(geneid,chr,strand)].reverse() denominator = exon_location[(geneid,chr,strand)][0][0] ###numerical coordiantes to subtract from to normalize negative strand data for exon_info in exon_location[(geneid,chr,strand)]: start,stop,ed = exon_info; ens_exon = ed.ExonID() coordinates = stop,start; coordinates = copy.deepcopy(coordinates)###format these in reverse for analysis in other modules original_neg_strand_coord[ens_exon] = coordinates exon_info[0] = abs(start - denominator);exon_info[1] = abs(stop - denominator) #alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','x','y','z'] exon_location2={}; exon_temp_list=[] for key in exon_location: index = 1; index2 = 1; exon_list=[]; y = 0 #if key[-1] == '-': for exon in exon_location[key]: #print exon[0],exon[1],len(exon_temp_list) if exon[-1].IntronDeletionStatus() == 'yes': null=[] ### retained intron (don't include) else: if y == 0: exon_info = ['E'+str(index)+'-1',exon,(index,1)] exon_list.append(exon_info); y = 1; last_start = exon[0]; last_stop = exon[1]; index += 1; index2 = 2; exon_temp_list =[]; exon_temp_list.append(last_start); exon_temp_list.append(last_stop) elif y == 1: current_start = exon[0]; current_stop = exon[1] if ((current_start >= last_start) and (current_start <= last_stop)) or ((last_start >= current_start) and (last_start <= current_stop)): exon_info = ['E'+str(index-1) +'-'+ str(index2),exon,(index-1,index2)] #+alphabet[index2] exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index2 += 1; exon_temp_list.append(current_start); exon_temp_list.append(current_stop) elif (abs(current_start - last_stop) < 1) or (abs(last_start - current_stop) < 1): exon_info = ['E'+str(index-1) +'-'+ str(index2),exon,(index-1,index2)] #+alphabet[index2] exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index2 += 1; exon_temp_list.append(current_start); exon_temp_list.append(current_stop) elif len(exon_temp_list)>3: exon_temp_list.sort() if (((current_start-1) > exon_temp_list[-1]) and ((current_stop-1) > exon_temp_list[-1])) or (((current_start+1) < exon_temp_list[0]) and ((current_stop+1) < exon_temp_list[0])): ###Thus an overlapp with atleast one exon DOESN'T exists exon_info = ['E'+str(index)+'-1',exon,(index,1)] exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index += 1; index2 = 2; exon_temp_list=[]; exon_temp_list.append(current_start); exon_temp_list.append(current_stop) else: exon_info = ['E'+str(index-1) +'-'+ str(index2),exon,(index-1,index2)] #+alphabet[index2] exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index2 += 1; exon_temp_list.append(current_start); exon_temp_list.append(current_stop) else: exon_info = ['E'+str(index)+'-1',exon,(index,1)] exon_list.append(exon_info); last_start = exon[0]; last_stop = exon[1]; index += 1; index2 = 2; exon_temp_list=[]; exon_temp_list.append(current_start); exon_temp_list.append(current_stop) exon_location2[key] = exon_list for key in exon_location2: ###Re-assign exon coordiantes back to the actual coordiantes for negative strand genes strand = key[-1] if strand == '-': for exon_data in exon_location2[key]: ed = exon_data[1][2]; ens_exon = ed.ExonID() ###re-assing the coordiantes start,stop = original_neg_strand_coord[ens_exon] exon_data[1][0] = start; exon_data[1][1] = stop """ for key in exon_location2: if key[0] == 'ENSG00000129566': for item in exon_location2[key]: print key, item""" return exon_location2 def exon_clustering(exon_location): """for i in exon_location[('ENSG00000129566','14','-')]:print i""" #exon_info = exon_start,exon_end,y #try: exon_annotation_db[(geneid,chr,strand)].append(exon_info) #except KeyError: exon_annotation_db[(geneid,chr,strand)] = [exon_info] exon_clusters={}; region_locations={}; region_gene_db={} for key in exon_location: chr = 'chr'+key[1];entries = exon_location[key];strand = key[-1]; gene = key[0] temp_exon_db={}; temp_exon_db2={}; exon_block_db={} for exon in entries: a = string.find(exon[0],'-') ###outdated code: if all have a '-' if a == -1: exon_number = int(exon[0][1:]) else: exon_number = int(exon[0][1:a]) ###Group overlapping exons into exon clusters try: temp_exon_db[exon_number].append(exon[1]) except KeyError: temp_exon_db[exon_number] = [exon[1]] ###add all start and stop values to the temp database try: temp_exon_db2[exon_number].append(exon[1][0]) except KeyError: temp_exon_db2[exon_number] = [exon[1][0]] temp_exon_db2[exon_number].append(exon[1][1]) try: exon_block_db[exon_number].append(exon) except KeyError: exon_block_db[exon_number] = [exon] for exon in temp_exon_db: #intron = 'I'+str(exon)+'-1' exon_info = unique.unique(temp_exon_db2[exon]) exon_info.sort();start = exon_info[0];stop = exon_info[-1];type=[]; accession=[] for (exon_start,exon_stop,ed) in temp_exon_db[exon]: exon_type = ed.Constitutive() exon_id = ed.ExonID() type.append(exon_type); accession.append(exon_id) #if exon_id == 'ENSE00000888906': print exon_info,temp_exon_db[exon] type=unique.unique(type); accession=unique.unique(accession) exon_data = exon,(start,stop),accession,type key1 = key[0],chr,strand try: exon_clusters[key1].append(exon_data) except KeyError: exon_clusters[key1] = [exon_data] #if len(exon_info)-len(temp_exon_db[exon])>2: print key1,len(exon_info),len(temp_exon_db[exon]);kill if len(exon_info)>2: if strand == '-': exon_info.reverse() index=0; exon_data_list=[] while index < (len(exon_info)-1): region = str(index+1)#;region_locations[key,'E'+str(exon)+'-'+region] = exon_info[index:index+2] if strand == '-': new_stop,new_start = exon_info[index:index+2] else: new_start,new_stop = exon_info[index:index+2] ned = ExonStructureData(gene, key[1], strand, new_start, new_stop, '', '', []) new_exon_info = ['E'+str(exon)+'-'+region,[new_start,new_stop,ned],(exon,index+1)] exon_data_list.append(new_exon_info) index+=1 #if gene == 'ENSG00000171735':print new_exon_info, 0 region_locations[key,exon] = exon_data_list else: exon_data_list = [exon_block_db[exon][0]] ###There can be multiples that occur - 2 exons 1 set of coordinates #if gene == 'ENSG00000171735':print exon_data_list, 1 region_locations[key,exon] = exon_data_list ###Resort and re-populated the new exon_location database where we've re-defined the region entries interim_location_db={} for (key,exon) in region_locations: exon_data_list = region_locations[(key,exon)] for exon_data in exon_data_list: try: interim_location_db[key].append((exon,exon_data)) except KeyError: interim_location_db[key] = [(exon,exon_data)] for key in interim_location_db: interim_location_db[key].sort(); new_exon_list=[] for (e,i) in interim_location_db[key]: new_exon_list.append(i) exon_location[key] = new_exon_list #for i in exon_location[('ENSG00000171735', '1', '+')]:print i """ for i in region_locations: if 'ENSG00000129566' in i[0]:print i, region_locations[i] ###Transform coordinates from the source Ensembl exon to discrete regions (regions may not be biological relevant in the 3' or 5' exon of the gene due to EST assemblies). for (key,exon_id) in region_locations: gene,chr,strand = key; id_added='no'; exon_annot=[]; ens_exonids=[]; ens_transcripts=[] if strand == '-': stop,start = region_locations[(key,exon_id)] else: start,stop = region_locations[(key,exon_id)] ###If the number of old regions is greater than the new, delete the old previous_region_number = len(exon_location[key]) new_region_number = region_gene_db[key] if previous_region_number>new_region_number: for exon_data in exon_location[key]: exon_start,exon_stop,ed = exon_data[1]; ens_exon_id = ed.ExonID(); exon_annotation = ed.Constitutive() #if exon_id == exon_data[0]: exon_data[1][0] = start; exon_data[1][1] = stop; id_added = 'yes' if exon_start == start or exon_stop == stop: exon_annot.append(exon_annotation); ens_exonids.append(ens_exon_id); ens_transcripts+=ed.TranscriptID() if exon_stop == start or exon_start == stop: exon_annot.append(exon_annotation); ens_exonids.append(ens_exon_id) exon_annot = unique.unique(exon_annot); ens_exonids = unique.unique(ens_exonids); ens_transcripts = unique.unique(ens_transcripts) exon_annot = string.join(exon_annot,'|'); ens_exonids = string.join(ens_exonids,'|') for exon_data in exon_location[key]: if exon_id == exon_data[0]: ###Replace exsting entries (we're basically replacing these with completely new data, just like below, but this is easier than deleting the existing) y = ExonStructureData(gene, chr, strand, start, stop, exon_annot, ens_exonids, ens_transcripts) exon_data[1][0] = start; exon_data[1][1] = stop; exon_data[1][2] = y; id_added = 'yes' #start is the lower number, with either strand break if id_added == 'no': ###This occurs when a new region must be introduced from a large now broken large exon (e.g. E1-1 pos: 1-300, E1-2 pos: 20-200, now need a 3rd E1-3 200-300) indeces = string.split(exon_id[1:],'-') index1 = int(indeces[0]); index2 = int(indeces[1]) #new_entry = ['E'+str(index-1) +'-'+ str(index2),exon,(index-1,index2)] #exon_info = [exon_start,exon_stop,exon_id,exon_annot] ###Can include inappopriate exon IDs and annotations, but not worth specializing the code y = ExonStructureData(gene, chr, strand, start, stop, exon_annot, ens_exonids, ens_transcripts) exon_info = [start,stop,y] new_entry = [exon_id,exon_info,(index1,index2)] #if key == ('ENSG00000129566', '14', '-'): print key,new_entry;kill exon_location[key].append(new_entry)""" exon_regions = {} for (gene,chr,strand) in exon_location: for exon_data in exon_location[(gene,chr,strand)]: try: exon_region_id,exon_detailed,(exon_num,region_num) = exon_data except ValueError: print exon_data;kill start,stop,ed = exon_detailed if strand == '+': start,stop,ed = exon_detailed else: stop,start,ed = exon_detailed y = ExonRegionData(gene, chr, strand, start, stop, ed.ExonID(), exon_region_id, exon_num, region_num, ed.Constitutive()) try: exon_regions[gene].append(y) except KeyError: exon_regions[gene] = [y] """ for key in exon_location: if key[0] == 'ENSG00000075413': print key for item in exon_location[key]: print item""" ###Create a corresponding database of intron and locations for the clustered block exon database intron_clusters={}; intron_region_db={} for key in exon_clusters: gene,chr,strand = key; chr = string.replace(chr,'chr','') exon_clusters[key].sort(); index = 0 for exon_data in exon_clusters[key]: try: exon_num,(start,stop),null,null = exon_data next_exon_data = exon_clusters[key][index+1] en,(st,sp),null,null = next_exon_data intron_num = exon_num if strand == '+': intron_start = stop+1; intron_stop = st-1; intron_start_stop = (intron_start,intron_stop) else: intron_start = start-1; intron_stop = sp+1; intron_start_stop = (intron_stop,intron_start) index+=1 intron_data = intron_num,intron_start_stop,'','no' try: intron_clusters[key].append(intron_data) except KeyError: intron_clusters[key] = [intron_data] ###This database is used for SubGeneViewer and is analagous to region_db intron_region_id = 'I'+str(exon)+'-1' rd = ExonRegionData(gene, chr, strand, intron_start, intron_stop, ed.ExonID(), intron_region_id, intron_num, 1, 0) #rd = ExonRegionData(gene, chr, strand, intron_start, intron_stop, ed.ExonID(), intron_region_id, intron_num, 1, 0) if gene in intron_region_db: block_db = intron_region_db[gene] block_db[intron_num] = [rd] else: block_db={}; block_db[intron_num] = [rd] intron_region_db[gene] = block_db except IndexError: continue ### If no gene is added to intron_region_db, can be due to complete merger of all exons (multi-exon gene) when exon-exclusion occurs return exon_clusters,intron_clusters,exon_regions,intron_region_db def eliminate_redundant_dict_values(database): for key in database: list = makeUnique(database[key]) list.sort() database[key] = list return database def getEnsemblAnnotations(filename,rna_processing_ensembl): fn=filepath(filename) ensembl_annotation_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if 'Description' in data: ensembl_gene_id,description,symbol = string.split(data,'\t') else: ensembl_gene_id,symbol,description = string.split(data,'\t') ensembl_annotation_db[ensembl_gene_id] = description, symbol for gene in ensembl_annotation_db: if gene in rna_processing_ensembl: mRNA_processing = 'RNA_processing/binding' else: mRNA_processing = '' index = ensembl_annotation_db[gene] ensembl_annotation_db[gene] = index[0],index[1],mRNA_processing exportEnsemblAnnotations(ensembl_annotation_db) return ensembl_annotation_db def exportEnsemblAnnotations(ensembl_annotation_db): exon_annotation_export = 'AltDatabase/ensembl/' +species+'/'+species+ '_Ensembl-annotations.txt' fn=filepath(exon_annotation_export); data = open(fn,'w') for ensembl_gene in ensembl_annotation_db: a = ensembl_annotation_db[ensembl_gene] values = ensembl_gene +'\t'+ a[0] +'\t'+ a[1] +'\t'+ a[2] + '\n' data.write(values) data.close() def reimportEnsemblAnnotations(species,symbolKey=False): filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations.txt' fn=filepath(filename) ensembl_annotation_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) ensembl_gene_id,symbol,description,mRNA_processing = string.split(data,'\t') if symbolKey: ensembl_annotation_db[symbol] = ensembl_gene_id else: ensembl_annotation_db[ensembl_gene_id] = symbol,description,mRNA_processing return ensembl_annotation_db def importPreviousBuildTranslation(filename,use_class_structures): ###When previous genome build coordinates a provided for an array - create a translation ###file between ensembl exon ids fn=filepath(filename) exon_coord_translation_db = {}; gene_coor_translation_db = {}; exon_db = {} gene_coor_translation_list = []; x=0 for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) if x == 0: x+=1 ###ignore the first line else: chr, gene_start, gene_stop, strand, ensembl_gene_id, ensembl_exon_id, exon_start, exon_stop, null, null, null,null, constitutive_exon = string.split(data,'\t') if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention gene_start = int(gene_start); gene_stop = int(gene_stop) exon_start = int(exon_start); exon_stop = int(exon_stop) if strand == '-1': strand = '-' if strand == '1': strand = '+' if strand == '-': new_gene_start = gene_stop; new_gene_stop = gene_start; new_exon_start = exon_stop; new_exon_stop = exon_start else: new_gene_start = gene_start; new_gene_stop = gene_stop; new_exon_start = exon_start; new_exon_stop = exon_stop new_exon_start = abs(new_gene_start - new_exon_start) new_exon_stop = abs(new_gene_start - new_exon_stop) ###constitutive_exon column contains a 0 or 1: ensembl_exon_id is versioned ensembl_exon_id,null = string.split(ensembl_exon_id,'.') if use_class_structures == 'yes': exon_coord_info = ensembl_gene_id,(exon_start,exon_stop),(gene_start,gene_stop),int(constitutive_exon) ei = EnsemblInformation(chr, gene_start, gene_stop, strand, ensembl_gene_id, ensembl_exon_id, exon_start, exon_stop, constitutive_exon, new_exon_start, new_exon_stop, new_gene_start, new_gene_stop) ###Also independently determine exon clusters for previous build exon data exon_annot=''; exon_info = (exon_start,exon_stop,ensembl_exon_id,exon_annot) try: exon_db[(ensembl_gene_id,chr,strand)].append(exon_info) except KeyError: exon_db[(ensembl_gene_id,chr,strand)] = [exon_info] y = ei else: ei = [chr,(gene_start,gene_stop),ensembl_gene_id,(new_gene_start,new_gene_stop)] y = [chr,(exon_start,exon_stop),ensembl_exon_id,(new_exon_start,new_exon_stop)] try: exon_coord_translation_db[ensembl_gene_id].append(y) except KeyError: exon_coord_translation_db[ensembl_gene_id] = [y] gene_coor_translation_db[(chr,strand),gene_start,gene_stop] = ei for key in gene_coor_translation_db: ei = gene_coor_translation_db[key] gene_coor_translation_list.append([key,ei]) gene_coor_translation_list.sort() gene_coor_translation_list2={} for key in gene_coor_translation_list: chr_strand = key[0][0] try: gene_coor_translation_list2[chr_strand].append(key[-1]) except KeyError: gene_coor_translation_list2[chr_strand] = [key[-1]] gene_coor_translation_list = gene_coor_translation_list2 ###Determine Exon Clusters for current Ensembl genes with poor linkage properties (can't be converted to old coordiantes) exon_db2 = annotate_exons(exon_db) exon_clusters = exon_clustering(exon_db2); exon_db2={} return exon_coord_translation_db, exon_db, exon_clusters def importExonTranscriptAnnotations(filename): fn=filepath(filename) exon_trans_association_db = {}; x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x+=1 else: ensembl_gene_id,ensembl_trans_id,ensembl_exon_id,constitutive = string.split(data,'\t') ensembl_exon_id,null = string.split(ensembl_exon_id,'.') try: exon_trans_association_db[ensembl_exon_id].append([ensembl_trans_id,constitutive]) except KeyError: exon_trans_association_db[ensembl_exon_id] = [[ensembl_trans_id,constitutive]] return exon_trans_association_db def importEnsemblDomainData(filename): fn=filepath(filename); x = 0; ensembl_ft_db = {}; ensembl_ft_summary_db = {} # Use the last database for summary statistics for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 1: try: ensembl_gene, chr, mgi, uniprot, ensembl_prot, seq_data, position_info = string.split(data,'\t') except ValueError: continue if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention ft_info_list = string.split(position_info,' | ') for entry in ft_info_list: try: peptide_start_end, gene_start_end, feature_source, interprot_id, description = string.split(entry,' ') except ValueError: continue ###142-180 3015022-3015156 Pfam IPR002050 Env_polyprotein ft_start_pos, ft_end_pos = string.split(peptide_start_end,'-') pos1 = int(ft_start_pos); pos2 = int(ft_end_pos) #sequence_fragment = seq_data[pos1:pos2] if len(description)>1 or len(interprot_id)>1: ft_info = [description,sequence_fragment,interprot_id] ft_info2 = description,interprot_id ###uniprot_ft_db[id].append([ft,pos1,pos2,annotation]) try: ensembl_ft_db[id].append(ft_info) except KeyError: ensembl_ft_db[id] = [ft_info] try: ensembl_ft_summary_db[id].append(ft_info2) except KeyError: ensembl_ft_summary_db[id] = [ft_info2] elif data[0:6] == 'GeneID': x = 1 ensembl_ft_db = eliminate_redundant_dict_values(ensembl_ft_db) ensembl_ft_summary_db = eliminate_redundant_dict_values(ensembl_ft_summary_db) domain_gene_counts = {} ###Count the number of domains present in all genes (count a domain only once per gene) for gene in ensembl_ft_summary_db: for domain_info in ensembl_ft_summary_db[gene]: try: domain_gene_counts[domain_info] += 1 except KeyError: domain_gene_counts[domain_info] = 1 print "Number of Ensembl genes, linked to array genes with domain annotations:",len(ensembl_ft_db) print "Number of Ensembl domains:",len(domain_gene_counts) return ensembl_ft_db,domain_gene_counts def getEnsemblAssociations(Species,data_type,test_status): global species; species = Species global test; test = test_status global test_gene meta_test = ["ENSG00000224972","ENSG00000107077"] test_gene = ['ENSG00000163132'] #'ENSG00000215305 #test_gene = ['ENSMUSG00000000037'] #'test Mouse - ENSMUSG00000000037 test_gene = ['ENSMUSG00000065005'] #'ENSG00000215305 test_gene = ['ENSRNOE00000194194'] test_gene = ['ENSG00000229611','ENSG00000107077','ENSG00000107077','ENSG00000107077','ENSG00000107077','ENSG00000107077','ENSG00000163132', 'ENSG00000115295'] test_gene = ['ENSG00000110955'] #test_gene = ['ENSMUSG00000059857'] ### for JunctionArrayEnsemblRules #test_gene = meta_test exon_annotation_db,transcript_gene_db,gene_transcript,intron_retention_db,ucsc_splicing_annot_db = getEnsExonStructureData(species,data_type) exon_annotation_db2 = annotate_exons(exon_annotation_db); ensembl_descriptions={} exon_db = customDBDeepCopy(exon_annotation_db2) ##having problems with re-writting contents of this db when I don't want to exon_clusters,intron_clusters,exon_regions,intron_region_db = exon_clustering(exon_db); exon_db={} exon_junction_db,putative_as_junction_db,exon_junction_db,full_junction_db,excluded_intronic_junctions = processEnsExonStructureData(exon_annotation_db,exon_regions,transcript_gene_db,gene_transcript,intron_retention_db) exon_regions,critical_gene_junction_db = compareJunctions(species,putative_as_junction_db,exon_regions) exportSubGeneViewerData(exon_regions,exon_annotation_db2,critical_gene_junction_db,intron_region_db,intron_retention_db,full_junction_db,excluded_intronic_junctions,ucsc_splicing_annot_db) full_junction_db=[] ###Grab rna_processing Ensembl associations use_exon_data='no';get_splicing_factors = 'yes' try: rna_processing_ensembl = GO_parsing.parseAffyGO(use_exon_data,get_splicing_factors,species) except Exception: rna_processing_ensembl={} ensembl_annot_file = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations_simple.txt' ensembl_annotation_db = getEnsemblAnnotations(ensembl_annot_file,rna_processing_ensembl) #exportExonClusters(exon_clusters,species) return exon_annotation_db2,ensembl_annotation_db,exon_clusters,intron_clusters,exon_regions,intron_retention_db,ucsc_splicing_annot_db,transcript_gene_db def getExonTranscriptDomainAssociations(Species): global species; species = Species import_dir = '/AltDatabase/ensembl/'+species dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for file_name in dir_list: #loop through each file in the directory to output results dir_file = 'AltDatabase/ensembl/'+species+'/'+file_name if 'Exon_cDNA' in dir_file: exon_trans_file = dir_file elif 'Domain' in dir_file: domain_file = dir_file exon_trans_association_db = importExonTranscriptAnnotations(exon_trans_file) return exon_trans_association_db def exportExonClusters(exon_clusters,species): exon_cluster_export = 'AltDatabase/ensembl/'+species+'/'+species+'-Ensembl-exon-clusters.txt' fn=filepath(exon_cluster_export); data = open(fn,'w') for key in exon_clusters: ensembl_gene = key[0] chr = key[1] strand = key[2] for entry in exon_clusters[key]: exon_cluster_num = str(entry[0]) exon_start = str(entry[1][0]) exon_stop = str(entry[1][1]) exon_id_list = string.join(entry[2],'|') annotation_list = string.join(entry[3],'|') values = ensembl_gene +'\t'+ chr +'\t'+ strand +'\t'+ exon_cluster_num +'\t'+ exon_start +'\t'+ exon_stop +'\t'+ exon_id_list +'\t'+ annotation_list +'\n' data.write(values) data.close() def checkforEnsemblExons(trans_exon_data): proceed_status = 0 for (start_pos,ste,spe) in trans_exon_data: #print ste.ExonRegionNumbers(),spe.ExonRegionNumbers(), [ste.ExonID(),spe.ExonID()];kill if ste.ExonID() == '' or spe.ExonID() == '': print ste.ExonRegionNumbers(),spe.ExonRegionNumbers(), [ste.ExonID(),spe.ExonID()];kill if ('-' in ste.ExonID()) and ('-' in spe.ExonID()): null=[] else: proceed_status +=1 #else: print ste.ExonRegionNumbers(),spe.ExonRegionNumbers(), [ste.ExonID(),spe.ExonID()];kill if proceed_status>0: proceed_status = 'yes' else: proceed_status = 'no' return proceed_status def getEnsemblGeneLocations(species,array_type,key): if key == 'key_by_chromosome': filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' else: if array_type == 'RNASeq': filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' else: filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_probesets.txt' fn=filepath(filename); x=0; gene_strand_db={}; gene_location_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: try: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t except Exception: if array_type == 'RNASeq': gene = t[0]; chr=t[2]; strand=t[3]; exon_start=t[4]; exon_end=t[5] ### for Ensembl_exon.txt else: gene = t[2]; chr=t[4]; strand=t[5]; exon_start=t[6]; exon_end=t[7] ### for Ensembl_probesets.txt if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if strand == '-1' or strand == '-': strand = '-' else: strand = '+' exon_end = int(exon_end); exon_start = int(exon_start) gene_strand_db[gene] = strand, chr try: gene_location_db[gene]+=[exon_start,exon_end] except Exception: gene_location_db[gene]=[exon_start,exon_end] if key == 'key_by_chromosome': location_gene_db={}; chr_gene_db={} for gene in gene_location_db: gene_location_db[gene].sort() start = gene_location_db[gene][0] end = gene_location_db[gene][-1] strand,chr = gene_strand_db[gene] location_gene_db[chr,start,end]=gene,strand try: chr_gene_db[chr].append([start,end]) except Exception: chr_gene_db[chr]=[[start,end]] return chr_gene_db,location_gene_db else: for gene in gene_location_db: gene_location_db[gene].sort() start = gene_location_db[gene][0] end = gene_location_db[gene][-1] strand,chr = gene_strand_db[gene] gene_location_db[gene]=chr,strand,str(start),str(end) return gene_location_db def getAllEnsemblUCSCTranscriptExons(): filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' importEnsExonStructureData(filename,species,'exon-transcript') filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_mrna.txt' importEnsExonStructureData(filename,species,'exon-transcript') exon_transcripts = eliminate_redundant_dict_values(exon_transcript_db) return exon_transcripts def processEnsExonStructureData(exon_annotation_db,exon_regions,transcript_gene_db,gene_transcript,intron_retention_db): ###Parses transcript to exon relationships and links these to previously described distinct exon regions. ###The exon blocks and region numbers provide a simple semantic for determining where in the transcript and what event is occuring ###when directly comparing junctions to each other exon_transcripts = getAllEnsemblUCSCTranscriptExons() transcript_exon_db={}; constitutive_region_gene_db={}; null=[]; k=[] for (gene,chr,strand) in exon_annotation_db: constitutive_region_count_db={}; constitutive_region_count_list=[]; count_db={} for exon_info in exon_annotation_db[(gene,chr,strand)]: if strand == '+': exon_start,exon_end,y = exon_info ###Link the original exon-start/stop data back to the region based data else: exon_end,exon_start,y = exon_info ###This shouldn't be necessary, but the coordinates get reversed in annotate_exons and copying the original via deepcopy takes way too much time transcripts = exon_transcripts[y.ExonID()] ### ERROR WILL OCCUR HERE IF YOU DON'T REBUILD THE UCSC DATABASE!!! (different version still left over from Protein analysis methods) if gene in exon_regions: ste=''; spe='' #print exon_start, y.ExonID(); y.TranscriptID(); y.IntronDeletionStatus() for ed in exon_regions[gene]: #print ed.ExonRegionID(),transcripts, [ed.ExonStart(), ed.ExonStop(), exon_start,exon_end] ### Since we know which exon region each Ensembl/UCSC exon begins and ends, we can just count the number of transcripts ### that contain each of the Ensembl/UCSC exon ID, which will give us our constitutive exon count for each gene proceed = 'no' if ((ed.ExonStart() >= exon_start) and (ed.ExonStart() <= exon_end)) and ((ed.ExonStop() >= exon_start) and (ed.ExonStop() <= exon_end)): proceed = 'yes' elif ((ed.ExonStart() <= exon_start) and (ed.ExonStart() >= exon_end)) and ((ed.ExonStop() <= exon_start) and (ed.ExonStop() >= exon_end)): proceed = 'yes' if proceed == 'yes': ### Ensures that each examined exon region lies directly within the examined exon (begining and end) -> version 2.0.6 try: constitutive_region_count_db[ed.ExonRegionID()]+=list(transcripts) #rd.ExonNumber() rd.ExonRegionID() except KeyError: constitutive_region_count_db[ed.ExonRegionID()]=list(transcripts) ### If you don't convert to list, the existing list object will be updated non-specifically ### Identify the exon regions that associate with the begining and end-positions of each exon to later determine the junction in exon region space if exon_start == ed.ExonStart(): ste = ed ### Two exon regions can not have the same start position in this database if exon_end == ed.ExonStop(): spe = ed ### Two exon regions can not have the same end position in this database if spe!='' and ste!='': break #print ed.ExonStart(),ed.ExonStop() if spe!='' and ste!='': values = exon_start,ste,spe #,y ste.reSetExonID(y.ExonID()); spe.reSetExonID(y.ExonID()) ###Need to represent the original source ExonID to eliminate UCSC transcripts without Ensembl exons for ens_transcriptid in y.TranscriptID(): #print exon_start, ste.ExonID(), spe.ExonID(),y.TranscriptID() try: transcript_exon_db[ens_transcriptid].append(values) except KeyError: transcript_exon_db[ens_transcriptid] = [values] else: ### Indicates this exon has been classified as a retained intron ### Keep it so we know where this exon is and to prevent inclusion of faulty flanking junctions ### This is needed so we can retain junctions that are unique to this transcript but not next to the retained intron values = y.ExonStart(),y,y for ens_transcriptid in y.TranscriptID(): try: transcript_exon_db[ens_transcriptid].append(values) except KeyError: transcript_exon_db[ens_transcriptid] = [values] else: k.append(gene) ### Get the number of transcripts associated with each region for exon_region in constitutive_region_count_db: #print exon_region, unique.unique(constitutive_region_count_db[exon_region]) transcript_count = len(unique.unique(constitutive_region_count_db[exon_region])) constitutive_region_count_list.append(transcript_count) try: count_db[transcript_count].append(exon_region) except KeyError: count_db[transcript_count] = [exon_region] constitutive_region_count_list = unique.unique(constitutive_region_count_list) constitutive_region_count_list.sort() try: max_count = constitutive_region_count_list[-1] except Exception: print gene, constitutive_region_count_list, constitutive_region_count_db, count_db;kill #print count_db cs_exon_region_ids = list(count_db[max_count]) ### If there is only one constitutive region and one set of strong runner ups, include these to improve the constitutive expression prediction if (len(cs_exon_region_ids)==1 and len(constitutive_region_count_list)>2) or len(constitutive_region_count_list)>3: ### Decided to add another heuristic that will add the second highest scoring exons always (if at least 4 frequencies present) second_highest_count = constitutive_region_count_list[-2] if (max_count-second_highest_count)<3: ### Indicates that the highest and second highest common exons be similiar in terms of their frequency (different by two transcripts at most) #print cs_exon_region_ids #print second_highest_count if second_highest_count != 1: ### Don't inlcude if there is only one transcript contributing cs_exon_region_ids += list(count_db[second_highest_count]) constitutive_region_gene_db[gene] = cs_exon_region_ids #print gene, cs_exon_region_ids;sys.exit() exon_transcripts=[]; del exon_transcripts ### Reset the constitutive exon, previously assigned by Ensembl - ours should be more informative since it uses more transcript data and specific region info #""" for gene in constitutive_region_gene_db: if gene in exon_regions: for ed in exon_regions[gene]: if ed.ExonRegionID() in constitutive_region_gene_db[gene]: ed.setConstitutive('1') else: ed.setConstitutive('0') #print ed.ExonRegionID(), ed.Constitutive() #""" null = unique.unique(null); #print len(null) print len(k), 'genes, not matched up to region database' print len(transcript_gene_db), 'transcripts from Ensembl being analyzed' transcript_exon_db = eliminate_redundant_dict_values(transcript_exon_db) gene_transcript = eliminate_redundant_dict_values(gene_transcript) gene_transcript_multiple={}; tc=0 for gene in gene_transcript: if len(gene_transcript[gene])>1: tc+=1; gene_transcript_multiple[gene]=len(gene_transcript[gene]) print tc,"genes with multiple transcripts associated from Ensembl" """ ###If a retained intron is present we must ignore all exons downstream of where we DELETED that exon information (otherwise there is false junciton information introduced) ###Here we simply delete the information for that transcript all together td=0 for key in intron_retention_db: transcripts_to_delete = {} for (s1,s2,y) in intron_retention_db[key]: if y.IntronDeletionStatus() == 'yes': ###only do this for exon's deleted upon import for transcript in y.TranscriptID(): transcripts_to_delete[transcript] = [] for transcript in transcripts_to_delete: ###may not be present if the exon deleted constituted the whole transcript if transcript in transcript_exon_db: for (start_pos,ste,spe) in transcript_exon_db[transcript]: print ste.ExonRegionID(),spe.ExonRegionID() del transcript_exon_db[transcript]; td+=1 print td, "transcripts deleted with intron retention. Required for down-stream junction analysis" """ exon_junction_db={}; full_junction_db={}; excluded_intronic_junctions={}; rt=0 mx_detection_db={}; transcript_exon_region_db={}; #junction_transcript_db={} ###Sort and filter the junction data for transcript in transcript_exon_db: gene,chr,strand = transcript_gene_db[transcript] transcript_exon_db[transcript].sort() if strand == '-': transcript_exon_db[transcript].reverse() index=0 #if 'BC' in transcript: print transcript, transcript_exon_db[transcript] ###Introduced a filter to remove transcripts from UCSC with no supporting Ensembl exons (distinct unknown transcript type) ###Since these are already exon regions, we exclude them from alt. splicing/promoter assignment. proceed_status = checkforEnsemblExons(transcript_exon_db[transcript]) ###Loop through the exons in each transcript if proceed_status == 'yes': #print transcript #print transcript_exon_db[transcript] for (start_pos,ste,spe) in transcript_exon_db[transcript]: if (index+1) != len(transcript_exon_db[transcript]): ###Don't grab past the last exon in the transcript start_pos2,ste2,spe2 = transcript_exon_db[transcript][index+1] #print spe.ExonID(),ste.ExonID(),spe2.ExonID(),ste2.ExonID(), spe.ExonRegionID2(),ste.ExonRegionID2(),spe2.ExonRegionID2(),ste2.ExonRegionID2(),ste.IntronDeletionStatus(),ste2.IntronDeletionStatus(),spe.ExonStop(),ste2.ExonStart() #print transcript,spe.ExonStop(),ste2.ExonStart(), ste.IntronDeletionStatus(),ste2.IntronDeletionStatus() if ste.IntronDeletionStatus() == 'no' and ste2.IntronDeletionStatus() == 'no': ### Don't include junctions where the current or next junction was a removed retained intron (but keep other junctions in the transcript) exon_junction = (ste.ExonRegionNumbers(),spe.ExonRegionNumbers()),(ste2.ExonRegionNumbers(),spe2.ExonRegionNumbers()) try: exon_junction_db[gene].append(exon_junction) except KeyError: exon_junction_db[gene] = [exon_junction] #try: junction_transcript_db[gene,exon_junction].append(transcript) #except KeyError: junction_transcript_db[gene,exon_junction] = [transcript] #try: transcript_exon_region_db[transcript]+=[ste.ExonRegionNumbers(),spe.ExonRegionNumbers(),ste2.ExonRegionNumbers(),spe2.ExonRegionNumbers()] #except Exception: transcript_exon_region_db[transcript] = [ste.ExonRegionNumbers(),spe.ExonRegionNumbers(),ste2.ExonRegionNumbers(),spe2.ExonRegionNumbers()] try: full_junction_db[gene].append((spe.ExonRegionID2(),ste2.ExonRegionID2())) except KeyError: full_junction_db[gene] = [(spe.ExonRegionID2(),ste2.ExonRegionID2())] ### Look for potential mutually-exclusive splicing events if (index+2) != len(transcript_exon_db[transcript]): start_pos3,ste3,spe3 = transcript_exon_db[transcript][index+2] if ste3.IntronDeletionStatus() == 'no': try: mx_detection_db[gene,spe.ExonRegionID2(),ste3.ExonRegionID2()].append(spe2) except KeyError: mx_detection_db[gene,spe.ExonRegionID2(),ste3.ExonRegionID2()]=[spe2] else: ### Retain this information when exporting all known junctions #print transcript,spe.ExonStop(),ste2.ExonStart() try: excluded_intronic_junctions[gene].append((spe,ste2)) except KeyError: excluded_intronic_junctions[gene]=[(spe,ste2)] index+=1 else: rt +=1 mx_exons=[] for key in mx_detection_db: gene = key[0] if len(mx_detection_db[key])>1: cassette_block_ids=[]; cassette_block_db={} for spe2 in mx_detection_db[key]: cassette_block_ids.append(spe2.ExonNumber()) cassette_block_db[spe2.ExonNumber()]=spe2 cassette_block_ids = unique.unique(cassette_block_ids) if len(cassette_block_ids)>1: for exon in cassette_block_ids: spe2 = cassette_block_db[exon] spe2.setMutuallyExclusive() #print key, spe2.ExonRegionID(), spe2.ExonID() #try: mx_exons[gene].append(spe2) #except KeyError: mx_exons[gene]=[sp2] print rt, "transcripts removed from analysis with no Ensembl exon evidence. Results in more informative splicing annotations downstream" #print len(junction_transcript_db), 'length of junction_transcript_db' print len(exon_junction_db),'length of exon_junction_db' full_junction_db = eliminate_redundant_dict_values(full_junction_db) ###Stringent count, since it requires all region information for each exon and common splice events occur for just one region to another ###example: (((8, 1), (8, 1)), ((9, 1), (9, 1))), (((8, 1), (8, 1)), ((9, 1), (9, 2))) putative_as_junction_db={} for gene in exon_junction_db: junctions = exon_junction_db[gene] junction_count={} for junction in exon_junction_db[gene]: try: junction_count[junction]+=1 except KeyError: junction_count[junction]=1 count_junction={}; count_list=[] for junction in junction_count: count = junction_count[junction] try: count_junction[count].append(junction) except KeyError: count_junction[count] = [junction] count_list.append(count) count_list = unique.unique(count_list); count_list.sort() ###number of unique counts if len(count_list)>1 and gene in gene_transcript_multiple: ###Otherwise, there is no variation in junction number between transcripts transcript_number = gene_transcript_multiple[gene] max_count = count_list[-1] ###most common junction - not alternatively spliced if max_count == transcript_number: ###Ensures we are grabbing everything but constitutive exons (max_count can include AS if no Ensembl constitutive). for count in count_junction: if count != max_count: junctions = count_junction[count] junctions.sort() try: putative_as_junction_db[gene]+=junctions except KeyError: putative_as_junction_db[gene]=junctions else: try: putative_as_junction_db[gene]+=junctions except KeyError: putative_as_junction_db[gene]=junctions elif gene in gene_transcript_multiple: ###If there are multiple transcripts, descriminating these is difficult, just include all junctions for that gene try: putative_as_junction_db[gene]+=junctions except KeyError: putative_as_junction_db[gene]=junctions return exon_junction_db,putative_as_junction_db,exon_junction_db,full_junction_db,excluded_intronic_junctions def reformatJunctions(exons,type): exons2=[] for (b,i) in exons: exons2.append('E'+str(b)+'.'+str(i)) if type == 'junction': exons2 = string.join(exons2,'-') else: exons2 = string.join(exons2,'|') return exons2 def compareJunctions(species,putative_as_junction_db,exon_regions,rootdir=None,searchChr=None): ### Add polyA site information and mutually-exclusive splicing site if len(exon_regions)==0: export_annotation = '_de-novo' alt_junction_export = rootdir+'/AltDatabase/ensembl/'+species+'/denovo/'+species+'_alternative_junctions'+export_annotation+'.'+searchChr+'.txt' import export data = export.ExportFile(alt_junction_export) else: export_annotation = '' alt_junction_export = 'AltDatabase/ensembl/'+species+'/'+species+'_alternative_junctions'+export_annotation+'.txt' if export_annotation != '_de-novo': print 'Writing the file:',alt_junction_export print len(putative_as_junction_db),'genes being examined for AS/alt-promoters in Ensembl' fn=filepath(alt_junction_export); data = open(fn,'w') title = ['gene','critical-exon-id','junction1','junction2'] title = string.join(title,'\t')+'\n'; data.write(title) ###Find splice events based on structure based evidence critical_exon_db={}; j=0; global add_to_for_terminal_exons; add_to_for_terminal_exons={} complex3prime_event_db={}; complex5prime_event_db={}; cassette_exon_record={} for gene in putative_as_junction_db: #if gene == 'ENSMUSG00000000028': print putative_as_junction_db[gene];kill for j1 in putative_as_junction_db[gene]: for j2 in putative_as_junction_db[gene]: ### O^n squared query if j1 != j2: temp_junctions = [j1,j2]; temp_junctions.sort(); junction1,junction2 = temp_junctions splice_junctions=[]; critical_exon=[]; splice_type='' e1a,e2a = junction1; e1b,e2b = junction2 ###((8, 2), (8, 2)) break down the exon into exon_block,region tubles. e1a3,e1a5 = e1a; e2a3,e2a5 = e2a; e1b3,e1b5 = e1b; e2b3,e2b5 = e2b ###(8, 2) break down the exons into single tuples (designating 5' and 3' ends of the exon): e1a3_block,e1a3_reg = e1a3; e1a5_block,e1a5_reg = e1a5; e2a3_block,e2a3_reg = e2a3; e2a5_block,e2a5_reg = e1a5 e1b3_block,e1b3_reg = e1b3; e1b5_block,e1b5_reg = e1b5 ;e2b3_block,e2b3_reg = e2b3; e2b5_block,e2b5_reg = e1b5 splice_junctions = [(e1a5,e2a3),(e1b5,e2b3)] ###three junctions make up the cassette event, record the two evidenced by this comparison and agglomerate after all comps splice_junction_str = reformatJunctions(splice_junctions[0],'junction')+'\t'+reformatJunctions(splice_junctions[1],'junction') ###IMPORTANT NOTE: The temp_junctions are sorted, but doesn't mean that splice_junctions is sorted correctly... must account for this splice_junctions2 = list(splice_junctions); splice_junctions2.sort() if splice_junctions2 != splice_junctions: ###Then the sorting is wrong and the down-stream method won't work ###Must re-do the above assingments junction2,junction1 = temp_junctions e1a,e2a = junction1; e1b,e2b = junction2 ###((8, 2), (8, 2)) break down the exon into exon_block,region tubles. e1a3,e1a5 = e1a; e2a3,e2a5 = e2a; e1b3,e1b5 = e1b; e2b3,e2b5 = e2b ###(8, 2) break down the exons into single tuples (designating 5' and 3' ends of the exon): e1a3_block,e1a3_reg = e1a3; e1a5_block,e1a5_reg = e1a5; e2a3_block,e2a3_reg = e2a3; e2a5_block,e2a5_reg = e1a5 e1b3_block,e1b3_reg = e1b3; e1b5_block,e1b5_reg = e1b5 ;e2b3_block,e2b3_reg = e2b3; e2b5_block,e2b5_reg = e1b5 splice_junctions = [(e1a5,e2a3),(e1b5,e2b3)] splice_junction_str = reformatJunctions(splice_junctions[0],'junction')+'\t'+reformatJunctions(splice_junctions[1],'junction') if e1a5_block == e2a3_block or e1b5_block == e2b3_block: continue ###suggests splicing within a block... we won't deal with these if e1a5 == e1b5: ###If 5'exons in the junction are the same ###make sure the difference isn't in the 5' side of the next splice junction (or exon end) if e2a3 != e2b3: #(((5, 1), (5, 1)*), ((6, 1)*, (6, 1))) -- (((5, 1), (5, 1)*), ((7, 1)*, (7, 1))) if e2a3_block == e2b3_block: #[(((1, 1), (1, 1)*), ((2, 1)*, (2, 1))) ----(((1, 1), (1, 1)*), ((2, 3)*, (2, 3)))] splice_type = "alt-3'"; critical_exon = pickOptimalCriticalExons(e1b5,e1a5,e2a3,e2b3,critical_exon) y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] else: critical_exon = [e2a3]; splice_type = 'cassette-exon' #[(((1, 1), (1, 1)*), ((2, 1)*, (2, 1))) ----(((1, 1), (1, 1)*), ((3, 1)*, (3, 1)))] try: add_to_for_terminal_exons[gene,e2a3_block].append(e2b3) except KeyError: add_to_for_terminal_exons[gene,e2a3_block] = [e2b3] try: cassette_exon_record[gene,e2a3_block].append(e1a5_block) except KeyError: cassette_exon_record[gene,e2a3_block] = [e1a5_block] y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] #print critical_exon,splice_type,splice_junction_str if splice_type =='' and e2a3 == e2b3: ###If 3'exons in the junction are the same if e1a5 != e1b5: if e1a5_block == e1b5_block: ###simple alt 5' splice site encountered splice_type = "alt-5'"; critical_exon = pickOptimalCriticalExons(e1b5,e1a5,e2a3,e2b3,critical_exon)#[(((1, 1), (1, 1)*), ((2, 1)*, (2, 1))) ----(((1, 1), (1, 3)*), ((2, 1)*, (2, 1)))] y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] else: splice_type = 'cassette-exon'; critical_exon = [e1b5] #[(((1, 1), (1, 1)*), ((3, 1)*, (3, 1))) ----(((2, 1), (2, 1)*), ((3, 1)*, (3, 1)))] try: add_to_for_terminal_exons[gene,e1b5_block].append(e1a5) except KeyError: add_to_for_terminal_exons[gene,e1b5_block] = [e1a5] try: cassette_exon_record[gene,e1b5_block].append(e2b3_block) except KeyError: cassette_exon_record[gene,e1b5_block] = [e2b3_block] #if gene == 'ENSG00000128606' and critical_exon == [(4, 1)] : print junction1,junction2;kill y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] #print critical_exon,splice_type,splice_junction_str if splice_type =='' and e2a3_block == e2b3_block and e1a5_block != e2a3_block and e1b5_block != e2b3_block: ###Begin looking at complex examples: If 3'exon blocks in the junction are the same if e1a5_block == e1b5_block: #alt5'-alt3' [(((1, 1), (1, 1)*), ((2, 1)*, (2, 1))) ----(((1, 3), (1, 3)*), ((2, 3)*, (2, 3)))] critical_exon = pickOptimalCriticalExons(e1b5,e1a5,e2a3,e2b3,critical_exon); splice_type = "alt5'-alt3'" if len(critical_exon)>0: alt5_exon = [critical_exon[0]]; alt3_exon = [critical_exon[1]] #print alt5_exon,critical_exon,critical_exon;kill y = CriticalExonInfo(gene,alt5_exon,"alt-5'",splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] y = CriticalExonInfo(gene,alt3_exon,"alt-3'",splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] else: #cassette-alt3' [(((1, 1), (1, 1)*), ((4, 1)*, (4, 1))) ----(((2, 1), (2, 3)*), ((4, 3)*, (4, 3)))] critical_exon = pickOptimalCriticalExons(e1b5,e1a5,e2a3,e2b3,critical_exon) splice_type = "alt-3'" y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] if e1a5_block < e1b5_block: critical_exon = [e1b5] try: add_to_for_terminal_exons[gene,e1b5_block] = [e1a5] except KeyError: add_to_for_terminal_exons[gene,e1b5_block].append(e1a5) complex3prime_event_db[gene,e1b5_block] = e1a5 try: cassette_exon_record[gene,e1b5_block].append(e2b3_block) except KeyError: cassette_exon_record[gene,e1b5_block] = [e2b3_block] elif e1a5_block != e1b5_block: critical_exon = [e1a5] try: add_to_for_terminal_exons[gene,e1a5_block] = [e1b5] except KeyError: add_to_for_terminal_exons[gene,e1a5_block].append(e1b5) complex3prime_event_db[gene,e1a5_block] = e1b5 try: cassette_exon_record[gene,e1a5_block].append(e2a3_block) except KeyError: cassette_exon_record[gene,e1a5_block] = [e2a3_block] splice_type = "cassette-exon" y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] if splice_type =='' and e1a5_block == e1b5_block and e1a5_block != e2a3_block and e1b5_block != e2b3_block: #alt5'-cassette' [(((1, 1), (1, 1)*), ((4, 1)*, (4, 1))) ----(((1, 1), (1, 3)*), ((5, 1)*, (5, 1)))] critical_exon = pickOptimalCriticalExons(e1b5,e1a5,e2a3,e2b3,critical_exon) splice_type = "alt-5'" y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] if e2a3_block < e2b3_block: critical_exon = [e2a3] try: add_to_for_terminal_exons[gene,e2a3_block] = [e2b3] except KeyError: add_to_for_terminal_exons[gene,e2a3_block].append(e2b3) complex5prime_event_db[gene,e2a3_block] = e2b3 try: cassette_exon_record[gene,e2a3_block].append(e1a5_block) except KeyError: cassette_exon_record[gene,e2a3_block] = [e1a5_block] elif e2a3_block != e2b3_block: critical_exon = [e2b3] try: add_to_for_terminal_exons[gene,e2b3_block] = [e2a3] except KeyError: add_to_for_terminal_exons[gene,e2b3_block].append(e2a3) complex5prime_event_db[gene,e2b3_block] = e2a3 try: cassette_exon_record[gene,e2b3_block].append(e1b5_block) except KeyError: cassette_exon_record[gene,e2b3_block] = [e1b5_block] splice_type = "cassette-exon" y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] if splice_type =='' and e1a5_block<e1b5_block and e2b3_block>e2a3_block and e2a3_block>e1b5_block: #mx-mix [(((1, 1), (1, 1)*), ((4, 1)*, (4, 1))) ----(((2, 1), (2, 1)*), ((5, 1)*, (5, 1)))] critical_exon = [e2a3,e1b5]#; mx_event_db[gene,e2a3] = e1b5; mx_event_db[gene,e1b5] = e2a3 splice_type = 'cassette-exon' #""" try: add_to_for_terminal_exons[gene,e2a3_block].append(e2b3) except KeyError: add_to_for_terminal_exons[gene,e2a3_block] = [e2b3] try: add_to_for_terminal_exons[gene,e1b5_block].append(e1a5) except KeyError: add_to_for_terminal_exons[gene,e1b5_block] = [e1a5] #""" try: cassette_exon_record[gene,e2a3_block].append(e1a5_block) except KeyError: cassette_exon_record[gene,e2a3_block] = [e1a5_block] try: cassette_exon_record[gene,e1b5_block].append(e2b3_block) except KeyError: cassette_exon_record[gene,e1b5_block] = [e2b3_block] #print 'mx-mx',critical_exon, splice_junctions y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] #print splice_type,critical_exon, gene if splice_type =='' and e1a5_block<e1b5_block and e2a3_block>e2b3_block: #(((2, 1), (2, 1)), ((9, 6), (9, 9))) (((4, 2), (4, 4)), ((7, 1), (7, 1))) ###one junction inside another splice_type = "cassette-exon"; critical_exon = [e1b5,e2b3] #""" try: add_to_for_terminal_exons[gene,e2b3_block].append(e2a3) except KeyError: add_to_for_terminal_exons[gene,e2b3_block] = [e2a3] try: add_to_for_terminal_exons[gene,e1b5_block].append(e1a5) except KeyError: add_to_for_terminal_exons[gene,e1b5_block] = [e1a5] try: cassette_exon_record[gene,e2b3_block].append(e1b5_block) except KeyError: cassette_exon_record[gene,e2b3_block] = [e1b5_block] try: cassette_exon_record[gene,e1b5_block].append(e2b3_block) except KeyError: cassette_exon_record[gene,e1b5_block] = [e2b3_block] #""" y = CriticalExonInfo(gene,critical_exon,splice_type,splice_junctions) data.write(gene+'\t'+reformatJunctions(critical_exon,'exon')+'\t'+splice_junction_str+'\t'+splice_type+'\n') try: critical_exon_db[gene].append(y) except KeyError: critical_exon_db[gene] = [y] data.close() ###Determine unique splice events and improve the annotations if export_annotation != '_de-novo': print len(critical_exon_db), 'genes identified from Ensembl, with alternatively regulated junctions' cassette_exon_record = eliminate_redundant_dict_values(cassette_exon_record) """for i in cassette_exon_record: print i, cassette_exon_record[i]""" add_to_for_terminal_exons = eliminate_redundant_dict_values(add_to_for_terminal_exons) ###Store all region information in a dictionary for efficient recall global region_db; region_db={} for gene in exon_regions: for rd in exon_regions[gene]: try: region_db[gene,rd.ExonRegionNumbers()]=rd except AttributeError: print gene, rd;kill if len(exon_regions) == 0: critical_exon_db_original = copy.deepcopy(critical_exon_db) ### get's modified somehow below #critical_exon_db_original = manualDeepCopy(critical_exon_db) ### won't work because it is the object that is chagned alternative_exon_db={}; critical_junction_db={}; critical_gene_junction_db={} alternative_terminal_exon={} for gene in critical_exon_db: critical_exon_junctions={}; critical_exon_splice_type={} for sd in critical_exon_db[gene]: for critical_exon in sd.CriticalExonRegion(): try: critical_exon_junctions[critical_exon]+=sd.Junctions() except KeyError: critical_exon_junctions[critical_exon]=sd.Junctions() try: critical_exon_splice_type[critical_exon].append(sd.SpliceType()) except KeyError: critical_exon_splice_type[critical_exon]=[sd.SpliceType()] for junction in sd.Junctions(): try: critical_junction_db[tuple(junction)].append(junction) except KeyError: critical_junction_db[tuple(junction)]=[sd.SpliceType()] critical_exon_junctions = eliminate_redundant_dict_values(critical_exon_junctions) critical_exon_splice_type = eliminate_redundant_dict_values(critical_exon_splice_type) for critical_exon in critical_exon_junctions: cj = critical_exon_junctions[critical_exon] splice_events = critical_exon_splice_type[critical_exon] status = 'stop' #print splice_events,critical_exon if splice_events == ['cassette-exon'] or ((gene,critical_exon[0]) in complex3prime_event_db) or ((gene,critical_exon[0]) in complex5prime_event_db): exons_blocks_joined_to_critical = cassette_exon_record[gene,critical_exon[0]] cassette_status = check_exon_polarity(critical_exon[0],exons_blocks_joined_to_critical) if len(critical_exon_junctions[critical_exon])<3 or cassette_status == 'no': ###Thus, it is not supported by 3 independent junctions if len(exons_blocks_joined_to_critical)<2 or cassette_status == 'no': if cj[0][1] == cj[1][1]: splice_events = ['alt-N-term'] second_critical_exon = add_to_for_terminal_exons[gene,critical_exon[0]]; status = 'add_another' alternative_terminal_exon[gene,critical_exon] = 'alt-N-term' elif cj[0][0] == cj[1][0]: splice_events = ['alt-C-term'] second_critical_exon = add_to_for_terminal_exons[gene,critical_exon[0]]; status = 'add_another' alternative_terminal_exon[gene,critical_exon] = 'alt-C-term' else: if critical_exon == cj[0][1]: splice_events = ['alt-C-term'] ###this should be the only alt-exon alternative_terminal_exon[gene,critical_exon] = 'alt-C-term' elif (gene,critical_exon[0]) in complex3prime_event_db: #print '3prime',splice_events,critical_exon if (gene,critical_exon[0]) in add_to_for_terminal_exons: #print critical_exon,len(cassette_exon_record[gene,critical_exon[0]]),cassette_exon_record[gene,critical_exon[0]];kill if len(exons_blocks_joined_to_critical)<2 or cassette_status == 'no': second_critical_exon = add_to_for_terminal_exons[gene,critical_exon[0]] splice_events = ['alt-N-term']; status = 'add_another' alternative_terminal_exon[gene,critical_exon] = 'alt-N-term' elif (gene,critical_exon[0]) in complex5prime_event_db: #print '5prime',splice_events,critical_exon if (gene,critical_exon[0]) in add_to_for_terminal_exons: #print critical_exon,len(cassette_exon_record[gene,critical_exon[0]]),cassette_exon_record[gene,critical_exon[0]];kill if len(exons_blocks_joined_to_critical)<2 or cassette_status == 'no': second_critical_exon = add_to_for_terminal_exons[gene,critical_exon[0]] splice_events = ['alt-C-term']; status = 'add_another' alternative_terminal_exon[gene,critical_exon] = 'alt-C-term' """if 'mx-mx' in splice_events and (gene,critical_exon) in mx_event_db: ###if one exon is a true cassette exon, then the mx-mx is not valid if (gene,critical_exon[0]) in add_to_for_terminal_exons: second_critical_exon = add_to_for_terminal_exons[gene,critical_exon[0]] #print gene,critical_exon,second_critical_exon;kill""" splice_events = string.join(splice_events,'|'); exon_junction_str_list=[] splice_events = string.replace(splice_events, 'cassette-exons','cassette-exon(s)') ###if the junctions comprising the splice event for an alt-cassette show evidence of multiple exons, annotate as such if "alt5'-cassette" in splice_events: #or "cassette-alt3'" for junction in cj: splicing_annotations = critical_junction_db[tuple(junction)] if 'cassette-exons' in splicing_annotations: splice_events = string.replace(splice_events, "alt5'-cassette","alt5'-cassette(s)"); break if "cassette-alt3'" in splice_events: #or "cassette-alt3'" for junction in cj: splicing_annotations = critical_junction_db[tuple(junction)] if 'cassette-exons' in splicing_annotations: splice_events = string.replace(splice_events, "cassette-alt3'","cassette(s)-alt3'"); break ###Currently, 'cassette-exon(s)' is redundant with "alt5'-cassette(s)" or "cassette(s)-alt3'", so simplify if "alt5'-cassette(s)" in splice_events and 'cassette-exon(s)' in splice_events: splice_events = string.replace(splice_events, 'cassette-exon(s)','') if "cassette(s)-alt3'" in splice_events and 'cassette-exon(s)' in splice_events: splice_events = string.replace(splice_events, 'cassette-exon(s)','') splice_events = string.replace(splice_events, '||','|') for j in cj: nj=[] for exon in j: e = 'E'+str(exon[0])+'.'+str(exon[1]); nj.append(e) try: critical_gene_junction_db[gene].append(nj) except KeyError: critical_gene_junction_db[gene] = [nj] nj = string.join(nj,'-') exon_junction_str_list.append(nj) exon_junction_str = string.join(exon_junction_str_list,'|') try: rd = region_db[gene,critical_exon] ###('ENSG00000213588', (26, 1)) and ('ENSG00000097007', (79, 1)) didn't work except KeyError: ###Occurs as a results of either exons or transcripts with sketchy or complex assignments null = [] try: se = rd.AssociatedSplicingEvent() if len(se)>1: if splice_events not in se: se = se+'|'+ splice_events else: se = splice_events rd.setSpliceData(se,exon_junction_str) #print critical_exon,se,exon_junction_str,gene if status == 'add_another': for critical_exon in second_critical_exon: rd = region_db[gene,critical_exon] se = rd.AssociatedSplicingEvent() if len(se)>1: if splice_events not in se: if se != 'cassette-exon': se = se+'|'+ splice_events else: se = splice_events rd.setSpliceData(se,exon_junction_str) #print critical_exon, se, exon_junction_str, gene,'second' """ ###create an index for easy searching of exon content in downstream modules critical_exon_block = critical_exon[0] if gene in alternative_exon_db: block_db = alternative_exon_db[gene] try: block_db[critical_exon_block].append(rd) except KeyError: block_db[critical_exon_block] = [rd] else: block_db = {}; block_db[critical_exon_block]=[rd] alternative_exon_db[gene]=block_db""" except Exception: null=[] ### Occurs when analyzing novel junctions, rather than Ensembl #alternative_terminal_exon[gene,critical_exon] = 'alt-C-term' ###Since setSpliceData will update the existing instance, we can just re-roder the region db for easy searching in downstream modules ### (note: the commented out code above could be useful for exon-structure output) for gene in exon_regions: block_db = {} for rd in exon_regions[gene]: try: block_db[rd.ExonNumber()].append(rd) except KeyError: block_db[rd.ExonNumber()] = [rd] exon_regions[gene] = block_db ###Replace the existing list with a dictionary for faster look-ups if len(exon_regions)==0: exon_regions = critical_exon_db_original ### See JunctionArray.inferJunctionComps() return exon_regions,critical_gene_junction_db def manualDeepCopy(db): ### Same as deep copy, possibly less memory intensive db_copy={} for i in db: db_copy[i] = list(tuple(db[i])) return db_copy def check_exon_polarity(critical_exon_block,exons_blocks_joined_to_critical): g=0;l=0 for joined_exon_blocks in exons_blocks_joined_to_critical: if joined_exon_blocks>critical_exon_block: g+=1 if joined_exon_blocks<critical_exon_block: l+=1 if g>0 and l>0: cassette_status = 'yes' else: cassette_status = 'no' return cassette_status def pickOptimalCriticalExons(e1b5,e1a5,e2a3,e2b3,critical_exon): e1a5_block,e1a5_reg = e1a5 e2a3_block,e2a3_reg = e2a3 e1b5_block,e1b5_reg = e1b5 e2b3_block,e2b3_reg = e2b3 if e1a5_block == e1b5_block: if e1a5_reg < e1b5_reg: critical_exon += [e1b5] elif e1a5_reg != e1b5_reg: critical_exon += [e1a5] if e2a3_block == e2b3_block: if e2a3_reg < e2b3_reg: critical_exon += [e2a3] elif e2a3_reg != e2b3_reg: critical_exon += [e2b3] return critical_exon def customDBDeepCopy(db): db2={} for i in db: for e in db[i]: try: db2[i].append(e) except KeyError: db2[i]=[e] return db2 def customLSDeepCopy(ls): ls2=[] for i in ls: ls2.append(i) return ls2 def importExonRegionCoordinates(species): """ Used to export Transcript-ExonRegionIDs """ filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' fn=filepath(filename); x=0 exon_region_coord_db={} all_coord_db={} exon_region_db={} strand_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x+=1 else: gene, exonid, chr, strand, start, stop, constitutive_call, ens_exon_ids, splice_events, splice_junctions = t start_end = [start, stop]; start_end.sort() all_coord_db[gene,exonid] = start_end try: ### start and stop should be unique db = exon_region_coord_db[gene] db['s',float(start)] = exonid ### start be the same as another region stop - designate as start db['e',float(stop)] = exonid ### start be the same as another region stop - designate as end except Exception: db={} db['s',float(start)] = exonid db['e',float(stop)] = exonid exon_region_coord_db[gene] = db #if 'I' not in exonid: ### if it spans an intron, include it try: exon_region_db[gene].append((exonid,start)) except Exception: exon_region_db[gene] = [(exonid,start)] strand_db[gene] = strand return exon_region_coord_db, all_coord_db, exon_region_db, strand_db def exportTranscriptExonIDAssociations(species): """ Determine the exon region ID composition of all analyzed mRNAs """ try: relative_exon_locations = importEnsExonStructureDataSimpler(species,'ucsc',{}) except Exception: relative_exon_locations={} relative_exon_locations = importEnsExonStructureDataSimpler(species,'ensembl',relative_exon_locations) from build_scripts import IdentifyAltIsoforms seq_files, transcript_protein_db = IdentifyAltIsoforms.importProteinSequences(species,just_get_ids=True) ### get mRNA-protein IDs exon_region_coord_db, all_coord_db, exon_region_db, strand_db = importExonRegionCoordinates(species) export_file = 'AltDatabase/ensembl/'+species+'/mRNA-ExonIDs.txt' export_data = export.ExportFile(export_file) transcript_region_db={} transcripts_with_missing_regions={} errorCount=0 retainedIntrons=0 for key in relative_exon_locations: ### From UCSC or Ensembl transcript coordinates only all_exon_intron_regions = {} ens_transcriptid,gene,strand = key #if ens_transcriptid != 'AK185721': continue region_db={} ### track the coordinates for cleaning up the order coord_db = exon_region_coord_db[gene] for (region,start) in exon_region_db[gene]: all_exon_intron_regions[region] = all_coord_db[gene,region] region_db[region] = start for exon_data in relative_exon_locations[key]: ### each transcript exon regions=[] exon_start,exon_end,ens_exonid = exon_data start_end = [exon_start,exon_end]; start_end.sort(); start,end = start_end partial_matches=[] added=False for region in all_exon_intron_regions: ### search each transcript exon against every annotated region e5,e3 = all_exon_intron_regions[region] annotated = [int(e5),int(e3)] annotated.sort() coords = [start_end[0],start_end[1]]+annotated coords.sort() if coords[0] == start_end[0] and coords[-1] == start_end[-1]: ### Hence, the exon/intron region is contained within or is equal to the transcript exon if (gene,ens_transcriptid) in transcript_region_db: if region not in transcript_region_db[gene,ens_transcriptid]: transcript_region_db[gene,ens_transcriptid].append((region)) else: transcript_region_db[gene,ens_transcriptid] = [region] added=True retainedIntrons+=1 else: if annotated[0] == start_end[0] or annotated[-1] == start_end[-1]: #print exon_start,exon_end, start_end, region, ens_transcriptid partial_matches.append(region) if added ==False: if len(partial_matches)>0: ### Occurs typically when a UCSC exon has a longer or shorter 3' or 5'UTR exon boundaries for region in partial_matches: if (gene,ens_transcriptid) in transcript_region_db: if region not in transcript_region_db[gene,ens_transcriptid]: transcript_region_db[gene,ens_transcriptid].append((region)) else: transcript_region_db[gene,ens_transcriptid] = [region] else: transcripts_with_missing_regions[ens_transcriptid]=None errorCount+=1 #if errorCount<100: print 'Error:',key, exon_start,exon_end,ens_exonid if (gene,ens_transcriptid) in transcript_region_db: regions = transcript_region_db[gene,ens_transcriptid] regions_sort=[] for region in regions: try: start = region_db[region] except Exception,e: print e, coord_db;sys.exit() regions_sort.append([start,region]) regions_sort.sort() if strand_db[gene] == '-':regions_sort.reverse() transcript_region_db[gene,ens_transcriptid] = map(lambda (s,r): r, regions_sort) #print gene, ens_transcriptid, transcript_region_db[gene,ens_transcriptid];sys.exit() print len(transcripts_with_missing_regions), 'transcripts with missing exon regions out of', len(transcript_region_db)+len(transcripts_with_missing_regions) t1=[] for i in transcripts_with_missing_regions: t1.append(i) print 'missing:',t1[:15] exon_db={} gene_region_db={} for (gene,transcript) in transcript_region_db: try: proteinAC = transcript_protein_db[transcript] except Exception: proteinAC = 'None' try: regions = string.join(transcript_region_db[gene,transcript],'|') except Exception: print gene, transcript, transcript_region_db[gene,transcript];sys.exit() gene_region_db[gene,regions]=[] export_data.write(string.join([gene,transcript,proteinAC,regions],'\t')+'\n') for exonID in transcript_region_db[gene,transcript]: exon_db[gene+':'+exonID]=None export_data.close() print 'Unique-transcripts by regionID makeup:',len(gene_region_db) ### Complete UCSC gives 272071 versus 237607 for the non-Complete filterExonRegionSeqeunces(exon_db,species) def filterExonRegionSeqeunces(exon_db,species): filename = 'AltDatabase/'+species+'/RNASeq/RNASeq_critical-exon-seq_updated.txt' export_file = 'AltDatabase/'+species+'/RNASeq/RNASeq_critical-exon-seq_filtered.txt' print 'importing', filename fn=filepath(filename) export_data = export.ExportFile(export_file) for line in open(fn,'r').xreadlines(): data = line.strip() t = string.split(data,'\t') exonID = t[0]; sequence = t[-1] try: y = exon_db[exonID] export_data.write(line) except Exception: null=[] ### Occurs if there is no Ensembl for the critical exon or the sequence is too short to analyze export_data.close() def createExonRegionSequenceDB(species,platform): """ Store the filtered exon sequence data in an SQL database for faster retreival """ start=time.time() import SQLInterface DBname = 'ExonSequence' schema_text ='''-- Schema for species specific AltAnalyze transcript data. -- Genes store general information on each Ensembl gene ID create table ExonSeq ( uid text primary key, gene text, sequence text ); ''' conn = SQLInterface.populateSQLite(species,platform,DBname,schema_text=schema_text) ### conn is the database connnection interface ### Populate the database filename = 'AltDatabase/'+species+'/RNASeq/RNASeq_critical-exon-seq_filtered.txt' print 'importing', filename fn=filepath(filename) for line in open(fn,'r').xreadlines(): data = line.strip() t = string.split(data,'\t') exonID = t[0]; sequence = t[-1] gene,region = string.split(exonID,':') #print exonID,gene,sequence ### Store this data in the SQL database command = """insert into ExonSeq (uid, gene, sequence) values ('%s', '%s','%s')""" % (exonID,gene,sequence) conn.execute(command) conn.commit() ### Needed to commit changes conn.close() time_diff = str(round(time.time()-start,1)) print 'Exon Region Sequences added to SQLite database in %s seconds' % time_diff def importTranscriptExonIDs(species): start=time.time() filename = 'AltDatabase/ensembl/'+species+'/mRNA-ExonIDs.txt' fn=filepath(filename) gene_transcript_structure={} protein_db = {} for line in open(fn,'r').xreadlines(): data = line.strip() gene,transcript,proteinAC,regions = string.split(data,'\t') if gene in gene_transcript_structure: tdb=gene_transcript_structure[gene] tdb[transcript] = regions else: tdb={} tdb[transcript] = regions+'|' gene_transcript_structure[gene] = tdb protein_db[proteinAC] = transcript time_diff = str(round(time.time()-start,1)) #print 'Transcript-ExonID associations imported in %s seconds' % time_diff return gene_transcript_structure, protein_db def identifyPCRregions(species,platform,uid,inclusion_junction,exclusion_junction,isoform1,isoform2): #print uid,inclusion_junction,exclusion_junction,isoform1,isoform2;sys.exit() try: x = len(gene_transcript_structure) print_outs = False except Exception: gene_transcript_structure, protein_db = importTranscriptExonIDs(species) print_outs = True gene,region = string.split(uid,':') isoform_db = copy.deepcopy(gene_transcript_structure[gene]) import SQLInterface conn = SQLInterface.connectToDB(species,platform,'ExonSequence') ids = [gene] query = "select uid, sequence from ExonSeq where gene = ?" uid_sequence_list = SQLInterface.retreiveDatabaseFields(conn,ids,query) ex1,ex2 = string.split(exclusion_junction,'-') ex1b,ex2b = string.split(inclusion_junction,'-') exon_seq_db={} for (uid1,seq) in uid_sequence_list: exon_seq_db[uid1] = seq try: print '('+ex1+')'+exon_seq_db[gene+':'+ex1] print '('+ex2+')'+exon_seq_db[gene+':'+ex2] print '('+ex1b+')'+exon_seq_db[gene+':'+ex1b] print '('+ex2b+')'+exon_seq_db[gene+':'+ex2b] except Exception: pass if print_outs == True: #""" for (uid1,seq) in uid_sequence_list: if uid1 == uid: print seq #""" try: mRNA1 = protein_db[isoform1] mRNA1_s = isoform_db[mRNA1] except Exception: mRNA1_s = string.replace(inclusion_junction,'-','|') try: mRNA2 = protein_db[isoform2] mRNA2_s = isoform_db[mRNA2] except Exception: mRNA2_s = string.replace(exclusion_junction,'-','|') print ex1,ex2 print [mRNA1_s] print [mRNA2_s] if mRNA1_s != None: ex1_pos = string.find(mRNA1_s,ex1+'|') ### This is the location in the string where the exclusion junctions starts ex1_pos = ex1_pos+1+string.find(mRNA1_s[ex1_pos:],'|') ### This is the location in the string where the inclusion exon starts ex2_pos = string.find(mRNA1_s,ex2+'|')-1 ### This is the location in the string where the inclusion exon ends print ex2_pos, ex1_pos if ex2_pos<ex1_pos: if mRNA2_s != None: mRNA1_s = mRNA2_s #mRNA1 = mRNA2 ex1_pos = string.find(mRNA1_s,ex1+'|') ### This is the location in the string where the exclusion junctions starts ex1_pos = ex1_pos+1+string.find(mRNA1_s[ex1_pos:],'|') ### This is the location in the string where the inclusion exon starts ex2_pos = string.find(mRNA1_s,ex2+'|')-1 ### This is the location in the string where the inclusion exon ends if abs(ex1_pos-ex2_pos)<2: ### Incorrect isoform assignments resulting in faulty primer design if ex1b+'|' in mRNA2_s and ex2b+'|' in mRNA2_s: ex1 = ex1b ex2 = ex2b ex1_pos = string.find(mRNA1_s,ex1+'|') ### This is the location in the string where the exclusion junctions starts ex1_pos = ex1_pos+1+string.find(mRNA1_s[ex1_pos:],'|') ### This is the location in the string where the inclusion exon starts ex2_pos = string.find(mRNA1_s,ex2+'|')-1 ### This is the location in the string where the inclusion exon ends inclusion_exons = string.split(mRNA1_s[ex1_pos:ex2_pos],'|') ### These are the missing exons from the exclusion junction (in between) #if '-' in mRNA1_s: common_exons5p = string.split(mRNA1_s[:ex1_pos-1],'|') ### Flanking full 5' region (not just the 5' exclusion exon region) if (ex2_pos+1) == -1: ### Hence the 3' exon is the last exon in the mRNA common_exons3p = [string.split(mRNA1_s,'|')[-1]] inclusion_exons = string.split(mRNA1_s[ex1_pos:],'|')[:-1] else: common_exons3p = string.split(mRNA1_s[ex2_pos+1:],'|') ### Flanking full 3' region (not just the 3' exclusion exon region) if gene == 'E1NSG00000205423': #print mRNA1_s, ex2;sys.exit() #print mRNA1_s;sys.exit() print uid,inclusion_junction,exclusion_junction,isoform1,isoform2 print inclusion_exons print common_exons5p, common_exons3p print mRNA1_s, ex2_pos, ex1, ex2 sys.exit() inclusion_exons = map(lambda x: gene+':'+x, inclusion_exons) ### add geneID prefix common_exons5p = map(lambda x: gene+':'+x, common_exons5p) ### add geneID prefix common_exons3p = map(lambda x: gene+':'+x, common_exons3p) ### add geneID prefix inclusion_junction = string.replace(inclusion_junction,'-','|')+'|' exclusion_junction = string.replace(exclusion_junction,'-','|')+'|' #if inclusion_junction in mRNA1_s: print '1 true' #if exclusion_junction in mRNA2_s: print '2 true' #sys.exit() uid_seq_db={} ### convert list to dictionary for (uid,seq) in uid_sequence_list: uid_seq_db[uid] = seq #E213.1-E214.1 vs. E178.1-E223.1 if uid == 'ENSG00000145349:E13.1': print uid, seq, len(seq) if uid == 'ENSG00000145349:E12.1': print uid, seq, len(seq) if uid == 'ENSG00000145349:E19.1': print uid, seq, len(seq) if uid == 'ENSG00000145349:E15.2': print uid, seq, len(seq) if uid == 'ENSG00000145349:E18.1': print uid, seq, len(seq) #sys.exit() ### Get the common flanking and inclusion transcript sequence #print common_exons5p,common_exons3p;sys.exit() print 1 common_5p_seq = grabTranscriptSeq(common_exons5p,uid_seq_db) print 2 common_3p_seq = grabTranscriptSeq(common_exons3p,uid_seq_db) print 3 inclusion_seq = grabTranscriptSeq(inclusion_exons,uid_seq_db) print 'common_5p_seq:',[common_5p_seq] print 'common_3p_seq:',[common_3p_seq] print 'inclusion_seq:',[inclusion_seq], inclusion_exons incl_isoform_seq = common_5p_seq+inclusion_seq+common_3p_seq incl_isoform_seq_formatted = common_5p_seq[-100:]+'['+inclusion_seq+']'+common_3p_seq[:100] excl_isoform_seq = common_5p_seq+common_3p_seq c5pl=len(common_5p_seq) c3pl=len(common_3p_seq) ipl1=len(inclusion_seq) il=len(incl_isoform_seq) # Metrics to designate minimal search regions for primer3 > release 2.3 if c5pl>100: s1 = c5pl-100; e1 = 100 ### start looking for primers in the region (forward) else: s1 = 0; e1 = c5pl #if c3pl>200: s2 = c5pl+ipl1; e2 = 200 if c3pl>100: s2 = c5pl+ipl1; e2 = 100 else: s2 = c5pl+ipl1; e2 = c3pl include_region = [s1,s2+e2] include_region = [s1,e1+ipl1+e2] include_region = map(lambda x: str(x), include_region) target_region = [c5pl,ipl1] target_region = map(lambda x: str(x), target_region) input_dir = filepath('AltDatabase/primer3/temporary-files/temp1.txt') output_file = filepath('AltDatabase/primer3/temporary-files/output1.txt') try: os.remove(input_dir) except Exception: pass try: os.remove(output_file) except Exception: pass #print incl_isoform_seq #print include_region #print target_region;sys.exit() input_dir = exportPrimerInputSeq(incl_isoform_seq,include_region,target_region) primer3_file = getPrimer3Location() #for Primer3 release 2.3 and greater: SEQUENCE_PRIMER_PAIR_OK_REGION_LIST=100,50,300,50 ; 900,60,, ; ,,930,100 #Left primer in the 50 bp region starting at position 100 AND right primer in the 50 bp region starting at position 300 ### Run Primer3 command_line = [primer3_file, "<",'"'+input_dir+'"', ">",'"'+output_file+'"'] #-format_output #command_line = [primer3_file, "-format_output <",'"'+input_dir+'"', ">",'"'+output_file+'"'] command_line = string.join(command_line,' ') #print [command_line];sys.exit() retcode = os.popen(command_line) time.sleep(4) """ commandFinshed = False while commandFinshed == False: try: commandFinshed = checkFileCompletion(output_file) except Exception,e: pass """ left_primer,right_primer,amplicon_size = importPrimer3Output(output_file,gene) primers = 'F:'+left_primer+' R:'+right_primer+' sizes:'+str(amplicon_size)+'|'+str(amplicon_size-ipl1) + ' (inclusion-isoform:%s)' % incl_isoform_seq_formatted right_primer_sense = reverse_orientation(right_primer) if left_primer in excl_isoform_seq: print 'Left', else: kill if right_primer_sense in excl_isoform_seq: print 'Right' else: kill #if print_outs: print primers return primers def checkFileCompletion(fn): complete = False for line in open(fn,'r').xreadlines(): if 'PRIMER_PRODUCT_SIZE' in line: complete = True return complete def grabTranscriptSeq(exons,uid_seq_db): seq='' #print exons for uid in exons: try: seq += uid_seq_db[uid] except Exception: break ### MISSING SEQUENCE FROM THE DATABASE - OFTEN OCCURS IN THE LAST FEW EXONS - UNCLEAR WHY return seq def exportPrimerInputSeq(sequence,include_region,target_region): tempdir = filepath('AltDatabase/primer3/temporary-files/temp1.txt') export_obj = export.ExportFile(tempdir) export_obj.write('PRIMER_SEQUENCE_ID=temp1\nSEQUENCE=') export_obj.write(sequence+'\n') export_obj.write('INCLUDED_REGION=') export_obj.write(string.join(include_region,',')+'\n') export_obj.write('PRIMER_PRODUCT_SIZE_RANGE=75-1000\n') export_obj.write('TARGET=') export_obj.write(string.join(target_region,',')+'\n') export_obj.write('=') export_obj.close() return tempdir def importPrimer3Output(fn,gene): gene_transcript_structure={} protein_db = {} for line in open(fn,'r').xreadlines(): data = line.strip() if 'PRIMER_LEFT_SEQUENCE=' in data: left_primer = string.split(data,'PRIMER_LEFT_SEQUENCE=')[-1] #print left_primer; #print fn; sys.exit() if 'PRIMER_RIGHT_SEQUENCE=' in data: right_primer = string.split(data,'PRIMER_RIGHT_SEQUENCE=')[-1] if 'PRIMER_PRODUCT_SIZE=' in data: amplicon_size = int(string.split(data,'PRIMER_PRODUCT_SIZE=')[-1]) break return left_primer,right_primer,amplicon_size def getPrimer3Location(): primer3_dir = 'AltDatabase/primer3/' if os.name == 'nt': if '32bit' in architecture: primer3_file = primer3_dir + '/PC/32bit/primer3_core'; plat = 'Windows' elif '64bit' in architecture: primer3_file = primer3_dir + '/PC/64bit/primer3_core'; plat = 'Windows' elif 'darwin' in sys.platform: primer3_file = primer3_dir + '/Mac/primer3_core'; plat = 'MacOSX' elif 'linux' in sys.platform: if '32bit' in platform.architecture(): primer3_file = primer3_dir + '/Linux/32bit/primer3_core'; plat = 'linux32bit' elif '64bit' in platform.architecture(): primer3_file = primer3_dir + '/Linux/64bit/primer3_core'; plat = 'linux64bit' primer3_file = filepath(primer3_file) return primer3_file def importComparisonSplicingData4Primers(filename,species): fn=filepath(filename) stringent_regulated_exons = {} firstLine = True global gene_transcript_structure global protein_db gene_transcript_structure, protein_db = importTranscriptExonIDs(species) ei = export.ExportFile(filename[:-4]+'-primers.txt') for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: header = t firstLine = False ei.write(line) else: try: if 'comparison' in header: t = t[:-1] if 'PSI' not in filename: exonid = t[0]; symbol = t[2]; confirmed = t[5]; fold_change = abs(float(t[-2])); percent_exp = float(t[-3]) junctions = t[4]; isoforms = t[9]; splice_type = t[8] else: """ Update the code to work with PSI results files from the metaDataAnalysis script """ #UID,InclusionNotation,ClusterID,UpdatedClusterID,AltExons,EventAnnotation,Coordinates,ProteinPredictions,dPSI,rawp,adjp,avg1,avg2 uid = t[0] print uid uid_objects = string.split(uid,':') symbol = uid_objects[0] junctions = string.join(uid_objects[1:],':') junctions = string.split(junctions,'|') fold_change = abs(float(t[9])) isoforms = t[8] splice_type = t[6] exonid = t[5] #print symbol, junctions,fold_change,percent_exp,confirmed;sys.exit() #if fold_change<2 and percent_exp>0.25 and (confirmed == 'yes'): if fold_change < 50: if 'alternative_polyA' not in splice_type and 'altPromoter' not in splice_type: if len(junctions)==2: j1, j2 = junctions if 'ENS' in j1: j1 = string.split(j1,':')[1] j2 = string.split(j2,':')[1] else: j1, j2 = string.split(string.split(junctions,'|')[0],' vs. ') #(-)alt-C-terminus,(-)AA:188(ENSP00000397452)->238(ENSP00000410667),(-)microRNA-target(hsa-miR-599:miRanda,hsa-miR-186:miRanda) try: iso1, iso2 = string.split(string.split(isoforms,'AA:')[1],')->') iso1 = string.split(iso1,'(')[1] iso2 = string.split(string.split(iso2,'(')[1],')')[0] #print iso1, iso2 except: iso1 = '' iso2 = '' #print j1, j2 #print symbol try: primer = identifyPCRregions(species,'RNASeq',exonid,j1,j2,iso1,iso2) #print exonid, j1, j2, iso1, iso2 ei.write(string.join(t+[primer],'\t')+'\n') #print primer, symbol, exonid #sys.exit() except Exception: pass print traceback.format_exc(),'\n'; #sys.exit() #sys.exit() except Exception: #print traceback.format_exc(),'\n'#;sys.exit() pass ei.close() if __name__ == '__main__': ###KNOWN PROBLEMS: the junction analysis program calls exons as cassette-exons if there a new C-terminal exon occurs downstream of that exon in a different transcript (ENSG00000197991). Species = 'Hs' test = 'yes' Data_type = 'ncRNA' Data_type = 'mRNA' #E6.1-E8.2 vs. E5.1-E8.3 filename = '/Users/saljh8/Desktop/dataAnalysis/Collaborative/Ichi/August.11.2017/Events-dPSI_0.0_rawp/PSI.R636S_Homo_vs_WTC-limma-updated-Domains2-filtered.txt' #filename = '/Users/saljh8/Desktop/dataAnalysis/SalomonisLab/Leucegene/July-2017/PSI/Events-dPSI_0.1_adjp/PSI.U2AF1-like_vs_OthersQPCR.txt' #filename = '/Users/saljh8/Desktop/dataAnalysis/Collaborative/Ichi/Combined-junction-exon-evidence.txt' #exportTranscriptExonIDAssociations(Species);sys.exit() #createExonRegionSequenceDB(Species,'RNASeq'); sys.exit() importComparisonSplicingData4Primers(filename,Species); sys.exit() #ENSG00000154556:E8.2-E9.7|ENSG00000154556:E5.12-E9.7 alt-N-terminus|- alt-C-terminus|- AA:41(ENST00000464975-PEP)->43(ENST00000493709-PEP)|- #ENSG00000161999:E2.3-E2.5 nonsense_mediated_decay|+ retained_intron|+ alt-N-terminus|+ alt-C-terminus|+ AA:72(ENST00000564436-PEP)->81(ENSP00000454700)|+ #ENSG00000122591:E12.2-E13.1|ENSG00000122591:E12.1-E13.1 alt-N-terminus|+ alt-C-terminus|+ AA:116(ENST00000498833-PEP)->471(ENSP00000397168)|+ #ENSG00000128891:E1.11-E2.1|ENSG00000128891:E1.10-E2.1 alt-N-terminus|+ AA:185(ENSP00000350695)->194(ENSP00000452773)|+ identifyPCRregions(Species,'RNASeq','ENSG00000128891:E1.12','E1.12-E2.1','E1.11-E2.1','ENSP00000350695','ENSP00000350695'); sys.exit() #identifyPCRregions(Species,'RNASeq','ENSG00000133226:E9.1','E8.1-E9.1','E8.1-E11.3','ENST00000564436-PEP','ENSP00000454700'); sys.exit() #createExonRegionSequenceDB(Species,'RNASeq'); sys.exit() getEnsemblAssociations(Species,Data_type,test); sys.exit() test_gene = ['ENSG00000143776']#,'ENSG00000154889','ENSG00000156026','ENSG00000148584','ENSG00000063176','ENSG00000126860'] #['ENSG00000105968'] meta_test = ["ENSG00000215305","ENSG00000179676","ENSG00000170484","ENSG00000138180","ENSG00000100258","ENSG00000132170","ENSG00000105767","ENSG00000105865","ENSG00000108523","ENSG00000150045","ENSG00000156026"] #test_gene = meta_test gene_seq_filename = 'AltDatabase/ensembl/'+Species+'/'+Species+'_gene-seq-2000_flank' gene_db = import_sequence_data(gene_seq_filename,{},Species,'gene_count'); print len(gene_db); sys.exit() import_dir = '/AltDatabase/ensembl/'+species dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for file_name in dir_list: #loop through each file in the directory to output results dir_file = 'AltDatabase/ensembl/'+species+'/'+file_name if 'exon' in dir_file: exon_file = dir_file elif 'transcript' in dir_file: trans_file = dir_file elif 'gene' in dir_file: gene_seq_file = dir_file elif 'Exon_cDNA' in dir_file: exon_trans_file = dir_file elif 'Domain' in dir_file: domain_file = dir_file #""" exon_annotation_db,transcript_gene_db,gene_transcript,transcript_exon_db,intron_retention_db,ucsc_splicing_annot_db = getEnsExonStructureData(species,data_type) #exon_db = customDBDeepCopy(exon_annotation_db) #""" exon_annotation_db2 = annotate_exons(exon_annotation_db) #kill exon_db2 = customDBDeepCopy(exon_annotation_db2) ##having problems with re-writting contents of this db when I don't want to exon_clusters,intron_clusters,exon_regions,intron_region_db = exon_clustering(exon_db2); exon_db2={} #""" exon_junction_db,putative_as_junction_db,exon_junction_db = processEnsExonStructureData(exon_annotation_db,exon_regions,transcript_gene_db,gene_transcript,transcript_exon_db,intron_retention_db) s #ej = {};ej['ENSG00000124104'] = exon_junction_db['ENSG00000124104'] #exon_regions,critical_gene_junction_db = compareJunctions(putative_as_junction_db,exon_regions) #exportSubGeneViewerData(exon_regions,critical_gene_junction_db,intron_region_db,intron_retention_db) #ENSG00000149792 possible retained 3' intron... check out kill use_exon_data='no';get_splicing_factors = 'yes' rna_processing_ensembl = GO_parsing.parseAffyGO(use_exon_data,get_splicing_factors,species) ensembl_annot_file = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations_simple.txt' ensembl_annotation_db = getEnsemblAnnotations(ensembl_annot_file,rna_processing_ensembl) ###Print ovelap statistics for exon-blocks x=0;y=0; m=0; l=0 for key in exon_clusters: for exon_block in exon_clusters[key]: if len(exon_block[2])>1: y += 1; x += 1; m += len(exon_block[2]); l += len(exon_block[2]) else: x += 1; m += 1 #if x < 50: #print key[0], exon_block[2], len(exon_block[2]),x,y,m,l print 'x',x,'y',y,'m',m,'l',l """ for gene in exon_regions: db = exon_regions[gene] for block in db: for rd in db[block]: try: print rd.AssociatedSplicingEvent(),rd.AssociatedSplicingJunctions();kill except AttributeError: continue"""
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/EnsemblImport.py
EnsemblImport.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from build_scripts import EnsemblImport import copy import time from build_scripts import alignToKnownAlt import update import export def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list ################### Import exon coordinate/transcript data from BIOMART def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def covertStrToListInt(str_data): str_data = string.replace(str_data,'"','') list = string.split(str_data,',');list2=[] try: for i in list[:-1]: list2.append(int(i)) except ValueError: print list;kill return list2 def importEnsExonStructureData(species): start_time = time.time(); global ensembl_annotations; global ensembl_exon_data; ensembl_exon_data={}; global ensembl_gene_coordinates global ensembl_gene_exon_db; ensembl_gene_exon_db={}; global ensembl_exon_pairs; global coordinate_gene_count_db global ensembl_transcript_structure_db; ensembl_transcript_structure_db={}; global ens_transcript_gene_db; ens_transcript_gene_db={} global ensembl_const_exon_db; ensembl_const_exon_db = {} ###Simple function to import and organize exon/transcript data filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' fn=filepath(filename); ensembl_gene_coordinates={}; ensembl_annotations={}; x=0 transcript_exon_db = {}; initial_junction_db = {}; ensembl_transcript_exons={}; coordinate_gene_count_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if 'Chromosome' in t[0]: type = 'old'###when using older builds of EnsMart versus BioMart else: type = 'current' x=1 else: try: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t except ValueError: print t;kill ###switch exon-start and stop if in the reverse orientation if strand == '-1': strand = '-' else: strand = '+' if '_' in chr: c = string.split(chr,'_'); chr = c[0] exon_end = int(exon_end); exon_start = int(exon_start) if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if 'ENS' in gene: ens_exonid_data = string.split(ens_exonid,'.'); ens_exonid = ens_exonid_data[0] if test == 'yes': if gene in test_gene: proceed = 'yes' else: proceed = 'no' else: proceed = 'yes' if abs(exon_end-exon_start)>0 and proceed == 'yes': ###Create temporary databases storing just exon and just trascript and then combine in the next block of code try: ensembl_gene_coordinates[gene].append(exon_start) except KeyError: ensembl_gene_coordinates[gene] = [exon_start] try: coordinate_gene_count_db[gene].append([exon_start,exon_end]) except KeyError: coordinate_gene_count_db[gene] = [[exon_start,exon_end]] ensembl_gene_coordinates[gene].append(exon_end) ensembl_annotations[gene] = chr,strand ensembl_exon_data[(chr,exon_start,exon_end)] = ens_exonid try:ensembl_gene_exon_db[gene]+= [ens_exonid] except KeyError: ensembl_gene_exon_db[gene] = [ens_exonid] try: ensembl_transcript_exons[ens_transcriptid,strand].append((exon_start,ens_exonid)) except KeyError: ensembl_transcript_exons[ens_transcriptid,strand] = [(exon_start,ens_exonid)] try: ensembl_transcript_structure_db[ens_transcriptid].append((chr,exon_start,exon_end)) except KeyError: ensembl_transcript_structure_db[ens_transcriptid] = [(chr,exon_start,exon_end)] ens_transcript_gene_db[ens_transcriptid] = gene ensembl_const_exon_db[ens_exonid] = constitutive_exon end_time = time.time(); time_diff = int(end_time-start_time) print filename,"parsed in %d seconds" % time_diff ###Sort exon info in the transcript to store pairs of Ensembl exons to find unique pairs of exons from UCSC ensembl_exon_pairs={} for (transcript,strand) in ensembl_transcript_exons: a = ensembl_transcript_exons[(transcript,strand)]; a.sort() if strand == '-': a.reverse() index=0 try: while index<len(a): exon_pair = a[index][1],a[index+1][1] ensembl_exon_pairs[exon_pair]=[]; index+=1 except IndexError: index+=1 ensembl_chr_coordinate_db={} for gene in ensembl_gene_coordinates: a = ensembl_gene_coordinates[gene]; a.sort() gene_start = a[0]; gene_stop = a[-1] chr,strand = ensembl_annotations[gene] if chr in ensembl_chr_coordinate_db: ensembl_gene_coordinates2 = ensembl_chr_coordinate_db[chr] ensembl_gene_coordinates2[(gene_start,gene_stop)] = gene,strand else: ensembl_gene_coordinates2={}; ensembl_gene_coordinates2[(gene_start,gene_stop)] = gene,strand ensembl_chr_coordinate_db[chr]=ensembl_gene_coordinates2 return ensembl_chr_coordinate_db def makeUnique(item): db1={}; list1=[] for i in item: db1[i]=[] for i in db1: list1.append(i) list1.sort() return list1 def mergeFragmentedExons(exon_coordiantes,strand): ###If the intron between two exons is < 10bp, make one exon index=0; merged='no' #print len(exon_coordiantes),exon_coordiantes,strand,'\n' while index<(len(exon_coordiantes)-1): deleted = 'no' if strand == '-': (stop1,start1) = exon_coordiantes[index] (stop2,start2) = exon_coordiantes[index+1] else: (start1,stop1) = exon_coordiantes[index] (start2,stop2) = exon_coordiantes[index+1] if abs(start2-stop1)<9: if strand == '+': new_exon = (start1,stop2) else: new_exon = (stop2,start1)###for neg_strand exon_coordiantes[index+1] = new_exon; del exon_coordiantes[index] deleted = 'yes'; merged = 'yes' index+=1 if deleted == 'yes': if index == (len(exon_coordiantes)):break else: index-=1 ###reset this since the number of elements has changed exon_coordiantes = makeUnique(exon_coordiantes) if strand == '-': exon_coordiantes.reverse() #print len(exon_coordiantes),exon_coordiantes,strand;kill return exon_coordiantes,merged def importUCSCExonStructureData(species): start_time = time.time(); global ucsc_annotations; global input_gene_file ###Simple function to import and organize exon/transcript data filename = 'AltDatabase/ucsc/'+species+'/all_mrna.txt'; input_gene_file = filename; merged_ac_count=0;ac_count=0 fn=filepath(filename); ucsc_gene_coordinates={}; transcript_structure_db={}; ucsc_interim_gene_transcript_db={} ucsc_annotations={}; ucsc_transcript_coordinates={}; temp_data_db={}; accession_count={}; clusterid_count={} for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') coordinates = t[-1]; coordinates = covertStrToListInt(coordinates) exon_size_list = t[-3]; exon_size_list = covertStrToListInt(exon_size_list) ##coordinates and are the same length strand = t[9]; accession = t[10]; clusterid = t[0]; chr = t[14][3:] if '_' in chr: c = string.split(chr,'_'); chr = c[0] if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention unique_geneid = clusterid,strand,chr ###can have strand specific isoforms index=0; exon_coordiantes = [] while index<len(coordinates): exon_start = coordinates[index]; exon_stop = coordinates[index]+exon_size_list[index] exon_coordiantes.append((exon_start+1,exon_stop)) try: ###Below code is available if we want to join exons that have very small introns (really one exon)... however, EnsemblImport will agglomerate these exons and ignore the splice event (if in the same exon) if (coordinates[index+1]-exon_stop)<gap_length: null = []#print accession, exon_stop,coordinates;kill except IndexError: null=[] index+=1 if strand == '-': exon_coordiantes.reverse() #print accession,coordinates exon_coordiantes,merged = mergeFragmentedExons(exon_coordiantes,strand) merged='no' if merged=='yes': merged_ac_count+=1 temp_data_db[accession] = unique_geneid,strand,exon_coordiantes,chr try: accession_count[accession]+=1 except KeyError: accession_count[accession]=1 clusterid_count[unique_geneid] = [] ac_count+=1 print len(clusterid_count), 'clusters imported' print merged_ac_count, "transcripts had atleast two exons merged into one, out of",ac_count for accession in temp_data_db: if accession_count[accession]==1: ###Why would an accession have multiple entries: shouldn't but does unique_geneid,strand,exon_coordiantes,chr = temp_data_db[accession] ###Add the first and list positions in the transcript ucsc_annotations[unique_geneid] = chr ###don't include strand, since transcripts in a cluster can be on different strands try: ucsc_gene_coordinates[unique_geneid]+=[exon_coordiantes[0][0]] except KeyError: ucsc_gene_coordinates[unique_geneid]=[exon_coordiantes[0][0]] ucsc_gene_coordinates[unique_geneid]+=[exon_coordiantes[-1][1]] try: ucsc_transcript_coordinates[unique_geneid]+=[exon_coordiantes[0][0]] except KeyError: ucsc_transcript_coordinates[accession]=[exon_coordiantes[0][0]] ucsc_transcript_coordinates[accession]+=[exon_coordiantes[-1][1]] try: ucsc_interim_gene_transcript_db[unique_geneid].append(accession) except KeyError: ucsc_interim_gene_transcript_db[unique_geneid] = [accession] transcript_structure_db[accession] = exon_coordiantes end_time = time.time(); time_diff = int(end_time-start_time) print filename,"parsed in %d seconds" % time_diff ###Build a gene cluster level database (start and stop coordinates) for UCSC clusters ucsc_chr_coordinate_db={} for geneid in ucsc_gene_coordinates: strand = geneid[1] a = ucsc_gene_coordinates[geneid]; a.sort() gene_start = a[0]; gene_stop = a[-1] chr = ucsc_annotations[geneid] if chr in ucsc_chr_coordinate_db: ucsc_gene_coordinates2 = ucsc_chr_coordinate_db[chr] ucsc_gene_coordinates2[(gene_start,gene_stop)] = geneid,strand else: ucsc_gene_coordinates2={}; ucsc_gene_coordinates2[(gene_start,gene_stop)] = geneid,strand ucsc_chr_coordinate_db[chr] = ucsc_gene_coordinates2 return ucsc_chr_coordinate_db,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates def getChromosomalOveralap(ucsc_chr_db,ensembl_chr_db): print len(ucsc_chr_db),len(ensembl_chr_db); start_time = time.time() """Find transcript_clusters that have overlapping start positions with Ensembl gene start and end (based on first and last exons)""" ###exon_location[transcript_cluster_id,chr,strand] = [(start,stop,exon_type,probeset_id)] y = 0; l =0; ensembl_transcript_clusters={}; no_match_list=[] ###(bp1,ep1) = (47211632,47869699); (bp2,ep2) = (47216942, 47240877) for chr in ucsc_chr_db: ucsc_db = ucsc_chr_db[chr] try: for (bp1,ep1) in ucsc_db: x = 0 gene_clusterid,ucsc_strand = ucsc_db[(bp1,ep1)] try: ensembl_db = ensembl_chr_db[chr] for (bp2,ep2) in ensembl_db: y += 1; ensembl,ens_strand = ensembl_db[(bp2,ep2)] if ucsc_strand == ens_strand: ###if the two gene location ranges overlapping ##########FORCE UCSC mRNA TO EXIST WITHIN THE SPACE OF ENSEMBL TO PREVENT TRANSCRIPT CLUSTER EXCLUSION IN ExonArrayEnsemblRules add = 0 if ((bp1 >= bp2) and (ep2 >= bp1)) or ((ep1 >= bp2) and (ep2 >= ep1)): add = 1 ###if the start or stop of the UCSC region is inside the Ensembl start and stop elif ((bp2 >= bp1) and (ep1 >= bp2)) or ((ep2 >= bp1) and (ep1 >= ep2)): add = 1 ###opposite if add == 1: #if ((bp1 >= (bp2-bp_offset)) and ((ep2+bp_offset) >= ep1)): a = '' #else: print gene_clusterid,ensembl,bp1,bp2,ep1,ep2;kill x = 1 try: ensembl_transcript_clusters[gene_clusterid].append(ensembl) except KeyError: ensembl_transcript_clusters[gene_clusterid] = [ensembl] l += 1 except KeyError: null=[]; #print chr, 'not found' if x == 0: no_match_list.append(gene_clusterid) except ValueError: for y in ucsc_db: print y;kill end_time = time.time(); time_diff = int(end_time-start_time) print "UCSC genes matched up to Ensembl in %d seconds" % time_diff print "UCSC Transcript Clusters (or accession numbers) overlapping with Ensembl:",len(ensembl_transcript_clusters) print "With NO overlapp",len(no_match_list) return ensembl_transcript_clusters,no_match_list def getChromosomalOveralapSpecific(ucsc_db,ensembl_db): print len(ucsc_db),len(ensembl_db); start_time = time.time() """Find transcript_clusters that have overlapping start positions with Ensembl gene start and end (based on first and last exons)""" ###exon_location[transcript_cluster_id,chr,strand] = [(start,stop,exon_type,probeset_id)] y = 0; l =0; ensembl_transcript_clusters={}; no_match_list=[] ###(bp1,ep1) = (47211632,47869699); (bp2,ep2) = (47216942, 47240877) for key in ucsc_db: (chr,bp1,ep1,accession) = key x = 0 ucsc_chr,ucsc_strand,ensembls = ucsc_db[key] status = 'go' for ensembl in ensembls: y += 1; bp2,ep2 = ensembl_db[ensembl] add = 0 if ((bp1 >= bp2) and (ep2 >= bp1)) or ((ep1 >= bp2) and (ep2 >= ep1)): add = 1 ###if the start or stop of the UCSC region is inside the Ensembl start and stop elif ((bp2 >= bp1) and (ep1 >= bp2)) or ((ep2 >= bp1) and (ep1 >= ep2)): add = 1 ###opposite if add == 1: #if ((bp1 >= bp2) and (ep2 >= ep1)): x = 1 try: ensembl_transcript_clusters[accession].append(ensembl) except KeyError: ensembl_transcript_clusters[accession] = [ensembl] l += 1; status = 'break' if x == 0: no_match_list.append(accession) end_time = time.time(); time_diff = int(end_time-start_time) print "UCSC genes matched up to Ensembl in %d seconds" % time_diff print "UCSC mRNA accession numbers overlapping with Ensembl:",len(ensembl_transcript_clusters) print "With NO overlapp",len(no_match_list) return ensembl_transcript_clusters,no_match_list def customDeepCopy(db): db2={} for i in db: for e in db[i]: try: db2[i].append(e) except KeyError: db2[i]=[e] return db2 def identifyNewExonsForAnalysis(ensembl_transcript_clusters,no_match_list,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates): ###There's currently a lot of data here we are not using: Ensembl exons and transcript data ###Currently deemed as "over-kill" to use this. all_accession_gene_associations = {} ###record this for export: needed to align all transcripts to genes for probeset seqeunce alignment ucsc_multiple_alignments = {}; ensembl_gene_accession_structures={} for clusterid in ensembl_transcript_clusters: ens_geneids = ensembl_transcript_clusters[clusterid] ucsc_transcripts = ucsc_interim_gene_transcript_db[clusterid] for accession in ucsc_transcripts: try: all_accession_gene_associations[accession] += ens_geneids except KeyError: all_accession_gene_associations[accession] = ens_geneids if len(ens_geneids)>1: ###If a cluster ID associates with multiple Ensembl IDs chr = ucsc_annotations[clusterid] strand = clusterid[1] for accession in ucsc_transcripts: if test == 'yes': print "Multiple Ensembls for",accession a = ucsc_transcript_coordinates[accession]; a.sort(); trans_start = a[0];trans_stop = a[-1] ucsc_multiple_alignments[(chr,trans_start,trans_stop,accession)] = chr,strand,ens_geneids #if (chr,trans_start,trans_stop) == ('8', 113499990, 113521567): print accession,chr,strand,ens_geneids #if accession == 'AK049467': print 'A',ens_geneids,(chr,trans_start,trans_stop);kill else: for ens_geneid in ens_geneids: transcripts = ucsc_interim_gene_transcript_db[clusterid] for accession in transcripts: if test == 'yes': print "One Ensembl for",accession exon_structure_list = transcript_structure_db[accession] try: ensembl_gene_accession_structures[ens_geneid].append((accession,exon_structure_list)) except KeyError: ensembl_gene_accession_structures[ens_geneid]= [(accession,exon_structure_list)] ###Create a new database for ensembl gene boundaries indexed by ensembl id for quicker reference in the faster lookup chr overlap function ensembl_gene_coordinates2={} for chr in ensembl_chr_coordinate_db: ensembl_gene_coordinates_data = ensembl_chr_coordinate_db[chr] for (bp,ep) in ensembl_gene_coordinates_data: ensembl,strand = ensembl_gene_coordinates_data[(bp,ep)] ensembl_gene_coordinates2[ensembl] = (bp,ep) ###Add all Accession #'s, for which the cluster ID did not correspond to a gene and re-run the chr overlap function accession_chr_coordinate_db={} for clusterid in no_match_list: ucsc_transcripts = ucsc_interim_gene_transcript_db[clusterid] chr = ucsc_annotations[clusterid] strand = clusterid[1] for accession in ucsc_transcripts: a = ucsc_transcript_coordinates[accession]; a.sort(); trans_start = a[0];trans_stop = a[-1] if chr in accession_chr_coordinate_db: accession_gene_coordinate_db = accession_chr_coordinate_db[chr] accession_gene_coordinate_db[(trans_start,trans_stop)] = accession,strand else: accession_gene_coordinate_db={} accession_gene_coordinate_db[(trans_start,trans_stop)] = accession,strand accession_chr_coordinate_db[chr] = accession_gene_coordinate_db ###Re-run this query with the accession numbers rather than the cluster number (may take a while) new_ensembl_transcript_clusters,new_no_match_list = getChromosomalOveralap(accession_chr_coordinate_db,ensembl_chr_coordinate_db) ###Add the single gene accession associations to ensembl_gene_accession_structures for accession in new_ensembl_transcript_clusters: ens_geneids = new_ensembl_transcript_clusters[accession] try: all_accession_gene_associations[accession] += ens_geneids except KeyError: all_accession_gene_associations[accession] = ens_geneids if len(ens_geneids)>1 and export_all_associations=='no': ###If a cluster ID associates with multiple Ensembl IDs null = []###don't do anything with these else: for ens_geneid in ens_geneids: ens_geneid = ens_geneids[0] exon_structure_list = transcript_structure_db[accession] try: ensembl_gene_accession_structures[ens_geneid].append((accession,exon_structure_list)) except KeyError: ensembl_gene_accession_structures[ens_geneid]= [(accession,exon_structure_list)] ###Re-run the chromosomal overlap analysis specifically on transcripts, where the gene overlapped with multiple ensembls ensembl_transcript_clusters2,no_match_list2 = getChromosomalOveralapSpecific(ucsc_multiple_alignments,ensembl_gene_coordinates2) for accession in ensembl_transcript_clusters2: ens_geneids = ensembl_transcript_clusters2[accession] #if accession == 'AK049467': print ens_geneids;kill all_accession_gene_associations[accession] = ens_geneids ###Write over existing if a more specific set of gene associations found if len(ens_geneids)==1 or export_all_associations=='yes': ###Otherwise there are multiple associations for ens_geneid in ens_geneids: exon_structure_list = transcript_structure_db[accession] ###This is the list of Ensembl genes to GenBank accessions and exon coordiantes try: ensembl_gene_accession_structures[ens_geneid].append((accession,exon_structure_list)) except KeyError: ensembl_gene_accession_structures[ens_geneid]= [(accession,exon_structure_list)] ###Verify accession to gene associations for multiple associations or pick the one propper gene call among several incorrect """A problem is that if an Ensembl pseudo-transcript (not a real gene), with no exons overlapping with UCSC transcript exists, the accession could not be annotated with a gene, but this is not ideal, since the exons in the transcript may just overlap with one gene""" all_accession_gene_associations2 = []; number_of_associated_exons={}; removed=[]; ensembl_gene_accession_structures_deleted={}; exon_annotation_del_db={} for accession in all_accession_gene_associations: exon_structure = transcript_structure_db[accession] ###coordinates for 'exons' provided by UCSC unique_genes = unique.unique(all_accession_gene_associations[accession]) ensembl_gene_exons_temp={} for gene in unique_genes: chr,strand = ensembl_annotations[gene] for exon_coordinates in exon_structure: exons = ensembl_gene_exon_db[gene] ###Ensembl exonids for this gene new_exon_coordinates = chr,exon_coordinates[0],exon_coordinates[1] ###create a exon coordiante tuple analagous to the one created for Ensembl if new_exon_coordinates in ensembl_exon_data: ###Therefore this is an Ensembl aligning exon (same start and stop) ensembl_exon = ensembl_exon_data[new_exon_coordinates] ###Get the id for this exon if ensembl_exon in exons: ###Since this exon could be in any gene, check to make sure it's specific for just this one try: ensembl_gene_exons_temp[gene].append(ensembl_exon) except KeyError: ensembl_gene_exons_temp[gene] = [ensembl_exon] #if accession == 'X97298': print accession, unique_genes, ensembl_gene_exons_temp, len(ensembl_gene_exons_temp);kill #if strand == '+': print accession, unique_genes, ensembl_gene_exons_temp, len(ensembl_gene_exons_temp);kill if len(ensembl_gene_exons_temp) == 1: ###Therefore, only one Ensembl gene contained overlapping exons for gene in ensembl_gene_exons_temp: all_accession_gene_associations[accession] = [gene] number_of_associated_exons[gene,accession] = len(ensembl_gene_exons_temp[gene]) if len(unique_genes)>1: ###If multiple genes, then this accession number has not been updated in our main accession to Ensembl Dbase exon_structure_list = transcript_structure_db[accession] try: ensembl_gene_accession_structures[gene].append((accession,exon_structure_list)) except KeyError: ensembl_gene_accession_structures[gene]= [(accession,exon_structure_list)] elif len(ensembl_gene_exons_temp) == 0 or len(ensembl_gene_exons_temp) > 1: ###Therfore, no Ensembl exon overlaps with the transcript or exons overlapp with several genes. If in the main accession to Ensembl Dbase, delete it for gene in unique_genes: if gene in ensembl_gene_accession_structures and export_all_associations=='no': accession_data_list = ensembl_gene_accession_structures[gene] index = 0 for accession_data in accession_data_list: if accession in accession_data: del accession_data_list[index]; removed.append(accession) ### add all of the gene accession info to a new db to look for overlap with UCSC annotated alt events if len(ensembl_gene_exons_temp) == 0 and len(unique_genes) == 1: ### This occurs if a transcript has no overlaping ensembl exons, but does contain an annotated event according to UCSC all_accession_gene_associations[accession] = [gene] ###although the entry is deleted, probably no issue with exporting the data to LinkEST if len(unique_genes)==1: ###If multiple genes, then this accession number has not been updated in our main accession to Ensembl Dbase exon_structure_list = transcript_structure_db[accession] try: ensembl_gene_accession_structures_deleted[gene].append((accession,exon_structure_list)) except KeyError: ensembl_gene_accession_structures_deleted[gene]= [(accession,exon_structure_list)] chr,strand = ensembl_annotations[gene] exon_annotation_del_db[(gene,chr,strand)] = exon_structure_list ###This should mimic the Ensembl database used for alignToKnownAlt index += 1 ###Check to see if any of the unique accession-gene associations that didn't have an ensembl exon overlap with a known UCSC alt-event ###first update gene coordiantes with approved UCSC mRNAs (Ensembl frak's up sometmes and actually makes mRNAs too short) for gene in ensembl_gene_accession_structures: for (accession,exon_structure_list) in ensembl_gene_accession_structures[gene]: for exon_info in exon_structure_list: exon_start = exon_info[0]; exon_stop = exon_info[1] ensembl_gene_coordinates[gene].append(exon_start); ensembl_gene_coordinates[gene].append(exon_stop) try: ucsc_splicing_annot_db = alignToKnownAlt.importEnsExonStructureData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_del_db) except Exception: ucsc_splicing_annot_db={} # ucsc_splicing_annot_db[ensembl].append((start,stop,annotation_str)) for gene in ensembl_gene_accession_structures_deleted: if gene in ucsc_splicing_annot_db: for (accession,exon_structure_list) in ensembl_gene_accession_structures_deleted[gene]: add = [] for ucsc_exon_info in ucsc_splicing_annot_db[gene]: bp1 = ucsc_exon_info[0]; ep1 = ucsc_exon_info[1]; annotation = ucsc_exon_info[2] for exon_info in exon_structure_list: bp2 = exon_info[0]; ep2 = exon_info[1] #if accession == 'BC092441': if ((bp1 >= bp2) and (ep2 >= bp1)) or ((ep1 >= bp2) and (ep2 >= ep1)): add.append(annotation) ###if the start or stop of the UCSC Alt is inside the UCSC mRNA exon start and stop elif ((bp2 >= bp1) and (ep1 >= bp2)) or ((ep2 >= bp1) and (ep1 >= ep2)): add.append(annotation) ###opposite if len(add)>0: try: ensembl_gene_accession_structures[gene].append((accession,exon_structure_list)) except KeyError: ensembl_gene_accession_structures[gene]= [(accession,exon_structure_list)] print len(removed), "accessions removed from analysis" ###Export all possible transcript to ensembl anntotations """This is used by mRNASeqAlign.py for figuring out which UCSC mRNAs can be specifically aligned to which Ensembl genes, based on reciprocal-junctions""" export_file = string.replace(input_gene_file,'all',species+'_UCSC-accession-to-gene') fn=filepath(export_file); data = open(fn,'w') for accession in all_accession_gene_associations: unique_genes = unique.unique(all_accession_gene_associations[accession]) unique_genes = string.join(unique_genes,'|') if (unique_genes,accession) in number_of_associated_exons: number_of_ens_exons = number_of_associated_exons[(unique_genes,accession)] else: number_of_ens_exons = 'NA' values = accession +'\t'+ unique_genes +'\t'+ str(number_of_ens_exons)+'\n' data.write(values) data.close() return ensembl_gene_accession_structures def matchUCSCExonsToEnsembl(ensembl_gene_accession_structures): global distal_ens_exon_pos_db; distal_ens_exon_pos_db = {} ###Use this database to determine which start and stop exon from Ensembl correspond to UCSC start and stop exons (with different distal positions and same junctions) for transcript in ensembl_transcript_structure_db: ens_geneid = ens_transcript_gene_db[transcript] chr,strand = ensembl_annotations[ens_geneid] """ ###Performs the same operation as below but just for perifpheral ensembl exons, not all of them (less conservative) a = ensembl_transcript_structure_db[transcript]; a.sort() if strand == '+': start_pos = a[0]; start_ensembl_exon = ensembl_exon_data[a[0]] end_pos = a[-1]; stop_ensembl_exon = ensembl_exon_data[a[-1]] else: start_pos = a[-1]; start_ensembl_exon = ensembl_exon_data[a[-1]] end_pos = a[0]; stop_ensembl_exon = ensembl_exon_data[a[0]] v = [(start_pos,start_ensembl_exon),(end_pos,stop_ensembl_exon)] try: distal_ens_exon_pos_db[ens_geneid] += v except KeyError: distal_ens_exon_pos_db[ens_geneid] = v""" trans_data = ensembl_transcript_structure_db[transcript]; trans_data.sort() for a in trans_data: ###Do this for all exons, since we don't care if an mRNA from UCSC starts in the middl of the the 3rd exon #ensembl_exon_data[(chr,exon_start,exon_end)] = ens_exonid pos = a; ensembl_exon = ensembl_exon_data[a] v = [(pos,ensembl_exon)] try: distal_ens_exon_pos_db[ens_geneid] += v except KeyError: distal_ens_exon_pos_db[ens_geneid] = v distal_ens_exon_pos_db = eliminate_redundant_dict_values(distal_ens_exon_pos_db) ###Determine which exons are constitutive, by simply counting their number in each transcript constitutive_gene_db={}; coordinate_to_ens_exon = {} for ens_geneid in ensembl_gene_accession_structures: a = ensembl_gene_accession_structures[ens_geneid] coordinate_count_db={} chr,strand = ensembl_annotations[ens_geneid] for (accession,exon_structure) in a: index=1 for exon_coordinates in exon_structure: ###check whether the exon is an ensembl exon exon_coordinates = list(exon_coordinates) new_exon_coordinates = chr,exon_coordinates[0],exon_coordinates[1] ensembl_exon = 'null' #if new_exon_coordinates == ('1', 112109882, 112111042): print index, accession,len(exon_structure);kill try: ensembl_exon = ensembl_exon_data[new_exon_coordinates] #if ensembl_exon == 'ENSE00001473402': print new_exon_coordinates;kill coordinate_to_ens_exon[new_exon_coordinates] = ensembl_exon except KeyError: if len(exon_structure)>1: ###Ensures we don't do this for single exon transcripts, where this would be in-appropriate if index == 1 and strand == '+': #or index == len(exon_structure) for (pos,exon) in distal_ens_exon_pos_db[ens_geneid]: cr,start,stop = pos if exon_coordinates[1] == stop: ensembl_exon = exon; exon_coordinates[0] = start #; print 'a' elif index == 1 and strand == '-': #or index == len(exon_structure) for (pos,exon) in distal_ens_exon_pos_db[ens_geneid]: cr,start,stop = pos if exon_coordinates[0] == start: ensembl_exon = exon; exon_coordinates[1] = stop #; print 'b' elif index == len(exon_structure) and strand == '+': #or index == len(exon_structure) for (pos,exon) in distal_ens_exon_pos_db[ens_geneid]: cr,start,stop = pos if exon_coordinates[0] == start: ensembl_exon = exon; exon_coordinates[1] = stop #; print 'c' elif index == len(exon_structure) and strand == '-': #or index == len(exon_structure) for (pos,exon) in distal_ens_exon_pos_db[ens_geneid]: cr,start,stop = pos if exon_coordinates[1] == stop: ensembl_exon = exon; exon_coordinates[0] = start #; print 'd',exon_coordinates,start,stop,ensembl_exon;kill if ensembl_exon != 'null': #print accession,ensembl_exon,exon_coordinates;kill coordinate_to_ens_exon[new_exon_coordinates] = ensembl_exon index+=1 ###count each exon in all transcripts exon_coordinates = tuple(exon_coordinates) try: coordinate_count_db[exon_coordinates]+=1 except KeyError: coordinate_count_db[exon_coordinates]=1 count_list=[] ###process for identifying putative constitutive IDs. Found cases were it eliminate real constitutive exons (check out SLK and EF139853...other transcripts eliminated due to ncRNA overlap) """ print coordinate_count_db,'\n' ###Now do this for Ensembl gene exons for exon_coordinates in coordinate_gene_count_db[ens_geneid]: try: coordinate_count_db[tuple(exon_coordinates)]+=1 except KeyError: coordinate_count_db[tuple(exon_coordinates)]=1 print coordinate_count_db;kill for exon_coordinates in coordinate_count_db: count = coordinate_count_db[exon_coordinates] count_list.append((count,exon_coordinates)) count_list.sort(); count_list.reverse(); max_count = count_list[0][0]; constitutive=[] for (count,coor) in count_list: if count == max_count: constitutive.append(coor) constitutive_gene_db[ens_geneid] = constitutive""" return ensembl_gene_accession_structures,constitutive_gene_db,coordinate_to_ens_exon def exportNullDatabases(species): input_gene_file = 'AltDatabase/ucsc/'+species+'/all_mrna.txt' export_file = string.replace(input_gene_file,'all',species+'_UCSC_transcript_structure') data = export.ExportFile(export_file) data.close() export_file2 = string.replace(input_gene_file,'all',species+'_UCSC_transcript_structure_filtered') data = export.ExportFile(export_file2) data.close() export_file = string.replace(export_file,'mrna','COMPLETE-mrna') data = export.ExportFile(export_file) data.close() def exportExonClusters(ensembl_gene_accession_structures,constitutive_gene_db,coordinate_to_ens_exon,species): export_file = string.replace(input_gene_file,'all',species+'_UCSC_transcript_structure'); accessions_exlcuded=[]; accessions_included=0 if export_all_associations == 'yes': ### Ensures that the file created for EnsemblImport will not be over-written by that for Domain analyses export_file = string.replace(export_file,'mrna','COMPLETE-mrna') fn=filepath(export_file); data = open(fn,'w') title = ['Ensembl Gene ID','Chromosome','Strand','Exon Start (bp)','Exon End (bp)','Custom Exon ID','Constitutive Exon','NCBI Accession'] title = string.join(title,'\t')+'\n' data.write(title) for ens_geneid in ensembl_gene_accession_structures: chr,strand = ensembl_annotations[ens_geneid] common_values = [ens_geneid,chr,strand] for (accession,exon_structure) in ensembl_gene_accession_structures[ens_geneid]: index=1 #constitutive_coordinates = constitutive_gene_db[ens_geneid] ens_exon_count=[]###See if we should export this transcript (if it contains no unique exons) for (exon_start,exon_stop) in exon_structure: try: exonid = coordinate_to_ens_exon[(chr,exon_start,exon_stop)] ###Verify that the exon corresponds to that gene (some Ensembl exon regions belong to more than one gene) if exonid in ensembl_gene_exon_db[ens_geneid]: ens_exon_count.append(exonid) except KeyError: null = [] """ LEGACY - REMOVE TRANSCRIPTS FOR WHICH THERE ARE ONLY ENSEMBL EXONS: This is an issue since we really want to get rid of transcripts with only Ensembl Junctions (too strict). This option was removed on 11.22.2017 as it removed novel isoforms with known exons """ #if len(ens_exon_count) != len(exon_structure): accessions_included+=1 for (exon_start,exon_stop) in exon_structure: ###used to try to emperically determine which exons are constitutive... instead, just trust Ensembl #if (exon_start,exon_stop) in constitutive_coordinates: constitutive_call = '1' #else: constitutive_call = '0' try: exonid = coordinate_to_ens_exon[(chr,exon_start,exon_stop)] if exonid in ensembl_gene_exon_db[ens_geneid]: exonid = exonid ###Perform the same check as above else: exonid = accession+'-'+str(index) except KeyError: exonid = accession+'-'+str(index) ###custom ID designating the relative exon position in the exon_structure if exonid in ensembl_const_exon_db: constitutive_call = ensembl_const_exon_db[exonid] else: constitutive_call = '0' values = common_values+[str(exon_start),str(exon_stop),exonid,constitutive_call,accession] index+=1 values = string.join(values,'\t')+'\n' data.write(values) #else: accessions_exlcuded.append(accession) data.close() if export_all_associations == 'yes': ### Used in mRNASeqAlign.py print len(accessions_exlcuded), "Accession numbers excluded (same as Ensembl transcript), out of",(accessions_included+len(accessions_exlcuded)) export_file2 = string.replace(input_gene_file,'all',species+'_UCSC-accession-eliminated') fn=filepath(export_file2); data = open(fn,'w') for ac in accessions_exlcuded: data.write(ac+'\n') data.close() print 'data written to:',export_file def exportSimple(filtered_data,title,input_gene_file): export_file = string.replace(input_gene_file,'all',species+'_UCSC_transcript_structure_filtered') fn=filepath(export_file); data = open(fn,'w') data.write(title) for index,line in filtered_data: data.write(line) data.close() print 'data written to:',export_file def exportSimpleDB(results_list,title,output_dir): export_file = string.replace(input_gene_file,'all',species+'_UCSC_transcript_structure_filtered') fn=filepath(export_file); data = open(fn,'w') data.write(string.join(title,'\t')+'\n') for items in results_list: data.write(string.join(items,'\t')+'\n') data.close() print 'data written to:',export_file def filterBuiltAssociations(species): input_gene_file = 'AltDatabase/ucsc/'+species+'/all_mrna.txt' filename = string.replace(input_gene_file,'all_',species+'_UCSC_transcript_structure_') ###Re-import the data and filter it to remove junctions that should be present in the Ensembl database (ensembl-ensembl junction) fn=filepath(filename); x=0 raw_data = {}; global accession_db; accession_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: title = line; x+=1 ###first line else: gene, chr, strand, exon_start, exon_end, exonid, constitutive_exon, accession = t if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention try: raw_data[accession].append([exonid,x,line]) except KeyError: raw_data[accession] = [[exonid,x,line]] #y = EnsemblImport.ExonStructureData(gene,chr,strand,exon_start,exon_end,constitutive_exon,exonid,accession) x+=1 keep=[]; k=0 ###Remove the terminal portions of the transcripts that are comprised ONLY of continuous Ensembl exon-exon pairs for accession in raw_data: #accession = 'AK027479' index=0; x = raw_data[accession] while index<(len(x)-1): ###for each exon in the accession try: y,n,n = x[index] s,n,n = x[index+1] ###Next exon in transcript #elif 'ENS' in y and 'ENS' in s: k+=1 #; print (y,s),accession;kill if (y,s) in ensembl_exon_pairs or (s,y) in ensembl_exon_pairs: x = x[index+1:]; index = -1 else: break except IndexError: break index+=1 index=0; x.reverse() while index<(len(x)-1): ### for each exon in the accession try: y,n,n = x[index] s,n,n = x[index+1] ###Next exon in transcript #elif 'ENS' in y and 'ENS' in s: k+=1#; print (y,s),accession;kill if (y,s) in ensembl_exon_pairs or (s,y) in ensembl_exon_pairs: x = x[index+1:]; index = -1 else: x.reverse() raw_data[accession] = x; break except IndexError: break index+=1 for (exonid,i,line) in raw_data[accession]: keep.append((i,line)) keep = unique.unique(keep); keep.sort() print k, "exon pairs that contained two ensembl exons not paired in an Ensembl transcript" if export_all_associations == 'no': ### Only used by EnsemblImport.py print 'post filtering',input_gene_file exportSimple(keep,title,input_gene_file) def returnConstitutive(species): """ Note: This function is used only for internal analyses and is NOT utilized for the AltAnalyze build process""" input_gene_file = 'AltDatabase/ucsc/'+species+'/all_mrna.txt' filename = string.replace(input_gene_file,'all',species+'_UCSC_transcript_structure') ###Re-import the data and filter it to remove junctions that should be present in the Ensembl database (ensembl-ensembl junction) fn=filepath(filename) constitutive_exon_db={}; gene_exon_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x+=1 ###first line else: gene, chr, strand, exon_start, exon_end, exonid, constitutive_exon, accession = t if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention try: gene_exon_db[gene].append(exonid) except KeyError: gene_exon_db[gene] = [exonid] constitutive_gene_exon_list=[] for gene in gene_exon_db: constitutive_exon_db={} exons = gene_exon_db[gene] for exon in exons: try: constitutive_exon_db[exonid]+=1 except KeyError: constitutive_exon_db[exonid] = 1 count_list=[]; count_db={} for exonid in constitutive_exon_db: count = constitutive_exon_db[exonid] count_list.append((count,exonid)) try: count_db[count].append(exonid) except KeyError: count_db[count] = [exonid] count_list.sort(); top_count = count_list[-1][0]; top_exon = count_list[-1][1] bottom_count = count_list[-1][0]; bottom_exon = count_list[-1][1] if top_count != bottom_count: for constitutive_exon in count_db[top_count]: constitutive_gene_exon_list.append((gene,constitutive_exon)) exportSimpleDB(constitutive_gene_exon_list,['Ensembl Gene ID','Constitutive Exon'],output_dir) def getUCSCAssociations(Species): global species; species = Species global ensembl_gene_coordinates ensembl_chr_coordinate_db = importEnsExonStructureData(species) ucsc_gene_coordinates,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates = importUCSCExonStructureData(species) ensembl_transcript_clusters,no_match_list = getChromosomalOveralap(ucsc_gene_coordinates,ensembl_chr_coordinate_db) ensembl_gene_accession_structures,constitutive_gene_db = identifyNewExonsForAnalysis(ensembl_transcript_clusters,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates) exportExonClusters(ensembl_gene_accession_structures,constitutive_gene_db,species) def downloadFiles(ucsc_file_dir,output_dir): try: gz_filepath, status = update.download(ucsc_file_dir,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status except Exception: print ucsc_file_dir,'file not found at http://genome.ucsc.edu.' def runUCSCEnsemblAssociations(Species,mRNA_Type,export_All_associations,run_from_scratch,force): global species; species = Species; global mRNA_type; mRNA_type = mRNA_Type global test; global bp_offset; global gap_length; global test_gene global export_all_associations bp_offset = 100 ###allowed excesive base pairs added to the distal ends of the Ensembl genes gap_length = 12 ###maximum allowed gap length to qualify for merging exons test = 'no' test_gene = ['ENSMUSG00000022194']#,'ENSG00000154889','ENSG00000156026','ENSG00000148584','ENSG00000063176','ENSG00000126860'] #['ENSG00000105968'] counts = update.verifyFile('AltDatabase/ucsc/'+species +'/all_mrna.txt','counts') ### See if the file is already downloaded if force == 'yes' or counts <9: ### Download mRNA structure file from website import UI; species_names = UI.getSpeciesInfo() species_full = species_names[species] species_full = string.replace(species_full,' ','_') output_dir = 'AltDatabase/ucsc/'+species + '/' ucsc_mRNA_dir = update.download_protocol('http://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/'+species_full+'/database/all_mrna.txt.gz',output_dir,'') knownAlt_dir = update.download_protocol('http://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/'+species_full+'/database/knownAlt.txt.gz',output_dir,'') #knownAlt_dir = update.getFTPData('hgdownload.cse.ucsc.edu','/goldenPath/currentGenomes/'+species_full+'/database','knownAlt.txt.gz') #ucsc_mRNA_dir = update.getFTPData('hgdownload.cse.ucsc.edu','/goldenPath/currentGenomes/'+species_full+'/database','all_mrna.txt.gz') #downloadFiles(ucsc_mRNA_dir,output_dir); downloadFiles(knownAlt_dir,output_dir) if run_from_scratch == 'yes': global ensembl_chr_coordinate_db export_all_associations = export_All_associations ensembl_chr_coordinate_db = importEnsExonStructureData(species) ucsc_chr_coordinate_db,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates = importUCSCExonStructureData(species) ensembl_transcript_clusters,no_match_list = getChromosomalOveralap(ucsc_chr_coordinate_db,ensembl_chr_coordinate_db) ensembl_gene_accession_structures = identifyNewExonsForAnalysis(ensembl_transcript_clusters,no_match_list,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates) print 'ensembl_gene_accession_structures',len(ensembl_gene_accession_structures) ensembl_gene_accession_structures,constitutive_gene_db,coordinate_to_ens_exon = matchUCSCExonsToEnsembl(ensembl_gene_accession_structures) exportExonClusters(ensembl_gene_accession_structures,constitutive_gene_db,coordinate_to_ens_exon,species) if export_all_associations == 'no': filterBuiltAssociations(species) else: if export_all_associations == 'no': ensembl_chr_coordinate_db = importEnsExonStructureData(species) ###need this to get the unique Ensembl pairs filterBuiltAssociations(species) if __name__ == '__main__': run_from_scratch = 'yes'; force = 'no' Species = 'Mm' species = Species mRNA_Type = 'est' mRNA_Type = 'mrna' #returnConstitutive(species);kill export_all_associations = 'no' ### YES only for protein prediction analysis runUCSCEnsemblAssociations(Species,mRNA_Type,export_all_associations,run_from_scratch,force) #AK049467 bp_offset = 100 ###allowed excesive base pairs added to the distal ends of the Ensembl genes gap_length = 12 ###maximum allowed gap length to qualify for merging exons test = 'no' test_gene = ['ENSMUSG00000022194']#,'ENSG00000154889','ENSG00000156026','ENSG00000148584','ENSG00000063176','ENSG00000126860'] #['ENSG00000105968'] if run_from_scratch == 'yes': global ensembl_chr_coordinate_db ensembl_chr_coordinate_db = importEnsExonStructureData(species) ucsc_chr_coordinate_db,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates = importUCSCExonStructureData(species) ensembl_transcript_clusters,no_match_list = getChromosomalOveralap(ucsc_chr_coordinate_db,ensembl_chr_coordinate_db) ensembl_gene_accession_structures = identifyNewExonsForAnalysis(ensembl_transcript_clusters,no_match_list,transcript_structure_db,ucsc_interim_gene_transcript_db,ucsc_transcript_coordinates) print 'ensembl_gene_accession_structures',len(ensembl_gene_accession_structures) ensembl_gene_accession_structures,constitutive_gene_db,coordinate_to_ens_exon = matchUCSCExonsToEnsembl(ensembl_gene_accession_structures) exportExonClusters(ensembl_gene_accession_structures,constitutive_gene_db,coordinate_to_ens_exon,species) if export_all_associations == 'no': filterBuiltAssociations(species) else: if export_all_associations == 'no': ensembl_chr_coordinate_db = importEnsExonStructureData(species) ###need this to get the unique Ensembl pairs filterBuiltAssociations(species)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/UCSCImport.py
UCSCImport.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from stats_scripts import statistics import copy import time import export; reload(export) import update import traceback ################# General File Parsing Functions ################# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".all" or entry[-5:] == ".data" or entry[-3:] == ".fa": dir_list2.append(entry) return dir_list2 class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,str(search_term)) if len(files)<1: print search_term,'not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir, search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term in data_dir: matches.append(data_dir) return matches ################# General Use Functions ################# def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def combineDBs(db1,db2): for i in db2: try: db1[i]+=db2[i] except KeyError: db1[i]=db2[i] return db1 def eliminateRedundant(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 ################# Sequence Parsing and Comparison ################# def simpleSeqMatchProtocol(probeset_seq_data,mRNA_seq): """ Since it is possible for a probeset to be analyzed more than once for junction arrays (see probeset_seq_data junction design), only analyze a probeset once.""" results=[]; probesets_analyzed = {} for y in probeset_seq_data: try: exon_seq = y.ExonSeq(); probeset = y.Probeset() except AttributeError: probeset = y.Probeset(); print [probeset],'seq missing';kill """if probeset == 'G7203664@J946608_RC@j_at': print exon_seq print mRNA_seq;kill""" if probeset not in probesets_analyzed: if len(exon_seq)>10: if exon_seq in mRNA_seq: call=1 elif array_type == 'exon': if exon_seq[:25] in mRNA_seq: call=1 elif exon_seq[-25:] in mRNA_seq: call=1 else: call = 0 else: call = 0 #else: junction_seq = y.JunctionSeq() results.append((call,probeset)) probesets_analyzed[probeset]=[] return results def matchTranscriptExonIDsToJunctionIDs(species,array_type,gene_junction_db): """ Matches junctionIDs to precomputed transcript-level exonID strings - simpler and more accurate than importEnsemblTranscriptSequence""" output_file = 'AltDatabase/'+species+'/SequenceData/output/'+array_type+'_coordinte-mRNA_alignments.txt' dataw = export.ExportFile(output_file) filename = 'AltDatabase/ensembl/'+species+'/mRNA-ExonIDs.txt' fn=filepath(filename) x = 0 all={} found=[] ### Junctions found within known mRNAs missing=[] ### Junctions cannot be found within known mRNAs for line in open(fn,'rU').xreadlines(): data = line.strip() gene,transcript,protein,exonIDs = string.split(data,'\t') exonIDs += '|' ### such that the last exon is propperly searchable if gene in gene_junction_db: junctions_data = gene_junction_db[gene] for jd in junctions_data: all[jd.Probeset()]=[] junctionIDs = string.split(jd.Probeset()+'|',':')[-1] junctionIDs = string.replace(junctionIDs,'-','|') ### this is the format of the transcript ExonID string if x==0: x=1 #; print junctionIDs, exonIDs if junctionIDs in exonIDs: dataw.write(string.join([jd.Probeset(),'1',transcript],'\t')+'\n') found.append(jd.Probeset()) else: dataw.write(string.join([jd.Probeset(),'0',transcript],'\t')+'\n') dataw.close() for junction in all: if junction not in found: if junction not in missing: missing.append(junction) return missing def importEnsemblTranscriptSequence(Species,Array_type,probeset_seq_db): global species; global array_type species = Species; array_type = Array_type start_time = time.time() import_dir = '/AltDatabase/'+species+'/SequenceData' ### Multi-species file g = GrabFiles(); g.setdirectory(import_dir) seq_files = g.searchdirectory('cdna.all'); seq_files.sort(); filename = seq_files[-1] output_file = 'AltDatabase/'+species+'/SequenceData/output/'+array_type+'_Ens-mRNA_alignments.txt' dataw = export.ExportFile(output_file) output_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/'+array_type+'_Ens_mRNA_seqmatches.txt' datar = export.ExportFile(output_file) print "Begining generic fasta import of",filename fn=filepath(filename); sequence = ''; x = 0; count = 0; global gene_not_found; gene_not_found=[]; genes_found={} for line in open(fn,'rU').xreadlines(): exon_start=1; exon_stop=1 try: data, newline= string.split(line,'\n') except ValueError: continue try: if data[0] == '>': if len(sequence) > 0: gene_found = 'no'; count+=1 if ensembl_id in probeset_seq_db: genes_found[ensembl_id]=[]; seq_type = 'full-length' probeset_seq_data = probeset_seq_db[ensembl_id]; cDNA_seq = sequence[1:]; mRNA_length = len(cDNA_seq) results = simpleSeqMatchProtocol(probeset_seq_data,cDNA_seq) for (call,probeset) in results: dataw.write(string.join([probeset,str(call),transid],'\t')+'\n') ###Save all sequences to the disk rather than store these in memory. Just select the optimal sequences later. values = [transid,cDNA_seq] values = string.join(values,'\t')+'\n'; datar.write(values); x+=1 else: gene_not_found.append(ensembl_id) t= string.split(data[1:],':'); sequence='' transid_data = string.split(t[0],' '); transid = transid_data[0]; ensembl_id = t[-1] if '.' in transid: transid = string.split(transid,'.')[0] ### versioned IDs will cause matching issues ind=0 #>ENST00000593546 cdna:known chromosome:GRCh37:HG27_PATCH:26597180:26600278:1 gene:ENSG00000268612 gene_biotype:protein_coding transcript_biotype:protein_coding for item in t: if 'gene_biotype' in item: ensembl_id = string.split(item,' ')[0] ### In the following field break elif 'gene' in item and 'gene_' not in item: ensembl_id = string.split(t[ind+1],' ')[0] ### In the following field ind+=1 if '.' in ensembl_id: ensembl_id = string.split(ensembl_id,'.')[0] ### versioned IDs will cause matching issues """ if 'gene' in t[-3]: ensembl_id = string.split(t[-2],' ')[0] ### Case in Zm for plant and probably other cDNA files (different fields here!!!) elif 'gene' not in t[-2]: ### After Ensembl version 64 for entry in t: if 'gene_biotype' in entry: ensembl_id = string.split(entry,' ')[0]""" except IndexError: continue try: if data[0] != '>': sequence = sequence + data except IndexError: continue datar.close(); dataw.close() end_time = time.time(); time_diff = int(end_time-start_time) gene_not_found = unique.unique(gene_not_found) print len(genes_found), 'genes associated with reciprocal Ensembl junctions' print len(gene_not_found), "genes not found in the reciprocol junction database (should be there unless conflict present - or few alternative genes predicted during junction array design)" print gene_not_found[0:10],'not found examples' if len(genes_found) < 10: print '\n\nWARNING!!!!! Ensembl appears to have changed the formatting of this file, preventing propper import!!!!!!\n\n' print "Ensembl transcript sequences analyzed in %d seconds" % time_diff def importUCSCTranscriptSequences(species,array_type,probeset_seq_db): start_time = time.time() if force == 'yes': ### Download mRNA sequence file from website import UI; species_names = UI.getSpeciesInfo() species_full = species_names[species] species_full = string.replace(species_full,' ','_') ucsc_mRNA_dir = update.getFTPData('hgdownload.cse.ucsc.edu','/goldenPath/currentGenomes/'+species_full+'/bigZips','mrna.fa.gz') output_dir = 'AltDatabase/'+species+'/SequenceData/' try: gz_filepath, status = update.download(ucsc_mRNA_dir,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status except Exception: null=[] ### Occurs when file is not available for this species filename = 'AltDatabase/'+species+'/SequenceData/mrna.fa' output_file = 'AltDatabase/'+species+'/SequenceData/output/'+array_type+'_UCSC-mRNA_alignments.txt' dataw = export.ExportFile(output_file) output_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/'+array_type+'_UCSC_mRNA_seqmatches.txt' datar = export.ExportFile(output_file) ucsc_mrna_to_gene = importUCSCTranscriptAssociations(species) print "Begining generic fasta import of",filename #'>gnl|ENS|Mm#S10859962 Mus musculus 12 days embryo spinal ganglion cDNA /gb=AK051143 /gi=26094349 /ens=Mm.1 /len=2289'] #'ATCGTGGTGTGCCCAGCTCTTCCAAGGACTGCTGCGCTTCGGGGCCCAGGTGAGTCCCGC' fn=filepath(filename); sequence = '|'; ucsc_mRNA_hit_len={}; ucsc_probeset_null_hits={}; k=0 fn=filepath(filename); sequence = '|'; ucsc_mRNA_hit_len={}; ucsc_probeset_null_hits={}; k=0 for line in open(fn,'rU').xreadlines(): try: data, newline= string.split(line,'\n') except ValueError: continue if len(data)>0: if data[0] != '#': try: if data[0] == '>': if len(sequence) > 1: if accession in ucsc_mrna_to_gene: gene_found = 'no' for ens_gene in ucsc_mrna_to_gene[accession]: if ens_gene in probeset_seq_db: sequence = string.upper(sequence); gene_found = 'yes' mRNA_seq = sequence[1:]; mRNA_length = len(mRNA_seq) k+=1; probeset_seq_data = probeset_seq_db[ens_gene] results = simpleSeqMatchProtocol(probeset_seq_data,mRNA_seq) for (call,probeset) in results: dataw.write(string.join([probeset,str(call),accession],'\t')+'\n') if gene_found == 'yes': values = [accession,mRNA_seq]; values = string.join(values,'\t')+'\n' datar.write(values) values = string.split(data,' '); accession = values[0][1:] sequence = '|'; continue except IndexError: null = [] try: if data[0] != '>': sequence = sequence + data except IndexError: print kill; continue datar.close() end_time = time.time(); time_diff = int(end_time-start_time) print "UCSC mRNA sequences analyzed in %d seconds" % time_diff def importUCSCTranscriptAssociations(species): ### Import GenBank ACs that are redundant with Ensembl ACs filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC-accession-eliminated_mrna.txt' fn=filepath(filename); remove={} for line in open(fn,'rU').readlines(): mRNA_ac = cleanUpLine(line) remove[mRNA_ac] = [] ###This function is used to extract out EnsExon to EnsTranscript relationships to find out directly ###which probesets associate with which transcripts and then which proteins filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC-accession-to-gene_mrna.txt' fn=filepath(filename); ucsc_mrna_to_gene={} for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t') mRNA_ac, ens_genes, num_ens_exons = t #if mRNA_ac not in accession_index: ###only add mRNAs not examined in UniGene ens_genes = string.split(ens_genes,'|') if mRNA_ac not in remove: ucsc_mrna_to_gene[mRNA_ac] = ens_genes return ucsc_mrna_to_gene ################# Import Exon/Junction Data ################# class SplicingAnnotationData: def ArrayType(self): self._array_type = array_type return self._array_type def Probeset(self): return self._probeset def GeneID(self): return self._geneid def SetExonSeq(self,seq): self._exon_seq = seq def ExonSeq(self): return string.upper(self._exon_seq) def SetJunctionSeq(self,seq): self._junction_seq = seq def JunctionSeq(self): return string.upper(self._junction_seq) def RecipricolProbesets(self): return self._junction_probesets def Report(self): output = self.Probeset() +'|'+ self.ExternalGeneID() return output def __repr__(self): return self.Report() class ExonDataSimple(SplicingAnnotationData): def __init__(self,probeset_id,ensembl_gene_id): self._geneid = ensembl_gene_id; self._probeset=probeset_id class JunctionDataSimple(SplicingAnnotationData): def __init__(self,probeset_id,array_geneid): self._probeset=probeset_id; self._external_gene = array_geneid def importSplicingAnnotationDatabase(filename): global exon_db; fn=filepath(filename) print 'importing', filename exon_db={}; count = 0; x = 0 for line in open(fn,'rU').readlines(): data = cleanUpLine(line) if x == 0: x = 1 else: t = string.split(data,'\t'); probeset_id = t[0]; ensembl_gene_id = t[2] probe_data = ExonDataSimple(probeset_id,ensembl_gene_id) exon_db[probeset_id] = probe_data return exon_db def importAllJunctionSequences(species,array_type): probeset_annotations_file = "AltDatabase/"+species+"/"+array_type+'/'+species+"_Ensembl_probesets.txt" if array_type == 'RNASeq': probeset_annotations_file = "AltDatabase/"+species+"/"+array_type+'/'+species+"_Ensembl_junctions.txt" junction_db = importSplicingAnnotationDatabase(probeset_annotations_file) if coordinateBasedMatching and array_type == 'RNASeq': probeset_seq_db = {} else: filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical-junction-seq.txt' probeset_seq_db = importCriticalJunctionSeq(filename,species,array_type) pairwise_probeset_combinations={}; probeset_gene_seq_db={} for probeset in junction_db: if probeset in probeset_seq_db: probeset_seq,junction_seq = probeset_seq_db[probeset] pd = junction_db[probeset] pd.SetExonSeq(probeset_seq) pd.SetJunctionSeq(junction_seq) try: probeset_gene_seq_db[pd.GeneID()].append(pd) except KeyError: probeset_gene_seq_db[pd.GeneID()] = [pd] pairwise_probeset_combinations[probeset,' ']=[] elif coordinateBasedMatching and array_type == 'RNASeq': ### Coordinate matching as opposed to sequence pd = junction_db[probeset] try: probeset_gene_seq_db[pd.GeneID()].append(pd) except KeyError: probeset_gene_seq_db[pd.GeneID()] = [pd] pairwise_probeset_combinations[probeset,' ']=[] print len(probeset_gene_seq_db),"genes with probeset sequence associated" return probeset_gene_seq_db,pairwise_probeset_combinations def importJunctionAnnotationDatabaseAndSequence(species,array_type,biotype): """This function imports GeneID-Ensembl relationships, junction probeset sequences, and recipricol junction comparisons. with data stored from this function, we can match probeset sequence to mRNAs and determine which combinations of probesets can be used as match-match or match-nulls.""" array_ens_db={} if array_type == 'AltMouse': ### Import AffyGene to Ensembl associations (e.g., AltMouse array) filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'-Ensembl_relationships.txt' update.verifyFile(filename,array_type) ### Will force download if missing fn=filepath(filename); x = 0 for line in open(fn,'rU').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: array_gene,ens_gene = t try: array_ens_db[array_gene].append(ens_gene) except KeyError: array_ens_db[array_gene]=[ens_gene] print len(array_ens_db), 'Ensembl-AltMouse relationships imported.' if array_type == 'RNASeq' and coordinateBasedMatching == True: probeset_seq_db={} else: filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical-junction-seq.txt' probeset_seq_db = importCriticalJunctionSeq(filename,species,array_type) ###Import reciprocol junctions, so we can compare these directly instead of hits to nulls and combine with sequence data ###This short-cuts what we did in two function in ExonModule with exon level data if array_type == 'AltMouse': filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_junction-comparisons.txt' update.verifyFile(filename,array_type) ### Will force download if missing elif array_type == 'junction': filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_junction_comps_updated.txt' elif array_type == 'RNASeq': filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_junction_comps.txt' fn=filepath(filename); probeset_gene_seq_db={}; added_probesets={}; pairwise_probesets={}; x = 0 for line in open(fn,'rU').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: if (array_type == 'junction' or array_type == 'RNASeq'): array_gene, critical_exons,excl_junction,incl_junction, probeset2, probeset1, data_source = t array_ens_db[array_gene]=[array_gene] elif array_type == 'AltMouse': array_gene,probeset1,probeset2,critical_exons = t #; critical_exons = string.split(critical_exons,'|') probesets = [probeset1,probeset2] pairwise_probesets[probeset1,probeset2] = [] if array_gene in array_ens_db: ensembl_gene_ids = array_ens_db[array_gene] for probeset_id in probesets: if probeset_id in probeset_seq_db: probeset_seq,junction_seq = probeset_seq_db[probeset_id] if biotype == 'gene': for ensembl_gene_id in ensembl_gene_ids: if probeset_id not in added_probesets: probe_data = JunctionDataSimple(probeset_id,array_gene) probe_data.SetExonSeq(probeset_seq) probe_data.SetJunctionSeq(junction_seq) try: probeset_gene_seq_db[ensembl_gene_id].append(probe_data) except KeyError: probeset_gene_seq_db[ensembl_gene_id] = [probe_data] added_probesets[probeset_id]=[] elif array_type == 'RNASeq' and coordinateBasedMatching == True: ### Coordinate matching as opposed to sequence if biotype == 'gene': for ensembl_gene_id in ensembl_gene_ids: if probeset_id not in added_probesets: probe_data = JunctionDataSimple(probeset_id,array_gene) try: probeset_gene_seq_db[ensembl_gene_id].append(probe_data) except KeyError: probeset_gene_seq_db[ensembl_gene_id] = [probe_data] added_probesets[probeset_id]=[] print len(probeset_gene_seq_db),"genes with probeset sequence associated" print len(pairwise_probesets), "reciprocal junction pairs imported." return probeset_gene_seq_db,pairwise_probesets ################# Import Sequence Match Results and Re-Output ################# def importCriticalJunctionSeq(filename,species,array_type): update.verifyFile(filename,array_type) ### Will force download if missing fn=filepath(filename); probeset_seq_db={}; x = 0 for line in open(fn,'rU').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: try: probeset,probeset_seq,junction_seq = t except Exception: try: probeset,probeset_seq,junction_seq, null = t except Exception: print filename,t;kill if array_type == 'RNASeq': ### Ensure the junction sequence is sufficient for searching left,right = string.split(probeset_seq,'|') if len(left)>2 and len(right)>2: null=[] else: probeset_seq = '' if len(probeset_seq) < 8: probeset_seq = '' probeset_seq=string.replace(probeset_seq,'|','') probeset_seq_db[probeset] = probeset_seq,junction_seq x+=1 print len(probeset_seq_db),'probesets with associated sequence' return probeset_seq_db def reAnalyzeRNAProbesetMatches(align_files,species,array_type,pairwise_probeset_combinations): """Import matching and non-matching probesets and export the valid comparisons""" align_files2=[] for file in align_files: if array_type in file: align_files2.append(file) align_files = align_files2 matching={}; not_matching={} for filename in align_files: print 'Reading',filename start_time = time.time() fn=filepath(filename) for line in open(fn,'rU').xreadlines(): values = string.replace(line,'\n','') probeset,call,accession = string.split(values,'\t') if call == '1': try: matching[probeset].append(accession) except KeyError: matching[probeset] = [accession] else: try: not_matching[probeset].append(accession) except KeyError: not_matching[probeset] = [accession] probeset_matching_pairs={}; matching_in_both=0; match_and_null=0; no_matches=0; no_nulls=0 for (probeset1,probeset2) in pairwise_probeset_combinations: if probeset1 in matching and probeset2 in matching: matching[probeset1].sort(); matching[probeset2].sort() match1 = string.join(matching[probeset1],'|') match2 = string.join(matching[probeset2],'|') if match1 != match2: probeset_matching_pairs[probeset1+'|'+probeset2] = [match1,match2] """else: print probeset1, probeset2, match1, match2;kill1""" matching_in_both+=1 else: if probeset1 in matching and probeset1 in not_matching: match = string.join(matching[probeset1],'|') null_match = string.join(filterNullMatch(not_matching[probeset1],matching[probeset1]),'|') probeset_matching_pairs[probeset1] = [match,null_match] match_and_null+=1 elif probeset2 in matching and probeset2 in not_matching: match = string.join(matching[probeset2],'|') null_match = string.join(filterNullMatch(not_matching[probeset2],matching[probeset2]),'|') probeset_matching_pairs[probeset2] = [match,null_match] match_and_null+=1 elif probeset1 in matching or probeset2 in matching: no_nulls+=1 else: no_matches+=1 if no_matches<10: print probeset1,probeset2 print matching_in_both, "probeset pairs with matching isoforms for both recipricol probesets." print match_and_null, "probeset pairs with a match for one and null for that one." print no_nulls, "probeset pairs with only one match." print no_matches, "probeset pairs with no matches." from build_scripts import IdentifyAltIsoforms export_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_all-transcript-matches.txt' if analysis_type == 'single': export_file = 'AltDatabase/'+species+'/'+array_type+'/junction/'+species+'_all-transcript-matches.txt' IdentifyAltIsoforms.exportSimple(probeset_matching_pairs,export_file,'') ################# Main Run Options ################# def filterNullMatch(null_match,match): ### The null matching transcripts can be many and cause processing issues. Thus, first remove all non-Ensembls slim_null_match=[] if len(null_match)>20: for transcript in null_match: if transcript not in match: slim_null_match.append(transcript) if len(slim_null_match)<20 and len(slim_null_match)>0: null_match = slim_null_match elif len(slim_null_match)>0: null_match = slim_null_match; slim_null_match=[] for transcript in null_match: if 'ENS' in transcript:slim_null_match.append(transcript) if len(slim_null_match)>0: null_match = slim_null_match else: null_match = null_match[:19] else: null_match = null_match[:19] ### Not ideal, but necessary to produce bloating return null_match def alignProbesetsToTranscripts(species,array_type,Analysis_type,Force, CoordinateBasedMatching = False): global force; force = Force; global analysis_type; analysis_type = Analysis_type global coordinateBasedMatching; coordinateBasedMatching = CoordinateBasedMatching """Match exon or junction probeset sequences to Ensembl and USCS mRNA transcripts""" if array_type == 'AltMouse' or array_type == 'junction' or array_type == 'RNASeq': data_type = 'junctions'; probeset_seq_file=''; biotype = 'gene' if data_type == 'junctions' and analysis_type == 'reciprocal': start_time = time.time() ### Indicates whether to store information at the level of genes or probesets probeset_seq_db,pairwise_probeset_combinations = importJunctionAnnotationDatabaseAndSequence(species,array_type,biotype) end_time = time.time(); time_diff = int(end_time-start_time) elif analysis_type == 'single': start_time = time.time() probeset_seq_db,pairwise_probeset_combinations = importAllJunctionSequences(species,array_type) end_time = time.time(); time_diff = int(end_time-start_time) print "Analyses finished in %d seconds" % time_diff elif array_type == 'exon': data_type = 'exon' probeset_annotations_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_probesets.txt' ###Import probe-level associations exon_db = importSplicingAnnotationDatabase(probeset_annotations_file) start_time = time.time() probeset_seq_db = importProbesetSequences(exon_db,species) end_time = time.time(); time_diff = int(end_time-start_time) print "Analyses finished in %d seconds" % time_diff ### Match probesets to mRNAs\= from build_scripts import EnsemblImport if coordinateBasedMatching == True and array_type == 'RNASeq': EnsemblImport.exportTranscriptExonIDAssociations(species) matchTranscriptExonIDsToJunctionIDs(species,array_type,probeset_seq_db) ### no sequences in probeset_seq_db, just junctionIDs else: #matchTranscriptExonIDsToJunctionIDs(species,array_type,probeset_seq_db) ### no sequences in probeset_seq_db, just junctionIDs importEnsemblTranscriptSequence(species,array_type,probeset_seq_db) try: importUCSCTranscriptSequences(species,array_type,probeset_seq_db) except Exception: print traceback.format_exc() pass ### If the species not supported by UCSC - the UCSC file is not written, but the other mRNA_alignments files should be available probeset_seq_db={} ### Re-set db ### Import results if junction array to make comparisons valid for junction-pairs rather than a single probeset if data_type == 'junctions': ### Re-import matches from above and export matching and non-matching transcripts for each probeset to a new file import_dir = '/AltDatabase/'+species+'/SequenceData/output' g = GrabFiles(); g.setdirectory(import_dir) align_files = g.searchdirectory('mRNA_alignments') reAnalyzeRNAProbesetMatches(align_files,species,array_type,pairwise_probeset_combinations) if __name__ == '__main__': a = 'AltMouse'; b = 'exon'; array_type = 'RNASeq'; force = 'no' h = 'Hs'; m = 'Mm'; species = h; analysis_type = 'reciprocal'; analysis_type = 'single' alignProbesetsToTranscripts(species,array_type,analysis_type,force,CoordinateBasedMatching = True)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/mRNASeqAlign.py
mRNASeqAlign.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from build_scripts import ExonAnalyze_module import copy import export import update def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if (entry[-4:] == ".txt"or entry[-4:] == ".tab" or entry[-4:] == ".csv" or '.fa' in entry) and '.gz' not in entry: dir_list2.append(entry) return dir_list2 class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance file_dir,file = getDirectoryFiles(self.data,str(search_term)) if len(file)<1: print search_term,'not found',self.data return file_dir def getDirectoryFiles(import_dir, search_term): exact_file = ''; exact_file_dir='' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory dir_list.sort() ### Get the latest files for data in dir_list: #loop through each file in the directory to output results affy_data_dir = import_dir[1:]+'/'+data if search_term in affy_data_dir: exact_file_dir = affy_data_dir; exact_file = data return exact_file_dir,exact_file ########## End generic file import ########## def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data class ProteinFunctionalSeqData: def __init__(self, protein_accession,primary_annotation, secondary_annotation, ft_start_pos, ft_end_pos, ft_seq): self._protein_accession = protein_accession; self._primary_annotation = primary_annotation self._secondary_annotation = secondary_annotation; self._ft_start_pos = ft_start_pos self._ft_end_pos = ft_end_pos; self._ft_seq = ft_seq def ProteinID(self): return self._protein_accession def PrimaryAnnot(self): return self._primary_annotation def SecondaryAnnot(self): return self._secondary_annotation def CombinedAnnot(self): return self.PrimaryAnnot()+'-'+self.SecondaryAnnot() def addGenomicCoordinates(self,gstart,gstop): self.genomic_start = str(gstart) self.genomic_stop = str(gstop) ### keep as string for output def GenomicStart(self): return self.genomic_start def GenomicStop(self): return self.genomic_stop def DomainStart(self): return int(self._ft_start_pos) def DomainEnd(self): return int(self._ft_end_pos) def DomainSeq(self): return self._ft_seq def DomainLen(self): domain_len = self.DomainEnd()-self.DomainStart() return domain_len def SummaryValues(self): output = self.PrimaryAnnot()+'|'+self.SecondaryAnnot() return output def __repr__(self): return self.SummaryValues() class FullProteinSeqData: def __init__(self, primary_id, secondary_ids, sequence, type): self._primary_id = primary_id; self._secondary_ids = secondary_ids self._sequence = sequence; self._type = type def PrimaryID(self): return self._primary_id def SecondaryID(self): return self._secondary_ids def Sequence(self): return self._sequence def SequenceLength(self): return len(self._sequence) def AccessionType(self): return self._type def SummaryValues(self): output = self.PrimaryID()+'|'+self.SecondaryID()+'|'+self.AccessionType() return output def __repr__(self): return self.SummaryValues() ######Import ArrayID to Protein/Gene Relationships def import_arrayid_ensembl(filename): fn=filepath(filename); x = 0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) gene_id,ensembl_gene_id = string.split(data,'\t') try: ensembl_arrayid_db[ensembl_gene_id].append(gene_id) except KeyError: ensembl_arrayid_db[ensembl_gene_id] = [gene_id] def findDomainsByGenomeCoordinates(species,array_type,Data_type): ### Grab Ensembl relationships from a custom Ensembl Perl script or BioMart global data_type; data_type = Data_type protein_relationship_file,protein_feature_file,protein_seq_fasta,protein_coordinate_file = getEnsemblRelationshipDirs(species) ens_transcript_protein_db = importEnsemblRelationships(protein_relationship_file,'transcript') ens_protein_gene_db = importEnsemblRelationships(protein_relationship_file,'gene') exon_protein_db = importEnsExonStructureDataSimple(species,ens_transcript_protein_db) filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' first_last_exon_coord_db = importEnsExonStructureDataCustom(filename,species,{}) ### Add UCSC transcript data to ens_transcript_exon_db and ens_gene_transcript_db try: filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_COMPLETE-mrna.txt' ### Use the non-filtered database to propperly analyze exon composition first_last_exon_coord_db = importEnsExonStructureDataCustom(filename,species,first_last_exon_coord_db) except Exception: pass if array_type == 'exon' or array_type == 'gene' or data_type == 'junction': ens_probeset_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_probesets.txt" if array_type == 'RNASeq': ens_probeset_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_junctions.txt" elif array_type == 'junction' or array_type == 'AltMouse': ens_probeset_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_"+array_type+"_probesets.txt" elif array_type == 'RNASeq': ens_probeset_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_exons.txt" probeset_domain_match_db={}; probeset_domain_indirect_match_db={} protein_probeset_db,gene_probeset_db = importSplicingAnnotationDatabase(ens_probeset_file,exon_protein_db) ### Derived from ExonArrayEnsemblRules probeset_domain_match_db,probeset_domain_indirect_match_db=matchEnsemblDomainCoordinates(protein_feature_file,species,array_type,protein_probeset_db,ens_protein_gene_db,gene_probeset_db,first_last_exon_coord_db,probeset_domain_match_db,probeset_domain_indirect_match_db) protein_feature_file = 'AltDatabase/uniprot/'+species+'/'+species+'_FeatureCoordinate.txt' probeset_domain_match_db,probeset_domain_indirect_match_db=matchEnsemblDomainCoordinates(protein_feature_file,species,array_type,protein_probeset_db,ens_protein_gene_db,gene_probeset_db,first_last_exon_coord_db,probeset_domain_match_db,probeset_domain_indirect_match_db) exportProbesetDomainMappings(species,array_type,'',probeset_domain_match_db) exportProbesetDomainMappings(species,array_type,'indirect_',probeset_domain_indirect_match_db) def matchEnsemblDomainCoordinates(filename,species,array_type,protein_probeset_db,ens_protein_gene_db,gene_probeset_db,first_last_exon_coord_db,probeset_domain_match_db,probeset_domain_indirect_match_db): fn=filepath(filename); x=0; probeset_domain_indirect_match={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1 ###Don't extract the headers else: coor_list=[] ensembl_prot, aa_start, aa_stop, genomic_start, genomic_stop, name, interpro_id, description = string.split(data,'\t') coor_list.append(int(genomic_start)); coor_list.append(int(genomic_stop)); coor_list.sort() genomic_start, genomic_stop = coor_list if ensembl_prot in protein_probeset_db and len(description)>1: probeset_data = protein_probeset_db[ensembl_prot] for sad in probeset_data: proceed = 'no' if ((genomic_start <= sad.ProbeStart()) and (genomic_stop >= sad.ProbeStart())) and ((genomic_stop >= sad.ProbeStop()) and (genomic_start <= sad.ProbeStop())): overlap_area = int(abs(sad.ProbeStop()-sad.ProbeStart())/3) proceed = 'yes' elif ((genomic_start <= sad.ProbeStart()) and (genomic_stop >= sad.ProbeStart())): overlap_area = int(abs(genomic_stop - sad.ProbeStart())/3) proceed = 'yes' elif ((genomic_stop >= sad.ProbeStop()) and (genomic_start <= sad.ProbeStop())): overlap_area = int(abs(sad.ProbeStop() - genomic_start)/3) proceed = 'yes' if proceed == 'yes': #if sad.Probeset() == '3217131': print ensembl_prot, sad.ProbeStart(),sad.ProbeStop(),genomic_start,genomic_stop,interpro_id,description;kill ipd = description+'-'+interpro_id ipd = string.replace(ipd,'--','-') try: probeset_domain_match_db[sad.Probeset()].append(ipd) except KeyError: probeset_domain_match_db[sad.Probeset()] = [ipd] ### Grab all gene associated probesets that are not in the first or last exon of any transcript (make a db of the first and last exon coordiantes of all analyzed transcripts also no UTR exons OR just remove those that have an alt-N, Alt-C or UTR annotation) if ensembl_prot in ens_protein_gene_db: ens_gene = ens_protein_gene_db[ensembl_prot] if ens_gene in gene_probeset_db: probeset_data = gene_probeset_db[ens_gene] for sad in probeset_data: if ((genomic_start <= sad.ProbeStart()) and (genomic_stop >= sad.ProbeStart())) or ((genomic_stop >= sad.ProbeStop()) and (genomic_start <= sad.ProbeStop())): #if sad.Probeset() == '3217131': print ensembl_prot, sad.ProbeStart(),sad.ProbeStop(),genomic_start,genomic_stop,interpro_id,description;kill ipd = description+'-'+interpro_id try: probeset_domain_indirect_match[sad.Probeset()].append(ipd) except KeyError: probeset_domain_indirect_match[sad.Probeset()] = [ipd] probeset_domain_indirect_match = eliminateRedundant(probeset_domain_indirect_match) probeset_domain_match_db = eliminateRedundant(probeset_domain_match_db) ###Remove redundant matches print len(probeset_domain_match_db),'probesets with associated protein domains' probeset_domain_indirect_match2={} for probeset in probeset_domain_indirect_match: if probeset not in probeset_domain_match_db: ### Only have probesets that don't directly map to domains probeset_domain_indirect_match2[probeset] = probeset_domain_indirect_match[probeset] probesets_to_exclude={} for gene in gene_probeset_db: ### Remove probesets from database that overlap with the first or last exon of any associated transcript (not high confidence for domain alignment) probeset_data = gene_probeset_db[gene] for sad in probeset_data: if sad.Probeset() in probeset_domain_indirect_match2: exon_coordinates = first_last_exon_coord_db[gene] for exon_coor in exon_coordinates: exon_coor.sort() genomic_start,genomic_stop = exon_coor if ((genomic_start <= sad.ProbeStart()) and (genomic_stop >= sad.ProbeStart())) and ((genomic_stop >= sad.ProbeStop()) and (genomic_start <= sad.ProbeStop())): probesets_to_exclude[sad.Probeset()] = [] #if sad.Probeset() == '3217131': print gene, sad.ProbeStart(),sad.ProbeStop(),genomic_start,genomic_stop;kill for probeset in probeset_domain_indirect_match2: if probeset not in probesets_to_exclude: probeset_domain_indirect_match_db[probeset] = probeset_domain_indirect_match2[probeset] print len(probeset_domain_indirect_match2), len(probesets_to_exclude), len(probeset_domain_indirect_match_db) return probeset_domain_match_db,probeset_domain_indirect_match_db def importEnsExonStructureDataCustom(filename,species,first_last_exon_coord_db): fn=filepath(filename); x=0; ens_transcript_exon_db={}; ens_gene_transcript_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t exon_start = int(exon_start); exon_end = int(exon_end) try: ens_transcript_exon_db[ens_transcriptid].append([exon_start,exon_end]) except KeyError: ens_transcript_exon_db[ens_transcriptid] = [[exon_start,exon_end]] ens_gene_transcript_db[ens_transcriptid] = gene for transcript in ens_transcript_exon_db: gene = ens_gene_transcript_db[transcript] try: first_last_exon_coord_db[gene].append(ens_transcript_exon_db[transcript][0]) except KeyError: first_last_exon_coord_db[gene] = [ens_transcript_exon_db[transcript][0]] try: first_last_exon_coord_db[gene].append(ens_transcript_exon_db[transcript][-1]) except KeyError: first_last_exon_coord_db[gene] = [ens_transcript_exon_db[transcript][-1]] first_last_exon_coord_db = eliminateRedundant(first_last_exon_coord_db) return first_last_exon_coord_db def exportProbesetDomainMappings(species,array_type,indirect_mapping,probeset_domain_match_db): if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = "AltDatabase/"+species+"/"+array_type+"/"+data_type+"/"+species+"_Ensembl_"+indirect_mapping+"domain_aligning_probesets.txt" else: export_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_"+indirect_mapping+"domain_aligning_probesets.txt" data = export.createExportFile(export_file,"AltDatabase/"+species+"/"+array_type) data.write('Probeset\tInterPro-Description\n') for probeset in probeset_domain_match_db: domain_info_list = probeset_domain_match_db[probeset] for ipd in domain_info_list: data.write(probeset+'\t'+ipd+'\n') data.close() print "Direct probeset to domain associations exported to:",export_file def importSplicingAnnotationDatabase(filename,exon_protein_db): fn=filepath(filename); x=0; protein_probeset_db={}; gene_probeset_db={} for line in open(fn,'rU').xreadlines(): probeset_data = cleanUpLine(line) #remove endline if x == 0: x = 1 else: t=string.split(probeset_data,'\t'); probeset=t[0]; exon_id = t[1]; ens_gene=t[2]; probeset_start=t[6]; probeset_stop=t[7]; external_exonid=t[10]; splicing_event=t[-2]; strand = [5] if '|' in probeset_start and '|' in probeset_stop: ### This occurs for junction coordinates. We need to make sure we propperly grab the extreem coordinates for negative strand exons ps1 = string.split(probeset_start,'|'); ps2 = string.split(probeset_stop,'|') if strand == '+': probeset_start = ps1[0]; probeset_stop = ps2[-1] else: probeset_start = ps2[0]; probeset_stop = ps1[-1] sad = SplicingAnnotationData(probeset,probeset_start,probeset_stop) if 'U' not in exon_id: #if 'alt-C-term' not in splicing_event and 'alt-N-term' not in splicing_event and 'altPromoter' not in splicing_event: try: gene_probeset_db[ens_gene].append(sad) except KeyError: gene_probeset_db[ens_gene] = [sad] if 'ENS' in external_exonid or 'ENS' not in ens_gene: ### We only need to examine probesets linked to Ensembl transcripts external_exonid_list = string.split(external_exonid,'|'); ens_exonid_list=[] for exon in external_exonid_list: if 'ENS' in exon or 'ENS' not in ens_gene: ens_exonid_list.append(exon) for ens_exon in ens_exonid_list: if ens_exon in exon_protein_db: ens_proteins = exon_protein_db[ens_exon] for ens_protein_id in ens_proteins: try: protein_probeset_db[ens_protein_id].append(sad) except KeyError: protein_probeset_db[ens_protein_id] = [sad] print len(protein_probeset_db),'Ensembl proteins with associated probesets' return protein_probeset_db,gene_probeset_db class SplicingAnnotationData: def __init__(self,probeset,start,stop): self._probeset = probeset; self._start = start; self._stop = stop def Probeset(self): return self._probeset def ProbeStart(self): return int(self._start) def ProbeStop(self): return int(self._stop) def importEnsExonStructureDataSimple(species,ens_transcript_protein_db): filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' fn=filepath(filename); x=0; exon_protein_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t if ens_transcriptid in ens_transcript_protein_db: ens_protein_id = ens_transcript_protein_db[ens_transcriptid] try: exon_protein_db[ens_exonid].append(ens_protein_id) except KeyError: exon_protein_db[ens_exonid]=[ens_protein_id] print len(exon_protein_db),'Ensembl exons with associated protein IDs' return exon_protein_db def import_ensembl_ft_data(species,filename,ensembl_arrayid_db,array_type): """Over the lifetime of this program, the inputs for protein sequences and relationships have changed. To support multiple versions, this function now routes the data to two different possible functions, grabbing the same type of data (InterPro relationships and protein sequence) from different sets of files""" try: ensembl_protein_seq_db,ensembl_ft_db,domain_gene_counts = importCombinedEnsemblFTdata(filename,ensembl_arrayid_db,array_type) except IOError: ### This is the current version which is supported protein_relationship_file,protein_feature_file,protein_seq_fasta,protein_coordinate_file = getEnsemblRelationshipDirs(species) ensembl_protein_seq_db = importEnsemblProtSeqFasta(protein_seq_fasta) ensembl_protein_gene_db = importEnsemblRelationships(protein_relationship_file,'gene') ensembl_ft_db, domain_gene_counts = importEnsemblFTdata(protein_feature_file,ensembl_arrayid_db,array_type,ensembl_protein_seq_db,ensembl_protein_gene_db) return ensembl_protein_seq_db,ensembl_ft_db,domain_gene_counts def getEnsemblRelationshipDirs(species): import_dir = '/AltDatabase/ensembl/'+species m = GrabFiles(); m.setdirectory(import_dir) protein_relationship_file = m.searchdirectory(species+'_Ensembl_Protein_') protein_seq_fasta = m.searchdirectory('pep.all') protein_feature_file = m.searchdirectory(species+'_ProteinFeatures_') protein_coordinate_file = m.searchdirectory(species+'_ProteinCoordinates_') return protein_relationship_file,protein_feature_file,protein_seq_fasta,protein_coordinate_file def remoteEnsemblProtSeqImport(species): protein_relationship_file,protein_feature_file,protein_seq_fasta,protein_coordinate_file = getEnsemblRelationshipDirs(species) return importEnsemblProtSeqFasta(protein_seq_fasta) def importEnsemblProtSeqFasta(filename): print "Begining generic fasta import of",filename fn=filepath(filename); ensembl_protein_seq_db={}; sequence = '' for line in open(fn,'r').xreadlines(): try: data, newline= string.split(line,'\n') except ValueError: continue try: if data[0] == '>': if len(sequence) > 0: seq_data = FullProteinSeqData(ensembl_prot,[ensembl_prot],sequence,'EnsProt') ensembl_protein_seq_db[ensembl_prot] = seq_data ### Parse new line t= string.split(data[1:],' '); sequence='' ensembl_prot = t[0] if '.' in ensembl_prot: ### Introduced after Ensembl versoin 77 ensembl_prot = string.split(ensembl_prot,'.')[0] except IndexError: continue try: if data[0] != '>': sequence = sequence + data except IndexError: continue seq_data = FullProteinSeqData(ensembl_prot,[ensembl_prot],sequence,'EnsProt') ensembl_protein_seq_db[ensembl_prot] = seq_data return ensembl_protein_seq_db def importEnsemblRelationships(filename,type): fn=filepath(filename); ensembl_protein_gene_db={}; x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1 ###Don't extract the headers else: ensembl_gene, ensembl_transcript, ensembl_protein = string.split(data,'\t') if type == 'gene': ensembl_protein_gene_db[ensembl_protein] = ensembl_gene if type == 'transcript': ensembl_protein_gene_db[ensembl_transcript] = ensembl_protein return ensembl_protein_gene_db def importEnsemblFTdata(filename,ensembl_arrayid_db,array_type,ensembl_protein_seq_db,ensembl_protein_gene_db): print "Importing:",filename global arrayid_ensembl_protein_db; arrayid_ensembl_protein_db={}; x=0 missing_prot_seq=[]; found_prot_seq={} fn=filepath(filename); ensembl_ft_db = {}; ensembl_ft_summary_db = {}# Use the last database for summary statistics for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1 ###Don't extract the headers else: ensembl_prot, aa_start, aa_stop, start, stop, name, interpro_id, description = string.split(data,'\t') if ensembl_prot in ensembl_protein_seq_db: found_prot_seq[ensembl_prot]=[] sd = ensembl_protein_seq_db[ensembl_prot]; protein_sequence = sd.Sequence() ensembl_gene = ensembl_protein_gene_db[ensembl_prot] ft_start_pos = aa_start; ft_end_pos = aa_stop """Below code is ALMOST identical to importCombinedEnsemblFTdata (original code commented out)""" ###If array_type is exon, ensembl is used as the primary gene ID and thus no internal arrayid is needed. Get only Ensembl's that are currently being analyzed (for over-representation analysis) if ensembl_gene in ensembl_arrayid_db: id_list = ensembl_arrayid_db[ensembl_gene] for gene_id in id_list: try: arrayid_ensembl_protein_db[gene_id].append(ensembl_prot) except KeyError: arrayid_ensembl_protein_db[gene_id] = [ensembl_prot] #for entry in ft_info_list: """try: peptide_start_end, gene_start_end, feature_source, interpro_id, description = string.split(entry,' ') except ValueError: continue ###142-180 3015022-3015156 Pfam IPR002050 Env_polyprotein ft_start_pos, ft_end_pos = string.split(peptide_start_end,'-')""" pos1 = int(ft_start_pos); pos2 = int(ft_end_pos) ft_length = pos2-pos1 if ft_length > 6: pos_1 = pos1; pos_2 = pos2 else: if ft_length < 3: pos_1 = pos1 - 3; pos_2 = pos2 + 3 else: pos_1 = pos1 - 1; pos_2 = pos2 + 1 sequence_fragment = protein_sequence[pos_1:pos_2] ###We will search for this sequence, so have this expanded if too small (see above code) if len(description)>1 or len(interpro_id)>1: #ft_info = ProteinFunctionalSeqData(ensembl_prot,description,interpro_id,pos1,pos2,sequence_fragment) ft_info = ensembl_prot,description,interpro_id,pos1,pos2,sequence_fragment,int(start),int(stop) ###don't store as an instance yet... wait till we eliminate duplicates if ensembl_gene in ensembl_arrayid_db: ###If the ensembl gene is connected to microarray identifiers arrayids = ensembl_arrayid_db[ensembl_gene] for arrayid in arrayids: ###This file differs in structure to the UniProt data try: ensembl_ft_db[arrayid].append(ft_info) except KeyError: ensembl_ft_db[arrayid] = [ft_info] else: if ensembl_prot not in missing_prot_seq: missing_prot_seq.append(ensembl_prot) if len(missing_prot_seq): ### This never occured until parsing Zm Plant - the same protein sequences should be present from Ensembl for the same build print 'WARNING!!!!!!! Missing protein sequence from protein sequence file for',len(missing_prot_seq),'proteins relative to',len(found_prot_seq),'found.' print 'missing examples:',missing_prot_seq[:10] ensembl_ft_db2 = {} ensembl_ft_db = eliminateRedundant(ensembl_ft_db) ###duplicate interprot information is typically present for arrayid in ensembl_ft_db: for ft_info in ensembl_ft_db[arrayid]: ensembl_prot,description,interpro_id,pos1,pos2,sequence_fragment,gstart,gstop = ft_info ft_info2 = ProteinFunctionalSeqData(ensembl_prot,description,interpro_id,pos1,pos2,sequence_fragment) ft_info2.addGenomicCoordinates(gstart,gstop) ### Add the genomic start and stop of the domain to keep track of where this domain is located try: ensembl_ft_db2[arrayid].append(ft_info2) except KeyError: ensembl_ft_db2[arrayid] = [ft_info2] domain_gene_counts = summarizeEnsDomainData(ensembl_ft_db2) return ensembl_ft_db2,domain_gene_counts def importCombinedEnsemblFTdata(filename,ensembl_arrayid_db,array_type): global arrayid_ensembl_protein_db; arrayid_ensembl_protein_db={} fn=filepath(filename); x = 0; ensembl_ft_db = {}; ensembl_ft_summary_db = {}# Use the last database for summary statistics ensembl_protein_seq_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 1: try: ensembl_gene, chr, mgi, uniprot, ensembl_prot, protein_sequence, position_info = string.split(data,'\t') except ValueError: continue ft_info_list = string.split(position_info,' | ') seq_data = FullProteinSeqData(ensembl_prot,[ensembl_prot],protein_sequence,'EnsProt') ensembl_protein_seq_db[ensembl_prot] = seq_data ###use this db as input for the UniProt exon based ft search below ###If array_type is exon, ensembl is used as the primary gene ID and thus no internal arrayid is needed. Get only Ensembl's that are currently being analyzed (for over-representation analysis) if ensembl_gene in ensembl_arrayid_db: id_list = ensembl_arrayid_db[ensembl_gene] for gene_id in id_list: try: arrayid_ensembl_protein_db[gene_id].append(ensembl_prot) except KeyError: arrayid_ensembl_protein_db[gene_id] = [ensembl_prot] for entry in ft_info_list: try: peptide_start_end, gene_start_end, feature_source, interpro_id, description = string.split(entry,' ') except ValueError: continue ###142-180 3015022-3015156 Pfam IPR002050 Env_polyprotein ft_start_pos, ft_end_pos = string.split(peptide_start_end,'-') pos1 = int(ft_start_pos); pos2 = int(ft_end_pos) ft_length = pos2-pos1 if ft_length > 6: pos_1 = pos1; pos_2 = pos2 else: if ft_length < 3: pos_1 = pos1 - 3; pos_2 = pos2 + 3 else: pos_1 = pos1 - 1; pos_2 = pos2 + 1 sequence_fragment = protein_sequence[pos_1:pos_2] ###We will search for this sequence, so have this expanded if too small (see above code) if len(description)>1 or len(interpro_id)>1: ft_info = ProteinFunctionalSeqData(ensembl_prot,description,interpro_id,pos1,pos2,sequence_fragment) if ensembl_gene in ensembl_arrayid_db: ###If the ensembl gene is connected to microarray identifiers arrayids = ensembl_arrayid_db[ensembl_gene] for arrayid in arrayids: ###This file differs in structure to the UniProt data try: ensembl_ft_db[arrayid].append(ft_info) except KeyError: ensembl_ft_db[arrayid] = [ft_info] else: if data[0:6] == 'GeneID': x = 1 domain_gene_counts = summarizeEnsDomainData(ensembl_ft_db) return ensembl_protein_seq_db,ensembl_ft_db,domain_gene_counts def summarizeEnsDomainData(ensembl_ft_db): """This is a function because the data can be extracted from different functions, using different file formats""" ensembl_ft_db = eliminateRedundant(ensembl_ft_db) domain_gene_counts = {}; domain_gene_counts2 = {} ###Count the number of domains present in all genes (count a domain only once per gene) for gene in ensembl_ft_db: for ft_info in ensembl_ft_db[gene]: try: domain_gene_counts[ft_info.PrimaryAnnot(),ft_info.SecondaryAnnot()].append(gene) except KeyError: domain_gene_counts[ft_info.PrimaryAnnot(),ft_info.SecondaryAnnot()] = [gene] domain_gene_counts = eliminateRedundant(domain_gene_counts) for (primary,secondary) in domain_gene_counts: if len(secondary)>0: key = primary+'-'+secondary else: key = primary domain_gene_counts2[key] = len(domain_gene_counts[(primary,secondary)]) domain_gene_counts = domain_gene_counts2 print "Number of Ensembl genes, linked to array genes with domain annotations:",len(ensembl_ft_db) print "Number of Ensembl domains:",len(domain_gene_counts) return domain_gene_counts def import_arrayid_uniprot(filename): fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) arrayid, uniprot = string.split(data,'\t') try: arrayid_uniprot_db[arrayid].append(uniprot) except KeyError: arrayid_uniprot_db[arrayid] = [uniprot] try: uniprot_arrayid_db[uniprot].append(arrayid) except KeyError: uniprot_arrayid_db[uniprot] = [arrayid] def importUniProtSeqeunces(species,ensembl_arrayid_db,array_type): filename = 'AltDatabase/uniprot/'+species+'/'+'uniprot_sequence.txt' fn=filepath(filename); uniprot_protein_seq_db = {}; external_transcript_to_uniprot_protein_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') id=t[0];ac=t[1];ensembls=t[4];seq=t[2];type=t[6];unigenes=t[7];embls=t[9] ac=string.split(ac,','); ensembls=string.split(ensembls,','); embls=string.split(embls,','); unigenes=string.split(unigenes,',') y = FullProteinSeqData(id,ac,seq,type) if type=='swissprot': uniprot_protein_seq_db[id] = y if array_type != 'AltMouse': for ensembl in ensembls: if len(ensembl)>0 and ensembl in ensembl_arrayid_db: ###remove genes not being analyzed now ###This database replaces the empty arrayid_uniprot_db try: arrayid_uniprot_db[ensembl].append(id) except KeyError: arrayid_uniprot_db[ensembl] = [id] try: uniprot_arrayid_db[id].append(ensembl) except KeyError: uniprot_arrayid_db[id] = [ensembl] return uniprot_protein_seq_db ######## End - Derive protein predictions for Exon array probesets class EnsemblProteinPositionData: def __init__(self, aa_nt_start, aa_nt_stop, genomic_start, genomic_stop): self.aa_nt_start = aa_nt_start; self.aa_nt_stop = aa_nt_stop self.genomic_start=genomic_start;self.genomic_stop = genomic_stop if self.GenomicStartPos()>self.GenomicStopPos(): self.strand = '-' else: self.strand = '+' def ResidueStartPos(self): return int(self.aa_nt_start) def ResidueStopPos(self): return int(self.aa_nt_stop) def GenomicStartPos(self): return int(self.genomic_start) def GenomicStopPos(self): return int(self.genomic_stop) def Strand(self): return self.strand def importEnsProteinCoordinates(protein_coordinate_file): fn=filepath(protein_coordinate_file); ens_protein_pos_db={}; x=0 for line in open(fn,'rU').xreadlines(): if x==0: x=1 else: data = cleanUpLine(line) t = string.split(data,'\t') protienid, exonid, aa_nt_start, aa_nt_stop, genomic_start, genomic_stop = t ep = EnsemblProteinPositionData(aa_nt_start, aa_nt_stop, genomic_start, genomic_stop) try: ens_protein_pos_db[protienid].append(ep) ### For each exon except Exception: ens_protein_pos_db[protienid] = [ep] return ens_protein_pos_db def importEnsemblUniprot(species): filename = 'AltDatabase/uniprot/'+species+'/'+species+'_Ensembl-UniProt.txt' uniprot_ensembl_db={} fn=filepath(filename) for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') ensembl=t[0];uniprot=t[1] try: uniprot_ensembl_db[uniprot].append(ensembl) except KeyError: uniprot_ensembl_db[uniprot] = [ensembl] uniprot_ensembl_db = eliminateRedundant(uniprot_ensembl_db) print len(uniprot_ensembl_db),"UniProt entries with Ensembl annotations" return uniprot_ensembl_db def getGenomicPosition(ac,ens_protein,uniprot_seq_len,pos1,pos2,ep_list): residue_positions=[] for ep in ep_list: ### For each exon pos1_contained = 0; pos2_contained = 0 if pos1 >= ep.ResidueStartPos() and pos1 <= ep.ResidueStopPos(): pos1_contained = 1 if pos2 >= ep.ResidueStartPos() and pos2 <= ep.ResidueStopPos(): pos2_contained = 1 residue_positions.append(ep.ResidueStopPos()) if pos1_contained == 1: start_offset = pos1 - ep.ResidueStartPos() if ep.Strand() == '+': genomic_feature_start = ep.GenomicStartPos()+(start_offset*3) else: genomic_feature_start = ep.GenomicStartPos()-(start_offset*3)-1 if ens_protein == 'ENSMUSP00000044603': print 'start',ep.Strand(), ep.ResidueStartPos(),ep.ResidueStopPos(),pos1_contained,pos2_contained,ep.GenomicStartPos(),ep.GenomicStopPos(),genomic_feature_start,pos1,pos2,start_offset if pos2_contained == 1: stop_offset = pos2 - ep.ResidueStartPos() if ep.Strand() == '+': genomic_feature_stop = ep.GenomicStartPos()+(stop_offset*3) else: genomic_feature_stop = ep.GenomicStartPos()-(stop_offset*3)+2 if ens_protein == 'ENSMUSP00000044603': print 'stop',ep.Strand(),ep.ResidueStartPos(),ep.ResidueStopPos(),pos1_contained,pos2_contained,ep.GenomicStartPos(),ep.GenomicStopPos(),genomic_feature_stop,pos1,pos2,stop_offset if uniprot_seq_len == residue_positions[-1]: try: return genomic_feature_start,genomic_feature_stop,'found' ### both should be found if everything is accurately built beforehand except Exception: null=[] #print ens_protein,ac,pos1,pos2, uniprot_seq_len, residue_positions[-1],ep.Strand(), ep.ResidueStartPos(), ep.ResidueStopPos(),genomic_feature_stop,genomic_feature_start else: #print ens_protein,ac,pos1,pos2, uniprot_seq_len, residue_positions[-1],ep.Strand() return 0,0,'failed' def import_uniprot_ft_data(species,protein_coordinate_file,domain_gene_counts,ensembl_arrayid_db,array_type): """ This function exports genomic coordinates for each UniProt feature ***IF*** valid protein IDs are present in Ensembl-UniProt file (derived from UniProt)""" uniprot_protein_seq_db = importUniProtSeqeunces(species,ensembl_arrayid_db,array_type) uniprot_feature_file = 'AltDatabase/uniprot/'+species+'/'+'uniprot_feature_file.txt' ### Import protein coordinate genomic and protein positions ens_protein_pos_db = importEnsProteinCoordinates(protein_coordinate_file) ### Impoer UniProt to Ensembl protein accession relationships uniprot_ensembl_db = importEnsemblUniprot(species) export_data = export.ExportFile('AltDatabase/uniprot/'+species+'/'+species+'_FeatureCoordinate.txt') export_data.write('ensembl_prot\taa_start\taa_stop\tgenomic_start\tgenomic_stop\tname\tinterpro_id\tdescription\n') fn=filepath(uniprot_feature_file); uniprot_ft_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') try: primary_uniprot_id,ac,ft,pos1,pos2,annotation = t except ValueError: try: primary_uniprot_id,ac,ft,pos1,pos2 = t except ValueError: ###Not sure why, but an extra \t is in at least one description. primary_uniprot_id = t[0]; ac=t[1]; ft=t[2];pos1=t[3];pos2=t[4];annotation=string.join(t[-2:]) try: pos2,annotation = string.split(pos2,'/') except ValueError: annotation = '' annotation = '/' + annotation try: annotation = annotation[0:-1] if '(By similarity)' in annotation: annotation,null = string.split(annotation,'(By similarity)') if '(Potential)' in annotation: annotation,null = string.split(annotation,'(Potential)') if 'By similarity' in annotation: annotation,null = string.split(annotation,'By similarity') if 'Potential' in annotation: annotation,null = string.split(annotation,'Potential') try: if ' ' == annotation[-1]: annotation = annotation[0:-1] except IndexError: annotation = annotation if '.' in annotation: annotation,null = string.split(annotation,'.') pos1 = int(pos1); pos2 = int(pos2) ### Compare the position of each protein (where a matched Ensembl protein is known) to UniProt domain position to ### Identify genomic coordinates for overlap analysis ac_list = string.split(ac,',') ### Can be a comma separated list for ac in ac_list[:1]: ### We only select the first representative one, since this should be sufficient (need to determine more rigourously though - 7/15/12) if ac in uniprot_ensembl_db: if ft != 'CHAIN' and ft != 'CONFLICT' and ft != 'VARIANT' and ft != 'VARSPLIC' and ft != 'VAR_SEQ' and '>' not in annotation: ens_protein_list = uniprot_ensembl_db[ac] for ens_protein in ens_protein_list: ### Can be composed of gene and protein IDs, so just loop through it and see which matches (should only be one match) if ens_protein in ens_protein_pos_db and primary_uniprot_id in uniprot_protein_seq_db: uniprot_seq_len = uniprot_protein_seq_db[primary_uniprot_id].SequenceLength() ep_list = ens_protein_pos_db[ens_protein] ### ep_list is a list of exon coordinates and corresponding protein positions try: genomic_feature_start,genomic_feature_stop,status = getGenomicPosition(ac,ens_protein,uniprot_seq_len,pos1,pos2,ep_list) except Exception: status == 'not' if status == 'found': new_annotation = ft+'-'+string.replace(annotation,';','') values = [ens_protein,str(pos1),str(pos2),str(genomic_feature_start),str(genomic_feature_stop),'','UniProt',new_annotation] export_data.write(string.join(values,'\t')+'\n') pos1 = pos1-1 ft_length = pos2-pos1 if ft_length > 6: pos_1 = pos1; pos_2 = pos2 else: if ft_length < 3: pos_1 = pos1 - 3; pos_2 = pos2 + 3 else: pos_1 = pos1 - 1; pos_2 = pos2 + 1 if primary_uniprot_id in uniprot_protein_seq_db: full_prot_seq = uniprot_protein_seq_db[primary_uniprot_id].Sequence() sequence_fragment = full_prot_seq[pos_1:pos_2] ###We will search for this sequence, so have this expanded if too small (see above code) if ft != 'CHAIN' and ft != 'CONFLICT' and ft != 'VARIANT' and ft != 'VARSPLIC' and ft != 'VAR_SEQ' and '>' not in annotation: ###exlcludes variant, splice variant SNP and conflict info ft_info = ProteinFunctionalSeqData(primary_uniprot_id,ft,annotation,pos1,pos2,sequence_fragment) try: ft_info.addGenomicCoordinates(genomic_feature_start,genomic_feature_stop) ### Add the genomic start and stop of the domain to keep track of where this domain is located except Exception: None ### See above, this occurs when certain features can not be matched between the isoform and the domain (shouldn't occur) ###Store the primary ID as the arrayid (gene accession number) if primary_uniprot_id in uniprot_arrayid_db: arrayids = uniprot_arrayid_db[primary_uniprot_id] for arrayid in arrayids: try: uniprot_ft_db[arrayid].append(ft_info) except KeyError: uniprot_ft_db[arrayid] = [ft_info] else: ###Occurs for non-SwissProt ft_data (e.g. TrEMBL) continue except ValueError: continue domain_gene_count_temp={} for geneid in uniprot_ft_db: for ft_info in uniprot_ft_db[geneid]: try: domain_gene_count_temp[ft_info.PrimaryAnnot(),ft_info.SecondaryAnnot()].append(geneid) except KeyError: domain_gene_count_temp[ft_info.PrimaryAnnot(),ft_info.SecondaryAnnot()] = [geneid] domain_gene_count_temp = eliminateRedundant(domain_gene_count_temp) for (primary,secondary) in domain_gene_count_temp: if len(secondary)>0: key = primary+'-'+secondary else: key = primary domain_gene_counts[key] = len(domain_gene_count_temp[(primary,secondary)]) export_data.close() print "Number of species uniprot entries imported", len(uniprot_protein_seq_db) print "Number of species feature containing entries imported", len(uniprot_ft_db) return uniprot_protein_seq_db,uniprot_ft_db,domain_gene_counts def customDeepCopy(db): db2={} for i in db: try: ###occurs when the contents of the dictionary are an item versus a list for e in db[i]: try: db2[i].append(e) except KeyError: db2[i]=[e] except TypeError: db2[i] = db[i] return db2 def eliminateRedundant(database): for key in database: try: list = makeUnique(database[key]) list.sort() except Exception: list = unique.unique(database[key]) database[key] = list return database def makeUnique(item): db1={}; list1=[] for i in item: db1[i]=[] for i in db1: list1.append(i) list1.sort() return list1 def grab_exon_level_feature_calls(species,array_type,genes_analyzed): arrayid_uniprot_file = 'AltDatabase/uniprot/'+species+'/'+'arrayid-uniprot.txt' arrayid_ensembl_file = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'-Ensembl_relationships.txt' ensembl_ft_file = 'AltDatabase/ensembl/'+species+'/'+'DomainFile_All.txt' null,null,null,protein_coordinate_file = getEnsemblRelationshipDirs(species) global uniprot_arrayid_db; uniprot_arrayid_db = {}; global arrayid_uniprot_db; arrayid_uniprot_db = {} global ensembl_arrayid_db; ensembl_arrayid_db={} if array_type == 'AltMouse': update.verifyFile(arrayid_uniprot_file,array_type) ### Will force download if missing update.verifyFile(arrayid_ensembl_file,array_type) ### Will force download if missing import_arrayid_uniprot(arrayid_uniprot_file) import_arrayid_ensembl(arrayid_ensembl_file) ###Otherwise, these databases can be built on-the-fly in downstream methods, since Ensembl will be used as the array gene id else: ensembl_arrayid_db = genes_analyzed ###ensembl to ensembl for those being analyzed in the program ensembl_protein_seq_db,ensembl_ft_db,domain_gene_counts = import_ensembl_ft_data(species,ensembl_ft_file,ensembl_arrayid_db,array_type) ###Import function domain annotations for Ensembl proteins print 'Ensembl based domain feature genes:',len(ensembl_ft_db),len(domain_gene_counts) uniprot_protein_seq_db,uniprot_ft_db,domain_gene_counts = import_uniprot_ft_data(species,protein_coordinate_file,domain_gene_counts,ensembl_arrayid_db,array_type) ###" " " " UniProt " print 'UniProt based domain feature genes:',len(uniprot_ft_db),len(domain_gene_counts) arrayid_ft_db = combineDatabases(uniprot_ft_db,ensembl_ft_db) ###arrayid relating to classes of functional domain attributes and associated proteins (ensembl and uniprot) return arrayid_ft_db,domain_gene_counts def combineDatabases(x,y): db1 = customDeepCopy(x); db2 = customDeepCopy(y); db3={} for entry in db1: db3[entry] = db1[entry] for entry in db2: if entry in db3: db3[entry]+=db2[entry] else: db3[entry]=db2[entry] return db3 def clearall(): all = [var for var in globals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: del globals()[var] def importGeneAnnotations(species): ### Used for internal testing gene_annotation_file = "AltDatabase/ensembl/"+species+"/"+species+"_Ensembl-annotations_simple.txt" fn=filepath(gene_annotation_file) count = 0; gene_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if count == 0: count = 1 else: gene, description, symbol = string.split(data,'\t') gene_db[gene] = [gene] return gene_db if __name__ == '__main__': species = 'Mm' array_type = 'RNASeq' genes_analyzed = importGeneAnnotations(species) uniprot_arrayid_db={} grab_exon_level_feature_calls(species,array_type,genes_analyzed); sys.exit() protein_coordinate_file = '/Users/nsalomonis/Desktop/AltAnalyze/AltDatabase/EnsMart16/ensembl/Zm/Zm_ProteinCoordinates_build_16_69_5.tab' #mport_uniprot_ft_data(species,protein_coordinate_file,[],[],'RNASeq');sys.exit() species = 'Rn'; array_type = 'AltMouse' getEnsemblRelationshipDirs(species);sys.exit() findDomainsByGenomeCoordinates(species,array_type); sys.exit() matchEnsemblDomainCoordinates(protein_feature_file,species,array_type,protein_probeset_db,ens_protein_gene_db,gene_probeset_db) kill protein_relationship_file,protein_feature_file,protein_seq_fasta,protein_coordinate_file = getEnsemblRelationshipDirs(species) ens_transcript_protein_db = importEnsemblRelationships(protein_relationship_file,'transcript') ### From Perl script to Ensembl API ens_protein_gene_db = importEnsemblRelationships(protein_relationship_file,'gene') ### From Perl script to Ensembl API exon_protein_db = importEnsExonStructureDataSimple(species,ens_transcript_protein_db) ### From BioMart #kill if array_type == 'exon': ens_probeset_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_probesets.txt" else: ens_probeset_file = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_"+array_type+"_probesets.txt" protein_probeset_db,gene_probeset_db = importSplicingAnnotationDatabase(ens_probeset_file,exon_protein_db) ### Derived from ExonArrayEnsemblRules #matchEnsemblDomainCoordinates(protein_feature_file,species,array_type,protein_probeset_db,ens_protein_gene_db,gene_probeset_db) kill
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/FeatureAlignment.py
FeatureAlignment.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import math import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from stats_scripts import statistics import update def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def grabJunctionData(species,array_type,key_type,root_dir): if array_type == 'AltMouse': filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_junction-comparisons.txt' else: filename = 'AltDatabase/' + species + '/'+array_type+'/'+ species + '_junction_comps_updated.txt' if array_type == 'RNASeq': filename = root_dir+filename ### This is a dataset specific file fn=filepath(filename); critical_exon_junction_db = {}; x=0 for line in open(fn,'rU').xreadlines(): if x==0: x=1 else: data = cleanUpLine(line) t = string.split(data,'\t') if array_type == 'AltMouse': geneid,probeset1,probeset2,critical_exons = t probesets = [probeset1, probeset2]; critical_exons = string.split(critical_exons,'|') else: geneid,critical_exon,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source = t probeset1 = incl_junction_probeset; probeset2 = excl_junction_probeset probesets = [incl_junction_probeset, excl_junction_probeset]; critical_exons = [critical_exon] for exon in critical_exons: if key_type == 'gene-exon': key = geneid+':'+exon ###Record for each probeset what critical junctions it is associated with try: critical_exon_junction_db[key].append((probeset1, probeset2)) except KeyError: critical_exon_junction_db[key] = [(probeset1, probeset2)] #print key,(probeset1, probeset2) else: critical_exon_junction_db[(probeset1, probeset2)] = critical_exons return critical_exon_junction_db class GeneAnnotationData: def __init__(self, geneid, description, symbol, external_geneid, rna_processing_annot): self._geneid = geneid; self._description = description; self._symbol = symbol self._rna_processing_annot = rna_processing_annot; self._external_geneid = external_geneid def GeneID(self): return self._geneid def Description(self): return self._description def Symbol(self): return self._symbol def ExternalGeneID(self): return self._external_geneid def TranscriptClusterIDs(self): if self.GeneID() in gene_transcript_cluster_db: transcript_cluster_list = gene_transcript_cluster_db[self.GeneID()] return transcript_cluster_list else: try: return transcript_cluster_list except UnboundLocalError: return [''] ### Occurs for SplicingIndex method with AltMouse data def RNAProcessing(self): return self._rna_processing_annot def Report(self): output = self.GeneID() +'|'+ self.Symbol() +'|'+ self.Description() return output def __repr__(self): return self.Report() def import_annotations(filename,array_type,keyBySymbol=False): fn=filepath(filename); annotate_db = {}; x = 0 if array_type == 'AltMouse': for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x = 1 else: try: affygene, description, ll_id, symbol, rna_processing_annot = string.split(data,'\t') except ValueError: affygene, description, ll_id, symbol = string.split(data,'\t'); rna_processing_annot = '' if '"' in description: null,description,null = string.split(description,'"') y = GeneAnnotationData(affygene, description, symbol, ll_id, rna_processing_annot) if keyBySymbol: annotate_db[symbol] = y else: annotate_db[affygene] = y else: for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) rna_processing_annot='' try: ensembl, symbol, description, rna_processing_annot = string.split(data,'\t') except ValueError: ensembl, description, symbol = string.split(data,'\t') y = GeneAnnotationData(ensembl, description, symbol, ensembl, rna_processing_annot) annotate_db[ensembl] = y if keyBySymbol: annotate_db[symbol] = y else: annotate_db[ensembl] = y return annotate_db def importmicroRNADataExon(species,array_type,exon_db,microRNA_prediction_method,explicit_data_type,root_dir): filename = "AltDatabase/"+species+"/"+array_type+"/"+species+"_probeset_microRNAs_"+microRNA_prediction_method+".txt" if array_type == 'junction': filename = string.replace(filename,'.txt','-filtered.txt') fn=filepath(filename); microRNA_full_exon_db={}; microRNA_count_db={}; gene_microRNA_denom={} if array_type == 'AltMouse' or ((array_type == 'junction' or array_type == 'RNASeq') and explicit_data_type == 'null'): critical_exon_junction_db = grabJunctionData(species,array_type,'gene-exon',root_dir) if array_type == 'AltMouse': gene_annotation_file = "AltDatabase/"+species+"/"+array_type+"/"+array_type+"_gene_annotations.txt" annotate_db = import_annotations(gene_annotation_file,array_type) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') probeset=t[0];microRNA=t[1] try: mir_seq=t[2];mir_sources=t[3] except IndexError: mir_seq='';mir_sources='' try: if array_type == 'exon' or array_type == 'gene' or ((array_type == 'junction' or array_type == 'RNASeq') and explicit_data_type != 'null'): ed = exon_db[probeset]; probeset_list = [probeset]; exonid = ed.ExonID(); symbol = ed.Symbol(); geneid = ed.GeneID() else: probeset_list = []; uid = probeset ###This is the gene with the critical exon it's mapped to for junctions in critical_exon_junction_db[uid]: if junctions in exon_db: geneid = exon_db[junctions].GeneID() if array_type == 'AltMouse': if geneid in annotate_db: symbol = annotate_db[geneid].Symbol() else: symbol = geneid else: try: symbol = exon_db[junctions].Symbol() except Exception: symbol='' else: geneid = '' #if junctions in exon_db: probeset_list.append(junctions) if len(geneid)>0: microRNA_info = microRNA, symbol, mir_seq, mir_sources for probeset in probeset_list: try: microRNA_full_exon_db[geneid,probeset].append(microRNA_info) except KeyError: microRNA_full_exon_db[geneid,probeset] = [microRNA_info] try: microRNA_count_db[microRNA].append(geneid) except KeyError: microRNA_count_db[microRNA] = [geneid] #if 'ENS' in microRNA: print [data,t];kill gene_microRNA_denom[geneid] = [] except KeyError: null=[] microRNA_count_db = eliminate_redundant_dict_values(microRNA_count_db) ###Replace the actual genes with the unique gene count per microRNA for microRNA in microRNA_count_db: microRNA_count_db[microRNA] = len(microRNA_count_db[microRNA]) if array_type == 'RNASeq': id_name = 'junction IDs' else: id_name = 'array IDs' print len(gene_microRNA_denom),"genes with a predicted microRNA binding site aligning to a",id_name return microRNA_full_exon_db,microRNA_count_db,gene_microRNA_denom def filterMicroRNAProbesetAssociations(microRNA_full_exon_db,exon_hits): filtered_microRNA_exon_db = {} microRNA_gene_count_db = {} for key in microRNA_full_exon_db: array_geneid = key[0] if key in exon_hits: filtered_microRNA_exon_db[key] = microRNA_full_exon_db[key] for (microRNA,gene_symbol,seq,source) in microRNA_full_exon_db[key]: gene_info = array_geneid, gene_symbol try: microRNA_gene_count_db[microRNA].append(gene_info) except KeyError: microRNA_gene_count_db[microRNA] = [gene_info] return filtered_microRNA_exon_db class ExonSequenceData: def __init__(self, gene_id, exon_id, exon_seq, complete_mRNA_length,strand): self._gene_id = gene_id; self._exon_id = exon_id; self._strand = strand self._exon_seq = exon_seq; self._complete_mRNA_length = complete_mRNA_length def GeneID(self): return self._gene_id def ExonID(self): return self._exon_id def ExonSeq(self): return self._exon_seq def RNALen(self): return int(self._complete_mRNA_length) def Strand(self): return self._strand def SummaryValues(self): output = self.GeneID()+'|'+self.SecondaryID()+'|'+self.ExonID() return output def __repr__(self): return self.SummaryValues() class ExonProteinAlignmentData: def __init__(self,geneid,probeset,exonid,protein_hit_id,protein_null_id): self._gene_id = geneid; self._exon_id = exonid; self._probeset = probeset self._protein_hit_id = protein_hit_id; self._protein_null_id = protein_null_id def GeneID(self): return self._gene_id def ExonID(self): return self._exon_id def Probeset(self): return self._probeset def HitProteinID(self): return self._protein_hit_id def NullProteinID(self): return self._protein_null_id def RecordHitProteinExonIDs(self,hit_exon_ids): self._hit_exon_ids = hit_exon_ids def RecordNullProteinExonIDs(self,null_exon_ids): self._null_exon_ids = null_exon_ids def HitProteinExonIDs(self): exon_list_str = string.join(self._hit_exon_ids,',') return exon_list_str def NullProteinExonIDs(self): exon_list_str = string.join(self._null_exon_ids,',') return exon_list_str def SummaryValues(self): output = self.GeneID()+'|'+self.ExonID()+'|'+self.Probeset() return output def __repr__(self): return self.SummaryValues() def importExonSequenceBuild(filename,exon_db): ###Parse protein sequence fn=filepath(filename); protein_sequence_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) protein_id,protein_seq = string.split(data,'\t') protein_sequence_db[protein_id] = protein_seq ###Parse protein/probeset data (built in FeatureAlignment) filename = string.replace(filename,'SEQUENCE','probeset') fn=filepath(filename); probeset_protein_db = {}; positive_protein_associations = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') try: probeset,protein_hit_id,protein_null_id = t except ValueError: gene,probeset,exonid,protein_hit_id,protein_null_id = t try: ed = exon_db[probeset] ###update this information every time you run (in case a new exon database is used) ep = ExonProteinAlignmentData(ed.GeneID(),probeset,ed.ExonID(),protein_hit_id,protein_null_id) probeset_protein_db[probeset] = ep try: positive_protein_associations[protein_hit_id].append((probeset,ed.ExonID())) ### Record which probesets actually match to which proteins (e.g. informs you which align to which nulls too) except KeyError: positive_protein_associations[protein_hit_id] = [(probeset,ed.ExonID())] except KeyError: null=[] ###Determine for each null and hit proteins, what exons are they typically associated with (probably not too informative but record anyways) for probeset in probeset_protein_db: ep = probeset_protein_db[probeset] try: null_tuple_exonid_list = positive_protein_associations[ep.NullProteinID()] null_exonid_list = formatExonLists(null_tuple_exonid_list) except KeyError: null_exonid_list = [] hit_tuple_exonid_list = positive_protein_associations[ep.HitProteinID()] hit_exonid_list = formatExonLists(hit_tuple_exonid_list) ep.RecordHitProteinExonIDs(hit_exonid_list) ep.RecordNullProteinExonIDs(null_exonid_list) #a = ep.HitProteinExonIDs() #b = ep.NullProteinExonIDs() #print ep.HitProteinExonIDs() #print ep.NullProteinExonIDs();kill return probeset_protein_db,protein_sequence_db def formatExonLists(exonid_tuple_lists): exonid_list=[]; exonid_tuple_lists.sort() for (probeset,exonid) in exonid_tuple_lists: exonid_list.append(exonid) return exonid_list def import_existing_sequence_build(filename): fn=filepath(filename); transcript_cdna_sequence_dbase = {}; exon_sequence_database = {}; transcript_associations = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) try: array_geneid, altmerge, strand, dna_exon_seq, exon_structure, coding_seq, peptide_length, reference_seq_name,reference_seq, ref_AC, full_length, start_exon, stop_exon, null,null,null,null,refseq_mRNA,null,null,null,null,null,null,null,nmd_call = string.split(data,'\t') except ValueError: t = string.split(data,'\t');print len(t);kill if array_geneid == 'array_geneid': title = data else: dna_exon_seq = dna_exon_seq[0:-3] #there is a "***" at the end of each transcript sequence dna_exon_seq = string.split(dna_exon_seq,'('); dna_exon_seq = dna_exon_seq[1:] #get rid of the first blank generated by parsing ### separate the exon number and exon sequence into a tuple and store in order within 'exon_seq_tuple_list' mRNA_length = 0; exon_seq_tuple_list = [] for exon_seq in dna_exon_seq: #exon_seq : E20)tccccagctttgggtggtgg exon_num, dna_seq = string.split(exon_seq,')'); mRNA_length += len(dna_seq) if mRNA_length > 18: esd = ExonSequenceData(array_geneid,exon_num,dna_seq,mRNA_length,strand) exon_sequence_database[array_geneid,exon_num] = esd transcript_data = [int(peptide_length), altmerge,[start_exon, stop_exon], exon_structure, nmd_call, full_length, coding_seq, strand, reference_seq,ref_AC,float(mRNA_length),refseq_mRNA] try: transcript_cdna_sequence_dbase[array_geneid].append(transcript_data) except KeyError: transcript_cdna_sequence_dbase[array_geneid] = [transcript_data] transcript_associations[array_geneid,exon_structure] = altmerge print "\nNumber of exon sequences imported",len(exon_sequence_database) print "Number of transcript sequences imported: ",len(transcript_cdna_sequence_dbase) return transcript_cdna_sequence_dbase, transcript_associations, exon_sequence_database def exportAltMouseExonSequence(): probeset_exon_db={}; x=0 species = 'Mm'; array_type = 'AltMouse' critical_exon_import_file = 'AltDatabase/Mm/AltMouse/AltMouse_junction-comparisons.txt' update.verifyFile(critical_exon_import_file,array_type) critical_exon_db={}; critical_probesets={} fn=filepath(critical_exon_import_file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) gene,probeset1,probeset2,critical_exons=string.split(data,'\t') critical_exons= string.split(critical_exons,'|') for exon in critical_exons: try: critical_exon_db[gene,exon].append(probeset1+'-'+probeset2) except KeyError: critical_exon_db[gene,exon] = [probeset1+'-'+probeset2] critical_probesets[probeset1]=[]; critical_probesets[probeset2]=[] probeset_annotations_file = "AltDatabase/Mm/AltMouse/MASTER-probeset-transcript.txt" update.verifyFile(probeset_annotations_file,array_type) fn=filepath(probeset_annotations_file) for line in open(fn,'rU').xreadlines(): probeset_data = cleanUpLine(line) #remove endline if x==0: x=1 else: probeset,affygene,exons,transcript_num,transcripts,probe_type_call,ensembl,block_exon_ids,block_structure,comparison_info = string.split(probeset_data,'\t') if probeset in critical_probesets: exons = exons[:-1]; exons = string.split(exons,'-') affygene = affygene[:-1] if '|' in exons: print exons;kill probeset_exon_db[probeset,affygene]=exons exon_protein_sequence_file = "AltDatabase/Mm/AltMouse/SEQUENCE-transcript-dbase.txt" update.verifyFile(exon_protein_sequence_file,array_type) transcript_cdna_sequence_dbase,transcript_associations,exon_sequence_database = import_existing_sequence_build(exon_protein_sequence_file) critical_exon_seq_export = 'AltDatabase/Mm/AltMouse/AltMouse_critical-exon-seq.txt' update.verifyFile(critical_exon_seq_export,array_type) fn=filepath(critical_exon_seq_export) data = open(fn,'w') title = ['Affygene:exon','critical_exon-num','critical-probeset-comps']; title = string.join(title,'\t')+'\n'; data.write(title) for (gene,exon_num) in critical_exon_db: probeset_comp_list = critical_exon_db[(gene,exon_num)]; probeset_comp_list = string.join(probeset_comp_list,'|') try: ###Restrict export to previously exported critical exons (ExonAnnotate_module) exon_sequence_database[(gene,exon_num)]; esd = exon_sequence_database[(gene,exon_num)] exon_seq = esd.ExonSeq() exon_data = string.join([gene+':'+exon_num,probeset_comp_list,exon_seq],'\t')+'\n' data.write(exon_data) except KeyError: null=[] data.close() probeset_seq_file = 'AltDatabase/Mm/AltMouse/probeset_sequence_reversed.txt' update.verifyFile(probeset_seq_file,array_type) probeset_seq_db={}; x=0 fn=filepath(probeset_seq_file) for line in open(fn,'rU').xreadlines(): if x == 0: x=1 else: data = cleanUpLine(line); t = string.split(data,'\t') probeset = t[0] probeset_seq_list = t[1:] probeset_seq_db[probeset] = probeset_seq_list critical_junction_seq_export = 'AltDatabase/Mm/AltMouse/AltMouse_critical-junction-seq.txt' update.verifyFile(critical_junction_seq_export,array_type) fn=filepath(critical_junction_seq_export) data = open(fn,'w'); x=0; k=0;l=0 title = ['probeset','probeset-seq','junction-seq']; title = string.join(title,'\t')+'\n'; data.write(title) for (probeset,gene) in probeset_exon_db: junction_seq = []; y=0; positions=[] try: probeset_seq_list = probeset_seq_db[probeset] for exon_num in probeset_exon_db[(probeset,gene)]: try: ###Restrict export to previously exported critical exons (ExonAnnotate_module) exon_sequence_database[(gene,exon_num)]; esd = exon_sequence_database[(gene,exon_num)] exon_seq = esd.ExonSeq(); strand = esd.Strand() junction_seq.append(exon_seq); y+=1 #exon_data = string.join([gene+':'+exon_num,probeset_comp_list,exon_seq],'\t')+'\n' #data.write(exon_data) except KeyError: null=[] #if 'E5' in probeset_exon_db[(probeset,gene)]: if y>0: if strand == '-': junction_seq.reverse() junction_seq_str = string.join(junction_seq,'') junction_seq_str = string.upper(junction_seq_str) not_found = 0 for probeset_seq in probeset_seq_list: #probeset_seq = reverse_string(probeset_seq) probeset_seq_rev = reverse_orientation(probeset_seq) if probeset_seq in junction_seq_str: f = string.find(junction_seq_str,probeset_seq) positions.append((f,len(probeset_seq))) k+=1 else: not_found = 1 x+=1 if not_found == 1: new_probeset_seq = probeset_seq_list[0] ###pick the first probe sequence found if len(positions)>0: positions.sort() new_probeset_seq = junction_seq_str[positions[0][0]:positions[-1][0]+positions[-1][1]] #print new_probeset_seq,positions, probeset,probeset_exon_db[(probeset,gene)],probeset_seq_list,junction_seq;kill junction_seq = string.join(junction_seq,'|') ###indicate where the junction is probe_seq_data = string.join([probeset,new_probeset_seq,junction_seq],'\t')+'\n' data.write(probe_seq_data) except KeyError: null=[] data.close() print k,x def reverse_orientation(sequence): """reverse the orientation of a sequence (opposite strand)""" exchange = [] for nucleotide in sequence: if nucleotide == 'A': nucleotide = 'T' elif nucleotide == 'T': nucleotide = 'A' elif nucleotide == 'G': nucleotide = 'C' elif nucleotide == 'C': nucleotide = 'G' exchange.append(nucleotide) complementary_sequence = reverse_string(exchange) return complementary_sequence def reverse_string(astring): "http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65225" revchars = list(astring) # string -> list of chars revchars.reverse() # inplace reverse the list revchars = ''.join(revchars) # list of strings -> string return revchars def compareProteinFeatures(protein_ft,neg_coding_seq,pos_coding_seq): ###Parse out ft-information. Generate ft-fragment sequences for querying ###This is a modification of the original script from FeatureAlignment but simplified for exon analysis protein_ft_unique=[]; new_ft_list = [] for ft_data in protein_ft: ft_name = ft_data.PrimaryAnnot(); domain_seq = ft_data.DomainSeq(); annotation = ft_data.SecondaryAnnot() protein_ft_unique.append((ft_name,annotation,domain_seq)) ###Redundant entries that are class objects can't be eliminated, so save to a new list and eliminate redundant entries protein_ft_unique = unique.unique(protein_ft_unique) for (ft_name,annotation,domain_seq) in protein_ft_unique: ft_length = len(domain_seq) new_ft_data = 'null',domain_seq,ft_name,annotation new_ft_list.append(new_ft_data) new_ft_list = unique.unique(new_ft_list) pos_ft = []; neg_ft = []; all_fts = [] for (pos,seq,ft_name,annot) in new_ft_list: if seq in pos_coding_seq: pos_ft.append([pos,seq,ft_name,annot]); all_fts.append([pos,seq,ft_name,annot]) if seq in neg_coding_seq: neg_ft.append([pos,seq,ft_name,annot]); all_fts.append([pos,seq,ft_name,annot]) all_fts = unique.unique(all_fts) pos_ft_missing=[]; neg_ft_missing=[] for entry in all_fts: if entry not in pos_ft: pos_ft_missing.append(entry) if entry not in neg_ft: neg_ft_missing.append(entry) pos_ft_missing2=[]; neg_ft_missing2=[] for entry in pos_ft_missing: entry[1] = ''; pos_ft_missing2.append(entry) for entry in neg_ft_missing: entry[1] = ''; neg_ft_missing2.append(entry) pos_ft_missing2 = unique.unique(pos_ft_missing2) neg_ft_missing2 = unique.unique(neg_ft_missing2) return neg_ft_missing2,pos_ft_missing2 def getFeatureIsoformGenomePositions(species,protein_ft_db,mRNA_protein_seq_db,gene_transcript_db,coordinate_type): """ Adapted from compareProteinFeatures but for one isoform and returns genomic coordinates for each feature This function is designed to export all unique isoforms rather than just comparison isoforms """ import export export_file = 'AltDatabase/ensembl/'+species+'/ProteinFeatureIsoform_complete.txt' export_data = export.ExportFile(export_file) failed = 0 worked = 0 failed_ac=[] for gene in protein_ft_db: transcript_feature_db={} for ft in protein_ft_db[gene]: try: ft_name = ft.PrimaryAnnot(); annotation = ft.SecondaryAnnot() for (mRNA,type) in gene_transcript_db[gene]: try: protein,protein_seq = mRNA_protein_seq_db[mRNA] error = False except Exception: failed_ac.append(mRNA) error = True if error == False: if ft.DomainSeq() in protein_seq: #if coordinate_type == 'genomic': pos1_genomic = ft.GenomicStart(); pos2_genomic = ft.GenomicStop() #else: pos1 = str(ft.DomainStart()); pos2 = str(ft.DomainEnd()) ### There are often many features that overlap within a transcript, so consistently pick just one if mRNA in transcript_feature_db: db = transcript_feature_db[mRNA] if (pos1,pos2) in db: db[pos1, pos2].append([pos1_genomic, pos2_genomic, protein,ft_name,annotation]) else: db[pos1, pos2]=[[pos1_genomic, pos2_genomic, protein,ft_name,annotation]] else: db={} db[pos1, pos2]=[[pos1_genomic, pos2_genomic, protein,ft_name,annotation]] transcript_feature_db[mRNA] = db #values = [mRNA, protein, pos1, pos2,ft_name,annotation]; unique_entries.append(values) worked+=1 except IOError: failed+=1 for transcript in transcript_feature_db: db = transcript_feature_db[transcript] for (pos1,pos2) in db: db[pos1,pos2].sort() ### Pick the alphabetically listed first feature pos1_genomic, pos2_genomic, protein,ft_name,annotation = db[pos1,pos2][0] values = [transcript, protein, pos1, pos2,pos1_genomic, pos2_genomic, ft_name,annotation] export_data.write(string.join(values,'\t')+'\n') export_data.close() print failed,'features failed to have corresponding aligned genomic locations out of', worked+failed failed_ac = unique.unique(failed_ac) print len(failed_ac),'mRNAs without identified/in silico derived proteins' ### Appear to be ncRNAs without ATGs print failed_ac[:20] def identifyAltIsoformsProteinComp(probeset_gene_db,species,array_type,protein_domain_db,compare_all_features,data_type): """ This function is used by the module IdentifyAltIsoforms to run 'characterizeProteinLevelExonChanges'""" global protein_ft_db; protein_ft_db = protein_domain_db; protein_domain_db=[] exon_db={} ### Create a simplified version of the exon_db dictionary with probesets that map to a match and null protein for probeset in probeset_gene_db: gene, exon_id = probeset_gene_db[probeset] ep = ExonProteinAlignmentData(gene,probeset,exon_id,'',''); exon_db[probeset] = ep global protein_sequence_db if compare_all_features == 'yes': type = 'seqcomp' else: type = 'exoncomp' if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': exon_protein_sequence_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/'+'SEQUENCE-protein-dbase_'+type+'.txt' else: exon_protein_sequence_file = 'AltDatabase/'+species+'/'+array_type+'/'+'SEQUENCE-protein-dbase_'+type+'.txt' probeset_protein_db,protein_sequence_db = importExonSequenceBuild(exon_protein_sequence_file,exon_db) exon_hits={} for probeset in probeset_protein_db: gene = probeset_protein_db[probeset].GeneID() exon_hits[gene,probeset]=[] include_sequences = 'no' ### Sequences for comparisons are unnecessary to store. List array-type as exon since AltMouse data has been re-organized, later get rid of AltMouse specific functionality in this function functional_attribute_db,protein_features = characterizeProteinLevelExonChanges(species,exon_hits,probeset_protein_db,'exon',include_sequences) if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/probeset-domain-annotations-'+type+'.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/probeset-domain-annotations-'+type+'.txt' formatAttributeForExport(protein_features,export_file) if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/probeset-protein-annotations-'+type+'.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/probeset-protein-annotations-'+type+'.txt' formatAttributeForExport(functional_attribute_db,export_file) def formatAttributeForExport(attribute_db,filename): from build_scripts import IdentifyAltIsoforms export_db={} for (gene,probeset) in attribute_db: attribute_list = attribute_db[(gene,probeset)]; attribute_list2=[] for (attribute,direction) in attribute_list: attribute = string.replace(attribute,'|',' ') attribute_list2.append(attribute+'|'+direction) export_db[probeset]=attribute_list2 print 'Exporting:',filename IdentifyAltIsoforms.exportSimple(export_db,filename,'') def importTranscriptBiotypeAnnotations(species): filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-biotypes.txt' accepted_biotypes = ['nonsense_mediated_decay','non_coding','retained_intron','retrotransposed'] fn=filepath(filename); biotype_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) gene,transcript,biotype = string.split(data,'\t') if biotype in accepted_biotypes: biotype_db[transcript] = biotype return biotype_db def characterizeProteinLevelExonChanges(species,exon_hits,probeset_protein_db,array_type,include_sequences): """Examines the the two reciprocal isoforms for overal changes in protein sequence and general sequence composition""" try: biotype_db = importTranscriptBiotypeAnnotations(species) except Exception: biotype_db={} functional_attribute_db={}; protein_features={} for (array_geneid,uid) in exon_hits: ###uid is probeset or (probeset1,probeset2) value, depending on array_type if array_type != 'exon' and array_type != 'gene': probeset,probeset2 = uid else: probeset = uid hv=0 try: pp = probeset_protein_db[probeset]; hv=1 pos_ref_AC = pp.HitProteinID() neg_ref_AC = pp.NullProteinID() if array_type != 'exon' and array_type != 'gene': ### Instead of using the null_hit, use the second junction probeset try: np = probeset_protein_db[probeset2]; neg_ref_AC = np.HitProteinID() except KeyError: null =[] ###just use the existing null except KeyError: ###occurs if there is not protein associated with the first probeset (NA for exon arrays) if array_type != 'exon' and array_type != 'gene': ###Reverse of above try: np = probeset_protein_db[probeset2]; hv=2 pos_ref_AC = np.NullProteinID() neg_ref_AC = np.HitProteinID() except KeyError: hv=0 if hv!=0: neg_coding_seq = protein_sequence_db[neg_ref_AC] pos_coding_seq = protein_sequence_db[pos_ref_AC] pos_biotype=None; neg_biotype=None if pos_ref_AC in biotype_db: pos_biotype = biotype_db[pos_ref_AC] if neg_ref_AC in biotype_db: neg_biotype = biotype_db[neg_ref_AC] neg_length = len(neg_coding_seq) pos_length = len(pos_coding_seq) pos_length = float(pos_length); neg_length = float(neg_length) if array_geneid in protein_ft_db: protein_ft = protein_ft_db[array_geneid] neg_ft_missing,pos_ft_missing = compareProteinFeatures(protein_ft,neg_coding_seq,pos_coding_seq) for (pos,blank,ft_name,annotation) in pos_ft_missing: call_x = '-' if len(annotation)>0: data_tuple = ft_name,call_x data_tuple = ft_name +'-'+annotation,call_x else: data_tuple = ft_name,call_x try: protein_features[array_geneid,uid].append(data_tuple) except KeyError: protein_features[array_geneid,uid] = [data_tuple] for (pos,blank,ft_name,annotation) in neg_ft_missing: ###If missing from the negative list, it is present in the positive state call_x = '+' if len(annotation)>0: data_tuple = ft_name,call_x data_tuple = ft_name +'-'+annotation,call_x else: data_tuple = ft_name,call_x try: protein_features[array_geneid,uid].append(data_tuple) except KeyError: protein_features[array_geneid,uid] = [data_tuple] call='' if pos_biotype != None or neg_biotype !=None: ### For example, if one or both transcript(s) are annotated as nonsense_mediated_decay if (neg_length - pos_length)>0: call = '-' elif (pos_length - neg_length)>0: call = '+' else: call = '~' if pos_biotype != None: data_tuple = pos_biotype,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]= [data_tuple] if neg_biotype != None: data_tuple = neg_biotype,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]= [data_tuple] if pos_coding_seq[:5] != neg_coding_seq[:5]: function_var = 'alt-N-terminus' if (neg_length - pos_length)>0: call = '-' elif (pos_length - neg_length)>0: call = '+' else: call = '~' data_tuple = function_var,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]= [data_tuple] if pos_coding_seq[-5:] != neg_coding_seq[-5:]: #print probeset,(1-((neg_length - pos_length)/neg_length)), ((neg_length - pos_length)/neg_length),[neg_length],[pos_length] #print probeset,(1-((pos_length - neg_length)/pos_length)),((pos_length - neg_length)/pos_length) if (1-((neg_length - pos_length)/neg_length)) < 0.5 and ((neg_length - pos_length)/neg_length) > 0 and (pos_coding_seq[:5] == neg_coding_seq[:5]): function_var = 'truncated' call = '+'; data_tuple = function_var,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]=[data_tuple] elif (1-((pos_length - neg_length)/pos_length)) < 0.5 and ((pos_length - neg_length)/pos_length) > 0 and (pos_coding_seq[:5] == neg_coding_seq[:5]): function_var = 'truncated' call = '-'; data_tuple = function_var,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]=[data_tuple] else: function_var = 'alt-C-terminus' if (neg_length - pos_length)>0: call = '-' elif (pos_length - neg_length)>0: call = '+' else: call = '~' data_tuple = function_var,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]=[data_tuple] if call == '': if pos_coding_seq != neg_coding_seq: function_var = 'alt-coding' if (neg_length - pos_length)>0: call = '-' elif (pos_length - neg_length)>0: call = '+' else: call = '~' data_tuple = function_var,call try: functional_attribute_db[array_geneid,uid].append(data_tuple) except KeyError: functional_attribute_db[array_geneid,uid]= [data_tuple] ### Record change in peptide size if neg_length > pos_length: fcall = '-' elif neg_length < pos_length: fcall = '+' elif neg_length == pos_length: fcall = '~' if len(pos_ref_AC)<1: pos_ref_AC = 'NULL' if len(neg_ref_AC)<1: neg_ref_AC = 'NULL' if fcall == '-': function_var1 = 'AA:' + str(int(pos_length))+'('+pos_ref_AC+')' +'->'+ str(int(neg_length))+'('+neg_ref_AC+')' if include_sequences == 'yes': function_var2 = 'sequence: ' +'('+pos_ref_AC+')'+pos_coding_seq +' -> '+ '('+neg_ref_AC+')'+neg_coding_seq else: function_var1 = 'AA:' +str(int(neg_length))+ '('+neg_ref_AC+')' +'->'+ str(int(pos_length))+'('+pos_ref_AC+')' if include_sequences == 'yes': function_var2 = 'sequence: ' +'('+neg_ref_AC+')'+neg_coding_seq +' -> '+'('+pos_ref_AC+')'+pos_coding_seq data_tuple1 = function_var1,fcall try: functional_attribute_db[array_geneid,uid].append(data_tuple1) except KeyError: functional_attribute_db[array_geneid,uid]= [data_tuple1] ### Record sequence change if include_sequences == 'yes': data_tuple2 = function_var2,fcall try: functional_attribute_db[array_geneid,uid].append(data_tuple2) except KeyError: functional_attribute_db[array_geneid,uid]= [data_tuple2] print len(functional_attribute_db),'Genes with affected functional attributes' return functional_attribute_db,protein_features def combine_databases(db1,db2): for key in db2: if key not in db1: db1[key] = db2[key] return db1 if __name__ == '__main__': species = 'Mm'; array_type='AltMouse' probeset_protein_db = exon_sequence_database protein_sequence_db = uniprot_seq_string exon_hits={} exon_hits[('ENSG00000130939', 'E9-3|')] = [['E9-3', '2319586']] functional_attribute_db,protein_features = characterizeProteinLevelExonChanges(exon_hits,probeset_protein_db) sys.exit() exon_protein_sequence_file = "AltDatabase/"+species+"/"+array_type+"/"+"SEQUENCE-protein-dbase.txt" transcript_cdna_sequence_dbase,uniprot_seq_string = importExonSequenceBuild(exon_protein_sequence_file) sys.exit()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ExonAnalyze_module.py
ExonAnalyze_module.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import export import update ############ File Import Functions ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".all" or entry[-5:] == ".data" or entry[-3:] == ".fa": dir_list2.append(entry) return dir_list2 def returnDirectories(sub_dir): dir=os.path.dirname(dirfile.__file__) dir_list = os.listdir(dir + sub_dir) ###Below code used to prevent FILE names from being included dir_list2 = [] for entry in dir_list: if "." not in entry: dir_list2.append(entry) return dir_list2 class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getEnsemblAnnotations(filename,symbol_ensembl_db): fn=filepath(filename) print 'importing', filename verifyFile(filename,species) ### Makes sure file is local and if not downloads. for line in open(fn,'r').xreadlines(): data, newline= string.split(line,'\n') t = string.split(data,'\t'); ensembl=t[0] try: symbol = t[2] except IndexError: symbol = '' if len(symbol)>1 and len(ensembl)>1: try: symbol_ensembl_db[string.upper(symbol)].append(ensembl) except KeyError: symbol_ensembl_db[string.upper(symbol)] = [ensembl] return symbol_ensembl_db def getCurrentEnsembls(symbol_ensembl_old): ### Get Ensembl gene annotaitons for the current version of Ensembl only filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations_simple.txt' symbol_ensembl_current = getEnsemblAnnotations(filename,{}) all_current_ensembls={} for symbol in symbol_ensembl_current: if len(symbol_ensembl_current[symbol][0])<3: print symbol_ensembl_current[symbol][0] all_current_ensembls[symbol_ensembl_current[symbol][0]] = [] ### Augment with UniProt Symbols and Aliases uniprot_symbol_ensembl = importUniProtAnnotations() for symbol in uniprot_symbol_ensembl: ensembls = uniprot_symbol_ensembl[symbol] if symbol not in symbol_ensembl_current: for ensembl in ensembls: if ensembl in all_current_ensembls: try: symbol_ensembl_current[symbol].append(ensembl) except Exception: symbol_ensembl_current[symbol] = [ensembl] for symbol in symbol_ensembl_old: ensembls = symbol_ensembl_old[symbol] if symbol not in symbol_ensembl_current: for ensembl in ensembls: if ensembl in all_current_ensembls: try: symbol_ensembl_current[symbol].append(ensembl) except Exception: symbol_ensembl_current[symbol] = [ensembl] return symbol_ensembl_current def processEnsemblAnnotations(): global redundant_ensembl_by_build; redundant_ensembl_by_build={}; symbol_ensembl={} ###This is done for archived gene annotations from Ensembl filename = 'AltDatabase/miRBS/'+species+'/'+species+'_Ensembl-annotations_simple.txt' try: symbol_ensembl = getEnsemblAnnotations(filename,symbol_ensembl) except Exception: symbol_ensembl={} filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations_simple.txt' symbol_ensembl_current = getCurrentEnsembls(symbol_ensembl) for symbol in symbol_ensembl_current: for ensembl in symbol_ensembl_current[symbol]: try: symbol_ensembl[symbol].append(ensembl) except Exception: symbol_ensembl[symbol] = [ensembl] for symbol in symbol_ensembl: if len(symbol_ensembl[symbol])>1: ###Thus there are more than one Ensembl gene IDs that correspond... probably due to versioning (which we've seen) for ensembl in symbol_ensembl[symbol]: for ensembl2 in symbol_ensembl[symbol]: if ensembl != ensembl2: try: redundant_ensembl_by_build[ensembl].append(ensembl2) except KeyError: redundant_ensembl_by_build[ensembl] = [ensembl2] print 'len(symbol_ensembl)',len(symbol_ensembl) for transcript in ens_gene_to_transcript: if len(ens_gene_to_transcript[transcript])>1: for ensembl in ens_gene_to_transcript[transcript]: for ensembl2 in ens_gene_to_transcript[transcript]: if ensembl != ensembl2: try: redundant_ensembl_by_build[ensembl].append(ensembl2) except KeyError: redundant_ensembl_by_build[ensembl] = [ensembl2] redundant_ensembl_by_build = eliminateRedundant(redundant_ensembl_by_build) return symbol_ensembl,symbol_ensembl_current def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term in data_dir: matches.append(data_dir) return matches class MicroRNATargetData: def __init__(self,gene,gene_symbol,mir,mir_sequences,source): self._geneid = gene; self._symbol = gene_symbol; self._mir = mir; self._source = source; self._mir_sequences = mir_sequences def MicroRNA(self): return self._mir def GeneID(self): return self._geneid def Symbol(self): return self._symbol def Source(self): return self._source def Sequences(self): return self._mir_sequences def setScore(self,score): self.score = score def setCoordinates(self,coord): self.coord = coord def Score(self): return self.score def Coordinates(self): return self.coord def Output(self): export_line=string.join([self.MicroRNA(),self.GeneID(),self.Sequences(),self.Coordinates()],'\t')+'\n' return export_line def Report(self): output = self.GeneID() return output def __repr__(self): return self.Report() def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def mirHitImport(): try: filename = 'AltDatabase/miRBS/'+species+'/'+'hits.txt' print 'parsing', filename fn=filepath(filename); x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: mir = t[0]; fold = t[1]; mir_hit_db[mir] = fold except IOError: mir_hit_db={} def importExpressionData(): global upregulated; global downregulated try: filename = 'AltDatabase/miRBS/'+species+'/'+'expression-data.txt' print 'parsing', filename fn=filepath(filename); x=0; upregulated={}; downregulated={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: gene = t[0]; log_fold_change = float(t[-2]); ttest = float(t[-1]) if ttest<0.05 and log_fold_change>1: upregulated[gene] = log_fold_change,ttest if ttest<0.05 and log_fold_change<-1: downregulated[gene] = log_fold_change,ttest except IOError: upregulated={}; downregulated={} def pictarImport(parse_sequences,type,added): """Annotations originally from the file: ng1536-S3.xls, posted as supplementary data at: http://www.nature.com/ng/journal/v37/n5/suppinfo/ng1536_S1.html. The file being parsed here has been pre-matched to Ensembl IDs using the ExonModule of LinkEST, for human.""" mir_sequences=[] if species == 'Mm': filename = 'AltDatabase/miRBS/'+species+'/'+'pictar-target-annotated.txt'; tax = '10090' else: filename = 'AltDatabase/miRBS/'+'Mm'+'/'+'pictar-target-annotated.txt'; tax = '10116' #if species == 'Hs': filename = 'AltDatabase/miRBS/'+species+'/'+'pictar-conserved-targets-2005.txt'; tax = '9606' if type == 'pre-computed': if species == 'Hs': filename = 'AltDatabase/miRBS/'+species+'/'+'pictar-conserved-targets-2005.txt'; tax = '9606' else: if species == 'Hs': filename = 'AltDatabase/miRBS/'+'Mm'+'/'+'pictar-target-annotated.txt'; tax = '9606' import AltAnalyze ###Get taxid annotations from the GO-Elite config species_annot_db=AltAnalyze.importGOEliteSpeciesInfo(); tax_db={} for species_full in species_annot_db: if species==species_annot_db[species_full].SpeciesCode(): tax = species_annot_db[species_full].TaxID() print 'parsing', filename; count=0 print 'len(symbol_ensembl)', len(symbol_ensembl) verifyFile(filename,species) ### Makes sure file is local and if not downloads. fn=filepath(filename); x=1 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: if species == 'Hs': if type == 'pre-computed': ensembl_geneid, mir, mir_sequences = t; ensembl_geneids = [ensembl_geneid] else: symbol=string.upper(t[2]);mir=t[6];mir_sequences=t[11] if symbol in symbol_ensembl and len(symbol)>0: ensembl_geneids=symbol_ensembl[symbol] else: ensembl_geneids=[''] elif species == 'Mm': mm_symbol=string.upper(t[3]);mir=t[6];mir_sequences=t[11]; mir = string.replace(mir,'hsa','mmu') if mm_symbol in symbol_ensembl and len(mm_symbol)>0: ensembl_geneids=symbol_ensembl[mm_symbol] else: ensembl_geneids=[''] elif species == 'Rn': mm_symbol=string.upper(t[3]);mir=t[6];mir_sequences=t[11]; mir = string.replace(mir,'hsa','rno') if mm_symbol in symbol_ensembl and len(mm_symbol)>0: ensembl_geneids=symbol_ensembl[mm_symbol] else: ensembl_geneids=[''] else: mm_symbol=string.upper(t[3]);mir=t[6];mir_sequences=t[11] if mm_symbol in symbol_ensembl and len(mm_symbol)>0: ensembl_geneids=symbol_ensembl[mm_symbol] else: ensembl_geneids=[''] for ensembl_geneid in ensembl_geneids: if len(ensembl_geneid)>1 and (ensembl_geneid,mir) not in added: if parse_sequences == 'yes': if (mir,ensembl_geneid) in combined_results: combined_results[(mir,ensembl_geneid)].append(string.upper(mir_sequences)); count+=1 else: #if count < 800 and '-125b' in mir: print ensembl_geneid, mir, mm_symbol; count+=1 #elif count>799: kill y = MicroRNATargetData(ensembl_geneid,'',mir,mir_sequences,'pictar'); count+=1 try: microRNA_target_db[mir].append(y) except KeyError: microRNA_target_db[mir] = [y] added[(ensembl_geneid,mir)]=[] print count, 'miRNA-target relationships added for PicTar' return added def sangerImport(parse_sequences): """"Sanger center (miRBase) sequence was provided as a custom (requested) dump of their v5 target predictions (http://microrna.sanger.ac.uk/targets/v5/), containing Ensembl gene IDs, microRNA names, and putative target sequences, specific for either mouse or human. Mouse was requested in late 2005 whereas human in late 2007. These same annotation files, missing the actual target sequence but containing an ENS transcript and coordinate locations for that build (allowing seqeunce extraction with the appropriate Ensembl build) exist at: http://microrna.sanger.ac.uk/cgi-bin/targets/v5/download.pl""" if species == 'Hs': filename = 'AltDatabase/miRBS/'+species+'/'+'mirbase-v5_homo_sapiens.mirna.txt'; prefix = 'hsa-' if species == 'Rn': filename = 'AltDatabase/miRBS/'+species+'/'+'sanger_miR_target_predictions.txt'; prefix = 'rno-' if species == 'Mm': filename = 'AltDatabase/miRBS/'+species+'/'+'sanger_miR_target_predictions.txt'; prefix = 'mmu-' print 'parsing', filename; count=0 fn=filepath(filename); x=1; mir_sequences=[] verifyFile(filename,species) ### Makes sure file is local and if not downloads. for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: ensembl_geneids=[] if species == 'Hs': try: mir = t[1]; ens_transcript = t[2]; ensembl_geneid = t[17]; mir_sequences = string.upper(t[14]) ensembl_geneids.append(ensembl_geneid) except IndexError: print line;kill elif species == 'Mm': ens_transcript,mir,mir_sequences = t if ens_transcript in ens_gene_to_transcript: ensembl_geneids = ens_gene_to_transcript[ens_transcript]; ensembl_geneid = ensembl_geneids[0] elif species == 'Rn': ensembl_geneid,mir,mir_sequences = t mir_sequences = string.lower(mir_sequences); mir = string.replace(mir,'hsa','rno'); mir = string.replace(mir,'mmu','rno') ensembl_geneids=[ensembl_geneid] geneid_ls=[] #mir_sequences = string.replace(mir_sequences,'-',''); mir_sequences = string.replace(mir_sequences,'=','') #mir_sequences = string.upper(mir_sequences) #if 'GGCTCCTGTCACCTGGGTCCGT' in mir_sequences: #print ensembl_geneid, mir; sys.exit() for ensembl_geneid in ensembl_geneids: if ensembl_geneid in redundant_ensembl_by_build: ###Thus there are redundant geneids geneid_ls += redundant_ensembl_by_build[ensembl_geneid]+[ensembl_geneid] else: geneid_ls += [ensembl_geneid] if species == 'Hs': if ens_transcript in ens_gene_to_transcript: geneid_ls+= ens_gene_to_transcript[ens_transcript] geneid_ls = unique.unique(geneid_ls) if len(geneid_ls) == 1 and geneid_ls[0]=='': null =[] ###not a valid gene elif prefix in mir: for ensembl_geneid in geneid_ls: if parse_sequences == 'yes': if (mir,ensembl_geneid) in combined_results: mir_sequences = string.replace(mir_sequences,'-',''); mir_sequences = string.replace(mir_sequences,'=',''); count+=1 combined_results[(mir,ensembl_geneid)].append(string.upper(mir_sequences)) else: if prefix in mir: y = MicroRNATargetData(ensembl_geneid,'',mir,mir_sequences,'mirbase'); count+=1 try: microRNA_target_db[mir].append(y) except KeyError: microRNA_target_db[mir] = [y] print count, 'miRNA-target relationships added for mirbase' def downloadFile(file_type): import UI file_location_defaults = UI.importDefaultFileLocations() try: fld = file_location_defaults[file_type] url = fld.Location() except Exception: for fl in fld: if species in fl.Species(): url = fl.Location() if 'Target' in file_type: output_dir = 'AltDatabase/miRBS/' else: output_dir = 'AltDatabase/miRBS/'+species + '/' gz_filepath, status = update.download(url,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except Exception: status = status filename = string.replace(gz_filepath,'.zip','.txt') filename = string.replace(filename,'.gz','.txt') filename = string.replace(filename,'.txt.txt','.txt') return filename def verifyExternalDownload(file_type): ### Adapted from the download function - downloadFile() import UI file_location_defaults = UI.importDefaultFileLocations() try: fld = file_location_defaults[file_type] url = fld.Location() except Exception: for fl in fld: if species in fl.Species(): url = fl.Location() if 'Target' in file_type: output_dir = 'AltDatabase/miRBS/' else: output_dir = 'AltDatabase/miRBS/'+species + '/' filename = url.split('/')[-1] output_filepath = filepath(output_dir+filename) filename = string.replace(output_filepath,'.zip','.txt') filename = string.replace(filename,'.gz','.txt') filename = string.replace(filename,'.txt.txt','.txt') counts = verifyFile(filename,'counts') if counts < 9: validated = 'no' else: validated = 'yes' return validated, filename def TargetScanImport(parse_sequences,force): """The TargetScan data is currently extracted from a cross-species conserved family file. This file only contains gene symbol, microRNA name and 3'UTR seed locations.""" if species == 'Mm': tax = '10090'; prefix = 'mmu-' elif species == 'Hs': tax = '9606'; prefix = 'hsa-' elif species == 'Rn': tax = '10116'; prefix = 'rno-' else: prefix = 'hsa-' import AltAnalyze ###Get taxid annotations from the GO-Elite config species_annot_db=AltAnalyze.importGOEliteSpeciesInfo(); tax_db={} for species_full in species_annot_db: if species==species_annot_db[species_full].SpeciesCode(): tax = species_annot_db[species_full].TaxID() global l ### See if the files are already there verifyTSG, target_scan_target_file = verifyExternalDownload('TargetScanGenes') verifyTSS, target_scan_sequence_file = verifyExternalDownload('TargetScanSequences') if verifyTSG == 'no' or verifyTSS == 'no': ### used to be - if force == 'yes' if parse_sequences == 'no': ### Then download the latest annotations and sequences target_scan_target_file = downloadFile('TargetScanGenes') target_scan_sequence_file = downloadFile('TargetScanSequences') ### Cross-species TargetScan file with UTR seqeunces for all genes with reported targets in the conserved family file ### Although this file includes valid sequence data that appears to match up to the target file, the target file ### appears to only list the seed seqeunce location (UTR start and stop) and not the full binding sequence and thus ### is not ammenable to probe set alignment. print 'parsing', target_scan_sequence_file fn=filepath(target_scan_sequence_file); x=0; target_scan_gene_utr_seq={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: symbol = string.upper(t[2]); tax_id = t[3]; utr_seq = t[4] if tax_id == tax: utr_seq_no_gaps = string.replace(utr_seq,'-','') utr_seq_no_gaps = string.replace(utr_seq_no_gaps,'U','T') if symbol in symbol_ensembl_current and len(utr_seq_no_gaps)>0: target_scan_gene_utr_seq[symbol] = utr_seq_no_gaps print 'UTR sequence for',len(target_scan_gene_utr_seq),'TargetScan genes stored in memory.' mir_sequences = []; count=0 print 'parsing', target_scan_target_file #verifyFile(target_scan_target_file,species) ### Makes sure file is local and if not downloads. fn=filepath(target_scan_target_file); x=0; k=[]; l=[] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 data = string.lower(data) t = string.split(data,'\t') i=0 for value in t: if 'mir' in value: m = i elif 'gene id' in value: g = i elif 'gene symbol' in value: s = i elif 'transcript' in value: r = i elif 'species id' in value: txi = i elif 'utr start' in value: us = i elif 'utr end' in value: ue = i i+=1 else: mir = t[m]; geneid = t[g]; gene_symbol = string.upper(t[s]); taxid = t[txi]; utr_start = int(t[us]); utr_end = int(t[ue]) ### Old format #mir = t[0]; gene_symbol = string.upper(t[1]); taxid = t[2]; utr_start = t[3]; utr_end = t[4] if '/' in mir: mir_list=[] mirs = string.split(mir,'/') for mirid in mirs[1:]: mirid = 'miR-'+mirid mir_list.append(mirid) mir_list.append(mirs[0]) else: mir_list = [mir] if taxid == tax: ###human #target_scan_gene_utr_seq[symbol] = utr_seq_no_gaps if gene_symbol in symbol_ensembl_current: ensembl_geneids = symbol_ensembl_current[gene_symbol]; proceed = 'yes'; k.append(gene_symbol) else: proceed = 'no'; l.append(gene_symbol) if gene_symbol in target_scan_gene_utr_seq: ### TargetScan provides the core, while processed miRs are typically 22nt - seems to approximate other databases better adj_start = utr_start-15 if adj_start < 0: adj_start=0 mir_sequences = target_scan_gene_utr_seq[gene_symbol][adj_start:utr_end+1] #if string.lower(gene_symbol) == 'tns3' and mir == 'miR-182': print mir,gene_symbol,taxid,utr_start,utr_end,mir_sequences else: mir_sequences=[] ###Already multiple geneids associated with each symbol so don't need to worry about renundancy if proceed == 'yes': for ensembl_geneid in ensembl_geneids: for mir in mir_list: #if ensembl_geneid == 'ENSG00000137815' and mir == 'miR-214': print mir,gene_symbol,taxid,utr_start,utr_end,mir_sequences,target_scan_gene_utr_seq[gene_symbol];sys.exit() if parse_sequences == 'yes': if (prefix+mir,ensembl_geneid) in combined_results: combined_results[(prefix+mir,ensembl_geneid)].append(mir_sequences); count+=1 else: #if ensembl_geneid == 'ENSMUSG00000029467': print mir y = MicroRNATargetData(ensembl_geneid,gene_symbol,mir_sequences,prefix+mir,'TargetScan') count+=1 try: microRNA_target_db[prefix+mir].append(y) except KeyError: microRNA_target_db[prefix+mir] = [y] k = unique.unique(k); l = unique.unique(l) print 'ensembls-found:',len(k),', not found:',len(l) print l[:10] print count, 'miRNA-target relationships added for TargetScan' def mirandaImport(parse_sequences,force): """Miranda data is avaialble from two file types from different websites. The first is human-centric with multi-species target alignment information organized by Ensembl gene ID (http://cbio.mskcc.org/research/sander/data/miRNA2003/mammalian/index.html). A larger set of associations was also pulled from species specific files (http://www.microrna.org/microrna/getDownloads.do), where gene symbol was related to Ensembl gene. Both files provided target microRNA sequence.""" ### Then download the latest annotations and sequences if parse_sequences == 'coordinates': export_object = export.ExportFile('miRanda/'+species+'/miRanda.txt') print "Exporting to:"+'miRanda/'+species+'/miRanda.txt' verify, filename = verifyExternalDownload('miRanda') if verify == 'no': filename = downloadFile('miRanda') print 'parsing', filename; count=0; null_count=[] fn=filepath(filename); x=1; mir_sequences=[] verifyFile(filename,species) ### Makes sure file is local and if not downloads. for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: symbol = string.upper(t[3]); mir = t[1]; entrez_gene = t[2]; mir_sequences = string.upper(t[8]) mir_sequences = string.replace(mir_sequences,'-',''); mir_sequences = string.replace(mir_sequences,'=','') mir_sequences = string.replace(mir_sequences,'U','T') #if 'GGCTCCTGTCACCTGGGTCCGT' in mir_sequences: #print symbol, mir; sys.exit() ensembl_gene_ids = [] if symbol in symbol_ensembl_current: ensembl_gene_ids = symbol_ensembl_current[symbol] else: ensembl_gene_ids=[]; null_count.append(symbol) if len(ensembl_gene_ids) > 0: for ensembl_geneid in ensembl_gene_ids: if parse_sequences == 'yes': if (mir,ensembl_geneid) in combined_results: combined_results[(mir,ensembl_geneid)].append(string.upper(mir_sequences)); count+=1 else: y = MicroRNATargetData(ensembl_geneid,'',mir,mir_sequences,'miRanda'); count+=1 try: microRNA_target_db[mir].append(y) except KeyError: microRNA_target_db[mir] = [y] if parse_sequences == 'coordinates': """ genome_coord = string.split(t[13],':')[1:]; chr = 'chr'+ genome_coord[0] strand = genome_coord[-1]; start, stop = string.split(genome_coord[1],'-') """ genome_coord = t[13][1:-1] align_score = t[15] y.setScore(align_score); y.setCoordinates(genome_coord) export_object.write(y.Output()) print count, 'miRNA-target relationships added for miRanda' null_count = unique.unique(null_count) print len(null_count), 'missing symbols',null_count[:10] if parse_sequences == 'coordinates': export_object.close() def importEnsTranscriptAssociations(ens_gene_to_transcript,type): ###This function is used to extract out EnsExon to EnsTranscript relationships to find out directly ###which probesets associate with which transcripts and then which proteins if type == 'current': filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' else: filename = 'AltDatabase/miRBS/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' print 'parsing', filename fn=filepath(filename) verifyFile(filename,species) for line in open(fn,'rU').readlines(): data,null = string.split(line,'\n') t = string.split(data,'\t') ens_geneid,chr,strand,exon_start,exon_end,ens_exonid,constitutive_exon,ens_transcript_id = t try: ens_gene_to_transcript[ens_transcript_id].append(ens_geneid) except KeyError:ens_gene_to_transcript[ens_transcript_id] = [ens_geneid] ens_gene_to_transcript = eliminateRedundant(ens_gene_to_transcript) print 'len(ens_gene_to_transcript)',len(ens_gene_to_transcript) return ens_gene_to_transcript def findMirTargetOverlaps(): print 'Number of microRNAs to be analyzed:',len(mir_hit_db) print "Number of microRNAs which have predicted targets:", len(microRNA_target_db) combined_output = 'AltDatabase/'+species+'/SequenceData/'+'miRBS-combined_gene-targets.txt' data1 = export.ExportFile(combined_output) mir_gene_mult_hits={} for mir in microRNA_target_db: if mir in mir_hit_db: output_file = 'AltDatabase/'+species+'/SequenceData/'+mir+'_gene-targets.txt'; output_file = string.replace(output_file,'*','-') data = export.ExportFile(output_file); delete = {} data = export.ExportFile(output_file); delete = {} title = ['TargetID','Evidence']; title = string.join(title,'\t')+'\n'; data.write(title) matches=[]; source_mir_db = {}; hit=0 source_db={} for tg in microRNA_target_db[mir]: try: try: source_db[tg.GeneID()].append(tg.Source()) except KeyError: source_db[tg.GeneID()] = [tg.Source()] except TypeError: print tg.Source(),tg.GeneID();kill source_db = eliminateRedundant(source_db) for gene in source_db: for source in source_db[gene]: source_mir_db[source]=[] sources = string.join(source_db[gene],'|') y = MicroRNATargetData(gene,'',mir,'',sources) if mir in mir_hit_db: try: mir_gene_mult_hits[mir].append(y) except KeyError: mir_gene_mult_hits[mir] = [y] else: delete[mir] = [] values = [gene,sources]; values = string.join(values,'\t')+'\n' values2 = [mir,gene,sources]; values2 = string.join(values2,'\t')+'\n' if len(source_db[gene])>1: matches.append(gene) if mir in mir_hit_db: data.write(values); hit+=1 data1.write(values2) if mir in mir_hit_db: print len(source_db),'genes associated with',mir+'.',len(source_mir_db),'sources linked to gene. Targets with more than one associated Dbase:', len(matches) if mir in mir_hit_db: data.close() if len(source_mir_db)<4 or hit<5: try: del mir_gene_mult_hits[mir] except KeyError: null = [] os.remove(fn) data1.close() for mir in mir_gene_mult_hits: mir_fold = mir_hit_db[mir] if mir_fold>0: mir_direction = 'up' else: mir_direction = 'down' output_file = 'AltDatabase/regulated/'+mir+'_regualted-gene-targets.txt'; output_file = string.replace(output_file,'*','-') fn=filepath(output_file);data = open(fn,'w') title = ['TargetID','Evidence','CSd40_vs_ESCs-log_fold','CSd40_vs_ESCs-ttest']; title = string.join(title,'\t')+'\n'; data.write(title) hit = 0 if mir in mir_gene_mult_hits: for y in mir_gene_mult_hits[mir]: gene = y.GeneID(); sources = y.Source() if mir_direction == 'up': ###thus look for down-regulated targets if gene in downregulated: hit +=1 log_fold,ttest = downregulated[gene] values = [gene,sources,str(log_fold),str(ttest)]; values = string.join(values,'\t')+'\n';data.write(values) if mir_direction == 'down': ###thus look for up-regulated targets if gene in upregulated: log_fold,ttest = upregulated[gene] values = [gene,sources,str(log_fold),str(ttest)]; values = string.join(values,'\t')+'\n';data.write(values) print hit,'regualted target genes associated with',mir data.close() if hit<5: os.remove(fn) def eliminateRedundant(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def importUniProtAnnotations(): #g = GrabFiles(); g.setdirectory('/AltDatabase/miRBS/'+species); filenames = g.searchdirectory('UniProt') filename = 'AltDatabase/uniprot/'+species+'/uniprot_sequence.txt' fn=filepath(filename); uniprot_symbol_ensembl={} for line in open(fn,'rU').readlines(): data,null = string.split(line,'\n') #remove endline t = string.split(data,'\t') #remove endline symbols = t[3]; ###ASPN; ORFNames=RP11-77D6.3-002, hCG_1784540 symbols = string.split(symbols,';'); primary_symbol = symbols[0] if len(symbols)>1: null,symbols = string.split(symbols[1],'=') symbols = string.split(symbols,', '); symbols = symbols+[primary_symbol] else: symbols = [primary_symbol] ensembl_ids = t[4]; ensembl_ids = string.split(ensembl_ids,",") for symbol in symbols: if len(symbol)>0: if len(ensembl_ids)>0: uniprot_symbol_ensembl[string.upper(symbol)] = ensembl_ids #; print symbol,ensembl_ids;kil return uniprot_symbol_ensembl def exportCombinedMirResultSequences(): combined_input = 'AltDatabase/'+species+'/SequenceData/'+'miRBS-combined_gene-targets.txt' parse_sequences = 'yes'; global combined_results; combined_results={} fn=filepath(combined_input); combined_results2={} ###the second is for storing source information for line in open(fn,'rU').xreadlines(): data,null = string.split(line,'\n') #remove endline t = string.split(data,'\t') #remove endline mir, gene, sources = t combined_results[mir,gene] = [] combined_results2[mir,gene] = sources microRNA_target_db = {}; mir_hit_db = {} try: importmiRNAMap(parse_sequences,Force) except Exception: null=[] ### occurs when species is not supported try: mirandaImport(parse_sequences,'yes') except Exception: null=[] try: TargetScanImport(parse_sequences,'yes') except Exception: null=[] try: sangerImport(parse_sequences) except Exception: null=[] try: added = pictarImport(parse_sequences,'pre-computed',{}) except Exception: null=[] try: added = pictarImport(parse_sequences,'symbol-based',added) except Exception: null=[] output_file = 'AltDatabase/'+species+'/SequenceData/'+'miRBS-combined_gene-target-sequences.txt' combined_results = eliminateRedundant(combined_results); fn=filepath(output_file);data = open(fn,'w') for (mir,gene) in combined_results: sequences = combined_results[(mir,gene)] sources = combined_results2[(mir,gene)] sequences = string.join(sequences,'|') sequences = string.replace(sequences,' ','|') ### Seems to occur with PicTar data.write(mir+'\t'+gene+'\t'+sequences+'\t'+sources+'\n') data.close() def importmiRNAMap(parse_sequences,force): """ Added in AltAnalyze version 2.0, this database provides target sequences for several species and different databases, including miRanda, RNAhybrid and TargetScan. For more information see: http://mirnamap.mbc.nctu.edu.tw/html/about.html""" gz_filepath = verifyFileAdvanced('miRNA_targets_',species) if force == 'yes' or len(gz_filepath)==0: import UI; species_names = UI.getSpeciesInfo() species_full = species_names[species] species_full = string.replace(species_full,' ','_') miRNAMap_dir = update.getFTPData('mirnamap.mbc.nctu.edu.tw','/miRNAMap2/miRNA_Targets/'+species_full,'.txt.tar.gz') output_dir = 'AltDatabase/miRBS/'+species+'/' gz_filepath, status = update.download(miRNAMap_dir,output_dir,'') if status == 'not-removed': try: os.remove(gz_filepath) ### Not sure why this works now and not before except OSError: status = status fn=filepath(string.replace(gz_filepath,'.tar.gz','')); x=0; count=0 for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: try: miRNA, ensembl_transcript_id, target_start, target_end, miRNA_seq, alignment, target_seq, algorithm, c1, c2, c3 = t #if 'GGCTCCTGTCACCTGGGTCCGT'in target_seq: #print 'a'; sys.exit() #if 'TCF7L1' in symbol or 'TCF3' in symbol: #if '-422a' in miRNA: #print miRNA;sys.exit() #print symbol, mir; sys.exit() if ensembl_transcript_id in ens_gene_to_transcript: geneids = ens_gene_to_transcript[ensembl_transcript_id] target_seq = string.upper(string.replace(target_seq,'-','')) target_seq = string.replace(target_seq,'U','T') for ensembl_geneid in geneids: if parse_sequences == 'yes': if (miRNA,ensembl_geneid) in combined_results: combined_results[(miRNA,ensembl_geneid)].append(target_seq) else: y = MicroRNATargetData(ensembl_geneid,'',miRNA,target_seq,algorithm); count+=1 try: microRNA_target_db[miRNA].append(y) except KeyError: microRNA_target_db[miRNA] = [y] except Exception: x=1 ### Bad formatting print count, 'miRNA-target relationships added for mirnamap' return count def exportMiRandaPredictionsOnly(Species,Force,Only_add_sequence_to_previous_results): global species; global only_add_sequence_to_previous_results; global symbol_ensembl; global force global ens_gene_to_transcript; global microRNA_target_db; global mir_hit_db; global parse_sequences global symbol_ensembl_current; combined_results={} species = Species; compare_to_user_data = 'no'; force = Force only_add_sequence_to_previous_results = Only_add_sequence_to_previous_results try: ens_gene_to_transcript = importEnsTranscriptAssociations({},'archive') except Exception: ens_gene_to_transcript={} ### Archived file not on server for this species ens_gene_to_transcript = importEnsTranscriptAssociations(ens_gene_to_transcript,'current') symbol_ensembl,symbol_ensembl_current = processEnsemblAnnotations() microRNA_target_db = {}; mir_hit_db = {} if only_add_sequence_to_previous_results != 'yes': parse_sequences = 'coordinates' try: del symbol_ensembl[''] except KeyError: null=[] try: mirandaImport(parse_sequences,'no') except Exception: pass def runProgram(Species,Force,Only_add_sequence_to_previous_results): global species; global only_add_sequence_to_previous_results; global symbol_ensembl; global force global ens_gene_to_transcript; global microRNA_target_db; global mir_hit_db; global parse_sequences global symbol_ensembl_current; combined_results={} species = Species; compare_to_user_data = 'no'; force = Force only_add_sequence_to_previous_results = Only_add_sequence_to_previous_results try: ens_gene_to_transcript = importEnsTranscriptAssociations({},'archive') except Exception: ens_gene_to_transcript={} ### Archived file not on server for this species ens_gene_to_transcript = importEnsTranscriptAssociations(ens_gene_to_transcript,'current') symbol_ensembl,symbol_ensembl_current = processEnsemblAnnotations() microRNA_target_db = {}; mir_hit_db = {} if only_add_sequence_to_previous_results != 'yes': parse_sequences = 'no' try: del symbol_ensembl[''] except KeyError: pass try: sangerImport(parse_sequences) except Exception: print '\sangerImport import failed...\n' try: TargetScanImport(parse_sequences,'yes') except Exception,e: print e,'\nTargetScan import failed...\n' try: importmiRNAMap('no',Force) except Exception: print '\nmirMap import failed...\n' try: mirandaImport(parse_sequences,'yes') except Exception: print '\nmiranda import failed...\n' try: added = pictarImport(parse_sequences,'pre-computed',{}) except Exception: print '\npictar pre-computed import failed...\n' try: added = pictarImport(parse_sequences,'symbol-based',added) except Exception: print '\npictar symbol-based import failed...\n' if compare_to_user_data == 'yes': importExpressionData(); mirHitImport() findMirTargetOverlaps(); exportCombinedMirResultSequences() else: exportCombinedMirResultSequences() def verifyFile(filename,species_name): fn=filepath(filename); counts=0 try: for line in open(fn,'rU').xreadlines(): counts+=1 if counts>10: break except Exception: counts=0 if species_name == 'counts': ### Used if the file cannot be downloaded from http://www.altanalyze.org return counts elif counts == 0: if species_name in filename: server_folder = species_name ### Folder equals species unless it is a universal file elif 'Mm' in filename: server_folder = 'Mm' ### For PicTar else: server_folder = 'all' print 'Downloading:',server_folder,filename update.downloadCurrentVersion(filename,server_folder,'txt') else: return counts def verifyFileAdvanced(fileprefix,species): g = GrabFiles(); g.setdirectory('/AltDatabase/miRBS/'+species) try: filename = g.searchdirectory(fileprefix)[0] except Exception: filename=[] if '.' not in filename: filename=[] return filename def reformatGeneToMiR(species,type): ### Import and re-format the miRNA-gene annotation file for use with GO-Elite (too big to do in Excel) filename = 'AltDatabase/ensembl/'+species+'/'+species+'_microRNA-Ensembl.txt' fn=filepath(filename); reformatted=[] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) miR,ens,source = string.split(data,'\t') if type == 'strict' and '|' in source: ### Only include predictions with evidence from > 1 algorithm (miRanda, mirbase, TargetScan, pictar or RNAhybrid) reformatted.append([ens,'En',miR]) elif type == 'lax': reformatted.append([ens,'En',miR]) if len(reformatted)>10: ### Ensure there are sufficient predictions for over-representation for that species filename = string.replace(filename,'.txt','-GOElite_lax.txt') if type == 'strict': filename = string.replace(filename,'lax','strict') data = export.ExportFile(filename) ### Make title row headers=['GeneID','SystemCode','Pathway'] headers = string.join(headers,'\t')+'\n'; data.write(headers) for values in reformatted: values = string.join(values,'\t')+'\n'; data.write(values) data.close() print filename,'exported...' def reformatAllSpeciesMiRAnnotations(): existing_species_dirs = unique.read_directory('/AltDatabase/ensembl') for species in existing_species_dirs: try: reformatGeneToMiR(species,'lax') reformatGeneToMiR(species,'strict') except Exception: null=[] ### Occurs for non-species directories def copyReformattedSpeciesMiRAnnotations(type): existing_species_dirs = unique.read_directory('/AltDatabase/ensembl') for species in existing_species_dirs: try: ir = filepath('AltDatabase/ensembl/'+species+'/'+species+'_microRNA-Ensembl-GOElite_'+type+'.txt') er = filepath('GOElite/'+species+'_microRNA-Ensembl-GOElite_'+type+'.txt') export.copyFile(ir, er) print 'Copied miRNA-target database for:',species, type except Exception: null=[] ### Occurs for non-species directories def reformatDomainAssocations(species): filename = 'AltDatabase/'+species+'/RNASeq/probeset-domain-annotations-exoncomp.txt' fn=filepath(filename); gene_domain_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') ens_gene = string.split(t[0],':')[0] for i in t[1:]: domain = string.split(i,'|')[0] if 'IPR' in domain: domain = string.split(domain,'-IPR')[0] +'(IPR'+ string.split(domain,'-IPR')[1]+')' else: domain+='(UniProt)' try: gene_domain_db[ens_gene].append(domain) except Exception: gene_domain_db[ens_gene] = [domain] gene_domain_db = eliminateRedundant(gene_domain_db) export_file = 'GOElite/'+species+'_Ensembl-Domain.txt' export_data = export.ExportFile(export_file) export_data.write('Ensembl\tEn\tDomain\n') for gene in gene_domain_db: for domain in gene_domain_db[gene]: export_data.write(gene+'\tEn\t'+domain+'\n') export_data.close() print 'zipping',export_file import gzip f_in = open(filepath(export_file), 'rb') f_out = gzip.open(filepath(export_file)[:-4]+'.gz', 'wb') f_out.writelines(f_in) f_out.close() f_in.close() os.remove(filepath(export_file)) def exportGOEliteGeneSets(type): existing_species_dirs = unique.read_directory('/AltDatabase/ensembl') for species in existing_species_dirs: if len(species)<4: try: reformatGeneToMiR(species,type) except Exception: null=[] ### Occurs for non-species directories reformatGeneToMiR(species,type) reformatDomainAssocations(species) copyReformattedSpeciesMiRAnnotations(type) if __name__ == '__main__': exportGOEliteGeneSets('lax');sys.exit() existing_species_dirs = unique.read_directory('/AltDatabase/ensembl') for species in existing_species_dirs: if len(species)<4: reformatDomainAssocations(species) #exportMiRandaPredictionsOnly('Hs','no','no');sys.exit() #runProgram(species,force,'no'); sys.exit()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/MatchMiRTargetPredictions.py
MatchMiRTargetPredictions.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import update import export import math from build_scripts import EnsemblImport; reload(EnsemblImport) from build_scripts import ExonArrayAffyRules from build_scripts import SubGeneViewerExport def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list ################# Parse and Analyze Files def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def grabRNAIdentifiers(mrna_assignment): ensembl_ids=[]; mRNA_ids=[]; mRNA_entries = string.split(mrna_assignment,' /// ') for entry in mRNA_entries: mRNA_info = string.split(entry,' // '); mrna_ac = mRNA_info[0] if 'GENSCAN' not in mrna_ac: if 'ENS' in mrna_ac: ensembl_ids.append(mrna_ac) else: try: int(mrna_ac[-3:]); mRNA_ids.append(mrna_ac) except ValueError: continue ensembl_ids = unique.unique(ensembl_ids); mRNA_ids = unique.unique(mRNA_ids) return ensembl_ids, mRNA_ids def getProbesetAssociations(filename,ensembl_exon_db,ens_transcript_db,source_biotype): #probeset_db[probeset] = affygene,exons,probe_type_call,ensembl fn=filepath(filename); global transcript_cluster_data; global exon_location; global trans_annotation_db probe_association_db={}; transcript_cluster_data = {}; trans_annotation_db = {} print "Begin reading",filename; entries=0 exon_location={} for line in open(fn,'rU').xreadlines(): data,null = string.split(line,'\n') data = string.replace(data,'"',''); y = 0 t = string.split(data,',') if data[0] != '#' and 'probeset_id' in data: affy_headers = t for header in affy_headers: index = 0 while index < len(affy_headers): if 'probeset_id' == affy_headers[index]: pi = index if 'start' == affy_headers[index]: st = index if 'stop' == affy_headers[index]: sp = index if 'level' == affy_headers[index]: lv = index if 'exon_id' == affy_headers[index]: ei = index if 'transcript_cluster_id' == affy_headers[index]: tc = index if 'seqname' == affy_headers[index]: sn = index if 'strand' == affy_headers[index]: sd = index if 'mrna_assignment' == affy_headers[index]: ma = index #if 'fl' == affy_headers[index]: fn = index #if 'mrna' == affy_headers[index]: mr = index #if 'est' == affy_headers[index]: es = index #if 'ensGene' == affy_headers[index]: eg = index index += 1 elif data[0] != '#' and 'probeset_id' not in data: try: entries+=1 try: probeset_id=int(t[pi]);transcript_cluster_id=int(t[tc]); chr=t[sn];strand=t[sd] except Exception: print affy_headers; print index; sys.exit() if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention start=int(t[st]);stop=int(t[sp]); exon_type=t[lv]; #fl=int(t[fn]); mRNA=int(t[mr]); est=int(t[es]); ensembl=int(t[eg]) continue_analysis = 'no' if transcript_cluster_id not in trans_annotation_db: mrna_assignment = t[ma]; ens_list=[] if len(mrna_assignment)>4: ensembl_data = string.split(mrna_assignment,' /// ') for entry in ensembl_data: if 'ENS' == entry[:3]: ens_entry = string.split(entry,' // ') if ens_entry[0] in ens_transcript_db: ens_list.append(ens_transcript_db[ens_entry[0]][0]) if len(ens_list)>0: ens_list = unique.unique(ens_list) trans_annotation_db[transcript_cluster_id] = ens_list if source_biotype == 'ncRNA': ### transcript_cluster_ids are only informative for looking at mRNA encoding genes (can combine diff. ncRNAs in diff. introns of the same gene) transcript_cluster_id = probeset_id if test=='yes': ###used to test the program for a single gene if transcript_cluster_id in test_cluster: continue_analysis='yes' else: continue_analysis='yes' if continue_analysis=='yes': try: exon_location[transcript_cluster_id,chr,strand].append((start,stop,exon_type,probeset_id)) except KeyError: exon_location[transcript_cluster_id,chr,strand] = [(start,stop,exon_type,probeset_id)] ###Assign constitutive information on a per probeset basis since per gene (unlike transcript_cluster centric analyses) const_info = [transcript_cluster_id] #[ensembl,fl,est,probeset_id,transcript_cluster_id] transcript_cluster_data[probeset_id] = const_info except ValueError: continue ###Control probeset with no exon information for key in exon_location: exon_location[key].sort() if test=='yes': for i in exon_location: print 'exon_location ',i for e in exon_location[i]: print e print entries,"entries in input file" print len(transcript_cluster_data),"probesets,", len(exon_location),"transcript clusters" print "Matching up ensembl and ExonArray probesets based on chromosomal location..." ###Re-organize ensembl and probeset databases based on gene position (note the ensembl db is strucutred similiarly to the transcript_cluster db) ###however, an additional call is required to match these up. ###ensembl_exon_db[(geneid,chr,strand)] = [[E5,exon_info]] #exon_info = (exon_start,exon_stop,exon_id,exon_annot) ensembl_gene_position_pos_db, ensembl_gene_position_neg_db = getGenePositions(ensembl_exon_db,'yes') affy_gene_position_pos_db, affy_gene_position_neg_db = getGenePositions(exon_location,'no') if test=='yes': for chr in affy_gene_position_pos_db: b = affy_gene_position_pos_db[chr] for i in b: for e in b[i]: for pos in e: print 'pos',chr,i,pos for chr in affy_gene_position_neg_db: b = affy_gene_position_neg_db[chr] for i in b: for e in b[i]: for pos in e: print 'neg',chr,i,pos ###Dump memory """print ensembl_exon_db print exon_location print ensembl_gene_position_pos_db print affy_gene_position_pos_db killer""" exon_location={}; global ensembl_probeset_db print "First round (positive strand)..." #global merged_gene_loc merged_gene_loc={}; no_match_list=[] merged_gene_loc,no_match_list = getChromosomalOveralap(affy_gene_position_pos_db,ensembl_gene_position_pos_db,merged_gene_loc,no_match_list) print "Second round (negative strand)..." merged_gene_loc,no_match_list = getChromosomalOveralap(affy_gene_position_neg_db,ensembl_gene_position_neg_db,merged_gene_loc,no_match_list) merged_gene_loc = resolveProbesetAssociations(merged_gene_loc,no_match_list) ensembl_probeset_db = reorderEnsemblLinkedProbesets(merged_gene_loc,transcript_cluster_data,trans_annotation_db) if test=='yes': for i in merged_gene_loc: print 'merged_gene_loc ',i for e in merged_gene_loc[i]: print e if test=='yes': for i in ensembl_probeset_db: print 'ensembl_probeset_db ',i for e in ensembl_probeset_db[i]: print e ###Dump memory affy_gene_position_neg_db={};ensembl_gene_position_pos_db={}; no_match_list={} print "Begining to assembl constitutive annotations (Based on Ensembl/FL/EST evidence)..." transcript_cluster_data={} print "Assigning exon-level Ensembl annotations to probesets (e.g. exon number) for", len(ensembl_probeset_db),'genes.' ensembl_probeset_db = annotateExons(ensembl_probeset_db,exon_clusters,ensembl_exon_db,exon_region_db,intron_retention_db,intron_clusters,ucsc_splicing_annot_db) print "Exporting Ensembl-merged probeset database to text file for", len(ensembl_probeset_db),'genes.' exportEnsemblLinkedProbesets(arraytype, ensembl_probeset_db,species) return ensembl_probeset_db ################# Identify overlap between Ensembl and transcript_clusters def getGenePositions(exon_db,call): chromosome_pos_db={}; chromosome_neg_db={} for key in exon_db: t=[] strand = key[-1]; chr = key[1]; index1= 0; index2 = -1; indexa = 0; indexb = 1 if strand == '-': index1= -1; index2 = 0; indexa = 1; indexb = 0 if call == 'yes': ### For Ensembl exon coordinates - get Gene Coordinates ### Doesn't work for NKX2-5 in human for exon array - first exon spans the last exon (by AltAnalyze's definitions) #geneStart = exon_db[key][index1][1][indexa] #first sorted exon #geneStop = exon_db[key][index2][1][indexb] for exon_data in exon_db[key]: t.append(exon_data[1][0]) t.append(exon_data[1][1]) else: ### For transcript cluster data (slightly different format than above) - get Gene Coordinates chr = chr[3:] if '_' in chr: c = string.split(chr,'_'); chr=c[0] ###For _unknown chr from Affy's annotation file #geneStart = exon_db[key][index1][indexa] #first sorted exon #geneStop = exon_db[key][index2][indexb] for exon_data in exon_db[key]: t.append(exon_data[0]) t.append(exon_data[1]) #t=[]; t.append(geneStart); t.append(geneStop); t.sort() t.sort(); t = [t[0],t[-1]] if strand == '-': if chr in chromosome_neg_db: gene_position_db = chromosome_neg_db[chr] gene_position_db[tuple(t)] = key,exon_db[key] else: gene_position_db={} gene_position_db[tuple(t)] = key,exon_db[key] chromosome_neg_db[chr] = gene_position_db if strand == '+': if chr in chromosome_pos_db: gene_position_db = chromosome_pos_db[chr] gene_position_db[tuple(t)] = key,exon_db[key] else: gene_position_db={} gene_position_db[tuple(t)] = key,exon_db[key] chromosome_pos_db[chr] = gene_position_db return chromosome_pos_db,chromosome_neg_db def getChromosomalOveralap(affy_chr_db,ensembl_chr_db,ensembl_transcript_clusters,no_match_list): """Find transcript_clusters that have overlapping start positions with Ensembl gene start and end (based on first and last exons)""" ###exon_location[transcript_cluster_id,chr,strand] = [(start,stop,exon_type,probeset_id)] y = 0; l =0; multiple_ensembl_associations=[] ###(bp1,ep1) = (47211632,47869699); (bp2,ep2) = (47216942, 47240877) for chr in affy_chr_db: try: ensembl_db = ensembl_chr_db[chr] affy_db = affy_chr_db[chr] for (bp1,ep1) in affy_db: x = 0 transcript_cluster_key = affy_db[(bp1,ep1)][0] for (bp2,ep2) in ensembl_db: y += 1; ensembl = ensembl_db[(bp2,ep2)][0][0] #print ensembl, transcript_cluster_key, (bp2,ep2),(bp1,ep1);kill ###if the two gene location ranges overlapping ###affy_probeset_info = (start,stop,exon_type,probeset_id) if ((bp1 >= bp2) and (ep2 >= bp1)) or ((bp2 >= bp1) and (ep1 >= bp2)): x = 1; affy_probeset_info = affy_db[(bp1,ep1)][1]; ensembl_key = ensembl_db[(bp2,ep2)][0],(bp2,ep2),affy_probeset_info try:ensembl_transcript_clusters[transcript_cluster_key].append(ensembl_key) except KeyError: ensembl_transcript_clusters[transcript_cluster_key] = [ensembl_key] l += 1 if x == 0: no_match_list.append(transcript_cluster_key) except KeyError: print chr, 'data not found' print "Transcript Clusters overlapping with Ensembl:",len(ensembl_transcript_clusters) print "With NO overlapp",len(no_match_list) return ensembl_transcript_clusters,no_match_list def resolveProbesetAssociations(ensembl_transcript_clusters,no_match_list): ensembl_transcript_clusters2={}; x = 0 for transcript_cluster_key in ensembl_transcript_clusters: ensembl_groups = ensembl_transcript_clusters[transcript_cluster_key] probeset_data_list = ensembl_groups[0][2] if len(ensembl_groups)>1: ###although the affy_transcript_cluster may overlapp, each probe does not ###Therefore associate the appropriate probesets with the appropriate ensembl ids x += 1 for probeset_data in probeset_data_list: (bp1,ep1,exon_type,probeset_id) = probeset_data y = 0 for data in ensembl_groups: ensembl_id = data[0] (bp2,ep2) = data[1] if ((bp1 >= bp2) and (ep2 >= bp1)) or ((bp2 >= bp1) and (ep1 >= bp2)): y = 1 ###Reduce data to Ensembl gene level (forget transcript_cluster_ids) try: ensembl_transcript_clusters2[ensembl_id].append(probeset_data) except KeyError: ensembl_transcript_clusters2[ensembl_id] = [probeset_data] else: for data in ensembl_groups: ensembl_id = data[0] probeset_data = data[2] try: ensembl_transcript_clusters2[ensembl_id].append(probeset_data) except KeyError: ensembl_transcript_clusters2[ensembl_id] = [probeset_data] print "Unique Ensembl genes linked to one or more transcript clusters:",len(ensembl_transcript_clusters2) print "Ensembl genes linked to more than one transcript cluster:",x print "Transcript clusters with NO links to Ensembl", len(no_match_list) print "\nNOTE: if multiple clusters linked to an Ensembl, exons outside the Ensembl overlapp with be discarded\n" return ensembl_transcript_clusters2 ################# Annotate Exons based on location def convertListString(list,delimiter): list2 = []; list = unique.unique(list); list.sort() for i in list: if len(str(i))>0: list2.append(str(i)) str_values = string.join(list2,delimiter) return str_values def annotateExons(exon_location,exon_clusters,ensembl_exon_db,exon_region_db,intron_retention_db,intron_clusters,ucsc_splicing_annot_db): ###Annotate Affymetrix probesets independent of other annotations. A problem with this method ###Is that it fails to recognize distance probesets that probe different regions of the same exon. ###(start,stop,probeset_id,exon_class) = probeset_data ###exon_clusters is from EnsemblImport: exon_data = exon,(start,stop),[accessions],[types] ###Reverse exon entries based on strand orientation for key in exon_location: exon_location[key].sort(); strand = key[-1] if strand == "-": exon_location[key].reverse() #alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','x','y','z'] probeset_aligments={}; exon_location2={} x = 0; p = 0; count = 0 for key in exon_location: old_index = 0; index2 = 1; index3 = 0; exon_list=[]; strand = key[-1]; last_added = 'null' #if key[-1] == '-': gene = key[0] new_key = (key[0],key[1][3:],key[2]) for exon in exon_location[key]: ###probeset location database start = int(exon[0]); stop = int(exon[1]); probeset = exon[2]; probeset_region_exon_db={} #if count < 20: print probeset #else: die ens_exonid_values=''; ens_constitutive=''; splice_event_value=''; splice_junction_values=''; region_value='' y = 0; u = 0; junction = 'no'; new_exon_data = ''; exon_start='';exon_stop='' count+=1 ###Create the lists here so we can store data for multiple exon hits, if they occur (not good if they do) temp_probeset_exon_id=[]; temp_probeset_annot=[]; region_ids=[]; splice_events=[]; splice_junctions=[]; reg_start=[];reg_stop=[] #print probeset,start,stop;kill if new_key in intron_retention_db: for exon_data in intron_retention_db[new_key]: t_start = exon_data[0]; t_stop = exon_data[1]; ed = exon_data[2] if ((start >= t_start) and (stop <= t_stop)): splice_events.append('intron-retention') ###Match up probesets specifically with UCSC exon annotations (need to do it here to precisely align probesets) if gene in ucsc_splicing_annot_db: ucsc_events = ucsc_splicing_annot_db[gene] for (r_start,r_stop,splice_event) in ucsc_events: if ((start >= r_start) and (start < r_stop)) or ((stop > r_start) and (stop <= r_stop)): splice_events.append(splice_event) elif ((r_start >= start) and (r_start <= stop)) or ((r_stop >= start) and (r_stop <= stop)): splice_events.append(splice_event) for exon_values in exon_clusters[key]: ###Ensembl location database ref_start = exon_values[1][0]; ref_stop = exon_values[1][1]; ens_exon_ida = exon_values[2][0] """if probeset == 'G6857086:E15' and ens_exon_ida == 'ENSMUSE00000101953': print start,ref_start,stop,ref_stop,exon_values[2] if ((start >= ref_start) and (stop <= ref_stop)) or ((start >= ref_start) and (start <= ref_stop)) or ((stop >= ref_start) and (stop <= ref_stop)): print 'good' else: print 'bad' kill""" if ((start >= ref_start) and (stop <= ref_stop)) or ((start >= ref_start) and (start < ref_stop)) or ((stop > ref_start) and (stop <= ref_stop)): new_index = exon_values[0] #probeset_exon_list.append((new_index,key,start,stop,ref_start,ref_stop)) ###Grab individual exon annotations #temp_probeset_exon_id=[]; temp_probeset_annot=[]; region_ids=[]; splice_events=[]; splice_junctions=[] for exon_data in ensembl_exon_db[new_key]: t_start = exon_data[1][0]; t_stop = exon_data[1][1]; ed = exon_data[1][2] if ((start >= t_start) and (start < t_stop)) or ((stop > t_start) and (stop <= t_stop)): if ((start >= t_start) and (start < t_stop)) and ((stop > t_start) and (stop <= t_stop)): ### Thus the probeset is completely in this exon try: probeset_aligments[probeset].append([t_start,t_stop]) except KeyError: probeset_aligments[probeset]=[[t_start,t_stop]] """if probeset == 'G6857086:E15' and ens_exon_ida == 'ENSMUSE00000101953': print probeset, start,t_start,stop,t_stop,exon_values[2], 'goood', ed.ExonID()""" temp_probeset_exon_id.append(ed.ExonID()) block_db = exon_region_db[gene] ###Annotate exon regions for rd in block_db[new_index]: if strand == '-': r_stop = rd.ExonStart(); r_start = rd.ExonStop() else: r_start = rd.ExonStart(); r_stop = rd.ExonStop() if ((start >= r_start) and (start < r_stop)) or ((stop > r_start) and (stop <= r_stop)): reg_start.append(r_start); reg_stop.append(r_stop) region_ids.append(rd.ExonRegionID()) ###only one region per probeset unless overlapping with two try: splice_events.append(rd.AssociatedSplicingEvent());splice_junctions.append(rd.AssociatedSplicingJunctions()) except AttributeError: splice_events = splice_events ###occurs when the associated exon is not a critical exon temp_probeset_annot.append(rd.Constitutive()) """region_ids = unique.unique(region_ids) if len(region_ids)>1: print key, region_ids for rd in block_db[new_index]: print start, rd.ExonStart(), stop, rd.ExonStop(), probeset, new_index,rd.RegionNumber();die""" #elif ((start >= t_start) and (start <= t_stop)): ###Thus only the start is inside an exon #if strand == '+': print probeset,key, ed.ExonID(), start, stop, t_start,t_stop;kill if len(temp_probeset_exon_id)>0: ens_exonid_values = convertListString(temp_probeset_exon_id,'|') if 'yes' in temp_probeset_annot: ens_constitutive = 'yes' elif '1' in temp_probeset_annot: ens_constitutive = '1' else: ens_constitutive = convertListString(temp_probeset_annot,'|') region_value = convertListString(region_ids,'|'); splice_event_value = convertListString(splice_events,'|') exon_start = convertListString(reg_start,'|'); exon_stop = convertListString(reg_stop,'|') splice_junction_values = convertListString(splice_junctions,'|');u = 1 splice_event_value = string.replace(splice_event_value,'intron-retention','exon-region-exclusion') ned = EnsemblImport.ProbesetAnnotation(ens_exonid_values, ens_constitutive, region_value, splice_event_value, splice_junction_values,exon_start,exon_stop) new_exon_data = exon,ned #print key; exon; exon_values[2],exon_values[3],dog if new_index == old_index: exon_info = 'E'+str(old_index)+'-'+str(index2); index_val = 'old' y = 1; index2 += 1; last_added = 'exon' #;last_start = start; last_stop = stop if exon_values == exon_clusters[key][-1]: final_exon_included = 'yes' else: final_exon_included = 'no' #print exon_clusters[key][-1], exon_values, old_index, exon_info, probeset,final_exon_included;kill else: index2 = 1 exon_info = 'E'+str(new_index)+'-'+str(index2); index_val = old_index old_index = new_index y = 1; index2 += 1; last_added = 'exon' #;last_start = start; last_stop = stop if exon_values == exon_clusters[key][-1]: final_exon_included = 'yes' else: final_exon_included = 'no' #print 'blah',new_index,old_index """if len(exon)>7: ###Therefore, this probeset associated with distinct exon clusters (bad design) index2 = (index2 - 1); x += 1""" if u != 1: ###Therefore, there were specific exon associations available ens_exonid_values = convertListString(exon_values[2],'|'); if 'yes' in exon_values[3]: ens_constitutive = 'yes' elif '1' in exon_values[3]: ens_constitutive = '1' else: ens_constitutive = convertListString(exon_values[3],'|') ned = EnsemblImport.ProbesetAnnotation(ens_exonid_values, ens_constitutive, region_value, splice_event_value, splice_junction_values,exon_start,exon_stop) new_exon_data = exon,ned """if len(exon)>7: ###Therefore, this probeset associated with distinct exon clusters (bad design) index2 = (index2 - 1); x += 1""" continue #if len(probeset_exon_list)>1: print probeset,probeset_exon_list;kill #if probeset == '2948539': print y,last_added,final_exon_included,old_index,new_index,index2;kill if y == 1: """if len(exon)>7: exon = exon[0:5] if index_val != 'old': old_index = index_val; y=0; junction = 'yes' else:""" exon_info = exon_info,new_exon_data; exon_list.append(exon_info) if y == 0: ###Thus this probeset is not in any ensembl exons ###Check if the first probesets are actually in an intron #if probeset == '2948539': print probeset,'a',last_added,old_index,new_index,index2 if key in intron_clusters: for intron_values in intron_clusters[key]: ###Ensembl location database ref_start = intron_values[1][0]; ref_stop = intron_values[1][1] if ((start >= ref_start) and (stop <= ref_stop)) or ((start >= ref_start) and (start <= ref_stop)) or ((stop >= ref_start) and (stop <= ref_stop)): old_index = intron_values[0] if last_added == 'intron': last_added = 'intron' elif last_added == 'null': last_added = 'exon' ###utr is the default assigned at the top final_exon_included = 'no' #if probeset == '2948539': print probeset,'b',last_added,old_index,new_index,index2 temp_probeset_exon_id=[]; temp_probeset_annot=[]; intron_retention_found = 'no' if new_key in intron_retention_db: for exon_data in intron_retention_db[new_key]: t_start = exon_data[0]; t_stop = exon_data[1]; ed = exon_data[2] if ((start >= t_start) and (stop <= t_stop)): temp_probeset_exon_id.append(ed.ExonID()); temp_probeset_annot.append(ed.Constitutive()) if len(temp_probeset_exon_id)>0: temp_probeset_exon_id = unique.unique(temp_probeset_exon_id); temp_probeset_annot = unique.unique(temp_probeset_annot) ens_exonid_values = convertListString(temp_probeset_exon_id,'|'); ens_constitutive = convertListString(temp_probeset_annot,'|') #ned = EnsemblImport.ProbesetAnnotation(ens_exonid_values, ens_constitutive, 0, 'intron-retention', '') splice_event_value = 'intron-retention' #new_exon_data = exon,ned; intron_retention_found = 'yes' #if probeset == '2948539': print probeset,'c',last_added,old_index,index2 ned = EnsemblImport.ProbesetAnnotation(ens_exonid_values, ens_constitutive, region_value, splice_event_value, splice_junction_values,exon_start,exon_stop) new_exon_data = exon,ned if old_index == 0: ###Means exons that are 5' to the ensembl reference exons and not in an intron #if probeset == '2948539': print probeset,'dU',last_added,old_index,new_index,index2 exon_info = 'U'+str(old_index)+'-'+str(index2) ###index2 will be 0 the first time by default exon_info = exon_info,new_exon_data; exon_list.append(exon_info) last_added = 'utr'; index2 += 1 #if probeset == '2948539':print probeset,exon_info, 'xl' else: if last_added == 'exon': #if probeset == '2948539': print probeset,'eIU',last_added,old_index,new_index,index2 if final_exon_included == 'no': index2 = 1 exon_info = 'I'+str(old_index)+'-'+str(index2) exon_info = exon_info,new_exon_data; exon_list.append(exon_info) last_added = 'intron'; index2 += 1 #if probeset == '2948539':print probeset,exon_info else: index2 = 1 exon_info = 'U'+str(old_index)+'-'+str(index2) exon_info = exon_info,new_exon_data; exon_list.append(exon_info) last_added = 'utr'; index2 += 1 #if probeset == '2948539':print probeset,exon_info elif last_added == 'intron': #if probeset == '2948539': print probeset,'fI',last_added,old_index,new_index,index2 exon_info = 'I'+str(old_index)+'-'+str(index2) exon_info = exon_info,new_exon_data; exon_list.append(exon_info) last_added = 'intron'; index2 += 1 #if probeset == '2948539':print probeset,exon_info elif last_added == 'utr': ### Since the probeset is not in an exon and the last added was a UTR ### could be in the 3'UTR (if in the 5'UTR it would have an old_index = 0) or ### could be an intron, if no probesets aligned to the first exon if final_exon_included == 'no': # alternative: old_index == 1: ###thus it is really in the first intron: example is 2948539 exon_info = 'I'+str(old_index)+'-'+str(index2) exon_info = exon_info,new_exon_data; exon_list.append(exon_info) last_added = 'intron'; index2 += 1 else: exon_info = 'U'+str(old_index)+'-'+str(index2) exon_info = exon_info,new_exon_data; exon_list.append(exon_info) last_added = 'utr'; index2 += 1 #if probeset == '2948539':print probeset,exon_info;kill if len(exon_list)>0: exon_location2[key] = exon_list #kill #print x,p #exportProbesetAlignments(probeset_aligments) for key in exon_location2: if key[0] == 'ENSG00000138231': print key for item in exon_location2[key]: print item for key in exon_location2: if key[0] == 'ENSG00000095794': print key for item in exon_location2[key]: print item return exon_location2 def reorderEnsemblLinkedProbesets(ensembl_transcript_clusters,transcript_cluster_data,trans_annotation_db): print len(trans_annotation_db), 'entries in old trans_annotation_db' ensembl_probeset_db={}; probeset_gene_redundancy={}; gene_transcript_redundancy={}; y=0; x=0; n=0; l=0; k=0 for key in ensembl_transcript_clusters: geneid = key[0]; chr = 'chr'+ key[1]; strand = key[2] for entry in ensembl_transcript_clusters[key]: ###The structure of the entries varies dependant on if there were multiple ensembl's associated with a single transcript_cluster_id try: entry[0][0] except TypeError: entry = [entry] for probeset_info in entry: ###Rebuild this database since structural inconsistencies exist start = str(probeset_info[0]); stop = str(probeset_info[1]); exon_class = probeset_info[2]; probeset_id = probeset_info[3] transcript_cluster_id = transcript_cluster_data[probeset_id][-1] probeset_data = [start,stop,probeset_id,exon_class,transcript_cluster_id]; y += 1 try: ensembl_probeset_db[geneid,chr,strand].append(probeset_data) except KeyError: ensembl_probeset_db[geneid,chr,strand]=[probeset_data] try: probeset_gene_redundancy[probeset_id,start,stop].append((geneid,chr,strand)) except KeyError: probeset_gene_redundancy[probeset_id,start,stop] = [(geneid,chr,strand)] try: gene_transcript_redundancy[geneid].append(transcript_cluster_id) except KeyError: gene_transcript_redundancy[geneid] = [transcript_cluster_id] ###Correct incorrect Ensembl assignments based on trans-splicing etc. probeset_gene_redundancy = eliminateRedundant(probeset_gene_redundancy) gene_transcript_redundancy = eliminateRedundant(gene_transcript_redundancy) print len(ensembl_probeset_db), 'entries in old ensembl_probeset_db' print len(gene_transcript_redundancy), 'entries in old gene_transcript_redundancy' ### Added this new code to determine which transcript clusters uniquely detect a single gene (exon-level) ### Note: this is a potentially lengthy step (added in version 2.0.5) valid_gene_to_cluster_annotations={}; gene_transcript_redundancy2={} for probeset_info in probeset_gene_redundancy: probeset = probeset_info[0];start = int(probeset_info[1]); stop = int(probeset_info[2]) transcript_cluster_id = transcript_cluster_data[probeset][-1] for ensembl_group in probeset_gene_redundancy[probeset_info]: pos_ens,neg_ens = alignProbesetsToEnsembl([],[],start,stop,ensembl_group) ### Indicates that at least one probeset in the TC aligns certain Ensembl genes ens_gene = ensembl_group[0] if len(pos_ens)>0: try: valid_gene_to_cluster_annotations[transcript_cluster_id].append(ens_gene) except Exception: valid_gene_to_cluster_annotations[transcript_cluster_id] = [ens_gene] valid_gene_to_cluster_annotations = eliminateRedundant(valid_gene_to_cluster_annotations) print len(valid_gene_to_cluster_annotations), 'Valid gene-to-transcript cluser assignments based on genomic position' ### Remove probeset-gene and transcript_cluster-gene associations not supported by exon evidence for tc in valid_gene_to_cluster_annotations: for gene in valid_gene_to_cluster_annotations[tc]: try: gene_transcript_redundancy2[gene].append(tc) except Exception: gene_transcript_redundancy2[gene] = [tc] del_probesets = {} for probeset_info in probeset_gene_redundancy: probeset = probeset_info[0] transcript_cluster_id = transcript_cluster_data[probeset][-1] if transcript_cluster_id in valid_gene_to_cluster_annotations: ### If not, don't change the existing relationships keep=[] for ensembl_group in probeset_gene_redundancy[probeset_info]: ens_gene = ensembl_group[0] if ens_gene in valid_gene_to_cluster_annotations[transcript_cluster_id]: keep.append(ensembl_group) probeset_gene_redundancy[probeset_info] = keep ### Replace the existing with this filtered list else: del_probesets[probeset_info] = [] for pi in del_probesets: del probeset_gene_redundancy[pi] trans_annotation_db = valid_gene_to_cluster_annotations gene_transcript_redundancy = gene_transcript_redundancy2 print len(trans_annotation_db), 'entries in new trans_annotation_db' print len(gene_transcript_redundancy), 'entries in new gene_transcript_redundancy' print len(probeset_gene_redundancy), 'entries in probeset_gene_redundancy' ensembl_probeset_db2 = {} for (geneid,chr,strand) in ensembl_probeset_db: for probeset_data in ensembl_probeset_db[(geneid,chr,strand)]: start,stop,probeset_id,exon_class,transcript_cluster_id = probeset_data try: if (geneid,chr,strand) in probeset_gene_redundancy[probeset_id,start,stop]: try: ensembl_probeset_db2[(geneid,chr,strand)].append(probeset_data) except Exception: ensembl_probeset_db2[(geneid,chr,strand)] = [probeset_data] except KeyError: null=[] ensembl_probeset_db = ensembl_probeset_db2 print len(ensembl_probeset_db), 'entries in new ensembl_probeset_db' ###First check for many transcript IDs associating with one Ensembl remove_transcripts_clusters={} for geneid in gene_transcript_redundancy: transcript_cluster_id_list = gene_transcript_redundancy[geneid] if len(transcript_cluster_id_list)>1: for transcript_cluster_id in transcript_cluster_id_list: if transcript_cluster_id in trans_annotation_db: ###Check the Affymetrix transcript-Ensembl associations ensembl_list = trans_annotation_db[transcript_cluster_id] #[] ['3890870', '3890907', '3890909', '3890911'] ENSG00000124209 if transcript_cluster_id in test_cluster: print ensembl_list,transcript_cluster_id_list,geneid if geneid not in ensembl_list: try: remove_transcripts_clusters[transcript_cluster_id].append(geneid) except Exception: remove_transcripts_clusters[transcript_cluster_id]=[geneid] """ ###Perform a multi-step more refined search and remove transcript_clusters identified from above, that have no annotated Ensembl gene remove_probesets={} for probeset_info in probeset_gene_redundancy: probeset = probeset_info[0] start = int(probeset_info[1]); stop = int(probeset_info[2]) transcript_cluster_id = transcript_cluster_data[probeset][-1] ###First check to see if any probeset in the transcript_cluster_id should be eliminated if transcript_cluster_id in remove_transcripts_clusters: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] if len(probeset_gene_redundancy[probeset_info])>1: x += 1 ###Grab the redundant Ensembl list for each probeset ensembl_list1 = probeset_gene_redundancy[probeset_info] ###Grab the Ensembl list aligning to the transcript_cluster annotations for that probeset try:ensembl_list2 = trans_annotation_db[transcript_cluster_id] except KeyError: ensembl_list2=[] pos_ens=[]; neg_ens=[] for ensembl_group in ensembl_list1: ensembl = ensembl_group[0] if ensembl in ensembl_list2: pos_ens.append(ensembl_group) else: neg_ens.append(ensembl_group) if len(pos_ens) == 1: n += 1 for ensembl_group in neg_ens: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] else: ###These are probesets for where the code did not identify a 'best' ensembl ###get probeset location and check against each exon in the exon cluster list for ensembl_group in ensembl_list1: ###exon_clusters is from EnsemblImport: exon_data = exon,(start,stop),[accessions],[types] if ensembl_group in exon_clusters: for exon_data in exon_clusters[ensembl_group]: exon_start = exon_data[1][0] exon_stop = exon_data[1][1] if (start >= exon_start) and (stop <= exon_stop): pos_ens.append(ensembl_group) if len(pos_ens) == 0: neg_ens.append(ensembl_group) pos_ens = unique.unique(pos_ens); neg_ens = unique.unique(neg_ens) if len(pos_ens) == 1: l += 1 for ensembl_group in neg_ens: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] else: ###If no method for differentiating, probeset fom the database k += 1 for ensembl_group in ensembl_list1: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] """ remove_probesets={} for probeset_info in probeset_gene_redundancy: probeset = probeset_info[0] start = int(probeset_info[1]); stop = int(probeset_info[2]) transcript_cluster_id = transcript_cluster_data[probeset][-1] ###Grab the redundant Ensembl list for each probeset ensembl_list1 = probeset_gene_redundancy[probeset_info] ###First check to see if any probeset in the transcript_cluster_id should be eliminated if transcript_cluster_id in remove_transcripts_clusters: remove_genes = remove_transcripts_clusters[transcript_cluster_id] ### Why is this here pos_ens=[]; neg_ens=[] for ensembl_group in ensembl_list1: ###Ensembl group cooresponds to the exon_cluster dictionary key pos_ens,neg_ens = alignProbesetsToEnsembl(pos_ens,neg_ens,start,stop,ensembl_group) pos_ens = makeUnique(pos_ens); neg_ens = makeUnique(neg_ens) if len(pos_ens)!=1: ###if there are no probesets aligning to exons or probesets aligning to exons in multiple genes, remove these for ensembl_group in pos_ens: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] for ensembl_group in neg_ens: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] else: ###If a probeset is in an Ensembl exon (pos_ens), remove associations for probesets to ensembl IDs where the probeset is not in an exon for that gene for ensembl_group in neg_ens: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] elif len(probeset_gene_redundancy[probeset_info])>1: x += 1 ###Grab the Ensembl list aligning to the transcript_cluster annotations for that probeset try: ensembl_list2 = trans_annotation_db[transcript_cluster_id] except KeyError: ensembl_list2=[] pos_ens1=[]; neg_ens1=[] for ensembl_group in ensembl_list1: ensembl = ensembl_group[0] if ensembl in ensembl_list2: pos_ens1.append(ensembl_group) else: neg_ens1.append(ensembl_group) pos_ens=[]; neg_ens=[] ###get probeset location and check against each exon in the exon cluster list for ensembl_group in ensembl_list1: ###exon_clusters is from EnsemblImport: exon_data = exon,(start,stop),[accessions],[types] exon_found = 0 if ensembl_group in exon_clusters: for exon_data in exon_clusters[ensembl_group]: exon_start = exon_data[1][0] exon_stop = exon_data[1][1] if (start >= exon_start) and (stop <= exon_stop): pos_ens.append(ensembl_group); exon_found = 1 if exon_found == 0: neg_ens.append(ensembl_group) pos_ens = unique.unique(pos_ens); neg_ens = unique.unique(neg_ens) #if probeset == 3161639: print 'b',pos_ens, transcript_cluster_id, neg_ens;sys.exit() if len(pos_ens) == 1: l += 1 for ensembl_group in neg_ens: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] elif len(pos_ens1) == 1: n += 1 for ensembl_group in neg_ens1: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] else: ###If no method for differentiating, probeset fom the database k += 1 for ensembl_group in ensembl_list1: try: remove_probesets[ensembl_group].append(probeset) except KeyError: remove_probesets[ensembl_group] = [probeset] #if probeset == '3890871': print ensembl_group,ensembl_list1, probeset;kill ensembl_probeset_db = removeRedundantProbesets(ensembl_probeset_db,remove_probesets) print "Number of Probesets linked to Ensembl entries:", y print "Number of Probesets occuring in multiple Ensembl genes:",x print " removed by transcript_cluster editing:",n print " removed by exon matching:",l print " automatically removed (not associating with a clear single gene):",k print " remaining redundant:",(x-(n+l+k)) return ensembl_probeset_db def alignProbesetsToEnsembl(pos_ens,neg_ens,start,stop,ensembl_group): try: k=0 for exon_data in exon_clusters[ensembl_group]: exon_start = exon_data[1][0];exon_stop = exon_data[1][1] if (start >= exon_start) and (stop <= exon_stop): pos_ens.append(ensembl_group); k=1 if k==0: neg_ens.append(ensembl_group) return pos_ens,neg_ens except KeyError: return pos_ens,neg_ens def removeRedundantProbesets(ensembl_probeset_db,remove_probesets): ###Remove duplicate entries and record which probesets associate with multiple ensembl's (remove these ensembl's) #check_for_promiscuous_transcripts={} for ensembl_group in remove_probesets: new_probe_list=[] for probeset_data in ensembl_probeset_db[ensembl_group]: probeset = probeset_data[2] #transcript_cluster_id = transcript_cluster_data[probeset][-1] if probeset not in remove_probesets[ensembl_group]: new_probe_list.append(probeset_data) #try: check_for_promiscuous_transcripts[transcript_cluster_id].append(ensembl_group) #except KeyError: check_for_promiscuous_transcripts[transcript_cluster_id] = [ensembl_group] ensembl_probeset_db[ensembl_group] = new_probe_list ###Final Sanity check: see if probesets could have been added to more than one Ensmebl gene probeset_ensembl_db={} for ensembl_group in ensembl_probeset_db: for probeset_data in ensembl_probeset_db[ensembl_group]: probeset = probeset_data[2] try: probeset_ensembl_db[probeset].append(ensembl_group) except KeyError: probeset_ensembl_db[probeset] = [ensembl_group] for probeset in probeset_ensembl_db: if len(probeset_ensembl_db[probeset])>1: print probeset, probeset_ensembl_db[probeset]; kill """ ###Remove Ensembl gene entries any transcript_cluster_id linking to multiple Ensembl genes ###This can occur if one set of probests links to one ensembl and another set (belong to the same transcript cluster ID), links to another ens_deleted = 0 for transcript_cluster_id in check_for_promiscuous_transcripts: if len(check_for_promiscuous_transcripts[transcript_cluster_id])>1: ###Therefore, more than one ensembl gene is associated with that probeset for ensembl_group in check_for_promiscuous_transcripts[transcript_cluster_id]: ###remove these entries from the above ensembl probeset database try: del ensembl_probeset_db[ensembl_group]; ens_deleted += 1 except KeyError: null = '' print ens_deleted,"ensembl gene entries deleted, for linking to probesets with multiple gene associations after all other filtering" """ return ensembl_probeset_db ################# Select files for analysis and output results def exportProbesetAlignments(probeset_aligments): ###These are probeset-transcript annotations direclty from Affymetrix, not aligned probeset_annotation_export = 'AltDatabase/' + species + '/'+arraytype+'/'+ species + '_probeset-exon-align-coord.txt' probeset_aligments = eliminateRedundant(probeset_aligments) fn=filepath(probeset_annotation_export); data = open(fn,'w') title = 'probeset_id'+'\t'+'genomic-start'+'\t'+'genomic-stop'+'\n' data.write(title) for probeset_id in probeset_aligments: for coordinates in probeset_aligments[probeset_id]: values = str(probeset_id) +'\t'+ str(coordinates[0]) +'\t'+ str(coordinates[1]) +'\n' data.write(values) data.close() def exportEnsemblLinkedProbesets(arraytype, ensembl_probeset_db,species): exon_annotation_export = 'AltDatabase/'+species+'/'+arraytype+'/'+species + '_Ensembl_probesets.txt' subgeneviewer_export = 'AltDatabase/ensembl/'+species+'/'+species+'_SubGeneViewer_feature-data.txt' fn=filepath(exon_annotation_export); data = open(fn,'w') fn2=filepath(subgeneviewer_export); data2 = open(fn2,'w') title = ['probeset_id','exon_id','ensembl_gene_id','transcript_cluster_id','chromosome','strand','probeset_start','probeset_stop'] title +=['affy_class','constitutive_probeset','ens_exon_ids','ens_constitutive_status','exon_region','exon-region-start(s)','exon-region-stop(s)','splice_events','splice_junctions'] title2 =['probeset','gene-id','feature-id','region-id'] title = string.join(title,'\t') + '\n'; title2 = string.join(title2,'\t') + '\n' data.write(title); data2.write(title2); y=0 print 'len(ensembl_probeset_db)',len(ensembl_probeset_db) for key in ensembl_probeset_db: geneid = key[0]; chr = key[1]; strand = key[2] for probeset_data in ensembl_probeset_db[key]: exon_id,((start,stop,probeset_id,exon_class,transcript_clust),ed) = probeset_data try: constitutive = ed.ConstitutiveCall() except Exception: constitutive = 'no' if len(constitutive) == 0: constitutive = 'no' start = str(start); stop = str(stop) y+=1; ens_exon_list = ed.ExonID(); ens_annot_list = ed.Constitutive() if len(ed.AssociatedSplicingEvent())>0: constitutive = 'no'; ens_annot_list = '0' ### Re-set these if a splicing-event is associated values = [str(probeset_id),exon_id,geneid,str(transcript_clust),chr,strand,start,stop,exon_class,constitutive,ens_exon_list,ens_annot_list] values+= [str(ed.RegionNumber()),ed.ExonStart(),ed.ExonStop(),ed.AssociatedSplicingEvent(),ed.AssociatedSplicingJunctions()] region_num = ed.RegionNumber() if len(region_num)<1: b,r = string.split(exon_id,'-'); region_num = b+'-1' exon_id = string.replace(exon_id,'-','.'); region_num = string.replace(region_num,'-','.') try: values = string.join(values,'\t')+'\n'; except TypeError: print exon_id print [probeset_id,exon_id,geneid,transcript_clust,chr,strand,start,stop,exon_class,constitutive,ens_exon_list,ens_annot_list] print [ed.RegionNumber(),ed.AssociatedSplicingEvent(),ed.AssociatedSplicingJunctions()];kill data.write(values) exon_regions = string.split(region_num,'|') for region in exon_regions: try: if filter_sgv_output == 'yes': ### Can filter out probeset information for all probesets not linked to a probable splice event if len(ed.AssociatedSplicingEvent())>1 or len(ens_exon_list)>1: proceed = 'yes' else: proceed = 'no' else: proceed = 'yes' except NameError: proceed = 'yes' if proceed == 'yes': #print filter_sgv_output, len(ed.AssociatedSplicingEvent()),len(ens_exon_list),[ed.AssociatedSplicingEvent()],[ens_exon_list],exon_id,region values2 =[str(probeset_id),geneid,exon_id,region] values2 = string.join(values2,'\t')+'\n' data2.write(values2) data.close() print y, "Probesets linked to Ensembl entries exported to text file:",exon_annotation_export def eliminateRedundant(database): for key in database: try: list = makeUnique(database[key]) except TypeError: list = unique.unique(database[key]) list.sort() database[key] = list return database def makeUnique(item): db1={}; list1=[] for i in item: db1[i]=[] for i in db1: list1.append(i) list1.sort() return list1 def testAffyAnnotationDownload(Species,array_type): global species; species = Species; global arraytype; arraytype = array_type checkDirectoryFiles() def checkDirectoryFiles(): """ Check to see if the probeset annotation file is present and otherwise download AltAnalyze hosted version""" dir = '/AltDatabase/'+species+'/'+arraytype probeset_annotation_file = getDirectoryFiles(dir) if probeset_annotation_file == None: filename = update.getFileLocations(species,arraytype) filename = dir[1:]+'/'+ filename update.downloadCurrentVersion(filename,arraytype,'csv') probeset_annotation_file = getDirectoryFiles(dir) if probeset_annotation_file == None: print 'No Affymetrix annotation file present for:', arraytype, species; sys.exit() else: print "Affymetrix annotation file found for", arraytype, species return filepath(probeset_annotation_file) def getDirectoryFiles(dir): try: dir_list = read_directory(dir) #send a sub_directory to a function to identify all files in a directory except Exception: export.createDirPath(filepath(dir[1:])) ### This directory needs to be created dir_list = read_directory(dir) probeset_annotation_file = None for data in dir_list: #loop through each file in the directory to output results affy_data_dir = dir[1:]+'/'+data if '.transcript.' in affy_data_dir: transcript_annotation_file = affy_data_dir elif '.annoS' in affy_data_dir: probeset_transcript_file = affy_data_dir elif '.probeset' in affy_data_dir and '.csv' in affy_data_dir: if '.zip' not in affy_data_dir: probeset_annotation_file = affy_data_dir ###This file lets you grab the same info as in probeset_transcript_file, but along with mRNA associations return probeset_annotation_file def reimportEnsemblProbesets(filename,probe_db=None,cs_db=None): fn=filepath(filename); x = 0 #print [fn] if probe_db != None: probe_association_db=probe_db; constitutive_db=cs_db; constitutive_original_db={} ### grab these from a separate file else: probe_association_db={}; constitutive_db={}; constitutive_original_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1;continue else: #t = string.split(line,'\t') #probeset_id=t[0];ensembl_gene_id=t[1];chr=t[2];strand=t[3];start=t[4];stop=t[5];exon_class=t[6] try: probeset_id, exon_id, ensembl_gene_id, transcript_cluster_id, chromosome, strand, probeset_start, probeset_stop, affy_class, constitutive_probeset, ens_exon_ids, exon_annotations,regionid,r_start,r_stop,splice_event,splice_junctions = string.split(data,'\t') except Exception: print data;kill probe_data = ensembl_gene_id,transcript_cluster_id,exon_id,ens_exon_ids,affy_class#,exon_annotations,constitutive_probeset proceed = 'yes' """ if 'RNASeq' in filename: ### Restrict the analysis to exon RPKM or count data for constitutive calculation if 'exon' in biotypes: if '-' in probeset_id: proceed = 'no' """ if proceed == 'yes': probe_association_db[probeset_id] = probe_data if constitutive_probeset == 'yes': try: constitutive_db[ensembl_gene_id].append(probeset_id) except KeyError: constitutive_db[ensembl_gene_id] = [probeset_id] else: ### There was a bug here that resulted in no entries added (AltAnalyze version 1.15) --- because constitutive selection options have changed, should not have been an issue try: constitutive_original_db[ensembl_gene_id].append(probeset_id) except KeyError: constitutive_original_db[ensembl_gene_id] = [probeset_id] x+=1 ###If no constitutive probesets for a gene as a result of additional filtering (removing all probesets associated with a splice event), add these back for gene in constitutive_original_db: if gene not in constitutive_db: constitutive_db[gene] = constitutive_original_db[gene] constitutive_original_db={} if 'RNASeq' in filename: id_name = 'junction IDs' else: id_name = 'array IDs' print len(constitutive_db), "constitutive genes and", len(probe_association_db), id_name, "imported out of", x,"lines." return probe_association_db, constitutive_db def reimportEnsemblProbesetsForSeqExtraction(filename,filter_type,filter_db): fn=filepath(filename); x = 0; ensembl_exon_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1;continue else: try: probeset_id, exon_id, ensembl_gene_id, transcript_cluster_id, chr, strand, probeset_start, probeset_stop, affy_class, constitutive_probeset, ens_exon_ids, exon_annotations,regionid,r_start,r_stop,splice_event,splice_junctions = string.split(data,'\t') except ValueError: t = string.split(data,'\t'); print t;kill ens_exon_ids = string.split(ens_exon_ids,'|') if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention ed = EnsemblImport.ExonStructureData(ensembl_gene_id, chr, strand, r_start, r_stop, constitutive_probeset, ens_exon_ids, []) ed.setAssociatedSplicingEvent(splice_event) ###Integrate splicing annotations to look for alternative promoters #ed.setAssociatedSplicingJunctions(splice_junctions) probe_data = exon_id,((probeset_start,probeset_stop,probeset_id,affy_class,transcript_cluster_id),ed) if filter_type == 'null': proceed = 'yes' elif filter_type == 'junctions': ed = EnsemblImport.ProbesetAnnotation(exon_id, constitutive_probeset, regionid, splice_event, splice_junctions,r_start,r_stop) probe_data = probeset_id, strand, probeset_start, probeset_stop probe_data = probe_data,ed proceed = 'yes' elif filter_type == 'only-junctions': if '-' in exon_id and '.' in exon_id: try: location = chr+':'+string.split(r_start,'|')[1]+'-'+string.split(r_stop,'|')[0] except Exception: location = chr+':'+probeset_start+'-'+probeset_stop try: pos = [int(string.split(r_start,'|')[1]),int(string.split(r_stop,'|')[0])] except Exception: try: pos = [int(r_start),int(r_stop)] except Exception: pos = [int(probeset_start),int(probeset_stop)] probe_data = probeset_id, pos,location proceed = 'yes' else: proceed = 'no' elif filter_type == 'gene': if ensembl_gene_id in filter_db: proceed = 'yes' else: proceed = 'no' elif filter_type == 'gene-probesets': ### get all probesets for a query gene if ensembl_gene_id in filter_db: proceed = 'yes' if '-' in exon_id and '.' in exon_id: proceed = 'no' #junction else: exon_id = string.replace(exon_id,'-','.') try: block,region = string.split(exon_id[1:],'.') except Exception: print original_exon_id;sys.exit() if '_' in region: region = string.split(region,'_')[0] ed = EnsemblImport.ProbesetAnnotation(exon_id, constitutive_probeset, regionid, splice_event, splice_junctions,r_start,r_stop) probe_data = (int(block),int(region)),ed,probeset_id ### sort by exon number else: proceed = 'no' elif filter_type == 'probeset': if probeset_id in filter_db: proceed = 'yes' else: proceed = 'no' if filter_type == 'probesets': if ':' in probeset_id: probeset_id = string.split(probeset_id,':')[1] if len(regionid)<1: regionid = exon_id ensembl_exon_db[probeset_id]=string.replace(regionid,'-','.') elif filter_type == 'junction-regions': if '.' in regionid and '-' in regionid: ### Indicates a junction probeset try: ensembl_exon_db[ensembl_gene_id].append((probeset_id,regionid)) except KeyError: ensembl_exon_db[ensembl_gene_id]=[(probeset_id,regionid)] elif proceed == 'yes': if filter_type == 'gene': if ensembl_gene_id not in ensembl_exon_db: ensembl_exon_db[ensembl_gene_id] = [probe_data] else: try: ensembl_exon_db[ensembl_gene_id].append(probe_data) except KeyError: ensembl_exon_db[ensembl_gene_id] = [probe_data] print len(ensembl_exon_db), "critical genes parsed with annotated exon data..." return ensembl_exon_db def getSplicingAnalysisProbesets(probeset_db,constitutive_db,annotate_db): splicing_analysis_db={}; count=0; count2=0; count3=0 #ensembl_annotation_db[ensembl_gene_id] = symbol,description,mRNA_processing for probeset in probeset_db: ensembl_gene = probeset_db[probeset][0] if ensembl_gene in constitutive_db: try: splicing_analysis_db[ensembl_gene].append(probeset) except KeyError: splicing_analysis_db[ensembl_gene] = [probeset] count += 1 else: if ensembl_gene in annotate_db: mRNA_processing = annotate_db[ensembl_gene][2] else: mRNA_processing = '' if mRNA_processing == 'RNA_processing/binding': try: splicing_analysis_db[ensembl_gene].append(probeset) except KeyError: splicing_analysis_db[ensembl_gene] = [probeset] count2 += 1 else: count3 += 1 #print 'Number of probesets with constitutive probes:',count #print 'Number of other mRNA processing probesets:',count2 #print 'Number of probesets excluded:',count3 return splicing_analysis_db def getAnnotations(process_from_scratch,x,source_biotype,Species): """Annotate Affymetrix exon array data using files Ensembl data (sync'ed to genome release).""" ### probeset_db[probeset] = gene,exon_number,ensembl_exon_annotation,ensembl_exon_id #NEW probeset_db[probeset] = gene,transcluster,exon_id,ens_exon_ids,exon_annotations,constitutive ### NA constitutive_db[gene] = [probeset] ### annotate_db[gene] = definition, symbol,rna_processing global species; species = Species; global export_probeset_mRNA_associationsg; global biotypes global test; global test_cluster; global filter_sgv_output; global arraytype export_probeset_mRNA_associations = 'no'; biotypes = '' if source_biotype == 'junction': arraytype = 'junction'; source_biotype = 'mRNA' elif source_biotype == 'gene': arraytype = 'gene'; reimportEnsemblProbesetsForSeqExtraction = 'mRNA' elif 'RNASeq' in source_biotype: arraytype,database_root_dir = source_biotype; source_biotype = 'mRNA' else: arraytype = 'exon' filter_sgv_output = 'no' test = 'no' test_cluster = [3161519, 3161559, 3161561, 3161564, 3161566, 3161706, 3161710, 3161712, 2716656, 2475411] test_cluster = [2887449] partial_process = 'no'; status = 'null' if process_from_scratch == 'yes': if partial_process == 'no': #""" global ensembl_exon_db; global ensembl_exon_db; global exon_clusters global exon_region_db; global intron_retention_db; global intron_clusters; global ucsc_splicing_annot_db global constitutive_source; constitutive_source = x probeset_transcript_file = checkDirectoryFiles() ensembl_exon_db,ensembl_annot_db,exon_clusters,intron_clusters,exon_region_db,intron_retention_db,ucsc_splicing_annot_db,ens_transcript_db = EnsemblImport.getEnsemblAssociations(species,source_biotype,test) ensembl_probeset_db = getProbesetAssociations(probeset_transcript_file,ensembl_exon_db,ens_transcript_db,source_biotype) SubGeneViewerExport.reorganizeData(species) ### reads in the data from the external generated files status = 'ran' if (process_from_scratch == 'no') or (status == 'ran'): if source_biotype == 'ncRNA': probeset_db_mRNA,constitutive_db = reimportEnsemblProbesets('AltDatabase/'+species+'/'+arraytype+'/'+species+'_Ensembl_probesets.txt') probeset_db_ncRNA,constitutive_db = reimportEnsemblProbesets('AltDatabase/'+species+'/'+arraytype+'/'+species+'_Ensembl_probesets_ncRNA.txt') probeset_db = {} #print len(probeset_db_mRNA), len(probeset_db_ncRNA), len(probeset_db) for probeset in probeset_db_ncRNA: if probeset not in probeset_db_mRNA: probeset_db[probeset] = probeset_db_ncRNA[probeset] probeset_db_mRNA={}; probeset_db_ncRNA={} else: filename = 'AltDatabase/'+species+'/'+arraytype+'/'+species+'_Ensembl_probesets.txt' if arraytype != 'RNASeq': probeset_db,constitutive_db = reimportEnsemblProbesets(filename) else: exon_standard_dir = string.replace(filename,'_probesets.txt','_exons.txt') probeset_db,constitutive_db = reimportEnsemblProbesets(exon_standard_dir) filename = string.replace(database_root_dir+filename,'_probesets.txt','_junctions.txt') probeset_db,constitutive_db = reimportEnsemblProbesets(filename,probe_db=probeset_db,cs_db=constitutive_db) ### These only include exons and junctions detected from the experiment annotate_db = EnsemblImport.reimportEnsemblAnnotations(species) splicing_analysis_db = getSplicingAnalysisProbesets(probeset_db,constitutive_db,annotate_db) #print "Probeset database and Annotation database reimported" #print "STATs: probeset database:",len(probeset_db),"probesets imported" #print " annotation database:",len(annotate_db),"genes imported" return probeset_db,annotate_db,constitutive_db,splicing_analysis_db if __name__ == '__main__': y = 'Ensembl' z = 'custom' m = 'Mm' h = 'Hs' r = 'Rn' source_biotype = 'mRNA' Species = h process_from_scratch = 'yes' export_probeset_mRNA_associations = 'no' constitutive_source = z ###If 'Ensembl', program won't look at any evidence except for Ensembl. Thus, not ideal array_type='exon' #getJunctionComparisonsFromExport(Species,array_type); sys.exit() #testAffyAnnotationDownload(Species,array_type); sys.exit() probeset_db,annotate_db,constitutive_db,splicing_analysis_db = getAnnotations(process_from_scratch,constitutive_source,source_biotype,Species) sys.exit() """Annotate Affymetrix exon array data using files Ensembl data (sync'ed to genome release).""" ### probeset_db[probeset] = gene,exon_number,ensembl_exon_annotation,ensembl_exon_id #NEW probeset_db[probeset] = gene,transcluster,exon_id,ens_exon_ids,exon_annotations,constitutive ### NA constitutive_db[gene] = [probeset] ### annotate_db[gene] = definition, symbol,rna_processing global species; species = Species global test; global test_cluster global filter_sgv_output export_probeset_mRNA_associations = 'no' filter_sgv_output = 'yes' test = 'yes' test_cluster = ['7958644'] meta_test_cluster = ["3061319","3061268"]#,"3455632","3258444","3965936","2611056","3864519","3018509","3707352","3404496","3251490"] #test_cluster = meta_test_cluster partial_process = 'no'; status = 'null' if process_from_scratch == 'yes': if partial_process == 'no': #""" global ensembl_exon_db; global ensembl_exon_db; global exon_clusters global exon_region_db; global intron_retention_db; global ucsc_splicing_annot_db probeset_transcript_file = checkDirectoryFiles() ensembl_exon_db,ensembl_annot_db,exon_clusters,intron_clusters,exon_region_db,intron_retention_db,ucsc_splicing_annot_db,ens_transcript_db = EnsemblImport.getEnsemblAssociations(species,source_biotype,test) #trans_annotation_db = ExonArrayAffyRules.getTranscriptAnnotation(transcript_annotation_file,species,test,test_cluster) ###used to associate transcript_cluster ensembl's #""" ensembl_probeset_db = getProbesetAssociations(probeset_transcript_file,ensembl_exon_db,ens_transcript_db,source_biotype) SubGeneViewerExport.reorganizeData(species) ### reads in the data from the external generated files status = 'ran' if (process_from_scratch == 'no') or (status == 'ran'): probeset_db,constitutive_db = reimportEnsemblProbesets('AltDatabase/'+species+'/'+arraytype+'/'+species+'_Ensembl_probesets.txt') annotate_db = EnsemblImport.reimportEnsemblAnnotations(species) splicing_analysis_db = getSplicingAnalysisProbesets(probeset_db,constitutive_db,annotate_db) print "Probeset database and Annotation database reimported" print "STATs: probeset database:",len(probeset_db),"probesets imported" print " annotation database:",len(annotate_db),"genes imported" probeset_transcript_file = checkDirectoryFiles() ensembl_exon_db,ensembl_annot_db,exon_clusters,intron_clusters,exon_region_db,intron_retention_db,ucsc_splicing_annot_db,ens_transcript_db = EnsemblImport.getEnsemblAssociations(species,source_biotype,test) #trans_annotation_db = ExonArrayAffyRules.getTranscriptAnnotation(transcript_annotation_file,species,test,test_cluster) ###used to associate transcript_cluster ensembl's #""" ensembl_probeset_db = getProbesetAssociations(probeset_transcript_file,ensembl_exon_db,ens_transcript_db,source_biotype) SubGeneViewerExport.reorganizeData(species) ### reads in the data from the external generated files status = 'ran' if (process_from_scratch == 'no') or (status == 'ran'): probeset_db,constitutive_db = reimportEnsemblProbesets('AltDatabase/'+species+'/'+arraytype+'/'+species+'_Ensembl_probesets.txt') annotate_db = EnsemblImport.reimportEnsemblAnnotations(species) splicing_analysis_db = getSplicingAnalysisProbesets(probeset_db,constitutive_db,annotate_db) print "Probeset database and Annotation database reimported" print "STATs: probeset database:",len(probeset_db),"probesets imported" print " annotation database:",len(annotate_db),"genes imported"
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ExonArrayEnsemblRules.py
ExonArrayEnsemblRules.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import math import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv": dir_list2.append(entry) return dir_list2 def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def parse_affymetrix_annotations(filename): temp_affy_db = {} x=0 fn=filepath(filename) for line in open(fn,'rU').xreadlines(): probeset_data,null = string.split(line,'\n') #remove endline affy_data = string.split(probeset_data[1:-1],'","') #remove endline if x==0: if probeset_data[0] == '#': continue x +=1 affy_headers = affy_data else: x +=1 probesets = affy_data[0] temp_affy_db[probesets] = affy_data[1:] for header in affy_headers: x = 0; eg = ''; gs = '' while x < len(affy_headers): if 'rocess' in affy_headers[x]: gb = x - 1 if 'omponent' in affy_headers[x]: gc = x - 1 if 'olecular' in affy_headers[x]: gm = x - 1 if 'athway' in affy_headers[x]: gp = x - 1 if 'Gene Symbol' in affy_headers[x]: gs = x - 1 if 'Ensembl' in affy_headers[x]: eg = x - 1 x += 1 ###Below code used if human exon array parsed global analyze_human_exon_data analyze_human_exon_data = 'no' if eg == '': x = 0 while x < len(affy_headers): if 'mrna_assignment' in affy_headers[x]: eg = x - 1 analyze_human_exon_data = 'yes' x+=1 for probeset in temp_affy_db: affy_data = temp_affy_db[probeset] try: go_bio = affy_data[gb] except IndexError: ###Occurs due to a new line error continue go_com = affy_data[gc] go_mol = affy_data[gm] genmapp = affy_data[gp] if gs == '': symbol = '' else: symbol = affy_data[gs] if analyze_human_exon_data == 'no': ensembl = affy_data[eg] else: ensembl_data = affy_data[eg] ensembl='' try: if 'gene:ENSMUSG' in ensembl_data: ensembl_data = string.split(ensembl_data,'gene:ENSMUSG') ensembl_data = string.split(ensembl_data[1],' ') ensembl = 'ENSMUSG'+ ensembl_data[0] if 'gene:ENSG' in ensembl_data: ensembl_data = string.split(ensembl_data,'gene:ENSG') ensembl_data = string.split(ensembl_data[1],' ') ensembl = 'ENSG'+ ensembl_data[0] except IndexError: continue goa=[] goa = merge_go_annoations(go_bio,goa) goa = merge_go_annoations(go_com,goa) goa = merge_go_annoations(go_mol,goa) goa = merge_go_annoations(genmapp,goa) goa=unique.unique(goa); goa.sort(); goa = string.join(goa,'') try: ensembl = string.split(ensembl,' /// ') except ValueError: ensembl = [ensembl] for ensembl_id in ensembl: if len(goa)>10: go_annotations[ensembl_id] = goa, symbol def merge_go_annoations(go_category,goa): dd = ' // ' td = ' /// ' if td in go_category: go_split = string.split(go_category,td) for entry in go_split: if analyze_human_exon_data == 'no': try: a,b,null = string.split(entry,dd ) entry = b+dd goa.append(entry) except ValueError: ###occurs with GenMAPP entries a,null = string.split(entry,dd ) entry = a+dd goa.append(entry) else: try: f,a,b,null = string.split(entry,dd ) entry = b+dd goa.append(entry) except ValueError: ###occurs with GenMAPP entries f,null,a = string.split(entry,dd ) entry = a+dd goa.append(entry) else: if go_category != '---': if dd in go_category: if analyze_human_exon_data == 'no': try: a,null = string.split(go_category,dd) entry = a+dd except ValueError: a,b,null = string.split(go_category,dd ) entry = b+dd goa.append(entry) else: try: f,null,a = string.split(go_category,dd) entry = a+dd except ValueError: f,a,b,null = string.split(go_category,dd ) entry = b+dd goa.append(entry) else: goa.append(go_category) return goa def getDirectoryFiles(dir,species): dir_list = read_directory('/AltDatabase/'+species+'/exon') #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results affy_data_dir = dir[1:]+'/'+data if 'MoEx-1_0-st-transcript-annot.csv' in affy_data_dir and species == 'Mm': transcript_annotation_file = affy_data_dir elif 'HuEx-1_0-st-transcript-annot.csv' in affy_data_dir and species == 'Hs': transcript_annotation_file = affy_data_dir elif 'annot.hg' in affy_data_dir: probeset_transcript_file = affy_data_dir return transcript_annotation_file def parseAffyGO(use_exon_data,get_splicing_factors,species): print "Parsing out Affymetrix GO annotations" global go_annotations; go_annotations={} import_dir = '/AltDatabase/affymetrix/'+species+'/' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for affy_data in dir_list: #loop through each file in the directory to output results affy_data_dir = import_dir[1:]+affy_data if use_exon_data == 'yes': affy_data_dir = getDirectoryFiles('/AltDatabase/'+species+'/exon',species) try: parse_affymetrix_annotations(affy_data_dir) except Exception: null=[] print len(go_annotations),"Ensembl gene annotations parsed" if get_splicing_factors == 'yes': go = go_annotations; mRNA_processing_ensembl=[] for entry in go_annotations: if 'splicing' in go[entry][0] or ('mRNA' in go[entry][0] and 'processing' in go[entry][0]): mRNA_processing_ensembl.append(entry) print len(mRNA_processing_ensembl),"mRNA processing/splicing regulators identified" return mRNA_processing_ensembl else: return go_annotations if __name__ == '__main__': go = parseAffyGO('yes','no','Hs')
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/GO_parsing.py
GO_parsing.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies _script = 'AltAnalyzeViewer.py' _appName = "AltAnalyzeViewer" _appVersion = '1.0.1' _appDescription = "AltAnalyze is a freely available, open-source and cross-platform program that allows you to take RNASeq or " _appDescription +="relatively raw microarray data (CEL files or normalized), identify predicted alternative splicing or alternative " _appDescription +="promoter changes and view how these changes may affect protein sequence, domain composition, and microRNA targeting." _authorName = 'Nathan Salomonis' _authorEmail = '[email protected]' _authorURL = 'http://www.altanalyze.org' _appIcon = "Viewer.ico" excludes = ["igraph","patsy","pandas","suds","lxml","cairo","cairo2","ImageTk","PIL","Pillow","mpmath",'pysam','Bio'] excludes = ["igraph","patsy","pandas","suds","lxml","cairo","cairo2","mpmath",'virtualenv','Tkinter','matplotlib.tests',"Pillow"] #excludes = [] includes = ["wx"] #["suds", "mpmath", "numpy"] includes = ["mpmath", "numpy",'pysam.TabProxies','pysam.ctabixproxies','dbhash','anydbm'] """ By default, suds will be installed in site-packages as a .egg file (zip compressed). Make a duplicate, change to .zip and extract here to allow it to be recognized by py2exe (must be a directory) """ matplot_exclude = [] #['MSVCP90.dll'] scipy_exclude = [] #['libiomp5md.dll','libifcoremd.dll','libmmd.dll'] """ xml.sax.drivers2.drv_pyexpat is an XML parser needed by suds that py2app fails to include. Identified by looking at the line: parser_list+self.parsers in /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PyXML-0.8.4-py2.7-macosx-10.6-intel.egg/_xmlplus/sax/saxexts.py check the py2app print out to see where this file is in the future (reported issue - may or may not apply) For mac and igraph, core.so must be copied to a new location for py2app: sudo mkdir /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/lib-dynload/igraph/ cp /Library/Python/2.6/site-packages/igraph/core.so /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/lib-dynload/igraph/ """ if sys.platform.startswith("darwin"): ### Local version: /usr/local/bin/python2.6 ### example command: python setup.py py2app from distutils.core import setup import py2app #import lxml includes+= ["pkg_resources","distutils","lxml.etree","lxml._elementpath",'pysam.TabProxies','pysam.ctabixproxies'] #"xml.sax.drivers2.drv_pyexpat" """ resources = ['/System/Library/Frameworks/Python.framework/Versions/2.6/include/python2.6/pyconfig.h'] frameworks = ['/System/Library/Frameworks/Python.framework/Versions/2.6/include/python2.6/pyconfig.h'] frameworks += ['/System/Library/Frameworks/Python.framework/Versions/2.6/Extras/lib/python/pkg_resources.py'] frameworks += ['/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/util.py'] frameworks += ['/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/sysconfig.py'] import pkg_resources import distutils import distutils.sysconfig import distutils.util """ options = {"py2app": {"excludes": excludes, "includes": includes, #"frameworks": frameworks, #"resources": resources, "argv_emulation": True, 'arch': 'i386', ## for wx "iconfile": "Viewer.icns"} } setup(name=_appName, app=[_script], version=_appVersion, description=_appDescription, author=_authorName, author_email=_authorEmail, url=_authorURL, options=options, #data_files=data_files, setup_requires=["py2app"] ) import unique, shutil root_path = unique.filepath('') software_path = root_path+'/dist/AltAnalyzeViewer.app/Contents/Frameworks/Tcl.framework' shutil.rmtree(software_path) software_path = root_path+'/dist/AltAnalyzeViewer.app/Contents/Frameworks/Tk.framework' shutil.rmtree(software_path) software_path = root_path+'/dist/AltAnalyzeViewer.app/Contents/Resources/mpl-data/sample_data' shutil.rmtree(software_path) software_path = root_path+'/dist/AltAnalyzeViewer.app/Contents/Resources/lib/python2.7/matplotlib/tests' shutil.rmtree(software_path) if sys.platform.startswith("win"): ### example command: python setup.py py2exe from distutils.core import setup import py2exe import suds import numpy import matplotlib import unique import lxml import sys import six ### relates to a date-time dependency in matplotlib import pysam import TabProxies import ctabix import csamtools import cvcf import dbhash import anydbm #sys.path.append(unique.filepath("Config\DLLs")) ### This is added, but DLLs still require addition to DLL python dir from distutils.filelist import findall import os data_files=matplotlib.get_py2exe_datafiles() matplotlibdatadir = matplotlib.get_data_path() matplotlibdata = findall(matplotlibdatadir) matplotlibdata_files = [] for f in matplotlibdata: dirname = os.path.join('matplotlibdata', f[len(matplotlibdatadir)+1:]) matplotlibdata_files.append((os.path.split(dirname)[0], [f])) windows=[{"script":_script,"icon_resources":[(1,_appIcon)]}] options={'py2exe': { "includes": 'suds', "includes": 'lxml', 'includes': 'lxml.etree', 'includes': 'lxml._elementpath', "includes": 'matplotlib', "includes": 'mpl_toolkits', "includes": 'matplotlib.backends.backend_tkagg', "dll_excludes": matplot_exclude+scipy_exclude, }} setup( windows = windows, options = options, version=_appVersion, description=_appDescription, author=_authorName, author_email=_authorEmail, url=_authorURL, data_files=matplotlibdata_files+data_files, ) if sys.platform.startswith("2linux"): # bb_setup.py from bbfreeze import Freezer f = Freezer(distdir="bb-binary") f.addScript("RemoteViewer.py") f() if sys.platform.startswith("linux"): ### example command: python setup.py build includes = ['matplotlib','mpl_toolkits','matplotlib.backends.backend_tkagg'] includefiles = [] from cx_Freeze import setup, Executable ### use to get rid of library.zip and move into the executable, along with appendScriptToLibrary and appendScriptToExe #buildOptions = dict(create_shared_zip = False) setup( name = _appName, version=_appVersion, description=_appDescription, author=_authorName, author_email=_authorEmail, url=_authorURL, #options = dict(build_exe = buildOptions), options = {"build_exe": {"includes":includes, "include_files": includefiles}}, executables = [Executable(_script, #appendScriptToExe=True, #appendScriptToLibrary=False, #icon='goelite.ico', compress=True)], )
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/setupRemoteViewer.py
setupRemoteViewer.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique try: from build_scripts import ExonArrayEnsemblRules except Exception: pass try: from build_scripts import EnsemblImport except Exception: pass import shutil try: from build_scripts import JunctionArray except Exception: pass import update def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def eliminateRedundant(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 ############# Affymetrix NextGen Junction Array Code def importEnsemblUCSCAltJunctions(species,type): if type == 'standard': filename = 'AltDatabase/ensembl/'+species+'/'+species+'_alternative_junctions.txt' else: filename = 'AltDatabase/ensembl/'+species+'/'+species+'_alternative_junctions'+type+'.txt' fn=filepath(filename); x = 0; gene_junction_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1 else: gene,critical_exon,junction1,junction2,splice_event = string.split(data,'\t') if critical_exon in junction1: incl_junction = junction1; excl_junction = junction2 else: incl_junction = junction2; excl_junction = junction1 gene_junction_db[gene,critical_exon,incl_junction,excl_junction]=[] #try: gene_junction_db[gene,incl_junction,excl_junction].append(critical_exon) #except KeyError: gene_junction_db[gene,incl_junction,excl_junction] = [critical_exon] print len(gene_junction_db), 'alternative junction-pairs identified from Ensembl and UCSC' return gene_junction_db def getJunctionComparisonsFromExport(species,array_type): type = 'standard' gene_junction_db = importEnsemblUCSCAltJunctions(species,type) ### Retrieve probesets with exon-junctions associated - these are critical exons filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+array_type+'_probesets.txt' gene_probeset_db = ExonArrayEnsemblRules.reimportEnsemblProbesetsForSeqExtraction(filename,'junctions',{}) left={}; right={}; gene_db={}; gene_exon_db={}; nonjunction_aligning={} for gene in gene_probeset_db: for (probe_data,ed) in gene_probeset_db[gene]: probeset, strand, probeset_start, probeset_stop = probe_data region_id = string.replace(ed.RegionNumber(),'-','.') original_region_id = region_id region_ids = string.split(region_id,'|') gene_db[probeset[:-2]]=gene #ed.AssociatedSplicingJunctions() r_starts=string.split(ed.ExonStart(),'|'); r_stops=string.split(ed.ExonStop(),'|') for region_id in region_ids: if '|5' in probeset: try: left[probeset[:-2]].append(region_id) except Exception: left[probeset[:-2]]=[region_id] if strand == '+': ### If the junction probesets DO NOT align to the region coordinates, then the probeset maps to a junction outside the database if probeset_stop not in r_stops: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_stop,'left' elif probeset_start not in r_starts: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_start,'left' elif '|3' in probeset: try: right[probeset[:-2]].append(region_id) except Exception: right[probeset[:-2]]=[region_id] if strand == '+': if probeset_start not in r_starts: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_start,'right' elif probeset_stop not in r_stops: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_stop,'right' else: if '_' in region_id: print killer try: gene_exon_db[gene,region_id].append(probeset) except Exception: gene_exon_db[gene,region_id] = [probeset] print 'len(nonjunction_aligning)',len(nonjunction_aligning) gene_exon_db = eliminateRedundant(gene_exon_db) junction_db={} ### Get the exon-region IDs for an exon-junction for probeset in left: gene = gene_db[probeset] if probeset in right: for region1 in left[probeset]: for region2 in right[probeset]: junction = region1+'-'+region2 try: junction_db[gene,junction].append(probeset) except Exception: junction_db[gene,junction] = [probeset] probeset_junction_export = 'AltDatabase/' + species + '/'+array_type+'/'+ species + '_junction_comps.txt' fn=filepath(probeset_junction_export); data = open(fn,'w') print "Exporting",probeset_junction_export title = 'gene'+'\t'+'critical_exon'+'\t'+'exclusion_junction_region'+'\t'+'inclusion_junction_region'+'\t'+'exclusion_probeset'+'\t'+'inclusion_probeset'+'\t'+'data_source'+'\n' data.write(title); temp_list=[] for (gene,critical_exon,incl_junction,excl_junction) in gene_junction_db: if (gene,incl_junction) in junction_db: incl_junction_probesets = junction_db[gene,incl_junction] if (gene,excl_junction) in junction_db: excl_junction_probesets = junction_db[gene,excl_junction] for incl_junction_probeset in incl_junction_probesets: for excl_junction_probeset in excl_junction_probesets: try: for incl_exon_probeset in gene_exon_db[gene,critical_exon]: if incl_junction_probeset in nonjunction_aligning or excl_junction_probeset in nonjunction_aligning: null=[] else: ### Ensure the probeset DOES map to the annotated junctions temp_list.append(string.join([gene,critical_exon,excl_junction,critical_exon,excl_junction_probeset,incl_exon_probeset,'AltAnalyze'],'\t')+'\n') except Exception: null=[] if incl_junction_probeset in nonjunction_aligning: new_region_id, side = nonjunction_aligning[incl_junction_probeset] incl_junction = renameJunction(incl_junction,side,new_region_id) if excl_junction_probeset in nonjunction_aligning: new_region_id, side = nonjunction_aligning[excl_junction_probeset] excl_junction = renameJunction(excl_junction,side,new_region_id) if excl_junction_probeset!=incl_junction_probeset: temp_list.append(string.join([gene,critical_exon,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,'AltAnalyze'],'\t')+'\n') temp_list = unique.unique(temp_list) for i in temp_list: data.write(i) data.close() print 'Number of compared junctions exported', len(temp_list) def renameJunction(junction_id,side,new_region_id): try: l,r = string.split(junction_id,'-') except Exception: print junction_id;kill if side == 'left': junction_id = new_region_id+'-'+r else: junction_id = l+'-'+new_region_id return junction_id class JunctionInformation: def __init__(self,gene,critical_exon,excl_junction,incl_junction,excl_probeset,incl_probeset,source): self._gene = gene; self._critical_exon = critical_exon; self.excl_junction = excl_junction; self.incl_junction = incl_junction self.excl_probeset = excl_probeset; self.incl_probeset = incl_probeset; self.source = source self.critical_exon_sets = [critical_exon] def GeneID(self): return str(self._gene) def CriticalExon(self): ce = str(self._critical_exon) if '-' in ce: ce = string.replace(ce,'-','.') return ce def CriticalExonList(self): critical_exon_str = self.CriticalExon() critical_exons = string.split(critical_exon_str,'|') return critical_exons def ParentCriticalExon(self): ce = str(self.CriticalExon()) if '_' in ce: ces = string.split(ce,'|') ces2=[] for ce in ces: if '_' in ce: ce = string.split(ce,'_')[0] ces2.append(ce) ce = string.join(ces2,'|') return ce def setCriticalExons(self,critical_exons): self._critical_exon = critical_exons def setCriticalExonSets(self,critical_exon_sets): self.critical_exon_sets = critical_exon_sets def CriticalExonSets(self): return self.critical_exon_sets ### list of critical exons (can select any or all for functional analysis) def setInclusionJunction(self,incl_junction): self.incl_junction = incl_junction def InclusionJunction(self): return self.FormatJunction(self.incl_junction,self.InclusionProbeset()) def ExclusionJunction(self): return self.FormatJunction(self.excl_junction,self.ExclusionProbeset()) def FormatJunction(self,junction,probeset): ### Used for RNASeq when trans-splicing occurs probeset_split = string.split(probeset,':') ### Indicates trans-splicing - two gene IDs listed if len(probeset_split)>2: junction = probeset elif 'E0.1' in junction: junction = 'U'+junction[1:] return str(junction) def setInclusionProbeset(self,incl_probeset): self.incl_probeset = incl_probeset def InclusionProbeset(self): return self.FormatProbeset(self.incl_probeset) def ExclusionProbeset(self): return self.FormatProbeset(self.excl_probeset) def FormatProbeset(self,probeset): if ':' in probeset: probeset = string.split(probeset,':')[1] elif '@' in probeset: probeset = reformatID(probeset) return str(probeset) def DataSource(self): return str(self.source) def OutputLine(self): value = string.join([self.GeneID(),self.CriticalExon(),self.ExclusionJunction(),self.InclusionJunction(),self.ExclusionProbeset(),self.InclusionProbeset(),self.DataSource()],'\t')+'\n' return value def __repr__(self): return self.GeneID() def formatID(id): ### JunctionArray methods handle IDs with ":" different than those that lack this return string.replace(id,':','@') def reformatID(id): ### JunctionArray methods handle IDs with ":" different than those that lack this return string.replace(id,'@',':') def reimportJunctionComps(species,array_type,file_type): if len(species[0])>1: species, root_dir = species else: species = species if len(file_type) == 2: file_type, filter_db = file_type; filter='yes' else: filter_db={}; filter='no' filename = 'AltDatabase/' + species + '/'+array_type+'/'+ species + '_junction_comps.txt' if file_type == 'updated': filename = string.replace(filename,'.txt','_updated.txt') if array_type == 'RNASeq': filename = root_dir+filename fn=filepath(filename); junction_inclusion_db={}; x=0 for line in open(fn,'rU').xreadlines(): if x==0: x=1 else: data = cleanUpLine(line) try: gene,critical_exon,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source = string.split(data,'\t') except Exception: print data;kill proceed = 'yes' if filter == 'yes': if gene not in filter_db: proceed = 'no' if proceed == 'yes': if array_type == 'RNASeq': ### Reformat IDs, as junction arrays interpret ':' as a separator to remove the gene ID excl_junction_probeset = formatID(excl_junction_probeset) incl_junction_probeset = formatID(incl_junction_probeset) if file_type == 'updated': ### Add exclusion-junction versus inclusion-exon critical_exons = string.split(critical_exon,'|') for ce in critical_exons: critical_exon_probeset = formatID(gene+':'+ce) ji=JunctionInformation(gene,critical_exon,excl_junction,ce,excl_junction_probeset,critical_exon_probeset,source) junction_inclusion_db[excl_junction_probeset,critical_exon_probeset] = [ji] ji=JunctionInformation(gene,critical_exon,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source) if ':' in excl_junction_probeset: tc,excl_junction_probeset=string.split(excl_junction_probeset,':') tc,incl_junction_probeset=string.split(incl_junction_probeset,':') try: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset].append(ji) except Exception: junction_inclusion_db[excl_junction_probeset,incl_junction_probeset] = [ji] if array_type != 'RNASeq': print len(junction_inclusion_db),'reciprocol junctions imported' return junction_inclusion_db def importAndReformatEnsemblJunctionAnnotations(species,array_type,nonconstitutive_junctions): filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+array_type+'_probesets.txt' export_filepath = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_probesets.txt' efn=filepath(export_filepath); export_data = open(efn,'w') fn=filepath(filename); x = 0; ensembl_exon_db={}; left={}; right={}; exon_gene_db={}; nonjunction_aligning={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x=1; export_data.write(data+'\n') else: t = string.split(data,'\t') probeset, exon_id, ensembl_gene_id, transcript_cluster_id, chr, strand, probeset_start, probeset_stop, affy_class, constitutitive_probeset, ens_exon_ids, exon_annotations,regionid,r_start,r_stop,splice_event,splice_junctions = t if len(regionid)<1: regionid = exon_id; t[12] = exon_id if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention tc,probeset=string.split(probeset,':'); regionid = string.replace(regionid,'-','.'); original_region_id = regionid r_starts=string.split(r_start,'|'); r_stops=string.split(r_stop,'|') ed = EnsemblImport.ExonStructureData(ensembl_gene_id, chr, strand, probeset_start, probeset_stop, constitutitive_probeset, ens_exon_ids, []); ed.reSetExonID(regionid) if '|5' in probeset: left[probeset[:-2]] = ed,t if strand == '+': ### If the junction probesets DO NOT align to the region coordinates, then the probeset maps to a junction outside the database if probeset_stop not in r_stops: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_stop,'left' elif probeset_start not in r_starts: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_start,'left' elif '|3' in probeset: right[probeset[:-2]] = ed,t if strand == '+': if probeset_start not in r_starts: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_start,'right' elif probeset_stop not in r_stops: nonjunction_aligning[probeset[:-2]] = original_region_id+'_'+probeset_stop,'right' else: t[0] = probeset ensembl_exon_db[probeset] = ed export_data.write(string.join(t,'\t')+'\n') regionids = string.split(regionid,'|') for regionid in regionids: exon_gene_db[ensembl_gene_id,regionid] = probeset for probeset in left: if probeset in right: l,pl = left[probeset]; r,pr = right[probeset] if l.Constitutive() != r.Constitutive(): l.setConstitutive('no') ### used to determine if a junciton is alternative or constitutive if probeset in nonconstitutive_junctions: l.setConstitutive('no') l.setJunctionCoordinates(l.ExonStart(),l.ExonStop(),r.ExonStart(),r.ExonStop()) ens_exon_idsl = pl[10]; ens_exon_idsr = pr[10]; exon_idl = pl[1]; exon_idr = pr[1] regionidl = pl[12]; regionidr = pr[12]; splice_junctionsl = pl[-1]; splice_junctionsr = pr[-1] exon_idl = string.replace(exon_idl,'-','.'); exon_idr = string.replace(exon_idr,'-','.') regionidl_block = string.split(regionidl,'-')[0]; regionidr_block = string.split(regionidr,'-')[0] if regionidl_block != regionidr_block: ### Otherwise, the junction is probing a single exon block and thus is not informative regionidl = string.replace(regionidl,'-','.'); regionidr = string.replace(regionidr,'-','.') exon_id = exon_idl+'-'+exon_idr; regionid = regionidl+'-'+regionidr if probeset in nonjunction_aligning: new_region_id, side = nonjunction_aligning[probeset] regionid = renameJunction(regionid,side,new_region_id) l.reSetExonID(regionid); ensembl_exon_db[probeset] = l splice_junctionsl+=splice_junctionsr ens_exon_idsl = string.split(ens_exon_idsl,'|'); ens_exon_idsr = string.split(ens_exon_idsr,'|') ens_exon_ids=string.join(unique.unique(ens_exon_idsl+ens_exon_idsr),'|') pl[10] = ens_exon_ids; pl[12] = regionid; pl[1] = exon_id; pl[-1] = splice_junctionsl pl[13] = l.ExonStart()+'|'+l.ExonStop(); pl[14] = r.ExonStart()+'|'+r.ExonStop() strand = pl[5] if strand == '+': pl[6] = l.ExonStop(); pl[7] = r.ExonStart() ### juncstion splice-sites else: pl[6] = l.ExonStart(); pl[7] = r.ExonStop() ### juncstion splice-sites pl[0] = probeset; pl[9] = l.Constitutive() pl = string.join(pl,'\t')+'\n' export_data.write(pl) export_data.close() return ensembl_exon_db,exon_gene_db ################## AltMouse and Generic Junction Array Analysis def importCriticalExonLocations(species,array_type,ensembl_exon_db,force): ###ensembl_exon_db[(geneid,chr,strand)] = [[E5,exon_info]] #exon_info = (exon_start,exon_stop,exon_id,exon_annot) ###ensembl_probeset_db[geneid,chr,strand].append(probeset_data) #probeset_data = [start,stop,probeset_id,exon_class,transcript_cluster_id] gene_info_db = {} for (ens_geneid,chr,strand) in ensembl_exon_db: gene_info_db[ens_geneid] = chr,strand filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical_exon_locations.txt' array_ensembl={} ###Get the most recent gene-symbol annotations (applicable with a new Ensembl build for the same genomic build) ensembl_symbol_db = getEnsemblAnnotations(species) primary_gene_annotation_file = 'AltDatabase/'+species +'/'+ array_type +'/'+ array_type+ '_gene_annotations.txt' update.verifyFile(primary_gene_annotation_file,array_type) array_gene_annotations = JunctionArray.importGeneric(primary_gene_annotation_file) for array_geneid in array_gene_annotations: t = array_gene_annotations[array_geneid]; description=t[0];entrez=t[1];symbol=t[2] if symbol in ensembl_symbol_db and len(symbol)>0 and len(array_geneid)>0: ens_geneid = ensembl_symbol_db[symbol] if len(ens_geneid)>0: array_ensembl[array_geneid]= ens_geneid update.verifyFile(filename,array_type) ensembl_probeset_db = importJunctionLocationData(filename,array_ensembl,gene_info_db,test) print len(ensembl_probeset_db), "Genes inlcuded in",array_type,"location database" return ensembl_probeset_db def importJunctionLocationData(filename,array_ensembl,gene_info_db,test): fn=filepath(filename); key_db = {}; x = 0; y = 0; ensembl_probeset_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x = 1 else: k=0 array_geneid,exonid,ens_geneid,start,stop,gene_start,gene_stop,exon_seq = string.split(data,'\t') probeset_id = array_geneid+':'+exonid if test == 'yes': if array_geneid in test_cluster: k=1 else: k = 1 if k==1: if array_geneid in array_ensembl: ens_geneid = array_ensembl[array_geneid]; y+=1 ### Over-ride any outdated assocations if ens_geneid in gene_info_db: chr,strand = gene_info_db[ens_geneid] probeset_data = [start,stop,probeset_id,'core',array_geneid] try: ensembl_probeset_db[ens_geneid,'chr'+chr,strand].append(probeset_data) except KeyError: ensembl_probeset_db[ens_geneid,'chr'+chr,strand] = [probeset_data] print y,"ArrayID to Ensembl genes re-annotated..." return ensembl_probeset_db def getEnsemblAnnotations(species): filename = 'AltDatabase/ensembl/'+ species + '/'+species+ '_Ensembl-annotations_simple.txt' ensembl_annotation_db = {} fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) ensembl_gene_id,description,symbol = string.split(data,'\t') ensembl_annotation_db[symbol] = ensembl_gene_id return ensembl_annotation_db def getAnnotations(Species,array_type,reannotate_exon_seq,force): """Annotate Affymetrix exon array data using files Ensembl data (sync'ed to genome release).""" global species; species = Species; global test; global test_cluster test = 'no'; test_cluster = ['TC0701360']; data_type = 'mRNA' global ensembl_exon_db; global ensembl_exon_db; global exon_clusters; global exon_region_db ensembl_exon_db,ensembl_annot_db,exon_clusters,intron_clusters,exon_region_db,intron_retention_db,ucsc_splicing_annot_db,ens_transcript_db = EnsemblImport.getEnsemblAssociations(species,data_type,test) ensembl_probeset_db = importCriticalExonLocations(species,array_type,ensembl_exon_db,force) ###Get Pre-computed genomic locations for critical exons ensembl_probeset_db = ExonArrayEnsemblRules.annotateExons(ensembl_probeset_db,exon_clusters,ensembl_exon_db,exon_region_db,intron_retention_db,intron_clusters,ucsc_splicing_annot_db); constitutive_gene_db={} ExonArrayEnsemblRules.exportEnsemblLinkedProbesets(array_type,ensembl_probeset_db,species) print "\nCritical exon data exported coordinates, exon associations and splicing annotations exported..." ### Change filenames to reflect junction array type export_filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_probesets.txt'; ef=filepath(export_filename) export_replacement = string.replace(export_filename,'_probe','_'+array_type+'_probe') er=filepath(export_replacement); shutil.copyfile(ef,er); os.remove(ef) ### Copy file to a new name ### Export full exon seqeunce for probesets/critical exons to replace the original incomplete sequence (used for miRNA analyses) if reannotate_exon_seq == 'yes': JunctionArray.reAnnotateCriticalExonSequences(species,array_type) def annotateJunctionIDsAsExon(species,array_type): from build_scripts import ExonSeqModule probeset_annotations_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_junction_probesets-filtered.txt' if array_type == 'RNASeq': probeset_annotations_file = string.replace(probeset_annotations_file,'junction_probesets-filtered','exons') junction_exon_db = ExonSeqModule.importSplicingAnnotationDatabase(probeset_annotations_file,array_type) probeset_annotations_file = 'AltDatabase/'+species+'/exon/'+species+'_Ensembl_probesets.txt' exon_db = ExonSeqModule.importSplicingAnnotationDatabase(probeset_annotations_file,array_type) ### Extract unique exon regions from Exon Array annotations multiple_exon_regions={}; unique_exon_regions={} for probeset in exon_db: y = exon_db[probeset] geneid = y.GeneID() if '|' in y.ExonRegionID(): exonids = string.split(y.ExonRegionID(),'|') for exonid in exonids: multiple_exon_regions[geneid,exonid] = y else: unique_exon_regions[geneid,y.ExonRegionID()] = y ### Add missing exons to unique for uid in multiple_exon_regions: if uid not in unique_exon_regions: unique_exon_regions[uid]=multiple_exon_regions[uid] """ for i in unique_exon_regions: if 'ENSMUSG00000066842' in i: print i stop """ ### Extract unique exon regions from Junction Array annotation junction_to_exonids={} for probeset in junction_exon_db: if 'ENSMUSG00000066842' in probeset: print probeset y = junction_exon_db[probeset] geneid = y.GeneID() if '|' in y.ExonRegionID(): exonids = string.split(y.ExonRegionID(),'|') if probeset == 'ENSMUSG00000066842|E60.1': print [[exonids]] for exonid in exonids: if (geneid,exonid) in unique_exon_regions: y = unique_exon_regions[geneid,exonid] if probeset == 'ENSMUSG00000066842:E60.1': print [y.Probeset()] junction_to_exonids[probeset] = y.Probeset() else: if (geneid,string.replace(y.ExonRegionID(),'.','-')) in unique_exon_regions: #if ':' in probeset: print [probeset,y.ExonRegionID()];kill y = unique_exon_regions[geneid,string.replace(y.ExonRegionID(),'.','-')] junction_to_exonids[probeset] = y.Probeset() output_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_'+array_type+'-exon_probesets.txt' fn=filepath(output_file); data = open(fn,'w') data.write(array_type+'_probeset\texon_probeset\n') for probeset in junction_to_exonids: exon_probeset = junction_to_exonids[probeset] data.write(probeset+'\t'+exon_probeset+'\n') data.close() if __name__ == '__main__': m = 'Mm'; h = 'Hs' Species = m array_type = 'RNASeq' ###In theory, could be another type of junciton or combination array annotateJunctionIDsAsExon(Species,array_type); sys.exit() #reimportJunctionComps(Species,array_type,'original');kill #JunctionArray.getJunctionExonLocations(Species,array_type) """ ### Get UCSC associations (download databases if necessary) from build_scripts import UCSCImport mRNA_Type = 'mrna'; run_from_scratch = 'yes'; force='no' export_all_associations = 'no' ### YES only for protein prediction analysis UCSCImport.runUCSCEnsemblAssociations(Species,mRNA_Type,export_all_associations,run_from_scratch,force) """ getAnnotations(Species,array_type,'yes','no') JunctionArray.identifyJunctionComps(Species,array_type) #importAndReformatEnsemblJunctionAnnotations(Species,array_type)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/JunctionArrayEnsemblRules.py
JunctionArrayEnsemblRules.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from build_scripts import GO_parsing import copy import time import update def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def makeUnique(item): db1={}; list1=[]; k=0 for i in item: try: db1[i]=[] except TypeError: db1[tuple(i)]=[]; k=1 for i in db1: if k==0: list1.append(i) else: list1.append(list(i)) list1.sort() return list1 def customDeepCopy(db): db2={} for i in db: for e in db[i]: try: db2[i].append(e) except KeyError: db2[i]=[e] return db2 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data ################### Import exon coordinate/transcript data from Ensembl def importEnsExonStructureData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_db): ensembl_ucsc_splicing_annotations={} try: ensembl_ucsc_splicing_annotations = importUCSCAnnotationData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_db,{},'polyA') except Exception: ensembl_ucsc_splicing_annotations={} try: ensembl_ucsc_splicing_annotations = importUCSCAnnotationData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_db,ensembl_ucsc_splicing_annotations,'splicing') except Exception: null=[] return ensembl_ucsc_splicing_annotations def importUCSCAnnotationData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_db,ensembl_ucsc_splicing_annotations,data_type): ucsc_gene_coordinates={} if data_type == 'splicing': filename = 'AltDatabase/ucsc/'+species+'/knownAlt.txt' if data_type == 'polyA': filename = 'AltDatabase/ucsc/'+species+'/polyaDb.txt' start_time = time.time() fn=filepath(filename); x=0 verifyFile(filename,species) ### Makes sure file is local and if not downloads for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if data_type == 'splicing': regionid,chr,start,stop,event_call,null,strand = string.split(data,'\t') if data_type == 'polyA': event_call = 'alternative_polyA' try: regionid,chr,start,stop,null,null,strand,start,stop = string.split(data,'\t') except Exception: chr,start,stop,annotation,null,strand = string.split(data,'\t') start = int(start)+1; stop = int(stop); chr = string.replace(chr,'chr','') ###checked it out and all UCSC starts are -1 from the correspond Ensembl start if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention try: ucsc_gene_coordinates[chr,start,stop,strand].append(event_call) except KeyError: ucsc_gene_coordinates[chr,start,stop,strand] = [event_call] print len(ucsc_gene_coordinates),'UCSC annotations imported.' ensembl_chr_coordinate_db={} for gene in ensembl_gene_coordinates: a = ensembl_gene_coordinates[gene]; a.sort() gene_start = a[0]; gene_stop = a[-1] chr,strand = ensembl_annotations[gene] if chr in ensembl_chr_coordinate_db: ensembl_gene_coordinates2 = ensembl_chr_coordinate_db[chr] ensembl_gene_coordinates2[(gene_start,gene_stop)] = gene,strand else: ensembl_gene_coordinates2={}; ensembl_gene_coordinates2[(gene_start,gene_stop)] = gene,strand ensembl_chr_coordinate_db[chr]=ensembl_gene_coordinates2 ucsc_chr_coordinate_db={} for geneid in ucsc_gene_coordinates: chr,start,stop,strand = geneid if chr in ucsc_chr_coordinate_db: ucsc_gene_coordinates2 = ucsc_chr_coordinate_db[chr] ucsc_gene_coordinates2[(start,stop)] = geneid,strand else: ucsc_gene_coordinates2={}; ucsc_gene_coordinates2[(start,stop)] = geneid,strand ucsc_chr_coordinate_db[chr] = ucsc_gene_coordinates2 ensembl_transcript_clusters,no_match_list = getChromosomalOveralap(ucsc_chr_coordinate_db,ensembl_chr_coordinate_db) ensembl_ucsc_splicing_event_db = {} for clusterid in ensembl_transcript_clusters: ens_geneids = ensembl_transcript_clusters[clusterid] if len(ens_geneids)==1: ###If a cluster ID associates with multiple Ensembl IDs ens_geneid = ens_geneids[0] annotations = ucsc_gene_coordinates[clusterid] try: ensembl_ucsc_splicing_event_db[ens_geneid].append((clusterid,annotations)) except KeyError: ensembl_ucsc_splicing_event_db[ens_geneid] = [(clusterid,annotations)] for ensembl in ensembl_ucsc_splicing_event_db: chr,strand = ensembl_annotations[ensembl] key = ensembl,chr,strand ###Look through each of the annotations (with coordinate info) for those that are specifically AltPromoters ###Their coordinates occur overlapping but before the exon, so we want to change the coordinates for (clusterid,annotations) in ensembl_ucsc_splicing_event_db[ensembl]: new_coordinates = [] if 'altPromoter' in annotations: chr,bp1,ep1,strand = clusterid if key in exon_annotation_db: exon_info_ls = exon_annotation_db[key] for exon_info in exon_info_ls: bp2 = exon_info[0]; ep2 = exon_info[0]; add = 0 ### Changed ep2 to be the second object in the list (previously it was also the first) 4-5-08 if ((bp1 >= bp2) and (ep2 >= bp1)) or ((ep1 >= bp2) and (ep2 >= ep1)): add = 1 ###if the start or stop of the UCSC region is inside the Ensembl start and stop elif ((bp2 >= bp1) and (ep1 >= bp2)) or ((ep2 >= bp1) and (ep1 >= ep2)): add = 1 ###opposite if add == 1: new_coordinates += [bp1,bp2,ep1,ep2] ###record all coordinates and take the extreme values new_coordinates.sort() if len(new_coordinates)>0: new_start = new_coordinates[0]; new_stop = new_coordinates[-1] clusterid = chr,new_start,new_stop,strand annotation_str = string.join(annotations,'|') ###replace with new or old information start = clusterid[1]; stop = clusterid[2] try: ensembl_ucsc_splicing_annotations[ensembl].append((start,stop,annotation_str)) except KeyError: ensembl_ucsc_splicing_annotations[ensembl] = [(start,stop,annotation_str)] if data_type == 'polyA': ### Only keep entries for which there are mulitple polyAs per gene ensembl_ucsc_splicing_annotations_multiple={} for ensembl in ensembl_ucsc_splicing_annotations: if len(ensembl_ucsc_splicing_annotations[ensembl])>1: ensembl_ucsc_splicing_annotations_multiple[ensembl] = ensembl_ucsc_splicing_annotations[ensembl] ensembl_ucsc_splicing_annotations = ensembl_ucsc_splicing_annotations_multiple print len(ensembl_ucsc_splicing_annotations),'genes with events added from UCSC annotations.' return ensembl_ucsc_splicing_annotations def getChromosomalOveralap(ucsc_chr_db,ensembl_chr_db): print len(ucsc_chr_db),len(ensembl_chr_db); start_time = time.time() """Find transcript_clusters that have overlapping start positions with Ensembl gene start and end (based on first and last exons)""" ###exon_location[transcript_cluster_id,chr,strand] = [(start,stop,exon_type,probeset_id)] y = 0; l =0; ensembl_transcript_clusters={}; no_match_list=[] ###(bp1,ep1) = (47211632,47869699); (bp2,ep2) = (47216942, 47240877) for chr in ucsc_chr_db: ucsc_db = ucsc_chr_db[chr] try: for (bp1,ep1) in ucsc_db: #print (bp1,ep1) x = 0 gene_clusterid,ucsc_strand = ucsc_db[(bp1,ep1)] try: ensembl_db = ensembl_chr_db[chr] for (bp2,ep2) in ensembl_db: y += 1; ensembl,ens_strand = ensembl_db[(bp2,ep2)] #print (bp1,ep1),(bp2,ep2);kill if ucsc_strand == ens_strand: ###if the two gene location ranges overlapping ##########FORCE UCSC mRNA TO EXIST WITHIN THE SPACE OF ENSEMBL TO PREVENT TRANSCRIPT CLUSTER EXCLUSION IN ExonArrayEnsemblRules add = 0 if (bp1 >= bp2) and (ep2>= ep1): add = 1 ###if the annotations reside within the gene's start and stop position #if ((bp1 >= bp2) and (ep2 >= bp1)) or ((ep1 >= bp2) and (ep2 >= ep1)): add = 1 ###if the start or stop of the UCSC region is inside the Ensembl start and stop #elif ((bp2 >= bp1) and (ep1 >= bp2)) or ((ep2 >= bp1) and (ep1 >= ep2)): add = 1 ###opposite if add == 1: #if (bp1 >= bp2) and (ep2>= ep1): a = '' #else: print gene_clusterid,ensembl,bp1,bp2,ep1,ep2;kill x = 1 try: ensembl_transcript_clusters[gene_clusterid].append(ensembl) except KeyError: ensembl_transcript_clusters[gene_clusterid] = [ensembl] l += 1 except KeyError: null=[]#; print chr, 'not found' if x == 0: no_match_list.append(gene_clusterid) except ValueError: for y in ucsc_db: print y;kill end_time = time.time(); time_diff = int(end_time-start_time) print "UCSC genes matched up to Ensembl in %d seconds" % time_diff print "UCSC Transcript Clusters (or accession numbers) overlapping with Ensembl:",len(ensembl_transcript_clusters) print "With NO overlapp",len(no_match_list) return ensembl_transcript_clusters,no_match_list def reformatPolyAdenylationCoordinates(species,force): """ PolyA annotations are currently only available from UCSC for human, but flat file annotations from 2003-2006 are available for multiple species. Convert these to BED format""" version={} version['Rn'] = '2003(rn3)' version['Dr'] = '2003(zv4)' version['Gg'] = '2004(galGal2)' version['Hs'] = '2006(hg8)' version['Mm'] = '2004(mm5)' print 'Exporting polyADB_2 coordinates as BED for',species ### Obtain the necessary database files url = 'http://altanalyze.org/archiveDBs/all/polyAsite.txt' output_dir = 'AltDatabase/ucsc/'+species + '/' if force == 'yes': filename, status = update.download(url,output_dir,'') else: filename = output_dir+'polyAsite.txt' ### Import the refseq to Ensembl information import gene_associations; from import_scripts import OBO_import; from build_scripts import EnsemblImport; import export try: ens_unigene = gene_associations.getGeneToUid(species,'Ensembl-UniGene') print len(ens_unigene),'Ensembl-UniGene entries imported' external_ensembl = OBO_import.swapKeyValues(ens_unigene); use_entrez='no' except Exception: ens_entrez = gene_associations.getGeneToUid(species,'Ensembl-EntrezGene') print len(ens_entrez),'Ensembl-EntrezGene entries imported' external_ensembl = OBO_import.swapKeyValues(ens_entrez); use_entrez='yes' gene_location_db = EnsemblImport.getEnsemblGeneLocations(species,'RNASeq','key_by_array') export_bedfile = output_dir+species+'_polyADB_2_predictions.bed' print 'exporting',export_bedfile export_data = export.ExportFile(export_bedfile) header = '#'+species+'\t'+'polyADB_2'+'\t'+version[species]+'\n' export_data.write(header) fn=filepath(filename); x=0; not_found={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x==0: x=1 else: siteid,llid,chr,sitenum,position,supporting_EST,cleavage = string.split(data,'\t') if chr == 'chrM': chr = 'chrMT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if chr == 'M': chr = 'MT' ### MT is the Ensembl convention whereas M is the Affymetrix and UCSC convention if species in siteid: if 'NA' not in chr: chr = 'chr'+chr strand = '+'; geneid = siteid pos_start = str(int(position)-1); pos_end = position if use_entrez=='no': external_geneid = string.join(string.split(siteid,'.')[:2],'.') else: external_geneid=llid if external_geneid in external_ensembl: ens_geneid = external_ensembl[external_geneid][0] geneid += '-'+ens_geneid chr,strand,start,end = gene_location_db[ens_geneid] else: not_found[external_geneid]=[] bed_format = string.join([chr,pos_start,pos_end,geneid,'0','-'],'\t')+'\n' ### We don't know the strand, so write out both strands export_data.write(bed_format) bed_format = string.join([chr,pos_start,pos_end,geneid,'0',strand],'\t')+'\n' export_data.write(bed_format) export_data.close() def verifyFile(filename,species_name): fn=filepath(filename); counts=0 try: for line in open(fn,'rU').xreadlines(): counts+=1 if counts>10: break except Exception: counts=0 if species_name == 'counts': ### Used if the file cannot be downloaded from http://www.altanalyze.org return counts elif counts == 0: if species_name in filename: server_folder = species_name ### Folder equals species unless it is a universal file elif 'Mm' in filename: server_folder = 'Mm' ### For PicTar else: server_folder = 'all' print 'Downloading:',server_folder,filename update.downloadCurrentVersion(filename,server_folder,'txt') else: return counts if __name__ == '__main__': species = 'Hs'; #species_full = 'Drosophila_melanogaster' filename = 'AltDatabase/ucsc/'+species+'/polyaDb.txt' verifyFile(filename,species) ### Makes sure file is local and if not downloads. sys.exit() importEnsExonStructureData(species,[],[],[]);sys.exit() reformatPolyAdenylationCoordinates(species,'no');sys.exit() #test = 'yes' #test_gene = ['ENSG00000140153','ENSG00000075413'] from build_scripts import UCSCImport; import update knownAlt_dir = update.getFTPData('hgdownload.cse.ucsc.edu','/goldenPath/currentGenomes/'+species_full+'/database','knownAlt.txt.gz') polyA_dir = update.getFTPData('hgdownload.cse.ucsc.edu','/goldenPath/currentGenomes/'+species_full+'/database','polyaDb.txt.gz') output_dir = 'AltDatabase/ucsc/'+species + '/' UCSCImport.downloadFiles(knownAlt_dir,output_dir); UCSCImport.downloadFiles(polyA_dir,output_dir);sys.exit() ensembl_ucsc_splicing_annotations = importEnsExonStructureData(species,ensembl_gene_coordinates,ensembl_annotations,exon_annotation_db)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/alignToKnownAlt.py
alignToKnownAlt.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from stats_scripts import statistics import math from build_scripts import EnsemblImport; reload(EnsemblImport) from build_scripts import ExonArrayEnsemblRules; reload(ExonArrayEnsemblRules) from build_scripts import ExonArrayAffyRules import ExpressionBuilder import reorder_arrays import time import export import traceback def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) #add in code to prevent folder names from being included dir_list2 = [] for file in dir_list: if '.txt' in file: dir_list2.append(file) return dir_list2 ################# Begin Analysis def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def returnLargeGlobalVars(): ### Prints all large global variables retained in memory (taking up space) all = [var for var in globals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: try: if len(globals()[var])>500: print var, len(globals()[var]) except Exception: null=[] def clearObjectsFromMemory(db_to_clear): db_keys={} for key in db_to_clear: db_keys[key]=[] for key in db_keys: del db_to_clear[key] def exportMetaProbesets(array_type,species): import AltAnalyze; reload(AltAnalyze) import export probeset_types = ['core','extended','full'] if array_type == 'junction': probeset_types = ['all'] for probeset_type in probeset_types: exon_db,null = AltAnalyze.importSplicingAnnotations(array_type,species,probeset_type,'yes','') gene_db={}; null=[] for probeset in exon_db: ### At this point, exon_db is filtered by the probeset_type (e.g., core) ensembl_gene_id = exon_db[probeset].GeneID() try: gene_db[ensembl_gene_id].append(probeset) except Exception: gene_db[ensembl_gene_id] = [probeset] exon_db=[]; uid=0 output_dir = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_'+array_type+'_'+probeset_type+'.mps' #output_cv_dir = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Conversion_'+array_type+'_'+probeset_type+'.txt' #data_conversion = export.ExportFile(output_cv_dir) data = export.ExportFile(output_dir) data.write('probeset_id\ttranscript_cluster_id\tprobeset_list\tprobe_count\n') print "Exporting",len(gene_db),"to",output_dir for ensembl_gene_id in gene_db: probeset_strlist = string.join(gene_db[ensembl_gene_id],' '); uid+=1 line = string.join([str(uid),str(uid),probeset_strlist,str(len(gene_db[ensembl_gene_id])*4)],'\t')+'\n' data.write(line) #conversion_line = string.join([str(uid),ensembl_gene_id],'\t')+'\n'; data_conversion.write(conversion_line) data.close(); #data_conversion.close() def adjustCounts(exp_vals): exp_vals2=[] for i in exp_vals: exp_vals2.append(int(i)+1) ### Increment the rwcounts by 1 return exp_vals def remoteExonProbesetData(filename,import_these_probesets,import_type,platform): global array_type array_type = platform results = importExonProbesetData(filename,import_these_probesets,import_type) return results def importExonProbesetData(filename,import_these_probesets,import_type): """This is a powerfull function, that allows exon-array data import and processing on a line-by-line basis, allowing the program to immediately write out data or summarize it without storing large amounts of data.""" fn=filepath(filename); start_time = time.time() exp_dbase={}; filtered_exp_db={}; ftest_gene_db={}; filtered_gene_db={}; probeset_gene_db={}; biotypes={} d = 0; x = 0 if 'stats.' in filename: filetype = 'dabg' else: filetype = 'expression' if 'FullDatasets' in filename and import_type == 'filterDataset': output_file = string.replace(filename,'.txt','-temp.txt') temp_data = export.ExportFile(output_file) ###Import expression data (non-log space) if 'counts.' in filename: counts = 'yes' else: counts = 'no' try: for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); if len(data)==0: null=[] elif data[0] != '#' and x == 1: ###Grab expression values tab_delimited_data = string.split(data,'\t') probeset = tab_delimited_data[0] if '=' in probeset: probeset = string.split(probeset,'=')[0] if '' in tab_delimited_data or '0' in tab_delimited_data and counts == 'no': None ### Rare GEO datasets remove values from the exon-level data (exclude the whole probeset) elif import_type == 'raw': try: null = import_these_probesets[probeset]; exp_vals = tab_delimited_data[1:]; exp_dbase[probeset] = exp_vals except KeyError: null = [] ###Don't import any probeset data elif import_type == 'filterDataset': try: null = import_these_probesets[probeset]; temp_data.write(line) except KeyError: null = [] ###Don't import any probeset data elif import_type == 'reorderFilterAndExportAll': if '-' in probeset: biotypes['junction'] = [] else: biotypes['exon'] = [] try: ###For filtering, don't remove re-organized entries but export filtered probesets to another file if exp_analysis_type == 'expression': null = import_these_probesets[probeset] exp_vals = tab_delimited_data[1:] #if counts == 'yes': exp_vals = adjustCounts(exp_vals) filtered_exp_db={}; filtered_exp_db[probeset] = exp_vals reorderArraysOnly(filtered_exp_db,filetype,counts) ###order and directly write data except KeyError: null = [] ###Don't import any probeset data elif data[0] != '#' and x == 0: ###Grab labels array_names = []; array_linker_db = {}; z = 0 tab_delimited_data = string.split(data,'\t') for entry in tab_delimited_data: if z != 0: array_names.append(entry) z += 1 for array in array_names: #use this to have an orignal index order of arrays array = string.replace(array,'\r','') ###This occured once... not sure why array_linker_db[array] = d; d +=1 x += 1 ### Process and export expression dataset headers if import_type == 'reorderFilterAndExportAll': if filetype == 'expression': headers = tab_delimited_data[1:]; probeset_header = tab_delimited_data[0] filtered_exp_db[probeset_header] = headers reorderArraysHeader(filtered_exp_db) elif import_type == 'filterDataset': temp_data.write(line) except IOError: #print traceback.format_exc() print filename, 'not found.' null=[] end_time = time.time(); time_diff = int(end_time-start_time) print "Exon data imported in %d seconds" % time_diff if array_type == 'RNASeq': id_name = 'junction IDs' else: id_name = 'array IDs' if import_type == 'filterDataset': temp_data.close() if import_type == 'arraynames': return array_linker_db,array_names if import_type == 'raw': print len(exp_dbase),id_name,"imported with expression values" return exp_dbase else: return biotypes def exportGroupedComparisonProbesetData(filename,probeset_db,data_type,array_names,array_linker_db,perform_alt_analysis): """This function organizes the raw expression data into sorted groups, exports the organized data for all conditions and comparisons and calculates which probesets have groups that meet the user defined dabg and expression thresholds.""" #comparison_filename_list=[] #if perform_alt_analysis != 'expression': ### User Option (removed in version 2.0 since the option prevented propper filtering) comparison_filename_list=[] probeset_dbase={}; exp_dbase={}; constitutive_gene_db={}; probeset_gene_db={} ### reset databases to conserve memory global expr_group_list; global comp_group_list; global expr_group_db if data_type == 'residuals': expr_group_dir = string.replace(filename,'residuals.','groups.') comp_group_dir = string.replace(filename,'residuals.','comps.') elif data_type == 'expression': expr_group_dir = string.replace(filename,'exp.','groups.') comp_group_dir = string.replace(filename,'exp.','comps.') if 'counts.' in filename: expr_group_dir = string.replace(expr_group_dir,'counts.','groups.') comp_group_dir = string.replace(comp_group_dir,'counts.','comps.') data_type = 'counts' elif data_type == 'dabg': expr_group_dir = string.replace(filename,'stats.','groups.') comp_group_dir = string.replace(filename,'stats.','comps.') comp_group_list, comp_group_list2 = ExpressionBuilder.importComparisonGroups(comp_group_dir) expr_group_list,expr_group_db = ExpressionBuilder.importArrayGroups(expr_group_dir,array_linker_db) print "Reorganizing expression data into comparison groups for export to down-stream splicing analysis software" ###Do this only for the header data group_count,raw_data_comp_headers = reorder_arrays.reorderArrayHeaders(array_names,expr_group_list,comp_group_list,array_linker_db) ###Export the header info and store the export write data for reorder_arrays global comparision_export_db; comparision_export_db={}; array_type_name = 'Exon' if array_type == 'junction': array_type_name = 'Junction' elif array_type == 'RNASeq': array_type_name = 'RNASeq' if data_type != 'residuals': AltAnalzye_input_dir = root_dir+"AltExpression/pre-filtered/"+data_type+'/' else: AltAnalzye_input_dir = root_dir+"AltExpression/FIRMA/residuals/"+array_type+'/'+species+'/' ### These files does not need to be filtered until AltAnalyze.py for comparison in comp_group_list2: ###loop throught the list of comparisons group1 = comparison[0]; group2 = comparison[1] group1_name = expr_group_db[group1]; group2_name = expr_group_db[group2] comparison_filename = species+'_'+array_type_name+'_'+ group1_name + '_vs_' + group2_name + '.txt' new_file = AltAnalzye_input_dir + comparison_filename; comparison_filename_list.append(comparison_filename) data = export.createExportFile(new_file,AltAnalzye_input_dir[:-1]) try: array_names = raw_data_comp_headers[comparison] except KeyError: print raw_data_comp_headers;kill title = ['UID']+array_names; title = string.join(title,'\t')+'\n'; data.write(title) comparision_export_db[comparison] = data ###store the export file write data so we can write after organizing #print filename, normalize_feature_exp biotypes = importExonProbesetData(filename,probeset_db,'reorderFilterAndExportAll') if normalize_feature_exp == 'RPKM': ### Add the gene-level RPKM data (this is in addition to the counts. file) exp_gene_db={} for i in probeset_db: exp_gene_db[probeset_db[i][0]]=[] filename = string.replace(filename,'.txt','-steady-state.txt') #print filename, normalize_feature_exp, 'here' importExonProbesetData(filename,exp_gene_db,'reorderFilterAndExportAll') for comparison in comparision_export_db: data = comparision_export_db[comparison]; data.close() print "Pairwise comparisons for AltAnalyze exported..." try: fulldataset_export_object.close() except Exception: null=[] return comparison_filename_list, biotypes def filterExpressionData(filename,pre_filtered_db,constitutive_gene_db,probeset_db,data_type,array_names,perform_alt_analysis): """Probeset level data and gene level data are handled differently by this program for exon and tiling based arrays. Probeset level data is sequentially filtered to reduce the dataset to a minimal set of expressed probesets (exp p-values) that that align to genes with multiple lines of evidence (e.g. ensembl) and show some evidence of regulation for any probesets in a gene (transcript_cluster). Gene level analyses are handled under the main module of the program, exactly like 3' arrays, while probe level data is reorganized, filtered and output from this module.""" ###First time we import, just grab the probesets associated if array_names != 'null': ### Then there is only an expr. file and not a stats file ###Identify constitutive probesets to import (sometimes not all probesets on the array are imported) possible_constitutive_probeset={}; probeset_gene_db={} for probeset in probeset_db: try: probe_data = probeset_db[probeset] gene = probe_data[0]; affy_class = probe_data[-1]; external_exonid = probe_data[-2] if affy_class == 'core' or len(external_exonid)>2: ### These are known exon only (e.g., 'E' probesets) proceed = 'yes' if array_type == 'RNASeq' and 'exon' in biotypes: ### Restrict the analysis to exon RPKM or count data for constitutive calculation if '-' in probeset: proceed = 'no' elif array_type == 'RNASeq' and 'junction' in biotypes: if '-' not in probeset: proceed = 'no' ### Use this option to override if proceed == 'yes': try: probeset_gene_db[gene].append(probeset) except KeyError: probeset_gene_db[gene] = [probeset] possible_constitutive_probeset[probeset] = [] except KeyError: null = [] ### Only import probesets that can be used to calculate gene expression values OR link to gene annotations (which have at least one dabg p<0.05 for all samples normalized) constitutive_exp_dbase = importExonProbesetData(filename,possible_constitutive_probeset,'raw') generateConstitutiveExpression(constitutive_exp_dbase,constitutive_gene_db,probeset_gene_db,pre_filtered_db,array_names,filename) if array_type != 'RNASeq': ### Repeat the analysis to export gene-level DABG reports for LineageProfiler (done by re-calling the current function for RNASeq and counts) try: constitutive_exp_dbase = importExonProbesetData(stats_input_dir,possible_constitutive_probeset,'raw') generateConstitutiveExpression(constitutive_exp_dbase,constitutive_gene_db,probeset_gene_db,pre_filtered_db,array_names,stats_input_dir) except Exception: print 'No dabg p-value specified for analysis (must be supplied in command-line or GUI mode - e.g., stats.experiment.txt)' None ### Occurs when no stats_input_dir specified constitutive_exp_dbase = {}; possible_constitutive_probeset={}; pre_filtered_db={}; probeset_db={}; constitutive_gene_db={} ### reset databases to conserve memory probeset_gene_db={} """ print 'global vars' returnLargeGlobalVars() print 'local vars' all = [var for var in locals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: try: if len(locals()[var])>500: print var, len(locals()[var]) except Exception: null=[] """ def reorderArraysHeader(filtered_exp_db): ### These are all just headers from the first line for probeset in filtered_exp_db: grouped_ordered_array_list = {}; group_list = [] for x in expr_group_list: y = x[1]; group = x[2] ### this is the new first index try: new_item = filtered_exp_db[probeset][y] except Exception: print y,group, probeset print 'Prior counts.YourExperiment-steady-state.txt exists and has different samples... delete before proceeding\n' bad_exit try: grouped_ordered_array_list[group].append(new_item) except KeyError: grouped_ordered_array_list[group] = [new_item] for group in grouped_ordered_array_list: group_list.append(group) group_list.sort(); combined_value_list=[] for group in group_list: group_name = expr_group_db[str(group)] g_data2 = []; g_data = grouped_ordered_array_list[group] for header in g_data: g_data2.append(group_name+':'+header) combined_value_list+=g_data2 values = string.join([probeset]+combined_value_list,'\t')+'\n' fulldataset_export_object.write(values) def reorderArraysOnly(filtered_exp_db,filetype,counts): ###array_order gives the final level order sorted, followed by the original index order as a tuple ###expr_group_list gives the final level order sorted, followed by the original index order as a tuple for probeset in filtered_exp_db: grouped_ordered_array_list = {}; group_list = [] for x in expr_group_list: y = x[1]; group = x[2] ### this is the new first index ### for example y = 5, therefore the filtered_exp_db[probeset][5] entry is now the first try: try: new_item = filtered_exp_db[probeset][y] except TypeError: print y,x,expr_group_list; kill except IndexError: print probeset,y,x,expr_group_list,'\n',filtered_exp_db[probeset];kill ###Used for comparision analysis try: grouped_ordered_array_list[group].append(new_item) except KeyError: grouped_ordered_array_list[group] = [new_item] ### For the exon-level expression data, export the group pair data for all pairwise comparisons to different comp files ###*******Include a database with the raw values saved for permuteAltAnalyze******* for info in comp_group_list: group1 = int(info[0]); group2 = int(info[1]); comp = str(info[0]),str(info[1]) g1_data = grouped_ordered_array_list[group1] g2_data = grouped_ordered_array_list[group2] #print probeset, group1, group2, g1_data, g2_data, info;kill data = comparision_export_db[comp] values = [probeset]+g2_data+g1_data; values = string.join(values,'\t')+'\n' ###groups are reversed since so are the labels #raw_data_comps[probeset,comp] = temp_raw data.write(values) ### Export all values grouped from the array for group in grouped_ordered_array_list: group_list.append(group) group_list.sort(); combined_value_list=[]; avg_values=[] for group in group_list: g_data = grouped_ordered_array_list[group] if exp_analysis_type == 'expression': try: avg_gdata = statistics.avg(g_data); avg_values.append(avg_gdata) except Exception: print g_data print avg_values kill combined_value_list+=g_data if exp_data_format == 'non-log' and counts == 'no': try: combined_value_list = logTransform(combined_value_list) except Exception: print probeset, combined_value_list,comp_group_list,expr_group_list print filtered_exp_db[probeset]; kill if filetype == 'expression': ### Export the expression values for all samples grouped (if meeting the above thresholds) values = string.join([probeset]+combined_value_list,'\t')+'\n' fulldataset_export_object.write(values) ### Don't need this for dabg data if exp_analysis_type == 'expression': avg_values.sort() ### Sort to get the lowest dabg and largest average expression if filetype == 'dabg': if avg_values[0]<=dabg_p_threshold: dabg_summary[probeset]=[] ### store probeset if the minimum p<user-threshold else: #if 'ENSMUSG00000018263:' in probeset: print probeset,[avg_values[-1],expression_threshold] if avg_values[-1]>=expression_threshold: expression_summary[probeset]=[] ### store probeset if the minimum p<user-threshold def logTransform(exp_values): ### This code was added in version 1.16 in conjunction with a switch from logstatus to ### non-log in AltAnalyze to prevent "Process AltAnalyze Filtered" associated errors exp_values_log2=[] for exp_val in exp_values: exp_values_log2.append(str(math.log(float(exp_val),2))) ### changed from - log_fold = math.log((float(exp_val)+1),2) - version 2.05 return exp_values_log2 def generateConstitutiveExpression(exp_dbase,constitutive_gene_db,probeset_gene_db,pre_filtered_db,array_names,filename): """Generate Steady-State expression values for each gene for analysis in the main module of this package""" steady_state_db={}; k=0; l=0 remove_nonexpressed_genes = 'no' ### By default set to 'no' ###1st Pass: Identify probesets for steady-state calculation for gene in probeset_gene_db: if avg_all_probes_for_steady_state == 'yes': average_all_probesets[gene] = probeset_gene_db[gene] ### These are all exon aligning (not intron) probesets else: if gene not in constitutive_gene_db: average_all_probesets[gene] = probeset_gene_db[gene] else: constitutive_probeset_list = constitutive_gene_db[gene] constitutive_filtered=[] ###Added this extra code to eliminate constitutive probesets not in exp_dbase (gene level filters are more efficient when dealing with this many probesets) for probeset in constitutive_probeset_list: if probeset in probeset_gene_db[gene]: constitutive_filtered.append(probeset) if len(constitutive_filtered)>0: average_all_probesets[gene] = constitutive_filtered else: average_all_probesets[gene] = probeset_gene_db[gene] ###2nd Pass: Remove probesets that have no detected expression (keep all if none are expressed) if excludeLowExpressionExons: non_expressed_genes={} ### keep track of these for internal QC for gene in average_all_probesets: gene_probe_list=[]; x = 0 for probeset in average_all_probesets[gene]: if probeset in pre_filtered_db: gene_probe_list.append(probeset); x += 1 ###If no constitutive and there are probes with detected expression: replace entry if x >0: average_all_probesets[gene] = gene_probe_list elif remove_nonexpressed_genes == 'yes': non_expressed_genes[gene]=[] if remove_nonexpressed_genes == 'yes': for gene in non_expressed_genes: del average_all_probesets[gene] ###3rd Pass: Make sure the probesets are present in the input set (this is not typical unless a user is loading a pre-filtered probeset expression dataset) for gene in average_all_probesets: v=0 for probeset in average_all_probesets[gene]: try: null = exp_dbase[probeset]; v+=1 except KeyError: null =[] ###occurs if the expression probeset list is missing some of these probesets if v==0: ###Therefore, no probesets were found that were previously predicted to be best constitutive try: average_all_probesets[gene] = probeset_gene_db[gene] ###expand the average_all_probesets to include any exon linked to the gene except KeyError: print gene, probeset, len(probeset_gene_db), len(average_all_probesets);kill for probeset in exp_dbase: array_count = len(exp_dbase[probeset]); break try: null = array_count except Exception: print 'WARNING...CRITICAL ERROR. Make sure the correct array type is selected and that all input expression files are indeed present (array_count ERROR).'; forceError ###Calculate avg expression for each array for each probeset (using constitutive values) gene_count_db={} for gene in average_all_probesets: x = 0 ###For each array, average all probeset expression values gene_sum=0 probeset_list = average_all_probesets[gene]#; k+= len(average_all_probesets[gene]) if array_type != 'RNASeq': ### Just retain the list of probesets for RNA-seq while x < array_count: exp_list=[] ### average all exp values for constituitive probesets for each array for probeset in probeset_list: try: exp_val = exp_dbase[probeset][x] exp_list.append(exp_val) except KeyError: null =[] ###occurs if the expression probeset list is missing some of these probesets try: if len(exp_list)==0: for probeset in probeset_list: try: exp_val = exp_dbase[probeset][x] exp_list.append(exp_val) except KeyError: null =[] ###occurs if the expression probeset list is missing some of these probesets avg_const_exp=statistics.avg(exp_list) ### Add only one avg-expression value for each array, this loop try: steady_state_db[gene].append(avg_const_exp) except KeyError: steady_state_db[gene] = [avg_const_exp] except ZeroDivisionError: null=[] ### Occurs when processing a truncated dataset (for testing usually) - no values for the gene should be included x += 1 l = len(probeset_gene_db) - len(steady_state_db) steady_state_export = filename[0:-4]+'-steady-state.txt' steady_state_export = string.replace(steady_state_export,'counts.','exp.') fn=filepath(steady_state_export); data = open(fn,'w'); title = 'Gene_ID' if array_type == 'RNASeq': import RNASeq steady_state_db, pre_filtered_db = RNASeq.calculateGeneLevelStatistics(steady_state_export,species,average_all_probesets,normalize_feature_exp,array_names,UserOptions,excludeLowExp=excludeLowExpressionExons) ### This "pre_filtered_db" replaces the above since the RNASeq module performs the exon and junction-level filtering, not ExonArray (RPKM and count based) ### Use pre_filtered_db to exclude non-expressed features for multi-group alternative exon analysis removeNonExpressedProbesets(pre_filtered_db,full_dataset_export_dir) reload(RNASeq) for array in array_names: title = title +'\t'+ array data.write(title+'\n') for gene in steady_state_db: ss_vals = gene for exp_val in steady_state_db[gene]: ss_vals = ss_vals +'\t'+ str(exp_val) data.write(ss_vals+'\n') data.close() exp_dbase={}; steady_state_db={}; pre_filtered_db ={} #print k, "probesets were not found in the expression file, that could be used for the constitutive expression calculation" #print l, "genes were also not included that did not have such expression data" print "Steady-state data exported to",steady_state_export def permformFtests(filtered_exp_db,group_count,probeset_db): ###Perform an f-test analysis to filter out low significance probesets ftest_gene_db={}; filtered_gene_db={}; filtered_gene_db2={} for probeset in filtered_exp_db: len_p = 0; ftest_list=[] try: gene_id = probeset_db[probeset][0] except KeyError: continue for len_s in group_count: index = len_s + len_p exp_group = filtered_exp_db[probeset][len_p:index] ftest_list.append(exp_group); len_p = index fstat,df1,df2 = statistics.Ftest(ftest_list) if fstat > f_cutoff: ftest_gene_db[gene_id] = 1 try: filtered_gene_db[gene_id].append(probeset) except KeyError: filtered_gene_db[gene_id] = [probeset] ###Remove genes with no significant f-test probesets #print "len(ftest_gene_db)",len(filtered_gene_db) for gene_id in filtered_gene_db: if gene_id in ftest_gene_db: filtered_gene_db2[gene_id] = filtered_gene_db[gene_id] #print "len(filtered_gene_db)",len(filtered_gene_db2) return filtered_gene_db2 ################# Resolve data annotations and filters def eliminateRedundant(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def filtereLists(list1,db1): ###Used for large lists where string searches are computationally intensive list2 = []; db2=[] for key in db1: for entry in db1[key]: id = entry[1][-1]; list2.append(id) for key in list1: db2.append(key) for entry in list2: db2.append(entry) temp={}; combined = [] for entry in db2: try:temp[entry] += 1 except KeyError:temp[entry] = 1 for entry in temp: if temp[entry] > 1:combined.append(entry) return combined def makeGeneLevelAnnotations(probeset_db): transcluster_db = {}; exon_db = {}; probeset_gene_db={} #probeset_db[probeset] = gene,transcluster,exon_id,ens_exon_ids,exon_annotations,constitutitive ### Previously built the list of probesets for calculating steady-stae for gene in average_all_probesets: for probeset in average_all_probesets[gene]: gene_id,transcluster,exon_id,ens_exon_ids,affy_class = probeset_db[probeset] try: transcluster_db[gene].append(transcluster) except KeyError: transcluster_db[gene] = [transcluster] ens_exon_list = string.split(ens_exon_ids,'|') for exon in ens_exon_list: try: exon_db[gene].append(ens_exon_ids) except KeyError: exon_db[gene] = [ens_exon_ids] transcluster_db = eliminateRedundant(transcluster_db) exon_db = eliminateRedundant(exon_db) for gene in average_all_probesets: transcript_cluster_ids = string.join(transcluster_db[gene],'|') probeset_ids = string.join(average_all_probesets[gene],'|') exon_ids = string.join(exon_db[gene],'|') probeset_gene_db[gene] = transcript_cluster_ids,exon_ids,probeset_ids return probeset_gene_db def getAnnotations(fl,Array_type,p_threshold,e_threshold,data_source,manufacturer,constitutive_source,Species,avg_all_for_ss,filter_by_DABG,perform_alt_analysis,expression_data_format): global species; species = Species; global average_all_probesets; average_all_probesets={} global avg_all_probes_for_steady_state; avg_all_probes_for_steady_state = avg_all_for_ss; global filter_by_dabg; filter_by_dabg = filter_by_DABG global dabg_p_threshold; dabg_p_threshold = float(p_threshold); global root_dir; global biotypes; global normalize_feature_exp global expression_threshold; global exp_data_format; exp_data_format = expression_data_format; global UserOptions; UserOptions = fl global full_dataset_export_dir; global excludeLowExpressionExons """ try: exon_exp_threshold = fl.ExonExpThreshold() except Exception: exon_exp_threshold = 0 try: exon_rpkm_threshold = fl.ExonRPKMThreshold() except Exception: exon_rpkm_threshold = 0 try: gene_rpkm_threshold = fl.RPKMThreshold() except Exception: gene_rpkm_threshold = 0 try: gene_exp_threshold = fl.GeneExpThreshold() except Exception: gene_exp_threshold = 0 """ ### The input expression data can be log or non-log. If non-log, transform to log in FilterDABG prior to the alternative exon analysis - v.1.16 if expression_data_format == 'log': try: expression_threshold = math.log(float(e_threshold),2) except Exception: expression_threshold = 0 ### Applies to RNASeq datasets else: expression_threshold = float(e_threshold) process_from_scratch = 'no' ###internal variables used while testing global dabg_summary; global expression_summary; dabg_summary={};expression_summary={} global fulldataset_export_object; global array_type; array_type = Array_type global exp_analysis_type; exp_analysis_type = 'expression' global stats_input_dir expr_input_dir = fl.ExpFile(); stats_input_dir = fl.StatsFile(); root_dir = fl.RootDir() try: normalize_feature_exp = fl.FeatureNormalization() except Exception: normalize_feature_exp = 'NA' try: excludeLowExpressionExons = fl.excludeLowExpressionExons() except Exception: excludeLowExpressionExons = True try: useJunctionsForGeneExpression = fl.useJunctionsForGeneExpression() if useJunctionsForGeneExpression: print 'Using known junction only to estimate gene expression!!!' except Exception: useJunctionsForGeneExpression = False source_biotype = 'mRNA' if array_type == 'gene': source_biotype = 'gene' elif array_type == 'junction': source_biotype = 'junction' ###Get annotations using Affymetrix as a trusted source or via links to Ensembl if array_type == 'AltMouse': probeset_db,constitutive_gene_db = ExpressionBuilder.importAltMerge('full'); annotate_db={} source_biotype = 'AltMouse' elif manufacturer == 'Affymetrix' or array_type == 'RNASeq': if array_type == 'RNASeq': source_biotype = array_type, root_dir probeset_db,annotate_db,constitutive_gene_db,splicing_analysis_db = ExonArrayEnsemblRules.getAnnotations(process_from_scratch,constitutive_source,source_biotype,species) ### Get all file locations and get array headers #print len(splicing_analysis_db),"genes included in the splicing annotation database (constitutive only containing)" stats_file_status = verifyFile(stats_input_dir) array_linker_db,array_names = importExonProbesetData(expr_input_dir,{},'arraynames') input_dir_split = string.split(expr_input_dir,'/') full_dataset_export_dir = root_dir+'AltExpression/FullDatasets/ExonArray/'+species+'/'+string.replace(input_dir_split[-1],'exp.','') if array_type == 'gene': full_dataset_export_dir = string.replace(full_dataset_export_dir,'ExonArray','GeneArray') if array_type == 'junction': full_dataset_export_dir = string.replace(full_dataset_export_dir,'ExonArray','JunctionArray') if array_type == 'AltMouse': full_dataset_export_dir = string.replace(full_dataset_export_dir,'ExonArray','AltMouse') if array_type == 'RNASeq': full_dataset_export_dir = string.replace(full_dataset_export_dir,'ExonArray','RNASeq') try: fulldataset_export_object = export.ExportFile(full_dataset_export_dir) except Exception: print 'AltAnalyze is having trouble creating the directory:\n',full_dataset_export_dir print 'Report this issue to the AltAnalyze help desk or create this directory manually (Error Code X1).'; force_exception ### Organize arrays according to groups and export all probeset data and any pairwise comparisons data_type = 'expression' if array_type == 'RNASeq': expr_input_dir = string.replace(expr_input_dir,'exp.','counts.') ### Filter based on the counts file and then replace values with the normalized as the last step comparison_filename_list,biotypes = exportGroupedComparisonProbesetData(expr_input_dir,probeset_db,data_type,array_names,array_linker_db,perform_alt_analysis) if useJunctionsForGeneExpression: if 'junction' in biotypes: if 'exon' in biotypes: del biotypes['exon'] if filter_by_dabg == 'yes' and stats_file_status == 'found': data_type = 'dabg' exportGroupedComparisonProbesetData(stats_input_dir,probeset_db,data_type,array_names,array_linker_db,perform_alt_analysis) ###Filter expression data based on DABG and annotation filtered probesets (will work without DABG filtering as well) - won't work for RNA-Seq (execute function later) filtered_exon_db = removeNonExpressedProbesets(probeset_db,full_dataset_export_dir) filterExpressionData(expr_input_dir,filtered_exon_db,constitutive_gene_db,probeset_db,'expression',array_names,perform_alt_analysis) constitutive_gene_db={}; probeset_gene_db = makeGeneLevelAnnotations(probeset_db) if array_type == 'RNASeq': fulldataset_export_object = export.ExportFile(full_dataset_export_dir) data_type = 'expression' ### Repeat with counts and then with exp. to add gene-level estimates to both exportGroupedComparisonProbesetData(expr_input_dir,probeset_db,data_type,array_names,array_linker_db,perform_alt_analysis) fulldataset_export_object = export.ExportFile(full_dataset_export_dir) expr_input_dir = string.replace(expr_input_dir,'counts.','exp.') exportGroupedComparisonProbesetData(expr_input_dir,probeset_db,data_type,array_names,array_linker_db,perform_alt_analysis) try: clearObjectsFromMemory(average_all_probesets); clearObjectsFromMemory(expression_summary); clearObjectsFromMemory(splicing_analysis_db) except Exception: null=[] filtered_exon_db=[]; probeset_db={}; average_all_probesets={}; expression_summary={}; splicing_analysis_db={} #filtered_exp_db,group_count,ranked_array_headers = filterExpressionData(expr_input_dir,filtered_exon_db,constitutive_gene_db,probeset_db) #filtered_gene_db = permformFtests(filtered_exp_db,group_count,probeset_db) """ pre_filtered_db=[] print 'global vars' returnLargeGlobalVars() print 'local vars' all = [var for var in locals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: try: if len(locals()[var])>500: print var, len(locals()[var]) except Exception: null=[] """ return probeset_gene_db, annotate_db, comparison_filename_list def processResiduals(fl,Array_type,Species,perform_alt_analysis): global species; species = Species; global root_dir; global fulldataset_export_object global array_type; array_type = Array_type; global exp_analysis_type; exp_analysis_type = 'residual' ### Get all file locations and get array headers expr_input_dir = fl.ExpFile(); root_dir = fl.RootDir() array_linker_db,array_names = importExonProbesetData(expr_input_dir,{},'arraynames') input_dir_split = string.split(expr_input_dir,'/') full_dataset_export_dir = root_dir+'AltExpression/FIRMA/FullDatasets/'+array_type+'/'+species+'/'+string.replace(input_dir_split[-1],'exp.','') expr_input_dir = string.replace(expr_input_dir,'exp.','residuals.') ### Wait to change this untile the above processes are finished fulldataset_export_object = export.ExportFile(full_dataset_export_dir) #print full_dataset_export_dir ### Organize arrays according to groups and export all probeset data and any pairwise comparisons comparison_filename_list = exportGroupedComparisonProbesetData(expr_input_dir,{},'residuals',array_names,array_linker_db,perform_alt_analysis) def removeNonExpressedProbesets(probeset_db,full_dataset_export_dir): combined_db={} if array_type == 'RNASeq': id_name = 'junction IDs' combined_db = probeset_db print len(combined_db), id_name,'after detection RPKM and read count filtering.' else: id_name = 'array IDs' print len(expression_summary), 'expression and',len(dabg_summary),'detection p-value filtered '+id_name+' out of', len(probeset_db) for probeset in probeset_db: if len(dabg_summary)>0: try: n = expression_summary[probeset] s = dabg_summary[probeset] combined_db[probeset]=[] except Exception: null=[] else: try: n = expression_summary[probeset] combined_db[probeset]=[] except Exception: null=[] print len(combined_db), id_name,'after detection p-value and expression filtering.' rewriteOrganizedExpressionFile(combined_db,full_dataset_export_dir) return combined_db def rewriteOrganizedExpressionFile(combined_db,full_dataset_export_dir): importExonProbesetData(full_dataset_export_dir,combined_db,'filterDataset') temp_dir = string.replace(full_dataset_export_dir,'.txt','-temp.txt') import shutil try: shutil.copyfile(temp_dir, full_dataset_export_dir) ### replace unfiltered file os.remove(temp_dir) except Exception: null=[] def inputResultFiles(filename,file_type): fn=filepath(filename) gene_db={}; x = 0 ###Import expression data (non-log space) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x==0: x=1 else: t = string.split(data,'\t') if file_type == 'gene': geneid = t[0]; gene_db[geneid]=[] else: probeset = t[7]; gene_db[probeset]=[] return gene_db def grabExonIntronPromoterSequences(species,array_type,data_type,output_types): ### output_types could be adjacent intron sequences, adjacent exon sequences, targets exon sequence or promoter sequence_input_dir_list=[] if data_type == 'probeset': sequence_input_dir = '/AltResults/AlternativeOutput/'+array_type+'/sequence_input' if data_type == 'gene': sequence_input_dir = '/ExpressionOutput/'+array_type+'/sequence_input' dir_list = read_directory(sequence_input_dir) for input_file in dir_list: filedir = sequence_input_dir[1:]+'/'+input_file filter_db = inputResultFiles(filedir,data_type) export_exon_filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_probesets.txt' ensembl_probeset_db = ExonArrayEnsemblRules.reimportEnsemblProbesetsForSeqExtraction(export_exon_filename,data_type,filter_db) """for gene in ensembl_probeset_db: if gene == 'ENSG00000139737': for x in ensembl_probeset_db[gene]: exon_id,((probe_start,probe_stop,probeset_id,exon_class,transcript_clust),ed) = x print gene, ed.ExonID() kill""" analysis_type = 'get_sequence' dir = 'AltDatabase/ensembl/'+species+'/'; gene_seq_filename = dir+species+'_gene-seq-2000_flank' ensembl_probeset_db = EnsemblImport.import_sequence_data(gene_seq_filename,ensembl_probeset_db,species,analysis_type) """ critical_exon_file = 'AltDatabase/'+species+'/'+ array_type + '/' + array_type+'_critical-exon-seq.txt' if output_types == 'all' and data_type == 'probeset': output_types = ['alt-promoter','promoter','exon','adjacent-exons','adjacent-introns'] else: output_types = [output_types] for output_type in output_types: sequence_input_dir = string.replace(sequence_input_dir,'_input','_output') filename = sequence_input_dir[1:]+'/ExportedSequence-'+data_type+'-'+output_type+'.txt' exportExonIntronPromoterSequences(filename, ensembl_probeset_db,data_type,output_type) """ if output_types == 'all' and data_type == 'probeset': output_types = ['alt-promoter','promoter','exon','adjacent-exons','adjacent-introns'] else: output_types = [output_types] for output_type in output_types: sequence_input_dir2 = string.replace(sequence_input_dir,'_input','_output') filename = sequence_input_dir2[1:]+'/'+input_file[:-4]+'-'+data_type+'-'+output_type+'.txt' exportExonIntronPromoterSequences(filename, ensembl_probeset_db,data_type,output_type) def exportExonIntronPromoterSequences(filename,ensembl_probeset_db,data_type,output_type): exon_seq_db_filename = filename fn=filepath(exon_seq_db_filename); data = open(fn,'w'); gene_data_exported={}; probe_data_exported={} if data_type == 'gene' or output_type == 'promoter': seq_title = 'PromoterSeq' elif output_type == 'alt-promoter': seq_title = 'PromoterSeq' elif output_type == 'exon': seq_title = 'ExonSeq' elif output_type == 'adjacent-exons': seq_title = 'PrevExonSeq\tNextExonSeq' elif output_type == 'adjacent-introns': seq_title = 'PrevIntronSeq\tNextIntronSeq' title = ['Ensembl_GeneID','ExonID','ExternalExonIDs','ProbesetID',seq_title] title = string.join(title,'\t')+'\n'; #data.write(title) for ens_gene in ensembl_probeset_db: for probe_data in ensembl_probeset_db[ens_gene]: exon_id,((probe_start,probe_stop,probeset_id,exon_class,transcript_clust),ed) = probe_data ens_exon_list = ed.ExonID(); ens_exons = string.join(ens_exon_list,' ') proceed = 'no' try: if data_type == 'gene' or output_type == 'promoter': try: seq = [ed.PromoterSeq()]; proceed = 'yes' except AttributeError: proceed = 'no' elif output_type == 'alt-promoter': if 'alt-N-term' in ed.AssociatedSplicingEvent() or 'altPromoter' in ed.AssociatedSplicingEvent(): try: seq = [ed.PrevIntronSeq()]; proceed = 'yes' except AttributeError: proceed = 'no' elif output_type == 'exon': try: seq = [ed.ExonSeq()]; proceed = 'yes' except AttributeError: proceed = 'no' elif output_type == 'adjacent-exons': if len(ed.PrevExonSeq())>1 and len(ed.NextExonSeq())>1: try: seq = ['(prior-exon-seq)'+ed.PrevExonSeq(),'(next-exon-seq)'+ed.NextExonSeq()]; proceed = 'yes' except AttributeError: proceed = 'no' elif output_type == 'adjacent-introns': if len(ed.PrevIntronSeq())>1 and len(ed.NextIntronSeq())>1: try: seq = ['(prior-intron-seq)'+ed.PrevIntronSeq(), '(next-intron-seq)'+ed.NextIntronSeq()]; proceed = 'yes' except AttributeError: proceed = 'no' except AttributeError: proceed = 'no' if proceed == 'yes': gene_data_exported[ens_gene]=[] probe_data_exported[probeset_id]=[] if data_type == 'gene': values = ['>'+ens_gene] else: values = ['>'+ens_gene,exon_id,ens_exons,probeset_id] values = string.join(values,'|')+'\n';data.write(values) for seq_data in seq: i = 0; e = 100 while i < len(seq_data): seq_line = seq_data[i:e]; data.write(seq_line+'\n') i+=100; e+=100 #print len(gene_data_exported), 'gene entries exported' #print len(probe_data_exported), 'probeset entries exported' data.close() #print exon_seq_db_filename, 'exported....' def verifyFile(filename): status = 'not found' try: fn=filepath(filename) for line in open(fn,'rU').xreadlines(): status = 'found';break except Exception: status = 'not found' return status if __name__ == '__main__': m = 'Mm' h = 'Hs' r = 'Rn' Species = h Array_type = 'junction' exportMetaProbesets(Array_type,Species);sys.exit() Data_type = 'probeset' Output_types = 'promoter' Output_types = 'all' grabExonIntronPromoterSequences(Species,Array_type,Data_type,Output_types) sys.exit() #""" avg_all_for_ss = 'yes' import_dir = '/AltDatabase/'+Species+ '/exon' expr_file_dir = 'ExpressionInput\exp.HEK-confluency.plier.txt' dagb_p = 0.001 f_cutoff = 2.297 exons_to_grab = "core" x = 'Affymetrix' y = 'Ensembl' z = 'default' data_source = y constitutive_source = z filename = expr_file_dir; p = dagb_p getAnnotations(expr_file_dir,dagb_p,exons_to_grab,data_source,constitutive_source,Species) global species; species = Species process_from_scratch = 'no' ###Get annotations using Affymetrix as a trusted source or via links to Ensembl if data_source == 'Affymetrix': annotation_dbases = ExonArrayAffyRules.getAnnotations(exons_to_grab,constitutive_source,process_from_scratch) probe_association_db,constitutive_gene_db,exon_location_db, trans_annotation_db, trans_annot_extended = annotation_dbases else: probeset_db,annotate_db,constitutive_gene_db,splicing_analysis_db = ExonArrayEnsemblRules.getAnnotations(process_from_scratch,constitutive_source,species,avg_all_for_ss) filterExpressionData(filename,filtered_exon_db,constitutive_gene_db,probeset_db,data_type) #filtered_gene_db = permformFtests(filtered_exp_db,group_count,probeset_db)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/ExonArray.py
ExonArray.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique from stats_scripts import statistics import copy import time from build_scripts import ExonSeqModule import update dirfile = unique def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".TXT" or entry[-3:] == ".fa": dir_list2.append(entry) return dir_list2 def filepath(filename): fn = unique.filepath(filename) return fn def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 #################### Begin Analyzing Datasets #################### def importProbesetSeqeunces(filename,exon_db,species): print 'importing', filename fn=filepath(filename) probeset_seq_db={}; x = 0;count = 0 for line in open(fn,'r').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') probeset = t[0]; sequence = t[-1]; sequence = string.upper(sequence) try: y = exon_db[probeset]; gene = y.GeneID(); y.SetExonSeq(sequence) try: probeset_seq_db[gene].append(y) except KeyError: probeset_seq_db[gene] = [y] except KeyError: null=[] ### Occurs if there is no Ensembl for the critical exon or the sequence is too short to analyze print len(probeset_seq_db), "length of gene - probeset sequence database" return probeset_seq_db def importSplicingAnnotationDatabaseAndSequence(species,array_type,biotype): array_ens_db={} if array_type == 'AltMouse': filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'-Ensembl_relationships.txt' update.verifyFile(filename,array_type) ### Will force download if missing fn=filepath(filename); x = 0 for line in open(fn,'r').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: array_gene,ens_gene = t try: array_ens_db[array_gene].append(ens_gene) except KeyError: array_ens_db[array_gene]=[ens_gene] filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical-junction-seq.txt' fn=filepath(filename); probeset_seq_db={}; x = 0 for line in open(fn,'r').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: probeset,probeset_seq,junction_seq = t; junction_seq=string.replace(junction_seq,'|','') probeset_seq_db[probeset] = probeset_seq,junction_seq ###Import reciprocol junctions, so we can compare these directly instead of hits to nulls and combine with sequence data ###This short-cuts what we did in two function in ExonSeqModule with exon level data filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_junction-comparisons.txt' fn=filepath(filename); probeset_gene_seq_db={}; x = 0 for line in open(fn,'r').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: array_gene,probeset1,probeset2,critical_exons = t #; critical_exons = string.split(critical_exons,'|') probesets = [probeset1,probeset2] if array_type == 'junction' or array_type == 'RNASeq': array_ens_db[array_gene]=[array_gene] if array_gene in array_ens_db: ensembl_gene_ids = array_ens_db[array_gene] for probeset_id in probesets: if probeset_id in probeset_seq_db: probeset_seq,junction_seq = probeset_seq_db[probeset_id] if biotype == 'gene': for ensembl_gene_id in ensembl_gene_ids: probe_data = ExonSeqModule.JunctionDataSimple(probeset_id,ensembl_gene_id,array_gene,probesets,critical_exons) probe_data.SetExonSeq(probeset_seq) probe_data.SetJunctionSeq(junction_seq) try: probeset_gene_seq_db[ensembl_gene_id].append(probe_data) except KeyError: probeset_gene_seq_db[ensembl_gene_id] = [probe_data] else: ### Used for probeset annotations downstream of sequence alignment in LinkEST, analagous to exon_db for exon analyses probe_data = ExonSeqModule.JunctionDataSimple(probeset_id,ensembl_gene_ids,array_gene,probesets,critical_exons) probe_data.SetExonSeq(probeset_seq) probe_data.SetJunctionSeq(junction_seq) probeset_gene_seq_db[probeset_id] = probe_data print len(probeset_gene_seq_db),"genes with probeset sequence associated" return probeset_gene_seq_db def getParametersAndExecute(probeset_seq_file,array_type,species,data_type): if data_type == 'critical-exons': if array_type == 'RNASeq': probeset_annotations_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_exons.txt' else: probeset_annotations_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+array_type+'_probesets.txt' ###Import probe-level associations exon_db = ExonSeqModule.importSplicingAnnotationDatabase(probeset_annotations_file,array_type) start_time = time.time() probeset_seq_db = importProbesetSeqeunces(probeset_seq_file,exon_db,species) ###Do this locally with a function that works on tab-delimited as opposed to fasta sequences (exon array) end_time = time.time(); time_diff = int(end_time-start_time) elif data_type == 'junctions': start_time = time.time(); biotype = 'gene' ### Indicates whether to store information at the level of genes or probesets probeset_seq_db = importSplicingAnnotationDatabaseAndSequence(species,array_type,biotype) end_time = time.time(); time_diff = int(end_time-start_time) print "Analyses finished in %d seconds" % time_diff return probeset_seq_db def runProgram(Species,Array_type,mir_source,stringency,Force): global species; global array_type; global force process_microRNA_predictions = 'yes' species = Species; array_type = Array_type; force = Force import_dir = '/AltDatabase/'+species+'/'+array_type filedir = import_dir[1:]+'/' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory probeset_seq_file='' for input_file in dir_list: #loop through each file in the directory to results if 'critical-exon-seq_updated' in input_file: probeset_seq_file = filedir+input_file elif 'critical-exon-seq' in input_file: probeset_seq_file2 = filedir+input_file if len(probeset_seq_file)==0: probeset_seq_file=probeset_seq_file2 data_type = 'critical-exons' try: splice_event_db = getParametersAndExecute(probeset_seq_file,array_type,species,data_type) except UnboundLocalError: probeset_seq_file = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_critical-exon-seq_updated.txt' update.downloadCurrentVersion(probeset_seq_file,array_type,'txt') splice_event_db = getParametersAndExecute(probeset_seq_file,array_type,species,data_type) if process_microRNA_predictions == 'yes': print 'stringency:',stringency try: ensembl_mirna_db = ExonSeqModule.importmiRNATargetPredictionsAdvanced(species) ExonSeqModule.alignmiRNAData(array_type,mir_source,species,stringency,ensembl_mirna_db,splice_event_db) except Exception: pass if __name__ == '__main__': species = 'Mm'; array_type = 'junction' process_microRNA_predictions = 'yes' mir_source = 'multiple' force = 'yes' runProgram(species,array_type,mir_source,'lax',force) runProgram(species,array_type,mir_source,'strict',force)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/JunctionSeqModule.py
JunctionSeqModule.py
###IdentifyAltIsoforms #Copyright 2005-2008 J. David Gladstone Institutes, San Francisco California #Author Nathan Salomonis - [email protected] #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import export import time import copy from build_scripts import FeatureAlignment; reload(FeatureAlignment) from Bio import Entrez from build_scripts import ExonAnalyze_module from build_scripts import mRNASeqAlign import traceback import requests requests.packages.urllib3.disable_warnings() import ssl try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if (entry[-4:] == ".txt"or entry[-4:] == ".tab" or entry[-4:] == ".csv" or '.fa' in entry) and '.gz' not in entry and '.zip' not in entry: dir_list2.append(entry) return dir_list2 class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance file_dirs = getDirectoryFiles(self.data,str(search_term)) if len(file_dirs)<1: print search_term,'not found',self.data return file_dirs def getDirectoryFiles(import_dir, search_term): exact_file = ''; exact_file_dirs=[] try: dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory except Exception: print unique.filepath(import_dir) export.createDirPath(unique.filepath(import_dir[1:])) dir_list = read_directory(import_dir) dir_list.sort() ### Get the latest files for data in dir_list: #loop through each file in the directory to output results affy_data_dir = import_dir[1:]+'/'+data if search_term in affy_data_dir: exact_file_dirs.append(affy_data_dir) return exact_file_dirs ########## End generic file import ########## def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def importSplicingAnnotationDatabase(array_type,species,import_coordinates): if array_type == 'exon' or array_type == 'gene': filename = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_probesets.txt" elif array_type == 'junction': filename = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_"+array_type+"_probesets.txt" elif array_type == 'RNASeq': filename = "AltDatabase/"+species+"/"+array_type+"/"+species+"_Ensembl_exons.txt" fn=filepath(filename); x=0; probeset_gene_db={}; probeset_coordinate_db={} for line in open(fn,'rU').xreadlines(): probeset_data = cleanUpLine(line) #remove endline if x == 0: x = 1 else: t=string.split(probeset_data,'\t'); probeset=t[0]; exon_id=t[1]; ens_gene=t[2]; start=int(t[6]); stop=int(t[7]) if array_type != 'RNASeq': if ':' in probeset: probeset = string.split(probeset,':')[1] start_stop = [start,stop]; start_stop.sort(); start,stop = start_stop; proceed = 'yes' #if probeset[-2] != '|': ### These are the 5' and 3' exons for a splice-junction (don't need to analyze) if test == 'yes': if ens_gene not in test_genes: proceed = 'no' if proceed == 'yes': probeset_gene_db[probeset]=ens_gene,exon_id if import_coordinates == 'yes': probeset_coordinate_db[probeset] = start,stop print 'Probeset to Ensembl gene data imported' if import_coordinates == 'yes': return probeset_gene_db,probeset_coordinate_db else: return probeset_gene_db def importAltMouseJunctionDatabase(species,array_type): ### Import AffyGene to Ensembl associations (e.g., AltMouse array) filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'-Ensembl.txt' fn=filepath(filename); array_ens_db={}; x = 0 for line in open(fn,'r').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: array_gene,ens_gene = t array_ens_db[array_gene]=ens_gene #try: array_ens_db[array_gene].append(ens_gene) #except KeyError: array_ens_db[array_gene]=[ens_gene] filename = 'AltDatabase/'+species+'/'+array_type+'/'+array_type+'_junction-comparisons.txt' fn=filepath(filename); probeset_gene_db={}; x = 0 for line in open(fn,'r').xreadlines(): data, newline = string.split(line,'\n'); t = string.split(data,'\t') if x==0: x=1 else: array_gene,probeset1,probeset2,critical_exons = t #; critical_exons = string.split(critical_exons,'|') if array_gene in array_ens_db: ensembl_gene_ids = array_ens_db[array_gene] else: ensembl_gene_ids=[] probeset_gene_db[probeset1+'|'+probeset2] = array_gene,critical_exons probeset_gene_db[probeset1] = array_gene,critical_exons probeset_gene_db[probeset2] = array_gene,critical_exons return probeset_gene_db def importJunctionDatabase(species,array_type): if array_type == 'junction': filename = 'AltDatabase/' + species + '/'+array_type+'/'+ species + '_junction_comps_updated.txt' else: filename = 'AltDatabase/' + species + '/'+array_type+'/'+ species + '_junction_comps.txt' fn=filepath(filename); probeset_gene_db={}; x=0 for line in open(fn,'rU').xreadlines(): if x==0: x=1 else: data = cleanUpLine(line) gene,critical_exons,excl_junction,incl_junction,excl_junction_probeset,incl_junction_probeset,source = string.split(data,'\t') probeset_gene_db[incl_junction_probeset+'|'+excl_junction_probeset] = gene,critical_exons probeset_gene_db[excl_junction_probeset] = gene,critical_exons probeset_gene_db[incl_junction_probeset] = gene,critical_exons return probeset_gene_db def importEnsExonStructureDataSimple(filename,species,ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db,filter_transcripts): fn=filepath(filename); x=0 print fn """ if 'Ensembl' not in filename: original_ensembl_transcripts={} ### Keep track of the original ensembl transcripts for i in ens_transcript_exon_db: original_ensembl_transcripts[i]=[]""" for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: gene, chr, strand, exon_start, exon_end, ens_exonid, constitutive_exon, ens_transcriptid = t exon_start = int(exon_start); exon_end = int(exon_end); proceed = 'yes' if test == 'yes': if gene not in test_genes: proceed = 'no' if (ens_transcriptid in filter_transcripts or len(filter_transcripts)==0) and proceed == 'yes': ### Only import transcripts that are in the set to analyze try: ens_transcript_exon_db[ens_transcriptid][exon_start,exon_end]=[] except KeyError: ens_transcript_exon_db[ens_transcriptid] = db = {(exon_start,exon_end):[]} try: ens_gene_transcript_db[gene][ens_transcriptid]=[] except KeyError: ens_gene_transcript_db[gene] = db = {ens_transcriptid:[]} try: ens_gene_exon_db[gene][exon_start,exon_end]=[] except KeyError: ens_gene_exon_db[gene] = db = {(exon_start,exon_end):[]} """ ### Some transcripts will have the same coordinates - get rid of these (not implemented yet) if 'Ensembl' not in filename: for gene in ens_gene_transcript_db: exon_structure_db={} for transcript in ens_gene_transcript_db[gene]: ls=[] for coord in ens_transcript_exon_db[transcript]: ls.append(coord) ls.sort() try: exon_structure_db[tuple(ls)].append(transcript) except Exception: exon_structure_db[tuple(ls)] = [transcript]""" #ens_gene_transcript_db = eliminateRedundant(ens_gene_transcript_db) #ens_gene_exon_db = eliminateRedundant(ens_gene_exon_db) #if 'ENSG00000240173' in ens_gene_exon_db: print 'here' print 'Exon/transcript data imported for %s transcripts' % len(ens_transcript_exon_db), len(ens_gene_exon_db) return ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db def eliminateRedundant(database): for key in database: try: list = makeUnique(database[key]) list.sort() except Exception: list = unique.unique(database[key]) database[key] = list return database def makeUnique(item): db1={}; list1=[] for i in item: db1[i]=[] for i in db1: list1.append(i) list1.sort() return list1 def getProbesetExonCoordinates(probeset_coordinate_db,probeset_gene_db,ens_gene_exon_db): probeset_exon_coor_db={} for probeset in probeset_gene_db: gene = probeset_gene_db[probeset][0] start,stop = probeset_coordinate_db[probeset] coor_list = ens_gene_exon_db[gene] proceed = 'yes' if test == 'yes': if gene not in test_genes: proceed = 'no' if proceed == 'yes': for (t_start,t_stop) in coor_list: if ((start >= t_start) and (start <= t_stop)) and ((stop >= t_start) and (stop <= t_stop)): ### Thus the probeset is completely in this exon try: probeset_exon_coor_db[probeset].append((t_start,t_stop)) except KeyError: probeset_exon_coor_db[probeset]=[(t_start,t_stop)] #if '20.8' in probeset: print (t_start,t_stop),start,stop #sys.exit() return probeset_exon_coor_db def compareExonComposition(species,array_type): probeset_gene_db,probeset_coordinate_db = importSplicingAnnotationDatabase(array_type, species,'yes') filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db = importEnsExonStructureDataSimple(filename,species,{},{},{},{}) ### Add UCSC transcript data to ens_transcript_exon_db and ens_gene_transcript_db try: filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_COMPLETE-mrna.txt' ### Use the non-filtered database to propperly analyze exon composition ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db = importEnsExonStructureDataSimple(filename,species,ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db,{}) except Exception:pass ### Derive probeset to exon associations De Novo probeset_exon_coor_db = getProbesetExonCoordinates(probeset_coordinate_db,probeset_gene_db,ens_gene_exon_db) if (array_type == 'junction' or array_type == 'RNASeq') and data_type == 'exon': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/'+species+'_all-transcript-matches.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_all-transcript-matches.txt' data = export.ExportFile(export_file) ### Identifying isforms containing and not containing the probeset probeset_transcript_db={}; match_pairs_missing=0; valid_transcript_pairs={}; ok_transcript_pairs={}; probesets_not_found=0 print len(probeset_exon_coor_db) print len(ens_transcript_exon_db) print len(ens_gene_transcript_db) print len(ens_gene_exon_db) for probeset in probeset_exon_coor_db: geneid = probeset_gene_db[probeset][0] transcripts = ens_gene_transcript_db[geneid] matching_transcripts=[]; not_matching_transcripts=[]; matching={}; not_matching={} for coordinates in probeset_exon_coor_db[probeset]: ### Multiple exons may align for transcript in transcripts: ### Build a cursory list of matching and non-matching transcripts if coordinates in ens_transcript_exon_db[transcript]: matching_transcripts.append(transcript) else: not_matching_transcripts.append(transcript) ### Filter large non-matching transcript sets to facilate processing not_matching_transcripts = mRNASeqAlign.filterNullMatch(not_matching_transcripts,matching_transcripts) ### Re-analyze the filtered list for exon content transcripts = unique.unique(not_matching_transcripts+matching_transcripts) matching_transcripts=[]; not_matching_transcripts=[] for coordinates in probeset_exon_coor_db[probeset]: ### Multiple exons may align for transcript in transcripts: if coordinates in ens_transcript_exon_db[transcript]: matching_transcripts.append(transcript) other_coordinate_list=[] for other_coordinates in ens_transcript_exon_db[transcript]: if coordinates != other_coordinates: ### Add exon coordinates for all exons that DO NOT aligning to the probeset other_coordinate_list.append(other_coordinates) if len(other_coordinate_list)>1: other_coordinate_list.sort() ### Instead of replacing the values in place, we need to do this (otherwise the original object will be modified) other_coordinate_list = [[0,other_coordinate_list[0][1]]]+other_coordinate_list[1:-1]+[[other_coordinate_list[-1][0],0]] #other_coordinate_list[0][0] = 0; other_coordinate_list[-1][-1] = 0 other_coordinate_list = convertListsToTuple(other_coordinate_list) matching[tuple(other_coordinate_list)]=transcript else: not_matching_transcripts.append(transcript) other_coordinate_list=[] for other_coordinates in ens_transcript_exon_db[transcript]: if coordinates != other_coordinates: ### Add exon coordinates for all exons that DO NOT aligning to the probeset other_coordinate_list.append(other_coordinates) if len(other_coordinate_list)>1: other_coordinate_list.sort() other_coordinate_list = [[0,other_coordinate_list[0][1]]]+other_coordinate_list[1:-1]+[[other_coordinate_list[-1][0],0]] other_coordinate_list = convertListsToTuple(other_coordinate_list) not_matching[tuple(other_coordinate_list)]=transcript #print '\n',len(matching_transcripts), len(not_matching_transcripts);kill ### Can't have transcripts in matching and not matching not_matching_transcripts2=[]; not_matching2={} for transcript in not_matching_transcripts: if transcript not in matching_transcripts: not_matching_transcripts2.append(transcript) for coord in not_matching: transcript = not_matching[coord] if transcript in not_matching_transcripts2: not_matching2[coord] = not_matching[coord] not_matching = not_matching2; not_matching_transcripts = not_matching_transcripts2 #if probeset == '3431530': print '3431530a', matching_transcripts,not_matching_transcripts if len(matching)>0 and len(not_matching)>0: perfect_match_found='no'; exon_match_data=[] ### List is only used if more than a single cassette exon difference between transcripts for exon_list in matching: matching_transcript = matching[exon_list] if exon_list in not_matching: not_matching_transcript = not_matching[exon_list] valid_transcript_pairs[probeset] = matching_transcript, not_matching_transcript perfect_match_found = 'yes' #print probeset,matching_transcript, not_matching_transcript #print ens_transcript_exon_db[matching_transcript],'\n' #print ens_transcript_exon_db[not_matching_transcript]; kill else: unique_exon_count_db={} ### Determine how many exons are common and which are transcript distinct for a pair-wise comp for exon_coor in exon_list: try: unique_exon_count_db[exon_coor] +=1 except KeyError: unique_exon_count_db[exon_coor] =1 for exon_list in not_matching: not_matching_transcript = not_matching[exon_list] for exon_coor in exon_list: try: unique_exon_count_db[exon_coor] +=1 except KeyError: unique_exon_count_db[exon_coor] =1 exon_count_db={} for exon_coor in unique_exon_count_db: num_trans_present = unique_exon_count_db[exon_coor] try: exon_count_db[num_trans_present]+=1 except KeyError: exon_count_db[num_trans_present]=1 try: exon_count_results = [exon_count_db[1],-1*(exon_count_db[2]),matching_transcript,not_matching_transcript] exon_match_data.append(exon_count_results) except KeyError: null =[] ###Occurs if no exons are found in common (2) #if probeset == '3431530': print '3431530b', exon_count_results if perfect_match_found == 'no' and len(exon_match_data)>0: exon_match_data.sort() matching_transcript = exon_match_data[0][-2] not_matching_transcript = exon_match_data[0][-1] ok_transcript_pairs[probeset] = matching_transcript, not_matching_transcript #if probeset == '3431530': print '3431530', matching_transcript, not_matching_transcript else: match_pairs_missing+=1 ###Export transcript comparison sets to an external file for different analyses matching_transcripts = unique.unique(matching_transcripts) not_matching_transcripts = unique.unique(not_matching_transcripts) matching_transcripts=string.join(matching_transcripts,'|') not_matching_transcripts=string.join(not_matching_transcripts,'|') values = string.join([probeset,matching_transcripts,not_matching_transcripts],'\t')+'\n' data.write(values) print match_pairs_missing,'probesets missing either an alinging or non-alinging transcript' print len(valid_transcript_pairs),'probesets with a single exon difference aligning to two isoforms' print len(ok_transcript_pairs),'probesets with more than one exon difference aligning to two isoforms' data.close() if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/'+species+'_top-transcript-matches.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_top-transcript-matches.txt' export_data = export.ExportFile(export_file) for probeset in valid_transcript_pairs: matching_transcript,not_matching_transcript = valid_transcript_pairs[probeset] values = string.join([probeset,matching_transcript,not_matching_transcript],'\t')+'\n' export_data.write(values) for probeset in ok_transcript_pairs: matching_transcript,not_matching_transcript = ok_transcript_pairs[probeset] values = string.join([probeset,matching_transcript,not_matching_transcript],'\t')+'\n' export_data.write(values) #if probeset == '3431530': print '3431530d', matching_transcript,not_matching_transcript export_data.close() def compareExonCompositionJunctionArray(species,array_type): print 'Finding optimal isoform matches for splicing events.' ###Import sequence aligned transcript associations for individual or probeset-pairs. Pairs provided for match-match probeset_transcript_db,unique_ens_transcripts,unique_transcripts,all_transcripts = importProbesetTranscriptMatches(species,array_type,'yes') filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db = importEnsExonStructureDataSimple(filename,species,{},{},{},all_transcripts) ### Add UCSC transcript data to ens_transcript_exon_db and ens_gene_transcript_db try: filename = 'AltDatabase/ucsc/'+species+'/'+species+'_UCSC_transcript_structure_COMPLETE-mrna.txt' ### Use the non-filtered database to propperly analyze exon composition ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db = importEnsExonStructureDataSimple(filename,species,ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db,all_transcripts) except Exception: pass """ Used to prioritize isoform pairs for further analysis. This file is re-written as AltAnalyze builds it's database, hence, protein coding potential information accumulates as it runs.""" seq_files, protein_coding_isoforms = importProteinSequences(species,just_get_ids=False,just_get_length=True) def isoformPrioritization(exon_match_data): """ Prioritize based on the composition and whether the isoform is an Ensembl protein coding isoform. Introduced 11/26/2017(2.1.1).""" exon_match_data.sort(); exon_match_data.reverse() coding_match=[] ens_match=[] alt_match=[] for (unique_count,common_count,match,non) in exon_match_data: ### First pair is the best match alt_match.append([match,non]) if 'ENS' in match and 'ENS' in non: try: ens_match_count = protein_coding_isoforms[match] except: ens_match_count = 10000 try: ens_non_count = protein_coding_isoforms[non] except: ens_non_count = -10000 coding_diff = abs(ens_match_count-ens_non_count) count_ratio = (coding_diff*1.00)/max(ens_match_count,ens_non_count) ens_match.append([count_ratio,coding_diff,ens_match_count,match,non]) if match in protein_coding_isoforms and non in protein_coding_isoforms: ### Rank by AA differing match_count = protein_coding_isoforms[match] non_count = protein_coding_isoforms[non] coding_diff = abs(match_count-non_count) count_ratio = (coding_diff*1.00)/max(match_count,non_count) coding_match.append([count_ratio,coding_diff,match_count,match,non]) coding_match.sort(); ens_match.sort() if len(coding_match)>0: ### Prioritize minimal coding differences count_ratio,diff,count,final_match,final_non = coding_match[0] elif len(ens_match)>0: count_ratio,diff,count,final_match,final_non = ens_match[0] else: final_match,final_non = alt_match[0] """ if len(coding_match)>0 and len(ens_match)>0: if len(coding_match)!= len(ens_match): print coding_match print ens_match print alt_match if 'ENS' not in final_match: print final_match,final_non sys.exit()""" return final_match,final_non print len(probeset_transcript_db), "probesets with multiple pairs of matching-matching or matching-null transcripts." ### Identifying isoforms containing and not containing the probeset global transcripts_not_found; marker = 5000; increment = 5000 match_pairs_missing=0; ok_transcript_pairs={}; transcripts_not_found={} for probesets in probeset_transcript_db: exon_match_data=[]; start_time = time.time() ### Examine all valid matches and non-matches match_transcripts,not_match_transcripts = probeset_transcript_db[probesets] match_transcripts = unique.unique(match_transcripts) not_match_transcripts = unique.unique(not_match_transcripts) for matching_transcript in match_transcripts: if matching_transcript in ens_transcript_exon_db: ### If in the Ensembl or UCSC transcript database transcript_match_coord = ens_transcript_exon_db[matching_transcript] ### Get the coordinates for not_matching_transcript in not_match_transcripts: if not_matching_transcript in ens_transcript_exon_db: transcript_null_coord = ens_transcript_exon_db[not_matching_transcript] unique_exon_count_db={} ### Determine how many exons are common and which are transcript distinct for a pair-wise comp for exon_coor in transcript_match_coord: try: unique_exon_count_db[tuple(exon_coor)] +=1 except KeyError: unique_exon_count_db[tuple(exon_coor)] =1 for exon_coor in transcript_null_coord: try: unique_exon_count_db[tuple(exon_coor)] +=1 except KeyError: unique_exon_count_db[tuple(exon_coor)] =1 exon_count_db={} for exon_coor in unique_exon_count_db: num_trans_present = unique_exon_count_db[exon_coor] try: exon_count_db[num_trans_present]+=1 except KeyError: exon_count_db[num_trans_present]=1 """ 11/26/2017(2.1.1): The below required that for two isoforms (matching/non-matching to an event), that at least one exon was unique to a transcript and that at least one exon was in common to both. This is not always the case, for example with complete intron retention, the coordinates in the intron retained transcript will be distinct from the non-retained. The requirement was eleminated.""" try: iso_unique_exon_count = exon_count_db[1] except: iso_unique_exon_count = 0 try: iso_common_exon_count = exon_count_db[2] except: iso_common_exon_count = 0 exon_count_results = [iso_unique_exon_count,-1*iso_common_exon_count,matching_transcript,not_matching_transcript] exon_match_data.append(exon_count_results) #if probeset == '3431530': print '3431530b', exon_count_results else: ### Should rarely occur since accession would be missing from the databases transcripts_not_found[matching_transcript]=[] """ Compare each isoform matching-nonmatching pair in terms of composition """ try: matching_transcript,not_matching_transcript = isoformPrioritization(exon_match_data) ok_transcript_pairs[probesets] = matching_transcript, not_matching_transcript except Exception: pass end_time = time.time() if len(ok_transcript_pairs) == marker: marker+= increment; print '*', print match_pairs_missing,'junctions missing either an alinging or non-alinging transcript' print len(transcripts_not_found),'transcripts not found' #print len(ok_transcript_pairs),'probesets with more than one exon difference aligning to two isoforms' if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/'+species+'_top-transcript-matches.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_top-transcript-matches.txt' export_data = export.ExportFile(export_file) for probeset in ok_transcript_pairs: matching_transcript,not_matching_transcript = ok_transcript_pairs[probeset] values = string.join([probeset,matching_transcript,not_matching_transcript],'\t')+'\n' export_data.write(values) #if probeset == '3431530': print '3431530d', matching_transcript,not_matching_transcript export_data.close() def compareProteinComposition(species,array_type,translate,compare_all_features): """ Objectives 11/26/2017(2.1.1): 1) Import ALL isoform matches for each junction or reciprocal junction pair 2) Obtain protein translations for ALL imported isoforms 3) With the protein isoform information, compare exon composition and protein coding length to pick two representative isoforms 4) Find protein compositional differences between these pairs This is a modification of the previous workflow which returned fewer hits that were likely less carefully selected.""" probeset_transcript_db,unique_ens_transcripts,unique_transcripts,all_transcripts = importProbesetTranscriptMatches(species,array_type,'yes') all_transcripts=[] """if translate == 'yes': ### Used if we want to re-derive all transcript-protein sequences - set to yes1 when we want to disable this option transcript_protein_seq_db = translateRNAs(unique_transcripts,unique_ens_transcripts,'fetch') else: """ ### Translate all mRNA seqeunces to proteins where possible transcript_protein_seq_db = translateRNAs(unique_transcripts,unique_ens_transcripts,'fetch_new') ### Find the best isoform pairs for each splicing event compareExonCompositionJunctionArray(species,array_type) ### Re-import isoform associations for the top events exported from the above function (top versus all isoforms) probeset_transcript_db,unique_ens_transcripts,unique_transcripts,all_transcripts = importProbesetTranscriptMatches(species,array_type,'no') probeset_protein_db,protein_seq_db = convertTranscriptToProteinAssociations(probeset_transcript_db,transcript_protein_seq_db,'no') transcript_protein_seq_db=[] global protein_ft_db if array_type == 'exon' or array_type == 'gene' or data_type == 'exon': probeset_gene_db = importSplicingAnnotationDatabase(array_type,species,'no') elif (array_type == 'junction' or array_type == 'RNASeq'): probeset_gene_db = importJunctionDatabase(species,array_type) elif array_type == 'AltMouse': probeset_gene_db = importAltMouseJunctionDatabase(species,array_type) genes_being_analyzed={} ### Need to tell 'grab_exon_level_feature_calls' what genes to analyze for probeset in probeset_gene_db: if probeset in probeset_protein_db: ### Filter for genes that have probesets with matching and non-matching proteins gene = probeset_gene_db[probeset][0]; genes_being_analyzed[gene]=[gene] protein_ft_db,domain_gene_counts = FeatureAlignment.grab_exon_level_feature_calls(species,array_type,genes_being_analyzed) if compare_all_features == 'yes': ### Used when comparing all possible PROTEIN pairs to find minimal domain changes compareProteinFeaturesForPairwiseComps(probeset_protein_db,protein_seq_db,probeset_gene_db,species,array_type) ExonAnalyze_module.identifyAltIsoformsProteinComp(probeset_gene_db,species,array_type,protein_ft_db,compare_all_features,data_type) def remoteTranslateRNAs(Species,unique_transcripts,unique_ens_transcripts,analysis_type): global species species = Species translateRNAs(unique_transcripts,unique_ens_transcripts,analysis_type) def translateRNAs(unique_transcripts,unique_ens_transcripts,analysis_type): if analysis_type == 'local': ### Get protein ACs for UCSC transcripts if provided by UCSC (NOT CURRENTLY USED BY THE PROGRAM!!!!) mRNA_protein_db,missing_protein_ACs_UCSC = importUCSCSequenceAssociations(species,unique_transcripts) ### For missing_protein_ACs, check to see if they are in UniProt. If so, export the protein sequence try: missing_protein_ACs_UniProt = importUniProtSeqeunces(species,mRNA_protein_db,missing_protein_ACs_UCSC) except Exception: null=[] ### For transcripts with protein ACs, see if we can find sequence from NCBI #missing_protein_ACs_NCBI = importNCBIProteinSeq(mRNA_protein_db) ### Combine missing_protein_ACs_NCBI and missing_protein_ACs_UniProt #for mRNA_AC in missing_protein_ACs_NCBI: missing_protein_ACs_UniProt[mRNA_AC] = missing_protein_ACs_NCBI[mRNA_AC] ### Import mRNA sequences for mRNA ACs with no associated protein sequence and submit for in silico translation missing_protein_ACs_inSilico = importUCSCSequences(missing_protein_ACs_NCBI) else: try: missing_protein_ACs_UniProt = importUniProtSeqeunces(species,{},{}) except Exception, e: print e null=[] ### Export Ensembl protein sequences for matching isoforms and identify transcripts without protein seqeunce ensembl_protein_seq_db, missing_protein_ACs_Ensembl = importEnsemblProteinSeqData(species,unique_ens_transcripts) ### Import Ensembl mRNA sequences for mRNA ACs with no associated protein sequence and submit for in silico translation missing_Ens_protein_ACs_inSilico = importEnsemblTranscriptSequence(missing_protein_ACs_Ensembl) if analysis_type == 'fetch': ac_list = [] for ac in unique_transcripts: ac_list.append(ac) try: ### Get rid of the second file which will not be immediately over-written and reading before regenerating output_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-Protein_sequences_'+str(2)+'.txt' fn=filepath(output_file); os.remove(fn) except Exception: null=[] try: fetchSeq(ac_list,'nucleotide',1) except Exception: print traceback.format_exc(),'\n' print 'WARNING!!!!! NCBI webservice connectivity failed due to the above error!!!!!\n' ###Import protein sequences seq_files, transcript_protein_db = importProteinSequences(species,just_get_ids=True) print len(unique_ens_transcripts)+len(unique_transcripts), 'examined transcripts.' print len(transcript_protein_db),'transcripts with associated protein sequence.' missing_protein_data=[] #transcript_protein_db={} ### Use to override existing mRNA-protein annotation files for ac in unique_transcripts: if ac not in transcript_protein_db: missing_protein_data.append(ac) ###Search NCBI using the esearch not efetch function to get valid GIs (some ACs make efetch crash) try: missing_gi_list = searchEntrez(missing_protein_data,'nucleotide') except Exception,e: print 'Exception encountered:',e try: missing_gi_list = searchEntrez(missing_protein_data,'nucleotide') except Exception: print 'Exception encountered:',e try: missing_gi_list = searchEntrez(missing_protein_data,'nucleotide') except Exception: print traceback.format_exc(),'\n' print 'WARNING!!!!! NCBI webservice connectivity failed due to the above error!!!!!\n' try: fetchSeq(missing_gi_list,'nucleotide',len(seq_files)-2) except Exception: print traceback.format_exc(),'\n' print 'WARNING!!!!! NCBI webservice connectivity failed due to the above error!!!!!\n' seq_files, transcript_protein_seq_db = importProteinSequences(species) print len(unique_ens_transcripts)+len(unique_transcripts), 'examined transcripts.' print len(transcript_protein_seq_db),'transcripts with associated protein sequence.' return transcript_protein_seq_db def convertTranscriptToProteinAssociations(probeset_transcript_db,transcript_protein_seq_db,compare_all_features): ### Convert probeset-transcript match db to probeset-protein match db probeset_protein_db={}; compared_protein_ids={} for probeset in probeset_transcript_db: match_transcripts,not_match_transcripts = probeset_transcript_db[probeset] match_proteins=[]; not_match_proteins=[] for transcript in match_transcripts: if transcript in transcript_protein_seq_db: protein_id = transcript_protein_seq_db[transcript][0]; match_proteins.append(protein_id); compared_protein_ids[protein_id]=[] for transcript in not_match_transcripts: if transcript in transcript_protein_seq_db: protein_id = transcript_protein_seq_db[transcript][0]; not_match_proteins.append(protein_id); compared_protein_ids[protein_id]=[] if len(match_proteins)>0 and len(not_match_proteins)>0: probeset_protein_db[probeset]=[match_proteins,not_match_proteins] protein_seq_db={} for transcript in transcript_protein_seq_db: protein_id, protein_seq = transcript_protein_seq_db[transcript] if protein_id in compared_protein_ids: protein_seq_db[protein_id] = [protein_seq] transcript_protein_seq_db=[] if compare_all_features == 'no': ### If yes, all pairwise comps need to still be examined title_row = 'Probeset\tAligned protein_id\tNon-aligned protein_id' if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/probeset-protein-dbase_exoncomp.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/probeset-protein-dbase_exoncomp.txt' exportSimple(probeset_protein_db,export_file,title_row) if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/SEQUENCE-protein-dbase_exoncomp.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/SEQUENCE-protein-dbase_exoncomp.txt' exportSimple(protein_seq_db,export_file,'') return probeset_protein_db,protein_seq_db def importProteinSequences(species,just_get_ids=False,just_get_length=False): transcript_protein_seq_db={} import_dir = '/AltDatabase/'+species+'/SequenceData/output/sequences' ### Multi-species fiel g = GrabFiles(); g.setdirectory(import_dir) seq_files = g.searchdirectory('Transcript-') for seq_file in seq_files: fn=filepath(seq_file) for line in open(fn,'rU').xreadlines(): probeset_data = cleanUpLine(line) #remove endline mRNA_AC,protein_AC,protein_seq = string.split(probeset_data,'\t') if just_get_ids or just_get_length: if just_get_length: transcript_protein_seq_db[mRNA_AC]=len(protein_seq) else: transcript_protein_seq_db[mRNA_AC]=protein_AC else: transcript_protein_seq_db[mRNA_AC] = protein_AC,protein_seq return seq_files, transcript_protein_seq_db def importCDScoordinates(species): """ Read in the CDS locations for Ensembl proteins, NCBI proteins and in silico derived proteins and then export to a single file """ cds_location_db={} errors = {} import_dir = '/AltDatabase/'+species+'/SequenceData/output/details' import_dir2 = '/AltDatabase/ensembl/'+species g = GrabFiles(); g.setdirectory(import_dir) g2 = GrabFiles(); g2.setdirectory(import_dir2) seq_files = g.searchdirectory('Transcript-') seq_files += g2.searchdirectory('EnsemblTranscriptCDSPositions') output_file = 'AltDatabase/ensembl/'+species +'/AllTranscriptCDSPositions.txt' dataw = export.ExportFile(output_file) for seq_file in seq_files: fn=filepath(seq_file) for line in open(fn,'rU').xreadlines(): line_data = cleanUpLine(line) #remove endline line_data = string.replace(line_data,'>','') ### occurs for some weird entries line_data = string.replace(line_data,'<','') ### occurs for some weird entries if 'join' in line_data: ### Occures when the cds entry looks like this: AL137661 - join(203..1267,1267..2187) or 'AL137661\tjoin(203\t1267,1267\t2187)' t = string.split(line_data,'\t') mRNA_AC = t[0]; start = t[1][5:]; stop = t[-1][:-1] else: line_data = string.replace(line_data,'complement','') ### occurs for some weird entries line_data = string.replace(line_data,')','') ### occurs for some weird entries line_data = string.replace(line_data,'(','') ### occurs for some weird entries try: mRNA_AC,start,stop = string.split(line_data,'\t') try: cds_location_db[mRNA_AC] = int(start),int(stop) dataw.write(string.join([mRNA_AC,start,stop],'\t')+'\n') except Exception: errors[line_data]=[] #print line_data;sys.exit() except Exception: errors[line_data]=[] #print line_data;sys.exit() print len(errors),'errors...out of',len(cds_location_db) dataw.close() return cds_location_db def importProbesetTranscriptMatches(species,array_type,compare_all_features): if compare_all_features == 'yes': ### Used when comparing all possible PROTEIN pairs if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': filename = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/'+species+'_all-transcript-matches.txt' else: filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_all-transcript-matches.txt' else: ### Used after comparing all possible TRANSCRIPT STRUCTURE pairs if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': filename = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/'+species+'_top-transcript-matches.txt' else: filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_top-transcript-matches.txt' print 'Imported:',filename fn=filepath(filename); probeset_transcript_db={}; unique_transcripts={}; unique_ens_transcripts={}; all_transcripts={} for line in open(fn,'rU').xreadlines(): probeset_data = cleanUpLine(line) #remove endline try: probeset,match_transcripts,not_match_transcripts = string.split(probeset_data,'\t') except IndexError: print t;kill #if probeset == '2991483': match_transcripts = string.split(match_transcripts,'|') not_match_transcripts = string.split(not_match_transcripts,'|') ### Multiple transcript comparison sets can exist, depending on how many unique exon coordiantes the probeset aligns to probeset_transcript_db[probeset] = match_transcripts,not_match_transcripts consider_all_ensembl = 'no' if array_type == 'RNASeq': ### Needed for Ensembl gene IDs that don't have 'ENS' in them. if 'ENS' not in probeset: consider_all_ensembl = 'yes' ###Store unique transcripts for transcript in match_transcripts: if 'ENS' in transcript or consider_all_ensembl == 'yes': unique_ens_transcripts[transcript]=[] else: unique_transcripts[transcript]=[] if consider_all_ensembl == 'yes': unique_transcripts[transcript]=[] ### This redundant, but is the most unbiased way to examine all non-Ensembls as well all_transcripts[transcript]=[] for transcript in not_match_transcripts: if 'ENS' in transcript or consider_all_ensembl == 'yes': unique_ens_transcripts[transcript]=[] else: unique_transcripts[transcript]=[] if consider_all_ensembl == 'yes': unique_transcripts[transcript]=[] ### This redundant, but is the most unbiased way to examine all non-Ensembls as well all_transcripts[transcript]=[] print 'len(unique_ens_transcripts)',len(unique_ens_transcripts) print 'len(unique_transcripts)',len(unique_transcripts) return probeset_transcript_db,unique_ens_transcripts,unique_transcripts,all_transcripts def searchEntrez(accession_list,bio_type): start_time = time.time() Entrez.email = "[email protected]" # Always tell NCBI who you are index=0; gi_list=[] while index<len(accession_list)+20: try: new_accession_list = accession_list[index:index+20] except IndexError: new_accession_list = accession_list[index:] if len(new_accession_list)<1: break search_handle = Entrez.esearch(db=bio_type,term=string.join(new_accession_list,',')) search_results = Entrez.read(search_handle) gi_list += search_results["IdList"] index+=20 end_time = time.time(); time_diff = int(end_time-start_time) print "finished in %s seconds" % time_diff return gi_list def fetchSeq(accession_list,bio_type,version): output_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-Protein_sequences_'+str(version)+'.txt' datar = export.ExportFile(output_file) output_file = 'AltDatabase/'+species+'/SequenceData/output/details/Transcript-Protein_sequences_'+str(version)+'.txt' datad = export.ExportFile(output_file) print len(accession_list), "mRNA Accession numbers submitted to eUTILs." start_time = time.time() Entrez.email = "[email protected]" # Always tell NCBI who you are index=0 while index<len(accession_list)+200: try: new_accession_list = accession_list[index:index+200] except IndexError: new_accession_list = accession_list[index:] if len(new_accession_list)<1: break ### epost doesn't concatenate everything into a URL where esearch try: search_handle = Entrez.efetch(db=bio_type,id=string.join(new_accession_list,','),retmode="xml") #,usehistory="y" search_results = Entrez.read(search_handle) except Exception: try: ### Make sure it's not due to an internet connection issue search_handle = Entrez.efetch(db=bio_type,id=string.join(new_accession_list,','),retmode="xml") #,usehistory="y" search_results = Entrez.read(search_handle) except Exception: index+=200; continue for a in search_results: ### list of dictionaries accession = a['GBSeq_primary-accession'] if bio_type == 'nucleotide': mRNA_seq=''; proceed = 'no'; get_location = 'no' ### Get translated protein sequence if available try: for entry in a["GBSeq_feature-table"]: for key in entry: ### Key's in dictionary if key == 'GBFeature_quals': ### composed of a list of dictionaries for i in entry[key]: if i['GBQualifier_name'] == 'protein_id': protein_id = i['GBQualifier_value'] if i['GBQualifier_name'] == 'translation': protein_sequence = i['GBQualifier_value']; proceed = 'yes' if key == 'GBFeature_key': if entry[key] == 'CDS': get_location = 'yes' else: get_location = 'no' ### Get CDS location (occurs only following the GBFeature_key CDS, but not after) if key == 'GBFeature_location' and get_location == 'yes': cds_location = entry[key] except KeyError: null = [] alt_seq='no' if proceed == 'yes': if protein_sequence[0] != 'M': proceed = 'no'; alt_seq = 'yes' else: values = [accession,protein_id,protein_sequence]; values = string.join(values,'\t')+'\n'; datar.write(values) datad.write(accession+'\t'+string.replace(cds_location,'..','\t')+'\n') else: ### Translate mRNA seq to protein mRNA_seq = a['GBSeq_sequence'] mRNA_db={}; mRNA_db[accession] = '',mRNA_seq translation_db = BuildInSilicoTranslations(mRNA_db) for mRNA_AC in translation_db: ### Export in silico protein predictions protein_id, protein_sequence,cds_location = translation_db[mRNA_AC] values = [mRNA_AC,protein_id,protein_sequence]; values = string.join(values,'\t')+'\n'; datar.write(values) datad.write(mRNA_AC+'\t'+string.replace(cds_location,'..','\t')+'\n') if len(translation_db)==0 and alt_seq == 'yes': ### If no protein sequence starting with an "M" found, write the listed seq values = [accession,protein_id,protein_sequence]; values = string.join(values,'\t')+'\n'; datar.write(values) datad.write(accession+'\t'+string.replace(cds_location,'..','\t')+'\n') else: protein_sequence = a['GBSeq_sequence'] index+=200 """print 'accession',accession print 'protein_id',protein_id print 'protein_sequence',protein_sequence print 'mRNA_seq',mRNA_seq,'\n' """ end_time = time.time(); time_diff = int(end_time-start_time) print "finished in %s seconds" % time_diff datar.close() datad.close() def importEnsemblTranscriptSequence(missing_protein_ACs): import_dir = '/AltDatabase/'+species+'/SequenceData' ### Multi-species fiel g = GrabFiles(); g.setdirectory(import_dir) seq_files = g.searchdirectory('.cdna.all.fa'); seq_files.sort(); filename = seq_files[-1] #filename = 'AltDatabase/'+species+'/SequenceData/'+species+'_ensembl_cDNA.fasta.txt' start_time = time.time() output_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-EnsInSilicoProt_sequences.txt' datar = export.ExportFile(output_file) output_file = 'AltDatabase/'+species+'/SequenceData/output/details/Transcript-EnsInSilicoProt_sequences.txt' datad = export.ExportFile(output_file) print "Begining generic fasta import of",filename fn=filepath(filename); translated_mRNAs={}; sequence = '' for line in open(fn,'r').xreadlines(): try: data, newline= string.split(line,'\n') except ValueError: continue try: if data[0] == '>': if len(sequence) > 0: if transid in missing_protein_ACs: ### Perform in silico translation mRNA_db = {}; mRNA_db[transid] = '',sequence[1:] translation_db = BuildInSilicoTranslations(mRNA_db) for mRNA_AC in translation_db: ### Export in silico protein predictions protein_id, protein_seq, cds_location = translation_db[mRNA_AC] values = [mRNA_AC,protein_id,protein_seq]; values = string.join(values,'\t')+'\n'; datar.write(values) datad.write(mRNA_AC+'\t'+string.replace(cds_location,'..','\t')+'\n') translated_mRNAs[mRNA_AC]=[] ### Parse new line #>ENST00000400685 cdna:known supercontig::NT_113903:9607:12778:1 gene:ENSG00000215618 t= string.split(data[1:],':'); sequence='' transid_data = string.split(t[0],' '); transid = transid_data[0] if '.' in transid: transid = string.split(transid,'.')[0] #try: ensembl_id,chr,strand,transid,prot_id = t #except ValueError: ensembl_id,chr,strand,transid = t except IndexError: continue try: if data[0] != '>': sequence = sequence + data except IndexError: continue #### Add the last entry if len(sequence) > 0: if transid in missing_protein_ACs: ### Perform in silico translation mRNA_db = {}; mRNA_db[transid] = '',sequence[1:] translation_db = BuildInSilicoTranslations(mRNA_db) for mRNA_AC in translation_db: ### Export in silico protein predictions protein_id, protein_seq, cds_location = translation_db[mRNA_AC] values = [mRNA_AC,protein_id,protein_seq]; values = string.join(values,'\t')+'\n'; datar.write(values) datad.write(mRNA_AC+'\t'+string.replace(cds_location,'..','\t')+'\n') translated_mRNAs[mRNA_AC]=[] datar.close() datad.close() end_time = time.time(); time_diff = int(end_time-start_time) print "Ensembl transcript sequences analyzed in %d seconds" % time_diff missing_protein_ACs_inSilico=[] for mRNA_AC in missing_protein_ACs: if mRNA_AC not in translated_mRNAs: missing_protein_ACs_inSilico.append(mRNA_AC) print len(missing_protein_ACs_inSilico), 'Ensembl mRNAs without mRNA sequence NOT in silico translated (e.g., lncRNAs)', missing_protein_ACs_inSilico[:10] def importEnsemblProteinSeqData(species,unique_ens_transcripts): from build_scripts import FeatureAlignment protein_relationship_file,protein_feature_file,protein_seq_fasta,null = FeatureAlignment.getEnsemblRelationshipDirs(species) ens_transcript_protein_db = FeatureAlignment.importEnsemblRelationships(protein_relationship_file,'transcript') unique_ens_proteins = {} for transcript in ens_transcript_protein_db: if transcript in unique_ens_transcripts: protein_id = ens_transcript_protein_db[transcript] if len(protein_id)>1: unique_ens_proteins[protein_id] = transcript ensembl_protein_seq_db = importEnsemblProtSeq(protein_seq_fasta,unique_ens_proteins) transcript_with_prot_seq = {} for protein_id in ensembl_protein_seq_db: if protein_id in unique_ens_proteins: transcript = unique_ens_proteins[protein_id] transcript_with_prot_seq[transcript]=[] missing_ens_proteins={} for transcript in unique_ens_transcripts: if transcript not in transcript_with_prot_seq: missing_ens_proteins[transcript]=[] print len(ensembl_protein_seq_db),'Ensembl transcripts linked to protein sequence and',len(missing_ens_proteins), 'transcripts missing protein sequence.' return ensembl_protein_seq_db, missing_ens_proteins def importEnsemblProtSeq(filename,unique_ens_proteins): export_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-EnsProt_sequences.txt' export_data = export.ExportFile(export_file) fn=filepath(filename); ensembl_protein_seq_db={}; sequence = ''; y=0 for line in open(fn,'r').xreadlines(): try: data, newline= string.split(line,'\n'); y+=1 except ValueError: continue try: if data[0] == '>': if len(sequence) > 0: try: ensembl_prot = ensembl_prot except Exception: print data,y,t;kill if ensembl_prot in unique_ens_proteins: mRNA_AC = unique_ens_proteins[ensembl_prot] values = string.join([mRNA_AC,ensembl_prot,sequence],'\t')+'\n' export_data.write(values); ensembl_protein_seq_db[ensembl_prot] = [] ### Parse new line t= string.split(data[1:],' '); sequence='' ensembl_prot = t[0] if '.' in ensembl_prot: ensembl_prot = string.split(ensembl_prot,'.')[0] ### Added to Ensembl after version 77 except IndexError: continue try: if data[0] != '>': sequence = sequence + data except IndexError: continue if ensembl_prot in unique_ens_proteins: mRNA_AC = unique_ens_proteins[ensembl_prot] values = string.join([mRNA_AC,ensembl_prot,sequence],'\t')+'\n' export_data.write(values); ensembl_protein_seq_db[ensembl_prot] = [] export_data.close() return ensembl_protein_seq_db def importUniProtSeqeunces(species,transcripts_with_uniprots,transcripts_to_analyze): global n_terminal_seq; global c_terminal_seq n_terminal_seq={}; c_terminal_seq={} export_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-UniProt_sequences.txt' export_data = export.ExportFile(export_file) #filename = 'AltDatabase/'+species+'/SequenceData/'+'uniprot_trembl_sequence.txt' filename = 'AltDatabase/uniprot/'+species+'/uniprot_sequence.txt' fn=filepath(filename); transcript_to_uniprot={} unigene_ensembl_up = {} for line in open(fn,'r').readlines(): data, newline= string.split(line,'\n') t = string.split(data,'\t') id=t[0];ac=t[1];ensembls=t[4];seq=t[2];type=t[6];unigenes=t[7];embls=t[9] ac=string.split(ac,','); embls=string.split(embls,',') #; ensembls=string.split(ensembls,','); unigenes=string.split(unigenes,',') if type != 'swissprot1': ### unclear why this condition was excluding swissprot so added 1 - version 2.1.1 ### Note: These associations are based on of UCSC, which in some cases don't look correct: see AY429540 and Q75N08 from the KgXref file. ### Possibly exclude ac = ac[0] if ac in transcripts_with_uniprots: mRNA_ACs = transcripts_with_uniprots[ac] for mRNA_AC in mRNA_ACs: transcript_to_uniprot[mRNA_AC] = [] values = string.join([mRNA_AC,ac,seq],'\t')+'\n'; export_data.write(values) for embl in embls: proceed = 'no' if (len(embl)>0) and type == 'fragment': ###NOTE: Fragment annotated seem to be the only protein IDs that contain direct references to a specific mRNA rather than promiscous (as opposed to Swissprot and Variant) if embl in transcripts_to_analyze: proceed = 'yes' elif embl in transcripts_with_uniprots: proceed = 'yes' if proceed == 'yes': if embl not in transcript_to_uniprot: transcript_to_uniprot[embl] = [] values = string.join([embl,id,seq],'\t')+'\n'; export_data.write(values) n_terminal_seq[seq[:5]] = [] c_terminal_seq[seq[-5:]] = [] export_data.close() missing_protein_ACs={} for mRNA_AC in transcripts_to_analyze: if mRNA_AC not in transcript_to_uniprot: missing_protein_ACs[mRNA_AC]=[] for protein_AC in transcripts_with_uniprots: mRNA_ACs = transcripts_with_uniprots[protein_AC] for mRNA_AC in mRNA_ACs: if mRNA_AC not in transcript_to_uniprot: missing_protein_ACs[mRNA_AC]=[] if len(transcripts_to_analyze)>0: ### Have to submitt ACs to report them print len(missing_protein_ACs), 'missing protein ACs for associated UniProt mRNAs and', len(transcript_to_uniprot), 'found.' print len(n_terminal_seq),len(c_terminal_seq),'N and C terminal, respectively...' return missing_protein_ACs def BuildInSilicoTranslations(mRNA_db): """ BI517798 Seq('ATGTGGCCAGGAGACGCCACTGGAGAACATGCTGTTCGCCTCCTTCTACCTTCTGGATTT ...', IUPACUnambiguousDNA()) 213 MWPGDATGEHAVRLLLPSGFYPGFSWQYPGSVAFHPRPQVRDPGQRVPDASGRGRLVVRAGPAHPPGLPLLWEPLAIWGNRMPSHRLPLLPQHVRQHLLPHLHQRRPFPGHCAPGQVPQAPQAPLRTPGLCLPVGGGGCGHGPAAGEPTDRADKHTVGLPAAVPGEGSNMPGVPWQWPSLPVHHQVTCTVIIRSCGRPRVEKALRTRQGHESP 211 MNGLEVAPPGLITNFSLATAEQCGQETPLENMLFASFYLLDFILALVGNTLALWLFIRDHKSGTPANVFLMHLAVADLSCVLVLPTRLVYHFSGNHWPFGEIACRLTGFLFYLNMYASIYFLTCISADRFLAIVHPVKSLKLRRPLYAHLACAFLWVVVAVAMAPLLVSPQTVQTNTRWVCLQLYREKAPTCLVSLGSGLHFPFITRSRVL """ translation_db={} from Bio.Seq import Seq ### New Biopython methods - http://biopython.org/wiki/Seq from Bio.Alphabet import generic_dna ### Deprecated #from Bio.Alphabet import IUPAC #from Bio import Translate ### deprecated #print 'Begining in silco translation for',len(mRNA_db),'sequences.' def cleanSeq(input_seq): """Wrapper for Biopython translate function. Bio.Seq.translate will complain if input sequence is not a mulitple of 3. This wrapper function passes an acceptable input to Bio.Seq.translate in order to avoid this warning.""" #https://github.com/broadinstitute/oncotator/pull/265/commits/94b20aabff48741a92b3f9e608e159957af6af30 trailing_bases = len(input_seq) % 3 if trailing_bases: input_seq = ''.join([input_seq, 'NN']) if trailing_bases == 1 else ''.join([input_seq, 'N']) return input_seq first_time = 1 for mRNA_AC in mRNA_db: if mRNA_AC == 'AK025306': print '@@@@@@@@@@^^^^AK025306...attempting in silico translation' temp_protein_list=[]; y=0 protein_id,sequence = mRNA_db[mRNA_AC] if protein_id == '': protein_id = mRNA_AC+'-PEP' original_seqeunce = sequence sequence = string.upper(sequence) loop=0 while (string.find(sequence,'ATG')) != -1: #while there is still a methionine in the DNA sequence, reload this DNA sequence for translation: find the longest ORF x = string.find(sequence,'ATG') #before doing this, need to find the start codon ourselves y += x #maintain a running count of the sequence position if loop!=0: y+=3 ### This accounts for the loss in sequence_met #if y<300: print original_seqeunce[:y+2], x sequence_met = sequence[x:] #x gives us the position where the first Met* is. ### New Biopython methods - http://biopython.org/wiki/Seq dna_clean = cleanSeq(sequence_met) dna_seq = Seq(dna_clean, generic_dna) prot_seq = dna_seq.translate(to_stop=True) ### Deprecated code #seq_type = IUPAC.unambiguous_dna #dna_seq = Seq(sequence_met,seq_type) #standard_translator = Translate.unambiguous_dna_by_id[1] #prot_seq = standard_translator.translate_to_stop(dna_seq) #convert the dna to protein sequence #prot_seq_string = prot_seq.tostring() prot_seq_string = str(prot_seq) prot_seq_tuple = len(prot_seq_string),y,prot_seq_string,dna_seq #added DNA sequence to determine which exon we're in later temp_protein_list.append(prot_seq_tuple) #create a list of protein sequences to select the longest one sequence = sequence_met[3:] # sequence_met is the sequence after the first or proceeduring methionine, reset the sequence for the next loop loop+=1 if len(temp_protein_list) == 0: continue else: #temp_protein_list = pick_optimal_peptide_seq(temp_protein_list) ###Used a more complex method in the original code to determine the best selection temp_protein_list.sort(); temp_protein_list.reverse() peptide_len1 = temp_protein_list[0][0] prot_seq_string = temp_protein_list[0][2] #extract out the protein sequence string portion of the tuple coding_dna_seq_string = temp_protein_list[0][3] pos1 = temp_protein_list[0][1] ###position in DNA sequence where the translation starts n_term1 = prot_seq_string[:5]; c_term1 = prot_seq_string[-5:] ###Check the top protein sequences and see if there are frame differences choose = 0 for protein_data in temp_protein_list[1:]: ###exlcude the first entry peptide_len2 = protein_data[0]; pos2= protein_data[1] percent_of_top = (float(peptide_len1)/peptide_len2)*100 if (percent_of_top>70) and (peptide_len2>20): prot_seq_string2 = protein_data[2] n_term2 = prot_seq_string2[:5]; c_term2 = prot_seq_string2[-5:] frame_shift = check4FrameShifts(pos1,pos2) if frame_shift == 'yes': ###determine which prediction is better to use if n_term1 in n_terminal_seq: choose = 1 elif n_term2 in n_terminal_seq: choose = 2 elif c_term1 in c_terminal_seq: choose = 1 elif c_term2 in c_terminal_seq: choose = 2 if choose == 2: prot_seq_string = protein_data[2] coding_dna_seq_string = protein_data[3] alt_prot_seq_string = temp_protein_list[0][2] alt_coding_dna_seq_string = temp_protein_list[0][3] pos1 = protein_data[1] if first_time == 0: print mRNA_AC print coding_dna_seq_string print len(prot_seq_string),prot_seq_string print alt_coding_dna_seq_string print len(alt_prot_seq_string),alt_prot_seq_string first_time = 1 ###write this data out in the future else: break else: break ###do not need to keep looking dl = (len(prot_seq_string))*3 #figure out what the DNA coding sequence length is #dna_seq_string_coding_to_end = coding_dna_seq_string.tostring() dna_seq_string_coding_to_end = str(coding_dna_seq_string) coding_dna_seq_string = dna_seq_string_coding_to_end[0:dl] cds_location = str(pos1+1)+'..'+str(pos1+len(prot_seq_string)*3+3) ### Determine if a stop codon is in the sequence or there's a premature end coding_diff = len(dna_seq_string_coding_to_end) - len(coding_dna_seq_string) if coding_diff > 4: stop_found = 'stop-codon-present' else: stop_found = 'stop-codon-absent' #print [mRNA_AC],[protein_id],prot_seq_string[0:10] if mRNA_AC == 'AK025306': print '*********AK025306',[protein_id],prot_seq_string[0:10] translation_db[mRNA_AC] = protein_id,prot_seq_string,cds_location return translation_db def check4FrameShifts(pos1,pos2): pos_diff = abs(pos2 - pos1) str_codon_diff = str(float(pos_diff)/3) value1,value2 = string.split(str_codon_diff,'.') if value2 == '0': frame_shift = 'no' else: frame_shift = 'yes' return frame_shift def convertListsToTuple(list_of_lists): list_of_tuples=[] for ls in list_of_lists: list_of_tuples.append(tuple(ls)) return list_of_tuples def compareProteinFeaturesForPairwiseComps(probeset_protein_db,protein_seq_db,probeset_gene_db,species,array_type): if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/probeset-protein-dbase_seqcomp.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/probeset-protein-dbase_seqcomp.txt' fn=filepath(export_file); export_data1 = open(fn,'w') title_row = 'Probeset\tAligned protein_id\tNon-aligned protein_id\n'; export_data1.write(title_row) minimal_effect_db={}; accession_seq_db={};start_time = time.time() print "Comparing protein features for all pair-wise comparisons" for probeset in probeset_protein_db: geneid = probeset_gene_db[probeset][0] ###If one probeset match_list,null_list = probeset_protein_db[probeset] prot_match_list=[]; prot_null_list=[] for protein_ac in match_list: protein_seq = protein_seq_db[protein_ac][0] prot_match_list.append([protein_ac,protein_seq]) for protein_ac in null_list: protein_seq = protein_seq_db[protein_ac][0] prot_null_list.append([protein_ac,protein_seq]) ### Compare all possible protein combinations to find those with the minimal change in (1) sequence and (2) domain compositions if len(prot_match_list)>0 and len(prot_null_list)>0: results_list=[] for mi in prot_match_list: for ni in prot_null_list: results = characterizeProteinLevelExonChanges(probeset,geneid,mi,ni,array_type) results_list.append(results) results_list.sort() hit_ac = results_list[0][-2]; null_ac = results_list[0][-1] values = string.join([probeset,hit_ac,null_ac],'\t')+'\n'; export_data1.write(values) #minimal_effect_db[probeset] = [hit_ac,null_ac] accession_seq_db[hit_ac] = [protein_seq_db[hit_ac][0]] accession_seq_db[null_ac] = [protein_seq_db[null_ac][0]] #print results_list[0][-2],results_list[0][-1] #print probeset,len(prot_match_list),len(prot_null_list),results_list;kill print len(minimal_effect_db),"optimal pairs of probesets linked to Ensembl found." end_time = time.time(); time_diff = int(end_time-start_time) print "databases built in %d seconds" % time_diff export_data1.close() """ title_row = 'Probeset\tAligned protein_id\tNon-aligned protein_id' export_file = 'AltDatabase/'+species+'/'+array_type+'/probeset-protein-dbase_seqcomp.txt' exportSimple(minimal_effect_db,export_file,title_row)""" if (array_type == 'junction' or array_type == 'RNASeq') and data_type != 'null': export_file = 'AltDatabase/'+species+'/'+array_type+'/'+data_type+'/SEQUENCE-protein-dbase_seqcomp.txt' else: export_file = 'AltDatabase/'+species+'/'+array_type+'/SEQUENCE-protein-dbase_seqcomp.txt' exportSimple(accession_seq_db,export_file,'') def exportSimple(db,output_file,title_row): data = export.ExportFile(output_file) if len(title_row)>0: data.write(title_row+'\n') for key in db: try: values = string.join([key] + db[key],'\t')+'\n'; data.write(values) except TypeError: list2=[] for list in db[key]: list2+=list values = string.join([key] + list2,'\t')+'\n'; data.write(values) data.close() print output_file, 'exported...' def characterizeProteinLevelExonChanges(uid,array_geneid,hit_data,null_data,array_type): domains=[]; functional_attribute=[]; probeset_num = 1 if '|' in uid: probeset,probeset2 = string.split(uid,'|') probeset_num = 2 else: probeset = uid hv=1; pos_ref_AC = hit_data[0]; neg_ref_AC = null_data[0] if hv!=0: neg_coding_seq = null_data[1]; pos_coding_seq = hit_data[1] neg_length = len(neg_coding_seq); pos_length = len(pos_coding_seq) pos_length = float(pos_length); neg_length = float(neg_length) if array_geneid in protein_ft_db: protein_ft = protein_ft_db[array_geneid] neg_ft_missing,pos_ft_missing = ExonAnalyze_module.compareProteinFeatures(protein_ft,neg_coding_seq,pos_coding_seq) for (pos,blank,ft_name,annotation) in pos_ft_missing: domains.append(ft_name) for (pos,blank,ft_name,annotation) in neg_ft_missing: ###If missing from the negative list, it is present in the positive state domains.append(ft_name) if pos_coding_seq[:5] != neg_coding_seq[:5]: function_var = 'alt-N-terminus';functional_attribute.append(function_var) if pos_coding_seq[-5:] != neg_coding_seq[-5:]: function_var = 'alt-C-terminus';functional_attribute.append(function_var) ### Record change in peptide size protein_length_diff = abs(pos_length-neg_length) results = [len(functional_attribute),len(domains),protein_length_diff,pos_ref_AC,neg_ref_AC] ###number of domains, number N or C-terminal differences, protein length difference return results ############# Code currently not used (LOCAL PROTEIN SEQUENCE ANALYSIS) ############## def importUCSCSequenceAssociations(species,transcripts_to_analyze): """ NOTE: This method is currently not used, by the fact that the kgXref is not downloaded from the UCSC ftp database. This file relates mRNAs primarily to UniProt rather than GenBank and thus is less ideal than the direct NCBI API based method used downstream """ filename = 'AltDatabase/'+species+'/SequenceData/kgXref.txt' fn=filepath(filename); mRNA_protein_db={} for line in open(fn,'r').readlines(): data, newline= string.split(line,'\n') t = string.split(data,'\t') try: mRNA_AC=t[1];prot_AC=t[2] ###Information actually seems largely redundant with what we get from UniProt direclty except IndexError: mRNA_AC='';prot_AC='' #if mRNA_AC == 'BC152405': print [prot_AC];kill if len(mRNA_AC)>2 and len(prot_AC)>2: if mRNA_AC in transcripts_to_analyze: try: mRNA_protein_db[prot_AC].append(mRNA_AC) except KeyError: mRNA_protein_db[prot_AC] = [mRNA_AC] print len(mRNA_protein_db), "mRNA to protein ACs parsed from UCSC data" missing_protein_ACs={} ### These will require in Silico translation for mRNA_AC in transcripts_to_analyze: if mRNA_AC not in mRNA_protein_db: missing_protein_ACs[mRNA_AC]=[] print len(missing_protein_ACs), 'missing protein ACs for associated UCSC mRNAs and', len(mRNA_protein_db), 'found.' return mRNA_protein_db,missing_protein_ACs def importNCBIProteinSeq(mRNA_protein_db): export_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-NCBIProt_sequences.txt' export_data = export.ExportFile(export_file) ### Reverse the values and key of the dictionary protein_linked_ACs = {} for mRNA_AC in mRNA_protein_db: protein_AC = mRNA_protein_db[mRNA_AC] try: protein_linked_ACs[protein_AC].append(mRNA_AC) except KeyError: protein_linked_ACs[protein_AC] = [mRNA_AC] import_dir = '/AltDatabase/SequenceData' ### Multi-species fiel g = GrabFiles(); g.setdirectory(import_dir) seq_files = g.searchdirectory('fsa_aa') for filename in seq_files: fn=filepath(filename); ncbi_prot_seq_db = {} sequence = '' for line in open(fn,'rU').xreadlines(): try: data, newline= string.split(line,'\n') except ValueError: continue try: if data[0] == '>': if len(sequence) > 0: if len(prot_id)>0 and prot_id in protein_linked_ACs: mRNA_ACs = protein_linked_ACs[protein_AC] for mRNA_AC in mRNA_ACs: values = string.join([mRNA_AC,prot_id,sequence],'\t')+'\n' export_data.write(values) ncbi_prot_seq_db[mRNA_AC] = [] ###occurs once in the file t= string.split(data,'|'); prot_id = t[3][:-2]; sequence = '' else: sequence = ''; t= string.split(data,'|'); prot_id = t[3][:-2] ###Occurs for the first entry except IndexError: continue try: if data[0] != '>': sequence = sequence + data except IndexError: continue export_data.close() if len(prot_id)>0 and prot_id in protein_linked_ACs: mRNA_ACs = protein_linked_ACs[protein_AC] for mRNA_AC in mRNA_ACs: values = string.join([mRNA_AC,prot_id,sequence],'\t')+'\n' export_data.write(values) ncbi_prot_seq_db[mRNA_AC] = [] ###Need this for the last entry missing_protein_ACs={} for mRNA_AC in mRNA_protein_db: if mRNA_AC not in ncbi_prot_seq_db: missing_protein_ACs[mRNA_AC]=[] print len(ncbi_prot_seq_db), "genbank protein ACs associated with sequence, out of", len(mRNA_protein_db) print len(missing_protein_ACs), 'missing protein ACs for associated NCBI mRNAs and', len(ncbi_prot_seq_db), 'found.' return missing_protein_ACs def importUCSCSequences(missing_protein_ACs): start_time = time.time() filename = 'AltDatabase/'+species+'/SequenceData/mrna.fa' output_file = 'AltDatabase/'+species+'/SequenceData/output/sequences/Transcript-InSilicoProt_sequences.txt' datar = export.ExportFile(output_file) output_file = 'AltDatabase/'+species+'/SequenceData/output/details/Transcript-InSilicoProt_sequences.txt' datad = export.ExportFile(output_file) print "Begining generic fasta import of",filename #'>gnl|ENS|Mm#S10859962 Mus musculus 12 days embryo spinal ganglion cDNA, RIKEN full-length enriched library, clone:D130006G06 product:unclassifiable, full insert sequence /gb=AK051143 /gi=26094349 /ens=Mm.1 /len=2289'] #'ATCGTGGTGTGCCCAGCTCTTCCAAGGACTGCTGCGCTTCGGGGCCCAGGTGAGTCCCGC' fn=filepath(filename); sequence = '|'; translated_mRNAs={} for line in open(fn,'r').xreadlines(): try: data, newline= string.split(line,'\n') except ValueError: continue if len(data)>0: if data[0] != '#': try: if data[0] == '>': if len(sequence) > 1: if accession in missing_protein_ACs: ### Perform in silico translation mRNA_db = {}; mRNA_db[accession] = '',sequence[1:] translation_db = BuildInSilicoTranslations(mRNA_db) for mRNA_AC in translation_db: ### Export in silico protein predictions protein_id, protein_seq, cds_location = translation_db[mRNA_AC] values = [mRNA_AC,protein_id,protein_seq]; values = string.join(values,'\t')+'\n'; datar.write(values) datad.write(mRNA_AC+'\t'+string.replace(cds_location,'..','\t')+'\n') translated_mRNAs[mRNA_AC]=[] ### Parse new line values = string.split(data,' '); accession = values[0][1:]; sequence = '|'; continue except IndexError: null = [] try: if data[0] != '>': sequence = sequence + data except IndexError: print kill; continue datar.close() datad.close() end_time = time.time(); time_diff = int(end_time-start_time) print "UCSC mRNA sequences analyzed in %d seconds" % time_diff missing_protein_ACs_inSilico=[] for mRNA_AC in missing_protein_ACs: if mRNA_AC not in translated_mRNAs: missing_protein_ACs_inSilico.append(mRNA_AC) print len(missing_protein_ACs_inSilico), 'mRNAs without mRNA sequence NOT in silico translated (e.g., lncRNAs)',missing_protein_ACs_inSilico[:10] return missing_protein_ACs_inSilico ############# END Code currently not used (LOCAL PROTEIN SEQUENCE ANALYSIS) ############## def runProgram(Species,Array_type,Data_type,translate_seq,run_seqcomp): global species; global array_type; global translate; global data_type; global test; global test_genes species = Species; array_type = Array_type; translate = translate_seq; data_type = Data_type test = 'no'; test_genes = ['ENSMUSG00000029467'] if array_type == 'gene' or array_type == 'exon' or data_type == 'exon': compare_all_features = 'no' print 'Begin Exon-based compareProteinComposition' try: compareProteinComposition(species,array_type,translate,compare_all_features) except Exception: compareExonComposition(species,array_type) compareProteinComposition(species,array_type,translate,compare_all_features) if run_seqcomp == 'yes': compare_all_features = 'yes'; translate = 'no' compareProteinComposition(species,array_type,translate,compare_all_features) elif array_type == 'AltMouse' or array_type == 'junction' or array_type == 'RNASeq': """ Modified on 11/26/2017(2.1.1) - integrated compareExonComposition and compareProteinComposition with the goal of getting protein sequences for ALL UCSC and Ensembl transcripts (known + in silico) to look at protein length differences before picking the top two compared isoforms. """ compare_all_features = 'no' print 'Begin Junction-based compareProteinComposition' compareProteinComposition(species,array_type,translate,compare_all_features) if run_seqcomp == 'yes': compare_all_features = 'yes'; translate = 'no' compareProteinComposition(species,array_type,translate,compare_all_features) def runProgramTest(Species,Array_type,Data_type,translate_seq,run_seqcomp): global species; global array_type; global translate; global data_type species = Species; array_type = Array_type; translate = translate_seq; data_type = Data_type if array_type == 'gene' or array_type == 'exon' or data_type == 'exon': compare_all_features = 'no' compareProteinComposition(species,array_type,translate,compare_all_features) if run_seqcomp == 'yes': compare_all_features = 'yes'; translate = 'no' compareProteinComposition(species,array_type,translate,compare_all_features) elif array_type == 'AltMouse' or array_type == 'junction' or array_type == 'RNASeq': compare_all_features = 'no' compareProteinComposition(species,array_type,translate,compare_all_features) if run_seqcomp == 'yes': compare_all_features = 'yes'; translate = 'no' compareProteinComposition(species,array_type,translate,compare_all_features) if __name__ == '__main__': species = 'Mm'; array_type = 'AltMouse'; translate='no'; run_seqcomp = 'no'; data_type = 'exon' species = 'Mm'; array_type = 'RNASeq'; translate='yes' #species = 'Dr'; array_type = 'RNASeq'; translate='yes'; data_type = 'junction' test='no' a = ['ENSMUST00000138102', 'ENSMUST00000193415', 'ENSMUST00000124412', 'ENSMUST00000200569'] importEnsemblTranscriptSequence(a);sys.exit() filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-annotations.txt' ens_transcript_exon_db,ens_gene_transcript_db,ens_gene_exon_db = importEnsExonStructureDataSimple(filename,species,{},{},{},{}) #print len(ens_transcript_exon_db), len(ens_gene_transcript_db), len(ens_gene_exon_db);sys.exit() #runProgramTest(species,array_type,data_type,translate,run_seqcomp) runProgram(species,array_type,data_type,translate,run_seqcomp)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/IdentifyAltIsoforms.py
IdentifyAltIsoforms.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies sys.setrecursionlimit(5000) import export _script = 'AltAnalyze.py' _appName = "AltAnalyze" _appVersion = '2.1.3' _appDescription = "AltAnalyze is a freely available, open-source and cross-platform program that allows you to processes raw bulk or single-cell RNASeq and " _appDescription +="microarray data, identify predicted alternative splicing or alternative promoter changes and " _appDescription +="view how these changes may affect protein sequence, domain composition, and microRNA targeting." _authorName = 'Nathan Salomonis' _authorEmail = '[email protected]' _authorURL = 'http://www.altanalyze.org' _appIcon = "build_scripts/AltAnalyze_W7.ico" excludes = ['wx','tests','iPython'] #["wxPython"] #"numpy","scipy","matplotlib" includes = ["mpmath", "numpy","sklearn.neighbors.typedefs",'sklearn.utils.lgamma','sklearn.manifold', 'sklearn.utils.sparsetools._graph_validation','sklearn.utils.weight_vector', 'pysam.TabProxies','pysam.ctabixproxies','patsy.builtins','dbhash','anydbm'] """ By default, suds will be installed in site-packages as a .egg file (zip compressed). Make a duplicate, change to .zip and extract here to allow it to be recognized by py2exe (must be a directory) """ matplot_exclude = [] #['MSVCP90.dll'] scipy_exclude = [] #['libiomp5md.dll','libifcoremd.dll','libmmd.dll'] """ xml.sax.drivers2.drv_pyexpat is an XML parser needed by suds that py2app fails to include. Identified by looking at the line: parser_list+self.parsers in /Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PyXML-0.8.4-py2.7-macosx-10.6-intel.egg/_xmlplus/sax/saxexts.py check the py2app print out to see where this file is in the future (reported issue - may or may not apply) For mac and igraph, core.so must be copied to a new location for py2app: sudo mkdir /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/lib-dynload/igraph/ cp /Library/Python/2.6/site-packages/igraph/core.so /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/lib-dynload/igraph/ May require: python build_scripts/setup_binary.py py2app --frameworks /Library/Python/2.7/site-packages/llvmlite/binding/libllvmlite.dylib --packages llvmlite,numba """ if sys.platform.startswith("darwin"): ### Local version: /usr/local/bin/python2.6 ### example command: python setup.py py2app from distutils.core import setup import py2app import lxml import sklearn import PIL._imaging import PIL._imagingft #import macholib_patch includes+= ["pkg_resources","distutils","lxml.etree","lxml._elementpath"] #"xml.sax.drivers2.drv_pyexpat" frameworks = ['/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PIL'] frameworks += ['/Library/Python/2.7/site-packages/llvmlite/binding/libllvmlite.dylib', '/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PIL/.dylibs/libopenjp2.2.1.0.dylib'] """ resources = ['/System/Library/Frameworks/Python.framework/Versions/2.7'] frameworks = ['/System/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/pyconfig.h'] frameworks += ['/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/pkg_resources/__init__.py'] frameworks += ['/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/distutils/util.py'] frameworks += ['/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/distutils/sysconfig.py'] import pkg_resources import distutils import distutils.sysconfig import distutils.util """ options = {"py2app": {"excludes": excludes, "includes": includes, #"frameworks": frameworks, #"resources": resources, #"argv_emulation": True, "iconfile": "build_scripts/altanalyze.icns"} } setup(name=_appName, app=[_script], version=_appVersion, description=_appDescription, author=_authorName, author_email=_authorEmail, url=_authorURL, options=options, #data_files=data_files, setup_requires=["py2app"] ) import UI import shutil scr_root = '/Users/saljh8/Documents/GitHub/accessory/.dylibs' des_root = '/Users/saljh8/Documents/GitHub//altanalyze/dist/AltAnalyze.app/Contents/Resources/lib/python2.7/lib-dynload/PIL/.dylibs/' os.mkdir(des_root) files = UI.read_directory(scr_root[:-1]) for file in files: shutil.copy(scr_root+file,des_root+file) if sys.platform.startswith("win"): ### example command: python setup.py py2exe from distutils.core import setup import py2exe import numpy import matplotlib import unique import lxml import sys import sklearn import pysam import TabProxies import ctabix import csamtools import cvcf from mpl_toolkits import mplot3d import dbhash import matplotlib.backends.backend_tkagg import anydbm import six ### relates to a date-time dependency in matplotlib #sys.path.append(unique.filepath("Config\DLLs")) ### This is added, but DLLs still require addition to DLL python dir from distutils.filelist import findall import os import mpl_toolkits excludes = [] data_files=matplotlib.get_py2exe_datafiles() matplotlibdatadir = matplotlib.get_data_path() matplotlibdata = findall(matplotlibdatadir) matplotlibdata_files = [] data_files += ['C:\Python27\Lib\site-packages\scipy\extra-dll\msvcr90.dll','C:\Python27\Lib\site-packages\scipy\extra-dll\msvcp90.dll','C:\Python27\Lib\site-packages\scipy\extra-dll\msvcm90.dll'] for f in matplotlibdata: dirname = os.path.join('matplotlibdata', f[len(matplotlibdatadir)+1:]) matplotlibdata_files.append((os.path.split(dirname)[0], [f])) windows=[{"script":_script,"icon_resources":[(1,_appIcon)]}] options={'py2exe': { "includes": 'lxml', 'includes': 'pysam', 'includes': 'TabProxies', 'includes': 'csamtools', 'includes': 'ctabix', 'includes': 'lxml.etree', 'includes': 'lxml._elementpath', "includes": 'matplotlib', "includes": 'mpl_toolkits', "includes": 'matplotlib.backends.backend_tkagg', "includes": 'mpl_toolkits.mplot3d', "includes": 'scipy._lib.messagestream', "includes": 'scipy.special._ufuncs_cxx', "includes": 'sklearn.neighbors.typedefs', "includes": 'sklearn.neighbors.ball_tree', "includes": 'sklearn.utils.lgamma', "includes": 'sklearn.linear_model.sgd_fast', "includes": 'scipy.special.cython_special', "includes": 'llvmlite.binding.ffi', "includes": 'numba.config', #'includes': 'sklearn.neighbors.typedefs', #'includes': 'sklearn.utils.lgamma', #"includes": 'sklearn.utils.sparsetools._graph_validation', #"includes": 'sklearn.utils.weight_vector', #"includes": 'sklearn.manifold', "dll_excludes": matplot_exclude+scipy_exclude, }} setup( #console = windows, windows = windows, options = options, version=_appVersion, description=_appDescription, author=_authorName, author_email=_authorEmail, url=_authorURL, data_files=matplotlibdata_files+data_files, ) if sys.platform.startswith("2linux"): # bb_setup.py from bbfreeze import Freezer f = Freezer(distdir="bb-binary") f.addScript("AltAnalyze.py") f() if sys.platform.startswith("2linux"): # bb_setup.py from bbfreeze import Freezer f = Freezer(distdir="bb-binary") f.addScript("AltAnalyze.py") f() if sys.platform.startswith("linux"): ### example command: python setup.py build includes = ['matplotlib','mpl_toolkits','matplotlib.backends.backend_tkagg'] includefiles = [] from cx_Freeze import setup, Executable ### use to get rid of library.zip and move into the executable, along with appendScriptToLibrary and appendScriptToExe #buildOptions = dict(create_shared_zip = False) setup( name = _appName, version=_appVersion, description=_appDescription, author=_authorName, author_email=_authorEmail, url=_authorURL, #options = dict(build_exe = buildOptions), options = {"build_exe": {"includes":includes, "include_files": includefiles}}, executables = [Executable(_script, #appendScriptToExe=True, #appendScriptToLibrary=False, #icon='goelite.ico', compress=True)], )
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/build_scripts/setup_binary.py
setup_binary.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies def importFPKMFile(input_file): added_key={} firstLine = True for line in open(input_file,'rU').xreadlines(): data = line.rstrip('\n') t = string.split(data,'\t') if firstLine: firstLine = False else: try: geneID= t[0]; symbol=t[4]; position=t[6]; fpkm = t[9] except Exception: geneID= t[0]; symbol=t[1]; position=t[2]; fpkm = t[4] if 'chr' not in position: position = 'chr'+position try: null=position_symbol_db[position] if len(symbol)>1: position_symbol_db[position].append(symbol) except Exception: position_symbol_db[position] = [symbol] try: null=position_gene_db[position] if '.' not in geneID: position_gene_db[position].append(geneID) except Exception: position_gene_db[position] = [geneID] if IDType == 'symbol': if symbol!= '-': geneID = symbol if IDType == 'position': geneID = position if getData: try: fpkm_db[geneID].append(fpkm) except Exception: fpkm_db[geneID] = [fpkm] added_key[geneID]=[] else: fpkm_db[geneID]=[] added_key[geneID]=[] for i in fpkm_db: if i not in added_key: fpkm_db[i].append('0.00') def getFiles(sub_dir,directories=True): dir_list = os.listdir(sub_dir); dir_list2 = [] for entry in dir_list: if directories: if '.' not in entry: dir_list2.append(entry) else: if '.' in entry: dir_list2.append(entry) return dir_list2 def combineCufflinks(root_dir,gene_type,id_type): global fpkm_db global headers global IDType; IDType = id_type global position_symbol_db; position_symbol_db={} global position_gene_db; position_gene_db={} global getData; getData=False fpkm_db={}; headers=['GeneID'] folders = getFiles(root_dir,True) for folder in folders: l1 = root_dir+'/'+folder """ files = getFiles(l1,False) for file in files: filename = l1+'/'+file if gene_type in file and '.gz' not in file: print filename importFPKMFile(filename) headers.append(folder) break break """ folders2 = getFiles(l1,True) for folder in folders2: l2 = l1+'/'+folder files = getFiles(l2,False) for file in files: filename = l2+'/'+file if gene_type in file and '.gz' not in file: print filename importFPKMFile(filename) headers.append(folder) for i in fpkm_db: fpkm_db[i]=[] getData=True headers=['UID'] if IDType == 'position': headers=['Position','GeneID','Symbol'] for folder in folders: l1 = root_dir+'/'+folder """ files = getFiles(l1,False) for file in files: filename = l1+'/'+file if gene_type in file and '.gz' not in file: print filename importFPKMFile(filename) headers.append(folder) break break """ folders2 = getFiles(l1,True) for folder in folders2: l2 = l1+'/'+folder files = getFiles(l2,False) for file in files: filename = l2+'/'+file if gene_type in file and '.gz' not in file: print filename importFPKMFile(filename) headers.append(folder) if IDType == 'position': for position in position_gene_db: gene = '-' #print position,position_gene_db[position] for i in position_gene_db[position]: if '.' not in i: gene = i position_gene_db[position] = gene #print position,position_gene_db[position],'\n' #print position,position_symbol_db[position] symbol = '-' for i in position_symbol_db[position]: if i != '-': symbol = i position_symbol_db[position] = symbol #print position,position_symbol_db[position] #print position_symbol_db[position] export_object = open(root_dir+'/'+gene_type+'-Cufflinks.txt','w') headers = string.join(headers,'\t')+'\n' export_object.write(headers) for geneID in fpkm_db: values = map(str,fpkm_db[geneID]) if IDType != 'position': values = string.join([geneID]+values,'\t')+'\n' else: values = string.join([geneID,position_gene_db[geneID],position_symbol_db[geneID]]+values,'\t')+'\n' export_object.write(values) export_object.close() def gunzipfiles(root_dir): import gzip import shutil; folders = getFiles(root_dir,True) for folder in folders: l1 = root_dir+'/'+folder files = getFiles(l1,False) for file in files: filename = l1+'/'+file if 'genes.fpkm_tracking' in filename: content = gzip.GzipFile(filename, 'rb') decompressed_filepath = string.replace(filename,'.gz','') data = open(decompressed_filepath,'wb') shutil.copyfileobj(content,data) if __name__ == '__main__': #gunzipfiles('/Users/saljh8/Downloads/6b_CUFFLINKS_output/');sys.exit() #combineCufflinks('/Users/saljh8/Downloads/6b_CUFFLINKS_output/');sys.exit() type = 'genes' id_type = 'position' ################ Comand-line arguments ################ import getopt options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','GeneType=', 'IDType=']) for opt, arg in options: if opt == '--i': input_dir=arg if opt == '--GeneType': type=arg if opt == '--IDType': id_type=arg combineCufflinks(input_dir,type,id_type)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/combineCufflinks.py
combineCufflinks.py
###cufflinks_import #Copyright 2005-2008 J. David Gladstone Institutes, San Francisco California #Author Nathan Salomonis - [email protected] #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import gzip import getopt def read_directory(sub_dir): dir_list = os.listdir(sub_dir) dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv": dir_list2.append(entry) return dir_list2 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def getFiles(sub_dir): dir_list = os.listdir(sub_dir) dir_list2 = [] ###Only get folder names for entry in dir_list: dir_list2.append(entry) return dir_list2 def zipDirectory(dir): #http://www.testingreflections.com/node/view/8173 import zipfile zip_file = dir+'.zip' p = string.split(dir,'/'); top=p[-1] zip = zipfile.ZipFile(zip_file, 'w', compression=zipfile.ZIP_DEFLATED) root_len = len(os.path.abspath(dir)) for root, dirs, files in os.walk(dir): archive_root = os.path.abspath(root)[root_len:] for f in files: fullpath = os.path.join(root, f) archive_name = os.path.join(top+archive_root, f) zip.write(fullpath, archive_name, zipfile.ZIP_DEFLATED) zip.close() return zip_file def unzipFiles(filename,dir): import zipfile output_filepath = dir+filename try: zfile = zipfile.ZipFile(output_filepath) for name in zfile.namelist(): if name.endswith('/'):null=[] ### Don't need to export else: try: outfile = open(dir+name,'w') except Exception: outfile = open(dir+name[1:],'w') outfile.write(zfile.read(name)); outfile.close() #print 'Zip extracted to:',output_filepath status = 'completed' except Exception, e: try: ### Use the operating system's unzip if all else fails extracted_path = string.replace(output_filepath,'.zip','') try: os.remove(extracted_path) ### This is necessary, otherwise the empty file created above will require user authorization to delete except Exception: null=[] subprocessUnzip(dir,output_filepath) status = 'completed' except IOError: print e print 'WARNING!!!! The zip file',output_filepath,'does not appear to be a valid zip archive file or is currupt.' status = 'failed' return status def gunzip(): import gzip; content = gzip.GzipFile(gz_filepath, 'rb') data = open(decompressed_filepath,'wb') import shutil; shutil.copyfileobj(content,data) def importCufflinksDir(directory): root_dir_files = getFiles(directory) global sample_FPKM_db sample_FPKM_db={} for sample in root_dir_files: ### if 'fpkm_tracking' in sample: x_db,transcript_db = readFPKMs(directory+'/'+sample) sample_FPKM_db.update(x_db) ### Below occurs if it is a directory of FPKM results with the folder name as the sample try: files = getFiles(directory+'/'+sample) for file in files: if 'fpkm_tracking' in file: x_db,transcript_db = readFPKMs(directory+'/'+sample+'/'+file) sample_FPKM_db.update(x_db) except Exception: pass ### Get the samples samples = sample_FPKM_db.keys() samples.sort() ### Get the transcripts gene_fpkm_db={} for sample in samples: fpkm_db = sample_FPKM_db[sample] for gene in fpkm_db: fpkm = fpkm_db[gene] try: gene_fpkm_db[gene].append(fpkm) except Exception: gene_fpkm_db[gene] = [fpkm] export_object = open(directory+'/Cufflinks.txt','w') headers = string.join(['UID']+samples,'\t')+'\n' export_object.write(headers) for geneID in gene_fpkm_db: values = map(str,gene_fpkm_db[geneID]) values = string.join([geneID]+values,'\t')+'\n' export_object.write(values) export_object.close() def findFilename(filename): filename = string.replace(filename,'//','/') filename = string.replace(filename,'//','/') ### If /// present filename = string.replace(filename,'\\','/') x = string.find(filename[::-1],'/')*-1 ### get just the parent directory return filename[x:] def readFPKMs(path): if '.gz' in path: f=gzip.open(path,'rb') else: f=open(path,"rU") file_content=f.read() fpkm_data = string.split(file_content,'\n') sample = findFilename(path) if 'fpkm_tracking' in sample: sample = string.split(sample,'.fpkm_tracking')[0] sample = string.replace(sample,'.sorted.genes','') fpkm_db={} transcript_db={} firstLine=True row_count=0 for line in fpkm_data: data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: try: track_i = t.index('tracking_id') gene_i = t.index('gene_id') fpkm_i = t.index('FPKM') except Exception: fpkm_i = 9 gene_i = 3 row_count = 1 firstLine = False if firstLine == False and row_count>0: if len(t)>1: geneID = t[gene_i] transcriptID = t[gene_i] fpkm = t[fpkm_i] fpkm_db[transcriptID] = float(fpkm) transcript_db[transcriptID] = geneID row_count+=1 sample_FPKM_db[sample] = fpkm_db return sample_FPKM_db,transcript_db if __name__ == "__main__": ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a directory of fpkm_tracking file as input in the command-line" print "Example: python cufflinks_import.py --i /Users/cufflinks/" sys.exit() else: Species = None options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','species=']) for opt, arg in options: if opt == '--i': dir=arg ### full path of a BAM file elif opt == '--species': Species=arg ### full path of a BAM file else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() try: importCufflinksDir(dir) except ZeroDivisionError: print [sys.argv[1:]],'error'; error
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/cufflinks_import.py
cufflinks_import.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This script can be run on its own to extract a single BAM file at a time or indirectly by multiBAMtoBED.py to extract junction.bed files (Tophat format) from many BAM files in a single directory at once. Currently uses the Tophat predicted Strand notation opt('XS') for each read. This can be substituted with strand notations from other aligners (check with the software authors). This code is compatible with psyam or bamnostic, but is 77x faster with pysam (12 seconds versus 927 seconds). """ import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import bamnostic as pysam import copy,getopt import time import traceback try: import export except Exception: pass try: import unique except Exception: pass def getSpliceSites(cigarList,X): cummulative=0 coordinates=[] for (code,seqlen) in cigarList: if code == 0: cummulative+=seqlen if code == 3: #if strand == '-': five_prime_ss = str(X+cummulative) cummulative+=seqlen ### add the intron length three_prime_ss = str(X+cummulative+1) ### 3' exon start (prior exon splice-site + intron length) coordinates.append([five_prime_ss,three_prime_ss]) up_to_intron_dist = cummulative return coordinates, up_to_intron_dist def writeJunctionBedFile(junction_db,jid,o): strandStatus = True for (chr,jc,tophat_strand) in junction_db: if tophat_strand==None: strandStatus = False break if strandStatus== False: ### If no strand information in the bam file filter and add known strand data junction_db2={} for (chr,jc,tophat_strand) in junction_db: original_chr = chr if 'chr' not in chr: chr = 'chr'+chr for j in jc: try: strand = splicesite_db[chr,j] junction_db2[(original_chr,jc,strand)]=junction_db[(original_chr,jc,tophat_strand)] except Exception: pass junction_db = junction_db2 for (chr,jc,tophat_strand) in junction_db: x_ls=[]; y_ls=[]; dist_ls=[] read_count = str(len(junction_db[(chr,jc,tophat_strand)])) for (X,Y,dist) in junction_db[(chr,jc,tophat_strand)]: x_ls.append(X); y_ls.append(Y); dist_ls.append(dist) outlier_start = min(x_ls); outlier_end = max(y_ls); dist = str(max(dist_ls)) exon_lengths = outlier_start exon_lengths = str(int(jc[0])-outlier_start)+','+str(outlier_end-int(jc[1])+1) junction_id = 'JUNC'+str(jid)+':'+jc[0]+'-'+jc[1] ### store the unique junction coordinates in the name output_list = [chr,str(outlier_start),str(outlier_end),junction_id,read_count,tophat_strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] o.write(string.join(output_list,'\t')+'\n') def writeIsoformFile(isoform_junctions,o): for coord in isoform_junctions: isoform_junctions[coord] = unique.unique(isoform_junctions[coord]) if '+' in coord: print coord, isoform_junctions[coord] if '+' in coord: sys.exit() def verifyFileLength(filename): count = 0 try: fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): count+=1 if count>9: break except Exception: null=[] return count def retreiveAllKnownSpliceSites(returnExonRetention=False,DesignatedSpecies=None,path=None): ### Uses a priori strand information when none present import export, unique chromosomes_found={} try: parent_dir = export.findParentDir(bam_file) except Exception: parent_dir = export.findParentDir(path) species = None for file in os.listdir(parent_dir): if 'AltAnalyze_report' in file and '.log' in file: log_file = unique.filepath(parent_dir+'/'+file) log_contents = open(log_file, "rU") species_tag = ' species: ' for line in log_contents: line = line.rstrip() if species_tag in line: species = string.split(line,species_tag)[1] if species == None: try: species = IndicatedSpecies except Exception: species = DesignatedSpecies splicesite_db={} gene_coord_db={} try: if ExonReference==None: exon_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' length = verifyFileLength(exon_dir) except Exception: #print traceback.format_exc();sys.exit() length = 0 if length==0: exon_dir = ExonReference refExonCoordinateFile = unique.filepath(exon_dir) firstLine=True for line in open(refExonCoordinateFile,'rU').xreadlines(): if firstLine: firstLine=False else: line = line.rstrip('\n') t = string.split(line,'\t'); #'gene', 'exon-id', 'chromosome', 'strand', 'exon-region-start(s)', 'exon-region-stop(s)', 'constitutive_call', 'ens_exon_ids', 'splice_events', 'splice_junctions' geneID, exon, chr, strand, start, stop = t[:6] spliceEvent = t[-2] #start = int(start); stop = int(stop) #geneID = string.split(exon,':')[0] try: gene_coord_db[geneID,chr].append(int(start)) gene_coord_db[geneID,chr].append(int(stop)) except Exception: gene_coord_db[geneID,chr] = [int(start)] gene_coord_db[geneID,chr].append(int(stop)) if returnExonRetention: if 'exclusion' in spliceEvent or 'exclusion' in spliceEvent: splicesite_db[geneID+':'+exon]=[] else: splicesite_db[chr,start]=strand splicesite_db[chr,stop]=strand if len(chr)<5 or ('GL0' not in chr and 'GL' not in chr and 'JH' not in chr and 'MG' not in chr): chromosomes_found[string.replace(chr,'chr','')] = [] for i in gene_coord_db: gene_coord_db[i].sort() gene_coord_db[i] = [gene_coord_db[i][0],gene_coord_db[i][-1]] return splicesite_db,chromosomes_found,gene_coord_db def exportIndexes(input_dir): import unique bam_dirs = unique.read_directory(input_dir) print 'Building BAM index files', for file in bam_dirs: if string.lower(file[-4:]) == '.bam': bam_dir = input_dir+'/'+file bamf = pysam.AlignmentFile(bam_dir, "rb" ) ### Is there an indexed .bai for the BAM? Check. try: for entry in bamf.fetch(): codes = map(lambda x: x[0],entry.cigar) break except Exception: ### Make BAM Indexv lciv9df8scivx print '.', bam_dir = str(bam_dir) #On Windows, this indexing step will fail if the __init__ pysam file line 51 is not set to - catch_stdout = False pysam.index(bam_dir) def parseJunctionEntries(bam_dir,multi=False, Species=None, ReferenceDir=None): global bam_file global splicesite_db global IndicatedSpecies global ExonReference IndicatedSpecies = Species ExonReference = ReferenceDir bam_file = bam_dir try: splicesite_db,chromosomes_found, gene_coord_db = retreiveAllKnownSpliceSites() except Exception: print traceback.format_exc() splicesite_db={}; chromosomes_found={} start = time.time() try: import collections; junction_db=collections.OrderedDict() except Exception: try: import ordereddict; junction_db = ordereddict.OrderedDict() except Exception: junction_db={} original_junction_db = copy.deepcopy(junction_db) bam_index = os.path.isfile(bam_dir+'.bai') if bam_index==False: if multi == False: print 'Building BAM index file for', bam_dir from pysam import index index(bam_dir) bamf = pysam.AlignmentFile(bam_dir, "rb" ) chromosome = False chromosomes={} bam_reads=0 count=0 jid = 1 prior_jc_start=0 l1 = None; l2=None o = open (string.replace(bam_dir,'.bam','__junction.bed'),"w") o.write('track name=junctions description="TopHat junctions"\n') export_isoform_models = False if export_isoform_models: io = open (string.replace(bam_dir,'.bam','__isoforms.txt'),"w") isoform_junctions = copy.deepcopy(junction_db) outlier_start = 0; outlier_end = 0; read_count = 0; c=0 for entry in bamf: bam_reads+=1 cigarstring = entry.cigarstring if cigarstring != None: if 'N' in cigarstring: ### Hence a junction if prior_jc_start == 0: pass elif (entry.pos-prior_jc_start) > 5000 or entry.reference_name != chromosome: ### New chr or far from prior reads writeJunctionBedFile(junction_db,jid,o) #writeIsoformFile(isoform_junctions,io) junction_db = copy.deepcopy(original_junction_db) ### Re-set this object jid+=1 chromosome = entry.reference_name chromosomes[chromosome]=[] ### keep track X=entry.reference_start #if entry.query_name == 'SRR791044.33673569': #print chromosome, entry.pos, entry.reference_length, entry.alen, entry.query_name Y=entry.reference_start+entry.reference_length prior_jc_start = X try: tophat_strand = entry.get_tag('XS') ### TopHat knows which sequences are likely real splice sites so it assigns a real strand to the read except Exception: #if multi == False: print 'No TopHat strand information';sys.exit() tophat_strand = None coordinates,up_to_intron_dist = getSpliceSites(entry.cigar,X) #if count > 100: sys.exit() #print entry.query_name,X, Y, entry.cigarstring, entry.cigar, tophat_strand for (five_prime_ss,three_prime_ss) in coordinates: jc = five_prime_ss,three_prime_ss #print X, Y, jc, entry.cigarstring, entry.cigar try: junction_db[chromosome,jc,tophat_strand].append([X,Y,up_to_intron_dist]) except Exception: junction_db[chromosome,jc,tophat_strand] = [[X,Y,up_to_intron_dist]] if export_isoform_models: try: mate = bamf.mate(entry) #https://groups.google.com/forum/#!topic/pysam-user-group/9HM6nx_f2CI if 'N' in mate.cigarstring: mate_coordinates,mate_up_to_intron_dist = getSpliceSites(mate.cigar,mate.pos) else: mate_coordinates=[] except Exception: mate_coordinates=[] #print coordinates,mate_coordinates junctions = map(lambda x: tuple(x),coordinates) if len(mate_coordinates)>0: try: isoform_junctions[chromosome,tuple(junctions),tophat_strand].append(mate_coordinates) except Exception: isoform_junctions[chromosome,tuple(junctions),tophat_strand] = [mate_coordinates] else: if (chromosome,tuple(junctions),tophat_strand) not in isoform_junctions: isoform_junctions[chromosome,tuple(junctions),tophat_strand] = [] count+=1 writeJunctionBedFile(junction_db,jid,o) ### One last read-out if multi == False: print bam_reads, count, time.time()-start, 'seconds required to parse the BAM file' o.close() bamf.close() missing_chromosomes=[] for chr in chromosomes_found: if chr not in chromosomes: chr = string.replace(chr,'chr','') if chr not in chromosomes_found: if chr != 'M' and chr != 'MT': missing_chromosomes.append(chr) #missing_chromosomes = ['A','B','C','D'] try: bam_file = export.findFilename(bam_file) except Exception: pass return bam_file, missing_chromosomes if __name__ == "__main__": ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a BAM file as input in the command-line" print "Example: python BAMtoJunctionBED.py --i /Users/me/sample1.bam" sys.exit() else: Species = None reference_dir = None options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','species=','r=']) for opt, arg in options: if opt == '--i': bam_dir=arg ### full path of a BAM file elif opt == '--species': Species=arg ### species for STAR analysis to get strand elif opt == '--r': reference_dir=arg ### An exon.bed reference file (created by AltAnalyze from junctions, multiBAMtoBED.py or other) - required for STAR to get strand if XS field is empty else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() try: parseJunctionEntries(bam_dir,Species=Species,ReferenceDir=reference_dir) except ZeroDivisionError: print [sys.argv[1:]],'error'; error """ Benchmarking notes: On a 2017 MacBook Pro with 16GB of RAM and a local 7GB BAM file (solid drive), 9 minutes (526s) to complete writing a junction.bed. To simply search through the file without looking at the CIGAR, the script takes close to 5 minutes (303s)"""
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/BAMtoJunctionBED_alt.py
BAMtoJunctionBED_alt.py
import sys, string import os.path import unique import copy import time import math import export from xlrd import open_workbook import traceback sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies """ Methods for reading Excel files """ def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def makeUnique(item): db1={}; list1=[]; k=0 for i in item: try: db1[i]=[] except TypeError: db1[tuple(i)]=[]; k=1 for i in db1: if k==0: list1.append(i) else: list1.append(list(i)) list1.sort() return list1 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def importExcelFile(filename, column=False, top=None): """ Iterate through each tab to get relevant data """ from xlrd import open_workbook worksheet_data={} results = False wb = open_workbook(filename) for s in wb.sheets(): worksheet = s.name rows=[] count=0 for row in range(s.nrows): count+=1 values = [] if column!=False: ### Return results from a single designated column number if top!=None: if count>top: continue try: values.append(str(s.cell(row,column-1).value)) except Exception: pass else: for col in range(s.ncols): if top!=None: if count>top: continue try: values.append(str(s.cell(row,col).value)) except Exception: pass rows.append(values) worksheet_data[worksheet]=rows return worksheet_data def processWorksheetMarkers(worksheet_data): """ Compile the ID to category results """"" compiled_results=[] for worksheet in worksheet_data: firstRow=True for value in worksheet_data[worksheet]: if firstRow: category = value firstRow = False else: compiled_results.append([category,value]) return compiled_results def exportCompiledResults(output,compiled_results): export_object = open(output,'w') for (category,value) in compiled_results: try: export_object.write(category[0]+'\t'+value[0]+'\n') except: pass export_object.close() def computeSignEnrichmentScore(reference,query,useMaxLength=False,randomize=False): """ Given the total number of features in the reference signature and the total in the compared query (e.g., folds, dPSI values), compare the sign of the feature in the reference and query to compute an enrichment score """ ref_len = len(reference) query_len = len(query) downScore = 0 upScore = 0 for feature in query: if feature in reference: ref_sign = reference[feature] if randomize: signs = ['-','+'] query_sign = random.shuffle(signs)[0] else: query_sign = query[feature] if ref_sign == '-': if query_sign == '-': downScore+=1 else: downScore-=1 elif ref_sign == '+': if query_sign == '+': upScore+=1 else: upScore-=1 if useMaxLength: ref_len = max(ref_len,query_len) upScore = upScore/(ref_len*1.000) downScore = downScore/(ref_len*1.000) Score1 = (upScore+downScore)*0.5 if Score1>0: sign = 1 else: sign = -1 Score1T = sign* math.log(1+(100*abs(Score1)),10) return Score1T def computeSignPval(score_db,random_db): from scipy.stats import norm stats_db = {} for (ref,query) in score_db: Score1T = score_db[(ref,query)] RScore_stdev = numpy.std(random_db[(ref,query)]) z = (Score1T)/RScore_stdev p = 2* (1-norm.cdf(z)) stats_db[ref,query] = z,p return stats_db if __name__ == '__main__': import getopt top = None ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Insufficient command line flags supplied." sys.exit() else: options, remainder = getopt.getopt(sys.argv[1:],'', ['xls=','i=','column=','output=','o=','top=']) for opt, arg in options: if opt == '--xls' or opt == '--i': xls=arg if opt == '--output' or opt == '--o': output=arg if opt == '--top': top=int(arg) if opt == '--column': try: column = int(arg) except: column = arg worksheet_data = importExcelFile(xls,column=column,top=top) compiled_results = processWorksheetMarkers(worksheet_data) exportCompiledResults(output,compiled_results)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/ReadXLS.py
ReadXLS.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import itertools dirfile = unique ############ File Import Functions ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def returnDirectories(sub_dir): dir_list = unique.returnDirectories(sub_dir) return dir_list class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if '.' in data: all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term not in data_dir and '.' in data: matches.append(data_dir) return matches def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def combineAllLists(files_to_merge,original_filename,includeColumns=False): headers =[]; all_keys={}; dataset_data={}; files=[]; filter_keys={} for filename in files_to_merge: print filename duplicates=[] fn=filepath(filename); x=0; combined_data ={}; files.append(filename) if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] if includeColumns==False: headers.append(file) #for i in t: headers.append(i+'.'+file); #headers.append(i) else: headers.append(t[includeColumns]+'.'+file) else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] try: key = t[0]+':'+t[1]+' '+t[3]+'|'+t[5]; t = [key,t[2]] except Exception: print key;sys.exit() if includeColumns==False: try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill else: values = [t[includeColumns]] #key = string.replace(key,' ','') if len(key)>0 and key != ' ' and key not in combined_data: ### When the same key is present in the same dataset more than once try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 v = float(values[0]) if permform_all_pairwise == 'yes': try: combined_data[key].append(values); duplicates.append(key) except Exception: combined_data[key] = [values] else: combined_data[key] = values if float(t[1])>0.15: filter_keys[key]=[] #print duplicates dataset_data[filename] = combined_data for i in dataset_data: print len(dataset_data[i]), i print 'filter_keys',len(filter_keys) ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key][0]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: if key in filter_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values if permform_all_pairwise == 'yes': values = [null_values] if permform_all_pairwise == 'yes': try: val_list = combined_file_data[key] val_list.append(values) combined_file_data[key] = val_list except KeyError: combined_file_data[key] = [values] else: try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedVariants.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] if permform_all_pairwise == 'yes': results = getAllListCombinations(combined_file_data[key]) for result in results: merged=[] for i in result: merged+=i merged2 = map(float,merged) if max(merged2)>1: merged=[] max_val = max(merged2) for i in merged2: try: i = i/max_val except Exception: pass merged.append(str(i)) values = string.join([key]+merged,'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join else: try: values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join except Exception: print combined_file_data[key];sys.exit() data.close() print "exported",len(dataset_data),"to",export_file def customLSDeepCopy(ls): ls2=[] for i in ls: ls2.append(i) return ls2 def getAllListCombinationsLong(a): ls1 = ['a1','a2','a3'] ls2 = ['b1','b2','b3'] ls3 = ['c1','c2','c3'] ls = ls1,ls2,ls3 list_len_db={} for ls in a: list_len_db[len(x)]=[] print len(list_len_db), list_len_db;sys.exit() if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r+=i else: #http://code.activestate.com/recipes/496807-list-of-all-combination-from-multiple-lists/ r=[[]] for x in a: t = [] for y in x: for i in r: t.append(i+[y]) r = t return r def combineUniqueAllLists(files_to_merge,original_filename): headers =[]; all_keys={}; dataset_data={}; files=[] for filename in files_to_merge: print filename fn=filepath(filename); x=0; combined_data ={}; files.append(filename) if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] for i in t: headers.append(i+'.'+file) if x==0: if data[0]!='#': x=1; headers+=t[1:] ###Occurs for the header line headers+=['null'] else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill #key = string.replace(key,' ','') combined_data[key] = values if len(key)>0 and key != ' ': try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 dataset_data[filename] = combined_data ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join data.close() print "exported",len(dataset_data),"to",export_file def getAllListCombinations(a): #http://www.saltycrane.com/blog/2011/11/find-all-combinations-set-lists-itertoolsproduct/ """ Nice code to get all combinations of lists like in the above example, where each element from each list is represented only once """ list_len_db={} for x in a: list_len_db[len(x)]=[] if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r.append(i[0]) return [r] else: return list(itertools.product(*a)) def joinFiles(files_to_merge,CombineType,unique_join,outputDir): """ Join multiple files into a single output file """ global combine_type global permform_all_pairwise global output_dir output_dir = outputDir combine_type = string.lower(CombineType) permform_all_pairwise = 'yes' print 'combine type:',combine_type print 'join type:', unique_join #g = GrabFiles(); g.setdirectory(import_dir) #files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if unique_join: combineUniqueAllLists(files_to_merge,'') else: combineAllLists(files_to_merge,'') return output_dir+'/MergedFiles.txt' if __name__ == '__main__': dirfile = unique includeColumns=-2 includeColumns = False output_dir = filepath('output') combine_type = 'union' permform_all_pairwise = 'yes' print "Analysis Mode:" print "1) Batch Analysis" print "2) Single Output" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": batch_mode = 'yes' elif inp == "2": batch_mode = 'no' print "Combine Lists Using:" print "1) Grab Union" print "2) Grab Intersection" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": combine_type = 'union' elif inp == "2": combine_type = 'intersection' if batch_mode == 'yes': import_dir = '/batch/general_input' else: import_dir = '/input' g = GrabFiles(); g.setdirectory(import_dir) files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if batch_mode == 'yes': second_import_dir = '/batch/primary_input' g = GrabFiles(); g.setdirectory(second_import_dir) files_to_merge2 = g.searchdirectory('xyz') ###made this a term to excluded for file in files_to_merge2: temp_files_to_merge = customLSDeepCopy(files_to_merge) original_filename = string.split(file,'/'); original_filename = original_filename[-1] temp_files_to_merge.append(file) if '.' in file: combineAllLists(temp_files_to_merge,original_filename) else: combineAllLists(files_to_merge,'',includeColumns=includeColumns) print "Finished combining lists. Select return/enter to exit"; inp = sys.stdin.readline()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/mergeFilesVariant.py
mergeFilesVariant.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import time import export def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) #add in code to prevent folder names from being included dir_list2 = [] for file in dir_list: if '.txt' in file: dir_list2.append(file) return dir_list2 ################# Begin Analysis def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def importAnnotations(filename): firstLine = True fn = filepath(filename) rows = 0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); tab_delimited_data = string.split(data,'\t') if rows > 10: sys.exit() print tab_delimited_data#;sys.exit() rows+=1 def correlateMethylationData(filename,betaLow=0.4,betaHigh=0.6,counts=-1): ### Takes a filtered pre-processed beta-value file as input firstLine = True rows=0; filtered=0 for line in open(filename,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') if firstLine: header = t if len(t)>5 and 'Illumina_name' in header: delimiter = -50 annot_export_object.write(string.join([t[0]]+t[delimiter:],'\t')+'\n') else: delimiter = len(header) headers = t[1:delimiter] firstLine = False export_object.write(string.join([t[0]]+headers,'\t')+'\n') else: probeID = t[0] #try: beta_values = map(float,t[1:50]) beta_values = map(lambda x: conFloat(x,t[1:delimiter]),t[1:delimiter]) if '' in beta_values: print beta_values;sys.exit() high = sum(betaHighCount(x,betaHigh) for x in beta_values) low = sum(betaLowCount(x,betaLow) for x in beta_values) def importMethylationData(filename,betaLow=0.4,betaHigh=0.6,counts=-1, filter=None): annot_file = filepath('AltDatabase/ucsc/Hs/Illumina_methylation_genes.txt') export_object = open(filename[:-4]+'-filtered.txt','w') print filename[:-4]+'-filtered.txt', counts firstLine = True rows=0; filtered=0 for line in open(filename,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') #export_object.write(string.join(t,'\t')+'\n') #""" if firstLine: header = t if len(t)>5 and 'Illumina_name' in header: delimiter = -50 annot_export_object = open(annot_file,'w') annot_export_object.write(string.join([t[0]]+t[delimiter:],'\t')+'\n') else: delimiter = len(header) headers = t[1:delimiter] firstLine = False export_object.write(string.join([t[0]]+headers,'\t')+'\n') else: probeID = t[0] #try: beta_values = map(float,t[1:50]) beta_values = map(lambda x: conFloat(x,t[1:delimiter]),t[1:delimiter]) if '' in beta_values: print beta_values;sys.exit() high = sum(betaHighCount(x,betaHigh) for x in beta_values) low = sum(betaLowCount(x,betaLow) for x in beta_values) #if rows<50: print high, low, max(beta_values), min(beta_values) #else:sys.exit() #export_object.write(string.join(t[:delimiter])+'\n') if high>=counts and low>=counts: #if (high-low) > 0.2: #if rows<50: print 1 if filter!=None: if probeID in filter: proceed=True; probeID = str(filter[probeID])+':'+probeID else: proceed = False else: proceed = True if proceed: filtered+=1 export_object.write(string.join([probeID]+map(str,beta_values),'\t')+'\n') if 'Illumina_name' in header: annot_export_object.write(string.join([t[0]]+t[delimiter:],'\t')+'\n') rows+=1 #""" export_object.close() if delimiter == '-50': annot_export_object.close() print filtered, rows def conFloat(x,betaValues): try: x = float(x) except Exception: x=None if x== None or x == 0: floats=[] for i in betaValues: if i=='': pass elif float(i)==0: pass else: floats.append(float(i)) try: return min(floats) except Exception: print betaValues;sys.exit() else: return x def betaHighCount(x,betaHigh): if x>betaHigh: return 1 else: return 0 def betaLowCount(x,betaLow): if x<betaLow: return 1 else: return 0 def getIDsFromFile(filename): filterIDs = {} fn = filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') filterIDs[string.lower(t[0])]=[] return filterIDs def getRegionType(filename,featureType=None,chromosome=None,filterIDs=None): if filterIDs !=None: filterIDs = getIDsFromFile(filterIDs) firstLine = True fn = filepath(filename) count=0; filter_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,',') if firstLine: if len(t[2]) >0: header = t firstLine=False chr_ind = header.index('CHR') pos_ind = header.index('Coordinate_36') tss_ind = header.index('UCSC_RefGene_Group') gene_name = header.index('UCSC_RefGene_Name') else: probeID = t[0] count+=1 try: gene_names = string.split(t[gene_name],';') except Exception: gene_names = [] try: if chromosome != None: if t[chr_ind] == chromosome: if filterIDs !=None: for gene in gene_names: if string.lower(gene) in filterIDs: filter_db[probeID]=t[pos_ind] else: filter_db[probeID]=t[pos_ind] if 'promoter' in string.lower(featureType): if 'TSS' in t[tss_ind]: if filterIDs !=None: for gene in gene_names: if string.lower(gene) in filterIDs: filter_db[probeID]=t[pos_ind] else: filter_db[probeID]=t[pos_ind] if 'mir' in string.lower(featureType) or 'micro' in string.lower(featureType): if 'mir' in string.lower(t[gene_name]) or 'let' in string.lower(t[gene_name]): if filterIDs !=None: for gene in gene_names: if string.lower(gene) in filterIDs: filter_db[probeID]=t[pos_ind] else: filter_db[probeID]=t[pos_ind] if filterIDs !=None: for gene in gene_names: if string.lower(gene) in filterIDs: filter_db[probeID]=t[pos_ind] except Exception: pass print len(filter_db), 'probes remaining' return filter_db if __name__ == '__main__': import getopt featureType = 'promoter' featureType = 'all' Species = 'Hs' filter_db=None chromosome=None numRegulated = -1 analysis = 'filter' filterIDs = None ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a methylation beta-value file as input in the command-line" print "Example: python methylation.py --i /Users/me/sample1.txt --g /Users/me/human.gtf" sys.exit() else: analysisType = [] useMultiProcessing=False options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','a=','t=','r=','c=','f=']) for opt, arg in options: if opt == '--i': input_file=arg elif opt == '--a': analysis=arg elif opt == '--t': featureType=arg elif opt == '--r': numRegulated=int(arg) elif opt == '--c': chromosome=arg elif opt == '--f': filterIDs=arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() if analysis == 'filter': filename = 'AltDatabase/ucsc/Hs/wgEncodeHaibMethyl450CpgIslandDetails.txt' #input_file = '/Volumes/SEQ-DATA/PCBC/Methylation/Methylome70allBValues_aronowAnnotations.txt' if featureType!= 'all' or chromosome != None or filterIDs!=None: filter_db = getRegionType(filename,featureType=featureType,chromosome=chromosome,filterIDs=filterIDs) importMethylationData(input_file,filter = filter_db,counts=numRegulated); sys.exit() #importAnnotations(methylation_file);sys.exit() if analysis == 'correlate': ### Performs all pairwise correlations between probes corresponding to a gene correlateMethylationData(input_file)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/methylation.py
methylation.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path from stats_scripts import statistics import unique import export dirfile = unique def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) #add in code to prevent folder names from being included dir_list2 = [] for entry in dir_list: #if entry[-4:] == ".txt" or entry[-4:] == ".all" or entry[-5:] == ".data" or entry[-3:] == ".fa": dir_list2.append(entry) return dir_list2 def returnDirectories(sub_dir): dir=os.path.dirname(dirfile.__file__) dir_list = os.listdir(dir + sub_dir) ###Below code used to prevent FILE names from being included dir_list2 = [] for entry in dir_list: if "." not in entry: dir_list2.append(entry) return dir_list2 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term not in data_dir: matches.append(data_dir) return matches ############ Result Export Functions ############# def outputSummaryResults(summary_results_db,name,analysis_method,root_dir): #summary_results_db[dataset_name] = udI,udI-up_diff,ddI,ddI-down_diff,udI_mx,udI_mx-mx_diff,up_dI_genes,down_gene, annotation_list annotation_db = {} for dataset in summary_results_db: for entry in summary_results_db[dataset][-1]: annotation = entry[0] count = entry[1] if 'AA:' not in annotation: try: annotation_db[annotation].append((dataset,count)) except KeyError: annotation_db[annotation] = [(dataset,count)] annotation_ls = [] for annotation in annotation_db: annotation_ls.append(annotation) annotation_ls.sort() annotation_db2={} for annotation in annotation_ls: for dataset in summary_results_db: y=0 for entry in summary_results_db[dataset][-1]: annotation2 = entry[0] count = entry[1] if annotation2 == annotation: y=1; new_count = count if y == 1: try: annotation_db2[dataset].append((annotation,new_count)) except KeyError: annotation_db2[dataset] = [(annotation,new_count)] else: try: annotation_db2[dataset].append((annotation,0)) except KeyError: annotation_db2[dataset] = [(annotation,0)] summary_output = root_dir+'AltResults/AlternativeOutput/'+analysis_method+'-summary-results'+name+'.txt' fn=filepath(summary_output) data = export.createExportFile(summary_output,'AltResults/AlternativeOutput') if analysis_method == 'splicing-index' or analysis_method == 'FIRMA': event_type1 = 'inclusion-events'; event_type2 = 'exclusion-events'; event_type3 = 'alternative-exons' else: event_type1 = 'inclusion-events'; event_type2 = 'exclusion-events'; event_type3 = 'mutually-exlusive-events' title = 'Dataset-name' +'\t'+ event_type1+'\t'+event_type2 +'\t'+ event_type3 +'\t'+ 'up-deltaI-genes' +'\t'+ 'down-deltaI-genes' +'\t'+ 'total-'+analysis_method+'-genes' title = title +'\t' + 'upregulated_genes' +'\t'+ 'downregulated_genes' +'\t'+ analysis_method+'-genes-differentially-exp'+'\t'+ 'RNA_processing/binding-factors-upregulated' +'\t'+ 'RNA_processing/binding-factors-downregulated' +'\t'+ analysis_method+'_RNA_processing/binding-factors' title = title +'\t'+ 'avg-downregulated-peptide-length' +'\t'+ 'std-downregulated-peptide-length' +'\t'+ 'avg-upregulated-peptide-length' +'\t'+ 'std-upregulated-peptide-length' +'\t'+ 'ttest-peptide-length' +'\t'+ 'median-peptide-length-fold-change' for entry in annotation_ls: title = title +'\t'+ entry data.write(title+'\n') for dataset in summary_results_db: values = dataset for entry in summary_results_db[dataset][0:-1]: values = values +'\t'+ str(entry) if dataset in annotation_db2: for entry in annotation_db2[dataset]: values = values +'\t'+ str(entry[1]) data.write(values+'\n') data.close() def compareAltAnalyzeResults(aspire_output_list,annotate_db,number_events_analyzed,analyzing_genes,analysis_method,array_type,root_dir): aspire_gene_db = {}; aspire_event_db = {}; event_annotation_db = {}; dataset_name_list = [] #annotate_db[affygene] = name, symbol,ll_id,splicing_annotation include_all_other_genes = 'yes' for filename in aspire_output_list: x = 0 fn=filepath(filename) if '\\' in filename: names = string.split(filename,'\\') #grab file name else: names = string.split(filename,'/') try: names = string.split(names[-1],'-'+analysis_method) except ValueError: print names;kill name = names[0] dataset_name_list.append(name) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) data = string.split(data,'\t') #remove endline y = 0 if x == 0: x=1 else: if analyzing_genes == 'no': if (array_type == 'exon' or array_type == 'gene') and analysis_method in filename: lowest_pvalue = float(data[8]); try: si_p = float(data[20]) except Exception: si_p = 1 try: midas_p = float(data[9]) except ValueError: midas_p = 0 #print si_p,midas_p;kill #if lowest_pvalue < 0.05: y = 1 affygene = data[0]; dI = float(data[1]) symbol = data[2]; description = data[3] exon_set1 = data[4]; exon_set2 = '' event_call = data[27]; functional_attribute = data[14] uniprot_attribute = data[15]; gene_expression_change = data[22] dI = dI*(-1) elif analysis_method in filename: y = 1 affygene = data[0]; dI = float(data[1]) symbol = data[2]; description = data[3] exon_set1 = data[4]+'('+data[8]+')'; exon_set2 = data[5]+'('+data[10]+')' event_call = data[27]; functional_attribute = data[14] uniprot_attribute = data[15]; gene_expression_change = data[22] if analysis_method == 'linearregres' or analysis_method == 'ASPIRE': functional_attribute = data[19]; uniprot_attribute = data[20] #print exon_set1, exon_set2, data[:5];kill else: if (array_type == 'exon' or array_type == 'gene') and analysis_method in filename: y = 1 affygene = data[0]; dI = float(data[1]) symbol = data[3]; description = data[5] dI_direction = data[6]; locus_link = affygene exon_set1 = ''; exon_set2 = '' event_call = data[-4]; functional_attribute = data[-9] uniprot_attribute = data[-8]; gene_expression_change = data[-5] if dI_direction == 'upregulated': dI = dI*(-1) elif analysis_method in filename: y = 1 affygene = data[0]; dI = float(data[1]) symbol = data[3]; description = data[5] dI_direction = data[6]; locus_link = data[4] exon_set1 = ''; exon_set2 = '' event_call = data[-4]; functional_attribute = data[-9] uniprot_attribute = data[-8]; gene_expression_change = data[-5] if dI_direction == 'downregulated': dI = dI*(-1) #print affygene,data[-10:];kill if y == 1: data_tuple = [name,functional_attribute,uniprot_attribute,gene_expression_change,dI] try: aspire_event_db[affygene,exon_set1,exon_set2].append(data_tuple) except KeyError: aspire_event_db[affygene,exon_set1,exon_set2] = [data_tuple] event_annotation_db[affygene,exon_set1,exon_set2] = event_call,symbol,description aspire_event_db2 = {}; splice_gene_db = {}; dataset_name_list.sort() for name in dataset_name_list: for key in event_annotation_db: ###record all genes in the event_annotation_db splice_gene_db[key[0]] = key[0] if key in aspire_event_db: x = 0 for entry in aspire_event_db[key]: if entry[0] == name: x = 1 dI = entry[1],entry[2],entry[3],entry[4] try: aspire_event_db2[key].append(dI) except KeyError: aspire_event_db2[key] = [dI] if x ==0: try: aspire_event_db2[key].append(('','','',0)) except KeyError: aspire_event_db2[key] = [('','','',0)] else: try: aspire_event_db2[key].append(('','','',0)) except KeyError: aspire_event_db2[key] = [('','','',0)] for key in aspire_event_db2: dataset_size = len(aspire_event_db2[key]) break ###Add all other Affygene's temp=[]; x = 0 while x < dataset_size: temp.append(('','','',0)) x +=1 for affygene in annotate_db: if affygene not in splice_gene_db: aspire_event_db2[affygene,'',''] = temp if include_all_other_genes == 'yes': analysis_method+= '-all-genes' if analyzing_genes == 'no': summary_output = root_dir+'AltResults/AlternativeOutput/'+analysis_method+'-comparisons-events.txt' else: summary_output = root_dir+'AltResults/AlternativeOutput/'+analysis_method+'-'+ 'GENE-' +'comparisons-events.txt' fn=filepath(summary_output) data = open(fn,'w') title = 'GeneID' +'\t'+ 'symbol'+'\t'+'description' +'\t'+ 'exon_set1' +'\t'+ 'exon_set2' +'\t'+ 'event_call' +'\t'+ 'splicing_factor_call' for entry in dataset_name_list: title = title +'\t'+ entry + '-functional-attribute' +'\t'+ entry + '-uniprot-attribute' +'\t'+ entry +'-GE-change' +'\t'+ entry +'-dI' data.write(title +'\t'+ 'common-hits' + '\n') for key in aspire_event_db2: affygene = key[0]; exon_set1 = key[1]; exon_set2 = key[2] if affygene in annotate_db: splicing_factor_call = annotate_db[affygene].RNAProcessing() else: splicing_factor_call = '' try: event_call = event_annotation_db[key][0] symbol = event_annotation_db[key][1] description = event_annotation_db[key][2] except KeyError: event_call = ''; symbol = ''; description = '' values = affygene +'\t'+ symbol +'\t'+ description +'\t'+ exon_set1 +'\t'+ exon_set2 +'\t'+ event_call +'\t'+ splicing_factor_call x=0 for entry in aspire_event_db2[key]: for info in entry: values = values +'\t'+ str(info) if entry[-1] != 0: x +=1 values = values +'\t'+ str(x) + '\n' if include_all_other_genes == 'no': if x>0: data.write(values) else: data.write(values) data.close() def exportTransitResults(array_group_list,array_raw_group_values,array_group_db,avg_const_exp_db,adj_fold_dbase,exon_db,dataset_name,apt_dir): """Export processed raw expression values (e.g. add global fudge factor or eliminate probe sets based on filters) to txt files for analysis with MiDAS""" #array_group_list contains group names in order of analysis #array_raw_group_values contains expression values for the x number of groups in above list #array_group_db key is the group name and values are the list of array names #avg_const_exp_db contains the average expression values for all arrays for all constitutive probesets, with gene as the key ordered_array_header_list=[] for group in array_group_list: ###contains the correct order for each group for array_id in array_group_db[group]: ordered_array_header_list.append(str(array_id)) ordered_exp_val_db = {} ###new dictionary containing all expression values together, but organized based on group probeset_affygene_db = {} ###lists all altsplice probesets and corresponding affygenes for probeset in array_raw_group_values: try: include_probeset = 'yes' ###Examines user input parameters for inclusion of probeset types in the analysis if include_probeset == 'yes': if probeset in adj_fold_dbase: ###indicates that this probeset is analyzed for splicing (e.g. has a constitutive probeset) for group_val_list in array_raw_group_values[probeset]: non_log_group_exp_vals = statistics.log_fold_conversion(group_val_list) for val in non_log_group_exp_vals: try: ordered_exp_val_db[probeset].append(str(val)) except KeyError: ordered_exp_val_db[probeset] = [str(val)] affygene = exon_db[probeset].GeneID() try: probeset_affygene_db[affygene].append(probeset) except KeyError: probeset_affygene_db[affygene] = [probeset] except KeyError: ###Indicates that the expression dataset file was not filtered for whether annotations exist in the exon annotation file ###In that case, just ignore the entry null = '' gene_count = 0 ordered_gene_val_db={} for affygene in avg_const_exp_db: ###now, add all constitutive gene level expression values (only per anlayzed gene) if affygene in probeset_affygene_db: ###ensures we only include gene data where there are altsplice examined probesets non_log_ordered_exp_const_val = statistics.log_fold_conversion(avg_const_exp_db[affygene]) gene_count+=1 for val in non_log_ordered_exp_const_val: try: ordered_gene_val_db[affygene].append(str(val)) except KeyError: ordered_gene_val_db[affygene] = [str(val)] convert_probesets_to_numbers={} convert_affygene_to_numbers={}; array_type = 'junction' probeset_affygene_number_db={}; x=0; y=0 for affygene in probeset_affygene_db: x+=1; y = x ###each affygene has a unique number, from other affygenes and probesets and probesets count up from each affygene x_copy = x example_gene_probeset = probeset_affygene_db[affygene][0] #if exon_db[example_gene_probeset].ArrayType() == 'exon': x_copy = exon_db[example_gene_probeset].SecondaryGeneID() if x_copy not in exon_db: convert_affygene_to_numbers[affygene] = str(x_copy) else: print affygene, x_copy,'new numeric for MIDAS already exists as a probeset ID number'; kill for probeset in probeset_affygene_db[affygene]: y = y+1; y_copy = y if exon_db[probeset].ArrayType() == 'exon': y_copy = probeset ### Only appropriate when the probeset ID is a number array_type = 'exon' convert_probesets_to_numbers[probeset] = str(y_copy) try: probeset_affygene_number_db[str(x_copy)].append(str(y_copy)) except KeyError: probeset_affygene_number_db[str(x_copy)] = [str(y_copy)] x=y metafile = 'AltResults/MIDAS/meta-'+dataset_name[0:-1]+'.txt' data1 = export.createExportFile(metafile,'AltResults/MIDAS') title = 'probeset_id\ttranscript_cluster_id\tprobeset_list\tprobe_count\n' data1.write(title) for affygene in probeset_affygene_number_db: probeset_list = probeset_affygene_number_db[affygene]; probe_number = str(len(probeset_list)*6) probeset_list = [string.join(probeset_list,' ')] probeset_list.append(affygene); probeset_list.append(affygene); probeset_list.reverse(); probeset_list.append(probe_number) probeset_list = string.join(probeset_list,'\t'); probeset_list=probeset_list+'\n' data1.write(probeset_list) data1.close() junction_exp_file = 'AltResults/MIDAS/'+array_type+'-exp-'+dataset_name[0:-1]+'.txt' fn2=filepath(junction_exp_file) data2 = open(fn2,'w') ordered_array_header_list.reverse(); ordered_array_header_list.append('probeset_id'); ordered_array_header_list.reverse() title = string.join(ordered_array_header_list,'\t') data2.write(title+'\n') for probeset in ordered_exp_val_db: probeset_number = convert_probesets_to_numbers[probeset] exp_values = ordered_exp_val_db[probeset]; exp_values.reverse(); exp_values.append(probeset_number); exp_values.reverse() exp_values = string.join(exp_values,'\t'); exp_values = exp_values +'\n' data2.write(exp_values) data2.close() gene_exp_file = 'AltResults/MIDAS/gene-exp-'+dataset_name[0:-1]+'.txt' fn3=filepath(gene_exp_file) data3 = open(fn3,'w') title = string.join(ordered_array_header_list,'\t') data3.write(title+'\n') for affygene in ordered_gene_val_db: try: affygene_number = convert_affygene_to_numbers[affygene] except KeyError: print len(convert_affygene_to_numbers), len(ordered_gene_val_db); kill exp_values = ordered_gene_val_db[affygene]; exp_values.reverse(); exp_values.append(affygene_number); exp_values.reverse() exp_values = string.join(exp_values,'\t'); exp_values = exp_values +'\n' data3.write(exp_values) data3.close() exportMiDASArrayNames(array_group_list,array_group_db,dataset_name,'new') coversionfile = 'AltResults/MIDAS/probeset-conversion-'+dataset_name[0:-1]+'.txt' fn5=filepath(coversionfile) data5 = open(fn5,'w') title = 'probeset\tprobeset_number\n'; data5.write(title) for probeset in convert_probesets_to_numbers: ###contains the correct order for each group probeset_number = convert_probesets_to_numbers[probeset] values = probeset+'\t'+probeset_number+'\n' data5.write(values) data5.close() """ ### This code is obsolete... used before AltAnalyze could connect to APT directly. commands = 'AltResults/MIDAS/commands-'+dataset_name[0:-1]+'.txt' data = export.createExportFile(commands,'AltResults/MIDAS') path = filepath('AltResults/MIDAS'); path = string.replace(path,'\\','/'); path = 'cd '+path+'\n\n' metafile = 'meta-'+dataset_name[0:-1]+'.txt' junction_exp_file = array_type+'-exp-'+dataset_name[0:-1]+'.txt' gene_exp_file = 'gene-exp-'+dataset_name[0:-1]+'.txt' celfiles = 'celfiles-'+dataset_name[0:-1]+'.txt' command_line = 'apt-midas -c '+celfiles+' -g '+gene_exp_file+' -e '+junction_exp_file+' -m '+metafile+' -o '+dataset_name[0:-1]+'-output' data.write(path); data.write(command_line); data.close() """ status = runMiDAS(apt_dir,array_type,dataset_name,array_group_list,array_group_db) return status def exportMiDASArrayNames(array_group_list,array_group_db,dataset_name,type): celfiles = 'AltResults/MIDAS/celfiles-'+dataset_name[0:-1]+'.txt' fn4=filepath(celfiles) data4 = open(fn4,'w') if type == 'old': cel_files = 'cel_file' elif type == 'new': cel_files = 'cel_files' title = cel_files+'\tgroup_id\n'; data4.write(title) for group in array_group_list: ###contains the correct order for each group for array_id in array_group_db[group]: values = str(array_id) +'\t'+ str(group) +'\n' data4.write(values) data4.close() def getAPTDir(apt_fp): ###Determine if APT has been set to the right directory and add the analysis_type to the filename if 'bin' not in apt_fp: ###This directory contains the C+ programs that we wish to call if 'apt' in apt_fp: ###This directory is the parent directory to 'bin' apt_fp = apt_fp+'/'+'bin' elif 'Affymetrix Power Tools' in apt_fp: ###The user selected the parent directory dir_list = read_directory(apt_fp); versions = [] ###See what folders are in this directory (e.g., specific APT versions) for folder in dir_list: ###If there are multiple versions if 'apt' in folder: version = string.replace(folder,'apt-','') version = string.split(version,'.'); version_int_list = [] try: for val in version: version_int_list.append(int(val)) versions.append([version_int_list,folder]) except Exception: versions.append([folder,folder]) ### arbitrarily choose an APT version if multiple exist and the folder name does not conform to the above if len(versions)>0: ###By making the versions indexed by the integer list value of the version, we can grab the latest version versions.sort(); apt_fp = apt_fp+'/'+versions[-1][1]+'/'+'bin' ###Add the full path to the most recent version return apt_fp def runMiDAS(apt_dir,array_type,dataset_name,array_group_list,array_group_db): if '/bin' in apt_dir: apt_file = apt_dir +'/apt-midas' ### if the user selects an APT directory elif os.name == 'nt': import platform if '32bit' in platform.architecture(): apt_file = apt_dir + '/PC/32bit/apt-midas' elif '64bit' in platform.architecture(): apt_file = apt_dir + '/PC/64bit/apt-midas' elif 'darwin' in sys.platform: apt_file = apt_dir + '/Mac/apt-midas' elif 'linux' in sys.platform: import platform if '32bit' in platform.architecture(): apt_file = apt_dir + '/Linux/32bit/apt-midas' elif '64bit' in platform.architecture(): apt_file = apt_dir + '/Linux/64bit/apt-midas' apt_file = filepath(apt_file) ### Each input file for MiDAS requires a full file path, so get the parent path midas_input_dir = 'AltResults/MIDAS/' path=filepath(midas_input_dir) ### Remotely connect to the previously verified APT C+ midas program and run analysis metafile = path + 'meta-'+dataset_name[0:-1]+'.txt' exon_or_junction_file = path + array_type+'-exp-'+dataset_name[0:-1]+'.txt' gene_exp_file = path + 'gene-exp-'+dataset_name[0:-1]+'.txt' celfiles = path + 'celfiles-'+dataset_name[0:-1]+'.txt' output_file = path + dataset_name[0:-1]+'-output' ### Delete the output folder if it already exists (may cause APT problems) delete_status = export.deleteFolder(output_file) try: import subprocess retcode = subprocess.call([ apt_file, "--cel-files", celfiles,"-g", gene_exp_file, "-e", exon_or_junction_file, "-m", metafile, "-o", output_file]) if retcode: status = 'failed' else: status = 'run' except NameError: status = 'failed' if status == 'failed': try: ### Try running the analysis with old MiDAS file headers and command exportMiDASArrayNames(array_group_list,array_group_db,dataset_name,'old') import subprocess retcode = subprocess.call([ apt_file, "-c", celfiles,"-g", gene_exp_file, "-e", exon_or_junction_file, "-m", metafile, "-o", output_file]) if retcode: status = 'failed' else: status = 'run' except Exception: status = 'failed' if status == 'failed': print "apt-midas failed" else: print "apt-midas run successfully" return status def importMidasOutput(dataset_name): coversionfile = 'AltResults/MIDAS/probeset-conversion-'+dataset_name[0:-1]+'.txt' #print "Looking for", coversionfile fn=filepath(coversionfile); x=0; probeset_conversion_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x==0: x=1 ###Occurs for the header line else: probeset,probeset_number = string.split(data,'\t') probeset_conversion_db[probeset_number] = probeset midas_results = 'AltResults/MIDAS/'+dataset_name[:-1]+'-output'+'/midas.pvalues.txt' fn=filepath(midas_results); x=0; midas_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if data[0] == '#': continue elif x==0: x=1 ###Occurs for the header line else: t = string.split(data,'\t') try: probeset_number,geneid,p = t except ValueError: print t;kill try: p = float(p) except ValueError: p = 1.000 ### "-1.#IND" can occur, when the constituitive and probeset are the same probeset = probeset_conversion_db[probeset_number] midas_db[probeset] = p return midas_db def combineRawSpliceResults(species,analysis_method): import_dir = '/AltResults/RawSpliceData/'+species+'/'+analysis_method g = GrabFiles(); g.setdirectory(import_dir) files_to_merge = g.searchdirectory('combined') ###made this a term to excluded headers =[]; combined_data={} for filename in files_to_merge: fn=filepath(filename); x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: headers += t[1:] x=1 ###Occurs for the header line else: values = t; values = values[1:]; key = t[0] try: combined_data[key]+=values except KeyError: combined_data[key]=values max_len=0 ###Some files will contain data that others won't... normalize for this, so we only include raws where there is data in all files examined for key in combined_data: if len(combined_data[key])>max_len: max_len = len(combined_data[key]) combined_data2 = {}; k=0; j=0 for key in combined_data: #print combined_data[key];kill ### '1' in the list, then there was only one constitutive probeset that was 'expressed' in that dataset: thus comparisons are not likely valid count = list.count(combined_data[key],'1.0') if len(combined_data[key])==max_len and count <3: combined_data2[key] = combined_data[key] elif len(combined_data[key])!=max_len: k+=1#; print key,max_len, len(combined_data[key]),combined_data[key]; kill elif count >2: j+=1 combined_data = combined_data2 #print k,j export_file = import_dir[1:]+'/combined.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['gene-probeset']+headers,'\t')+'\n'; data.write(title) for key in combined_data: values = string.join([key]+combined_data[key],'\t')+'\n'; data.write(values) data.close() print "exported",len(combined_data),"to",export_file def import_annotations(filename,array_type): from build_scripts import ExonAnalyze_module fn=filepath(filename); annotate_db = {}; x = 0 if array_type == 'AltMouse': for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x = 1 else: try: affygene, description, ll_id, symbol, rna_processing_annot = string.split(data,'\t') except ValueError: affygene, description, ll_id, symbol = string.split(data,'\t'); splicing_annotation = '' if '"' in description: null,description,null = string.split(description,'"') rna_processing_annot ='' y = ExonAnalyze_module.GeneAnnotationData(affygene, description, symbol, ll_id, rna_processing_annot) annotate_db[affygene] = y else: for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x == 0: x = 1 else: rna_processing_annot='' try: ensembl, description, symbol, rna_processing_annot = string.split(data,'\t') except ValueError: ensembl, description, symbol = string.split(data,'\t') y = ExonAnalyze_module.GeneAnnotationData(ensembl, description, symbol, ensembl, rna_processing_annot) annotate_db[ensembl] = y return annotate_db if __name__ == '__main__': array_type = 'exon' a = 'Mm'; b = 'Hs' e = 'ASPIRE'; f = 'linearregres'; g = 'ANOVA'; h = 'splicing-index' analysis_method = h species = b ### edit this if array_type != 'AltMouse': gene_annotation_file = "AltDatabase/ensembl/"+species+"/"+species+"_Ensembl-annotations.txt" annotate_db = import_annotations(gene_annotation_file,array_type) number_events_analyzed = 0 analyzing_genes = 'no' root_dir = 'C:/Users/Nathan Salomonis/Desktop/Gladstone/1-datasets/Combined-GSE14588_RAW/junction/' ### edit this a = root_dir+'AltResults/AlternativeOutput/Hs_Junction_d14_vs_d7.p5_average-ASPIRE-exon-inclusion-results.txt' ### edit this b = root_dir+'AltResults/AlternativeOutput/Hs_Junction_d14_vs_d7.p5_average-splicing-index-exon-inclusion-results.txt' ### edit this aspire_output_list = [a,b] compareAltAnalyzeResults(aspire_output_list,annotate_db,number_events_analyzed,analyzing_genes,analysis_method,array_type,root_dir) #dataset_name = 'test.'; apt_dir = 'AltDatabase/affymetrix/APT' #aspire_output_gene_list = ['AltResults/AlternativeOutput/Hs_Exon_CS-d40_vs_hESC-d0.p5_average-splicng_index-exon-inclusion-GENE-results.txt', 'AltResults/AlternativeOutput/Hs_Exon_Cyt-NP_vs_Cyt-ES.p5_average-splicing_index-exon-inclusion-GENE-results.txt', 'AltResults/AlternativeOutput/Hs_Exon_HUES6-NP_vs_HUES6-ES.p5_average-splicing_index-exon-inclusion-GENE-results.txt'] #runMiDAS(apt_dir,array_type,dataset_name,{},()); sys.exit() #midas_db = importMidasOutput(dataset_name)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/ResultsExport_module.py
ResultsExport_module.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import pysam import copy,getopt import time import traceback try: import export except Exception: pass try: import unique except Exception: pass import Bio; from Bio.Seq import Seq def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def parseFASTQFile(fn): count=0 spacer='TGGT' global_count=0 read2_viral_barcode={} read1_cellular_barcode={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) global_count+=1 if count == 0: read_id = string.split(data,' ')[0][1:] count+=1 elif count == 1: sequence = data count+=1 else: count+=1 if count == 4: count = 0 if 'R2' in fn: if spacer in sequence: if sequence.index(spacer) == 14: viral_barcode = sequence[:48] read2_viral_barcode[read_id]=viral_barcode else: ### Reverse complement sequence = Seq(sequence) sequence=str(sequence.reverse_complement()) if spacer in sequence: if sequence.index(spacer) == 14: viral_barcode = sequence[:48] read2_viral_barcode[read_id]=viral_barcode if 'R1' in fn: if 'TTTTT' in sequence: cell_barcode = sequence[:16] read1_cellular_barcode[read_id]=cell_barcode elif 'AAAAA' in sequence: ### Reverse complement sequence = Seq(sequence) cell_barcode=str(sequence.reverse_complement())[:16] read1_cellular_barcode[read_id]=cell_barcode if 'R2' in fn: return read2_viral_barcode else: return read1_cellular_barcode def outputPairs(fastq_dir,read1_cellular_barcode,read2_viral_barcode): outdir = fastq_dir+'.viral_barcodes.txt' o = open (outdir,"w") unique_pairs={} for uid in read2_viral_barcode: if uid in read1_cellular_barcode: cellular = read1_cellular_barcode[uid] viral = read2_viral_barcode[uid] if (viral,cellular) not in unique_pairs: o.write(viral+'\t'+cellular+'\n') unique_pairs[(viral,cellular)]=[] o.close() if __name__ == '__main__': ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a SAM file as input in the command-line" print "Example: python BAMtoJunctionBED.py --i /Users/me/sample1.fastq" sys.exit() else: Species = None options, remainder = getopt.getopt(sys.argv[1:],'', ['i=']) for opt, arg in options: if opt == '--i': fastq_dir=arg ### full path of a BAM file else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() if 'R1' in fastq_dir: r1 = fastq_dir r2 = string.replace(fastq_dir,'R1','R2') else: r1 = string.replace(fastq_dir,'R2','R1') r2= fastq_dir read2_viral_barcode = parseFASTQFile(r2) read1_cellular_barcode = parseFASTQFile(r1) outputPairs(fastq_dir,read1_cellular_barcode,read2_viral_barcode)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/FASTQtoBarcode.py
FASTQtoBarcode.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import UI import export; reload(export) import time import shutil import traceback def filepath(filename): fn = unique.filepath(filename) return fn def osfilepath(filename): fn = filepath(filename) fn = string.replace(fn,'\\','/') return fn def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def annotateMetaProbesetGenes(summary_exp_file, expression_file, metaprobeset_file, species): metaprobeset_cv_file = string.replace(metaprobeset_file,species+'_',species+'_Conversion_') metaprobeset_cv_file = string.replace(metaprobeset_cv_file,'.mps','.txt') fn=filepath(metaprobeset_cv_file); uid_db={} for line in open(fn,'rU').xreadlines(): data = UI.cleanUpLine(line) uid,ens_gene = string.split(data,'\t') uid_db[uid] = ens_gene export_data = export.ExportFile(expression_file) fn=filepath(summary_exp_file); x=0 for line in open(fn,'rU').xreadlines(): if line[0] == '#': null=[] elif x == 0: export_data.write(line); x+=1 else: data = cleanUpLine(line) t = string.split(data,'\t') uid = t[0]; ens_gene = uid_db[uid] export_data.write(string.join([ens_gene]+t[1:],'\t')+'\n') export_data.close() def reformatResidualFile(residual_exp_file,residual_destination_file): ### Re-write the residuals file so it has a single combined unique ID (arbitrary gene ID + probe ID) print 'Re-formatting and moving the calculated residuals file...' export_data = export.ExportFile(residual_destination_file) fn=filepath(residual_exp_file); x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if x==0 and data[0]=='#': null=[] elif x == 0: x+=1; t = string.split(data,'\t') export_data.write(string.join(['UID']+t[5:],'\t')+'\n') else: t = string.split(data,'\t') uid = t[0]+'-'+t[2] ### arbitrary numeric gene ID + probes ID export_data.write(string.join([uid]+t[5:],'\t')+'\n') export_data.close() os.remove(residual_exp_file) def verifyFileLength(filename): count = 0 try: fn=filepath(filename) for line in open(fn,'rU').xreadlines(): count+=1 if count>9: break except Exception: null=[] return count def APTDebugger(output_dir): fatal_error = '' fn = filepath(output_dir+'/apt-probeset-summarize.log') for line in open(fn,'rU').xreadlines(): if 'FATAL ERROR:' in line: fatal_error = line return fatal_error def probesetSummarize(exp_file_location_db,analyze_metaprobesets,probeset_type,species,root): for dataset in exp_file_location_db: ### Instance of the Class ExpressionFileLocationData fl = exp_file_location_db[dataset] apt_dir =fl.APTLocation() array_type=fl.ArrayType() pgf_file=fl.InputCDFFile() clf_file=fl.CLFFile() bgp_file=fl.BGPFile() xhyb_remove = fl.XHybRemoval() cel_dir=fl.CELFileDir() + '/cel_files.txt' expression_file = fl.ExpFile() stats_file = fl.StatsFile() output_dir = fl.OutputDir() + '/APT-output' cache_dir = output_dir + '/apt-probeset-summarize-cache' architecture = fl.Architecture() ### May over-ride the real architecture if a failure occurs get_probe_level_results = 'yes' if get_probe_level_results == 'yes': export_features = 'yes' if xhyb_remove == 'yes' and (array_type == 'gene' or array_type == 'junction'): xhyb_remove = 'no' ### This is set when the user mistakenly selects exon array, initially if analyze_metaprobesets == 'yes': export_features = 'true' metaprobeset_file = filepath('AltDatabase/'+species+'/'+array_type+'/'+species+'_'+array_type+'_'+probeset_type+'.mps') count = verifyFileLength(metaprobeset_file) if count<2: from build_scripts import ExonArray ExonArray.exportMetaProbesets(array_type,species) ### Export metaprobesets for this build import subprocess; import platform print 'Processor architecture set =',architecture,platform.machine() if '/bin' in apt_dir: apt_file = apt_dir +'/apt-probeset-summarize' ### if the user selects an APT directory elif os.name == 'nt': if '32bit' in architecture: apt_file = apt_dir + '/PC/32bit/apt-probeset-summarize'; plat = 'Windows' elif '64bit' in architecture: apt_file = apt_dir + '/PC/64bit/apt-probeset-summarize'; plat = 'Windows' elif 'darwin' in sys.platform: apt_file = apt_dir + '/Mac/apt-probeset-summarize'; plat = 'MacOSX' elif 'linux' in sys.platform: if '32bit' in platform.architecture(): apt_file = apt_dir + '/Linux/32bit/apt-probeset-summarize'; plat = 'linux32bit' elif '64bit' in platform.architecture(): apt_file = apt_dir + '/Linux/64bit/apt-probeset-summarize'; plat = 'linux64bit' apt_file = filepath(apt_file) apt_extract_file = string.replace(apt_file,'probeset-summarize','cel-extract') #print 'AltAnalyze has choosen APT for',plat print "Beginning probeset summarization of input CEL files with Affymetrix Power Tools (APT)..." if 'cdf' in pgf_file or 'CDF' in pgf_file: if xhyb_remove == 'yes' and array_type == 'AltMouse': kill_list_dir = osfilepath('AltDatabase/'+species+'/AltMouse/'+species+'_probes_to_remove.txt') else: kill_list_dir = osfilepath('AltDatabase/affymetrix/APT/probes_to_remove.txt') try: ### Below code attempts to calculate probe-level summarys and absent/present p-values ### for 3'arrays (may fail for arrays with missing missmatch probes - AltMouse) cdf_file = pgf_file; algorithm = 'rma' retcode = subprocess.call([ apt_file, "-d", cdf_file, "--kill-list", kill_list_dir, "-a", algorithm, "-o", output_dir, "--cel-files", cel_dir, "-a", "pm-mm,mas5-detect.calls=1.pairs=1"]) try: extract_retcode = subprocess.call([ apt_extract_file, "-d", cdf_file, "--pm-with-mm-only", "-o", output_dir+'/probe.summary.txt', "--cel-files", cel_dir, "-a"]) ### "quant-norm,pm-gcbg", "--report-background" -requires a BGP file except Exception,e: #print traceback.format_exc() retcode = False ### On some system there is a no file found error, even when the analysis completes correctly if retcode: status = 'failed' else: status = 'run' summary_exp_file = output_dir+'/'+algorithm+'.summary.txt' export.customFileCopy(summary_exp_file, expression_file) ### Removes the # containing lines #shutil.copyfile(summary_exp_file, expression_file) os.remove(summary_exp_file) summary_stats_file = output_dir+'/pm-mm.mas5-detect.summary.txt' try: shutil.copyfile(summary_stats_file, stats_file) except Exception: None ### Occurs if dabg export failed os.remove(summary_stats_file) except Exception: #print traceback.format_exc() try: cdf_file = pgf_file; algorithm = 'rma'; pval = 'dabg' retcode = subprocess.call([ apt_file, "-d", cdf_file, "--kill-list", kill_list_dir, "-a", algorithm, "-o", output_dir, "--cel-files", cel_dir]) # "-a", pval, if retcode: status = 'failed' else: status = 'run' summary_exp_file = output_dir+'/'+algorithm+'.summary.txt' export.customFileCopy(summary_exp_file, expression_file) ### Removes the # containing lines #shutil.copyfile(summary_exp_file, expression_file) os.remove(summary_exp_file) except NameError: status = 'failed' #print traceback.format_exc() else: if xhyb_remove == 'yes': kill_list_dir = osfilepath('AltDatabase/'+species+'/exon/'+species+'_probes_to_remove.txt') else: kill_list_dir = osfilepath('AltDatabase/affymetrix/APT/probes_to_remove.txt') if 'Glue' in pgf_file: kill_list_dir = string.replace(pgf_file,'pgf','kil') ### Needed to run DABG without crashing #psr_dir = string.replace(pgf_file,'pgf','PSR.ps') ### used with -s try: algorithm = 'rma-sketch'; pval = 'dabg' if analyze_metaprobesets != 'yes': retcode = subprocess.call([ apt_file, "-p", pgf_file, "-c", clf_file, "-b", bgp_file, "--kill-list", kill_list_dir, "-a", algorithm, "-a", pval, "-o", output_dir, "--cel-files", cel_dir]) # "--chip-type", "hjay", "--chip-type", "HJAY" http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html if retcode: summary_exp_file = output_dir+'/'+pval+'.summary.txt' try: os.remove(summary_exp_file) except Exception: null=[] ### Occurs if dabg export failed fatal_error = APTDebugger(output_dir) if len(fatal_error)>0: print fatal_error print 'Skipping DABG p-value calculation to resolve (Bad library files -> contact Affymetrix support)' retcode = subprocess.call([ apt_file, "-p", pgf_file, "-c", clf_file, "-b", bgp_file, "--kill-list", kill_list_dir, "-a", algorithm, "-o", output_dir, "--cel-files", cel_dir]) ### Exclude DABG p-value - known issue for Glue junction array else: bad_exit else: retcode = subprocess.call([ apt_file, "-p", pgf_file, "-c", clf_file, "-b", bgp_file, "--kill-list", kill_list_dir, "-m", metaprobeset_file, "-a", algorithm, "-a", pval, "-o", output_dir, "--cel-files", cel_dir, "--feat-details", export_features]) if retcode: summary_exp_file = output_dir+'/'+pval+'.summary.txt' try: os.remove(summary_exp_file) except Exception: null=[] ### Occurs if dabg export failed fatal_error = APTDebugger(output_dir) if len(fatal_error)>0: print fatal_error print 'Skipping DABG p-value calculation to resolve (Bad library files -> contact Affymetrix support)' retcode = subprocess.call([ apt_file, "-p", pgf_file, "-c", clf_file, "-b", bgp_file, "--kill-list", kill_list_dir, "-m", metaprobeset_file, "-a", algorithm, "-o", output_dir, "--cel-files", cel_dir, "--feat-details", export_features]) ### Exclude DABG p-value - known issue for Glue junction array else: bad_exit if retcode: status = 'failed' else: status = 'run' summary_exp_file = output_dir+'/'+algorithm+'.summary.txt' #if analyze_metaprobesets == 'yes': annotateMetaProbesetGenes(summary_exp_file, expression_file, metaprobeset_file, species) export.customFileCopy(summary_exp_file, expression_file) ### Removes the # containing lines #shutil.copyfile(summary_exp_file, expression_file) os.remove(summary_exp_file) summary_exp_file = output_dir+'/'+pval+'.summary.txt' #if analyze_metaprobesets == 'yes': annotateMetaProbesetGenes(summary_exp_file, stats_file, metaprobeset_file, species) try: shutil.copyfile(summary_exp_file, stats_file) os.remove(summary_exp_file) except Exception: print traceback.format_exc() null=[] ### Occurs if dabg export failed if analyze_metaprobesets == 'yes': residual_destination_file = string.replace(expression_file,'exp.','residuals.') residual_exp_file = output_dir+'/'+algorithm+'.residuals.txt' #shutil.copyfile(residual_exp_file, residual_destination_file);os.remove(residual_exp_file) reformatResidualFile(residual_exp_file,residual_destination_file) residual_dabg_file = output_dir+'/dabg.residuals.txt'; os.remove(residual_dabg_file) except NameError: status = 'failed' #print traceback.format_exc() cache_delete_status = export.deleteFolder(cache_dir) if status == 'failed': if architecture == '64bit' and platform.architecture()[0] == '64bit' and (os.name == 'nt' or 'linux' in sys.platform): print 'Warning! 64bit version of APT encountered an error, trying 32bit.' ### If the above doesn't work, try 32bit architecture instead of 64bit (assuming the problem is related to known transient 64bit build issues) for dataset in exp_file_location_db: ### Instance of the Class ExpressionFileLocationData fl = exp_file_location_db[dataset]; fl.setArchitecture('32bit') probesetSummarize(exp_file_location_db,analyze_metaprobesets,probeset_type,species,root) else: print_out = 'apt-probeset-summarize failed. See log and report file in the output folder under "ExpressionInput/APT-output" for more details.' try: WarningWindow(print_out,'Exit') root.destroy() except Exception: print print_out; force_exit else: print 'CEL files successfully processed. See log and report file in the output folder under "ExpressionInput/APT-output" for more details.'
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/APT.py
APT.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import math import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies from stats_scripts import statistics import os.path import unique import UI import export import time import traceback import RNASeq def agilentSummarize(exp_file_location_db): print 'Agilent array import started' global red_channel_db global green_channel_db red_channel_db={} green_channel_db={} for dataset in exp_file_location_db: ### Instance of the Class ExpressionFileLocationData fl = exp_file_location_db[dataset] output_dir = fl.OutputDir() array_dir=fl.CELFileDir() group_dir = fl.GroupsFile() ### provides the list of array_files channel_to_extract = fl.ChannelToExtract() expression_file = fl.ExpFile() array_group_list = UI.importArrayGroupsSimple(group_dir,[])[0] normalization_method = fl.NormMatrix() arrays = map(lambda agd: agd.Array(), array_group_list) ### Pull the array names out of this list of objects dir_list = unique.read_directory(array_dir) count=0 for array in dir_list: if array in arrays: ### Important since other text files may exist in that directory count+=1 filename = array_dir+'/'+array importAgilentExpressionValues(filename,array,channel_to_extract) if count == 50: print '' ### For progress printing count = 0 if len(green_channel_db)>0: filename = output_dir+ '/'+ 'gProcessed/gProcessed-'+dataset+'-raw.txt' exportExpressionData(filename,green_channel_db) if 'quantile' in normalization_method: print '\nPerforming quantile normalization on the green channel...' green_channel_db = RNASeq.quantileNormalizationSimple(green_channel_db) filename = output_dir+ '/'+ 'gProcessed/gProcessed-'+dataset+'-quantile.txt' exportExpressionData(filename,green_channel_db) final_exp_db = green_channel_db if len(red_channel_db)>0: filename = output_dir+ '/'+ 'rProcessed/rProcessed-'+dataset+'-raw.txt' exportExpressionData(filename,red_channel_db) if 'quantile' in normalization_method: print '\nPerforming quantile normalization on the red channel...' red_channel_db = RNASeq.quantileNormalizationSimple(red_channel_db) filename = output_dir+ '/'+ 'rProcessed/rProcessed-'+dataset+'-quantile.txt' exportExpressionData(filename,red_channel_db) final_exp_db = red_channel_db if len(red_channel_db)>0 and len(green_channel_db)>0: if channel_to_extract == 'green/red ratio': final_exp_db = calculateRatios(green_channel_db,red_channel_db) elif channel_to_extract == 'red/green ratio': final_exp_db = calculateRatios(red_channel_db,green_channel_db) exportExpressionData(expression_file,final_exp_db) print 'Exported expression input file to:',expression_file def calculateRatios(db1,db2): ratio_db={} for array in db1: exp_ratios={} exp_db = db1[array] for probe_name in exp_db: exp_ratios[probe_name] = str(float(exp_db[probe_name])-float(db2[array][probe_name])) ### log2 ratio ratio_db[array]=exp_ratios return ratio_db def importAgilentExpressionValues(filename,array,channel_to_extract): """ Imports Agilent Feature Extraction files for one or more channels """ print '.', red_expr_db={} green_expr_db={} parse=False fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): data = UI.cleanUpLine(line) if parse==False: if 'ProbeName' in data: headers = string.split(data,'\t') pn = headers.index('ProbeName') try: gc = headers.index('gProcessedSignal') except Exception: pass try: rc = headers.index('rProcessedSignal') except Exception: pass parse = True else: t = string.split(data,'\t') probe_name = t[pn] try: green_channel = math.log(float(t[gc])+1,2) #min is 0 except Exception: pass try: red_channel = math.log(float(t[rc])+1,2) #min is 0 except Exception: pass if 'red' in channel_to_extract: red_expr_db[probe_name] = red_channel if 'green' in channel_to_extract: green_expr_db[probe_name] = green_channel if 'red' in channel_to_extract: red_channel_db[array] = red_expr_db if 'green' in channel_to_extract: green_channel_db[array] = green_expr_db def exportExpressionData(filename,sample_db): export_text = export.ExportFile(filename) all_genes_db = {} sample_list=[] for sample in sample_db: sample_list.append(sample) gene_db = sample_db[sample] for geneid in gene_db: all_genes_db[geneid]=[] sample_list.sort() ### Organize these alphabetically rather than randomly column_header = string.join(['ProbeName']+sample_list,'\t')+'\n' ### format column-names for export export_text.write(column_header) for geneid in all_genes_db: values=[] for sample in sample_list: try: values.append(sample_db[sample][geneid]) ### protein_expression except Exception: values.append(0) export_text.write(string.join([geneid]+map(str, values),'\t')+'\n') export_text.close() if __name__ == '__main__': None
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/ProcessAgilentArrays.py
ProcessAgilentArrays.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import unique #Annotate PSI file's splicing events using alternate_juntion and alternate_junction_de-novo def verifyFile(filename): status = False try: fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): status = True;break except Exception: status = False return status class SplicingEventAnnotation: def __init__(self, event, critical_exon): self.event = event; self.critical_exon = critical_exon def Event(self): return self.event def CriticalExon(self): return self.critical_exon def setJunctions(self,junctions): self.junctions = junctions def Junctions(self): return self.junctions def ExonOnly(self): try: exon = string.split(self.critical_exon,':')[1] except Exception: exon = self.critical_exon return exon def importPSIevents(PSIpath,species): header=True count=0;count1=0; initial_events={} psievents={} psijunctions={} # Create a dictionary for the psi event dict[min_isoform,major_isoform] and value will be the annotation that will assigned later in the code for line in open(PSIpath,'rU').xreadlines(): line = line.rstrip('\n') #line=string.replace(line,"_",".") values=string.split(line,'\t') if header: aI = values.index('AltExons') header=False continue primary_junction = values[2] secondary_junction = values[3] critical_exon = values[aI] se = SplicingEventAnnotation(None,critical_exon) se.setJunctions([primary_junction,secondary_junction]) psievents[primary_junction,secondary_junction] = se psijunctions[(primary_junction,)] = se ### format for importing protein annotations psijunctions[(secondary_junction,)] = se print"PSI events imported..." return psievents,psijunctions def importEventAnnotations(resultsDir,species,psievents,annotationType=None): # Parse to the de-novo junction file and update the value of the psi events in the dictionary header=True if annotationType == 'de novo': junction_file = string.split(resultsDir,'AltResults')[0]+'AltDatabase/ensembl/'+species+'/'+species+'_alternative_junctions_de-novo.txt' else: junction_file = 'AltDatabase/ensembl/'+species+'/'+species+'_alternative_junctions.txt' count=0 fn = unique.filepath(junction_file) initial_events={} initial_critical_exons={} status = verifyFile(fn) if status: for line in open(fn,'rU').xreadlines(): line = line.rstrip('\n') if header: header=False continue gene, critical_exon, j1, j2, event = string.split(line,'\t') critical_exon = gene+':'+critical_exon ### Fix this notation if len(j1)>17 and '_' not in j1: j1a,j1b = string.split(j1,'-') if len(j1a)>8: a,b,c = string.split(j1a,'.') j1a = a+'.'+b+'_'+c if len(j1b)>8: a,b,c = string.split(j1b,'.') j1b = a+'.'+b+'_'+c j1 = j1a+'-'+j1b if len(j2)>17 and '_' not in j2: j2a,j2b = string.split(j2,'-') if len(j2a)>8: a,b,c = string.split(j2a,'.') j2a = a+'.'+b+'_'+c if len(j2b)>8: a,b,c = string.split(j2b,'.') j2b = a+'.'+b+'_'+c j2 = j2a+'-'+j2b j1=gene+':'+j1 j2=gene+':'+j2 if ((j1,j2) in psievents) or ((j2,j1) in psievents): try: initial_events[j1,j2].append(event) except Exception: initial_events[j1,j2] = [event] try: initial_critical_exons[j1,j2].append(critical_exon) except Exception: initial_critical_exons[j1,j2] = [critical_exon] for junctions in initial_events: events = unique.unique(initial_events[junctions]) events.sort() events = string.join(events,'|') critical_exons = unique.unique(initial_critical_exons[junctions]) critical_exons.sort() critical_exons = string.join(critical_exons,'|') se = SplicingEventAnnotation(events,critical_exons) j1,j2 = junctions psievents[j1,j2] = se psievents[j2,j1] = se count+=1 print count, "junction annotations imported..." return psievents def importDatabaseEventAnnotations(species,platform): terminal_exons={} header=True count=0 fn = 'AltDatabase/'+species+'/'+platform+'/'+species+'_Ensembl_exons.txt' fn = unique.filepath(fn) for line in open(fn,'rU'): line = line.rstrip('\n') values = string.split(line,'\t') if header: eI = values.index('splice_events') header=False continue exon = values[0] event = values[eI] if 'alt-N-term' in event or 'altPromoter' in event: if 'cassette' not in event: terminal_exons[exon] = 'altPromoter' count+=1 elif 'alt-C-term' in event: if 'cassette' not in event: terminal_exons[exon] = 'alt-C-term' count+=1 """ elif 'bleedingExon' in event or 'altFinish' in event: terminal_exons[exon] = 'bleedingExon' count+=1""" print count, 'terminal exon annotations stored' return terminal_exons def inverseFeatureDirections(features): features2=[] for f in features: if '+' in f: f = string.replace(f,'+','-') else: f = string.replace(f,'-','+') features2.append(f) return features2 def formatFeatures(features): features2=[] for f in features: f = string.split(f,'|') direction = f[-1] annotation = f[0] f = '('+direction+')'+annotation features2.append(f) return features2 def importIsoformAnnotations(species,platform,psievents,annotType=None,junctionPairFeatures={},dataType='reciprocal'): count=0 if annotType == 'domain': if dataType == 'reciprocal': fn = 'AltDatabase/'+species+'/'+platform+'/'+'probeset-domain-annotations-exoncomp.txt' else: fn = 'AltDatabase/'+species+'/'+platform+'/junction/'+'probeset-domain-annotations-exoncomp.txt' else: if dataType == 'reciprocal': fn = 'AltDatabase/'+species+'/'+platform+'/'+'probeset-protein-annotations-exoncomp.txt' else: fn = 'AltDatabase/'+species+'/'+platform+'/junction/'+'probeset-protein-annotations-exoncomp.txt' fn = unique.filepath(fn) for line in open(fn,'rU'): line = line.rstrip('\n') values = string.split(line,'\t') junctions = string.split(values[0],'|') features = formatFeatures(values[1:]) antiFeatures = inverseFeatureDirections(features) if tuple(junctions) in psievents: try: junctionPairFeatures[tuple(junctions)].append(string.join(features,', ')) except Exception: junctionPairFeatures[tuple(junctions)] = [string.join(features,', ')] if dataType == 'reciprocal': junctions.reverse() if tuple(junctions) in psievents: try: junctionPairFeatures[tuple(junctions)].append(string.join(antiFeatures,', ')) except Exception: junctionPairFeatures[tuple(junctions)] = [string.join(antiFeatures,', ')] count+=1 print count, 'protein predictions added' return junctionPairFeatures def DetermineIntronRetention(coordinates): intronRetention = False coordinates1,coordinates2 = string.split(coordinates,'|') coordinates1 = string.split(coordinates1,':')[1] coordinate1a, coordinate1b = string.split(coordinates1,'-') coordinate1_diff = abs(float(coordinate1a)-float(coordinate1b)) coordinates2 = string.split(coordinates2,':')[1] coordinate2a, coordinate2b = string.split(coordinates2,'-') coordinate2_diff = abs(float(coordinate2a)-float(coordinate2b)) if coordinate1_diff==1 or coordinate2_diff==1: intronRetention = True return intronRetention class SplicingAnnotations(object): def __init__(self, symbol, description,junc1,junc2,altExons,proteinPredictions,eventAnnotation,coordinates): self.symbol = symbol self.description = description self.junc1 = junc1 self.junc2 = junc2 self.altExons = altExons self.proteinPredictions = proteinPredictions self.eventAnnotation = eventAnnotation self.coordinates = coordinates def Symbol(self): return self.symbol def Description(self): return self.description def Junc1(self): return self.junc1 def Junc2(self): return self.junc2 def AltExons(self): return self.altExons def ProteinPredictions(self): return self.proteinPredictions def EventAnnotation(self): return self.eventAnnotation def Coordinates(self): return self.coordinates def importPSIAnnotations(PSIpath): header=True count=0 annotations={} for line in open(PSIpath,'rU').xreadlines(): line = line.rstrip('\n') values = string.split(line,'\t') if header: sI = values.index('Symbol') dI = values.index('Description') eI = values.index('Examined-Junction') bI = values.index('Background-Major-Junction') aI = values.index('AltExons') pI = values.index('ProteinPredictions') vI = values.index('EventAnnotation') cI = values.index('Coordinates') header=False else: symbol = values[sI] description = values[dI] junc1 = values[eI] junc2 = values[bI] altExons = values[aI] proteinPredictions = values[pI] eventAnnotation = values[vI] coordinates = values[cI] key = symbol+':'+junc1+"|"+junc2 sa = SplicingAnnotations(symbol, description,junc1,junc2,altExons,proteinPredictions,eventAnnotation,coordinates) annotations[key] = sa return annotations def updatePSIAnnotations(PSIpath, species, psievents, terminal_exons, junctionPairFeatures, junctionFeatures): # write the updated psi file with the annotations into a new file and annotate events that have not been annotated by the junction files #print len(psievents) header=True export_path = PSIpath[:-4]+'_EventAnnotation.txt' export=open(export_path,'w') count=0 for line in open(PSIpath,'rU').xreadlines(): line = line.rstrip('\n') values = string.split(line,'\t') if header: try: fI = values.index('feature') except: fI = values.index('EventAnnotation') aI = values.index('AltExons') try: pI = values.index('PME') except: pI = values.index('ProteinPredictions') cI = values.index('Coordinates') values[fI] = 'EventAnnotation' values[pI] = 'ProteinPredictions' export.write(string.join(values,'\t')+'\n') header=False continue psiJunction=string.split(line,'\t') psiJunction_primary = psiJunction[2] psiJunction_secondary = psiJunction[3] key = psiJunction_primary,psiJunction_secondary #psiJunction_primary=string.replace(psiJunction[2],"_",".") #psiJunction_secondary=string.replace(psiJunction[3],"_",".") event = psievents[psiJunction_primary,psiJunction_secondary].Event() critical_exon = psievents[key].CriticalExon() if key in junctionPairFeatures: proteinAnnotation = string.join(junctionPairFeatures[key],'|') elif (psiJunction_primary,) in junctionFeatures: proteinAnnotation = string.join(junctionPairFeatures[(psiJunction_primary,)],'|') #elif (psiJunction_secondary,) in junctionFeatures: #proteinAnnotation = string.join(junctionPairFeatures[(psiJunction_secondary,)],'|')""" else: proteinAnnotation='' values[pI] = proteinAnnotation intronRetention = DetermineIntronRetention(values[cI]) if critical_exon in terminal_exons: event = terminal_exons[critical_exon] if intronRetention: event = 'intron-retention' try: if event==None: primary_exons=string.split(psiJunction[2],":") secondary_exons=string.split(psiJunction[3],":") if len(primary_exons)>2 or len(secondary_exons)>2: values[fI] = 'trans-splicing' export.write(string.join(values,'\t')+'\n') continue else: primary_exonspos=string.split(primary_exons[1],"-") secondary_exonspos=string.split(secondary_exons[1],"-") if ('U0' in primary_exons[1]) or ('U0' in secondary_exons[1]): if ('U0.' in primary_exonspos[0]) or ('U0.' in secondary_exonspos[0]): values[fI] = 'altPromoter' export.write(string.join(values,'\t')+'\n') continue else: values[fI] = '' export.write(string.join(values,'\t')+'\n') continue try: event = predictSplicingEventTypes(psiJunction_primary,psiJunction_secondary) except Exception: event = '' values[fI] = event export.write(string.join(values,'\t')+'\n') continue else: values[fI] = event values[aI] = critical_exon count+=1 export.write(string.join(values,'\t')+'\n') except Exception(): values[fI] = '' export.write(string.join(values,'\t')+'\n') #print count return export_path def predictSplicingEventTypes(junction1,junction2): if 'I' not in junction1 and '_' in junction1: junction1 = string.replace(junction1,'_','') ### allows this to be seen as an alternative splice site if 'I' not in junction2 and '_' in junction2: junction2 = string.replace(junction2,'_','') ### allows this to be seen as an alternative splice site if 'I' in junction1: forceError if 'I' in junction2: forceError j1a,j1b = string.split(junction1,'-') j2a,j2b = string.split(junction2,'-') j1a = string.split(j1a,':')[1][1:] j2a = string.split(j2a,':')[1][1:] j1a,r1a = string.split(j1a,'.') j1b,r1b = string.split(j1b[1:],'.') j2a,r2a = string.split(j2a,'.') j2b,r2b = string.split(j2b[1:],'.') ### convert to integers j1a,r1a,j1b,r1b,j2a,r2a,j2b,r2b = map(lambda x: int(float(x)),[j1a,r1a,j1b,r1b,j2a,r2a,j2b,r2b]) splice_event=[] if j1a == j2a and j1b==j2b: ### alt-splice site if r1a == r2a: splice_event.append("alt-3'") else: splice_event.append("alt-5'") elif j1a == j2a: splice_event.append("cassette-exon") elif j1b==j2b: if 'E1.' in junction1: splice_event.append("altPromoter") else: splice_event.append("cassette-exon") elif 'E1.' in junction1 or 'E1.1' in junction2: splice_event.append("altPromoter") else: splice_event.append("cassette-exon") splice_event = unique.unique(splice_event) splice_event.sort() splice_event = string.join(splice_event,'|') return splice_event def parse_junctionfiles(resultsDir,species,platform): """ Add splicing annotations for PSI results """ if 'top_alt' not in resultsDir: PSIpath = resultsDir+'/'+species+'_'+platform+'_top_alt_junctions-PSI.txt' else: PSIpath = resultsDir ### Get all splice-junction pairs psievents,psijunctions = importPSIevents(PSIpath,species) ### Get domain/protein predictions junctionPairFeatures = importIsoformAnnotations(species,platform,psievents) junctionPairFeatures = importIsoformAnnotations(species,platform,psievents,annotType='domain',junctionPairFeatures=junctionPairFeatures) junctionFeatures = importIsoformAnnotations(species,platform,psijunctions,dataType='junction') junctionFeatures = importIsoformAnnotations(species,platform,psijunctions,annotType='domain',junctionPairFeatures=junctionFeatures,dataType='junction') ### Get all de novo junction anntations (includes novel junctions) psievents = importEventAnnotations(resultsDir,species,psievents,annotationType='de novo') ### Get all known junction annotations psievents = importEventAnnotations(resultsDir,species,psievents) ### Import the annotations that provide alternative terminal events terminal_exons = importDatabaseEventAnnotations(species,platform) ### Update our PSI annotation file with these improved predictions export_path = updatePSIAnnotations(PSIpath, species, psievents, terminal_exons, junctionPairFeatures, junctionFeatures) return export_path if __name__ == '__main__': import multiprocessing as mlp import getopt #bam_dir = "H9.102.2.6.bam" #outputExonCoordinateRefBEDfile = 'H9.102.2.6__exon.bed' platform = 'RNASeq' species = 'Hs' ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a directory containing BAM files as input in the command-line" sys.exit() else: analysisType = [] useMultiProcessing=False options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','species=','platform=','array=']) for opt, arg in options: if opt == '--i': resultsDir=arg elif opt == '--species': species=arg elif opt == '--platform': platform=arg elif opt == '--array': platform=arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() parse_junctionfiles(resultsDir,species,platform)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/AugmentEventAnnotations.py
AugmentEventAnnotations.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This script can be run on its own to extract a single BAM file at a time or indirectly by multiBAMtoBED.py to extract junction.bed files (Tophat format) from many BAM files in a single directory at once. Currently uses the Tophat predicted Strand notation opt('XS') for each read. This can be substituted with strand notations from other aligners (check with the software authors).""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import pysam import copy,getopt import time import traceback try: import export except Exception: pass try: import unique except Exception: pass try: import TabProxies import ctabix import csamtools import cvcf except Exception: try: if os.name != 'posix': print traceback.format_exc() except Exception: pass def getSpliceSites(cigarList,X): cummulative=0 coordinates=[] for (code,seqlen) in cigarList: if code == 0: cummulative+=seqlen if code == 3: #if strand == '-': five_prime_ss = str(X+cummulative) cummulative+=seqlen ### add the intron length three_prime_ss = str(X+cummulative+1) ### 3' exon start (prior exon splice-site + intron length) coordinates.append([five_prime_ss,three_prime_ss]) up_to_intron_dist = cummulative return coordinates, up_to_intron_dist def writeJunctionBedFile(junction_db,jid,o): strandStatus = True for (chr,jc,tophat_strand) in junction_db: if tophat_strand==None: strandStatus = False break if strandStatus== False: ### If no strand information in the bam file filter and add known strand data junction_db2={} for (chr,jc,tophat_strand) in junction_db: original_chr = chr if 'chr' not in chr: chr = 'chr'+chr for j in jc: try: strand = splicesite_db[chr,j] junction_db2[(original_chr,jc,strand)]=junction_db[(original_chr,jc,tophat_strand)] except Exception: pass junction_db = junction_db2 for (chr,jc,tophat_strand) in junction_db: x_ls=[]; y_ls=[]; dist_ls=[] read_count = str(len(junction_db[(chr,jc,tophat_strand)])) for (X,Y,dist) in junction_db[(chr,jc,tophat_strand)]: x_ls.append(X); y_ls.append(Y); dist_ls.append(dist) outlier_start = min(x_ls); outlier_end = max(y_ls); dist = str(max(dist_ls)) exon_lengths = outlier_start exon_lengths = str(int(jc[0])-outlier_start)+','+str(outlier_end-int(jc[1])+1) junction_id = 'JUNC'+str(jid)+':'+jc[0]+'-'+jc[1] ### store the unique junction coordinates in the name output_list = [chr,str(outlier_start),str(outlier_end),junction_id,read_count,tophat_strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] o.write(string.join(output_list,'\t')+'\n') def writeIsoformFile(isoform_junctions,o): for coord in isoform_junctions: isoform_junctions[coord] = unique.unique(isoform_junctions[coord]) if '+' in coord: print coord, isoform_junctions[coord] if '+' in coord: sys.exit() def verifyFileLength(filename): count = 0 try: fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): count+=1 if count>9: break except Exception: null=[] return count def retreiveAllKnownSpliceSites(returnExonRetention=False,DesignatedSpecies=None,path=None): ### Uses a priori strand information when none present import export, unique chromosomes_found={} try: parent_dir = export.findParentDir(bam_file) except Exception: parent_dir = export.findParentDir(path) species = None for file in os.listdir(parent_dir): if 'AltAnalyze_report' in file and '.log' in file: log_file = unique.filepath(parent_dir+'/'+file) log_contents = open(log_file, "rU") species_tag = ' species: ' for line in log_contents: line = line.rstrip() if species_tag in line: species = string.split(line,species_tag)[1] if species == None: try: species = IndicatedSpecies except Exception: species = DesignatedSpecies splicesite_db={} gene_coord_db={} try: if ExonReference==None: exon_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' length = verifyFileLength(exon_dir) except Exception: #print traceback.format_exc();sys.exit() length = 0 if length==0: exon_dir = ExonReference refExonCoordinateFile = unique.filepath(exon_dir) firstLine=True for line in open(refExonCoordinateFile,'rU').xreadlines(): if firstLine: firstLine=False else: line = line.rstrip('\n') t = string.split(line,'\t'); #'gene', 'exon-id', 'chromosome', 'strand', 'exon-region-start(s)', 'exon-region-stop(s)', 'constitutive_call', 'ens_exon_ids', 'splice_events', 'splice_junctions' geneID, exon, chr, strand, start, stop = t[:6] spliceEvent = t[-2] #start = int(start); stop = int(stop) #geneID = string.split(exon,':')[0] try: gene_coord_db[geneID,chr].append(int(start)) gene_coord_db[geneID,chr].append(int(stop)) except Exception: gene_coord_db[geneID,chr] = [int(start)] gene_coord_db[geneID,chr].append(int(stop)) if returnExonRetention: if 'exclusion' in spliceEvent or 'exclusion' in spliceEvent: splicesite_db[geneID+':'+exon]=[] else: splicesite_db[chr,start]=strand splicesite_db[chr,stop]=strand if len(chr)<5 or ('GL0' not in chr and 'GL' not in chr and 'JH' not in chr and 'MG' not in chr): chromosomes_found[string.replace(chr,'chr','')] = [] for i in gene_coord_db: gene_coord_db[i].sort() gene_coord_db[i] = [gene_coord_db[i][0],gene_coord_db[i][-1]] return splicesite_db,chromosomes_found,gene_coord_db def parseJunctionEntries(bam_dir,multi=False, Species=None, ReferenceDir=None): global bam_file global splicesite_db global IndicatedSpecies global ExonReference IndicatedSpecies = Species ExonReference = ReferenceDir bam_file = bam_dir splicesite_db={}; chromosomes_found={} start = time.time() try: import collections; junction_db=collections.OrderedDict() except Exception: try: import ordereddict; junction_db = ordereddict.OrderedDict() except Exception: junction_db={} original_junction_db = copy.deepcopy(junction_db) bamf = pysam.Samfile(bam_dir, "rb" ) ### Is there are indexed .bai for the BAM? Check. try: for entry in bamf.fetch(): codes = map(lambda x: x[0],entry.cigar) break except Exception: ### Make BAM Index if multi == False: print 'Building BAM index file for', bam_dir bam_dir = str(bam_dir) #On Windows, this indexing step will fail if the __init__ pysam file line 51 is not set to - catch_stdout = False pysam.index(bam_dir) bamf = pysam.Samfile(bam_dir, "rb" ) chromosome = False barcode_pairs={} bam_reads=0 count=0 jid = 1 prior_jc_start=0 import Bio; from Bio.Seq import Seq l1 = None; l2=None o = open (string.replace(bam_dir,'.bam','.export2.txt'),"w") spacer='TGGT' for entry in bamf.fetch(): #if entry.query_name == 'M03558:141:GW181002:1:2103:13361:6440': if spacer in entry.seq: if entry.seq.index(spacer) == 14: viral_barcode = entry.seq[:48] try: mate = bamf.mate(entry) mate_seq = Seq(mate.seq) cell_barcode=str(mate_seq.reverse_complement())[:16] if (viral_barcode,cell_barcode) not in barcode_pairs: o.write(viral_barcode+'\t'+cell_barcode+'\n') barcode_pairs[viral_barcode,cell_barcode]=[] if 'ATAGCGGGAACATGTGGTCATGGTACTGACGTTGACACGTACGTCATA' == viral_barcode: print entry.query_name, cell_barcode, mate_seq except: pass #print viral_barcode, mate.seq;sys.exit() count+=1 #if count==100: sys.exit() bamf.close() o.close() if __name__ == "__main__": ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a BAM file as input in the command-line" print "Example: python BAMtoJunctionBED.py --i /Users/me/sample1.bam" sys.exit() else: Species = None options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','species=']) for opt, arg in options: if opt == '--i': bam_dir=arg ### full path of a BAM file elif opt == '--species': Species=arg ### species for STAR analysis to get strand else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() try: parseJunctionEntries(bam_dir,Species=Species) except ZeroDivisionError: print [sys.argv[1:]],'error'; error """ Benchmarking notes: On a 2017 MacBook Pro with 16GB of RAM and a local 7GB BAM file (solid drive), 9 minutes (526s) to complete writing a junction.bed. To simply search through the file without looking at the CIGAR, the script takes close to 5 minutes (303s)"""
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/BAMtoBarcode.py
BAMtoBarcode.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import csv import scipy.io from scipy import sparse, stats, io import numpy import time import math from scipy import sparse, stats import gzip try: import h5py except: print ('Missing the h5py library (hdf5 support)...') def import10XSparseMatrix(matrices_dir,genome,dataset_name, expFile=None, log=True): start_time = time.time() if '.h5' in matrices_dir: h5_filename = matrices_dir f = h5py.File(h5_filename, 'r') genome = None if 'matrix' in f: # CellRanger v3 barcodes = list(f['matrix']['barcodes']) gene_ids = f['matrix']['features']['id'] gene_names = f['matrix']['features']['name'] mat = sparse.csc_matrix((f['matrix']['data'], f['matrix']['indices'], f['matrix']['indptr']), shape=f['matrix']['shape']) else: # CellRanger v2 possible_genomes = f.keys() if len(possible_genomes) != 1: raise Exception("{} contains multiple genomes ({}). Explicitly select one".format(h5_filename, ", ".join(possible_genomes))) genome = possible_genomes[0] mat = sparse.csc_matrix((f[genome]['data'], f[genome]['indices'], f[genome]['indptr'])) gene_names = f[genome]['gene_names'] barcodes = list(f[genome]['barcodes']) gene_ids = f[genome]['genes'] else: #matrix_dir = os.path.join(matrices_dir, genome) matrix_dir = matrices_dir mat = scipy.io.mmread(matrix_dir) genes_path = string.replace(matrix_dir,'matrix.mtx','genes.tsv') barcodes_path = string.replace(matrix_dir,'matrix.mtx','barcodes.tsv') if os.path.isfile(genes_path)==False: genes_path = string.replace(matrix_dir,'matrix.mtx','features.tsv') if '.gz' in genes_path: gene_ids = [row[0] for row in csv.reader(gzip.open(genes_path), delimiter="\t")] gene_names = [row[1] for row in csv.reader(gzip.open(genes_path), delimiter="\t")] barcodes = [row[0] for row in csv.reader(gzip.open(barcodes_path), delimiter="\t")] else: gene_ids = [row[0] for row in csv.reader(open(genes_path), delimiter="\t")] print gene_ids[0:10] gene_names = [row[1] for row in csv.reader(open(genes_path), delimiter="\t")] barcodes = [row[0] for row in csv.reader(open(barcodes_path), delimiter="\t")] #barcodes = map(lambda x: string.replace(x,'-1',''), barcodes) ### could possibly cause issues with comparative analyses matrices_dir = os.path.abspath(os.path.join(matrices_dir, os.pardir)) ### Write out raw data matrix counts_path = matrices_dir+'/'+dataset_name+'_matrix.txt' if expFile!=None: if 'exp.' in expFile: counts_path = string.replace(expFile,'exp.','counts.') ### Efficiently write the data to an external file (fastest way) mat_array_original = mat.toarray() ### convert sparse matrix to numpy array mat_array = numpy.ndarray.tolist(mat_array_original) ### convert to non-numpy list i=0 updated_mat=[['UID']+barcodes] for ls in mat_array: updated_mat.append([gene_names[i]]+ls); i+=1 mat_array = numpy.array(mat_array) updated_mat = numpy.array(updated_mat) numpy.savetxt(counts_path,updated_mat,fmt='%s',delimiter='\t') del updated_mat print 'Raw-counts written to file:' print counts_path #print time.time()-start_time ### Write out CPM normalized data matrix if expFile==None: norm_path = matrices_dir+'/'+dataset_name+'_matrix_CPTT.txt' else: norm_path = expFile ### AltAnalyze designated ExpressionInput file (not counts) print 'Normalizing gene counts to counts per ten thousand (CPTT)' barcode_sum = numpy.sum(mat_array,axis=0) ### Get the sum counts for all barcodes, 0 is the y-axis in the matrix start_time = time.time() mat_array = mat_array.transpose() def calculateCPTT(val,barcode_sum): if val==0: return '0' else: if log: return math.log((10000.00*val/barcode_sum)+1.0,2) ### convert to log2 expression else: return 10000.00*val/barcode_sum vfunc = numpy.vectorize(calculateCPTT) norm_mat_array=[] i=0 for vector in mat_array: norm_mat_array.append(vfunc(vector,barcode_sum[i])) i+=1 mat_array = numpy.array(norm_mat_array) mat_array = mat_array.transpose() mat_array = numpy.ndarray.tolist(mat_array) ### convert to non-numpy list i=0 updated_mat=[['UID']+barcodes] for ls in mat_array: updated_mat.append([gene_names[i]]+ls); i+=1 updated_mat = numpy.array(updated_mat) del mat_array numpy.savetxt(norm_path,updated_mat,fmt='%s',delimiter='\t') #print time.time()-start_time print 'CPTT written to file:', print norm_path return norm_path if __name__ == '__main__': import getopt filter_rows=False filter_file=None genome = 'hg19' dataset_name = '10X_filtered' if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Insufficient options provided";sys.exit() #Filtering samples in a datasets #python 10XProcessing.py --i /Users/test/10X/outs/filtered_gene_bc_matrices/ --g hg19 --n My10XExperiment else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','g=','n=']) #print sys.argv[1:] for opt, arg in options: if opt == '--i': matrices_dir=arg elif opt == '--g': genome=arg elif opt == '--n': dataset_name=arg import10XSparseMatrix(matrices_dir,genome,dataset_name)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/ChromiumProcessing.py
ChromiumProcessing.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This module contains methods for reading in OBO format Gene Ontology files and building numeric nested hierarchy paths (e.g., reconstructing the directed acyclic graph), importing prebuilt hiearchy paths, creating nested Ontology associations from existing gene-Ontology files.""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import export import os.path, platform import unique import math import shutil import time import gene_associations import copy ################# Parse directory files def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv" or ".ontology" in entry or '.obo' in entry: dir_list2.append(entry) return dir_list2 ###### Classes ###### class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance try: files = getDirectoryFiles(self.data,str(search_term)) except Exception: files = [] ### directory doesn't exist #print self.data, "doesn't exist" return files def getDirectoryFiles(import_dir, search_term): matching_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results affy_data_dir = import_dir[1:]+'/'+data if search_term in affy_data_dir: matching_files.append(affy_data_dir) return matching_files ################# Import and Annotate Data def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]); list.sort(); db1[key] = list return db1 class OntologyPath: def __init__(self,ontology_id,ontology_term,current_level,rank,path,specific_type): self._ontology_id = ontology_id; self._ontology_term = ontology_term; self._current_level = current_level self._rank = rank; self._path = path; self._specific_type = specific_type def OntologyID(self): return self._ontology_id def OntologyIDStr(self): return self._ontology_id[3:] def OntologyTerm(self): return self._ontology_term def OntologyLevel(self): return self._current_level def OntologyType(self): return self._specific_type def Rank(self): return self._rank def PathStr(self): path_index = pathToString(self.PathList()) return path_index def PathList(self): return self._path def PathTuple(self): return tuple(self._path) def Report(self): output = self.OntologyID()+'|'+self.OntologyTerm() return output def __repr__(self): return self.Report() def pathToString(path_list): path_str=[] for path_int in path_list: path_str.append(str(path_int)) path_index = string.join(path_str,'.') return path_index class OntologyTree: def __init__(self,ontology_id,ontology_term,ontology_type): self._ontology_id = ontology_id; self._ontology_term = ontology_term; self._ontology_type = ontology_type def OntologyID(self): return self._ontology_id def OntologyTerm(self): return self._ontology_term def OntologyType(self): return self._ontology_type def setOntologyType(self,ontology_type): self._ontology_type=ontology_type def Report(self): output = self.OntologyID()+'|'+self.OntologyTerm() return output def __repr__(self): return self.Report() class OntologyTreeDetailed(OntologyTree): ###Class not currently used def __init__(self,ontology_id,ontology_term,ontology_type,parent_ontology_id,relation): self._ontology_id = ontology_id; self._ontology_term = ontology_term; self._ontology_type = ontology_type self._parent_ontology_id = parent_ontology_id; self._relation = relation def ParentOntologyID(self): return self._parent_ontology_id def Relation(self): return self._relation def Report(self): output = self.OntologyID()+'|'+self.OntologyTerm() return output def __repr__(self): return self.Report() ###################################### UPDATED OBO CODE - BEGIN def nestTree(parent_node,path,export_data,count_nodes): ### export_data,count_nodes are used for QC only children = edges[parent_node] path.append(0) for child in children.keys(): tuple_path = tuple(path) #count_nodes+=1 #try: temp = string.join(edges[child].keys(),'|') #except Exception: temp = '' #export_data.write(str(tuple_path)+'\t'+child+'\t'+temp+'\n') p = list(path) ### Otherwise, the same path somehow gets used (alternative to copy.deepcopy()) if child in edges: count_nodes = nestTree(child,p,export_data,count_nodes) #if count_nodes==1000: kill path_ontology_db[tuple_path] = child if child not in built_ontology_paths: built_ontology_paths[child] = [tuple_path] elif tuple_path not in built_ontology_paths[child]: built_ontology_paths[child].append(tuple_path) path[-1]+=1 return count_nodes def importOBONew(filedir,path,specific_type,rank): if specific_type == '': discover_root = 'yes' else: discover_root = 'no' global edges #print [discover_root,specific_type,path] fn=filepath(filedir); x=0; stored={}; edges={}; category = 'null'; all_children={}; ontology_annotations_extra={} ontology_id=''; ontology_term=''; edge_count=0; root_node = None for line in open(fn,'r').xreadlines(): data = cleanUpLine(line) s = string.split(data,' '); d = string.split(data,':') if x == 0: x=1 if x > 0: #if s[0]=='def:': definition = d[1] if s[0]=='id:': try: ontology_id = s[1] #ontology_id=string.split(ontology_id,':')[1] category = 'null' except Exception: null=[]; ontology_id = ''; ontology_term = '' if s[0]=='namespace:': category = s[1] if s[0]=='name:': ontology_term = d[1][1:] if ontology_term == specific_type: root_node = ontology_id if category == specific_type or discover_root=='yes': if s[0]=='is_a:': ### Note: sometimes there are multiple parents indicated for a single child parent = s[1] ### immediate parent node #parent=string.split(parent,':')[1] if parent in edges: ### each child has one parent, one parent can have many children children = edges[parent] children[ontology_id]=[] else: children = {ontology_id:[]} edges[parent]=children edge_count+=1 if discover_root=='yes': all_children[ontology_id] = [] if ontology_id not in ontology_annotations: gt = OntologyTree(ontology_id,ontology_term,specific_type) ontology_annotations[ontology_id] = gt elif root_node == ontology_id: ### For example, biological process gt = OntologyTree(ontology_id,ontology_term,specific_type) ontology_annotations[ontology_id] = gt elif ontology_id != '' and ontology_term != '': gt = OntologyTree(ontology_id,ontology_term,specific_type) ontology_annotations_extra[ontology_id] = gt if discover_root=='yes': ### The root node should not exist as a child node for parent in edges: if parent not in all_children: root_node = parent specific_type = ontology_annotations_extra[root_node].OntologyTerm() #print 'Parent node assigned to:',specific_type ### Assing the root_node name as the Ontology-Type for ontology_id in ontology_annotations: ontology_annotations[ontology_id].setOntologyType(specific_type) if root_node == None: print 'NO ROOT NODE IDENTIFIED... SHOULD BE:', specific_type print filedir; kill if len(path)==0: path.append(0); path_ontology_db[tuple(path)] = root_node; return_path = list(path); #print [tuple(path)] else: path = [path[0]+1]; path_ontology_db[tuple(path)] = root_node; return_path = list(path); #print [tuple(path)] #export_data = export.ExportFile('OBO/test.txt') export_data='' nestTree(root_node,path,export_data,0) #export_data.close() #print 'Tree built' for path in path_ontology_db: path_dictionary[path]=[path] ###Build nested Path-index path_len = len(path); i=-1 while path_len+i > 0: parent_path = path[:i] if parent_path in path_dictionary: path_dictionary[parent_path].append(path) i-=1 print edge_count,'edges and',len(ontology_annotations), 'Ontology annotations imported for',specific_type #print [[[return_path]]] return path_ontology_db,built_ontology_paths,ontology_annotations,path_dictionary,return_path,rank ###################################### UPDATED OBO CODE - END def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def swapKeyValues(db): swapped={} for key in db: values = list(db[key]) ###If the value is not a list, make a list for value in values: try: swapped[value].append(key) except KeyError: swapped[value] = [key] swapped = eliminate_redundant_dict_values(swapped) return swapped def exportCurrentOntologyBuild(path_ontology_db,ontology_annotations,ontology_type, display=False): program_type,database_dir = unique.whatProgramIsThis(); parent_dir = '' if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' new_file = parent_dir+'OBO/builds/built_'+ontology_type+'_paths.txt' try: fn=filepath(new_file); data = open(fn,'w') except Exception: new_dir = parent_dir+'OBO/builds'; fn = filepath(new_dir) os.mkdir(fn) ###Re-Create directory if deleted fn=filepath(new_file); data = open(fn,'w') data.write('Path'+'\t'+'ontology_id'+'\n') for path in path_ontology_db: ontology_id = path_ontology_db[path]; path = pathToString(path) data.write(path +'\t'+ ontology_id +'\n') data.close() new_file = parent_dir+'OBO/builds/'+ontology_type+'_annotations.txt' fn=filepath(new_file); data = open(fn,'w') data.write('ontology_id'+'\t'+'Ontology Name'+'\t'+'Ontology Type'+'\n') for ontology_id in ontology_annotations: s = ontology_annotations[ontology_id] data.write(ontology_id +'\t'+ s.OntologyTerm() +'\t'+ s.OntologyType() +'\n') data.close() def convertStrListToIntList(path): path_int=[] for str in path: path_int.append(int(str)) return path_int def importPreviousOntologyAnnotations(target_ontology_type): ontology_annotations={} program_type,database_dir = unique.whatProgramIsThis(); parent_dir = '' if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' if target_ontology_type == 'GeneOntology': target_ontology_type = 'go' filename = parent_dir+'OBO/builds/'+target_ontology_type+'_annotations.txt'; fn=filepath(filename); x=0 for line in open(fn,'r').xreadlines(): if x==0: x=1 ###Skip the title line else: data = cleanUpLine(line) ontology_id,ontology_name,ontology_type = string.split(data,'\t') if ':' not in ontology_id: ontology_id = 'GO:'+ontology_id if ontology_name[0]== ' ': ontology_name = ontology_name[1:] s = OntologyTree(ontology_id,ontology_name,ontology_type) ontology_annotations[ontology_id] = s return ontology_annotations def importPreviousOntologyBuild(ontology_type,display=True): program_type,database_dir = unique.whatProgramIsThis(); parent_dir = '' if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' if ontology_type == 'GeneOntology': ontology_type = 'go' filename = parent_dir+'OBO/builds/built_'+ontology_type+'_paths.txt'; fn=filepath(filename); x=0; count=0 for line in open(fn,'r').xreadlines(): count+=1 original_increment = int(count/10); increment = original_increment try: ### This reduces run-time for the typical analysis where the databases are in sync and up-to-date if run_mappfinder == 'yes': if verified_nested == 'no': build_nestedDB='yes' else: build_nestedDB = 'no' else: build_nestedDB = 'no' except Exception: build_nestedDB = 'yes' for line in open(fn,'r').xreadlines(): if x==0: x+=1 ###Skip the title line else: x+=1 if x == increment and display: increment+=original_increment; print '*', data = cleanUpLine(line) path,ontology_id = string.split(data,'\t') path = tuple(map(int,string.split(path,'.'))) #path = string.split(path_str,'.'); path = convertStrListToIntList(path); path = tuple(path) #s = OntologyPath(ontology_id,'','','',path,''); s = OntologyPathAbr(ontology_id,path) if ':' not in ontology_id: ontology_id = 'GO:'+ontology_id path_ontology_db[path] = ontology_id try: built_ontology_paths[ontology_id].append(path) except KeyError: built_ontology_paths[ontology_id] = [path] if build_nestedDB == 'yes': path_dictionary[path]=[path] ###All of the paths need to be added before if build_nestedDB == 'yes': if build_nestedDB == 'yes': for path in path_dictionary: ###Build nested Path-index path_len = len(path); i=-1 while path_len+i > 0: parent_path = path[:i] try: path_dictionary[parent_path].append(path) except Exception: null=[] i-=1 #### Import gene data and associate with Nested Ontology def grabNestedOntologyIDs(): nested_ontology_tree={} for path in path_dictionary: parent_ontology_id = path_ontology_db[path] child_ontology_list=[] for child_path in path_dictionary[path]: child_ontology_id = path_ontology_db[child_path]; child_ontology_list.append(child_ontology_id) child_ontology_list = unique.unique(child_ontology_list) nested_ontology_tree[parent_ontology_id] = child_ontology_list return nested_ontology_tree def linkGenesToNestedOntology(ontology_to_gene): nested_ontology_genes={}; made_unique={}; x=0 original_increment = int(len(nested_ontology_tree)/10); increment = original_increment for parent_ontology_id in nested_ontology_tree: x+=1 if x == increment: increment+=original_increment; print '*', for child_ontology_id in nested_ontology_tree[parent_ontology_id]: ### This list of ontology_ids includes the parent, since it is the first entry in path_dictionary if child_ontology_id in ontology_to_gene: ensembls=ontology_to_gene[child_ontology_id] for ensembl in ensembls: try: ens_db = nested_ontology_genes[parent_ontology_id] ens_db[ensembl] = '' except KeyError: ens_db = {}; ens_db[ensembl] = ''; e = ens_db nested_ontology_genes[parent_ontology_id] = e return nested_ontology_genes def exportVersionData(version,version_date,dir): ### Used by the module UI program_type,database_dir = unique.whatProgramIsThis(); parent_dir = '' if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' elif 'OBO' in dir or 'Config' in dir: parent_dir = '' else: parent_dir = database_dir dir = parent_dir+dir global current_version; current_version = version global current_version_date; current_version_date = version_date new_file = dir+'version.txt' data = export.ExportFile(new_file) data.write(str(version)+'\t'+str(version_date)+'\n'); data.close() def exportOntologyRelationships(nested_ontology_gene,gene_to_source_id,mod,source_type,ontology_type): program_type,database_dir = unique.whatProgramIsThis() if ontology_type == 'GeneOntology': ontology_type = 'GO' new_file = database_dir+'/'+species_code+'/nested/'+mod+'_to_Nested-'+ontology_type+'.txt' data = export.ExportFile(new_file) title = [mod,'ontology_id']; title_str = string.join(title,'\t') data.write(title_str+'\n') for ontology_id in nested_ontology_gene: for gene in nested_ontology_gene[ontology_id]: output_list = [gene,ontology_id] output_str = string.join(output_list,'\t') data.write(output_str+'\n') data.close() print new_file, 'saved to disk' #### Main functions that grab data from above functions def remoteImportOntologyTree(ontology_type): global built_ontology_paths; global path_ontology_db; global path_dictionary built_ontology_paths={}; path_ontology_db={}; path_dictionary={} importPreviousOntologyBuild(ontology_type) return built_ontology_paths, path_ontology_db, path_dictionary def buildNestedOntologyTree(mappfinder,display=True): program_type,database_dir = unique.whatProgramIsThis(); parent_dir = '' if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' global run_mappfinder; run_mappfinder = mappfinder ###Import all the OBO Ontology tree information from http:/www.geneontology.org/ import_dir = '/'+parent_dir+'OBO'; global Ontology_version; path=[]; rank=0 c = GrabFiles(); c.setdirectory(import_dir) file_dirs = c.searchdirectory('.ontology') file_dirs += c.searchdirectory('.obo') file_dirs.reverse() x = file_dirs[1:]+file_dirs[0:1] ###Reorganize to mimic GenMAPP order start_time = time.time() ontology_type = '' #print file_dirs for file_dir in file_dirs: try: if '.obo' in file_dir or '.ontology' in file_dir: if 'gene_ontology' in file_dir or 'goslim' in file_dir: ontology_type = 'GeneOntology' if 'goslim' in file_dir: ontology_type = 'GOSlim' ###Import the 3 main Ontology files and index them so that the first path corresponds to the Ontology type - Software checks the date before parsing path_ontology_db,built_ontology_paths,ontology_annotations,path_dictionary,path,rank = importOBONew(file_dir,path,'biological_process',rank) try: path_ontology_db,built_ontology_paths,ontology_annotations,path_dictionary,path,rank = importOBONew(file_dir,path,'molecular_function',rank) except Exception: null=[] ### Sometimes missing from GO-Slim path_ontology_db,built_ontology_paths,ontology_annotations,path_dictionary,path,rank = importOBONew(file_dir,path,'cellular_component',rank) else: ontology_type = getOntologyType(file_dir) path_ontology_db,built_ontology_paths,ontology_annotations,path_dictionary,path,rank = importOBONew(file_dir,path,'',rank) deleteNestedOntologyFiles(ontology_type) ### Necessary to trigger an update for all species else: if display: print 'The ontology format present in',file_dir,'is no longer supported.' exportCurrentOntologyBuild(path_ontology_db,ontology_annotations,ontology_type,display=display) except Exception: pass ### If an Ontology file fails download, it still may create an empty file that will screw up the processing of other obo files - just skip it end_time = time.time(); time_diff = int(end_time-start_time) if display: print "Ontology categories imported and nested in %d seconds" % time_diff def getOntologyType(file_dir): ontology_type = string.split(file_dir,'/')[-1] if '_' in ontology_type: ontology_type = string.split(ontology_type,'_')[0]+'Ontology' else: ontology_type = string.split(ontology_type,'.')[0]+'Ontology' return ontology_type def deleteNestedOntologyFiles(ontology_type): program_type,database_dir = unique.whatProgramIsThis() current_species_dirs = unique.read_directory('/'+database_dir) for species_code in current_species_dirs: c = GrabFiles(); c.setdirectory('/'+database_dir+'/'+species_code+'/nested') if ontology_type == 'GeneOntology': ontology_type = 'GO' file_dirs = c.searchdirectory('-'+ontology_type) ### list all nested files referencing the Ontology type for file in file_dirs: try: os.remove(filepath(database_dir+'/'+species_code+'/nested/'+file)) except Exception: null=[] def verifyFileLength(filename): count = 0 try: fn=filepath(filename) for line in open(fn,'rU').xreadlines(): count+=1 if count>3: break except Exception: null=[] return count def verifyNestedFileCreation(species,mod_types,ontology_type): ### Determine which mods are present for Ontology program_type,database_dir = unique.whatProgramIsThis() mods_present = []; nested_present=[]; verified = 'no' for mod in mod_types: ontology_file = database_dir+'/'+species+'/gene-go/'+mod+'-'+ontology_type+'.txt' count = verifyFileLength(ontology_file) ### See if there are lines present in the file (if present) if count>1: mods_present.append(mod) if len(mods_present)>0: for mod in mods_present: if ontology_type == 'GeneOntology': ontology_type = 'GO' ontology_file = database_dir+'/'+species+'/nested/'+mod+'_to_Nested-'+ontology_type+'.txt' count = verifyFileLength(ontology_file) ### See if there are lines present in the file (if present) if count>1: nested_present.append(mod) if len(nested_present) == len(mods_present): verified = 'yes' return verified def findAvailableOntologies(species,mod_types): program_type,database_dir = unique.whatProgramIsThis() c = GrabFiles(); c.setdirectory('/'+database_dir+'/'+species+'/gene-go'); file_dirs=[] for mod in mod_types: file_dirs+= c.searchdirectory(mod+'-') avaialble_ontologies=[] for filedir in file_dirs: ontology_type = string.split(filedir,'-')[-1][:-4] ### remove the .txt avaialble_ontologies.append(ontology_type) avaialble_ontologies = unique.unique(avaialble_ontologies) return avaialble_ontologies def moveOntologyToArchiveDir(display=True): ### Move any existing OBO files to an archived directory as to not combine new with old annotations program_type,database_dir = unique.whatProgramIsThis(); parent_dir = '' if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite/' c = GrabFiles() c.setdirectory('/'+parent_dir+'OBO') file_dirs = c.searchdirectory('.ontology')+c.searchdirectory('.obo') for file_dir in file_dirs: new_file_dir = string.replace(file_dir,parent_dir+'OBO/',parent_dir+'OBO/archive/') if display: print 'Moving:',file_dir,'to:',new_file_dir export.customFileMove(file_dir,new_file_dir) if len(file_dirs)==0: c.setdirectory('/'+'OBO') file_dirs = c.searchdirectory('.ontology')+c.searchdirectory('.obo') for file_dir in file_dirs: new_file_dir = string.replace(file_dir,'OBO/',parent_dir+'OBO/') if display: print 'Moving:',file_dir,'to:',new_file_dir export.customFileMove(file_dir,new_file_dir) def buildNestedOntologyAssociations(species,mod_types,target_ontology_type,display=True): global species_code; species_code = species; global verified_nested global path_dictionary; path_dictionary={} global built_ontology_paths; built_ontology_paths={} global ontology_annotations; ontology_annotations={} global path_ontology_db; path_ontology_db={} if ('Linux' in platform.system()): mappfinder_db_input_dir = species_code+'/nested/' else: mappfinder_db_input_dir = '/'+species_code+'/nested/' buildNestedOntologyTree('yes') ### Checks the OBO directory to process new ontology files (if there) moveOntologyToArchiveDir(display=display) ### Move any new read ontology files to avaialble_ontologies = findAvailableOntologies(species,mod_types) verified_nested_db={} for ontology_type in avaialble_ontologies: ### This module verifies that the nested files are present (no longer considers database versions) verified_nested = verifyNestedFileCreation(species,mod_types,ontology_type) verified_nested_db[ontology_type] = verified_nested verified_nested = verified_nested_db[target_ontology_type] importPreviousOntologyBuild(target_ontology_type,display=display) ### populates the global variables we return below if verified_nested == 'no': ### modified this code such that any version change warrants a rebuild and if reset by BuildEntrezAffymetrixAssociations or other, that it triggers a rebuild if display: print 'Building %s Ontology nested gene association files for %s' % (target_ontology_type,species_code) ###Build Gene to Ontology associations for all MODs and export these for re-import by the MAPPFinder module global nested_ontology_tree nested_ontology_tree = grabNestedOntologyIDs() for mod in mod_types: try: start_time = time.time() mod_to_ontology = gene_associations.importGeneToOntologyData(species_code,mod,'null',target_ontology_type) ontology_to_mod = swapKeyValues(mod_to_ontology); total_gene_count = len(mod_to_ontology); mod_to_ontology=[] ###Obtain a database of ontology_ids with all nested gene associations nested_ontology_mod = linkGenesToNestedOntology(ontology_to_mod) exportOntologyRelationships(nested_ontology_mod,{},mod,'',target_ontology_type) end_time = time.time(); time_diff = int(end_time-start_time) if display: print "Ontology Nested Lists Process/Created in %d seconds" % time_diff except Exception: if mod != 'HMDB': None ### optionally indicate if a MOD doesn't have local files supporting the creation of a nested set #print mod, 'associated files not present!' return built_ontology_paths, path_ontology_db, path_dictionary def speciesData(): program_type,database_dir = unique.whatProgramIsThis() filename = 'Config/species.txt' fn=filepath(filename); global species_list; species_list=[]; global species_codes; species_codes={} for line in open(fn,'r').readlines(): data = cleanUpLine(line) abrev,species = string.split(data,'\t') species_list.append(species) species_codes[species] = abrev def sourceData(): program_type,database_dir = unique.whatProgramIsThis() filename = 'Config/source_data.txt' fn=filepath(filename) global source_types; source_types=[] global system_codes; system_codes={} global mod_types; mod_types=[] for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t'); source=t[0] try: system_code=t[1] except IndexError: system_code = 'NuLL' if len(t)>2: ### Therefore, this ID system is a potential MOD if t[2] == 'MOD': mod_types.append(source) if source not in mod_types: source_types.append(source) system_codes[system_code] = source ###Used when users include system code data in their input file if __name__ == '__main__': """This module imports Ontology hierarchy data, nests it, outputs it to GO-Elite and associates gene level data with nested Ontology terms for MAPPFinder""" species_code = 'Hs'; mod_types = ['Ensembl','EntrezGene']; ontology_type = 'MPhenoOntology' buildNestedOntologyAssociations(species_code,mod_types,ontology_type); sys.exit() #!/usr/bin/python ########################### #Program: GO-elite.py #Author: Nathan Salomonis #Date: 12/12/06 #Website: http://www.genmapp.org #Email: [email protected] ###########################
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/OBO_import.py
OBO_import.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os import math import traceback try: from stats_scripts import statistics except Exception: pass def makeTestFile(): all_data = [['name','harold','bob','frank','sally','kim','tim'], ['a','0','0','1','2','0','5'],['b','0','0','1','2','0','5'], ['c','0','0','1','2','0','5'],['d','0','0','1','2','0','5']] input_file = 'test.txt' export_object = open(input_file,'w') for i in all_data: export_object.write(string.join(i,'\t')+'\n') export_object.close() return input_file def filterFile(input_file,output_file,filter_names,force=False,calculateCentroids=False,comparisons=[],log2=False): if calculateCentroids: filter_names,group_index_db=filter_names export_object = open(output_file,'w') firstLine = True row_count=0 for line in open(input_file,'rU').xreadlines(): data = cleanUpLine(line) if '.csv' in input_file: values = string.split(data,',') else: values = string.split(data,'\t') row_count+=1 if firstLine: uid_index = 0 if data[0]!='#': if force == True: values2=[] for x in values: if ':' in x: x=string.split(x,':')[1] values2.append(x) else: values2.append(x) filter_names2=[] for f in filter_names: if f in values: filter_names2.append(f) if len(filter_names2)<2: filter_names2=[] for f in filter_names: if f in values2: filter_names2.append(f) filter_names = filter_names2 else: filter_names = filter_names2 if force == 'include': values= ['UID']+filter_names pass try: sample_index_list = map(lambda x: values.index(x), filter_names) except: ### If ":" in header name if ':' in line: values2=[] for x in values: if ':' in x: x=string.split(x,':')[1] values2.append(x) values = values2 sample_index_list = map(lambda x: values.index(x), filter_names) elif '.' in line: values2=[] for x in values: if '.' in x: x=string.split(x,'.')[0] values2.append(x) values = values2 sample_index_list = map(lambda x: values.index(x), filter_names) elif '.$' in line: filter_names2=[] for f in filter_names: ### if the name in the filter is a string within the input data-file for f1 in values: if f in f1: filter_names2.append(f1) ### change to the reference name break print len(filter_names2), len(values), len(filter_names);kill filter_names = filter_names2 #filter_names = map(lambda x: string.split(x,'.')[0], filter_names) #values = map(lambda x: string.split(x,'.')[0], values) sample_index_list = map(lambda x: values.index(x), filter_names) else: temp_count=1 for x in filter_names: if x not in values: temp_count+=1 if temp_count==500: print 'too many to print' elif temp_count>500: pass else: print x, print temp_count,'are missing';kill firstLine = False header = values if 'PSI_EventAnnotation' in input_file: uid_index = values.index('UID') if log2: try: values = map(lambda x: math.log(x+1,2)) except: pass if calculateCentroids: if len(comparisons)>0: export_object.write(string.join(['UID']+map(lambda x: x[0]+'-fold',comparisons),'\t')+'\n') ### Use the numerator group name else: clusters = map(str,group_index_db) export_object.write(string.join([values[uid_index]]+clusters,'\t')+'\n') continue ### skip the below code if force == 'include': if row_count>1: values += ['0'] try: filtered_values = map(lambda x: values[x], sample_index_list) ### simple and fast way to reorganize the samples except Exception: print traceback.format_exc() print len(values), len(sample_index_list) print input_file, len(filter_names) for i in filter_names: if i not in header: print i, 'not found' sys.exit() sys.exit() ### For PSI files with missing values at the end of each line, often if len(header) != len(values): diff = len(header)-len(values) values+=diff*[''] filtered_values = map(lambda x: values[x], sample_index_list) ### simple and fast way to reorganize the samples #print values[0]; print sample_index_list; print values; print len(values); print len(prior_values);kill prior_values=values ######################## Begin Centroid Calculation ######################## if calculateCentroids: mean_matrix=[] means={} for cluster in group_index_db: #### group_index_db[cluster] is all of the indeces for samples in a noted group, cluster is the actual cluster name (not number) try: mean=statistics.avg(map(lambda x: float(filtered_values[x]), group_index_db[cluster])) except: continue #mean = map(lambda x: filtered_values[uid][x], group_index_db[cluster]) ### Only one value means[cluster]=mean mean_matrix.append(str(mean)) filtered_values = mean_matrix if len(comparisons)>0: fold_matrix=[] for (group2, group1) in comparisons: fold = means[group2]-means[group1] fold_matrix.append(str(fold)) filtered_values = fold_matrix ######################## End Centroid Calculation ######################## export_object.write(string.join([values[uid_index]]+filtered_values,'\t')+'\n') export_object.close() print 'Filtered columns printed to:',output_file return output_file def filterRows(input_file,output_file,filterDB=None,logData=False,exclude=False): export_object = open(output_file,'w') firstLine = True uid_index=0 for line in open(input_file,'rU').xreadlines(): data = cleanUpLine(line) values = string.split(data,'\t') if 'PSI_EventAnnotation' in input_file and firstLine: uid_index = values.index('UID') if firstLine: try:uid_index=values.index('UID') except Exception: try: uid_index=values.index('uid') except Exception: uid_index = 0 firstLine = False export_object.write(line) else: if filterDB!=None: if values[uid_index] in filterDB: if logData: line = string.join([values[0]]+map(str,(map(lambda x: math.log(float(x)+1,2),values[1:]))),'\t')+'\n' if exclude==False: export_object.write(line) elif exclude: ### Only write out the entries NOT in the filter list export_object.write(line) else: max_val = max(map(float,values[1:])) #min_val = min(map(float,values[1:])) #if max_val>0.1: if max_val < 0.1: export_object.write(line) export_object.close() print 'Filtered rows printed to:',output_file def getFiltersFromHeatmap(filter_file): import collections alt_filter_list=None group_index_db = collections.OrderedDict() index=0 for line in open(filter_file,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if t[1] == 'row_clusters-flat': filter_list = string.split(data,'\t')[2:] if ':' in data: alt_filter_list = map(lambda x: string.split(x,":")[1],string.split(data,'\t')[2:]) elif t[0] == 'column_clusters-flat': cluster_list = string.split(data,'\t')[2:] if 'NA' in cluster_list: ### When MarkerFinder notated groups sample_names = map(lambda x: string.split(x,":")[1],filter_list) cluster_list = map(lambda x: string.split(x,":")[0],filter_list) filter_list = sample_names elif alt_filter_list != None: ### When undesired groups notated in the sample names filter_list = alt_filter_list index=0 for sample in filter_list: cluster=cluster_list[index] try: group_index_db[cluster].append(index) except Exception: group_index_db[cluster] = [index] index+=1 return filter_list, group_index_db def getComparisons(filter_file): """Import group comparisons when calculating fold changes""" groups={} for line in open(filter_file,'rU').xreadlines(): data = cleanUpLine(line) sample,group_num,group_name = string.split(data,'\t') groups[group_num]=group_name comparisons=[] comparison_file = string.replace(filter_file,'groups.','comps.') for line in open(comparison_file,'rU').xreadlines(): data = cleanUpLine(line) group2,group1 = string.split(data,'\t') group2 = groups[group2] group1 = groups[group1] comparisons.append([group2,group1]) return comparisons def getFilters(filter_file,calculateCentroids=False): """Import sample list for filtering and optionally sample to groups """ filter_list=[] if calculateCentroids: import collections group_index_db = collections.OrderedDict() index=0 for line in open(filter_file,'rU').xreadlines(): data = cleanUpLine(line) sample = string.split(data,'\t')[0] filter_list.append(sample) if calculateCentroids: sample,group_num,group_name = string.split(data,'\t') try: group_index_db[group_name].append(index) except Exception: group_index_db[group_name] = [index] index+=1 if calculateCentroids: return filter_list,group_index_db else: return filter_list """ Filter a dataset based on number of genes with expression above the indicated threshold """ def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') #https://stackoverflow.com/questions/36598136/remove-all-hex-characters-from-string-in-python try: data = data.decode('utf8').encode('ascii', errors='ignore') ### get rid of bad quotes except: print data return data def statisticallyFilterTransposedFile(input_file,output_file,threshold,minGeneCutoff=499,binarize=True): """ The input file is a large expression matrix with the rows as cells and the columns as genes to filter """ if 'exp.' in input_file: counts_file = string.replace(input_file,'exp.','geneCount.') else: counts_file = input_file[:-4]+'-geneCount.txt' import export eo = export.ExportFile(counts_file) eo.write('Sample\tGenes Expressed(threshold:'+str(threshold)+')\n') eo_full = export.ExportFile(output_file) sample_expressed_genes={} header=True count_sum_array=[] cells_retained=0 for line in open(input_file,'rU').xreadlines(): data = cleanUpLine(line) if '.csv' in input_file: t = string.split(data,',') else: t = string.split(data,'\t') if header: eo_full.write(line) gene_len = len(t) genes = t[1:] header=False else: cell = t[0] values = map(float,t[1:]) binarized_values = [] for v in values: if v>threshold: if binarize: ### do not count the individual read counts, only if a gene is expressed or not binarized_values.append(1) else: binarized_values.append(v) ### When summarizing counts and not genes expressed else: binarized_values.append(0) genes_expressed = sum(binarized_values) if genes_expressed>minGeneCutoff: eo_full.write(line) cells_retained+=1 eo.write(cell+'\t'+str(genes_expressed)+'\n') eo.close() eo_full.close() print cells_retained, 'Cells with genes expressed above the threshold' def statisticallyFilterFile(input_file,output_file,threshold,minGeneCutoff=499,binarize=True): if 'exp.' in input_file: counts_file = string.replace(input_file,'exp.','geneCount.') else: counts_file = input_file[:-4]+'-geneCount.txt' sample_expressed_genes={} header=True junction_max=[] count_sum_array=[] for line in open(input_file,'rU').xreadlines(): data = cleanUpLine(line) if '.csv' in input_file: t = string.split(data,',') else: t = string.split(data,'\t') if header: header_len = len(t) full_header = t samples = t[1:] header=False count_sum_array=[0]*len(samples) else: if len(t)==(header_len+1): ### Correct header with a missing UID column samples = full_header count_sum_array=[0]*len(samples) print 'fixing bad header' try: values = map(float,t[1:]) except Exception: if 'NA' in t[1:]: tn = [0 if x=='NA' else x for x in t[1:]] ### Replace NAs values = map(float,tn) else: tn = [0 if x=='' else x for x in t[1:]] ### Replace NAs values = map(float,tn) binarized_values = [] for v in values: if v>threshold: if binarize: binarized_values.append(1) else: binarized_values.append(v) ### When summarizing counts and not genes expressed else: binarized_values.append(0) count_sum_array = [sum(value) for value in zip(*[count_sum_array,binarized_values])] index=0 distribution=[] count_sum_array_db={} samples_to_retain =[] samples_to_exclude = [] for sample in samples: count_sum_array_db[sample] = count_sum_array[index] distribution.append(count_sum_array[index]) index+=1 from stats_scripts import statistics distribution.sort() avg = int(statistics.avg(distribution)) stdev = int(statistics.stdev(distribution)) min_exp = int(min(distribution)) cutoff = avg - (stdev*2) dev = 2 print 'The average number of genes expressed above %s is %s, (SD is %s, min is %s)' % (threshold,avg,stdev,min_exp) if cutoff<0: if (stdev-avg)>0: cutoff = avg - (stdev/2); dev = 0.5 print cutoff, 'genes expressed selected as a default cutoff to include cells (2-stdev away)' else: cutoff = avg - stdev; dev = 1 print cutoff, 'genes expressed selected as a default cutoff to include cells (1-stdev away)' if min_exp>cutoff: cutoff = avg - stdev; dev = 1 print 'Using a default cutoff of >=500 genes per cell expressed/cell' import export eo = export.ExportFile(counts_file) eo.write('Sample\tGenes Expressed(threshold:'+str(threshold)+')\n') for sample in samples: ### keep the original order if count_sum_array_db[sample]>minGeneCutoff: samples_to_retain.append(sample) else: samples_to_exclude.append(sample) eo.write(sample+'\t'+str(count_sum_array_db[sample])+'\n') if len(samples_to_retain)<4: ### Don't remove any if too few samples samples_to_retain+=samples_to_exclude else: print len(samples_to_exclude), 'samples removed (< %d genes expressed)' % minGeneCutoff eo.close() print 'Exporting the filtered expression file to:' print output_file filterFile(input_file,output_file,samples_to_retain) def transposeMatrix(input_file): arrays=[] import export eo = export.ExportFile(input_file[:-4]+'-transposed.txt') for line in open(input_file,'rU').xreadlines(): data = cleanUpLine(line) values = string.split(data,'\t') arrays.append(values) t_arrays = zip(*arrays) for t in t_arrays: eo.write(string.join(t,'\t')+'\n') eo.close() if __name__ == '__main__': ################ Comand-line arguments ################ import getopt filter_rows=False filter_file=None force=False exclude = False calculateCentroids=False geneCountFilter=False expressionCutoff=1 returnComparisons=False comparisons=[] binarize=True transpose=False log2=False fileFormat = 'columns' if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments filter_names = ['test-1','test-2','test-3'] input_file = makeTestFile() else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','f=','r=','median=','medoid=', 'fold=', 'folds=', 'centroid=','force=','minGeneCutoff=','expressionCutoff=','geneCountFilter=', 'binarize=', 'transpose=','fileFormat=','log2=']) #print sys.argv[1:] for opt, arg in options: if opt == '--i': input_file=arg elif opt == '--transpose': transpose = True elif opt == '--f': filter_file=arg elif opt == '--median' or opt=='--medoid' or opt=='--centroid': calculateCentroids = True elif opt == '--fold': returnComparisons = True elif opt == '--log2': log2 = True elif opt == '--r': if arg == 'exclude': filter_rows=True exclude=True else: filter_rows=True elif opt == '--force': if arg == 'include': force = arg else: force=True elif opt == '--geneCountFilter': geneCountFilter=True elif opt == '--expressionCutoff': expressionCutoff=float(arg) elif opt == '--minGeneCutoff': minGeneCutoff=int(arg) elif opt == '--binarize': if 'alse' in arg or 'no' in arg: binarize=False elif opt == '--fileFormat': fileFormat=arg if fileFormat != 'columns': fileFormat = 'rows' output_file = input_file[:-4]+'-filtered.txt' if transpose: transposeMatrix(input_file) sys.exit() if geneCountFilter: if fileFormat == 'columns': statisticallyFilterFile(input_file,input_file[:-4]+'-OutlierRemoved.txt',expressionCutoff,minGeneCutoff=199,binarize=binarize); sys.exit() else: statisticallyFilterTransposedFile(input_file,input_file[:-4]+'-OutlierRemoved.txt',expressionCutoff,minGeneCutoff=199,binarize=binarize); sys.exit() if filter_rows: filter_names = getFilters(filter_file) filterRows(input_file,output_file,filterDB=filter_names,logData=False,exclude=exclude) elif calculateCentroids: output_file = input_file[:-4]+'-mean.txt' if returnComparisons: comparisons = getComparisons(filter_file) output_file = input_file[:-4]+'-fold.txt' try: filter_names,group_index_db = getFilters(filter_file,calculateCentroids=calculateCentroids) except Exception: print traceback.format_exc() filter_names,group_index_db = getFiltersFromHeatmap(filter_file) filterFile(input_file,output_file,(filter_names,group_index_db),force=force,calculateCentroids=calculateCentroids,comparisons=comparisons) else: filter_names = getFilters(filter_file) filterFile(input_file,output_file,filter_names,force=force,log2=log2)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/sampleIndexSelection.py
sampleIndexSelection.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This module contains methods for reading Affymetrix formatted CSV annotations files from http://www.affymetrix.com, extracting out various direct and inferred gene relationships, downloading, integrating and inferring WikiPathway gene relationships and downloading and extracting EntrezGene-Gene Ontology relationships from NCBI.""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import datetime import export import update import gene_associations try: from import_scripts import OBO_import except Exception: import OBO_import ################# Parse directory files def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): try: dir_list = unique.read_directory(sub_dir) #add in code to prevent folder names from being included dir_list2 = [] for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv" or entry[-4:] == ".TXT" or entry[-4:] == ".tab" or '.zip' in entry: dir_list2.append(entry) except Exception: #print sub_dir, "NOT FOUND!!!!" dir_list2=[] return dir_list2 def returnDirectories(sub_dir): dir_list = unique.returnDirectories(sub_dir) ###Below code used to prevent folder names from being included dir_list2 = [] for i in dir_list: if "." not in i: dir_list2.append(i) return dir_list2 def cleanUpLine(line): data = string.replace(line,'\n','') data = string.replace(data,'\c','') data = string.replace(data,'\r','') data = string.replace(data,'"','') return data class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance file = getDirectoryFiles(self.data,str(search_term)) if len(file)<1: print search_term,'not found' return file def returndirectory(self): dir_list = read_directory(self.data) return dir_list def getDirectoryFiles(import_dir, search_term): exact_file = '' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results affy_data_dir = import_dir[1:]+'/'+data if search_term in affy_data_dir: exact_file = affy_data_dir return exact_file ################# Import and Annotate Data class AffymetrixInformation: def __init__(self,probeset,symbol,ensembl,entrez,unigene,uniprot,description,goids,go_names,pathways): self._probeset = probeset; self._ensembl = ensembl; self._uniprot = uniprot; self._description = description self._entrez = entrez; self._symbol = symbol; self._unigene = unigene self._goids = goids; self._go_names = go_names; self._pathways = pathways def ArrayID(self): return self._probeset def Description(self): return self._description def Symbol(self): return self._symbol def Ensembl(self): return self._ensembl def EnsemblString(self): ens_str = string.join(self._ensembl,'|') return ens_str def Entrez(self): return self._entrez def EntrezString(self): entrez_str = string.join(self._entrez,'|') return entrez_str def Unigene(self): return self._unigene def UnigeneString(self): unigene_str = string.join(self._unigene,'|') return unigene_str def Uniprot(self): return self._uniprot def GOIDs(self): return self._goids def GOProcessIDs(self): return self._goids[0] def GOComponentIDs(self): return self._goids[1] def GOFunctionIDs(self): return self._goids[2] def GONameLists(self): return self._go_names def GOProcessNames(self): go_names = string.join(self._go_names[0],' // ') return go_names def GOComponentNames(self): go_names = string.join(self._go_names[1],' // ') return go_names def GOFunctionNames(self): go_names = string.join(self._go_names[2],' // ') return go_names def GONames(self): go_names = self._go_names[0]+self._go_names[1]+self._go_names[2] return go_names def Pathways(self): return self._pathways def PathwayInfo(self): pathway_str = string.join(self.Pathways(),' // ') return pathway_str def GOPathwayInfo(self): pathway_str = string.join(self.GONames() + self.Pathways(),' // ') return pathway_str def resetEnsembl(self,ensembl): self._ensembl = ensembl def resetEntrez(self,entrez): self._entrez = entrez def setSequence(self,seq): self.seq = seq def setSpecies(self,species): self.species = species def setCoordinates(self,coordinates): self.coordinates = coordinates def Sequence(self): return self.seq def Species(self): return self.species def Coordinates(self): return self.coordinates def ArrayValues(self): output = self.Symbol()+'|'+self.ArrayID() return output def __repr__(self): return self.ArrayValues() class InferredEntrezInformation: def __init__(self,symbol,entrez,description): self._entrez = entrez; self._symbol = symbol; self._description = description def Entrez(self): return self._entrez def Symbol(self): return self._symbol def Description(self): return self._description def DataValues(self): output = self.Symbol()+'|'+self.Entrez() return output def __repr__(self): return self.DataValues() def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]); list.sort(); db1[key] = list return db1 def buildMODDbase(): mod_db={} mod_db['Dr'] = 'FlyBase' mod_db['Ce'] = 'WormBase' mod_db['Mm'] = 'MGI Name' mod_db['Rn'] = 'RGD Name' mod_db['Sc'] = 'SGD accession number' mod_db['At'] = 'AGI' return mod_db def verifyFile(filename): fn=filepath(filename); file_found = 'yes' try: for line in open(fn,'rU').xreadlines():break except Exception: file_found = 'no' return file_found ######### Import New Data ########## def parse_affymetrix_annotations(filename,species): ###Import an Affymetrix array annotation file (from http://www.affymetrix.com) and parse out annotations temp_affy_db = {}; x=0; y=0 if process_go == 'yes': eg_go_found = verifyFile('Databases/'+species+'/gene-go/EntrezGene-GeneOntology.txt') ens_go_found = verifyFile('Databases/'+species+'/gene-go/Ensembl-GeneOntology.txt') if eg_go_found == 'no' or ens_go_found == 'no': process_go_var = 'yes' else: process_go_var = 'yes' fn=filepath(filename); mod_db = buildMODDbase() for line in open(fn,'r').readlines(): probeset_data = string.replace(line,'\n','') #remove endline probeset_data = string.replace(probeset_data,'---','') affy_data = string.split(probeset_data[1:-1],'","') #remove endline try: mod_name = mod_db[species] except KeyError: mod_name = 'YYYYYY' ###Something that should not be found if x==0 and line[0]!='#': x=1; affy_headers = affy_data for header in affy_headers: y = 0 while y < len(affy_headers): if 'Probe Set ID' in affy_headers[y] or 'probeset_id' in affy_headers[y]: ps = y if 'transcript_cluster_id' in affy_headers[y]: tc = y if 'Gene Symbol' in affy_headers[y]: gs = y if 'Ensembl' in affy_headers[y]: ens = y if ('nigene' in affy_headers[y] or 'UniGene' in affy_headers[y]) and 'Cluster' not in affy_headers[y]: ug = y if 'mrna_assignment' in affy_headers[y]: ma = y if 'gene_assignment' in affy_headers[y]: ga = y if 'Entrez' in affy_headers[y] or 'LocusLink' in affy_headers[y]: ll = y if 'SwissProt' in affy_headers[y] or 'swissprot' in affy_headers[y]: sp = y if 'Gene Title' in affy_headers[y]: gt = y if 'rocess' in affy_headers[y]: bp = y if 'omponent' in affy_headers[y]: cc = y if 'unction' in affy_headers[y]: mf = y if 'RefSeq Protein' in affy_headers[y]: rp = y if 'RefSeq Transcript' in affy_headers[y]: rt = y if 'athway' in affy_headers[y]: gp = y ### miRNA array specific if 'Alignments' == affy_headers[y]: al = y if 'Transcript ID(Array Design)' in affy_headers[y]: ti = y if 'Sequence Type' in affy_headers[y]: st = y if 'Sequence' == affy_headers[y]: sq = y if 'Species Scientific Name' == affy_headers[y]: ss = y if mod_name in affy_headers[y]: mn = y y += 1 elif x == 1: ###If using the Affy 2.0 Annotation file structure, both probeset and transcript cluster IDs are present ###If transcript_cluster centric file (gene's only no probesets), then probeset = transcript_cluster try: transcript_cluster = affy_data[tc] ###Affy's unique Gene-ID probeset = affy_data[ps] if probeset != transcript_cluster: ###Occurs for transcript_cluster ID centered files probesets = [probeset,transcript_cluster] else: probesets = [probeset] ps = tc; version = 2 ### Used to define where the non-UID data exists except UnboundLocalError: try: probesets = [affy_data[ps]]; uniprot = affy_data[sp]; version = 1 except Exception: probesets = [affy_data[ps]]; version = 3 ### Specific to miRNA arrays try: uniprot = affy_data[sp]; unigene = affy_data[ug]; uniprot_list = string.split(uniprot,' /// ') except Exception: uniprot=''; unigene=''; uniprot_list=[] ### This occurs due to miRNA array or a random python error, typically once twice in the file symbol = ''; description = '' try: pathway_data = affy_data[gp] except Exception: pathway_data='' ### This occurs due to miRNA array or a random python error, typically once twice in the file for probeset in probesets: if version == 1: ###Applies to 3' biased arrays only (Conventional Format) description = affy_data[gt]; symbol = affy_data[gs]; goa=''; entrez = affy_data[ll] ensembl_list = []; ensembl = affy_data[ens]; ensembl_list = string.split(ensembl,' /// ') entrez_list = string.split(entrez,' /// '); unigene_list = string.split(unigene,' /// ') uniprot_list = string.split(uniprot,' /// '); symbol_list = string.split(symbol,' /// ') try: mod = affy_data[mn]; mod_list = string.split(mod,' /// ') except UnboundLocalError: mod = ''; mod_list = [] if len(symbol)<1 and len(mod)>0: symbol = mod ### For example, for At, use Tair if no symbol present if len(mod_list)>3: mod_list=[] ref_prot = affy_data[rp]; ref_prot_list = string.split(ref_prot,' /// ') ref_tran = affy_data[rt]; ref_tran_list = string.split(ref_tran,' /// ') ###Process GO information if desired if process_go_var == 'yes': process = affy_data[bp]; component = affy_data[cc]; function = affy_data[mf] process_goids, process_names = extractPathwayData(process,'GO',version) component_goids, component_names = extractPathwayData(component,'GO',version) function_goids, function_names = extractPathwayData(function,'GO',version) goids = [process_goids,component_goids,function_goids] go_names = [process_names,component_names,function_names] else: goids=[]; go_names=[] if extract_pathway_names == 'yes': null, pathways = extractPathwayData(pathway_data,'pathway',version) else: pathways = [] ai = AffymetrixInformation(probeset, symbol, ensembl_list, entrez_list, unigene_list, uniprot_list, description, goids, go_names, pathways) if len(entrez_list)<5: affy_annotation_db[probeset] = ai if parse_wikipathways == 'yes': if (len(entrez_list)<4 and len(entrez_list)>0) and (len(ensembl_list)<4 and len(ensembl_list)>0): primary_list = entrez_list+ensembl_list for primary in primary_list: if len(primary)>0: for gene in ensembl_list: if len(gene)>1: meta[primary,gene]=[] for gene in ref_prot_list: gene_data = string.split(gene,'.'); gene = gene_data[0] if len(gene)>1: meta[primary,gene]=[] for gene in ref_tran_list: if len(gene)>1: meta[primary,gene]=[] for gene in unigene_list: if len(gene)>1: meta[primary,gene]=[] for gene in mod_list: if len(gene)>1: meta[primary,'mod:'+gene]=[] for gene in symbol_list: if len(gene)>1: meta[primary,gene]=[] for gene in uniprot_list: if len(gene)>1: meta[primary,gene]=[] for gene in entrez_list: if len(gene)>1: meta[primary,gene]=[] #symbol_list = string.split(symbol,' /// '); description_list = string.split(description,' /// ') if len(entrez_list)<2: ###Only store annotations for EntrezGene if there is only one listed ID, since the symbol, description and Entrez Gene are sorted alphabetically, not organized relative to each other (stupid) iter = 0 for entrez in entrez_list: #symbol = symbol_list[iter]; description = description_list[iter] ###grab the symbol that matches the EntrezGene entry z = InferredEntrezInformation(symbol,entrez,description) try: gene_annotation_db[entrez] = z except NameError: null=[] iter += 1 if len(ensembl_list)<2: ###Only store annotations for EntrezGene if there is only one listed ID, since the symbol, description and Entrez Gene are sorted alphabetically, not organized relative to each other (stupid) for ensembl in ensembl_list: z = InferredEntrezInformation(symbol,ensembl,description) try: gene_annotation_db['ENS:'+ensembl] = z except NameError: null=[] elif version == 2: ### Applies to Exon, Transcript, whole geneome Gene arrays. uniprot_list2 = [] for uniprot_id in uniprot_list: if len(uniprot_id)>0: try: a = int(uniprot_id[1]); uniprot_list2.append(uniprot_id) except ValueError: null = [] uniprot_list = uniprot_list2 ensembl_list=[]; descriptions=[]; refseq_list=[]; symbol_list=[] try: mrna_associations = affy_data[ma] except IndexError: mrna_associations=''; ensembl_data = string.split(mrna_associations,' /// ') for entry in ensembl_data: annotations = string.split(entry,' // ') #if probeset == '8148358': print annotations for i in annotations: if 'gene:ENS' in i: ensembl_id_data = string.split(i,'gene:ENS') ensembl_ids = ensembl_id_data[1:]; description = ensembl_id_data[0] ###There can be multiple IDs descriptions.append((len(description),description)) for ensembl_id in ensembl_ids: ensembl_id = string.split(ensembl_id,' ') ensembl_id = 'ENS'+ensembl_id[0]; ensembl_list.append(ensembl_id) if 'NM_' in i: refseq_id = string.replace(i,' ','') refseq_list.append(refseq_id) #if probeset == '8148358': print ensembl_list; kill try: gene_assocs = affy_data[ga]; entrez_list=[] except IndexError: gene_assocs=''; entrez_list=[] entrez_data = string.split(gene_assocs,' /// ') for entry in entrez_data: try: if len(entry)>0: annotations = string.split(entry,' // ') entrez_gene = int(annotations[-1]); entrez_list.append(str(entrez_gene)) symbol = annotations[1]; description = annotations[2]; descriptions.append((len(description),description)) symbol_list.append(symbol) #print entrez_gene,symbol, descriptions;kill z = InferredEntrezInformation(symbol,entrez_gene,description) try: gene_annotation_db[str(entrez_gene)] = z ###create an inferred Entrez gene database except NameError: null = [] except ValueError: null = [] if len(symbol_list) == 1 and len(ensembl_list)>0: symbol = symbol_list[0] for ensembl in ensembl_list: z = InferredEntrezInformation(symbol,ensembl,description) try: gene_annotation_db['ENS:'+ensembl] = z ###create an inferred Entrez gene database except NameError: null = [] gene_assocs = string.replace(gene_assocs,'---','') unigene_data = string.split(unigene,' /// '); unigene_list = [] for entry in unigene_data: if len(entry)>0: annotations = string.split(entry,' // ') try: null = int(annotations[-2][3:]); unigene_list.append(annotations[-2]) except Exception: null = [] ###Only applies to optional GOID inclusion if parse_wikipathways == 'yes': if (len(entrez_list)<4 and len(entrez_list)>0) and (len(ensembl_list)<4 and len(ensembl_list)>0): primary_list = entrez_list+ensembl_list for primary in primary_list: if len(primary)>0: for gene in ensembl_list: if len(gene)>1: meta[primary,gene]=[] for gene in refseq_list: gene_data = string.split(gene,'.'); gene = gene_data[0] if len(gene)>1: meta[primary,gene]=[] for gene in unigene_list: if len(gene)>1: meta[primary,gene]=[] for gene in symbol_list: if len(gene)>1: meta[primary,gene]=[] for gene in uniprot_list: if len(gene)>1: meta[primary,gene]=[] for gene in entrez_list: if len(gene)>1: meta[primary,gene]=[] if process_go_var == 'yes': try: process = affy_data[bp]; component = affy_data[cc]; function = affy_data[mf] except IndexError: process = ''; component=''; function=''### This occurs due to a random python error, typically once twice in the file process_goids, process_names = extractPathwayData(process,'GO',version) component_goids, component_names = extractPathwayData(component,'GO',version) function_goids, function_names = extractPathwayData(function,'GO',version) goids = [process_goids,component_goids,function_goids] go_names = [process_names,component_names,function_names] else: goids=[]; go_names=[] if extract_pathway_names == 'yes': null, pathways = extractPathwayData(pathway_data,[],version) else: pathways = [] entrez_list=unique.unique(entrez_list); unigene_list=unique.unique(unigene_list); uniprot_list=unique.unique(uniprot_list); ensembl_list=unique.unique(ensembl_list) descriptions2=[] for i in descriptions: if 'cdna:known' not in i: descriptions2.append(i) descriptions = descriptions2 if len(descriptions)>0: descriptions.sort(); description = descriptions[-1][1] if description[0] == ' ': description = description[1:] ### some entries begin with a blank ai = AffymetrixInformation(probeset,symbol,ensembl_list,entrez_list,unigene_list,uniprot_list,description,goids,go_names,pathways) if len(entrez_list)<5 and len(ensembl_list)<5: affy_annotation_db[probeset] = ai elif version == 3: description = affy_data[st]; symbol = affy_data[ti] ai = AffymetrixInformation(probeset, symbol, [], [], [], [], description, [], [], []) ai.setSequence(affy_data[sq]) ai.setSpecies(affy_data[ss]) ai.setCoordinates(affy_data[al]) affy_annotation_db[probeset] = ai return version def getUIDAnnotationsFromGOElite(conventional_array_db,species_code,vendor,use_go): import gene_associations; import time start_time = time.time() ### Get Gene Ontology gene associations try: gene_to_mapp_ens = gene_associations.importGeneMAPPData(species_code,'Ensembl-MAPP.txt') ### was just 'Ensembl' except Exception: gene_to_mapp_ens = {} try: gene_to_mapp_eg = gene_associations.importGeneMAPPData(species_code,'EntrezGene-MAPP.txt') except Exception: gene_to_mapp_eg = {} if vendor == 'Affymetrix': ### Remove exon associations which decrease run efficency and are superfulous try: ens_to_array = gene_associations.getGeneToUidNoExon(species_code,'Ensembl-'+vendor); print 'Ensembl-'+vendor,'relationships imported' except Exception: ens_to_array={} try: eg_to_array = gene_associations.getGeneToUidNoExon(species_code,'EntrezGene-'+vendor); print 'EntrezGene-'+vendor,'relationships imported' except Exception: eg_to_array={} print '*', else: try: ens_to_array = gene_associations.getGeneToUid(species_code,'Ensembl-'+vendor) except Exception: ens_to_array = {} try: eg_to_array = gene_associations.getGeneToUid(species_code,'EntrezGene-'+vendor) except Exception: eg_to_array = {} print '*', try: ens_annotations = gene_associations.importGeneData(species_code,'Ensembl') except Exception: ens_annotations = {} try: eg_annotations = gene_associations.importGeneData(species_code,'EntrezGene') except Exception: eg_annotations = {} if use_go == 'yes': try: from import_scripts import OBO_import except Exception: import OBO_import go_annotations = OBO_import.importPreviousOntologyAnnotations('GeneOntology') try: gene_to_go_ens = gene_associations.importGeneToOntologyData(species_code,'Ensembl','null','GeneOntology') except Exception: gene_to_go_ens = {} print '*', try: gene_to_go_eg = gene_associations.importGeneToOntologyData(species_code,'EntrezGene','null','GeneOntology') except Exception: gene_to_go_eg = {} print '*', component_db,process_db,function_db,selected_array_ens = annotateGOElitePathways('GO',go_annotations,gene_to_go_ens,ens_to_array) print '*', component_eg_db,process_eg_db,function_eg_db,selected_array_eg = annotateGOElitePathways('GO',go_annotations,gene_to_go_eg,eg_to_array) print '*', component_db = combineDBs(component_eg_db,component_db) print '*', process_db = combineDBs(process_eg_db,process_db) print '*', function_db = combineDBs(function_eg_db,function_db) else: selected_array_ens={} selected_array_eg ={} print '* * * * * *', unique_arrayids={} ### Get all unique probesets for gene in ens_to_array: for uid in ens_to_array[gene]: unique_arrayids[uid]=[] for gene in eg_to_array: for uid in eg_to_array[gene]: unique_arrayids[uid]=[] array_ens_mapp_db = annotateGOElitePathways('MAPP','',gene_to_mapp_ens,ens_to_array) array_eg_mapp_db = annotateGOElitePathways('MAPP','',gene_to_mapp_eg,eg_to_array) array_mapp_db = combineDBs(array_ens_mapp_db,array_eg_mapp_db) print '*', array_to_ens = swapKeyValues(ens_to_array) array_to_eg = swapKeyValues(eg_to_array) for uid in selected_array_ens: gene = selected_array_ens[uid] ### Best candidate gene of several array_to_ens[uid].remove(gene) ### Delete the first instance of this Ensembl array_to_ens[uid].append(gene); array_to_ens[uid].reverse() ### Make the first ID for uid in selected_array_eg: gene = selected_array_eg[uid] array_to_eg[uid].remove(gene) ### Delete the first instance of this Ensembl array_to_eg[uid].append(gene); array_to_eg[uid].reverse() ### Make the first ID global array_symbols; global array_descriptions; array_symbols={}; array_descriptions={} getArrayIDAnnotations(array_to_ens,ens_annotations,'Ensembl') getArrayIDAnnotations(array_to_eg,eg_annotations,'Entrez') print '*', for arrayid in unique_arrayids: try: component_names = component_db[arrayid] except Exception: component_names=[] try: process_names = process_db[arrayid] except Exception: process_names=[] try: function_names = function_db[arrayid] except Exception: function_names=[] try: wp_names = array_mapp_db[arrayid] except Exception: wp_names=[] try: ensembls = array_to_ens[arrayid] except Exception: ensembls=[] try: entrezs = array_to_eg[arrayid] except Exception: entrezs=[] try: symbol = array_symbols[arrayid] except Exception: symbol='' try: description = array_descriptions[arrayid] except Exception: description='' #if len(wp_names)>0: #print arrayid, component_names, process_names, function_names, wp_names, ensembls, entrezs, symbol, description;kill try: ca = conventional_array_db[arrayid] definition = ca.Description() symbol = ca.Symbol() ens = ca.Ensembl() entrez = ca.Entrez() pathways = ca.Pathways() process, component, function = ca.GONameLists() ensembls+=ens; entrezs+=entrez; wp_names+=pathways component_names+=component; process_names+=process; function_names+=function ensembls=unique.unique(ensembls); entrezs=unique.unique(entrezs); wp_names=unique.unique(wp_names) component_names=unique.unique(component_names); process_names=unique.unique(process_names); function_names=unique.unique(function_names) except Exception: null=[] go_names = process_names,component_names,function_names ai = AffymetrixInformation(arrayid,symbol,ensembls,entrezs,[],[],description,[],go_names,wp_names) conventional_array_db[arrayid] = ai #print len(conventional_array_db),'ArrayIDs with annotations.' end_time = time.time(); time_diff = int(end_time-start_time) print 'ArrayID annotations imported in',time_diff, 'seconds' return conventional_array_db class PathwayInformation: def __init__(self,component_list,function_list,process_list,pathway_list): self.component_list = component_list; self.function_list = function_list self.process_list = process_list; self.pathway_list = pathway_list def Component(self): return self.Format(self.component_list) def Process(self): return self.Format(self.process_list) def Function(self): return self.Format(self.function_list) def Pathway(self): return self.Format(self.pathway_list) def Combined(self): return self.Format(self.pathway_list+self.process_list+self.function_list+self.component_list) def Format(self,terms): return string.join(terms,' // ') def getHousekeepingGenes(species_code): vendor = 'Affymetrix' exclude = ['ENSG00000256901'] ### Incorrect homology with housekeeping import gene_associations try: ens_to_array = gene_associations.getGeneToUidNoExon(species_code,'Ensembl-'+vendor); print 'Ensembl-'+vendor,'relationships imported' except Exception: ens_to_array={} housekeeping_genes={} for gene in ens_to_array: for uid in ens_to_array[gene]: if 'AFFX' in uid: if gene not in exclude: housekeeping_genes[gene]=[] return housekeeping_genes def getEnsemblAnnotationsFromGOElite(species_code): import gene_associations; import time start_time = time.time() ### Get Gene Ontology gene associations try: gene_to_mapp_ens = gene_associations.importGeneMAPPData(species_code,'Ensembl-MAPP.txt') except Exception: gene_to_mapp_ens = {} try: from import_scripts import OBO_import except Exception: import OBO_import go_annotations = OBO_import.importPreviousOntologyAnnotations('GeneOntology') try: gene_to_go_ens = gene_associations.importGeneToOntologyData(species_code,'Ensembl','null','GeneOntology') except Exception: gene_to_go_ens = {} component_db={}; process_db={}; function_db={}; all_genes={} for gene in gene_to_go_ens: all_genes[gene]=[] for goid in gene_to_go_ens[gene]: if goid in go_annotations: s = go_annotations[goid] go_name = string.replace(s.OntologyTerm(),'\\','') gotype = s.OntologyType() if gotype[0] == 'C' or gotype[0] == 'c': try: component_db[gene].append(go_name) except KeyError: component_db[gene] = [go_name] elif gotype[0] == 'P' or gotype[0] == 'p' or gotype[0] == 'b': try: process_db[gene].append(go_name) except KeyError: process_db[gene] = [go_name] elif gotype[0] == 'F' or gotype[0] == 'f' or gotype[0] == 'm': try: function_db[gene].append(go_name) except KeyError: function_db[gene] = [go_name] for gene in gene_to_mapp_ens: all_genes[gene]=[] for gene in all_genes: component_go=[]; process_go=[]; function_go=[]; pathways=[] if gene in component_db: component_go = component_db[gene] if gene in function_db: function_go = function_db[gene] if gene in process_db: process_go = process_db[gene] if gene in gene_to_mapp_ens: pathways = gene_to_mapp_ens[gene] pi=PathwayInformation(component_go,function_go,process_go,pathways) all_genes[gene]=pi end_time = time.time(); time_diff = int(end_time-start_time) print len(all_genes),'Ensembl GO/pathway annotations imported in',time_diff, 'seconds' return all_genes def getArrayIDAnnotations(uid_to_gene,gene_annotations,gene_type): for uid in uid_to_gene: gene = uid_to_gene[uid][0] if gene in gene_annotations: s = gene_annotations[gene] if len(s.Symbol()) > 0: array_symbols[uid] = s.Symbol() array_descriptions[uid] = s.Description() def combineDBs(db1,db2): for i in db1: try: db1[i]+=db2[i] except Exception: null=[] for i in db2: try: db2[i]+=db1[i] except Exception: db1[i]=db2[i] db1 = eliminate_redundant_dict_values(db1) return db1 def annotateGOElitePathways(pathway_type,go_annotations,gene_to_pathway,gene_to_uid): array_pathway_db={}; determine_best_geneID={} for gene in gene_to_uid: #if gene == 'ENSG00000233911': print gene_to_uid[gene],len(gene_to_pathway[gene]),'b' try: pathways = gene_to_pathway[gene] except Exception: pathways=[] for arrayid in gene_to_uid[gene]: #if arrayid == '208286_x_at': print 'a',[gene] for pathway in pathways: try: if pathway_type == 'GO': s = go_annotations[pathway] go_name = string.replace(s.OntologyTerm(),'\\','') try: array_pathway_db[arrayid,s.OntologyType()].append(go_name) except Exception: array_pathway_db[arrayid,s.OntologyType()] = [go_name] else: try: array_pathway_db[arrayid].append(pathway + '(WikiPathways)') except Exception: array_pathway_db[arrayid] = [pathway + '(WikiPathways)'] except Exception: null=[] ### if GOID not found in annotation database if pathway_type == 'GO': try: determine_best_geneID[arrayid].append([len(pathways),gene]) except Exception: determine_best_geneID[arrayid]=[[len(pathways),gene]] array_pathway_db = eliminate_redundant_dict_values(array_pathway_db) if pathway_type == 'GO': ### First, see which gene has the best GO annotations for an arrayID selected_array_gene={} for arrayid in determine_best_geneID: if len(determine_best_geneID[arrayid])>1: determine_best_geneID[arrayid].sort() count,gene = determine_best_geneID[arrayid][-1] ### gene with the most GO annotations associated ### The below is code that appears to be necessary when non-chromosomal Ensembl genes with same name and annotation ### are present. When this happens, the lowest sorted Ensembl tends to be the real chromosomal instance determine_best_geneID[arrayid].reverse() #if arrayid == '208286_x_at': print determine_best_geneID[arrayid] for (count2,gene2) in determine_best_geneID[arrayid]: #if arrayid == '208286_x_at': print count2,gene2 if count == count2: gene = gene2 else: break selected_array_gene[arrayid] = gene component_db={}; process_db={}; function_db={}; determine_best_geneID=[] for (arrayid,gotype) in array_pathway_db: if string.lower(gotype[0]) == 'c': component_db[arrayid] = array_pathway_db[(arrayid,gotype)] elif string.lower(gotype[0]) == 'b' or string.lower(gotype[0]) == 'p': process_db[arrayid] = array_pathway_db[(arrayid,gotype)] if string.lower(gotype[0]) == 'm' or string.lower(gotype[0]) == 'f': function_db[arrayid] = array_pathway_db[(arrayid,gotype)] return component_db,process_db,function_db,selected_array_gene else: return array_pathway_db def extractPathwayData(terms,type,version): goids = []; go_names = [] buffer = ' /// '; small_buffer = ' // ' go_entries = string.split(terms,buffer) for go_entry in go_entries: go_entry_info = string.split(go_entry,small_buffer) try: if len(go_entry_info)>1: if version == 1: if type == 'GO': ### 6310 // DNA recombination // inferred from electronic annotation /// goid, go_name, source = go_entry_info while len(goid)< 7: goid = '0'+goid goid = 'GO:'+goid else: ### Calcium signaling pathway // KEGG /// go_name, source = go_entry_info; goid = '' if len(go_name)>1: go_name = source+'-'+go_name else: go_name = '' if version == 2: if type == 'GO': ### NM_153254 // GO:0006464 // protein modification process // inferred from electronic annotation /// try: accession, goid, go_name, source = go_entry_info except ValueError: accession = go_entry_info[0]; goid = go_entry_info[1]; go_name = ''; source = '' else: ### AF057061 // GenMAPP // Matrix_Metalloproteinases accession, go_name, source = go_entry_info; goid = '' if len(go_name)>1: go_name = source+'-'+go_name else: go_name = '' goids.append(goid); go_names.append(go_name) except IndexError: goids = goids if extract_go_names != 'yes': go_names = [] ### Then don't store (save memory) goids = unique.unique(goids); go_names = unique.unique(go_names) return goids, go_names def exportResultsSummary(dir_list,species,type): program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' else: parent_dir = 'Databases' if overwrite_previous == 'over-write previous': if program_type != 'AltAnalyze': try: from import_scripts import OBO_import except Exception: import OBO_import OBO_import.exportVersionData(0,'0/0/0','/'+species+'/nested/') ### Erase the existing file so that the database is re-remade else: parent_dir = 'NewDatabases' new_file = parent_dir+'/'+species+'/'+type+'_files_summarized.txt' today = str(datetime.date.today()); today = string.split(today,'-'); today = today[1]+'/'+today[2]+'/'+today[0] fn=filepath(new_file); data = open(fn,'w') for filename in dir_list: data.write(filename+'\t'+today+'\n') try: if parse_wikipathways == 'yes': data.write(wikipathways_file+'\t'+today+'\n') except Exception: null=[] data.close() def exportMetaGeneData(species): program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' else: parent_dir = 'Databases' if overwrite_previous == 'over-write previous': if program_type != 'AltAnalyze': null = None #from import_scripts import OBO_import #OBO_import.exportVersionData(0,'0/0/0','/'+species+'/nested/') ### Erase the existing file so that the database is re-remade else: parent_dir = 'NewDatabases' new_file = parent_dir+'/'+species+'/uid-gene/Ensembl_EntrezGene-meta.txt' data = export.ExportFile(new_file) for (primary,gene) in meta: data.write(primary+'\t'+gene+'\n') data.close() def importMetaGeneData(species): program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' else: parent_dir = 'Databases' filename = parent_dir+'/'+species+'/uid-gene/Ensembl_EntrezGene-meta.txt' fn=filepath(filename) for line in open(fn,'rU').readlines(): data = cleanUpLine(line) primary,gene = string.split(data,'\t') meta[primary,gene]=[] def exportRelationshipDBs(species): program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' else: parent_dir = 'Databases' if overwrite_previous == 'over-write previous': if program_type != 'AltAnalyze': try: from import_scripts import OBO_import except Exception: import OBO_import OBO_import.exportVersionData(0,'0/0/0','/'+species+'/nested/') ### Erase the existing file so that the database is re-remade else: parent_dir = 'NewDatabases' x1=0; x2=0; x3=0; x4=0; x5=0; x6=0 today = str(datetime.date.today()); today = string.split(today,'-'); today = today[1]+'/'+today[2]+'/'+today[0] import UI; header = 'GeneID'+'\t'+'GOID'+'\n' ens_annotations_found = verifyFile('Databases/'+species+'/gene/Ensembl.txt') if process_go == 'yes': ens_process_go = 'yes'; eg_process_go = 'yes' else: ens_process_go = 'no'; eg_process_go = 'no' eg_go_found = verifyFile('Databases/'+species+'/gene-go/EntrezGene-GeneOntology.txt') ens_go_found = verifyFile('Databases/'+species+'/gene-go/Ensembl-GeneOntology.txt') if eg_go_found == 'no': eg_process_go = 'yes' if ens_go_found == 'no': ens_process_go = 'yes' for probeset in affy_annotation_db: ai = affy_annotation_db[probeset] ensembls = unique.unique(ai.Ensembl()); entrezs = unique.unique(ai.Entrez()) for ensembl in ensembls: if len(ensembl)>0: if x1 == 0: ### prevents the file from being written if no data present new_file1 = parent_dir+'/'+species+'/uid-gene/Ensembl-Affymetrix.txt' data1 = export.ExportFile(new_file1); x1=1 data1.write(ensembl+'\t'+probeset+'\n') if ens_process_go == 'yes': goids = unique.unique(ai.GOIDs()) for goid_ls in goids: for goid in goid_ls: if len(goid)>0: if x4==0: new_file4 = parent_dir+'/'+species+'/gene-go/Ensembl-GeneOntology.txt' data4 = export.ExportFile(new_file4); data4.write(header); x4=1 data4.write(ensembl+'\t'+goid+'\n') for entrez in entrezs: if len(entrez)>0: if x2 == 0: new_file2 = parent_dir+'/'+species+'/uid-gene/EntrezGene-Affymetrix.txt' data2 = export.ExportFile(new_file2); x2=1 data2.write(entrez+'\t'+probeset+'\n') if eg_process_go == 'yes': goids = unique.unique(ai.GOIDs()) for goid_ls in goids: for goid in goid_ls: if len(goid)>0: if x5==0: new_file5 = parent_dir+'/'+species+'/gene-go/EntrezGene-GeneOntology.txt' data5 = export.ExportFile(new_file5); data5.write(header); x5=1 data5.write(entrez+'\t'+goid+'\n') for geneid in gene_annotation_db: ea = gene_annotation_db[geneid] if len(geneid)>0 and 'ENS:' not in geneid: if x3 == 0: new_file3 = parent_dir+'/'+species+'/gene/EntrezGene.txt' data3 = export.ExportFile(new_file3); x3=1 data3.write('UID'+'\t'+'Symbol'+'\t'+'Name'+'\t'+'Species'+'\t'+'Date'+'\t'+'Remarks'+'\n') data3.write(geneid+'\t'+ea.Symbol()+'\t'+ea.Description()+'\t'+species+'\t'+today+'\t'+''+'\n') elif ens_annotations_found == 'no' and 'ENS:' in geneid: geneid = string.replace(geneid,'ENS:','') if x6 == 0: new_file6 = parent_dir+'/'+species+'/gene/EntrezGene.txt' data6 = export.ExportFile(new_file6); x6=1 data6.write('UID'+'\t'+'Symbol'+'\t'+'Name'+'\n') data6.write(geneid+'\t'+ea.Symbol()+'\t'+ea.Description()+'\n') if x1==1: data1.close() if x2==1: data2.close() if x3==1: data3.close() if x4==1: data4.close() if x5==1: data5.close() if x6==1: data6.close() def swapKeyValues(db): swapped={} for key in db: values = list(db[key]) ###If the value is not a list, make a list for value in values: try: swapped[value].append(key) except KeyError: swapped[value] = [key] swapped = eliminate_redundant_dict_values(swapped) return swapped def integratePreviousAssociations(): print 'Integrating associations from previous databases...' #print len(entrez_annotations),len(ens_to_uid), len(entrez_to_uid) for gene in entrez_annotations: if gene not in gene_annotation_db: ### Add previous gene information to the new database y = entrez_annotations[gene] z = InferredEntrezInformation(y.Symbol(),gene,y.Description()) gene_annotation_db[gene] = z uid_to_ens = swapKeyValues(ens_to_uid); uid_to_entrez = swapKeyValues(entrez_to_uid) ###Add prior missing gene relationships for all probesets in the new database and that are missing for uid in uid_to_ens: if uid in affy_annotation_db: y = affy_annotation_db[uid] ensembl_ids = uid_to_ens[uid] if y.Ensembl() == ['']: y.resetEnsembl(ensembl_ids) else: ensembl_ids = unique.unique(y.Ensembl()+ensembl_ids) y.resetEnsembl(ensembl_ids) else: ensembl_ids = uid_to_ens[uid]; entrez_ids = [] if uid in uid_to_entrez: entrez_ids = uid_to_entrez[uid] ai = AffymetrixInformation(uid, '', ensembl_ids, entrez_ids, [], [], '',[],[],[]) affy_annotation_db[uid] = ai for uid in uid_to_entrez: if uid in affy_annotation_db: y = affy_annotation_db[uid] entrez_ids = uid_to_entrez[uid] if y.Entrez() == ['']: y.resetEntrez(entrez_ids) else: entrez_ids = uid_to_entrez[uid]; ensembl_ids = [] if uid in uid_to_ens: ensembl_ids = uid_to_ens[uid] ai = AffymetrixInformation(uid, '', ensembl_ids, entrez_ids, [], [], '',[],[],[]) affy_annotation_db[uid] = ai def parseGene2GO(tax_id,species,overwrite_prev,rewrite_existing): global overwrite_previous; overwrite_previous = overwrite_prev; status = 'run' program_type,database_dir = unique.whatProgramIsThis() #if program_type == 'AltAnalyze': database_dir = '/AltDatabase' database_dir = '/BuildDBs' import_dir = database_dir+'/Entrez/Gene2GO' g = GrabFiles(); g.setdirectory(import_dir) filename = g.searchdirectory('gene2go') ###Identify gene files corresponding to a particular MOD if len(filename)>1: fn=filepath(filename); gene_go=[]; x = 0 for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x == 0: x = 1 ###skip the first line else: taxid=t[0];entrez=t[1];goid=t[2] if taxid == tax_id: gene_go.append([entrez,goid]) else: status = 'not run' if len(gene_go)>0: program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' else: parent_dir = 'Databases' if overwrite_previous == 'over-write previous': if program_type != 'AltAnalyze': try: from import_scripts import OBO_import except Exception: import OBO_import OBO_import.exportVersionData(0,'0/0/0','/'+species+'/nested/') ### Erase the existing file so that the database is re-remade else: parent_dir = 'NewDatabases' new_file = parent_dir+'/'+species+'/gene-go/EntrezGene-GeneOntology.txt' today = str(datetime.date.today()); today = string.split(today,'-'); today = today[1]+'/'+today[2]+'/'+today[0] from build_scripts import EnsemblSQL headers = ['EntrezGene ID','GO ID'] EnsemblSQL.exportListstoFiles(gene_go,headers,new_file,rewrite_existing) print 'Exported',len(gene_go),'gene-GO relationships for species:',species exportResultsSummary(['Gene2GO.zip'],species,'EntrezGene_GO') else: print 'No NCBI Gene Ontology support for this species' return 'run' def getMetaboliteIDTranslations(species_code): mod = 'HMDB'; meta_metabolite_db={} meta_metabolite_db = importMetaboliteIDs(species_code,mod,'CAS',meta_metabolite_db) meta_metabolite_db = importMetaboliteIDs(species_code,mod,'ChEBI',meta_metabolite_db) meta_metabolite_db = importMetaboliteIDs(species_code,mod,'PubChem',meta_metabolite_db) return meta_metabolite_db def importMetaboliteIDs(species_code,mod,source,meta_metabolite_db): mod_source = mod+'-'+source gene_to_source_id = gene_associations.getGeneToUid(species_code,('hide',mod_source)) source_to_gene = OBO_import.swapKeyValues(gene_to_source_id) #print mod_source, 'relationships imported' meta_metabolite_db[source] = source_to_gene return meta_metabolite_db def importWikipathways(system_codes,incorporate_previous_associations,process_go,species_full,species,integrate_affy_associations,relationship_type,overwrite_affycsv): global wikipathways_file; global overwrite_previous overwrite_previous = overwrite_affycsv database_dir = '/BuildDBs' import_dir = database_dir+'/wikipathways' g = GrabFiles(); g.setdirectory(import_dir); wikipathway_gene_db={}; eg_wikipathway_db={}; ens_wikipathway_db={} search_term = relationship_type+'_data_'+species_full #search_term = 'wikipathways' filename = g.searchdirectory(search_term) ###Identify gene files corresponding to a particular MOD #print "Parsing",filename; wikipathways_file = string.split(filename,'/')[-1] #print "Extracting data for species:",species_full,species if len(filename)>1: fn=filepath(filename); gene_go={}; x = 0 for line in open(fn,'rU').readlines(): data = cleanUpLine(line) data = string.replace(data,'MGI:','') t = string.split(data,'\t') if x == 0: x = 1; y = 0 while y < len(t): if 'Ensembl' in t[y]: ens = y if 'UniGene' in t[y]: ug = y if 'Entrez' in t[y]: ll = y if 'SwissProt' in t[y]: sp = y if 'Uniprot' in t[y]: sp = y if 'RefSeq' in t[y]: rt = y if 'MOD' in t[y]: md= y if 'Pathway Name' in t[y]: pn = y if 'Organism' in t[y]: og= y if 'Url to WikiPathways' in t[y]: ur= y if 'PubChem' in t[y]: pc = y if 'CAS' in t[y]: cs = y if 'ChEBI' in t[y]: cb = y y += 1 else: try: ensembl = t[ens]; unigene = t[ug]; uniprot = t[sp]; refseq = t[rt]; mod = t[md]; entrez = t[ll] except Exception: print '\nWARNING...errors were encountered when processing the line',[line]; print 'Errors in the WP file are present!!!!\n'; print [last_line]; sys.exit(); continue last_line = line ensembl = splitEntry(ensembl); unigene = splitEntry(unigene); uniprot = splitEntry(uniprot) pathway_name = t[pn]; organism = t[og]; wikipathways_url = t[ur]; entrez = splitEntry(entrez); refseq = splitEntry(refseq); mod = splitOthers(mod); mod2 = [] try: pubchem = t[pc]; cas = t[cs]; chemEBI = t[cb] except Exception: pubchem=''; cas=''; chemEBI='' if x==1: print 'WARNING!!! Metabolite Identifiers missing from WikiPathways file.' x+=1 pubchem = splitEntry(pubchem); cas = splitEntry(cas); chemEBI = splitEntry(chemEBI) htp,url,wpid = string.split(wikipathways_url,':') pathway_name = pathway_name +':'+ wpid for m in mod: mod2.append('mod:'+m); mod = mod2 #relationship_type gene_ids = mod+ensembl+unigene+uniprot+refseq+entrez if organism == species_full: if relationship_type == 'mapped': for id in pubchem: try: wikipathway_gene_db[id].append(('PubChem',pathway_name)) except Exception: wikipathway_gene_db[id] = [('PubChem',pathway_name)] for id in cas: try: wikipathway_gene_db[id].append(('CAS',pathway_name)) except Exception: wikipathway_gene_db[id] = [('CAS',pathway_name)] for id in chemEBI: try: wikipathway_gene_db[id].append(('ChEBI',pathway_name)) except Exception: wikipathway_gene_db[id] = [('ChEBI',pathway_name)] else: for gene_id in gene_ids: if len(gene_id)>1: try: wikipathway_gene_db[gene_id].append(pathway_name) except KeyError: wikipathway_gene_db[gene_id] = [pathway_name] for gene_id in ensembl: if len(gene_id)>1: try: ens_wikipathway_db[pathway_name].append(gene_id) except KeyError: ens_wikipathway_db[pathway_name] = [gene_id] for gene_id in entrez: if len(gene_id)>1: try: eg_wikipathway_db[pathway_name].append(gene_id) except KeyError: eg_wikipathway_db[pathway_name] = [gene_id] if incorporate_previous_associations == 'yes': if relationship_type == 'mapped': try: gene_to_mapp = gene_associations.importGeneMAPPData(species,'HMDB-MAPP.txt') except Exception: gene_to_mapp = {} for id in gene_to_mapp: for pathway_name in gene_to_mapp[id]: try: wikipathway_gene_db[id].append(('HMDB',pathway_name)) except Exception: wikipathway_gene_db[id] = [('HMDB',pathway_name)] else: try: gene_to_mapp = gene_associations.importGeneMAPPData(species,'EntrezGene-MAPP.txt') except Exception: gene_to_mapp = {} for id in gene_to_mapp: for pathway_name in gene_to_mapp[id]: try: wikipathway_gene_db[id].append(pathway_name) except Exception: wikipathway_gene_db[id] = [pathway_name] try: gene_to_mapp = gene_associations.importGeneMAPPData(species,'Ensembl-MAPP.txt') except Exception: gene_to_mapp = {} for id in gene_to_mapp: for pathway_name in gene_to_mapp[id]: try: wikipathway_gene_db[id].append(pathway_name) except Exception: wikipathway_gene_db[id] = [pathway_name] if relationship_type == 'mapped': hmdb_wikipathway_db={} try: meta_metabolite_db = getMetaboliteIDTranslations(species) for id in wikipathway_gene_db: for (system,pathway) in wikipathway_gene_db[id]: if system == 'HMDB': try: hmdb_wikipathway_db[pathway].append(id) except KeyError: hmdb_wikipathway_db[pathway] = [id] else: id_to_mod = meta_metabolite_db[system] if len(id)>0 and id in id_to_mod: mod_ids = id_to_mod[id] for mod_id in mod_ids: try: hmdb_wikipathway_db[pathway].append(mod_id) except KeyError: hmdb_wikipathway_db[pathway] = [mod_id] hmdb_wikipathway_db = eliminate_redundant_dict_values(hmdb_wikipathway_db) ad = system_codes['HMDB'] try: system_code = ad.SystemCode() except Exception: system_code = ad if len(hmdb_wikipathway_db)>0: exportGeneToMAPPs(species,'HMDB',system_code,hmdb_wikipathway_db) except ValueError: null=[] ### Occurs with older versions of GO-Elite else: #print "Number of unique gene IDs linked to Wikipathways for species:",len(wikipathway_gene_db) parse_wikipathways = 'yes' buildAffymetrixCSVAnnotations(species,incorporate_previous_associations,process_go,parse_wikipathways,integrate_affy_associations,overwrite_affycsv) grabEliteDbaseMeta(species) ### Similiar to buildAffymetrixCSVAnnotations, grabs many-to-one gene associations for various systems """global affy_annotation_db; affy_annotation_db={}; global gene_annotation_db; gene_annotation_db = {} global ens_to_uid; global entrez_to_uid; global entrez_annotations; global parse_wikipathways parse_wikipathways = 'yes' import_dir = '/BuildDBs/Affymetrix/'+species dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for affy_data in dir_list: #loop through each file in the directory to output results affy_data_dir = 'BuildDBs/Affymetrix/'+species+'/'+affy_data parse_affymetrix_annotations(affy_data_dir,species)""" #if len(affy_annotation_db)>0 or len(meta)>0: try: ### This is a bit redundant with the before handling of meta, by addition gene-gene relationships are now included entrez_relationships={}; ens_relationships={}; meta2={} for (primary,gene) in meta: try: null = int(primary) if 'ENS' in gene: try: entrez_relationships[primary].append(gene) except Exception: entrez_relationships[primary] = [gene] try: ens_relationships[gene].append(primary) except Exception: ens_relationships[gene] = [primary] except Exception: try: null = int(gene) if 'ENS' in primary: try: entrez_relationships[gene].append(primary) except Exception: entrez_relationships[gene] = [primary] try: ens_relationships[primary].append(gene) except Exception: ens_relationships[primary] = [gene] except Exception: null=[] ens_relationships=eliminate_redundant_dict_values(ens_relationships) entrez_relationships=eliminate_redundant_dict_values(entrez_relationships) for id1 in entrez_relationships: if len(entrez_relationships[id1])<3: for id2 in entrez_relationships[id1]: meta2[id2,id1] = [] for id1 in ens_relationships: if len(ens_relationships[id1])<3: for id2 in ens_relationships[id1]: meta2[id2,id1] = [] #print len(meta), "gene relationships imported" #print len(wikipathway_gene_db), "gene IDs extracted from Wikipathway pathways" """for (primary,gene_id) in meta: if gene_id == 'NP_598767': print wikipathway_gene_db[gene_id];kill""" ### Since relationships are inferred in new versions of the WikiPathways tables, we don't require meta (no longer true - reverted to old method) for (primary,gene_id) in meta2: try: pathway_names = wikipathway_gene_db[gene_id] for pathway in pathway_names: #if pathway == 'Mitochondrial tRNA Synthetases:WP62': print [gene_id], primary if 'ENS' in primary: try: ens_wikipathway_db[pathway].append(primary) except KeyError: ens_wikipathway_db[pathway] = [primary] if primary in ens_eg_db: for entrez in ens_eg_db[primary]: try: eg_wikipathway_db[pathway].append(entrez) except KeyError: eg_wikipathway_db[pathway] = [entrez] else: try: check = int(primary) ### Ensure this is numeric - thus EntrezGene try: eg_wikipathway_db[pathway].append(primary) except KeyError: eg_wikipathway_db[pathway] = [primary] if primary in ens_eg_db: for ens in ens_eg_db[primary]: try: ens_wikipathway_db[pathway].append(ens) except KeyError: ens_wikipathway_db[pathway] = [ens] except Exception: ### Occurs for Ensembl for species like Yeast which don't have "ENS" in the ID try: ens_wikipathway_db[pathway].append(primary) except KeyError: ens_wikipathway_db[pathway] = [primary] if primary in ens_eg_db: for entrez in ens_eg_db[primary]: try: eg_wikipathway_db[pathway].append(entrez) except KeyError: eg_wikipathway_db[pathway] = [entrez] except KeyError: null=[] """ for pathway in eg_wikipathway_db: if 'ytoplasmic' in pathway: print pathway, len(eg_wikipathway_db[pathway]),len(ens_wikipathway_db[pathway]),len(ens_eg_db);sys.exit() """ #print len(eg_wikipathway_db), len(ens_wikipathway_db) #print system_codes ad = system_codes['EntrezGene'] try: system_code = ad.SystemCode() except Exception: system_code = ad if len(eg_wikipathway_db)>0: exportGeneToMAPPs(species,'EntrezGene',system_code,eg_wikipathway_db) ad = system_codes['Ensembl'] try: system_code = ad.SystemCode() except Exception: system_code = ad if len(ens_wikipathway_db)>0: exportGeneToMAPPs(species,'Ensembl',system_code,ens_wikipathway_db) return len(meta) except ValueError: return 'ValueError' else: return 'not run' def addToMeta(db): for i in db: for k in db[i]: meta[i,k]=[] def grabEliteDbaseMeta(species_code): import gene_associations db = gene_associations.getRelated(species_code,'Ensembl-'+'Uniprot'); addToMeta(db) db = gene_associations.getRelated(species_code,'Ensembl-'+'RefSeq'); addToMeta(db) db = gene_associations.getRelated(species_code,'Ensembl-'+'UniGene'); addToMeta(db) db = gene_associations.getRelated(species_code,'Ensembl-'+'EntrezGene'); addToMeta(db) def splitEntry(str_value): str_list = string.split(str_value,',') return str_list def splitOthers(str_value): str_list = string.split(str_value,',') str_list2=[] for i in str_list: i = string.split(i,'(')[0] str_list2.append(i) return str_list2 def exportGeneToMAPPs(species,system_name,system_code,wikipathway_db): program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': parent_dir = 'AltDatabase/goelite' else: parent_dir = 'Databases' if overwrite_previous == 'over-write previous': if program_type != 'AltAnalyze': #from import_scripts import OBO_import; OBO_import.exportVersionData(0,'0/0/0','/'+species+'/nested/') ### Erase the existing file so that the database is re-remade null = None else: parent_dir = 'NewDatabases' new_file = parent_dir+'/'+species+'/gene-mapp/'+system_name+'-MAPP.txt' #print "Exporting",new_file today = str(datetime.date.today()); today = string.split(today,'-'); today = today[1]+'/'+today[2]+'/'+today[0] y=0 data1 = export.ExportFile(new_file) data1.write('UID'+'\t'+'SystemCode'+'\t'+'MAPP'+'\n') #print len(wikipathway_db) for pathway in wikipathway_db: gene_ids = unique.unique(wikipathway_db[pathway]) #print gene_ids;kill for gene_id in gene_ids: data1.write(gene_id+'\t'+system_code+'\t'+pathway+'\n'); y+=1 data1.close() #print 'Exported',y,'gene-MAPP relationships for species:',species, 'for',len(wikipathway_db),'pathways.' def extractAndIntegrateAffyData(species,integrate_affy_associations,Parse_wikipathways): #print integrate_affy_associations global affy_annotation_db; affy_annotation_db={}; global gene_annotation_db; gene_annotation_db = {} global parse_wikipathways; global meta; meta = {}; global ens_eg_db; ens_eg_db={} parse_wikipathways = Parse_wikipathways program_type,database_dir = unique.whatProgramIsThis() if program_type == 'AltAnalyze': database_dir = '/AltDatabase/affymetrix' else: database_dir = '/BuildDBs/Affymetrix' import_dir = database_dir+'/'+species dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for affy_data in dir_list: #loop through each file in the directory to output results affy_data_dir = database_dir[1:]+'/'+species+'/'+affy_data if '.csv' in affy_data_dir: if '.zip' in affy_data_dir: ### unzip the file print "Extracting the zip file:",filepath(affy_data_dir) update.unzipFiles(affy_data,filepath(database_dir[1:]+'/'+species+'/')) try: print "Removing the zip file:",filepath(affy_data_dir) os.remove(filepath(affy_data_dir)); status = 'removed' except Exception: null=[] ### Not sure why this error occurs since the file is not open affy_data_dir = string.replace(affy_data_dir,'.zip','') parse_affymetrix_annotations(affy_data_dir,species) if len(affy_annotation_db)>0: print 'Affymetrix CSV annotations imported..' if integrate_affy_associations == 'yes': exportAffymetrixCSVAnnotations(species,dir_list) if parse_wikipathways == 'yes': if len(meta) > 0: try: exportMetaGeneData(species) except Exception: null=[] def exportAffymetrixCSVAnnotations(species,dir_list): import gene_associations; global entrez_annotations global ens_to_uid; global entrez_to_uid if incorporate_previous_associations == 'yes': ###dictionary gene to unique array ID mod_source1 = 'Ensembl'+'-'+'Affymetrix'; mod_source2 = 'EntrezGene'+'-'+'Affymetrix' try: ens_to_uid = gene_associations.getGeneToUid(species,mod_source1) except Exception: ens_to_uid = {} try: entrez_to_uid = gene_associations.getGeneToUid(species,mod_source2) except Exception: entrez_to_uid = {} ### Gene IDs with annotation information try: entrez_annotations = gene_associations.importGeneData(species,'EntrezGene') except Exception: entrez_annotations = {} ### If we wish to combine old and new GO relationships - Unclear if this is a good idea """if process_go == 'yes': entrez_to_go = gene_associations.importGeneGOData(species,'EntrezGene','null') ens_to_go = gene_associations.importGeneGOData(species,'Ensembl','null')""" integratePreviousAssociations() if len(gene_annotation_db)>1: exportRelationshipDBs(species) exportResultsSummary(dir_list,species,'Affymetrix') def importAffymetrixAnnotations(dir,Species,Process_go,Extract_go_names,Extract_pathway_names): global species; global process_go; global extract_go_names; global extract_pathway_names global affy_annotation_db; affy_annotation_db={}; global parse_wikipathways parse_wikipathways = 'no' species = Species; process_go = Process_go; extract_go_names = Extract_go_names; extract_pathway_names = Extract_pathway_names import_dir = '/'+dir+'/'+species dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory print 'Parsing Affymetrix Annotation files...', for affy_data in dir_list: #loop through each file in the directory to output results affy_data_dir = dir+'/'+species+'/'+affy_data if '.csv' in affy_data_dir: version = parse_affymetrix_annotations(affy_data_dir,species) print 'done' return affy_annotation_db, version def buildAffymetrixCSVAnnotations(Species,Incorporate_previous_associations,Process_go,parse_wikipathways,integrate_affy_associations,overwrite_affycsv): global incorporate_previous_associations; global process_go; global species; global extract_go_names global wikipathways_file; global overwrite_previous; overwrite_previous = overwrite_affycsv global extract_pathway_names; extract_go_names = 'no'; extract_pathway_names = 'no' process_go = Process_go; incorporate_previous_associations = Incorporate_previous_associations; species = Species extractAndIntegrateAffyData(species,integrate_affy_associations,parse_wikipathways) def importSystemInfo(): import UI filename = 'Config/source_data.txt'; x=0 fn=filepath(filename); global system_list; system_list=[]; global system_codes; system_codes={}; mod_list=[] for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t') sysname=t[0];syscode=t[1] try: mod = t[2] except KeyError: mod = '' if x==0: x=1 else: system_list.append(sysname) ad = UI.SystemData(syscode,sysname,mod) if len(mod)>1: mod_list.append(sysname) system_codes[sysname] = ad return system_codes def TimeStamp(): import time time_stamp = time.localtime() year = str(time_stamp[0]); month = str(time_stamp[1]); day = str(time_stamp[2]) if len(month)<2: month = '0'+month if len(day)<2: day = '0'+day return year+month+day if __name__ == '__main__': getEnsemblAnnotationsFromGOElite('Hs');sys.exit() Species_full = 'Rattus norvegicus'; Species_code = 'Rn'; tax_id = '10090'; overwrite_affycsv = 'yes' System_codes = importSystemInfo(); process_go = 'yes'; incorporate_previous_associations = 'yes' import update; overwrite = 'over-write previous' import time; start_time = time.time() getUIDAnnotationsFromGOElite({},'Hs','Agilent','yes') end_time = time.time(); time_diff = int(end_time-start_time); print time_diff, 'seconds'; kill #buildAffymetrixCSVAnnotations(Species_code,incorporate_previous_associations,process_go,'no',integrate_affy_associations,overwrite);kill species_code = Species_code; parseGene2GO(tax_id,species_code,overwrite,'no');kill date = TimeStamp(); file_type = ('wikipathways_'+date+'.tab','.txt') fln,status = update.download('http://www.wikipathways.org/wpi/pathway_content_flatfile.php?output=tab','BuildDBs/wikipathways/',file_type) status = '' if 'Internet' not in status: importWikipathways(System_codes,incorporate_previous_associations,process_go,Species_full,Species_code,'no',overwrite)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/BuildAffymetrixAssociations.py
BuildAffymetrixAssociations.py
import sys,string,os,math sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies def getFiles(sub_dir): dir_list = os.listdir(sub_dir); dir_list2 = [] for entry in dir_list: if '.csv' in entry: dir_list2.append(entry) return dir_list2 def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def combineCSVFiles(root_dir): files = getFiles(root_dir) import export folder = export.getParentDir(root_dir+'/blah.txt') first_file = True genes=[] cells=[] data_matrices=[] for file in files: cells.append(file[:-4]) matrix=[] for line in open(root_dir+'/'+file,'rU').xreadlines(): data = cleanUpLine(line) gene,count = string.split(data,',') if first_file: genes.append(gene) matrix.append(float(count)) data_matrices.append(matrix) first_file=False data_matrices = zip(*data_matrices) export_object = open(root_dir+'/'+folder+'-counts.txt','w') headers = string.join(['UID']+cells,'\t')+'\n' export_object.write(headers) index=0 for geneID in genes: values = string.join([geneID]+map(str,list(data_matrices[index])),'\t')+'\n' export_object.write(values) index+=1 export_object.close() data_matrices = zip(*data_matrices) index=0 for cell in cells: matrix = data_matrices[index] barcode_sum = sum(matrix) data_matrices[index] = map(lambda val: math.log((10000.00*val/barcode_sum)+1.0,2), matrix) index+=1 data_matrices = zip(*data_matrices) export_object = open(root_dir+'/'+folder+'-CPTT.txt','w') headers = string.join(['UID']+cells,'\t')+'\n' export_object.write(headers) index=0 for geneID in genes: values = string.join([geneID]+map(str,list(data_matrices[index])),'\t')+'\n' export_object.write(values) index+=1 export_object.close() if __name__ == '__main__': ################ Comand-line arguments ################ import getopt options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','GeneType=', 'IDType=']) for opt, arg in options: if opt == '--i': input_dir=arg combineCSVFiles(input_dir)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/combineCSV.py
combineCSV.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ Batch script for extracting many junction.bed and building exon.bed files from an input set of BAM files in a directory. Requires a reference text file containing exon regions (currently provided from AltAnalyze - see ReferenceExonCoordinates folder). Can produce only junction.bed files, only a combined exon reference or only exon.bed files optionally. Can run using a single processor or multiple simultaneous processes (--m flag).""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import export import time import shutil import unique import subprocess from import_scripts import BAMtoJunctionBED from import_scripts import BAMtoExonBED import getopt import traceback ################# General data import methods ################# def filepath(filename): fn = unique.filepath(filename) return fn def cleanUpLine(line): data = string.replace(line,'\n','') data = string.replace(data,'\c','') data = string.replace(data,'\r','') data = string.replace(data,'"','') return data def getFolders(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Only get folder names for entry in dir_list: if '.' not in entry: dir_list2.append(entry) return dir_list2 def getFiles(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Only get folder names for entry in dir_list: if '.' in entry: dir_list2.append(entry) return dir_list2 def getFolders(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Only get folder names for entry in dir_list: if '.' not in entry: dir_list2.append(entry) return dir_list2 def parallelBAMProcessing(directory,refExonCoordinateFile,bed_reference_dir,analysisType=[],useMultiProcessing=False,MLP=None,root=None): paths_to_run=[] errors=[] if '.bam' in directory: ### Allow a single BAM file to be specifically analyzed (e.g., bsub operation) bam_file = directory bam_file = string.replace(directory,'\\','/') directory = string.join(string.split(directory,'/')[:-1],'/') else: bam_file = None outputExonCoordinateRefBEDfile = str(bed_reference_dir) bed_reference_dir = string.replace(bed_reference_dir,'\\','/') ### Check if the BAM files are located in the target folder (not in subdirectories) files = getFiles(directory) for file in files: if '.bam' in file and '.bai' not in file: source_file = directory+'/'+file source_file = filepath(source_file) output_filename = string.replace(file,'.bam','') output_filename = string.replace(output_filename,'=','_') destination_file = directory+'/'+output_filename+'__exon.bed' destination_file = filepath(destination_file) paths_to_run.append((source_file,refExonCoordinateFile,bed_reference_dir,destination_file)) ### Otherwise, check subdirectories for BAM files folders = getFolders(directory) if len(paths_to_run)==0: for top_level in folders: try: files = getFiles(directory+'/'+top_level) for file in files: if '.bam' in file and '.bai' not in file: source_file = directory+'/'+file source_file = filepath(source_file) destination_file = directory+'/'+top_level+'__exon.bed' destination_file = filepath(destination_file) paths_to_run.append((source_file,refExonCoordinateFile,bed_reference_dir,destination_file)) except Exception: pass ### If a single BAM file is indicated if bam_file != None: output_filename = string.replace(bam_file,'.bam','') output_filename = string.replace(output_filename,'=','_') destination_file = output_filename+'__exon.bed' paths_to_run = [(bam_file,refExonCoordinateFile,bed_reference_dir,destination_file)] if 'reference' in analysisType and len(analysisType)==1: augmentExonReferences(directory,refExonCoordinateFile,outputExonCoordinateRefBEDfile) sys.exit() if useMultiProcessing: pool_size = MLP.cpu_count() if len(paths_to_run)<pool_size: pool_size = len(paths_to_run) print 'Using %d processes' % pool_size if len(paths_to_run) > pool_size: pool_size = len(paths_to_run) if len(analysisType) == 0 or 'junction' in analysisType: print 'Extracting junction alignments from BAM files...', pool = MLP.Pool(processes=pool_size) try: results = pool.map(runBAMtoJunctionBED, paths_to_run) ### worker jobs initiated in tandem except ValueError: print_out = '\WARNING!!! No Index found for the BAM files (.bam.bai). Sort and Index using Samtools prior to loading in AltAnalyze' print traceback.format_exc() if root!=None: import UI UI.WarningWindow(print_out,'Exit');sys.exit() try:pool.close(); pool.join(); pool = None except Exception: pass print_out=None for sample,missing in results: if len(missing)>1: print_out = '\nWarning!!! %s chromosomes not found in: %s (PySam platform-specific error)' % (string.join(missing,', '),sample) if root!=None and print_out!=None: try: import UI UI.WarningWindow(print_out,'Continue') except Exception: pass print len(paths_to_run), 'BAM files','processed' if len(analysisType) == 0 or 'reference' in analysisType: #print 'Building exon reference coordinates from Ensembl/UCSC and all junctions...', augmentExonReferences(directory,refExonCoordinateFile,outputExonCoordinateRefBEDfile) #print 'completed' print 'Extracting exon alignments from BAM files...', if len(analysisType) == 0 or 'exon' in analysisType: pool = MLP.Pool(processes=pool_size) results = pool.map(runBAMtoExonBED, paths_to_run) ### worker jobs initiated in tandem try:pool.close(); pool.join(); pool = None except Exception: pass print len(paths_to_run), 'BAM files','processed' else: if len(analysisType) == 0 or 'junction' in analysisType: for i in paths_to_run: runBAMtoJunctionBED(i) if len(analysisType) == 0 or 'reference' in analysisType: augmentExonReferences(directory,refExonCoordinateFile,outputExonCoordinateRefBEDfile) if len(analysisType) == 0 or 'exon' in analysisType: for i in paths_to_run: runBAMtoExonBED(i) def runBAMtoJunctionBED(paths_to_run): bamfile_dir,refExonCoordinateFile,bed_reference_dir,output_bedfile_path = paths_to_run output_bedfile_path = string.replace(bamfile_dir,'.bam','__junction.bed') #if os.path.exists(output_bedfile_path) == False: ### Only run if the file doesn't exist results = BAMtoJunctionBED.parseJunctionEntries(bamfile_dir,multi=True,ReferenceDir=refExonCoordinateFile) #else: print output_bedfile_path, 'already exists.' return results def runBAMtoExonBED(paths_to_run): bamfile_dir,refExonCoordinateFile,bed_reference_dir,output_bedfile_path = paths_to_run if os.path.exists(output_bedfile_path) == False: ### Only run if the file doesn't exist BAMtoExonBED.parseExonReferences(bamfile_dir,bed_reference_dir,multi=True,intronRetentionOnly=False) else: print output_bedfile_path, 'already exists... re-writing' BAMtoExonBED.parseExonReferences(bamfile_dir,bed_reference_dir,multi=True,intronRetentionOnly=False) def getChrFormat(directory): ### Determine if the chromosomes have 'chr' or nothing files = getFiles(directory) chr_status=True for file in files: firstLine=True if 'junction' in file and '.bed' in file: for line in open(directory+'/'+file,'rU').xreadlines(): if firstLine: firstLine=False else: t = string.split(line) chr = t[0] if 'chr' not in chr: chr_status = False break break return chr_status def augmentExonReferences(directory,refExonCoordinateFile,outputExonCoordinateRefBEDfile): print 'Building reference bed file from all junction.bed files' splicesite_db={} ### reference splice-site database (we only want to add novel splice-sites to our reference) real_splicesites={} introns={} novel_db={} reference_toplevel = string.join(string.split(outputExonCoordinateRefBEDfile,'/')[:-1],'/') try: os.mkdir(reference_toplevel) ### If the bed folder doesn't exist except Exception: pass chr_status = getChrFormat(directory) o = open (outputExonCoordinateRefBEDfile,"w") #refExonCoordinateFile = '/Users/saljh8/Desktop/Code/AltAnalyze/AltDatabase/EnsMart72/ensembl/Mm/Mm_Ensembl_exon.txt' reference_rows=0 if '.gtf' in refExonCoordinateFile: firstLine = False else: firstLine = True for line in open(refExonCoordinateFile,'rU').xreadlines(): if firstLine: firstLine=False else: line = line.rstrip('\n') reference_rows+=1 t = string.split(line,'\t'); #'gene', 'exon-id', 'chromosome', 'strand', 'exon-region-start(s)', 'exon-region-stop(s)', 'constitutive_call', 'ens_exon_ids', 'splice_events', 'splice_junctions' geneID, exon, chr, strand, start, stop = t[:6] if chr_status == False: chr = string.replace(chr,'chr','') o.write(string.join([chr,start,stop,geneID+':'+exon,'',strand],'\t')+'\n') start = int(start); stop = int(stop) #geneID = string.split(exon,':')[0] splicesite_db[chr,start]=geneID splicesite_db[chr,stop]=geneID if 'I' in exon: try: introns[geneID].append([start,stop]) except Exception: introns[geneID] = [[start,stop]] files = getFiles(directory) for file in files: firstLine=True if 'junction' in file and '.bed' in file: for line in open(directory+'/'+file,'rU').xreadlines(): if firstLine: firstLine=False else: line = line.rstrip('\n') t = string.split(line,'\t'); #'12', '6998470', '6998522', 'ENSG00000111671:E1.1_ENSE00001754003', '0', '-' chr, exon1_start, exon2_stop, junction_id, reads, strand, null, null, null, null, lengths, null = t exon1_len,exon2_len=string.split(lengths,',')[:2]; exon1_len = int(exon1_len); exon2_len = int(exon2_len) exon1_start = int(exon1_start); exon2_stop = int(exon2_stop) if strand == '-': exon1_stop = exon1_start+exon1_len; exon2_start=exon2_stop-exon2_len+1 ### Exons have the opposite order a = exon1_start,exon1_stop; b = exon2_start,exon2_stop exon1_stop,exon1_start = b; exon2_stop,exon2_start = a else: exon1_stop = exon1_start+exon1_len; exon2_start=exon2_stop-exon2_len+1 seq_length = abs(float(exon1_stop-exon2_start)) ### Junction distance key = chr,exon1_stop,exon2_start if (chr,exon1_stop) not in splicesite_db: ### record the splice site and position of the max read if (chr,exon2_start) in splicesite_db: ### only include splice sites where one site is known geneID = splicesite_db[(chr,exon2_start)] novel_db[chr,exon1_stop,strand] = exon1_start,geneID,5 real_splicesites[chr,exon2_start]=None elif (chr,exon2_start) not in splicesite_db: ### record the splice site and position of the max read if (chr,exon1_stop) in splicesite_db: ### only include splice sites where one site is known #if 121652702 ==exon2_start: #print chr, exon1_start,exon1_stop,exon2_start,exon2_stop, strand;sys.exit() geneID = splicesite_db[(chr,exon1_stop)] novel_db[chr,exon2_start,strand] = exon2_stop,geneID,3 real_splicesites[chr,exon1_stop]=None else: real_splicesites[chr,exon1_stop]=None real_splicesites[chr,exon2_start]=None print len(novel_db), 'novel splice sites and', len(real_splicesites), 'known splice sites.' gene_organized={} for (chr,pos1,strand) in novel_db: pos2,geneID,type = novel_db[(chr,pos1,strand)] try: gene_organized[chr,geneID,strand].append([pos1,pos2,type]) except Exception: gene_organized[chr,geneID,strand] = [[pos1,pos2,type]] def intronCheck(geneID,coords): ### see if the coordinates are within a given intron try: for ic in introns[geneID]: if withinQuery(ic,coords): return True except Exception: pass def withinQuery(ls1,ls2): imax = max(ls1) imin = min(ls1) qmax = max(ls2) qmin = min(ls2) if qmin >= imin and qmax <= imax: return True else: return False ### Compare the novel splice site locations in each gene added=[] for (chr,geneID,strand) in gene_organized: gene_organized[(chr,geneID,strand)].sort() if strand == '-': gene_organized[(chr,geneID,strand)].reverse() i=0 set = gene_organized[(chr,geneID,strand)] for (pos1,pos2,type) in set: k = [pos1,pos2] annotation='novel' if i==0 and type == 3: if len(set)>1: if set[i+1][-1]==5: l = [set[i+1][0],pos1] if (max(l)-min(l))<300 and intronCheck(geneID,l): k=l #print chr,k annotation='novel-paired' elif type == 5: if set[i-1][-1]==3: l = [set[i-1][0],pos1] if (max(l)-min(l))<300 and intronCheck(geneID,l): k=l #print chr,k annotation='novel-paired' k.sort(); i+=1 if k not in added: values = string.join([chr,str(k[0]),str(k[1]),geneID+':'+annotation,'',strand],'\t')+'\n' added.append(k) o.write(values) o.close() if __name__ == '__main__': import multiprocessing as mlp refExonCoordinateFile = '' outputExonCoordinateRefBEDfile = '' #bam_dir = "H9.102.2.6.bam" #outputExonCoordinateRefBEDfile = 'H9.102.2.6__exon.bed' ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a directory containing BAM files as input in the command-line" print "Example: python multiBAMtoBED.py --i /Users/me/BAMfiles --g /Users/me/ReferenceExonCoordinates/Hs_Ensembl_exon_hg19.txt --r /Users/me/ExonBEDRef/Hs_Ensembl_exon-cancer_hg19.bed --a exon --a junction --a reference" print "Example: python multiBAMtoBED.py --i /Users/me/BAMfiles --a junction" sys.exit() else: analysisType = [] useMultiProcessing=False options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','g=','r=','a=','m=']) for opt, arg in options: if opt == '--i': bam_dir=arg elif opt == '--g': refExonCoordinateFile=arg elif opt == '--r': outputExonCoordinateRefBEDfile=arg elif opt == '--a': analysisType.append(arg) ### options are: all, junction, exon, reference elif opt == '--m': ### Run each BAM file on a different processor if arg == 'yes': useMultiProcessing=True elif arg == 'True': useMultiProcessing=True else: useMultiProcessing=False else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() if len(analysisType) == 0 or 'all' in analysisType: analysisType = ['exon','junction','reference'] try: refExonCoordinateFile = refExonCoordinateFile outputExonCoordinateRefBEDfile = outputExonCoordinateRefBEDfile except Exception: print 'Please provide a exon coordinate text file using the option --g and a output coordinate file path (--r) to generate exon.bed files' analysisType = ['junction'] refExonCoordinateFile = '' outputExonCoordinateRefBEDfile = '' try: bam_dir = bam_dir except Exception: print 'You must specify a directory of BAM files or a single bam file with --i';sys.exit() try: refExonCoordinateFile = refExonCoordinateFile except Exception: print 'You must specify a AltAnalyze exon coordinate text file with --g';sys.exit() try: outputExonCoordinateRefBEDfile = outputExonCoordinateRefBEDfile except Exception: print 'You must specify an output path for the exon.bed reference file location with --r (e.g., --r /users/Hs_exon.bed)';sys.exit() parallelBAMProcessing(bam_dir,refExonCoordinateFile,outputExonCoordinateRefBEDfile,analysisType=analysisType,useMultiProcessing=useMultiProcessing,MLP=mlp)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/multiBAMtoBED.py
multiBAMtoBED.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This script can be run on its own to extract a single BAM file at a time or indirectly by multiBAMtoBED.py to extract exon.bed files (Tophat format) from many BAM files in a single directory at once. Requires an exon.bed reference file for exon coordinates (genomic bins for which to sum unique read counts). Excludes junction reads within each interval""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import pysam import copy,math import time import getopt import traceback def AppendOrWrite(export_path): status = verifyFile(export_path) if status == 'not found': export_data = open(export_path,'w') ### Write this new file else: export_data = open(export_path,'a') ### Appends to existing file return export_data def verifyFile(filename): status = 'not found' try: for line in open(filename,'rU').xreadlines(): status = 'found';break except Exception: status = 'not found' return status class IntronRetenionReads(): def __init__(self): self.spanning=0 self.containing=0 def setCombinedPositions(self,combined_pos): self.combined_pos = combined_pos def setIntronSpanningRead(self,read_pos): self.read_pos = read_pos self.spanning=1 def setIntronMateRead(self): self.containing=1 def IntronSpanningRead(self): return self.read_pos def CombinedPositions(self): return self.combined_pos def For_and_Rev_Present(self, ): if (self.containing+self.spanning)==2: return True else: return False def parseExonReferences(bam_dir,reference_exon_bed,multi=False,intronRetentionOnly=False, MateSearch=False, species=None): start_time = time.time() bamfile = pysam.Samfile(bam_dir, "rb" ) reference_rows=0 output_bed_rows=0 exportCoordinates=True try: from import_scripts import BAMtoJunctionBED retainedIntrons, chrm_found, gene_coord_db = BAMtoJunctionBED.retreiveAllKnownSpliceSites(returnExonRetention=True,DesignatedSpecies=species,path=bam_dir) except Exception: #print traceback.format_exc();sys.exit() retainedIntrons={} if intronRetentionOnly==False: o = open (string.replace(bam_dir,'.bam','__exon.bed'),"w") #io = AppendOrWrite(string.replace(bam_dir,'.bam','__junction.bed')) io = open (string.replace(bam_dir,'.bam','__intronJunction.bed'),"w") if exportCoordinates: eo = open (reference_exon_bed[:-4]+'__minimumIntronIntervals.bed',"w") intron_count=0 quick_look = 0 paired = False ### Indicates if paired-end reads exist in the file for entry in bamfile.fetch(): example_chromosome = bamfile.getrname(entry.rname) try: mate = bamfile.mate(entry); paired=True except Exception: pass quick_look+=1 if quick_look>20: ### Only examine the first 20 reads break ### Import the gene data and remove introns that overlap with exons on the opposite or same strand exonData_db={} exon_sorted_list=[] for line in open(reference_exon_bed,'rU').xreadlines(): ### read each line one-at-a-time rather than loading all in memory line = line.rstrip('\n') reference_rows+=1 #if reference_rows==6000: break ref_entries = string.split(line,'\t'); #'12', '6998470', '6998522', 'ENSG00000111671:E1.1_ENSE00001754003', '0', '-' chr,start,stop,exon,null,strand = ref_entries[:6] start = int(start) stop = int(stop) if 'novel' not in exon: exon_sorted_list.append([chr,start,stop,exon,strand]) exon_sorted_list.sort() exon_sorted_filtered=[] exon_index=0 def checkOverlap(region, query_regions): ### Do not trust intron retention estimates if the intron is within an exon chr,start,stop,exon,strand = region gene = string.split(exon,':')[0] overlap = False for (chr,start2,stop2,exon2,strand2) in query_regions: if ':E' in exon2 and gene not in exon2: x = [start,stop,start2,stop2] x.sort() """ if exon2 == 'ENSG00000155657:E363.1' and exon == 'ENSG00000237298:I10.1': if x[1]==start and x[2]==stop: print 'kill' print x, start, stop;sys.exit() """ if x[:2] == [start,stop] or x[-2:] == [start,stop]: ### intron NOT overlapping with an exon #print region; print chr,start2,stop2,exon2,strand2;sys.exit() pass else: ### Partial or complete exon overlap with an intron in a second gene if x[0]==start and x[-1]==stop and (start2-start)>100 and (stop-stop2)>100: ### Classic small intronic RNA example pass elif x[1]==start and x[2]==stop: ### The exon spans the entire intron overlap = True elif (stop2-start2)<50 and (stop-start)>400: ### Considered a minor insignificant overlap that can't account for paired-end mapping pass elif ((x[1]-x[0])<50 or (x[3]-x[2])<50 or (x[2]-x[1])<50) and (stop-start)>400: ### Considered a minor insignificant overlap that can't account for paired-end mapping ### Minor partial overlap of either side of the intron with an exon if (stop2-start)>50 or (stop-start2)>50: ### Then it is more than a minor overlap overlap = True else: overlap = True """ if exon == 'ENSG00000230724:I7.1' and exon2 == 'ENSG00000255229:E1.1': print (x[1]-x[0]), (x[3]-x[2]), (x[2]-x[1]), (stop-start);sys.exit() """ return overlap exonOverlappingIntrons=0 totalIntrons=0 for region in exon_sorted_list: chr,start,stop,exon,strand = region if ':I' in exon or exon in retainedIntrons: try: totalIntrons+=1 query_regions = exon_sorted_list[exon_index-10:exon_index]+exon_sorted_list[exon_index+1:exon_index+10] overlap = checkOverlap(region,query_regions) """ if 'ENSG00000262880:I3.1' == exon: for i in query_regions: print i print chr,start,stop,exon,strand print overlap;sys.exit() """ if overlap == True: """ if exonOverlappingIntrons>10000000: for i in query_regions: print i print chr,start,stop,exon,strand print overlap;sys.exit() """ exon_index+=1 exonOverlappingIntrons+=1 continue except Exception: pass exon_index+=1 #try: exonData_db[gene].append([chr,start,stop,exon,strand]) #except Exception: exonData_db[gene]=[[chr,start,stop,exon,strand]] exon_sorted_filtered.append(region) #print exonOverlappingIntrons, 'introns overlapping with exons in distinct genes out of',totalIntrons;sys.exit() for (chr,start,stop,exon,strand) in exon_sorted_filtered: read_count=0; five_intron_junction_count=0 three_intron_junction_count=0 intronJunction={} exportIntervals=[] #if exon != 'ENSG00000167107:I10.1': continue if 'chr' in example_chromosome and 'chr' not in chr: ### Ensures the reference chromosome names match the query chr = 'chr'+chr try: #if exon == 'ENSMUSG00000001472:E17.1': #chr = '12'; start = '6998470'; stop = '6998522' if intronRetentionOnly: if ':E' in exon and exon not in retainedIntrons: continue if ':I' in exon or exon in retainedIntrons: INTRON = True else: INTRON = False start,stop=int(start),int(stop) regionLen = abs(start-stop) interval_read_count=0 if exportCoordinates: if regionLen<700: exportIntervals = [[start-50,stop+50]] ### Buffer intron into the exon else: exportIntervals = [[start-50,start+350],[stop-350,stop+50]] #print exportIntervals, start, stop;sys.exit() for interval in exportIntervals: interval = map(str,interval) eo.write(string.join([chr]+interval+[exon,'',strand],'\t')+'\n') #chr = '*' for alignedread in bamfile.fetch(chr, start,stop): proceed = True interval_read_count+=1 try: cigarstring = alignedread.cigarstring except Exception: codes = map(lambda x: x[0],alignedread.cigar) if 3 in codes: cigarstring = 'N' else: cigarstring = '' try: read_strand = alignedread.opt('XS') ### TopHat/STAR knows which sequences are likely real splice sites so it assigns a real strand to the read except Exception,e: #if multi == False: print 'No TopHat strand information';sys.exit() read_strand = None ### TopHat doesn't predict strand for many reads if read_strand==None or read_strand==strand: ### Tries to ensure the propper strand reads are considered (if strand read info available) if cigarstring == None: pass else: ### Exclude junction reads ("N") if 'N' in cigarstring: if intronRetentionOnly==False: X=int(alignedread.pos) Y=int(alignedread.pos+alignedread.alen) proceed = False a = [X,Y]; a.sort() b = [X,Y,start,stop]; b.sort() if a[0]==b[1] or a[1]==b[2]: ### Hence, the read starts or ends in that interval proceed = True if proceed == False: ### Also search for cases were part of the read is contained within the exon from import_scripts import BAMtoJunctionBED coordinates,up_to_intron_dist = BAMtoJunctionBED.getSpliceSites(alignedread.cigar,X) for (five_prime_ss,three_prime_ss) in coordinates: five_prime_ss,three_prime_ss=int(five_prime_ss),int(three_prime_ss) if five_prime_ss==start or three_prime_ss==start or five_prime_ss==stop or three_prime_ss==stop: proceed = True #print five_prime_ss, three_prime_ss, start, stop;sys.exit() else: ### Below code is for more accurate estimation of intron retention #""" try: if INTRON: X=int(alignedread.pos) Y=int(alignedread.pos+alignedread.alen) read_pos = [X,Y]; read_pos.sort() combined_pos = [X,Y,start,stop]; combined_pos.sort() try: readname = alignedread.qname except: readname = alignedread.query_name if MateSearch==False: if read_pos[0]==combined_pos[0] or read_pos[1]==combined_pos[-1]: ### Hence, the read starts or ends OUTSIDE of that interval (Store the overlap read coordinates) if readname in intronJunction: ### occurs when the other mate has been stored to this dictionary ir = intronJunction[readname] ir.setIntronSpanningRead(read_pos) ir.setCombinedPositions(combined_pos) else: ir = IntronRetenionReads() ### first time the read-name added to this dictionary ir.setIntronSpanningRead(read_pos) ir.setCombinedPositions(combined_pos) intronJunction[readname] = ir if paired == False: ir.setIntronMateRead() ### For single-end FASTQ (not accurate) else: intron_boundaries = [start,stop]; intron_boundaries.sort() if intron_boundaries[0]==combined_pos[0] and intron_boundaries[-1]==combined_pos[-1]: ### Hence, the read occurs entirely within the intron ### Store the "MATE" information (intron contained read) if readname in intronJunction: ir = intronJunction[readname] ir.setIntronMateRead() found = ir.For_and_Rev_Present() else: ir = IntronRetenionReads() ir.setIntronMateRead() intronJunction[readname] = ir if readname in intronJunction: ir = intronJunction[readname] found = ir.For_and_Rev_Present() if found: ### if the intron is less 500 (CAN CAUSE ISSUES IF READS BLEED OVER ON BOTH SIDES OF THE INTRON) combined_pos = ir.CombinedPositions() read_pos = ir.IntronSpanningRead() if read_pos[0]==combined_pos[0]: five_intron_junction_count+=1 ### intron junction read that spans the 5' intron-exon #print readname, exon, start, stop, X, Y, strand, read_pos, combined_pos elif read_pos[1]==combined_pos[-1]: three_intron_junction_count+=1 ### intron junction read that spans the 3' intron-exon elif regionLen<500: combined_pos = ir.CombinedPositions() read_pos = ir.IntronSpanningRead() intron_read_overlap = combined_pos[2]-combined_pos[1] #print intron_read_overlap if intron_read_overlap>25: if read_pos[0]==combined_pos[0]: five_intron_junction_count+=1 ### intron junction read that spans the 5' intron-exon #print readname, exon, start, stop, X, Y, strand, read_pos, combined_pos elif read_pos[1]==combined_pos[-1]: #print read_pos, combined_pos, intron_read_overlap three_intron_junction_count+=1 ### intron junction read that spans the 3' intron-exon else: mate = bamfile.mate(alignedread) ### looup the paired-end mate for this read try: cigarstring = mate.cigarstring except Exception: codes = map(lambda x: x[0],mate.cigar) if 3 in codes: cigarstring = 'N' else: cigarstring = '' if 'N' not in cigarstring: RX=int(mate.pos) RY=int(mate.pos+mate.alen) intron_boundaries = [start,stop]; intron_boundaries.sort() combined_pos2 = [RX,RY,start,stop]; combined_pos2.sort() if intron_boundaries[0]==combined_pos2[0] and intron_boundaries[-1]==combined_pos2[-1]: if read_pos[0]==intron_boundaries[0]: five_intron_junction_count+=1 ### intron junction read that spans the 5' intron-exon #print readname,exon, start, stop, X, Y, RX, RY, strand, read_strand;sys.exit() elif read_pos[1]==intron_boundaries[-1]: three_intron_junction_count+=1 ### intron junction read that spans the 3' intron-exon except Exception,e: ### Usually an unmapped read #print traceback.format_exc();sys.exit() pass #""" if proceed: read_count+=1 if intronRetentionOnly==False: entries = [chr,str(start),str(stop),exon,null,strand,str(read_count),'0',str(int(stop)-int(start)),'0'] o.write(string.join(entries,'\t')+'\n') output_bed_rows+=1 #""" if INTRON and five_intron_junction_count>4 and three_intron_junction_count>4: interval_read_count = interval_read_count/2 ### if paired-end reads #print interval_read_count, five_intron_junction_count, three_intron_junction_count #print abs((math.log(five_intron_junction_count,2)-math.log(three_intron_junction_count,2))) if abs((math.log(five_intron_junction_count,2)-math.log(three_intron_junction_count,2)))<2: ### if > 4 fold difference if strand=='-': increment = -1 else: increment = -1 total_count = five_intron_junction_count+three_intron_junction_count outlier_start = start-10+increment; outlier_end = start+10+increment junction_id = exon+'-'+str(start) exon_lengths = '10,10'; dist = '0,0' entries = [chr,str(outlier_start),str(outlier_end),junction_id,str(five_intron_junction_count),strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] io.write(string.join(entries,'\t')+'\n') ### 3' junction if strand=='-': increment = 0 else: increment = 0 outlier_start = stop-10+increment; outlier_end = stop+10+increment junction_id = exon+'-'+str(stop) exon_lengths = '10,10'; dist = '0,0' entries = [chr,str(outlier_start),str(outlier_end),junction_id,str(three_intron_junction_count),strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] io.write(string.join(entries,'\t')+'\n') intron_count+=1 output_bed_rows+=1 #if output_bed_rows==1000: break #""" except Exception,e: #print e;sys.exit() ### Occurs also due to non-chromosome contigs in the annotation file if 'bamfile without index' in e: print 'Please ensure an index exists for the bam file:',bam_dir;sys.exit() try: o.close() except Exception: pass try: eo.close() except Exception: pass try: io.close() except Exception: pass bamfile.close() if multi==False: print time.time()-start_time, 'seconds to assign reads for %d entries from %d reference entries' % (output_bed_rows,reference_rows) if __name__ == "__main__": #bam_dir = "H9.102.2.6.bam" #reference_dir = 'H9.102.2.6__exon.bed' ################ Comand-line arguments ################ species = None if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a BAM file as input in the command-line" print "Example: python BAMtoExonBED.py --i /Users/me/sample1.bam --r /Users/me/Hs_exon-cancer_hg19.bed" sys.exit() else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','g=','r=','s=','species=']) for opt, arg in options: if opt == '--i': bam_dir=arg ### A single BAM file location (full path) elif opt == '--s': species = arg elif opt == '--species': species = arg elif opt == '--r': reference_dir=arg ### An exon.bed reference file (created by AltAnalyze from junctions, multiBAMtoBED.py or other) else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() parseExonReferences(bam_dir,reference_dir,intronRetentionOnly=True,species=species)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/BAMtoExonBED.py
BAMtoExonBED.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import itertools dirfile = unique ############ File Import Functions ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def returnDirectories(sub_dir): dir_list = unique.returnDirectories(sub_dir) return dir_list class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if '.' in data: all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term not in data_dir and '.' in data: matches.append(data_dir) return matches def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def combineAllLists(files_to_merge,original_filename,includeColumns=False): headers =[]; all_keys={}; dataset_data={}; files=[]; unique_filenames=[] count=0 for filename in files_to_merge: duplicates=[] count+=1 fn=filepath(filename); x=0; combined_data ={} if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] ### If two files with the same name being merged if file in unique_filenames: file += str(count) unique_filenames.append(file) print file files.append(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] if includeColumns==False: for i in t: headers.append(i+'.'+file) #headers.append(i) else: headers.append(t[includeColumns]+'.'+file) else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] if includeColumns==False: try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill else: values = [t[includeColumns]] #key = string.replace(key,' ','') if len(key)>0 and key != ' ' and key not in combined_data: ### When the same key is present in the same dataset more than once try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 if permform_all_pairwise == 'yes': try: combined_data[key].append(values); duplicates.append(key) except Exception: combined_data[key] = [values] else: combined_data[key] = values #print duplicates dataset_data[filename] = combined_data for i in dataset_data: print len(dataset_data[i]), i ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key][0]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values if permform_all_pairwise == 'yes': values = [null_values] if permform_all_pairwise == 'yes': try: val_list = combined_file_data[key] val_list.append(values) combined_file_data[key] = val_list except KeyError: combined_file_data[key] = [values] else: try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] if permform_all_pairwise == 'yes': results = getAllListCombinations(combined_file_data[key]) for result in results: merged=[] for i in result: merged+=i values = string.join([key]+merged,'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join else: try: values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join except Exception: print combined_file_data[key];sys.exit() data.close() print "exported",len(dataset_data),"to",export_file def customLSDeepCopy(ls): ls2=[] for i in ls: ls2.append(i) return ls2 def getAllListCombinationsLong(a): ls1 = ['a1','a2','a3'] ls2 = ['b1','b2','b3'] ls3 = ['c1','c2','c3'] ls = ls1,ls2,ls3 list_len_db={} for ls in a: list_len_db[len(x)]=[] print len(list_len_db), list_len_db;sys.exit() if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r+=i else: #http://code.activestate.com/recipes/496807-list-of-all-combination-from-multiple-lists/ r=[[]] for x in a: t = [] for y in x: for i in r: t.append(i+[y]) r = t return r def combineUniqueAllLists(files_to_merge,original_filename): headers =[]; all_keys={}; dataset_data={}; files=[] for filename in files_to_merge: print filename fn=filepath(filename); x=0; combined_data ={}; files.append(filename) if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] for i in t: headers.append(i+'.'+file) if x==0: if data[0]!='#': x=1; headers+=t[1:] ###Occurs for the header line headers+=['null'] else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill #key = string.replace(key,' ','') combined_data[key] = values if len(key)>0 and key != ' ': try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 dataset_data[filename] = combined_data ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join data.close() print "exported",len(dataset_data),"to",export_file def getAllListCombinations(a): #http://www.saltycrane.com/blog/2011/11/find-all-combinations-set-lists-itertoolsproduct/ """ Nice code to get all combinations of lists like in the above example, where each element from each list is represented only once """ list_len_db={} for x in a: list_len_db[len(x)]=[] if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r.append(i[0]) return [r] else: return list(itertools.product(*a)) def joinFiles(files_to_merge,CombineType,unique_join,outputDir): """ Join multiple files into a single output file """ global combine_type global permform_all_pairwise global output_dir output_dir = outputDir combine_type = string.lower(CombineType) permform_all_pairwise = 'yes' print 'combine type:',combine_type print 'join type:', unique_join #g = GrabFiles(); g.setdirectory(import_dir) #files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if unique_join: combineUniqueAllLists(files_to_merge,'') else: combineAllLists(files_to_merge,'') return output_dir+'/MergedFiles.txt' if __name__ == '__main__': dirfile = unique includeColumns=-2 includeColumns = False output_dir = filepath('output') combine_type = 'union' permform_all_pairwise = 'yes' print "Analysis Mode:" print "1) Batch Analysis" print "2) Single Output" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": batch_mode = 'yes' elif inp == "2": batch_mode = 'no' print "Combine Lists Using:" print "1) Grab Union" print "2) Grab Intersection" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": combine_type = 'union' elif inp == "2": combine_type = 'intersection' if batch_mode == 'yes': import_dir = '/batch/general_input' else: import_dir = '/input' g = GrabFiles(); g.setdirectory(import_dir) files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if batch_mode == 'yes': second_import_dir = '/batch/primary_input' g = GrabFiles(); g.setdirectory(second_import_dir) files_to_merge2 = g.searchdirectory('xyz') ###made this a term to excluded for file in files_to_merge2: temp_files_to_merge = customLSDeepCopy(files_to_merge) original_filename = string.split(file,'/'); original_filename = original_filename[-1] temp_files_to_merge.append(file) if '.' in file: combineAllLists(temp_files_to_merge,original_filename) else: combineAllLists(files_to_merge,'',includeColumns=includeColumns) print "Finished combining lists. Select return/enter to exit"; inp = sys.stdin.readline()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/mergeFilesUnique.py
mergeFilesUnique.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import export import unique import traceback """ Intersecting Coordinate Files """ def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data class EventInformation: def __init__(self, id, event_direction, clusterID, altExons, coordinates): self.id = id self.event_direction = event_direction self.clusterID = clusterID self.altExons = altExons self.coordinates = coordinates def ID(self): return self.id def GeneID(self): return string.split(self.id,':')[1] def Symbol(self): return string.split(self.id,':')[0] def EventDirection(self): return self.event_direction def ClusterID(self): return self.clusterID def AltExons(self): """ Can be multiple exons """ altExons = string.split(self.altExons,'|') return altExons def JunctionCoordinateInterval(self): """ If the exon block is not in the database, return the full interval """ try: j1,j2 = string.split(self.Coordinates(),'|') chr,coord1 = string.split(j1,':') chr,coord2 = string.split(j2,':') coords = map(int,string.split(coord1,'-')) coords += map(int,string.split(coord2,'-')) coords.sort() return chr,coords[0],coords[-1] except: """ See the class circInformation """ return self.coordinates def AltExonBlockCoord(self): exon_block_coords=[] for altExon in self.AltExons(): if 'ENSG' not in altExon: altExon = self.GeneID() + ':' + altExon altExon_block = string.split(altExon,'.')[0] try: chr, strand, start, end = exon_block_coordinates[altExon_block] except: chr, start, end = self.JunctionCoordinateInterval() exon_block_coords.append(chr+':'+str(start)+'-'+str(end)) return string.join(exon_block_coords,'|') def FlankingBlockCoord(self): coords=[] for altExon in self.AltExons(): if 'ENSG' in altExon: altExon = string.split(altExon,':')[1] altExon_block = string.split(altExon,'.')[0] block_num = int(altExon_block[1:]) block_type = altExon_block[0] try: chr, strand, start, end = exon_block_coordinates[self.GeneID() + ':' + block_type+str(block_num)] coords+=[start, end] except: pass if block_type == 'E': if extendFlanking == False: upstream_intron = self.GeneID() + ':' + "I"+str(block_num-1) else: upstream_intron = self.GeneID() + ':' + "E"+str(block_num-1) if upstream_intron not in exon_block_coordinates: upstream_intron = self.GeneID() + ':' + "I"+str(block_num-1) try: chr, strand, Ustart, Uend = exon_block_coordinates[upstream_intron] except: chr, Ustart, Uend = self.JunctionCoordinateInterval() if extendFlanking == False: downstream_intron = self.GeneID() + ':' + "I"+str(block_num) else: downstream_intron = self.GeneID() + ':' + "E"+str(block_num+1) if downstream_intron not in exon_block_coordinates: downstream_intron = self.GeneID() + ':' + "I"+str(block_num) try: chr, strand, Dstart, Dend = exon_block_coordinates[downstream_intron] except: chr, Dstart, Dend = self.JunctionCoordinateInterval() else: upstream_exon = self.GeneID() + ':' + "E"+str(block_num) try: chr, strand, Ustart, Uend = exon_block_coordinates[upstream_exon] except: chr, Ustart, Uend = self.JunctionCoordinateInterval() downstream_exon = self.GeneID() + ':' + "E"+str(block_num+1) try: chr, strand, Dstart, Dend = exon_block_coordinates[downstream_exon] except: chr, Dstart, Dend = self.JunctionCoordinateInterval() coords += [Ustart, Uend, Dstart, Dend] coords.sort() start = coords[0] end = coords[-1] return start, end def Coordinates(self): return self.coordinates def Export(self): annotations = [self.Symbol(), self.ID(), self.EventDirection(), self.ClusterID(), self.Coordinates(), self.altExons, self.AltExonBlockCoord()] return annotations def __repr__(self): return self.ID(), self.EventDirection(), self.ClusterID(), self.Coordinates() class circInformation(EventInformation): def __init__(self, id, pval, logFC): self.id = id self.pval = pval self.GeneID() self.Coordinates() self.FindAssociatedExonsBlocks() self.logFC = logFC self.AltExons() def pVal(self): return self.pval def EventDirection(self): if self.logFC > 0: return 'inclusion' else: return 'exclusion' def Symbol(self): symbol = string.split(self.ID(),'-')[0] self.symbol = symbol return self.symbol def GeneID(self): if self.Symbol() in symbol_to_gene: geneID=symbol_to_gene[self.Symbol()][0] for gene in symbol_to_gene[self.Symbol()]: if 'ENS' in gene: geneID = gene else: geneID = self.Symbol() return geneID def Coordinates(self): c1,c2 = string.split(self.ID(),'-')[-2:] self.chr,c1 = string.split(c1,':') self.start = int(c1) self.end = int(c2) self.coordinates = self.chr, self.start, self.end return self.chr+':'+str(self.start)+'-'+str(self.end) def FindAssociatedExonsBlocks(self): """ Indentify matching exon/intron regions for the circRNA coordinates """ chr, cstart, cend = self.coordinates circRNA_coords = [cstart, cend] circRNA_coords.sort() if self.GeneID() in gene_to_exons: search_blocks = gene_to_exons[self.GeneID()] aligned_blocks=[] for exon_block in search_blocks: chr, strand, start, end = exon_block_coordinates[exon_block] block_coords = [start, end] block_coords.sort() coords = circRNA_coords+block_coords coords.sort() if len(unique.unique(coords))==3: if exon_block not in aligned_blocks: aligned_blocks.append(exon_block) elif coords[:2]==circRNA_coords or coords[-2:]==circRNA_coords: pass else: if exon_block not in aligned_blocks: aligned_blocks.append(exon_block) self.aligned_blocks = aligned_blocks else: self.aligned_blocks=[] return self.aligned_blocks def ClusterID(self): return self.GeneID() def AltExons(self): self.altExons = string.join(self.aligned_blocks,'|') return self.aligned_blocks def Chr(self): return self.chr def Start(self): return self.start def End(self): return self.end def Strand(self): return '' def Annotation(self): return '' class PeakInformation: def __init__(self, chr, start, end, strand, annotation, gene, symbol): self.chr = chr self.start = start self.end = end self.strand = strand self.annotation = annotation self.symbol = symbol self.gene = gene def Chr(self): return self.chr def Start(self): return self.start def End(self): return self.end def Strand(self): return self.strand def GeneID(self): return self.gene def Annotation(self): return self.annotation def Symbol(self): return self.symbol def Coordinates(self): return self.chr+':'+str(self.Start())+'-'+str(self.End()) def Export(self): annotations = [self.Coordinates(),self.Annotation()] return annotations def __repr__(self): return self.Symbol(), self.Annotation() def importSplicingEvents(folder): dataset_events={} files = unique.read_directory(folder) for file in files: if 'PSI.' in file and '.txt' in file: events=[] dataset = file[:-4] fn = unique.filepath(folder+'/'+file) firstRow=True for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstRow: index=0 """ Standard Fields from MultiPath-PSI """ for i in t: if 'Event-Direction'==i: ed = index if 'ClusterID' == i: ci = index if 'AltExons' == i: ae = index if 'EventAnnotation' == i: ea = index if 'Coordinates' == i: co = index index+=1 firstRow = False else: id = t[0] event_direction = t[ed] clusterID = t[ci] altExons = t[ae] coordinates = t[co] ei = EventInformation(id, event_direction, clusterID, altExons, coordinates) events.append(ei) dataset_events[dataset]=events return dataset_events def eCLIPimport(folder): eCLIP_dataset_peaks={} files = unique.read_directory(folder) for file in files: if '.bed' in file: peaks=[] dataset = file[:-4] fn = unique.filepath(folder+'/'+file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') chr = t[0] start = int(t[1]) end = int(t[2]) strand = t[5] annotation = t[6] gene = string.split(t[8],'.')[0] symbol = t[-2] pi = PeakInformation(chr, start, end, strand, annotation, gene, symbol) peaks.append(pi) eCLIP_dataset_peaks[dataset]=peaks return eCLIP_dataset_peaks def importExonCoordinates(species): """ Import exon block, intron block and gene coordinates """ firstRow=True exon_coordinate_path = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' fn = unique.filepath(exon_coordinate_path) gene_coordinates={} gene_to_exons={} exon_block_coordinates={} gene_chr_strand = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstRow: firstRow = False else: gene, exonid, chr, strand, exon_region_starts, exon_region_ends, constitutive_call, ens_exon_ids, splice_events, splice_junctions = t exon_region_starts = map(int,string.split(exon_region_starts,'|')) exon_region_ends = map(int,string.split(exon_region_ends,'|')) exon_block = gene+':'+string.split(exonid,'.')[0] gene_chr_strand[gene]=chr,strand if gene in gene_to_exons: gene_to_exons[gene].append(exon_block) else: gene_to_exons[gene] = [exon_block] if gene in gene_coordinates: gene_coordinates[gene]+=exon_region_starts+exon_region_ends else: gene_coordinates[gene]=exon_region_starts+exon_region_ends if exon_block in exon_block_coordinates: exon_block_coordinates[exon_block]+=exon_region_starts+exon_region_ends else: exon_block_coordinates[exon_block]=exon_region_starts+exon_region_ends for gene in gene_coordinates: gene_coordinates[gene].sort() start = gene_coordinates[gene][0] end = gene_coordinates[gene][-1] chr,strand = gene_chr_strand[gene] gene_coordinates[gene]= chr, strand, start, end for exon in exon_block_coordinates: exon_block_coordinates[exon].sort() start = exon_block_coordinates[exon][0] end = exon_block_coordinates[exon][-1] chr,strand = gene_chr_strand[string.split(exon,':')[0]] exon_block_coordinates[exon] = chr, strand, start, end print len(gene_coordinates), 'genes' print len(exon_block_coordinates), 'exons/introns' return gene_coordinates, exon_block_coordinates, gene_to_exons def importGeneSymbols(species): import gene_associations gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) from import_scripts import OBO_import symbol_to_gene = OBO_import.swapKeyValues(gene_to_symbol) return gene_to_symbol, symbol_to_gene def importCircularRNAEvents(folder,circ_p): dataset_events={} files = unique.read_directory(folder) for file in files: if 'circRNA.' in file and '.txt' in file: events=[] dataset = file[:-4] fn = unique.filepath(folder+'/'+file) firstRow=True for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstRow: index=0 """ Standard Fields from MultiPath-PSI """ for i in t: if 'PValue'==i: pv = index if 'logFC'==i: lf = index index+=1 firstRow = False else: id = t[0] pval = float(t[pv]) logFC = float(t[lf]) ci = circInformation(id, pval, logFC) if pval < circ_p: events.append(ci) dataset_events[dataset]=events return dataset_events def alignEventsAndPeaks(eCLIP, AS, eCLIP_peaks,AS_events,AS_event_dir): """ Compare genomic coordinates from these two datasets """ eCLIP_gene_peaks = {} eCLIP_symbol_peaks = {} AS_gene_events = {} gene_to_symbol = {} """ Create gene indexes for both datasets, allowing alternative matches by symbol """ for pi in eCLIP_peaks: if pi.GeneID() not in eCLIP_gene_peaks: eCLIP_gene_peaks[pi.GeneID()] = [pi] else: eCLIP_gene_peaks[pi.GeneID()].append(pi) if pi.Symbol() not in eCLIP_symbol_peaks: eCLIP_symbol_peaks[pi.Symbol()] = [pi] else: eCLIP_symbol_peaks[pi.Symbol()].append(pi) for ei in AS_events: if ei.GeneID() not in AS_gene_events: AS_gene_events[ei.GeneID()] = [ei] else: AS_gene_events[ei.GeneID()].append(ei) gene_to_symbol[ei.GeneID()] = ei.Symbol() """ Match peaks to splicing events based on annotated genes (could do by coordinates) """ gene_export = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_gene.txt') gene_export_incl = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_gene-incl.txt') gene_export_excl = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_gene-excl.txt') exon_export = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_exon.txt') exon_export_incl = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_exon-incl.txt') exon_export_excl = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_exon-excl.txt') flanking_export = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_flanking.txt') flanking_export_incl = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_flanking-incl.txt') flanking_export_excl = export.ExportFile(AS_event_dir+'/eCLIP-overlaps/'+eCLIP+'_'+AS+'_flanking-excl.txt') header = ['Symbol', 'UID', 'EventDirection', 'ClusterID', 'Coordinates', 'altExons', 'AltExonBlockCoord','Peak-Coordinates','Peak-Annotations'] header = string.join(header,'\t')+'\n' gene_export.write(header) gene_export_incl.write(header) gene_export_excl.write(header) exon_export.write(header) exon_export_incl.write(header) exon_export_excl.write(header) flanking_export.write(header) flanking_export_incl.write(header) flanking_export_excl.write(header) exported=[] for geneID in AS_gene_events: symbol = gene_to_symbol[geneID] pi_set = None if geneID in eCLIP_gene_peaks: pi_set = eCLIP_gene_peaks[geneID] elif symbol in eCLIP_symbol_peaks: pi_set = eCLIP_symbol_peaks[symbol] if pi_set != None: """ Matching peak and AS at the gene-level """ for ei in AS_gene_events[geneID]: event_annotations = ei.Export() for altExon in ei.AltExons(): if 'ENSG' not in altExon: altExon = ei.GeneID() + ':' + altExon altExon_block = string.split(altExon,'.')[0] try: chr, strand, start, end = exon_block_coordinates[altExon_block] except: """ Can occur if the exon region is a novel 5' exon (not in database) use the junction interval instead (less precise) """ chr, start, end = ei.JunctionCoordinateInterval() for pi in pi_set: peak_annotations = pi.Export() overlaps = string.join(event_annotations+peak_annotations,'\t')+'\n' if overlaps in exported: pass ### This comparison has already been exported else: exported.append(overlaps) gene_export.write(overlaps) if ei.EventDirection()=='inclusion': gene_export_incl.write(overlaps) else: gene_export_excl.write(overlaps) """ Find direct exon overlaps """ AS_coords = [start,end] AS_coords.sort() Peak_coords = [pi.Start(),pi.End()] Peak_coords.sort() coords = AS_coords+Peak_coords coords.sort() if coords[:2]==AS_coords or coords[-2:]==AS_coords: pass else: exon_export.write(overlaps) if ei.EventDirection()=='inclusion': exon_export_incl.write(overlaps) else: exon_export_excl.write(overlaps) """ Find indirect flanking intron overlaps """ flank_start,flank_end = ei.FlankingBlockCoord() AS_coords = [flank_start,flank_end] AS_coords.sort() Peak_coords = [pi.Start(),pi.End()] Peak_coords.sort() coords = AS_coords+Peak_coords coords.sort() if coords[:2]==AS_coords or coords[-2:]==AS_coords: pass else: flanking_export.write(overlaps) if ei.EventDirection()=='inclusion': flanking_export_incl.write(overlaps) else: flanking_export_excl.write(overlaps) if __name__ == '__main__': ################ Comand-line arguments ################ import getopt splicing_events_dir = None CLIP_dir = None circRNA_dir = None species = 'Hs' extendFlanking = False circ_p = 0.05 """ Usage: # For finding overlaps between annotated eCLIP and MultiPath-PSI splicing events from AltAnalyze import_scripts/peakOverlaps.py --species Hs --clip /Users/abcd/dataAnalysis/eCLIP --events /Users/abcd/dataAnalysis/AS-Events/ --extendFlanking True # For finding overlaps between annotated eCLIP and circRNA outputs from edgeR import_scripts/peakOverlaps.py --species Hs --clip /Users/abcd/dataAnalysis/eCLIP --events /Users/abcd/dataAnalysis/circRNA/ --extendFlanking True --circ_p 0.1 # For finding overlaps between annotated MultiPath-PSI splicing events and circRNA outputs from edgeR python import_scripts/peakOverlaps.py --species Hs --circ /Users/abcd/dataAnalysis/circRNA/ --circ_p 0.1 --events /Users/abcd/dataAnalysis/AS-Events/ --extendFlanking True """ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print 'WARNING!!!! Too commands supplied.' else: options, remainder = getopt.getopt(sys.argv[1:],'', ['species=','clip=','events=', 'extendFlanking=', 'circ=', 'circ_p=']) #print sys.argv[1:] for opt, arg in options: if opt == '--species': species = arg elif opt == '--clip': CLIP_dir = arg elif opt == '--circ': circRNA_dir = arg elif opt == '--circ_p': circ_p = float(arg) elif opt == '--events': splicing_events_dir = arg elif opt == '--extendFlanking': if 'true' in string.lower(arg) or 'yes' in string.lower(arg): extendFlanking = True print 'Extend Flanking = TRUE' gene_to_symbol, symbol_to_gene = importGeneSymbols(species) gene_coordinates, exon_block_coordinates, gene_to_exons = importExonCoordinates(species) if CLIP_dir != None: dataset_peaks = eCLIPimport(CLIP_dir) if splicing_events_dir != None: AS_dataset_events = importSplicingEvents(splicing_events_dir) dataset_events = AS_dataset_events events_dir = splicing_events_dir if circRNA_dir != None: circRNA_dataset_events = importCircularRNAEvents(circRNA_dir, circ_p) dataset_events = circRNA_dataset_events events_dir = circRNA_dir if CLIP_dir == None: """ Comparison of circRNA coordinates as peaks to AS events """ dataset_events = AS_dataset_events dataset_peaks = circRNA_dataset_events print len(dataset_peaks), 'peak datasets' print len(dataset_events), 'Alternative-event datasets\n' for eCLIP in dataset_peaks: for AE in dataset_events: print 'Aligning coordinates from', eCLIP, 'to', AE eCLIP_peaks = dataset_peaks[eCLIP] events = dataset_events[AE] alignEventsAndPeaks(eCLIP, AE, eCLIP_peaks, events,events_dir)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/peakOverlaps.py
peakOverlaps.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This script can be run on its own to extract a single BAM file at a time or indirectly by multiBAMtoBED.py to extract junction.bed files (Tophat format) from many BAM files in a single directory at once. Currently uses the Tophat predicted Strand notation opt('XS') for each read. This can be substituted with strand notations from other aligners (check with the software authors).""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import pysam #import bamnostic as pysam import copy,getopt import time import traceback try: import export except Exception: pass try: import unique except Exception: pass try: import TabProxies import ctabix import csamtools import cvcf except Exception: try: #if os.name != 'posix': print traceback.format_exc() pass except Exception: pass try: from pysam import libctabixproxies except: #print traceback.format_exc() pass def getSpliceSites(cigarList,X): cummulative=0 coordinates=[] for (code,seqlen) in cigarList: if code == 0: cummulative+=seqlen if code == 3: #if strand == '-': five_prime_ss = str(X+cummulative) cummulative+=seqlen ### add the intron length three_prime_ss = str(X+cummulative+1) ### 3' exon start (prior exon splice-site + intron length) coordinates.append([five_prime_ss,three_prime_ss]) up_to_intron_dist = cummulative return coordinates, up_to_intron_dist def writeJunctionBedFile(junction_db,jid,o): strandStatus = True for (chr,jc,tophat_strand) in junction_db: if tophat_strand==None: strandStatus = False break #if strandStatus== False: ### If no strand information in the bam file filter and add known strand data junction_db2={} strand='+' for (chr,jc,tophat_strand) in junction_db: original_chr = chr if 'chr' not in chr: chr = 'chr'+chr for j in jc: if tophat_strand==None: try: strand = splicesite_db[chr,j] junction_db2[(original_chr,jc,strand)]=junction_db[(original_chr,jc,tophat_strand)] except Exception: ### Assume the strand is the last strand detected (in the same genomic region) junction_db2[(original_chr,jc,strand)]=junction_db[(original_chr,jc,tophat_strand)] else: ### Programs like HISAT2 have some reads with strand assigned and others without junction_db2[(original_chr,jc,tophat_strand)]=junction_db[(original_chr,jc,tophat_strand)] junction_db = junction_db2 for (chr,jc,tophat_strand) in junction_db: x_ls=[]; y_ls=[]; dist_ls=[] read_count = str(len(junction_db[(chr,jc,tophat_strand)])) for (X,Y,dist) in junction_db[(chr,jc,tophat_strand)]: x_ls.append(X); y_ls.append(Y); dist_ls.append(dist) outlier_start = min(x_ls); outlier_end = max(y_ls); dist = str(max(dist_ls)) exon_lengths = outlier_start exon_lengths = str(int(jc[0])-outlier_start)+','+str(outlier_end-int(jc[1])+1) junction_id = 'JUNC'+str(jid)+':'+jc[0]+'-'+jc[1] ### store the unique junction coordinates in the name output_list = [chr,str(outlier_start),str(outlier_end),junction_id,read_count,tophat_strand,str(outlier_start),str(outlier_end),'255,0,0\t2',exon_lengths,'0,'+dist] o.write(string.join(output_list,'\t')+'\n') def writeIsoformFile(isoform_junctions,o): for coord in isoform_junctions: isoform_junctions[coord] = unique.unique(isoform_junctions[coord]) if '+' in coord: print coord, isoform_junctions[coord] if '+' in coord: sys.exit() def verifyFileLength(filename): count = 0 try: fn=unique.filepath(filename) for line in open(fn,'rU').xreadlines(): count+=1 if count>9: break except Exception: null=[] return count def retreiveAllKnownSpliceSites(returnExonRetention=False,DesignatedSpecies=None,path=None): ### Uses a priori strand information when none present import export, unique chromosomes_found={} try: parent_dir = export.findParentDir(bam_file) except Exception: parent_dir = export.findParentDir(path) species = None for file in os.listdir(parent_dir): if 'AltAnalyze_report' in file and '.log' in file: log_file = unique.filepath(parent_dir+'/'+file) log_contents = open(log_file, "rU") species_tag = ' species: ' for line in log_contents: line = line.rstrip() if species_tag in line: species = string.split(line,species_tag)[1] if species == None: try: species = IndicatedSpecies except Exception: species = DesignatedSpecies splicesite_db={} gene_coord_db={} length=0 try: #if ExonReference==None: exon_dir = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_exon.txt' length = verifyFileLength(exon_dir) except Exception: #print traceback.format_exc();sys.exit() pass if length==0: exon_dir = ExonReference refExonCoordinateFile = unique.filepath(exon_dir) firstLine=True for line in open(refExonCoordinateFile,'rU').xreadlines(): if firstLine: firstLine=False else: line = line.rstrip('\n') t = string.split(line,'\t'); #'gene', 'exon-id', 'chromosome', 'strand', 'exon-region-start(s)', 'exon-region-stop(s)', 'constitutive_call', 'ens_exon_ids', 'splice_events', 'splice_junctions' geneID, exon, chr, strand, start, stop = t[:6] spliceEvent = t[-2] #start = int(start); stop = int(stop) #geneID = string.split(exon,':')[0] try: gene_coord_db[geneID,chr].append(int(start)) gene_coord_db[geneID,chr].append(int(stop)) except Exception: gene_coord_db[geneID,chr] = [int(start)] gene_coord_db[geneID,chr].append(int(stop)) if returnExonRetention: if 'exclusion' in spliceEvent or 'exclusion' in spliceEvent: splicesite_db[geneID+':'+exon]=[] else: splicesite_db[chr,start]=strand splicesite_db[chr,stop]=strand if len(chr)<5 or ('GL0' not in chr and 'GL' not in chr and 'JH' not in chr and 'MG' not in chr): chromosomes_found[string.replace(chr,'chr','')] = [] for i in gene_coord_db: gene_coord_db[i].sort() gene_coord_db[i] = [gene_coord_db[i][0],gene_coord_db[i][-1]] return splicesite_db,chromosomes_found,gene_coord_db def exportIndexes(input_dir): import unique bam_dirs = unique.read_directory(input_dir) print 'Building BAM index files', for file in bam_dirs: if string.lower(file[-4:]) == '.bam': bam_dir = input_dir+'/'+file bamf = pysam.Samfile(bam_dir, "rb" ) ### Is there an indexed .bai for the BAM? Check. try: for entry in bamf.fetch(): codes = map(lambda x: x[0],entry.cigar) break except Exception: ### Make BAM Indexv lciv9df8scivx print '.', bam_dir = str(bam_dir) #On Windows, this indexing step will fail if the __init__ pysam file line 51 is not set to - catch_stdout = False pysam.index(bam_dir) bamf = pysam.Samfile(bam_dir, "rb" ) def parseJunctionEntries(bam_dir,multi=False, Species=None, ReferenceDir=None): global bam_file global splicesite_db global IndicatedSpecies global ExonReference IndicatedSpecies = Species ExonReference = ReferenceDir bam_file = bam_dir try: splicesite_db,chromosomes_found, gene_coord_db = retreiveAllKnownSpliceSites() except Exception: print traceback.format_exc() splicesite_db={}; chromosomes_found={} start = time.time() try: import collections; junction_db=collections.OrderedDict() except Exception: try: import ordereddict; junction_db = ordereddict.OrderedDict() except Exception: junction_db={} original_junction_db = copy.deepcopy(junction_db) bamf = pysam.Samfile(bam_dir, "rb" ) ### Is there an indexed .bai for the BAM? Check. try: for entry in bamf.fetch(): codes = map(lambda x: x[0],entry.cigar) break except Exception: ### Make BAM Index if multi == False: print 'Building BAM index file for', bam_dir bam_dir = str(bam_dir) #On Windows, this indexing step will fail if the __init__ pysam file line 51 is not set to - catch_stdout = False pysam.index(bam_dir) bamf = pysam.Samfile(bam_dir, "rb" ) chromosome = False chromosomes={} bam_reads=0 count=0 jid = 1 prior_jc_start=0 l1 = None; l2=None o = open (string.replace(bam_dir,'.bam','__junction.bed'),"w") o.write('track name=junctions description="TopHat junctions"\n') export_isoform_models = False if export_isoform_models: io = open (string.replace(bam_dir,'.bam','__isoforms.txt'),"w") isoform_junctions = copy.deepcopy(junction_db) outlier_start = 0; outlier_end = 0; read_count = 0; c=0 for entry in bamf.fetch(): bam_reads+=1 try: cigarstring = entry.cigarstring except Exception: codes = map(lambda x: x[0],entry.cigar) if 3 in codes: cigarstring = 'N' else: cigarstring = None if cigarstring != None: if 'N' in cigarstring: ### Hence a junction if prior_jc_start == 0: pass elif (entry.pos-prior_jc_start) > 5000 or bamf.getrname( entry.rname ) != chromosome: ### New chr or far from prior reads writeJunctionBedFile(junction_db,jid,o) #writeIsoformFile(isoform_junctions,io) junction_db = copy.deepcopy(original_junction_db) ### Re-set this object jid+=1 chromosome = bamf.getrname( entry.rname ) chromosomes[chromosome]=[] ### keep track X=entry.pos #if entry.query_name == 'SRR791044.33673569': #print chromosome, entry.pos, entry.reference_length, entry.alen, entry.query_name Y=entry.pos+entry.alen prior_jc_start = X try: tophat_strand = entry.opt('XS') ### TopHat knows which sequences are likely real splice sites so it assigns a real strand to the read except Exception: #if multi == False: print 'No TopHat strand information';sys.exit() tophat_strand = None coordinates,up_to_intron_dist = getSpliceSites(entry.cigar,X) #if count > 100: sys.exit() #print entry.query_name,X, Y, entry.cigarstring, entry.cigar, tophat_strand for (five_prime_ss,three_prime_ss) in coordinates: jc = five_prime_ss,three_prime_ss #print X, Y, jc, entry.cigarstring, entry.cigar try: junction_db[chromosome,jc,tophat_strand].append([X,Y,up_to_intron_dist]) except Exception: junction_db[chromosome,jc,tophat_strand] = [[X,Y,up_to_intron_dist]] if export_isoform_models: try: mate = bamf.mate(entry) #https://groups.google.com/forum/#!topic/pysam-user-group/9HM6nx_f2CI if 'N' in mate.cigarstring: mate_coordinates,mate_up_to_intron_dist = getSpliceSites(mate.cigar,mate.pos) else: mate_coordinates=[] except Exception: mate_coordinates=[] #print coordinates,mate_coordinates junctions = map(lambda x: tuple(x),coordinates) if len(mate_coordinates)>0: try: isoform_junctions[chromosome,tuple(junctions),tophat_strand].append(mate_coordinates) except Exception: isoform_junctions[chromosome,tuple(junctions),tophat_strand] = [mate_coordinates] else: if (chromosome,tuple(junctions),tophat_strand) not in isoform_junctions: isoform_junctions[chromosome,tuple(junctions),tophat_strand] = [] count+=1 writeJunctionBedFile(junction_db,jid,o) ### One last read-out if multi == False: print bam_reads, count, time.time()-start, 'seconds required to parse the BAM file' o.close() bamf.close() missing_chromosomes=[] for chr in chromosomes_found: if chr not in chromosomes: chr = string.replace(chr,'chr','') if chr not in chromosomes_found: if chr != 'M' and chr != 'MT': missing_chromosomes.append(chr) #missing_chromosomes = ['A','B','C','D'] try: bam_file = export.findFilename(bam_file) except Exception: pass return bam_file, missing_chromosomes if __name__ == "__main__": ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a BAM file as input in the command-line" print "Example: python BAMtoJunctionBED.py --i /Users/me/sample1.bam" sys.exit() else: Species = None reference_dir = None options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','species=','r=']) for opt, arg in options: if opt == '--i': bam_dir=arg ### full path of a BAM file elif opt == '--species': Species=arg ### species for STAR analysis to get strand elif opt == '--r': reference_dir=arg ### An exon.bed reference file (created by AltAnalyze from junctions, multiBAMtoBED.py or other) - required for STAR to get strand if XS field is empty else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() try: parseJunctionEntries(bam_dir,Species=Species,ReferenceDir=reference_dir) except ZeroDivisionError: print [sys.argv[1:]],'error'; error """ Benchmarking notes: On a 2017 MacBook Pro with 16GB of RAM and a local 7GB BAM file (solid drive), 9 minutes (526s) to complete writing a junction.bed. To simply search through the file without looking at the CIGAR, the script takes close to 5 minutes (303s)"""
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/BAMtoJunctionBED.py
BAMtoJunctionBED.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import itertools dirfile = unique ############ File Import Functions ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def returnDirectories(sub_dir): dir_list = unique.returnDirectories(sub_dir) return dir_list class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if '.' in data: all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term not in data_dir and '.' in data: matches.append(data_dir) return matches def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def combineAllLists(files_to_merge,original_filename,includeColumns=False): headers =[]; all_keys={}; dataset_data={}; files=[]; unique_filenames=[] count=0 for filename in files_to_merge: duplicates=[] count+=1 fn=filepath(filename); x=0; combined_data ={} if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] ### If two files with the same name being merged if file in unique_filenames: file += str(count) unique_filenames.append(file) print file files.append(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] if includeColumns==False: for i in t: headers.append(i+'.'+file) #headers.append(i) else: headers.append(t[includeColumns]+'.'+file) else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] if includeColumns==False: try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill else: values = [t[includeColumns]] #key = string.replace(key,' ','') if len(key)>0 and key != ' ' and key not in combined_data: ### When the same key is present in the same dataset more than once try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 if permform_all_pairwise == 'yes': try: combined_data[key].append(values); duplicates.append(key) except Exception: combined_data[key] = [values] else: combined_data[key] = values #print duplicates dataset_data[filename] = combined_data for i in dataset_data: print len(dataset_data[i]), i ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key][0]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values if permform_all_pairwise == 'yes': values = [null_values] if permform_all_pairwise == 'yes': try: val_list = combined_file_data[key] val_list.append(values) combined_file_data[key] = val_list except KeyError: combined_file_data[key] = [values] else: try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] if permform_all_pairwise == 'yes': results = getAllListCombinations(combined_file_data[key]) for result in results: merged=[] for i in result: merged+=i values = string.join([key]+merged,'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join else: try: values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join except Exception: print combined_file_data[key];sys.exit() data.close() print "exported",len(dataset_data),"to",export_file def customLSDeepCopy(ls): ls2=[] for i in ls: ls2.append(i) return ls2 def getAllListCombinationsLong(a): ls1 = ['a1','a2','a3'] ls2 = ['b1','b2','b3'] ls3 = ['c1','c2','c3'] ls = ls1,ls2,ls3 list_len_db={} for ls in a: list_len_db[len(x)]=[] print len(list_len_db), list_len_db;sys.exit() if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r+=i else: #http://code.activestate.com/recipes/496807-list-of-all-combination-from-multiple-lists/ r=[[]] for x in a: t = [] for y in x: for i in r: t.append(i+[y]) r = t return r def combineUniqueAllLists(files_to_merge,original_filename): headers =[]; all_keys={}; dataset_data={}; files=[] for filename in files_to_merge: print filename fn=filepath(filename); x=0; combined_data ={}; files.append(filename) if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] for i in t: headers.append(i+'.'+file) if x==0: if data[0]!='#': x=1; headers+=t[1:] ###Occurs for the header line headers+=['null'] else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill #key = string.replace(key,' ','') combined_data[key] = values if len(key)>0 and key != ' ': try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 dataset_data[filename] = combined_data ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join data.close() print "exported",len(dataset_data),"to",export_file def getAllListCombinations(a): #http://www.saltycrane.com/blog/2011/11/find-all-combinations-set-lists-itertoolsproduct/ """ Nice code to get all combinations of lists like in the above example, where each element from each list is represented only once """ list_len_db={} for x in a: list_len_db[len(x)]=[] if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r.append(i[0]) return [r] else: return list(itertools.product(*a)) def joinFiles(files_to_merge,CombineType,unique_join,outputDir): """ Join multiple files into a single output file """ global combine_type global permform_all_pairwise global output_dir output_dir = outputDir combine_type = string.lower(CombineType) permform_all_pairwise = 'yes' permform_all_pairwise = 'no' ### Uses only one reference gene ID print 'combine type:',combine_type print 'join type:', unique_join #g = GrabFiles(); g.setdirectory(import_dir) #files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if unique_join: combineUniqueAllLists(files_to_merge,'') else: combineAllLists(files_to_merge,'') return output_dir+'/MergedFiles.txt' if __name__ == '__main__': dirfile = unique includeColumns=-2 includeColumns = False output_dir = filepath('output') combine_type = 'union' permform_all_pairwise = 'yes' print "Analysis Mode:" print "1) Batch Analysis" print "2) Single Output" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": batch_mode = 'yes' elif inp == "2": batch_mode = 'no' print "Combine Lists Using:" print "1) Grab Union" print "2) Grab Intersection" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": combine_type = 'union' elif inp == "2": combine_type = 'intersection' if batch_mode == 'yes': import_dir = '/batch/general_input' else: import_dir = '/input' g = GrabFiles(); g.setdirectory(import_dir) files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if batch_mode == 'yes': second_import_dir = '/batch/primary_input' g = GrabFiles(); g.setdirectory(second_import_dir) files_to_merge2 = g.searchdirectory('xyz') ###made this a term to excluded for file in files_to_merge2: temp_files_to_merge = customLSDeepCopy(files_to_merge) original_filename = string.split(file,'/'); original_filename = original_filename[-1] temp_files_to_merge.append(file) if '.' in file: combineAllLists(temp_files_to_merge,original_filename) else: combineAllLists(files_to_merge,'',includeColumns=includeColumns) print "Finished combining lists. Select return/enter to exit"; inp = sys.stdin.readline()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/mergeFilesUpdated.py
mergeFilesUpdated.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import os.path import unique import itertools dirfile = unique ############ File Import Functions ############# def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def returnDirectories(sub_dir): dir_list = unique.returnDirectories(sub_dir) return dir_list class GrabFiles: def setdirectory(self,value): self.data = value def display(self): print self.data def searchdirectory(self,search_term): #self is an instance while self.data is the value of the instance files = getDirectoryFiles(self.data,search_term) if len(files)<1: print 'files not found' return files def returndirectory(self): dir_list = getAllDirectoryFiles(self.data) return dir_list def getAllDirectoryFiles(import_dir): all_files = [] dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if '.' in data: all_files.append(data_dir) return all_files def getDirectoryFiles(import_dir,search_term): dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory matches=[] for data in dir_list: #loop through each file in the directory to output results data_dir = import_dir[1:]+'/'+data if search_term not in data_dir and '.' in data: matches.append(data_dir) return matches def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def combineAllLists(files_to_merge,original_filename,includeColumns=False): headers =[]; files=[] import collections all_keys=collections.OrderedDict() dataset_data=collections.OrderedDict() for filename in files_to_merge: print filename duplicates=[] fn=filepath(filename); x=0; combined_data ={}; files.append(filename) if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] if includeColumns==False: for i in t: headers.append(i+'.'+file) #headers.append(i) else: headers.append(t[includeColumns]+'.'+file) else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] if includeColumns==False: try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill else: values = [t[includeColumns]] #key = string.replace(key,' ','') if len(key)>0 and key != ' ' and key not in combined_data: ### When the same key is present in the same dataset more than once try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 if permform_all_pairwise == 'yes': try: combined_data[key].append(values); duplicates.append(key) except Exception: combined_data[key] = [values] else: combined_data[key] = values #print duplicates dataset_data[filename] = combined_data for i in dataset_data: print len(dataset_data[i]), i ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = collections.OrderedDict() for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key][0]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values if permform_all_pairwise == 'yes': values = [null_values] if permform_all_pairwise == 'yes': try: val_list = combined_file_data[key] val_list.append(values) combined_file_data[key] = val_list except KeyError: combined_file_data[key] = [values] else: try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] if permform_all_pairwise == 'yes': results = getAllListCombinations(combined_file_data[key]) for result in results: merged=[] for i in result: merged+=i values = string.join([key]+merged,'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join else: try: values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join except Exception: print combined_file_data[key];sys.exit() data.close() print "exported",len(dataset_data),"to",export_file def customLSDeepCopy(ls): ls2=[] for i in ls: ls2.append(i) return ls2 def getAllListCombinationsLong(a): ls1 = ['a1','a2','a3'] ls2 = ['b1','b2','b3'] ls3 = ['c1','c2','c3'] ls = ls1,ls2,ls3 list_len_db={} for ls in a: list_len_db[len(x)]=[] print len(list_len_db), list_len_db;sys.exit() if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r+=i else: #http://code.activestate.com/recipes/496807-list-of-all-combination-from-multiple-lists/ r=[[]] for x in a: t = [] for y in x: for i in r: t.append(i+[y]) r = t return r def combineUniqueAllLists(files_to_merge,original_filename): headers =[]; all_keys={}; dataset_data={}; files=[] for filename in files_to_merge: print filename fn=filepath(filename); x=0; combined_data ={}; files.append(filename) if '/' in filename: file = string.split(filename,'/')[-1][:-4] else: file = string.split(filename,'\\')[-1][:-4] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: if data[0]!='#': x=1 try: t = t[1:] except Exception: t = ['null'] for i in t: headers.append(i+'.'+file) if x==0: if data[0]!='#': x=1; headers+=t[1:] ###Occurs for the header line headers+=['null'] else: #elif 'FOXP1' in data or 'SLK' in data or 'MBD2' in data: key = t[0] try: values = t[1:] except Exception: values = ['null'] try: if original_filename in filename and len(original_filename)>0: key = t[1]; values = t[2:] except IndexError: print original_filename,filename,t;kill #key = string.replace(key,' ','') combined_data[key] = values if len(key)>0 and key != ' ': try: all_keys[key] += 1 except KeyError: all_keys[key] = 1 dataset_data[filename] = combined_data ###Add null values for key's in all_keys not in the list for each individual dataset combined_file_data = {} for filename in files: combined_data = dataset_data[filename] ###Determine the number of unique values for each key for each dataset null_values = []; i=0 for key in combined_data: number_of_values = len(combined_data[key]); break while i<number_of_values: null_values.append('0'); i+=1 for key in all_keys: include = 'yes' if combine_type == 'intersection': if all_keys[key]>(len(files_to_merge)-1): include = 'yes' else: include = 'no' if include == 'yes': try: values = combined_data[key] except KeyError: values = null_values try: previous_val = combined_file_data[key] new_val = previous_val + values combined_file_data[key] = new_val except KeyError: combined_file_data[key] = values original_filename = string.replace(original_filename,'1.', '1.AS-') export_file = output_dir+'/MergedFiles.txt' fn=filepath(export_file);data = open(fn,'w') title = string.join(['uid']+headers,'\t')+'\n'; data.write(title) for key in combined_file_data: #if key == 'ENSG00000121067': print key,combined_file_data[key];kill new_key_data = string.split(key,'-'); new_key = new_key_data[0] values = string.join([key]+combined_file_data[key],'\t')+'\n'; data.write(values) ###removed [new_key]+ from string.join data.close() print "exported",len(dataset_data),"to",export_file def getAllListCombinations(a): #http://www.saltycrane.com/blog/2011/11/find-all-combinations-set-lists-itertoolsproduct/ """ Nice code to get all combinations of lists like in the above example, where each element from each list is represented only once """ list_len_db={} for x in a: list_len_db[len(x)]=[] if len(list_len_db)==1 and 1 in list_len_db: ### Just simply combine non-complex data r=[] for i in a: r.append(i[0]) return [r] else: return list(itertools.product(*a)) def joinFiles(files_to_merge,CombineType,unique_join,outputDir): """ Join multiple files into a single output file """ global combine_type global permform_all_pairwise global output_dir output_dir = outputDir combine_type = string.lower(CombineType) permform_all_pairwise = 'yes' print 'combine type:',combine_type print 'join type:', unique_join #g = GrabFiles(); g.setdirectory(import_dir) #files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if unique_join: combineUniqueAllLists(files_to_merge,'') else: combineAllLists(files_to_merge,'') return output_dir+'/MergedFiles.txt' if __name__ == '__main__': dirfile = unique includeColumns=-2 includeColumns = False output_dir = filepath('output') combine_type = 'union' permform_all_pairwise = 'yes' print "Analysis Mode:" print "1) Batch Analysis" print "2) Single Output" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": batch_mode = 'yes' elif inp == "2": batch_mode = 'no' print "Combine Lists Using:" print "1) Grab Union" print "2) Grab Intersection" inp = sys.stdin.readline(); inp = inp.strip() if inp == "1": combine_type = 'union' elif inp == "2": combine_type = 'intersection' if batch_mode == 'yes': import_dir = '/batch/general_input' else: import_dir = '/input' g = GrabFiles(); g.setdirectory(import_dir) files_to_merge = g.searchdirectory('xyz') ###made this a term to excluded if batch_mode == 'yes': second_import_dir = '/batch/primary_input' g = GrabFiles(); g.setdirectory(second_import_dir) files_to_merge2 = g.searchdirectory('xyz') ###made this a term to excluded for file in files_to_merge2: temp_files_to_merge = customLSDeepCopy(files_to_merge) original_filename = string.split(file,'/'); original_filename = original_filename[-1] temp_files_to_merge.append(file) if '.' in file: combineAllLists(temp_files_to_merge,original_filename) else: combineAllLists(files_to_merge,'',includeColumns=includeColumns) print "Finished combining lists. Select return/enter to exit"; inp = sys.stdin.readline()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/mergeFiles.py
mergeFiles.py
import os, sys, string from scipy import sparse, io import numpy import math import time """ Converts a tab-delimited text file to a sparse matrix """ class SparseMatrix: def __init__(self,barcodes,features,data_matrix): self.barcodes = barcodes self.features = features self.data_matrix = data_matrix def Barcodes(self): return self.barcodes def Features(self): return self.features def Matrix(self): return self.data_matrix def import_filter_genes(fn): gene_filter = [] for line in open(fn,'rU').xreadlines(): if '\t' in line: gene = string.split(line.rstrip(),'\t')[0] else: gene = string.split(line.rstrip(),',')[0] gene_filter.append(gene) return gene_filter def covert_table_to_matrix(fn,delimiter='\t',gene_filter=None,Export=True): header=True skip=False start_time = time.time() for line in open(fn,'rU').xreadlines(): if header: delimiter = ',' # CSV file start = 1 if 'row_clusters' in line: start=2 # An extra column and row are present from the ICGS file skip=True if '\t' in line: delimiter = '\t' # TSV file t = string.split(line.rstrip(),delimiter)[start:] """ Optionally write out the matrix """ if Export: export_directory = os.path.abspath(os.path.join(fn, os.pardir))+'/sparse/' try: os.mkdir(export_directory) except: pass barcodes_export = open(export_directory+'barcodes.tsv', 'w') features_export = open(export_directory+'features.tsv', 'w') matrix_export = open(export_directory+'matrix.mtx', 'w') barcodes = t barcodes_export.write(string.join(t,'\n')) barcodes_export.close() genes=[] data_array=[] header=False elif skip: skip=False # Igore the second row in the file that has cluster info else: values = string.split(line.rstrip(),'\t') gene = values[0] if gene_filter!=None: """ Exclude the gene from the large input matrix if not in the filter list """ if gene not in gene_filter: continue if ' ' in gene: gene = string.split(gene,' ')[0] if ':' in gene: genes.append((gene.rstrip().split(':'))[1]) else: genes.append(gene) """ If the data is a float, increment by 0.5 to round up """ values = map(float,values[start:]) def convert(x): if x==0: return 0 else: return int(math.pow(2,x)-1) values = map(lambda x: convert(x),values) data_array.append(values) data_array = sparse.csr_matrix(numpy.array(data_array)) end_time = time.time() print 'Sparse matrix conversion in',end_time-start_time,'seconds.' if Export: features_export.write(string.join(genes,'\n')) features_export.close() io.mmwrite(matrix_export, data_array) else: sm = SparseMatrix(barcodes,genes,data_array) return sm if __name__ == '__main__': import getopt gene_filter = None ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments sys.exit() else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','f=']) for opt, arg in options: if opt == '--i': fn=arg elif opt == '--f': gene_filter=arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() if gene_filter != None: gene_filter = import_filter_genes(gene_filter) covert_table_to_matrix(fn,gene_filter=gene_filter)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/TableToMatrix.py
TableToMatrix.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies def importFPKMFile(input_file): added_key={} firstLine = True for line in open(input_file,'rU').xreadlines(): data = line.rstrip('\n') t = string.split(data,'\t') if firstLine: firstLine = False else: try: geneID= t[0]; symbol=t[1]; position=t[2]; fpkm = t[5] except Exception: print t;sys.exit() try: fpkm_db[geneID].append(fpkm) except Exception: fpkm_db[geneID] = [fpkm] added_key[geneID]=[] for i in fpkm_db: if i not in added_key: fpkm_db[i].append('0.00') def importCufflinksFPKMFileEXCEL(filename): from xlrd import open_workbook print filename wb = open_workbook(filename) for w in wb.sheets(): print w.name;sys.exit() sys.exit() rows=[] for row in range(worksheet.nrows): print row values = [] for col in range(worksheet.ncols): try: values.append(str(s.cell(row,col).value)) except Exception: pass rows.append(values) def getFiles(sub_dir,directories=True): dir_list = os.listdir(sub_dir); dir_list2 = [] for entry in dir_list: if directories: if '.' not in entry: dir_list2.append(entry) else: if '.' in entry: dir_list2.append(entry) return dir_list2 def combineCufflinks(root_dir): export_object = open(root_dir+'/RSEM.txt','w') global fpkm_db global headers fpkm_db={}; headers=['GeneID'] files = getFiles(root_dir,False) for file in files: filename = root_dir+'/'+file if ('.genes.results' in file and '.gz' not in file) or ('.txt' in file and '.gz' not in file and 'RSEM.txt' not in file): importFPKMFile(filename) headers.append(file) if '.xls' in file: importCufflinksFPKMFileEXCEL(filename) headers.append(file) for i in fpkm_db: fpkm_db[i]=[] for file in files: filename = root_dir+'/'+file if ('.genes.results' in file and '.gz' not in file) or ('.txt' in file and '.gz' not in file and 'RSEM.txt' not in file): importFPKMFile(filename) headers = string.join(headers,'\t')+'\n' export_object.write(headers) for geneID in fpkm_db: values = map(str,fpkm_db[geneID]) values = string.join([geneID]+values,'\t')+'\n' export_object.write(values) export_object.close() def gunzipfiles(root_dir): import gzip import shutil; folders = getFiles(root_dir,True) for folder in folders: l1 = root_dir+'/'+folder files = getFiles(l1,False) for file in files: filename = l1+'/'+file if 'genes.fpkm_tracking' in filename: content = gzip.GzipFile(filename, 'rb') decompressed_filepath = string.replace(filename,'.gz','') data = open(decompressed_filepath,'wb') shutil.copyfileobj(content,data) if __name__ == '__main__': #gunzipfiles('/Users/saljh8/Downloads/6b_CUFFLINKS_output/');sys.exit() import getopt options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','f=']) #print sys.argv[1:] for opt, arg in options: if opt == '--i': input_file=arg if '/' in input_file: delim = '/' else: delim = '\\' combineCufflinks(input_file);sys.exit()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/combineRSEM.py
combineRSEM.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import unique import copy def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir) return dir_list def identifyPutativeSpliceEvents(exon_db,constituitive_probeset_db,array_id_db,agglomerate_inclusion_probesets,onlyAnalyzeJunctions): exon_dbase = {}; probeset_comparison_db = {}; x = 0; y = 0 ### Grab all probesets where we can identify a potential exon inclusion/exclusion event if len(array_id_db) == 0: array_id_db = exon_db ### Used when exporting all comparitive junction data for probeset in array_id_db: if probeset in exon_db: affygene = exon_db[probeset].GeneID() #exon_db[probeset] = affygene,exons,ensembl,block_exon_ids,block_structure,comparison_info exons = exon_db[probeset].ExonID() #get rid of last pipe if probeset not in constituitive_probeset_db: #thus, there is a 'gene' probeset for that gene, but we don't want to look at the gene probesets if '|' not in exons: #get rid of any block exons or ambiguities) try: x += 1; probeset_comparison_db[affygene].append(exons) except KeyError: x += 1; probeset_comparison_db[affygene] = [exons] exon_dbase[affygene,exons] = probeset print "Number of putative probeset comparisons:",x probe_level_db = {} for affygene in probeset_comparison_db: for exon_probeset1 in probeset_comparison_db[affygene]: for exon_probeset2 in probeset_comparison_db[affygene]: if exon_probeset1 != exon_probeset2: if '-' in exon_probeset1: #get both pair-wise possibilities with this, to grab junctions e1a,e1b = string.split(exon_probeset1,'-') e1 = e1a,e1b try: e2a,e2b = string.split(exon_probeset2,'-') e2 = e2a,e2b except ValueError: e2 = exon_probeset2 try: probe_level_db[affygene,e1].append(e2) except KeyError: probe_level_db[affygene,e1] = [e2] else: ### Required when exon_probeset1 is a single exon rather than a junction if '-' in exon_probeset2: e2a,e2b = string.split(exon_probeset2,'-') e2 = e2a,e2b e1 = exon_probeset1 try: probe_level_db[affygene,e2].append(e1) except KeyError: probe_level_db[affygene,e2] = [e1] #print "Looking for exon events defined by probeset exon associations" alt_junction_db,critical_exon_db = independently_rank_analyze_junction_sets(probe_level_db,onlyAnalyzeJunctions) #print "Associations Built\n" ### Rearange alt_junction_db and agglomerate data for inclusion probesets exon_inclusion_db={}; exon_inclusion_event_db={}; alt_junction_db_collapsed={} if agglomerate_inclusion_probesets == 'yes': for affygene in alt_junction_db: alt_junction_db[affygene].sort() ### Should be no need to sort later if we do this for event in alt_junction_db[affygene]: ### event = [('ei', 'E16-E17'), ('ex', 'E16-E18')] event1 = event[0][0]; exon_set1 = event[0][1]; exon_set2 = event[1][1] probeset1 = exon_dbase[affygene,exon_set1]; probeset2 = exon_dbase[affygene,exon_set2] if event1 == 'ei': ###First generate the original fold values for export summary, then the adjusted try: exon_inclusion_db[probeset2].append(probeset1) except KeyError: exon_inclusion_db[probeset2] = [probeset1] try: exon_inclusion_event_db[(affygene, probeset2, event[1])].append(event) except KeyError: exon_inclusion_event_db[(affygene, probeset2, event[1])] = [event] else: ### Store all the missing mutual exclusive splicing events try: alt_junction_db_collapsed[affygene].append(event) except KeyError: alt_junction_db_collapsed[affygene] = [event] ###Create a new alt_junction_db with merged inclusion events for key in exon_inclusion_event_db: affygene = key[0]; excl_probeset=key[1]; excl_event = key[2] ###Collect critical exon information from each inclusion exon-set to agglomerate and delete old entries new_critical_exon_list=[]; incl_exon_sets=[] for event in exon_inclusion_event_db[key]: incl_exon_set = event[0][1]; incl_exon_sets.append(incl_exon_set) ### Don't sort since this will throw off probeset relationships: incl_exon_sets.sort() if len(exon_inclusion_event_db[key])>1: ###If the original list of events > 1 critical_exon_list = critical_exon_db[affygene,tuple(event)][1] for exon in critical_exon_list: new_critical_exon_list.append(exon) #del critical_exon_db[affygene,tuple(event)] new_critical_exon_list = unique.unique(new_critical_exon_list); new_critical_exon_list.sort() new_critical_exon_list = [1,new_critical_exon_list] incl_exon_sets_str = string.join(incl_exon_sets,'|') ### New inclusion exon group event = [('ei',incl_exon_sets_str),excl_event] ### Store new inclusion exon group try: alt_junction_db_collapsed[affygene].append(event) except KeyError: alt_junction_db_collapsed[affygene] = [event] ###Replace exon_dbase entries with new combined probeset IDs incl_probesets = exon_inclusion_db[excl_probeset] incl_probesets_str = string.join(incl_probesets,'|') if len(incl_exon_sets)>1: ###Often there will be only a single inclusion probeset """for exons in incl_exon_sets: key = affygene,exons try: del exon_dbase[key] ###delete individual inclusion exons and replace with a single inclusion agglomerate except KeyError: continue ###Can occur more than once, if an exon participates in more than one splicing event """ exon_dbase[affygene,incl_exon_sets_str] = incl_probesets_str critical_exon_db[affygene,tuple(event)] = new_critical_exon_list ###Create a new probeset entry in exon_db for the agglomerated probesets new_block_exon_ids=[] #exon_db[probeset] = affygene,exons,ensembl,block_exon_ids,block_structure for probeset in incl_probesets: edat = exon_db[probeset]; ensembl = edat.ExternalGeneID(); block_exon_ids = edat.SecondaryExonID(); block_structure = edat.GeneStructure() new_block_exon_ids.append(block_exon_ids) new_block_exon_ids = string.join(new_block_exon_ids,'') edat = exon_db[incl_probesets[0]]; edat1 = edat; edat1.setDisplayExonID(incl_exon_sets_str) #; edat1.setExonID(edat.ExonID()) ### Use the first inclusion probeset instance for storing all instance data edat1.setSecondaryExonID(new_block_exon_ids); edat1.setProbeset(incl_probesets[0]) exon_db[incl_probesets_str] = edat1 print "Length of original splice event database:",len(alt_junction_db) print "Length of agglomerated splice event database:",len(alt_junction_db_collapsed) alt_junction_db = alt_junction_db_collapsed ### Replace with agglomerated database ### End Rearangement return alt_junction_db,critical_exon_db,exon_dbase,exon_inclusion_db,exon_db def independently_rank_analyze_junction_sets(probe_level_db,onlyAnalyzeJunctions): ### The below code is used to identify sets of junctions and junction and exon sets anti-correlated with each other ### independently storing the critical exons involved #probe_level_db[affygene,exons1].append(exons2) x = 0 critical_exon_db = {} alt_junction_db = {} probe_level_db = eliminate_redundant_dict_values(probe_level_db) for key in probe_level_db: critical_exon_list = [] affygene = key[0] exon_pair1 = key[1] e1a = int(exon_pair1[0][1:]) e1b = int(exon_pair1[1][1:]) for exon_pair2 in probe_level_db[key]: #exon_pair2 could be a single exon s = 0 #moved this down!!!!!!!!! if exon_pair2[0] == 'E': # thus, exon_pair2 is actually a single exon e2 = int(exon_pair2[1:]) s=1 else: e2a = int(exon_pair2[0][1:]) e2b = int(exon_pair2[1][1:]) if s==0: e1_pair = e1a,e1b e2_pair = e2a,e2b if s==1: # thus, exon_pair2 is actually a single exon e1_pair = e1a,e1b if e1a < e2 and e1b > e2 and onlyAnalyzeJunctions == 'no': # e.g. E3-E5 vs. E4 e1 = 'ex','E'+str(e1a)+'-'+'E'+str(e1b); e2x = 'ei','E'+str(e2) critical_exons = [e1,e2x] critical_exons.sort(); critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e2)]] ###The 1 indicates that the exon can be called up or down, since it is an ei or ex event vs. mx ### Note: everything except for the last one should have two instances added to the database elif (e1b == e2b and e1a > e2a): # e.g. E2-E3 vs. E1-E3 e1 = 'ei','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'ex','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exons.sort();critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e1a)]] #print affygene, exon_pair1,e1a,e1b,'----',exon_pair2,e2a,e2b elif (e1b == e2b and e1a < e2a): # e.g. E1-E3 vs. E2-E3 e1 = 'ex','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'ei','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exons.sort();critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e2a)]] elif (e1a == e2a and e1b < e2b): # e.g. E2-E3 vs. E2-E4 e1 = 'ei','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'ex','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exons.sort();critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e1b)]] elif (e1a == e2a and e1b > e2b): # e.g. E2-E4 vs. E2-E3 e1 = 'ex','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'ei','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exons.sort();critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e2b)]] elif (e1a < e2a and e1b > e2a) and (e1a < e2b and e1b > e2b): # e.g. E2-E6 vs. E3-E5 e1 = 'ex','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'ei','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exons.sort();critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e2a),'E'+str(e2b)]] elif (e1a > e2a and e1b < e2a) and (e1a > e2b and e1b < e2b): # e.g. E3-E5 vs. E2-E6 e1 = 'ei','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'ex','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exons.sort();critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [1,['E'+str(e1a),'E'+str(e1b)]] elif (e1a < e2a and e1b > e2a): # e.g. E2-E6 vs. E3-E8 e1 = 'mx','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'mx','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [2,['E'+str(e1b),'E'+str(e2a)]] elif (e1a < e2b and e1b > e2b): # e.g. E2-E6 vs. E1-E3 e1 = 'mx','E'+str(e1a)+'-'+'E'+str(e1b); e2 = 'mx','E'+str(e2a)+'-'+'E'+str(e2b) critical_exons = [e1,e2] critical_exon_list.append(critical_exons) critical_exon_db[affygene,tuple(critical_exons)] = [2,['E'+str(e1a),'E'+str(e2b)]] if len(critical_exon_list)>0: for entry in critical_exon_list: try: alt_junction_db[affygene].append(entry) except KeyError: alt_junction_db[affygene] = [entry] alt_junction_db = eliminate_redundant_dict_values(alt_junction_db) return alt_junction_db, critical_exon_db def exportJunctionComparisons(alt_junction_db,critical_exon_db,exon_dbase): competitive_junction_export = 'AltDatabase\Mm\AltMouse\AltMouse_junction-comparisons.txt' fn=filepath(competitive_junction_export) data = open(fn,'w') title = ['Affygene','probeset1','probeset2','critical-exons']; title = string.join(title,'\t')+'\n'; data.write(title) for affygene in alt_junction_db: alt_junction_db[affygene].sort() ### Should be no need to sort later if we do this for event in alt_junction_db[affygene]: ### event = [('ei', 'E16-E17'), ('ex', 'E16-E18')] exon_set1 = event[0][1]; exon_set2 = event[1][1] probeset1 = exon_dbase[affygene,exon_set1]; probeset2 = exon_dbase[affygene,exon_set2] critical_exon_list = critical_exon_db[affygene,tuple(event)];critical_exon_list = critical_exon_list[1] critical_exon_list = string.join(critical_exon_list,'|') export_data = string.join([affygene]+[probeset1,probeset2,critical_exon_list],'\t')+'\n' data.write(export_data) data.close() def annotate_splice_event(exons1,exons2,block_structure): #1(E13|E12)-2(E11)-3(E10)-4(E9|E8)-5(E7|E6|E5)-6(E4|E3|E2|E1) splice_event = ''; evidence = 'clear' string.replace(block_structure,')','|') block_list = string.split(block_structure,'-') #[1(E13|E12|,2(E11|,3(E10|,4(E9|E8|,5(E7|E6|E5|,6(E4|E3|E2|E1|] ###Perform a membership query try: exon1a,exon1b = string.split(exons1,'-') ###*** except ValueError: exon1a = exons1; exon1b = exons1; evidence = 'unclear' try: exon2a,exon2b = string.split(exons2,'-') except ValueError: exon2a = exons2; exon2b = exons2; evidence = 'unclear' a = '';b = '';block_a='';block_b='' if exon1a == exon2a: a = 'same' if exon1b == exon2b: b = 'same' ex1a_m = exon_membership(exon1a,block_list);ex2a_m = exon_membership(exon2a,block_list) ex1b_m = exon_membership(exon1b,block_list);ex2b_m = exon_membership(exon2b,block_list) #print ex1a_m, ex2a_m,ex1b_m,ex2b_m;dog if ex1a_m == ex2a_m: block_a = 'same' if ex1b_m == ex2b_m: block_b = 'same' ### Correct for strand differences strand = "+" if ex1a_m > ex1b_m: #strand therefore is negative strand = "-" if (abs(ex1a_m - ex2a_m) == 1) or (abs(ex1b_m - ex2b_m) == 1): alternative_exons = 'one' else: alternative_exons = 'multiple' if (ex1a_m == -1) or (ex2a_m == -1) or (ex1b_m == -1) or (ex2b_m == -1): splice_event = "retained_intron" elif block_a == 'same' and b == 'same': splice_event = "alt5'" elif block_b == 'same' and a == 'same': splice_event = "alt3'" elif (block_a == 'same' and block_b != 'same'): if a == 'same': if alternative_exons == 'one': splice_event = "cassette-exon" else: splice_event = "cassette-exons" else: if alternative_exons == 'one': splice_event = "alt5'-cassette-exon" else: splice_event = "alt5'-cassette-exons" elif (block_b == 'same' and block_a != 'same'): if b == 'same': if alternative_exons == 'one': splice_event = "cassette-exon" else: splice_event = "cassette-exons" else: if alternative_exons == 'one': splice_event = "cassette-exon-alt3'" else: splice_event = "cassette-exons-alt3'" else: if alternative_exons == 'one': splice_event = "alt5'-cassette-exon-alt3'" else: splice_event = "alt5'-cassette-exons-alt3'" if evidence == 'unclear': ###If the first probeset is a junction and the second is an exon, are junction exons 2 blocks way if (abs(ex1a_m - ex2a_m) == 1) and (abs(ex1b_m - ex2b_m) == 1): splice_event = "cassette-exon" elif (block_a == 'same' and block_b != 'same'): if alternative_exons == 'one': splice_event = "alt5'" else: splice_event = "alt5'-cassette-exons" elif (block_a != 'same' and block_b == 'same'): if alternative_exons == 'one': splice_event = "alt3'" else: splice_event = "cassette-exons-alt3'" else: splice_event = "unclear" if strand == "-": if splice_event == "alt5'": splice_event = "alt3'" elif splice_event == "alt3'": splice_event = "alt5'" elif splice_event == "alt5'-cassette-exon": splice_event = "cassette-exon-alt3'" elif splice_event == "alt5'-cassette-exons": splice_event = "cassette-exons-alt3'" elif splice_event == "cassette-exons-alt3'": splice_event = "alt5'-cassette-exons" elif splice_event == "cassette-exon-alt3'": splice_event = "alt5'-cassette-exon" #print splice_event return splice_event def exon_membership(exon,block_structure): i=0; x = -1 exon_temp1 = exon+'|'; exon_temp2 = exon+')' for exon_block in block_structure: if exon_temp1 in exon_block or exon_temp2 in exon_block: x = i i += 1 return x def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 if __name__ == '__main__': exons1 = 'E9-E12' exons2 = 'E11-E15' block_structure = '1(E1)-2(E2)-3(E3|E4)-4(E5)-5(E6)-6(E7|E8|E9|E10|E11)-7(E12)-8(E13|E14)-9(E15)-10(E16|E17)-11(E18)-12(E19|E20)-13(E21|E22)-14(E23|E24)' a = annotate_splice_event(exons1,exons2,block_structure) print a #alt_junction_db,critical_exon_db,exon_dbase,exon_inclusion_db = identifyPutativeSpliceEvents(exon_db,constituitive_probeset_db,agglomerate_inclusion_probesets)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/ExonAnnotate_module.py
ExonAnnotate_module.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import csv import scipy.io import numpy import time import math def normalizeDropSeqCounts(expFile,log=True): start_time = time.time() print 'log2 conversion equals',log firstLine = True mat_array=[] gene_names = [] for line in open(expFile,'rU').xreadlines(): line = string.replace(line,'"','') data = line.rstrip('\n') t = string.split(data,'\t') if firstLine: barcodes = t[1:] firstLine = False else: gene_names.append(t[0]) mat_array.append(map(float,t[1:])) mat_array = numpy.array(mat_array) ### Write out CPM normalized data matrix norm_path = expFile[:-4]+'_matrix_CPTT.txt' ### AltAnalyze designated ExpressionInput file (not counts) print 'Normalizing gene counts to counts per ten thousand (CPTT)' barcode_sum = numpy.sum(mat_array,axis=0) ### Get the sum counts for all barcodes, 0 is the y-axis in the matrix start_time = time.time() mat_array = mat_array.transpose() vfunc = numpy.vectorize(calculateCPTT) norm_mat_array=[] i=0 for vector in mat_array: norm_mat_array.append(vfunc(vector,barcode_sum[i])) i+=1 mat_array = numpy.array(norm_mat_array) mat_array = mat_array.transpose() mat_array = numpy.ndarray.tolist(mat_array) ### convert to non-numpy list i=0 updated_mat=[['UID']+barcodes] for ls in mat_array: updated_mat.append([gene_names[i]]+ls); i+=1 updated_mat = numpy.array(updated_mat) del mat_array numpy.savetxt(norm_path,updated_mat,fmt='%s',delimiter='\t') print '... scaling completed in ',time.time()-start_time, 'seconds' print 'CPTT written to file:', print norm_path def calculateCPTT(val,barcode_sum,log=True): if val==0: return '0' else: if log: return math.log((10000.00*val/barcode_sum)+1.0,2) ### convert to log2 expression else: return 10000.00*val/barcode_sum def normalizeDropSeqCountsMemoryEfficient(expFile,log=True): """ A more memory efficient function than the above for scaling scRNA-Seq, line-by-line """ start_time = time.time() print 'log2 conversion equals',log firstLine = True mat_array=[] gene_names = [] for line in open(expFile,'rU').xreadlines(): line = string.replace(line,'"','') data = line.rstrip('\n') if '\t' in data: t = string.split(data,'\t') else: t = string.split(data,',') if firstLine: barcodes = t[1:] firstLine = False count_sum_array=[0]*len(barcodes) else: gene_names.append(t[0]) values = map(float,t[1:]) count_sum_array = [sum(value) for value in zip(*[count_sum_array,values])] ### Import the expression dataset again and now scale output_file = expFile[:-4]+'_CPTT-log2.txt' export_object = open(output_file,'w') firstLine=True for line in open(expFile,'rU').xreadlines(): line = string.replace(line,'"','') data = line.rstrip('\n') if '\t' in data: t = string.split(data,'\t') else: t = string.split(data,',') if firstLine: export_object.write(string.join(t,'\t')+'\n') firstLine = False else: gene = t[0] if 'ENS' in gene and '.' in gene: gene = string.split(gene,'.')[0] values = map(float,t[1:]) index=0 cptt_values = [] for barcode in barcodes: barcode_sum = count_sum_array[index] val = values[index] cptt_val = calculateCPTT(val,barcode_sum) cptt_values.append(cptt_val) index+=1 values = string.join([gene]+map(lambda x: str(x)[:7], cptt_values),'\t') export_object.write(values+'\n') export_object.close() print '... scaling completed in ',time.time()-start_time, 'seconds' return output_file def CSVformat(matrices_dir,cells_dir,emptydrops=True,target_organ=None,expressionCutoff=500): """ Process an HCA DCP csv dense matrix format """ ### Import and process the cell metadata export_object = open(cells_dir[:-4]+'_'+target_organ+'-filtered.csv','w') cell_ids_to_retain={} firstLine=True for line in open(cells_dir,'rU').xreadlines(): line = string.replace(line,'"','') data = line.rstrip('\n') t = string.split(data,',') if firstLine: index=0 for i in t: if i == 'emptydrops_is_cell': edi = index elif i == 'genes_detected': gdi = index elif i == 'barcode': bi = index elif i == 'derived_organ_label': oi = index index+=1 export_object.write(line) firstLine = False else: cell_id = t[0] empty_drops = t[edi] genes_detected = int(t[gdi]) barcode = t[bi] organ = t[oi] proceed=True if emptydrops: if empty_drops == 'f': proceed = False if target_organ != None: if target_organ != organ: proceed = False if genes_detected<expressionCutoff: proceed = False if proceed: cell_ids_to_retain[cell_id]=barcode export_object.write(line) print len(cell_ids_to_retain), 'IDs matching the user filters' export_object.close() if target_organ != None: export_object = open(matrices_dir[:-4]+'_'+target_organ+'-filtered.txt','w') else: export_object = open(matrices_dir[:-4]+'-filtered.txt','w') ### Import and filter the flat expression data firstLine=True count=0 print 'Increments of 10,000 cells exported:', for line in open(matrices_dir,'rU').xreadlines(): line = string.replace(line,'"','') data = line.rstrip('\n') t = string.split(data,',') if firstLine: export_object.write(string.join(t,'\t')+'\n') firstLine = False else: cell_id = t[0] if cell_id in cell_ids_to_retain: export_object.write(string.join(t,'\t')+'\n') if count == 10000: count = 0 print '*', count+=1 export_object.close() if __name__ == '__main__': import getopt log=True expressionCutoff = 500 organ = None emptydrops = True cells_dir = None if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Insufficient options provided";sys.exit() #Filtering samples in a datasets #python DropSeqProcessing.py --i dropseq.txt else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','log=','csv=','organ=','expressionCutoff=', 'emptydrops=','cells=']) #print sys.argv[1:] for opt, arg in options: if opt == '--i': matrices_dir=arg elif opt == '--csv': matrices_dir=arg elif opt == '--cells': cells_dir=arg elif opt == '--organ': target_organ=arg elif opt == '--expressionCutoff': expressionCutoff=float(arg) elif opt == '--emptydrops': if 'f' in arg or 'F' in arg: emptydrops=False elif opt == '--log': if string.lower(arg) == 'true' or string.lower(arg) == 'yes': pass else: log = False if cells_dir != None: CSVformat(matrices_dir,cells_dir,emptydrops=emptydrops,target_organ=target_organ,expressionCutoff=expressionCutoff) else: normalizeDropSeqCountsMemoryEfficient(matrices_dir) #normalizeDropSeqCounts(matrices_dir,log=log)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/CountsNormalize.py
CountsNormalize.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import export import unique import traceback """ Intersecting Coordinate Files """ def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def eCLIPimport(folder): eCLIP_dataset_peaks={} annotations=[] files = unique.read_directory(folder) for file in files: if '.bed' in file: peaks={} dataset = file[:-4] print dataset key_db={} fn = unique.filepath(folder+'/'+file) eo = export.ExportFile(folder+'/3-prime-peaks/'+file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') chr = t[0] start = int(t[1]) end = int(t[2]) strand = t[5] gene = string.split(t[-3],'.')[0] annotation = string.split(t[-3],';')[-1] if 'three_prime_utrs' in annotation: eo.write(line) if annotation not in annotations: annotations.append(annotation) symbol = t[-2] key = chr,start,strand #""" if gene in coding_db: coding_type = coding_db[gene][-1] if 'protein_coding' in coding_type: coding_type = 'protein_coding' ##""" if key in key_db: gene_db = key_db[key] if gene in gene_db: gene_db[gene].append(annotation) else: gene_db[gene]=[annotation] else: gene_db={} gene_db[gene]=[annotation] key_db[key]=gene_db for key in key_db: ranking=[] for gene in key_db[key]: ranking.append((len(key_db[key][gene]),gene)) ranking.sort() gene = ranking[-1][-1] for annotation in key_db[key][gene]: if annotation in peaks: peaks[annotation]+=1 else: peaks[annotation]=1 eCLIP_dataset_peaks[dataset]=peaks eo.close() annotations.sort() eo = export.ExportFile(folder+'/summary-annotations/summary.txt') header = string.join(['RBP']+map(str,annotations),'\t')+'\n' eo.write(header) for dataset in eCLIP_dataset_peaks: annot=[] peaks = eCLIP_dataset_peaks[dataset] for annotation in annotations: if annotation in peaks: annot.append(peaks[annotation]) else: annot.append(0) annot = map(lambda x: (1.000*x/sum(annot)), annot) values = string.join([dataset]+map(str,annot),'\t')+'\n' eo.write(values) eo.close() if __name__ == '__main__': ################ Comand-line arguments ################ import getopt CLIP_dir = None species = 'Hs' """ Usage: bedtools intersect -wb -a /Clip_merged_reproducible_ENCODE/K562/AARS-human.bed -b /annotations/combined/hg19_annotations-full.bed > /test.bed """ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print 'WARNING!!!! Too commands supplied.' else: options, remainder = getopt.getopt(sys.argv[1:],'', ['species=','clip=']) #print sys.argv[1:] for opt, arg in options: if opt == '--species': species = arg elif opt == '--clip': CLIP_dir = arg import ExpressionBuilder coding_db = ExpressionBuilder.importTranscriptBiotypeAnnotations(species) dataset_peaks = eCLIPimport(CLIP_dir)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/peakAnnotation.py
peakAnnotation.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import time import random import math import sqlite3 import export def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def filepath(filename): try: import unique ### local to AltAnalyze fn = unique.filepath(filename) except Exception: ### Should work fine when run as a script with this (AltAnalyze code is specific for packaging with AltAnalyze) dir=os.path.dirname(dirfile.__file__) try: dir_list = os.listdir(filename); fn = filename ### test to see if the path can be found (then it is the full path) except Exception: fn=os.path.join(dir,filename) return fn ##### SQLite Database Access ###### def createSchemaTextFile(species,platform,schema_text,DBname): schema_filename = filepath('AltDatabase/'+species+'/'+platform+'/'+DBname+'_schema.sql') export_data = export.ExportFile(schema_filename) ### We will need to augment the database with protein feature annotations for export_data.write(schema_text) export_data.close() def populateSQLite(species,platform,DBname,schema_text=None): global conn """ Since we wish to work with only one gene at a time which can be associated with a lot of data it would be more memory efficient transfer this data to a propper relational database for each query """ db_filename = filepath('AltDatabase/'+species+'/'+platform+'/'+DBname+'.db') ### store in user directory schema_filename = filepath('AltDatabase/'+species+'/'+platform+'/'+DBname+'_schema.sql') ### Check to see if the database exists already and if not creat it db_is_new = not os.path.exists(db_filename) with sqlite3.connect(db_filename) as conn: if db_is_new: createSchemaTextFile(species,platform,schema_text,DBname) print 'Creating schema' with open(schema_filename, 'rt') as f: schema = f.read() #print schema conn.executescript(schema) else: print 'Database exists, assume schema does too.' #sys.exit() return conn ### User must now add data to the empty SQLite database def connectToDB(species,platform,DBname): db_filename = filepath('AltDatabase/'+species+'/'+platform+'/'+DBname+'.db') ### store in user directory with sqlite3.connect(db_filename) as conn: return conn def retreiveDatabaseFields(conn,ids,query): """ Retreive data from specific fields from the database """ cursor = conn.cursor() #id = 'ENSG00000114127' #query = "select id, name, description, chr, strand from genes where id = ?" cursor.execute(query,ids) ### In this way, don't have to use %s and specify type ls=[] for row in cursor.fetchall(): #id, name, description, chr, strand = row #print '%s %s %s %s %s' % (id, name, description, chr, strand) ls.append(row) return ls def bulkLoading(): import csv import sqlite3 import sys db_filename = 'todo.db' data_filename = sys.argv[1] SQL = """insert into task (details, priority, status, deadline, project) values (:details, :priority, 'active', :deadline, :project) """ with open(data_filename, 'rt') as csv_file: csv_reader = csv.DictReader(csv_file) with sqlite3.connect(db_filename) as conn: cursor = conn.cursor() cursor.executemany(SQL, csv_reader)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/SQLInterface.py
SQLInterface.py
import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import pysam import copy,getopt import time import traceback try: import export except Exception: pass try: import unique except Exception: pass import Bio; from Bio.Seq import Seq def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def parseFASTQFile(fn): count=0 spacer='TGGT' global_count=0 read2_viral_barcode={} read1_cellular_barcode={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) global_count+=1 if count == 0: read_id = string.split(data,' ')[0][1:] count+=1 elif count == 1: sequence = data count+=1 else: count+=1 if count == 4: count = 0 if 'R2' in fn: if spacer in sequence: if sequence.index(spacer) == 14: viral_barcode = sequence[:48] read2_viral_barcode[read_id]=viral_barcode else: ### Reverse complement sequence = Seq(sequence) sequence=str(sequence.reverse_complement()) if spacer in sequence: if sequence.index(spacer) == 14: viral_barcode = sequence[:48] read2_viral_barcode[read_id]=viral_barcode if 'R1' in fn: if 'TTTTT' in sequence: cell_barcode = sequence[:16] read1_cellular_barcode[read_id]=cell_barcode elif 'AAAAA' in sequence: ### Reverse complement sequence = Seq(sequence) cell_barcode=str(sequence.reverse_complement())[:16] read1_cellular_barcode[read_id]=cell_barcode if 'R2' in fn: return read2_viral_barcode else: return read1_cellular_barcode def outputPairs(fastq_dir,read1_cellular_barcode,read2_viral_barcode): outdir = fastq_dir+'.viral_barcodes.txt' o = open (outdir,"w") unique_pairs={} for uid in read2_viral_barcode: if uid in read1_cellular_barcode: cellular = read1_cellular_barcode[uid] viral = read2_viral_barcode[uid] if (viral,cellular) not in unique_pairs: o.write(viral+'\t'+cellular+'\n') unique_pairs[(viral,cellular)]=[] o.close() if __name__ == '__main__': ################ Comand-line arguments ################ if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a SAM file as input in the command-line" print "Example: python BAMtoJunctionBED.py --i /Users/me/sample1.fastq" sys.exit() else: Species = None options, remainder = getopt.getopt(sys.argv[1:],'', ['i=']) for opt, arg in options: if opt == '--i': fastq_dir=arg ### full path of a BAM file else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() if 'R1' in fastq_dir: r1 = fastq_dir r2 = string.replace(fastq_dir,'R1','R2') else: r1 = string.replace(fastq_dir,'R2','R1') r2= fastq_dir read2_viral_barcode = parseFASTQFile(r2) read1_cellular_barcode = parseFASTQFile(r1) outputPairs(fastq_dir,read1_cellular_barcode,read2_viral_barcode)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/SAMtoBarcode.py
SAMtoBarcode.py
#Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """This script can be run on its own to extract a single BAM file at a time or indirectly by multiBAMtoBED.py to extract exon.bed files (Tophat format) from many BAM files in a single directory at once. Requires an exon.bed reference file for exon coordinates (genomic bins for which to sum unique read counts). Excludes junction reads within each interval""" import sys,string,os sys.path.insert(1, os.path.join(sys.path[0], '..')) ### import parent dir dependencies import pysam import copy import time import getopt def findGeneVariants(species,symbols,bam_dir,variants=None): global insertion_db insertion_db={} print symbols print bam_dir if len(symbols)>0: ### Search for genes not for coordinates search_locations = geneCoordinates(species,symbols) else: ### Search for coordinates and not genes search_locations = variantCoordinates(variants) ### Discover the variants variant_db = findVariants(bam_dir,search_locations) variant_filtered_db={} for var in variant_db: #print var, variant_db[var] if variant_db[var]>3: #print var,variant_db[var] variant_filtered_db[var] = variant_db[var] ### Quantify the variants versus background pileupAnalysis(bam_dir,variant_filtered_db) def variantCoordinates(variants): search_locations=[] contents = open(variants, "rU") for line in contents: line = line.rstrip() chr,start,end,symbol = string.split(line,'\t') if 'chr' not in chr: chr = 'chr'+chr strand = 'NA' search_locations.append([chr,strand,start,end,symbol]) return search_locations def geneCoordinates(species,symbols): genes=[] from build_scripts import EnsemblImport ensembl_annotation_db = EnsemblImport.reimportEnsemblAnnotations(species,symbolKey=True) for symbol in symbols: if symbol in ensembl_annotation_db: ens_geneid = ensembl_annotation_db[symbol] genes.append((ens_geneid,symbol)) else: print symbol, 'not found' ### Get gene genomic locations gene_location_db = EnsemblImport.getEnsemblGeneLocations(species,'RNASeq','key_by_array') search_locations=[] for (gene,symbol) in genes: chr,strand,start,end = gene_location_db[gene] #if symbol == 'SRSF10': chr = 'chr1'; strand = '-'; start = '24295573'; end = '24306953' if len(chr)>6: print symbol, 'bad chromosomal reference:',chr else: search_locations.append([chr,strand,start,end,symbol]) return search_locations def findVariants(bam_dir,search_locations,multi=False): start_time = time.time() bamfile = pysam.Samfile(bam_dir, "rb" ) output_bed_rows=0 #https://www.biostars.org/p/76119/ variant_db={} reference_rows=0 o = open (string.replace(bam_dir,'.bam','__variant.txt'),"w") for (chr,strand,start,stop,symbol) in search_locations: ### read each line one-at-a-time rather than loading all in memory read_count=0 reference_rows+=1 stop=int(stop)+100 ### buffer for single variants start=int(start)-100 ### buffer for single variants for alignedread in bamfile.fetch(chr, int(start),int(stop)): md = alignedread.opt('MD') omd = md codes = map(lambda x: x[0],alignedread.cigar) cigarstring = alignedread.cigarstring #print symbol,cigarstring if 1 in codes and alignedread.pos: ### Thus an insertion is present cigarstring = alignedread.cigarstring chr = bamfile.getrname(alignedread.rname) pos = alignedread.pos def getInsertions(cigarList,X): cummulative=0 coordinates=[] for (code,seqlen) in cigarList: if code == 0 or code == 3: cummulative+=seqlen if code == 1: coordinates.append(X+cummulative) return coordinates coordinates = getInsertions(alignedread.cigar,pos) """ print pos print coordinates print alignedread.seq print codes print alignedread.cigar print cigarstring print md;sys.exit() """ for pos in coordinates: try: variant_db[chr,pos,symbol]+=1 except Exception: variant_db[chr,pos,symbol] = 1 insertion_db[chr,pos]=[] continue try: int(md) ### If an integer, no mismatches or deletions present continue except Exception: #print chr, int(start),int(stop) #print alignedread.get_reference_sequence() #print alignedread.seq md = string.replace(md,'C','A') md = string.replace(md,'G','A') md = string.replace(md,'T','A') md = string.split(md,'A') pos = alignedread.pos chr = bamfile.getrname(alignedread.rname) #if omd == '34^GA16': print md, pos for i in md[:-1]: try: pos+=int(i)+1 except Exception: if i == '': pos+=+1 elif '^' in i: ### position is equal to the last position pos+=int(string.split(i,'^')[0])+1 #pass #if 'CGGATCC' in alignedread.seq: print string.split(alignedread.seq,'CGGATCC')[1],[pos] try: variant_db[chr,pos,symbol]+=1 except Exception: variant_db[chr,pos,symbol] = 1 #codes = map(lambda x: x[0],alignedread.cigar) output_bed_rows+=1 o.close() bamfile.close() if multi==False: print time.time()-start_time, 'seconds to assign reads for %d entries from %d reference entries' % (output_bed_rows,reference_rows) #print variant_db;sys.exit() return variant_db def pileupAnalysis(bam_dir,search_locations,multi=False): start_time = time.time() bamfile = pysam.Samfile(bam_dir, "rb" ) reference_rows=0 output_bed_rows=0 #https://www.biostars.org/p/76119/ variant_db={} o = open (string.replace(bam_dir,'.bam','__variant.txt'),"w") entries = ['chr','position','rare-allele frq','type','depth','gene','variant_info','alt_frq'] o.write(string.join(entries,'\t')+'\n') #print 'Analyzing',len(search_locations),'variants' for (chr,pos,symbol) in search_locations: ### read each line one-at-a-time rather than loading all in memory pos = int(pos) read_count=0 reference_rows+=1 nucleotide_frequency={} for pileupcolumn in bamfile.pileup(chr,pos,pos+1): # Skip columns outside desired range #print pos, pileupcolumn.pos, pileupcolumn.cigarstring, pileupcolumn.alignment.pos if pileupcolumn.pos == (pos-1): for pileupread in pileupcolumn.pileups: try: nt = pileupread.alignment.query_sequence[pileupread.query_position] except Exception,e: if 'D' in pileupread.alignment.cigarstring: nt = 'del' else: nt = 'ins' try: nucleotide_frequency[nt]+=1 except Exception: nucleotide_frequency[nt]=1 nt_freq_list=[] nt_freq_list_tuple=[] for nt in nucleotide_frequency: nt_freq_list.append(nucleotide_frequency[nt]) nt_freq_list_tuple.append([nucleotide_frequency[nt],nt]) s = sum(nt_freq_list) nt_freq_list.sort() nt_freq_list_tuple.sort() try: frq = float(search_locations[chr,pos,symbol])/s ### This fixes that (number of insertions from before) except Exception: frq = '1.000000'; print symbol, pos, nucleotide_frequency, search_locations[chr,pos,symbol] if (chr,pos) in insertion_db: #print 'insertion', chr, pos call = 'insertion' ### For insertions if the inserted base matches the reference base, incorrect freq will be reported elif 'del' in nucleotide_frequency: #frq = float(nt_freq_list[-2])/s call = 'del' else: #frq = float(nt_freq_list[-2])/s call = 'mismatch' if len(nt_freq_list)>1 or call == 'insertion': if frq>0.01: frq = str(frq)[:4] most_frequent_frq,most_frequent_nt = nt_freq_list_tuple[-1] try: second_most_frequent_frq,second_most_frequent_nt = nt_freq_list_tuple[-2] alt_frq = str(float(second_most_frequent_frq)/most_frequent_frq) except Exception: second_most_frequent_frq = 'NA'; second_most_frequent_nt='NA' alt_frq = 'NA' variant_info = most_frequent_nt+'('+str(most_frequent_frq)+')|'+second_most_frequent_nt+'('+str(second_most_frequent_frq)+')' entries = [chr,str(pos),str(frq),call,str(s),symbol,variant_info,alt_frq] o.write(string.join(entries,'\t')+'\n') output_bed_rows+=1 o.close() bamfile.close() if multi==False: print time.time()-start_time, 'seconds to assign reads for %d entries from %d reference entries' % (output_bed_rows,reference_rows) if __name__ == "__main__": #bam_dir = "H9.102.2.6.bam" #reference_dir = 'H9.102.2.6__exon.bed' ################ Comand-line arguments ################ symbols=[] variantFile = None if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a BAM file as input in the command-line" print "Example: python BAMtoExonBED.py --i /Users/me/sample1.bam --r /Users/me/Hs_exon-cancer_hg19.bed" sys.exit() else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','species=','g=','v=']) for opt, arg in options: if opt == '--i': bam_dir=arg ### A single BAM file location (full path) elif opt == '--species': species=arg elif opt == '--g': symbols.append(arg) elif opt == '--v': variantFile = arg else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() findGeneVariants(species,symbols,bam_dir,variants=variantFile)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/import_scripts/BAMtoGeneVariants.py
BAMtoGeneVariants.py
import numpy as np import scipy from scipy import stats import matplotlib.pylab as plt class gaussian_kde_set_covariance(stats.gaussian_kde): ''' from Anne Archibald in mailinglist: http://www.nabble.com/Width-of-the-gaussian-in-stats.kde.gaussian_kde---td19558924.html#a19558924 ''' def __init__(self, dataset, covariance): self.covariance = covariance scipy.stats.gaussian_kde.__init__(self, dataset) def _compute_covariance(self): self.inv_cov = np.linalg.inv(self.covariance) self._norm_factor = sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.n class gaussian_kde_covfact(stats.gaussian_kde): def __init__(self, dataset, covfact = 'scotts'): self.covfact = covfact scipy.stats.gaussian_kde.__init__(self, dataset) def _compute_covariance_(self): '''not used''' self.inv_cov = np.linalg.inv(self.covariance) self._norm_factor = sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.n def covariance_factor(self): if self.covfact in ['sc', 'scotts']: return self.scotts_factor() if self.covfact in ['si', 'silverman']: return self.silverman_factor() elif self.covfact: return float(self.covfact) else: raise ValueError, \ 'covariance factor has to be scotts, silverman or a number' def reset_covfact(self, covfact): self.covfact = covfact self.covariance_factor() self._compute_covariance() def plotkde(covfact): gkde.reset_covfact(covfact) kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation - ' + str(gkde.covfact)) plt.legend() from numpy.testing import assert_array_almost_equal, \ assert_almost_equal, assert_ def test_kde_1d(): np.random.seed(8765678) n_basesample = 500 xn = np.random.randn(n_basesample) xnmean = xn.mean() xnstd = xn.std(ddof=1) print xnmean, xnstd # get kde for original sample gkde = stats.gaussian_kde(xn) # evaluate the density funtion for the kde for some points xs = np.linspace(-7,7,501) kdepdf = gkde.evaluate(xs) normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd) print 'MSE', np.sum((kdepdf - normpdf)**2) print 'axabserror', np.max(np.abs(kdepdf - normpdf)) intervall = xs[1] - xs[0] assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01) #assert_array_almost_equal(kdepdf, normpdf, decimal=2) print gkde.integrate_gaussian(0.0, 1.0) print gkde.integrate_box_1d(-np.inf, 0.0) print gkde.integrate_box_1d(0.0, np.inf) print gkde.integrate_box_1d(-np.inf, xnmean) print gkde.integrate_box_1d(xnmean, np.inf) assert_almost_equal(gkde.integrate_box_1d(xnmean, np.inf), 0.5, decimal=1) assert_almost_equal(gkde.integrate_box_1d(-np.inf, xnmean), 0.5, decimal=1) assert_almost_equal(gkde.integrate_box(xnmean, np.inf), 0.5, decimal=1) assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), 0.5, decimal=1) assert_almost_equal(gkde.integrate_kde(gkde), (kdepdf**2).sum()*intervall, decimal=2) assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2), (kdepdf*normpdf).sum()*intervall, decimal=2) ## assert_almost_equal(gkde.integrate_gaussian(0.0, 1.0), ## (kdepdf*normpdf).sum()*intervall, decimal=2) if __name__ == '__main__': # generate a sample n_basesample = 1000 np.random.seed(8765678) alpha = 0.6 #weight for (prob of) lower distribution mlow, mhigh = (-3,3) #mean locations for gaussian mixture xn = np.concatenate([mlow + np.random.randn(alpha * n_basesample), mhigh + np.random.randn((1-alpha) * n_basesample)]) # get kde for original sample #gkde = stats.gaussian_kde(xn) gkde = gaussian_kde_covfact(xn, 0.1) # evaluate the density funtion for the kde for some points ind = np.linspace(-7,7,101) kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation') plt.legend() gkde = gaussian_kde_covfact(xn, 'scotts') kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation') plt.legend() #plt.show() for cv in ['scotts', 'silverman', 0.05, 0.1, 0.5]: plotkde(cv) test_kde_1d() np.random.seed(8765678) n_basesample = 1000 xn = np.random.randn(n_basesample) xnmean = xn.mean() xnstd = xn.std(ddof=1) # get kde for original sample gkde = stats.gaussian_kde(xn)
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/kde_subclass.py
kde_subclass.py
import os import sys import time import glob import misopy from misopy.settings import Settings from misopy.settings import miso_path as miso_settings_path import misopy.hypothesis_test as ht import misopy.as_events as as_events import misopy.cluster_utils as cluster_utils import misopy.sam_utils as sam_utils import misopy.miso_sampler as miso import misopy.Gene as gene_utils import misopy.gff_utils as gff_utils import misopy.misc_utils as misc_utils from misopy.parse_csv import * from misopy.samples_utils import * import numpy as np np.seterr(all='ignore') miso_path = os.path.dirname(os.path.abspath(__file__)) def greeting(parser=None): print "MISO (Mixture of Isoforms model)" print "Compare MISO samples to get differential isoform statistics." print "Use --help argument to view options.\n" print "Example usage:\n" print "compare_miso --compare-samples sample1/ sample2/ results/" if parser is not None: parser.print_help() def main(): from optparse import OptionParser parser = OptionParser() ## ## Psi utilities ## parser.add_option("--compare-samples", dest="samples_to_compare", nargs=3, default=None, help="Compute comparison statistics between the two " \ "given samples. Expects three directories: the first is " \ "sample1's MISO output, the second is sample2's MISO " \ "output, and the third is the directory where " \ "results of the sample comparison will be outputted.") parser.add_option("--comparison-labels", dest="comparison_labels", nargs=2, default=None, help="Use these labels for the sample comparison " "made by --compare-samples. " "Takes two arguments: the label for sample 1 " "and the label for sample 2, where sample 1 and " "sample 2 correspond to the order of samples given " "to --compare-samples.") parser.add_option("--use-compressed", dest="use_compressed", nargs=1, default=None, help="Use compressed event IDs. Takes as input a " "genes_to_filenames.shelve file produced by the " "index_gff script.") (options, args) = parser.parse_args() if options.samples_to_compare is None: greeting() use_compressed = None if options.use_compressed is not None: use_compressed = \ os.path.abspath(os.path.expanduser(options.use_compressed)) if not os.path.exists(use_compressed): print "Error: mapping filename from event IDs to compressed IDs %s " \ "is not found." %(use_compressed) sys.exit(1) else: print "Compression being used." if options.samples_to_compare is not None: sample1_dirname = os.path.abspath(options.samples_to_compare[0]) sample2_dirname = os.path.abspath(options.samples_to_compare[1]) output_dirname = os.path.abspath(options.samples_to_compare[2]) if not os.path.isdir(output_dirname): print "Making comparisons directory: %s" %(output_dirname) misc_utils.make_dir(output_dirname) ht.output_samples_comparison(sample1_dirname, sample2_dirname, output_dirname, sample_labels=options.comparison_labels, use_compressed=use_compressed) if __name__ == '__main__': main()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/compare_miso.py
compare_miso.py
import os import sys import time import glob import misopy from misopy.settings import Settings from misopy.settings import miso_path as miso_settings_path import misopy.hypothesis_test as ht import misopy.as_events as as_events import misopy.cluster_utils as cluster_utils import misopy.sam_utils as sam_utils import misopy.miso_sampler as miso import misopy.Gene as gene_utils import misopy.gff_utils as gff_utils import misopy.misc_utils as misc_utils import misopy.samples_utils as samples_utils from misopy.parse_csv import * import numpy as np np.seterr(all='ignore') miso_path = os.path.dirname(os.path.abspath(__file__)) def greeting(parser=None): print "MISO (Mixture of Isoforms model)" print "Summarize MISO output to get Psi values and confidence intervals." print "Use --help argument to view options.\n" if parser is not None: parser.print_help() def main(): from optparse import OptionParser parser = OptionParser() parser.add_option("--summarize-samples", dest="summarize_samples", nargs=2, default=None, help="Compute summary statistics of the given set " "of samples. Expects a directory with MISO output " "and a directory to output summary file to.") parser.add_option("--summary-label", dest="summary_label", nargs=1, default=None, help="Label for MISO summary file. If not given, " "uses basename of MISO output directory.") parser.add_option("--use-compressed", dest="use_compressed", nargs=1, default=None, help="Use compressed event IDs. Takes as input a " "genes_to_filenames.shelve file produced by the " "index_gff script.") (options, args) = parser.parse_args() greeting() use_compressed = None if options.use_compressed is not None: use_compressed = \ os.path.abspath(os.path.expanduser(options.use_compressed)) if not os.path.exists(use_compressed): print "Error: mapping filename from event IDs to compressed IDs %s " \ "is not found." %(use_compressed) sys.exit(1) else: print "Compression being used." ## ## Summarizing samples ## if options.summarize_samples: samples_dir = \ os.path.abspath(os.path.expanduser(options.summarize_samples[0])) if options.summary_label != None: samples_label = options.summary_label print "Using summary label: %s" %(samples_label) else: samples_label = \ os.path.basename(os.path.expanduser(samples_dir)) assert(len(samples_label) >= 1) summary_output_dir = \ os.path.abspath(os.path.join(os.path.expanduser(options.summarize_samples[1]), 'summary')) if not os.path.isdir(summary_output_dir): misc_utils.make_dir(summary_output_dir) summary_filename = os.path.join(summary_output_dir, '%s.miso_summary' %(samples_label)) samples_utils.summarize_sampler_results(samples_dir, summary_filename, use_compressed=use_compressed) if __name__ == "__main__": main()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/summarize_miso.py
summarize_miso.py
import os import sys import time import zipfile import sqlite3 import shutil import fnmatch import glob import misopy import misopy.misc_utils as utils import misopy.miso_utils as miso_utils import misopy.miso_db as miso_db class MISOCompressor: """ Compressor/uncompressor of MISO output-containing directories. The compressor: (1) copies the original directory containing MISO directories (2) creates MISO databases (.miso_db files) from the *.miso-containing directories (3) then zip's up the resulting directory The compressor works on the copy and leaves the original directory unmodified. """ def __init__(self): self.input_dir = None self.output_dir = None # Extension for compressed directory that contains # any sort of MISO output within it self.comp_ext = ".misozip" def compress(self, output_filename, miso_dirnames): """ Takes a set of MISO input directories and compresses them into 'output_filename'. This involves making SQL databases for all the MISO directories and then additionally compressing the results as a zip file. """ if os.path.isfile(output_filename): print "Error: %s already exists. Please delete to overwrite." \ %(output_filename) output_dir = "%s%s" %(output_filename, miso_db.MISO_DB_EXT) if os.path.isdir(output_dir): print "Error: Intermediate compressed directory %s " \ "exists. Please delete to overwrite." %(output_dir) sys.exit(1) for miso_dirname in miso_dirnames: print "Processing: %s" %(miso_dirname) if not os.path.isdir(miso_dirname): print "Error: %s not a directory." %(miso_dirname) sys.exit(1) if os.path.isfile(output_filename): print "Output file %s already exists, aborting. " \ "Please delete the file if you want " \ "compression to run." sys.exit(1) self.miso_dirs_to_compress = [] print "Copying source directory tree.." shutil.copytree(miso_dirname, output_dir, ignore=self.collect_miso_dirs) for dir_to_compress in self.miso_dirs_to_compress: rel_path = os.path.relpath(dir_to_compress, miso_dirname) comp_path = os.path.join(output_dir, rel_path) # Remove the place holder directory os.rmdir(comp_path) comp_path = "%s%s" %(comp_path, miso_db.MISO_DB_EXT) miso_db.miso_dir_to_db(dir_to_compress, comp_path) # Zip directory using conventional zip print "Zipping compressed directory with standard zip..." t1 = time.time() zipper(output_dir, output_filename) print "Deleting intermediate directory: %s" %(output_dir) shutil.rmtree(output_dir) t2 = time.time() print " - Standard zipping took %.2f minutes." \ %((t2 - t1)/60.) print "To access the SQLite representation of raw MISO output " print "(*.miso) files, simply unzip with the .miso_zip file " print "with standard unzip utility:\n" print " unzip %s" %(output_filename) def uncompress(self, compressed_filename, output_dir): """ Takes a compressed MISO file 'compressed_filename' and uncompresses it into 'output_dir'. """ if not os.path.isfile(compressed_filename): print "Error: Cannot find %s, aborting." \ %(compressed_filename) if not os.path.basename(compressed_filename).endswith(self.comp_ext): print "Warning: %s does not end in %s. Are you sure it is " \ "a file compressed by miso_zip.py?" \ %(compressed_filename, self.comp_ext) if not os.path.isdir(output_dir): os.makedirs(output_dir) print "Uncompressing %s into %s" %(compressed_filename, output_dir) # First unzip the file using conventional unzip unzipped_files = unzipper(compressed_filename, output_dir) # Remove the original .zip if os.path.isfile(compressed_filename): print "Removing the compressed file %s" %(compressed_filename) if os.path.isfile(compressed_filename): os.remove(compressed_filename) def collect_miso_dirs(self, path, dirnames): """ Collect raw MISO output directories """ if fnmatch.filter(dirnames, "*.miso"): self.miso_dirs_to_compress.append(path) return dirnames return [] def compress_miso(output_filename, input_dirs, comp_ext=".misozip"): """ Compress a directory containing MISO files. Traverse directories, one by one, and look for directories that contain """ output_filename = utils.pathify(output_filename) for input_dir in input_dirs: if not os.path.isdir(input_dir): print "Error: Cannot find directory %s" %(input_dir) sys.exit(1) if not os.path.basename(output_filename).endswith(comp_ext): print "Error: Compressed output filename must end in %s" \ %(comp_ext) sys.exit(1) if os.path.isfile(output_filename): print "Error: Output filename exists. Please delete %s to overwrite." \ %(output_filename) sys.exit(1) t1 = time.time() miso_comp = MISOCompressor() miso_comp.compress(output_filename, input_dirs) t2 = time.time() print "Compression took %.2f minutes." %((t2 - t1)/60.) def uncompress_miso(compressed_filename, output_dir): """ Uncompress MISO directory. """ if not os.path.isfile(compressed_filename): print "Error: Zip file %s is not found." \ %(compressed_filename) sys.exit(1) t1 = time.time() miso_comp = MISOCompressor() miso_comp.uncompress(compressed_filename, output_dir) t2 = time.time() print "Uncompression took %.2f minutes." %((t2 - t1)/60.) def zipper(dir, zip_file): """ Zip a directory 'dir' recursively, saving result in 'zip_file'. by Corey Goldberg. """ # Enable Zip64 to allow creation of large Zip files zip = zipfile.ZipFile(zip_file, 'w', compression=zipfile.ZIP_DEFLATED, allowZip64=True) root_len = len(os.path.abspath(dir)) for root, dirs, files in os.walk(dir): archive_root = os.path.abspath(root)[root_len:] for f in files: fullpath = os.path.join(root, f) archive_name = os.path.join(archive_root, f) zip.write(fullpath, archive_name, zipfile.ZIP_DEFLATED) zip.close() return zip_file def unzipper(zip_file, outdir): """ Unzip a given 'zip_file' into the output directory 'outdir'. Return the names of files in the archive. """ zf = zipfile.ZipFile(zip_file, "r", allowZip64=True) filenames = zf.namelist() zf.extractall(outdir) return filenames def greeting(): print "Compress/uncompress MISO output. Usage:\n" print "To compress a directory containing MISO files \'inputdir\', use: " print " miso_zip --compress outputfile.misozip inputdir" print "To uncompress back into a directory \'outputdir\', use: " print " miso_zip --uncompress outputfile.misozip outputdir" print "\nNote: compressed filename must end in \'.misozip\'" def main(): from optparse import OptionParser parser = OptionParser() parser.add_option("--compress", dest="compress", nargs=2, default=None, help="Compress a directory containing MISO output. " "Takes as arguments: (1) the output filename of the " "compressed file, (2) a comma-separated list of " "directory names to be compressed. " "Example: --compress output.misozip dirname1,dirname2") parser.add_option("--uncompress", dest="uncompress", nargs=2, default=None, help="Uncompress a file generated by compress_miso. " "Takes as arguments: (1) the filename to be " "uncompressed, and (2) the directory to place the " "uncompressed representation into. " "Example: --uncompress output.misozip outputdir") (options, args) = parser.parse_args() if (options.compress is None) and (options.uncompress is None): greeting() sys.exit(1) elif (options.compress is not None) and (options.uncompress is not None): # Can't be given both. greeting() print "Error: Cannot process --compress and --uncompress at same time." sys.exit(1) if options.compress is not None: output_filename = utils.pathify(options.compress[0]) input_dirs = [utils.pathify(d) \ for d in options.compress[1].split(",")] compress_miso(output_filename, input_dirs) if options.uncompress is not None: compressed_filename = utils.pathify(options.uncompress[0]) output_dir = utils.pathify(options.uncompress[1]) uncompress_miso(compressed_filename, output_dir) if __name__ == "__main__": main()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/miso_zip.py
miso_zip.py
from collections import defaultdict import misopy from misopy.Gene import load_genes_from_gff import os import time import pysam import binascii import ctypes from numpy import array from scipy import * # def read_to_isoforms(alignment, gene): # """ # Align SAM read to gene's isoforms. # """ # ## # ## SAM format is zero-based, but GFF are 1-based, so add 1 # ## to read position # ## # pass def cigar_to_end_coord(start, cigar): """ Compute the end coordinate based on the CIGAR string. Assumes the coordinate is 1-based. """ #print start, cigar # Parse cigar part #for cigar_part in cigar: # cigar_type, seq_len = cigar_part # offset += seq_len offset = sum([cigar_part[1] for cigar_part in cigar]) end = start + offset - 1 return end def single_end_read_to_isoforms(read, gene, read_len, overhang_len=1): """ Align single-end SAM read to gene's isoforms. """ start = read.pos + 1 end = cigar_to_end_coord(start, read.cigar) assert(start < end) alignment, isoform_coords = gene.align_read_to_isoforms_with_cigar(read.cigar, start, end, read_len, overhang_len) return alignment def paired_read_to_isoforms(paired_read, gene, read_len, overhang_len=1): """ Align paired-end SAM read to gene's isoforms. """ left_read = paired_read[0] right_read = paired_read[1] # Convert to 1-based coordinates left_start = left_read.pos + 1 right_start = right_read.pos + 1 # Get end coordinates of each read left_end = cigar_to_end_coord(left_start, left_read.cigar) assert(left_start < left_end) right_end = cigar_to_end_coord(right_start, right_read.cigar) assert(right_start < right_end) alignment = None frag_lens = None # Throw out reads that posit a zero or less than zero fragment # length # print "LEFT read start,end: ", left_start, left_end # print "RIGHT read start,end: ", right_start, right_end if left_start > right_start: return None, None else: alignment, frag_lens = gene.align_read_pair_with_cigar( left_read.cigar, left_start, left_end, right_read.cigar, right_start, right_end, read_len=read_len, overhang=overhang_len) # assert(left_start < right_start), "Reads scrambled?" # assert(left_end < right_start), "Reads scrambled: left=(%d, %d), right=(%d, %d)" \ # %(left_start, left_end, right_start, right_end) # print "Read: ", (left_start, left_end), " - ", (right_start, right_end) # print " - Alignment: ", alignment, " frag_lens: ", frag_lens # print " - Sequences: " # print " - %s\t%s" %(left_read.seq, right_read.seq) return alignment, frag_lens # def paired_read_to_isoforms(paired_read, gene, read_len=36, # overhang_len=1): # """ # Align paired-end SAM read to gene's isoforms. # """ # left_read = paired_read[0] # right_read = paired_read[1] # # Convert to 1-based coordinates # left_start = left_read.pos + 1 # right_start = right_read.pos + 1 # # Get end coordinates of each read # left_end = cigar_to_end_coord(left_start, left_read.cigar) # assert(left_start < left_end) # right_end = cigar_to_end_coord(right_start, right_read.cigar) # assert(right_start < right_end) # alignment = None # frag_lens = None # # Throw out reads that posit a zero or less than zero fragment # # length # if left_start > right_start or left_end > right_start: # return None, None # else: # alignment, frag_lens = gene.align_read_pair(left_start, left_end, # right_start, right_end, # read_len=read_len, # overhang=overhang_len) # # assert(left_start < right_start), "Reads scrambled?" # # assert(left_end < right_start), "Reads scrambled: left=(%d, %d), right=(%d, %d)" \ # # %(left_start, left_end, right_start, right_end) # # print "Read: ", (left_start, left_end), " - ", (right_start, right_end) # # print " - Alignment: ", alignment, " frag_lens: ", frag_lens # # print " - Sequences: " # # print " - %s\t%s" %(left_read.seq, right_read.seq) # return alignment, frag_lens def load_bam_reads(bam_filename, template=None): """ Load a set of indexed BAM reads. """ print "Loading BAM filename from: %s" %(bam_filename) bam_filename = os.path.abspath(os.path.expanduser(bam_filename)) bamfile = pysam.Samfile(bam_filename, "rb", template=template) return bamfile def fetch_bam_reads_in_gene(bamfile, chrom, start, end, gene=None): """ Align BAM reads to the gene model. """ gene_reads = [] if chrom in bamfile.references: pass else: chrom_parts = chrom.split("chr") if len(chrom_parts) <= 1: chrom = chrom_parts[0] else: chrom = chrom_parts[1] try: gene_reads = bamfile.fetch(chrom, start, end) except ValueError: print "Cannot fetch reads in region: %s:%d-%d" %(chrom, start, end) except AssertionError: print "AssertionError in region: %s:%d-%d" %(chrom, start, end) print " - Check that your BAM file is indexed!" return gene_reads def flag_to_strand(flag): """ Takes integer flag as argument. Returns strand ('+' or '-') from flag. """ if flag == 0 or not (int(bin(flag)[-5]) & 1): return "+" return "-" def strip_mate_id(read_name): """ Strip canonical mate IDs for paired end reads, e.g. #1, #2 or: /1, /2 """ if read_name.endswith("/1") or read_name.endswith("/2") or \ read_name.endswith("#1") or read_name.endswith("#2"): read_name = read_name[0:-3] return read_name def pair_sam_reads(samfile, filter_reads=True, return_unpaired=False): """ Pair reads from a SAM file together. """ paired_reads = defaultdict(list) unpaired_reads = {} for read in samfile: curr_name = read.qname # Strip canonical mate IDs curr_name = strip_mate_id(curr_name) if filter_reads: # Skip reads that failed QC or are unmapped if read.is_qcfail or read.is_unmapped or \ read.mate_is_unmapped or (not read.is_paired): unpaired_reads[curr_name] = read continue paired_reads[curr_name].append(read) to_delete = [] num_unpaired = 0 num_total = 0 for read_name, read in paired_reads.iteritems(): if len(read) != 2: unpaired_reads[read_name] = read num_unpaired += 1 # Delete unpaired reads to_delete.append(read_name) continue left_read, right_read = read[0], read[1] # Check that read mates are on opposite strands left_strand = flag_to_strand(left_read.flag) right_strand = flag_to_strand(right_read.flag) if left_strand == right_strand: # Skip read pairs that are on the same strand to_delete.append(read_name) continue if left_read.pos > right_read.pos: print "WARNING: %s left mate starts later than right "\ "mate" %(left_read.qname) num_total += 1 # Delete reads that are on the same strand for del_key in to_delete: del paired_reads[del_key] print "Filtered out %d read pairs that were on same strand." \ %(len(to_delete)) print "Filtered out %d reads that had no paired mate." \ %(num_unpaired) print " - Total read pairs: %d" %(num_total) if not return_unpaired: return paired_reads else: return paired_reads, unpaired_reads # Global variable containing CIGAR types for conversion CIGAR_TYPES = ('M', 'I', 'D', 'N', 'S', 'H', 'P') def sam_cigar_to_str(sam_cigar): """ Convert pysam CIGAR list to string format. """ # First element in sam CIGAR list is the CIGAR type # (e.g. match or insertion) and the second is # the number of nucleotides #cigar_str = "".join(["%d%s" %(c[1], CIGAR_TYPES[c[0]]) \ # for c in sam_cigar]) #### OPTIMIZED VERSION cigar_str = "" if sam_cigar is None: return cigar_str for c in sam_cigar: cigar_str += "%d%s" %(c[1], CIGAR_TYPES[c[0]]) return cigar_str def read_matches_strand(read, target_strand, strand_rule, paired_end=None): """ Check if a read matches strand. - target_strand: the annotation strand ('+' or '-') - strand_rule: the strand rule, i.e. ('fr-unstranded', 'fr-firststrand', or 'fr-secondstrand') """ if strand_rule == "fr-unstranded": return True matches = False if paired_end is not None: # Paired-end reads read1, read2 = read if strand_rule == "fr-firststrand": # fr-firststrand: means that the *second* of the mates # must match the strand matches = (flag_to_strand(read2.flag) == target_strand) elif strand_rule == "fr-secondstrand": # fr-secondstrand: means that the *first* of the mates # must match the strand matches = (flag_to_strand(read1.flag) == target_strand) else: raise Exception, "Unknown strandedness rule." else: # Single-end reads if strand_rule == "fr-firststrand": # fr-firststrand: We sequence the first read only, so it must # *NOT* match the target strand matches = (flag_to_strand(read.flag) != target_strand) elif strand_rule == "fr-secondstrand": # fr-secondstrand: We only sequence the first read, which # is supposed to match the target strand matches = (flag_to_strand(read.flag) == target_strand) else: raise Exception, "Unknown strandedness rule." return matches def sam_parse_reads(samfile, paired_end=False, strand_rule=None, target_strand=None): """ Parse the SAM reads. If paired-end, pair up the mates together. Also forces the strandedness convention, discarding reads that do not match the correct strand. - strand_rule: specifies the strandedness convention. Can be 'fr-unstranded', 'fr-firststrand' or 'fr-secondstrand'. - target_strand: specifies the strand to match, i.e. the annotation strand. Can be '+' or '-'. """ read_positions = [] read_cigars = [] num_reads = 0 check_strand = True # Determine if we need to check strandedness of reads. # If we're given an unstranded convention, or if we're # not given a target strand, then assume that there's # no need to check strandedness. if (strand_rule is None) or \ (strand_rule is "fr-unstranded") or \ (target_strand is None): # No need to check strand check_strand = False # Track number of reads discarded due to strand # violations, if strand-specific num_strand_discarded = 0 if paired_end: # Pair up the reads paired_reads = pair_sam_reads(samfile) # Process reads into format required by fastmiso # MISO C engine requires pairs to follow each other in order. # Unpaired reads are not supported. for read_id, read_info in paired_reads.iteritems(): if check_strand: # Check strand if not read_matches_strand(read_info, target_strand, strand_rule, paired_end=paired_end): # Skip reads that don't match strand num_strand_discarded += 1 continue read1, read2 = read_info if (read1.cigar is None) or (read2.cigar is None): continue # Read positions and cigar strings are collected read_positions.append(int(read1.pos)) read_positions.append(int(read2.pos)) read_cigars.append(sam_cigar_to_str(read1.cigar)) read_cigars.append(sam_cigar_to_str(read2.cigar)) num_reads += 1 else: # Single-end for read in samfile: if read.cigar is None: continue if check_strand: if not read_matches_strand(read, target_strand, strand_rule, paired_end=paired_end): # Skip reads that don't match strand num_strand_discarded += 1 continue read_positions.append(int(read.pos)) read_cigars.append(sam_cigar_to_str(read.cigar)) num_reads += 1 if check_strand: print "No. reads discarded due to strand violation: %d" \ %(num_strand_discarded) reads = (tuple(read_positions), tuple(read_cigars)) return reads, num_reads def sam_pe_reads_to_isoforms(samfile, gene, read_len, overhang_len): """ Align read pairs (from paired-end data set) to gene. Returns alignment of paired-end reads (with insert lengths) to gene and number of read pairs aligned. """ paired_reads = pair_sam_reads(samfile) num_read_pairs = 0 pe_reads = [] k = 0 for read_id, read_pair in paired_reads.iteritems(): if len(read_pair) != 2: # Skip reads with no pair continue alignment, frag_lens = paired_read_to_isoforms(read_pair, gene, read_len, overhang_len) # Skip reads that are not consistent with any isoform if any(array(alignment) == 1): pe_reads.append([alignment, frag_lens]) num_read_pairs += 1 else: # print "read %s inconsistent with all isoforms" %(read_id) k += 1 print "Filtered out %d reads that were not consistent with any isoform" %(k) return pe_reads, num_read_pairs def sam_se_reads_to_isoforms(samfile, gene, read_len, overhang_len): """ Align single-end reads to gene. """ num_reads = 0 alignments = [] num_skipped = 0 for read in samfile: alignment = single_end_read_to_isoforms(read, gene, read_len, overhang_len) if 1 in alignment: # If the read aligns to at least one of the isoforms, keep it alignments.append(alignment) num_reads += 1 else: num_skipped += 1 print "Skipped total of %d reads." %(num_skipped) return alignments, num_reads def sam_reads_to_isoforms(samfile, gene, read_len, overhang_len, paired_end=False): """ Align BAM reads to the gene model. """ print "Aligning reads to gene..." t1 = time.time() if paired_end != None: # Paired-end reads reads, num_reads = sam_pe_reads_to_isoforms(samfile, gene, read_len, overhang_len) else: # Single-end reads reads, num_reads = sam_se_reads_to_isoforms(samfile, gene, read_len, overhang_len) t2 = time.time() print "Alignment to gene took %.2f seconds (%d reads)." %((t2 - t1), num_reads) return reads def main(): pass if __name__ == "__main__": main()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/sam_utils.py
sam_utils.py
from scipy import * from numpy.random import multinomial, binomial, negative_binomial, normal, randint import misopy from misopy.parse_csv import find def print_reads_summary(reads, gene, paired_end=False): num_isoforms = len(gene.isoforms) computed_const = False num_constitutive_reads = 0 for n in range(num_isoforms): unambig_read = zeros(num_isoforms, dtype=int) unambig_read[n] = 1 num_iso_reads = 0 for r in reads: if paired_end: curr_read = r[0] else: curr_read = r if all(curr_read == unambig_read): num_iso_reads += 1 if not computed_const: # If didn't compute so already, calculate how many reads # are constitutive, i.e. consistent with all isoforms if all(array(curr_read) == 1): num_constitutive_reads += 1 computed_const = True print "Iso %d (len = %d): %d unambiguous supporting reads" %(n, gene.isoforms[n].len, num_iso_reads) print "No. constitutive reads (consistent with all): %d" %(num_constitutive_reads) def get_reads_summary(reads): if reads.ndim != 2: raise Exception, "get_reads_summary only defined for two-isoform." ni = 0 ne = 0 nb = 0 for read in reads: if read[0] == 1 and read[1] == 0: # NI read ni += 1 elif read[0] == 0 and read[1] == 1: # NE read ne += 1 elif read[0] == 1 and read[1] == 1: nb += 1 return (ni, ne, nb) def expected_read_summary(gene, true_psi, num_reads, read_len, overhang_len): """ Computed the expected number of NI, NE, NB and number of reads excluded due to overhang constraints. Note that: NI + NE + NB = number of reads not excluded by overhang = 1 - reads excluded by overhang """ # Compute probability of overhang violation: # p(oh violation) = p(oh violation | isoform1)p(isoform1) + p(oh violation | isoform2)p(isoform2) ## ## Assumes first isoform has 3 exons, second has 2 exons ## parts = gene.parts iso1_seq = gene.isoforms[0].seq iso2_seq = gene.isoforms[1].seq num_pos_iso1 = len(iso1_seq) - read_len + 1 num_pos_iso2 = len(iso2_seq) - read_len + 1 psi_f = (true_psi*num_pos_iso1)/((true_psi*num_pos_iso1) + ((1-true_psi)*num_pos_iso2)) ## ## Try a version that takes into account overhang! ## p_oh_violation = (((2*(overhang_len-1)*2)/float(num_pos_iso1))*psi_f) + \ ((2*(overhang_len-1)/float(num_pos_iso2))*(1-psi_f)) # Compute probability of inclusion read: # p(NI) = p(isoform 1)p(inclusion read | isoform 1) skipped_exon_len = gene.get_part_by_label('B').len p_NI = psi_f*(((skipped_exon_len - read_len + 1) + 2*(read_len + 1 - 2*overhang_len)) / \ float(len(iso1_seq) - read_len + 1)) # Compute probability of exclusion read: # p(NE) = p(isoform 2)p(exclusion read | isoform 2) p_NE = (1-psi_f)*((read_len + 1 - (2*overhang_len))/float(len(iso2_seq) - read_len + 1)) # Compute probability of read supporting both: # p(NB) = p(isoform 1)p(NB read | isoform 1) + p(isoform 2)p(NB read | isoform 2) num_NB = (gene.get_part_by_label('A').len - read_len + 1) + (gene.get_part_by_label('C').len - read_len + 1) p_NB = psi_f*((num_NB)/float(len(iso1_seq) - read_len + 1)) + \ (1-psi_f)*(num_NB/float(len(iso2_seq) - read_len + 1)) print "p_NI: %.5f, p_NE: %.5f, p_NB: %.5f" %(p_NI, p_NE, p_NB) return [p_NI*num_reads, p_NE*num_reads, p_NB*num_reads, p_oh_violation*num_reads] def simulate_two_iso_reads(gene, true_psi, num_reads, read_len, overhang_len, p_ne_loss=0, p_ne_gain=0, p_ni_loss=0, p_ni_gain=0): """ Return a list with an element for each isoform, saying whether the read could have been generated by that isoform (denoted 1) or not (denoted 0). """ if len(gene.isoforms) != 2: raise Exception, "simulate_two_iso_reads requires a gene with only two isoforms." if len(true_psi) < 2: raise Exception, "Simulate reads requires a probability vector of size > 2." reads_summary = [0, 0, 0] all_reads = [] categories = [] true_isoforms = [] noise_probs = array([p_ne_loss, p_ne_gain, p_ni_loss, p_ni_gain]) noisify = any(noise_probs > 0) noiseless_counts = [0, 0, 0] for k in range(0, num_reads): reads_sampled = sample_random_read(gene, true_psi, read_len, overhang_len) read_start, read_end = reads_sampled[1] category = reads_sampled[2] chosen_iso = reads_sampled[3] reads_sampled = reads_sampled[0] single_read = (reads_sampled[0] + reads_sampled[2], reads_sampled[1] + reads_sampled[2]) NI, NE, NB = reads_sampled # If read was not thrown out due to overhang, include it if any(array(single_read) != 0): noiseless_counts[0] += NI noiseless_counts[1] += NE noiseless_counts[2] += NB # Check if read was chosen to be noised if noisify: # If exclusive isoform was sampled and we decided to noise it, discard the read if (p_ne_loss > 0) and (chosen_iso == 1) and (rand() < p_ne_loss): # Note that in this special case of a gene with two isoforms, # 'reads_sampled' is a read summary tuple of the form (NI, NE, NB) # and not an alignment to the two isoforms. if reads_sampled[1] == 1: # If read came from exclusion junction (NE), discard it continue if (p_ne_gain > 0) and (chosen_iso == 1) and (rand() < p_ne_gain): if reads_sampled[1] == 1: # Append read twice all_reads.extend([single_read, single_read]) # Find what category read landed in and increment it cat = reads_sampled.index(1) reads_sampled[cat] += 1 all_reads.append(single_read) categories.append(category) prev_reads_summary = reads_summary reads_summary[0] += reads_sampled[0] reads_summary[1] += reads_sampled[1] reads_summary[2] += reads_sampled[2] true_isoforms.append(chosen_iso) # if p_ne_gain > 0: # print "--> No noise NI: %d, NE: %d, NB: %d" %(noiseless_counts[0], noiseless_counts[1], # noiseless_counts[2]) # print " noised: ", reads_summary all_reads = array(all_reads) return (reads_summary, all_reads, categories, true_isoforms) def simulate_reads(gene, true_psi, num_reads, read_len, overhang_len): """ Return a list of reads. Each read is a vector of the size of the number of isoforms, with 1 if the read could have come from the isoform and 2 otherwise. """ if type(true_psi) != list: raise Exception, "simulate_reads: expects true_psi to be a probability vector summing to 1." if len(gene.isoforms) == 2: raise Exception, "simulate_reads: should use simulate_two_iso_reads for genes with only two isoforms." if sum(true_psi) != 1: raise Exception, "simulate_reads: true_psi must sum to 1." all_reads = [] read_coords = [] if len(true_psi) < 2: raise Exception, "Simulate reads requires a probability vector of size > 2." for k in range(0, num_reads): reads_sampled = sample_random_read(gene, true_psi, read_len, overhang_len) alignment = reads_sampled[0] read_start, read_end = reads_sampled[1] category = reads_sampled[2] reads_sampled = reads_sampled[0] if any(alignment != 0): # If read was not thrown out due to overhang, include it all_reads.append(alignment) read_coords.append((read_start, read_end)) all_reads = array(all_reads) return (all_reads, read_coords) def check_paired_end_read_consistency(reads): """ Check that a set of reads are consistent with their fragment lengths, i.e. that reads that do not align to an isoform have a -Inf fragment length, and reads that are alignable to an isoform do not have a -Inf fragment length. """ pe_reads = reads[:, 0] frag_lens = reads[:, 1] num_reads = len(pe_reads) print "Checking read consistency for %d reads..." %(num_reads) print reads is_consistent = False is_consistent = all(frag_lens[nonzero(pe_reads == 1)] != -Inf) if not is_consistent: return is_consistent is_consistent = all(frag_lens[nonzero(pe_reads == 0)] == -Inf) return is_consistent ## ## Diffrent fragment length distributions. ## def sample_binomial_frag_len(frag_mean=200, frag_variance=100): """ Sample a fragment length from a binomial distribution parameterized with a mean and variance. If frag_variance > frag_mean, use a Negative-Binomial distribution. """ assert(abs(frag_mean - frag_variance) > 1) if frag_variance < frag_mean: p = 1 - (frag_variance/float(frag_mean)) # N = mu/(1-(sigma^2/mu)) n = float(frag_mean) / (1 - (float(frag_variance)/float(frag_mean))) return binomial(n, p) else: r = -1 * (power(frag_mean, 2)/float(frag_mean - frag_variance)) p = frag_mean / float(frag_variance) print "Sampling frag_mean=",frag_mean, " frag_variance=", frag_variance print "r: ",r, " p: ", p return negative_binomial(r, p) def compute_rpkc(list_read_counts, const_region_lens, read_len): """ Compute the RPKC (reads per kilobase of constitutive region) for the set of constitutive regions. These are assumed to be constitutive exon body regions (not including constitutive junctions.) """ num_mappable_pos = 0 # assert(len(list_read_counts) == len(const_region_lens)) for region_len in const_region_lens: num_mappable_pos += region_len - read_len + 1 read_counts = sum(list_read_counts) rpkc = read_counts / (num_mappable_pos / 1000.) return rpkc def sample_normal_frag_len(frag_mean, frag_variance): """ Sample a fragment length from a rounded 'discretized' normal distribution. """ frag_len = round(normal(frag_mean, sqrt(frag_variance))) return frag_len def simulate_paired_end_reads(gene, true_psi, num_reads, read_len, overhang_len, mean_frag_len, frag_variance, bino_sampling=False): """ Return a list of reads that are aligned to isoforms. This list is a pair, where the first element is a list of read alignments and the second is a set of corresponding fragment lengths for each alignment. """ if sum(true_psi) != 1: raise Exception, "simulate_reads: true_psi must sum to 1." # sample reads reads = [] read_coords = [] assert(frag_variance != None) sampled_frag_lens = [] for k in range(0, num_reads): # choose a fragment length insert_len = -1 while insert_len < 0: if bino_sampling: frag_len = sample_binomial_frag_len(frag_mean=mean_frag_len, frag_variance=frag_variance) else: frag_len = sample_normal_frag_len(frag_mean=mean_frag_len, frag_variance=frag_variance) insert_len = frag_len - (2 * read_len) if insert_len < 0: raise Exception, "Sampled fragment length that is shorter than 2 * read_len!" #print "Sampled fragment length that is shorter than 2 * read_len!" sampled_frag_lens.append(frag_len) reads_sampled = sample_random_read_pair(gene, true_psi, read_len, overhang_len, insert_len, mean_frag_len) alignment = reads_sampled[0] frag_lens = reads_sampled[1] read_coords.append(reads_sampled[2]) reads.append([alignment, frag_lens]) return (array(reads), read_coords, sampled_frag_lens) # def compute_read_pair_position_prob(iso_len, read_len, insert_len): # """ # Compute the probability that the paired end read of the given read length and # insert size will start at each position of the isoform (uniform.) # """ # read_start_prob = zeros(iso_len) # # place a 1 in each position if a read could start there (0-based index) # for start_position in range(iso_len): # # total read length, including insert length and both mates # paired_read_len = 2*read_len + insert_len # if start_position + paired_read_len <= iso_len: # read_start_prob[start_position] = 1 # # renormalize ones to get a probability vector # possible_positions = nonzero(read_start_prob)[0] # if len(possible_positions) == 0: # return read_start_prob # num_possible_positions = len(possible_positions) # read_start_prob[possible_positions] = 1/float(num_possible_positions) # return read_start_prob def compute_read_pair_position_prob(iso_len, read_len, frag_len): """ Compute the probability that the paired end read of the given fragment length will start at each position of the isoform (uniform.) """ read_start_prob = zeros(iso_len) # place a 1 in each position if a read could start there (0-based index) for start_position in range(iso_len): # total read length, including insert length and both mates if start_position + frag_len - 1 <= iso_len - 1: read_start_prob[start_position] = 1 # renormalize ones to get a probability vector possible_positions = nonzero(read_start_prob)[0] if len(possible_positions) == 0: return read_start_prob num_possible_positions = len(possible_positions) read_start_prob[possible_positions] = 1/float(num_possible_positions) return read_start_prob def sample_random_read_pair(gene, true_psi, read_len, overhang_len, insert_len, mean_frag_len): """ Sample a random paired-end read (not taking into account overhang) from the given a gene, the true Psi value, read length, overhang length and the insert length (fixed). A paired-end read is defined as (genomic_left_read_start, genomic_left_read_end, genomic_right_read_start, genomic_right_read_start). Note that if we're given a gene that has only two isoforms, the 'align' function of gene will return a read summary in the form of (NI, NE, NB) rather than an alignment to the two isoforms (which is a pair (0/1, 0/1)). """ iso_lens = [iso.len for iso in gene.isoforms] num_positions = array([(l - mean_frag_len + 1) for l in iso_lens]) # probability of sampling a particular position from an isoform -- assume uniform for now iso_probs = [1/float(n) for n in num_positions] psi_frag_denom = sum(num_positions * array(true_psi)) psi_frags = [(num_pos * curr_psi)/psi_frag_denom for num_pos, curr_psi \ in zip(num_positions, true_psi)] # Choose isoform to sample read from chosen_iso = list(multinomial(1, psi_frags)).index(1) iso_len = gene.isoforms[chosen_iso].len frag_len = insert_len + 2*read_len isoform_position_probs = compute_read_pair_position_prob(iso_len, read_len, frag_len) # sanity check left_read_start = list(multinomial(1, isoform_position_probs)).index(1) left_read_end = left_read_start + read_len - 1 # right read starts after the left read and the insert length right_read_start = left_read_start + read_len + insert_len right_read_end = left_read_start + (2*read_len) + insert_len - 1 # convert read coordinates from coordinates of isoform that generated it to genomic coordinates genomic_left_read_start, genomic_left_read_end = \ gene.isoforms[chosen_iso].isoform_coords_to_genomic(left_read_start, left_read_end) genomic_right_read_start, genomic_right_read_end = \ gene.isoforms[chosen_iso].isoform_coords_to_genomic(right_read_start, right_read_end) # parameterized paired end reads as the start coordinate of the left pe_read = (genomic_left_read_start, genomic_left_read_end, genomic_right_read_start, genomic_right_read_end) alignment, frag_lens = gene.align_read_pair(pe_read[0], pe_read[1], pe_read[2], pe_read[3], overhang=overhang_len) return (alignment, frag_lens, pe_read) def sample_random_read(gene, true_psi, read_len, overhang_len): """ Sample a random read (not taking into account overhang) from the given set of exons and the true Psi value. Note that if we're given a gene that has only two isoforms, the 'align' function of gene will return a read summary in the form of (NI, NE, NB) rather than an alignment to the two isoforms (which is a pair (0/1, 0/1)). """ iso_lens = [iso.len for iso in gene.isoforms] num_positions = array([(l - read_len + 1) for l in iso_lens]) # probability of sampling a particular position from an isoform -- assume uniform for now iso_probs = [1/float(n) for n in num_positions] psi_frag_denom = sum(num_positions * array(true_psi)) psi_frags = [(num_pos * curr_psi)/psi_frag_denom for num_pos, curr_psi \ in zip(num_positions, true_psi)] # Choose isoform to sample read from chosen_iso = list(multinomial(1, psi_frags)).index(1) isoform_position_prob = ones(num_positions[chosen_iso]) * iso_probs[chosen_iso] sampled_read_start = list(multinomial(1, isoform_position_prob)).index(1) sampled_read_end = sampled_read_start + read_len - 1 # seq = gene.isoforms[chosen_iso].seq[sampled_read_start:sampled_read_end] # alignment, category = gene.align(seq, overhang=overhang_len) ## ## Trying out new alignment method ## # convert coordinates to genomic genomic_read_start, genomic_read_end = \ gene.isoforms[chosen_iso].isoform_coords_to_genomic(sampled_read_start, sampled_read_end) alignment, category = gene.align_read(genomic_read_start, genomic_read_end, overhang=overhang_len) return (tuple(alignment), [sampled_read_start, sampled_read_end], category, chosen_iso) def read_counts_to_read_list(ni, ne, nb): """ Convert a set of read counts for a two-isoform gene (NI, NE, NB) to a list of reads. """ reads = [] reads.extend(ni * [[1, 0]]) reads.extend(ne * [[0, 1]]) reads.extend(nb * [[1, 1]]) return array(reads) # def sample_random_read(gene, true_psi, read_len, overhang_len): # """ # Sample a random read (not taking into account overhang) from the # given set of exons and the given true Psi value. # """ # iso1_len = gene.isoforms[0]['len'] # iso2_len = gene.isoforms[1]['len'] # num_inc = 0 # num_exc = 0 # num_both = 0 # num_positions_iso1 = iso1_len - read_len + 1 # num_positions_iso2 = iso2_len - read_len + 1 # p1 = 1/float(num_positions_iso1) # p2 = 1/float(num_positions_iso2) # psi_frag = (num_positions_iso1*true_psi)/((num_positions_iso1*true_psi + num_positions_iso2*(1-true_psi))) # # Choose isoform to sample read from # if rand() < psi_frag: # isoform_position_prob = ones(num_positions_iso1)*p1 # sampled_read_start = list(multinomial(1, isoform_position_prob)).index(1) # sampled_read_end = sampled_read_start + read_len # seq = gene.isoforms[0]['seq'][sampled_read_start:sampled_read_end] # [n1, n2, nb], category = gene.align_two_isoforms(seq, overhang=overhang_len) # return [[n1, n2, nb], [sampled_read_start, sampled_read_end], category] # else: # isoform_position_prob = ones(num_positions_iso2)*p2 # sampled_read_start = list(multinomial(1, isoform_position_prob)).index(1) # sampled_read_end = sampled_read_start + read_len # seq = gene.isoforms[1]['seq'][sampled_read_start:sampled_read_end] # [n1, n2, nb], category = gene.align_two_isoforms(seq, overhang=overhang_len) # return [[n1, n2, nb], [sampled_read_start, sampled_read_end], category]
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/read_simulator.py
read_simulator.py
import time import os import misopy import misopy.misc_utils as utils def check_module_availability(required_modules): unavailable_mods = 0 print "Checking availability of Python modules for MISO" print "Looking for required Python modules.." for module_name in required_modules: print "Checking for availability of: %s" %(module_name) try: __import__(module_name) # Manually check for correct matplotlib version # required for sashimi_plot if module_name == "matplotlib": import matplotlib.pyplot as plt if not hasattr(plt, "subplot2grid"): print "WARNING: subplot2grid function is not available in matplotlib. " \ "to use sashimi_plot, you must upgrade your matplotlib " \ "to version 1.1.0 or later. This function is *not* required " \ "for MISO use." except ImportError: print " - Module %s not available!" %(module_name) if module_name == "matplotlib": print "matplotlib is required for sashimi_plot" unavailable_mods += 1 if unavailable_mods != 0: print "Total of %d modules were not available. " \ "Please install these and try again." %(unavailable_mods) else: print "All modules are available!" print "Looking for required executables.." required_programs = ["samtools", "bedtools"] for prog in required_programs: p = utils.which(prog) print "Checking if %s is available" %(prog) if p is None: print " - Cannot find %s!" %(prog) if prog == "bedtools": print "bedtools is only required for prefiltering " \ "and computation of insert lengths." if utils.which("tagBam"): print "Your bedtools installation might be available " \ "but outdated. Please upgrade bedtools and " \ "ensure that \'bedtools\' is available on path." else: print " - %s is available" %(prog) return unavailable_mods def main(): required_modules = ['numpy', 'scipy', 'json', 'matplotlib', 'pysam'] check_module_availability(required_modules) if __name__ == '__main__': main()
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/module_availability.py
module_availability.py
import random as pyrand from scipy import * from numpy import * import re import misopy from misopy.gff_utils import * from misopy.parse_csv import * import pprint class Interval: def __init__(self, start, end): self.start = start self.end = end assert(self.start <= self.end) self.len = self.end - self.start + 1 assert(self.len >= 1) def __repr__(self): return "Interval([%d, %d])" %(self.start, self.end) def __eq__(self, interval): if interval == None: return False return self.start == interval.start and self.end == interval.end def __ne__(self, interval): return not self.__eq(interval) def __lt__(self, interval): if self.start == interval.start: return self.end < interval.end return self.start < interval.start def contains(self, start, end): if self.start <= start and self.end >= end: return True return False def intersects(self, other): if (self.start < other.end and self.end > other.start): return True return False class Exon(Interval): def __init__(self, start, end, label=None, gene=None, seq="", from_gff_record=None): Interval.__init__(self, start, end) self.gene = gene self.label = label self.seq = seq if self.seq != "": assert(len(self.seq) == len(self.len)) if from_gff_record != None: # Load information from a GFF record self.load_from_gff_record(from_gff_record) def load_from_gff_record(self, gff_record): """ Load exon information from given GFF exon record. """ self.rec = gff_record['record'] self.parent_rec = gff_record['parent'] self.start = self.rec.start self.end = self.rec.end # Use first ID in list self.label = self.rec.attributes['ID'][0] def __repr__(self): gene_label = None if self.gene: gene_label = self.gene.label return "Exon([%d, %d], id = %s, seq = %s)(ParentGene = %s)" %(self.start, self.end, self.label, self.seq, gene_label) def __eq__(self, other): if other == None: return False # TEST -- removing sequence equality if self.start == other.start and self.end == other.end \ and self.gene == other.gene: return True #if self.seq == other.seq and self.start == other.start and self.end == other.end \ # and self.gene == other.gene: # return True return False class Intron(Interval): def __init__(self, start, end, label=None, gene=None, seq=""): Interval.__init__(self, start, end) self.gene = gene self.label = label self.seq = seq if self.seq != "": assert(len(seq) == len(self.len)) def __repr__(self): gene_label = None if self.gene: gene_label = self.gene.label return "Intron([%d, %d], id = %s)(ParentGene = %s)" %(self.start, self.end, self.label, self.seq, self.gene_label) def __eq__(self, other): if other == None: return False if self.seq == other.seq and self.start == other.start and self.end == other.end \ and self.gene == other.gene: return True return False class Gene: """ A representation of a gene and its isoforms. If a gene has two isoforms, make the inclusive isoform the first. Isoforms are made up of parts, which might be exons or introns. isoform_desc is a of lists describing the structure of the isoforms, e.g. [['A', 'B', 'A'], ['A', 'A']] which creates two isoforms, composed of the 'A' and 'B' parts. """ def __init__(self, isoform_desc, parts, chrom=None, exons_seq=None, label="", strand="NA", transcript_ids=None): self.isoform_desc = isoform_desc self.iso_lens = [] if label == "": self.label = self.get_rand_id(5) else: self.label = label self.parts = self.create_parts(parts) self.isoforms = [] self.num_parts = len(self.parts) self.chrom = chrom self.strand = strand self.transcript_ids = transcript_ids # create a set of isoforms self.create_isoforms() # Use transcript ids if given self.assign_transcript_ids() # The number of exons in each isoform self.num_parts_per_isoform = array([iso.num_parts for iso in self.isoforms]) def isoform_has_part(self, isoform, part): """ Return True if isoform has part, otherwise False. """ for iso_part in isoform.parts: if iso_part.start == part.start and \ iso_part.end == part.end: return True return False def get_const_parts(self): """ Return all of the gene's constitutive parts, i.e. regions that are shared across all isoforms. """ const_parts = [] for part in self.parts: add_part = True for isoform in self.isoforms: if not self.isoform_has_part(isoform, part): add_part = False # if part not in isoform.parts: # add_part = False if add_part: const_parts.append(part) # if len(const_parts) == 0: # raise Exception, "Gene %s has no constitutive parts!" %(str(self)) return const_parts def get_alternative_parts(self): """ Return all of the gene's alternative parts, i.e. non-constitutive regions. """ const_parts = self.get_const_parts() alternative_parts = [] for part in self.parts: if part not in const_parts: alternative_parts.append(part) return alternative_parts def get_rand_id(self, len): rand_id = 'G' + "".join([pyrand.choice('abcdefghijklmnopqrstuvwxyz') for n in range(len)]) return rand_id def get_parts_before(self, part): """ Return all the parts the given part in the gene. """ parts_before = [] for p in self.parts: if p == None: raise Exception, "Attempting to reference a None part in %s, (part = %s)" \ %(str(self), str(part)) if p.end < part.start: parts_before.append(p) else: return parts_before return parts_before def get_part_number(self, part): """ Return a part's position (i.e. its number) in the list of parts (0-based). """ return self.parts.index(part) def get_genomic_parts_crossed(self, start, end, read_len=None): """ Return all parts (by number!) that are crossed in the genomic interval [start, end], not including the parts where start and end land. If read_len is given, take that into account when considering whether a part was crossed. """ # find the part where the first coordinate is start_part = self.get_part_by_coord(start) end_part = self.get_part_by_coord(end) ## ## NEW: Reads that do not cross any parts might be ## intronic reads ## if start_part == None or end_part == None: return [] start_part_num = self.parts.index(start_part) end_part_num = self.parts.index(end_part) # find parts crossed in between start and end parts_crossed = range(start_part_num + 1, end_part_num) if read_len != None: if (end - start) <= read_len: return parts_crossed return parts_crossed def get_part_by_label(self, part_label): for part in self.parts: if part_label == part.label: return part return None def part_coords_to_genomic(self, part, part_start, part_end=None): """ Map the coordinates (start, end) inside part into their corresponding genomic coordinates. The end coordinate is optional. If the given part is the first part in the gene, then these two coordinate systems are equivalent. """ # find parts before the given part and sum their coordinates parts_before_len = sum([p.len for p in self.get_parts_before(part)]) genomic_start = parts_before_len + part_start if part_end: genomic_end = parts_before_len + part_end return (genomic_start, genomic_end) return genomic_start def get_part_by_coord(self, genomic_start): """ Return the part that contains the given genomic start coordinate. """ for part in self.parts: if part.start <= genomic_start and genomic_start <= part.end: return part return None def genomic_coords_to_isoform(self, isoform, genomic_start, genomic_end): """ Get isoform coords and return genomic coords. """ assert(isoform in self.isoforms) # ensure that the parts the coordinates map to are in the isoform start_part = self.get_part_by_coord(genomic_start) end_part = self.get_part_by_coord(genomic_end) if start_part == None or end_part == None: return None, None # find the isoform coordinates of the corresponding parts isoform_start = isoform.part_coord_to_isoform(genomic_start) isoform_end = isoform.part_coord_to_isoform(genomic_end) return (isoform_start, isoform_end) def create_parts(self, parts): part_counter = 0 gene_parts = [] for part in parts: gene_part = part gene_part.gene = self gene_parts.append(gene_part) part_counter += 1 return gene_parts def create_isoforms(self): self.isoforms = [] for iso in self.isoform_desc: isoform_parts = [] isoform_seq = "" for part_label in iso: # retrieve part part = self.get_part_by_label(part_label) if not part: raise Exception, "Invalid description of isoforms: refers to undefined part %s, %s, gene: %s" \ %(part, part_label, self.label) isoform_parts.append(part) isoform_seq += part.seq # make isoform with the given parts isoform = Isoform(self, isoform_parts, seq=isoform_seq) isoform.desc = iso self.isoforms.append(isoform) self.iso_lens.append(isoform.len) self.iso_lens = array(self.iso_lens) def assign_transcript_ids(self): """ Assign transcript IDs to isoforms. """ if self.transcript_ids != None: if len(self.transcript_ids) != len(self.isoforms): raise Exception, "Transcript IDs do not match number of isoforms." for iso_num, iso in enumerate(self.isoforms): curr_iso = self.isoforms[iso_num] curr_iso.label = self.transcript_ids[iso_num] def set_sequence(self, exon_id, seq): """ Set the sequence of the passed in exons to be the given sequence. """ return Exception, "Unimplemented method." def align_read_pair_with_cigar(self, left_cigar, genomic_left_read_start, genomic_left_read_end, right_cigar, genomic_right_read_start, genomic_right_read_end, read_len, overhang=1): alignment = [] iso_frag_lens = [] left = self.align_read_to_isoforms_with_cigar( left_cigar, genomic_left_read_start, genomic_left_read_end, read_len, overhang) right = self.align_read_to_isoforms_with_cigar( right_cigar, genomic_right_read_start, genomic_right_read_end, read_len, overhang) for lal, lco, ral, rco in zip(left[0], left[1], right[0], right[1]): if lal and ral: alignment.append(1) iso_frag_lens.append(rco[1]-lco[0]+1) else: alignment.append(0) iso_frag_lens.append(-Inf) return (alignment, iso_frag_lens) # def align_read_pair(self, genomic_left_read_start, genomic_left_read_end, # genomic_right_read_start, genomic_right_read_end, overhang=1, # read_len=36): # """ # Align a paired-end read to all of the gene's isoforms. # Return an alignment binary vector of length K, where K is the number of isoforms, as well as # a vector with the fragment lengths that correspond to each alignment to an isoform. # When a read does not align to a particular isoform, the fragment length for that alignment is # denoted with -Inf. # """ # # align each of the pairs independently to all isoforms, and then compute the fragment # # lengths that correspond to each alignment # alignment = [] # iso_frag_lens = [] # # print "Aligning: ", (genomic_left_read_start, genomic_left_read_end), \ # # " - ", (genomic_right_read_start, genomic_right_read_end) # # align left read # (left_alignment, left_isoform_coords) = self.align_read_to_isoforms(genomic_left_read_start, genomic_left_read_end, # overhang=overhang, read_len=read_len) # # align right read # (right_alignment, right_isoform_coords) = self.align_read_to_isoforms(genomic_right_read_start, # genomic_right_read_end, # overhang=overhang, read_len=read_len) # num_isoforms = len(self.isoforms) # for n in range(num_isoforms): # # check that both reads align to the isoform with no overhang violation # if not (left_alignment[n] == right_alignment[n] and right_alignment[n] != 0): # alignment.append(0) # iso_frag_lens.append(-Inf) # continue # # else: # # print "Not both reads align to the same isoform" # # compute fragment length for each isoform, which is the isoform start coordinate of # # the right read minus the isoform start coordinate of the left read # frag_len = right_isoform_coords[n][1] - left_isoform_coords[n][0] + 1 # if frag_len < 0: # # negative fragment length # print "Warning: Negative fragment length during alignment of ", genomic_left_read_start, \ # genomic_right_read_start, " to isoform: ", self.isoforms[n] # alignment.append(0) # iso_frag_lens.append(-Inf) # continue # # both reads align with no overhang violations and the fragment length is reasonable # alignment.append(1) # iso_frag_lens.append(frag_len) # return (alignment, iso_frag_lens) def align_reads_to_isoforms(self, read_genomic_coords, overhang=1, read_len=36): alignments = [] isoforms_coords = [] for read_coords in read_genomic_coords: genomic_read_start, genomic_read_end = read_coords alignment, isoform_coords = self.align_read_to_isoforms(genomic_read_start, genomic_read_end, overhang=overhang, read_len=read_len) alignments.append(alignment) isoforms_coords.append(isoform_coords) return (array(alignments), isoforms_coords) def align_read_to_isoforms_with_cigar(self, cigar, genomic_read_start, genomic_read_end, read_len, overhang_len): """ Align a single-end read to all of the gene's isoforms. Use the cigar string of the read to determine whether an isoform matches """ alignment = [] isoform_coords = [] for isoform in self.isoforms: iso_read_start, iso_read_end = self.genomic_coords_to_isoform(isoform, genomic_read_start, genomic_read_end) isocigar = isoform.get_local_cigar(genomic_read_start, read_len) # Check that read is consistent with isoform and that the overhang # constraint is met if (isocigar and isocigar == cigar) and \ isoform.cigar_overhang_met(isocigar, overhang_len): alignment.append(1) isoform_coords.append((iso_read_start, iso_read_end)) else: alignment.append(0) isoform_coords.append(None) return (alignment, isoform_coords) # def align_read_to_isoforms(self, genomic_read_start, genomic_read_end, overhang=1, read_len=36): # """ # Align a single-end read to all of the gene's isoforms. # Return an alignment as well as a set of isoform coordinates, for each isoform, corresponding # to the places where the read aligned. # When the read violates overhang or the read doesn't align to a particular # isoform, the coordinate is set to None. # """ # alignment = [] # isoform_coords = [] # genomic_parts_crossed = self.get_genomic_parts_crossed(genomic_read_start, # genomic_read_end, # read_len=read_len) # if len(genomic_parts_crossed) == 0: # print "zero genomic parts crossed" # ## # ## NEW: If no genomic parts are crossed, must be intronic read # ## # # if len(genomic_parts_crossed) == 0: # # alignment = [0] * len(self.isoforms) # # isoform_coords = [None] * len(self.isoforms) # # return (alignment, isoform_coords) # for isoform in self.isoforms: # # check that parts aligned to in genomic coordinates exist # # in the current isoform # iso_read_start, iso_read_end = self.genomic_coords_to_isoform(isoform, # genomic_read_start, # genomic_read_end) # if iso_read_start == None or iso_read_end == None: # alignment.append(0) # isoform_coords.append(None) # continue # # genomic parts have matching parts in isoform. Now check that # # that they cross the same junctions # iso_parts_crossed = isoform.get_isoform_parts_crossed(iso_read_start, iso_read_end) # if iso_parts_crossed != genomic_parts_crossed: # alignment.append(0) # isoform_coords.append(None) # continue # # check that overhang violation is met on outer parts crossed (as long as # # parts that are crossed in between are greater or equal to overhang constraint, # # no need to check those) # if overhang > 1: # start_part, start_part_coord = isoform.get_part_by_coord(iso_read_start) # if (start_part.end - (start_part_coord + start_part.start) + 1) < overhang: # alignment.append(0) # isoform_coords.append(None) # continue # end_part, end_part_coord = isoform.get_part_by_coord(iso_read_end) # if ((end_part_coord + end_part.start) - end_part.start) + 1 < overhang: # alignment.append(0) # isoform_coords.append(None) # continue # # overhang is met and read aligns to the isoform # alignment.append(1) # # register coordinates # isoform_coords.append((iso_read_start, iso_read_end)) # return (alignment, isoform_coords) def align_read(self, genomic_read_start, genomic_read_end, overhang=1, read_len=36): """ Align a single-end read to all of the gene's isoforms. Return an alignment binary vector of length K, where K is the number of isoforms. The ith position in this vector has a 1 if the read aligns to the given isoform, and 0 otherwise. A read is of the form: (genomic_start_coord, genomic_end_coord) """ alignment = [] # align all the reads to isoforms and return an alignment back, as well as the set of # genomic coordinates for each isoform that the read aligns to. alignment, aligned_genomic_coords = self.align_read_to_isoforms(genomic_read_start, genomic_read_end, overhang=overhang) # get the parts that are crossed in genomic coordinates space, taking into account # the read's length category = None two_iso_alignment = None # Deal with the two-isoform special case: categorize reads into NI, NE, NB if len(self.isoforms) == 2: if alignment == [1, 0]: # NI two_iso_alignment = [1, 0, 0] # Check if it aligns to upstream or downstream inclusion junction # We know that overhang violation hasn't been made here based on the alignment # first convert the genomic coordinates of read to the first isoform's coordinates isoform1 = self.isoforms[0] # find isoform coordinate of genomic read start iso1_read_start, c1 = self.genomic_coords_to_isoform(isoform1, genomic_read_start, genomic_read_start) # find isoform coordinate of genomic read end iso1_read_end, c2 = self.genomic_coords_to_isoform(isoform1, genomic_read_end, genomic_read_end) # find which parts these coordinates land in iso1_read_start_part, c1 = isoform1.get_part_by_coord(iso1_read_start) iso1_read_end_part, c2 = isoform1.get_part_by_coord(iso1_read_end) # if the read starts in the first part of the isoform and # ends in the second part of the isoform, then it's an upstream # inclusion junction read if iso1_read_start_part == isoform1.parts[0] and iso1_read_end_part == isoform1.parts[1]: category = 'upincjxn' elif iso1_read_start_part == isoform1.parts[1] and iso1_read_end_part == isoform1.parts[2]: # if the read starts in the second part of the isoform and # ends in the third, then it's a downstream inclusion # junction read category = 'dnincjxn' elif iso1_read_start_part == isoform1.parts[1] and iso1_read_end_part == isoform1.parts[1]: # if the read starts and ends in the skipped exon body, # then it's a body read category = 'body' else: # If the read is not in one of those categories, the isoform must have more than three parts assert(len(isoform1.parts) > 3) # if the read doesn't fall into either of these categories, it can't possibly be # an inclusion read # if category == None: # raise Exception, "Incoherent inclusion read: not upincjxn, dnincjxn, or body! %s" \ # %(str(iso1_read_start) + ' - ' + str(iso1_read_end)) elif alignment == [0, 1]: # NE two_iso_alignment = [0, 1, 0] elif alignment == [1, 1]: # NB two_iso_alignment = [0, 0, 1] else: # Overhang violation two_iso_alignment = [0, 0, 0] return (two_iso_alignment, category) return (alignment, category) def align_paired_end_reads(self, reads, overhang=1): """ Take a set of paired-end reads parameterized by their genomic coordinates and align them to all of the gene's isoforms. For each read, return a pair where the first element is the alignment to all the isoforms (a binary vector, with 1 in the ith position of the read aligns to the ith isoform and 0 otherwise) and the second element is the length of the fragment lengths that correspond to each alignment (-Inf if the read does not align to the given isoform.) """ aligned_reads = [] for read in reads: # align read to all of the isoforms (alignment, isoform_coords) = self.align_read_pair(read[0], read[1], read[2], read[3], overhang=overhang) frag_lens = [c2 - c1 + 1 for c1, c2 in isoform_coords] aligned_reads.append(array([alignment, frag_lens])) return aligned_reads def align(self, seq, overhang=None): """ Given a short sequence, return a list of size len(self.isoforms) that says for each isoform if the sequence is a substring of it (denoted 1) or not (denoted 0). """ # if no overhang constraints are given, align without regard for overhang violations alignment = [] if not overhang: for iso in self.isoforms: alignment.append(1 if seq in iso.seq else 0) return alignment category = None # take overhang into account for iso in self.isoforms: # find read starting position in the isoform read_start = iso.seq.find(seq) if read_start == -1: alignment.append(0) continue split_iso = iso.seq[read_start:] prev_part = 0 oh_viol = False for part in iso.parts: # find beginning of next part next_part = split_iso.find(part.seq) if next_part == -1: continue # check that there is no overhang violation part_segment = seq[prev_part:next_part] remain_seq = seq[next_part:] prev_part = next_part if len(part_segment) != 0 and len(part_segment) < 4: oh_viol = True alignment.append(0) break if not oh_viol and remain_seq != '': if len(remain_seq) < 4: oh_viol = True alignment.append(0) if not oh_viol: alignment.append(1) # Deal with the two isoform case. Classify each read into a category # and then return the counts [ni, ne, nb]. if len(self.isoforms) == 2: if re.match("^0000.*1111.*$", seq) != None: category = 'upincjxn' elif re.match("^11111*$", seq) != None: category = 'body' elif re.match("^11111*22222*$", seq) != None: category = 'dnincjxn' if alignment == [1, 0]: return ([1, 0, 0], category) elif alignment == [0, 1]: return ([0, 1, 0], category) elif alignment == [1, 1]: return ([0, 0, 1], category) elif alignment == [0, 0]: # overhang violation return ([0, 0, 0], category) return (alignment, category) def get_iso(self, isoform_num): return self.isoforms[isoform_num] def avg_iso_len(self): """ Return the gene's average isoform length. """ iso_lens = [i['len'] for i in self.isoforms] return mean(iso_lens) def __str__(self): return "gene_id: %s\nisoforms: %s" %(self.label, self.isoforms) def __repr__(self): return self.__str__() class Isoform: def __init__(self, gene, parts, seq=None, label=None): """ Builds an isoform given an isoform description. """ self.gene = gene # ordered list of isoform parts (exons and introns) self.parts = parts self.num_parts = len(parts) self.len = sum([part.len for part in parts]) self.seq = seq self.label = label # the genomic coordinates of the isoform are defined as the start coordinate # of the first part and the last coordinate of the last part first_part = self.parts[0] last_part = self.parts[-1] self.genomic_start = first_part.start self.genomic_end = last_part.end def get_parts_before(self, part): """ Return all the parts the given part in the isoform: """ parts_before = [] for p in self.parts: if p.end < part.start: parts_before.append(p) else: return parts_before return parts_before def get_part_by_coord(self, start_coord): """ Get the part that the *given isoform start coordinate* lands in, and the corresponding part-based coordinate. """ isoform_interval_start = 0 isoform_interval_end = 0 prev_part = None for part in self.parts: # count the parts in isoform coordinate space and see in which part # the given coordinate falls isoform_interval_end += part.len - 1 # check that the part contains the single point if isoform_interval_start <= start_coord and start_coord <= isoform_interval_end: # find parts before and sum them up to get the part-based coordinate # the part based coordinate is start_coord - previous part lengths prev_parts_sum = sum([p.len for p in self.get_parts_before(part)]) part_start = start_coord - prev_parts_sum return part, part_start # add one to move to next part isoform_interval_end += 1 isoform_interval_start = isoform_interval_end return (None, None) def get_isoform_parts_crossed(self, start, end): """ Return all parts (by number!) that are crossed in the isoform interval [start, end], not including the parts where start and end land. """ # find the part where the first coordinate is start_part, s1 = self.get_part_by_coord(start) end_part, s2 = self.get_part_by_coord(end) start_part_num = self.parts.index(start_part) end_part_num = self.parts.index(end_part) # find parts crossed in between start and end return range(start_part_num + 1, end_part_num) def cigar_overhang_met(self, cigar, overhang_len): """ Check that the overhang constraint is met in each match condition of the read. """ overhang_met = True for c in cigar: # If it's the match (M) part of the cigar # and the match length is less than the overhang # constraint, then the constraint is violated if (c[0] == 0) and (c[1] < overhang_len): return False return overhang_met def get_local_cigar(self, start, read_len): """ Calculate a CIGAR string for a hypothetical read at a given start position, with a given read length""" # If the read starts before or after the isoform, then it does not fit if start < self.parts[0].start or self.parts[-1].end < start: return None # Look for the exon where the read starts found = None for i, p in enumerate(self.parts): if p.start <= start and start <= p.end: found = i break if found == None: return None # Create CIGAR string cigar = [] rl = read_len st = start for i in range(found, len(self.parts)): # the rest is on this exon? if rl <= self.parts[i].end - st + 1: cigar.append((0, rl)) return cigar # the next exon is needed as well else: # is there a next exon? if i+1 == len(self.parts): return None cigar.append((0, self.parts[i].end - st + 1)) cigar.append((3, self.parts[i+1].start - self.parts[i].end - 1)) rl = rl - (self.parts[i].end - st + 1) st = self.parts[i+1].start return cigar def part_coord_to_isoform(self, part_start): """ Get the isoform coordinate that the *given part_start coordinate* lands in. """ isoform_interval_start = 0 isoform_coord = None for part in self.parts: if part.contains(part_start, part_start): isoform_coord = isoform_interval_start + (part_start - part.start) return isoform_coord isoform_interval_start += part.len return isoform_coord def isoform_coords_to_genomic(self, isoform_start, isoform_end): """ Map coordinates of isoform to genomic coordinates. """ # get the part that each coordinate point lands in start_part, start_part_coord = self.get_part_by_coord(isoform_start) end_part, end_part_coord = self.get_part_by_coord(isoform_end) # retrieve the corresponding genomic coordinates genomic_start = self.gene.part_coords_to_genomic(start_part, start_part_coord) genomic_end = self.gene.part_coords_to_genomic(end_part, end_part_coord) return (genomic_start, genomic_end) def __repr__(self): parts_str = str([p.label for p in self.parts]) return "Isoform(gene = %s, g_start = %d, g_end = %d, len = %d,\n parts = %s)" \ %(self.gene.label, self.genomic_start, self.genomic_end, self.len, parts_str) def pretty(d, indent=0): for key, value in d.iteritems(): print ' ' * indent + str(key) if isinstance(value, dict): pretty(value, indent+1) else: print ' ' * (indent+1) + str(value) def printTree(tree, depth = 0): if tree == None or not type(tree) == dict: print "\t" * depth, tree else: for key, val in tree.items(): print "\t" * depth, key printTree(val, depth+1) def print_gene_hierarchy(gene_hierarchy): pretty(gene_hierarchy) # pp = pprint.PrettyPrinter(indent=4) # pp.pprint(gene_hierarchy) def load_genes_from_gff(gff_filename, include_introns=False, reverse_recs=False, suppress_warnings=False): """ Load all records for a set of genes from a given GFF file. Parse each gene into a Gene object. """ gff_db = GFFDatabase(gff_filename, include_introns=include_introns, reverse_recs=reverse_recs) # dictionary mapping gene IDs to the list of all their relevant records gff_genes = {} num_genes = 0 for gene in gff_db.genes: gene_records, gene_hierarchy = gff_db.get_genes_records([gene.get_id()]) # Record the gene's GFF record gene_label = gene.get_id() if gene_label not in gene_hierarchy: if not suppress_warnings: print "Skipping gene %s..." %(gene_label) continue gene_hierarchy[gene_label]['gene'] = gene # Make a gene object out of the GFF records gene_obj = make_gene_from_gff_records(gene_label, gene_hierarchy[gene_label], gene_records) if gene_obj == None: if not suppress_warnings: print "Cannot make gene out of %s" %(gene_label) continue gff_genes[gene.get_id()] = {'gene_object': gene_obj, 'hierarchy': gene_hierarchy} if (num_genes % 5000) == 0: if not suppress_warnings: #print "Through %d genes..." %(num_genes) pass num_genes += 1 num_genes = len(gff_genes) if not suppress_warnings: print "Loaded %d genes" %(num_genes) return gff_genes def make_gene_from_gff_records(gene_label, gene_hierarchy, gene_records): """ Make a gene from a gene hierarchy. """ mRNAs = gene_hierarchy['mRNAs'] # Each transcript is a set of exons transcripts = [] isoform_desc = [] chrom = None strand = "NA" # Iterate through mRNAs in the order in which they were given in the # GFF file transcript_ids = [rec.get_id() for rec in gene_records \ if (rec.type == "mRNA" or rec.type == "transcript")] if len(transcript_ids) == 0: raise Exception, "Error: %s has no transcripts..." \ %(gene_label) num_transcripts_with_exons = 0 used_transcript_ids = [] for transcript_id in transcript_ids: transcript_info = mRNAs[transcript_id] transcript_rec = transcript_info['record'] chrom = transcript_rec.seqid strand = transcript_rec.strand transcript_exons = transcript_info['exons'] exons = [] if len(transcript_exons) == 0: #print "%s has no exons" %(transcript_id) continue # Record how many transcripts we have with exons children # (i.e., usable transcripts) num_transcripts_with_exons += 1 for exon_id, exon_info in transcript_exons.iteritems(): exon_rec = exon_info['record'] exon = Exon(exon_rec.start, exon_rec.end, from_gff_record={'record': exon_rec, 'parent': transcript_rec}) exons.append(exon) # Sort exons by their start coordinate exons = sorted(exons, key=lambda e: e.start) # Exons that make up a transcript transcripts.append(exons) # Get exon labels to make transcript's description exon_labels = [exon.label for exon in exons] # Delimiter for internal representation of isoforms #iso_delim = "_" # The transcript's description #for label in exon_labels: # if iso_delim in label: # raise Exception, "Cannot use %s in naming exons (%s) in GFF." %(iso_delim, # label) #desc = iso_delim.join(exon_labels) isoform_desc.append(exon_labels) # Record transcript ids that are not skipped used_transcript_ids.append(transcript_id) #if num_transcripts_with_exons < 2: # print "WARNING: %s does not have at least two mRNA/transcript entries " \ # "with exons. Skipping over..." %(gene_label) # return None # Compile all exons used in all transcripts all_exons = [] [all_exons.extend(transcript) for transcript in transcripts] # Prefix chromosome with "chr" if it does not have it already #if not chrom.startswith("chr"): # chrom = "chr%s" %(chrom) gene = Gene(isoform_desc, all_exons, label=gene_label, chrom=chrom, strand=strand, transcript_ids=used_transcript_ids) return gene def make_gene(parts_lens, isoforms, chrom=None): """ Make a gene out of the given parts lengths, where isoforms are a list of list of numbers, where each list of numbers is an isoform (the numbers corresponding to the exon parts in part_lens -- *one-based* index). """ parts = [] start_genomic = 0 part_num = 1 for part_len in parts_lens: end_genomic = start_genomic + part_len - 1 exon = Exon(start_genomic, end_genomic, label=str(part_num)) parts.append(exon) part_num += 1 start_genomic = end_genomic + 1 isoform_desc = [] for iso in isoforms: desc = "_".join([str(iso_name) for iso_name in iso]) isoform_desc.append(desc) gene = Gene(isoform_desc, parts, chrom=chrom) return gene def se_event_to_gene(up_len, se_len, dn_len, chrom, label=None): """ Parse an SE event to a gene structure. """ exon1_start = 0 exon1_end = up_len - 1 exon2_start = exon1_end + 1 exon2_end = exon2_start + (se_len - 1) exon3_start = exon2_end + 1 exon3_end = exon3_start + (dn_len - 1) up_exon = Exon(exon1_start, exon1_end, label='A') se_exon = Exon(exon2_start, exon2_end, label='B') dn_exon = Exon(exon3_start, exon3_end, label='C') parts = [up_exon, se_exon, dn_exon] gene = Gene([['A', 'B', 'C'], ['A', 'C']], parts, label=label, chrom=chrom) return gene def tandem_utr_event_to_gene(core_len, ext_len, chrom, label=None): """ Parse a tandem UTR event to a gene structure. """ exon1_start = 0 exon1_end = core_len - 1 exon2_start = exon1_end + 1 exon2_end = exon2_start + (ext_len - 1) core_exon = Exon(exon1_start, exon1_end, label='TandemUTRCore') ext_exon = Exon(exon2_start, exon2_end, label='TandemUTRExt') parts = [core_exon, ext_exon] gene = Gene([['TandemUTRCore', 'TandemUTRExt'], ['TandemUTRCore']], parts, label=label, chrom=chrom) return gene def make_proximal_distal_exon_pair(proximal_exons, distal_exons): """ Make one large distal exon out of a small """ return def afe_ale_event_to_gene(proximal_exons, distal_exons, event_type, chrom, read_len=None, overhang_len=None, label=None): """ Parse an AFE/ALE event to a gene. """ # Extend each exon by the junction that can be made between it # and the gene body, based on read length and overhang if read_len != None and overhang_len != None: #num_junction_positions = read_len - (2 * (overhang_len - 1)) num_junction_positions = read_len else: num_junction_positions = 0 # Distal exon - farther away from the gene body distal_exon_start = 0 sum_distal_exons_lens = sum([distal_exon['len'] for distal_exon \ in distal_exons]) sum_distal_exons_lens += num_junction_positions distal_exon_end = sum_distal_exons_lens - 1 distal_exon = Exon(distal_exon_start, distal_exon_end, label='%sDistal' %(event_type)) # Proximal exon - closer to the gene body proximal_exon_start = distal_exon_end + 1 sum_proximal_exons_lens = sum([proximal_exon['len'] for proximal_exon \ in proximal_exons]) sum_proximal_exons_lens += num_junction_positions proximal_exon_end = proximal_exon_start + (sum_proximal_exons_lens - 1) proximal_exon = Exon(proximal_exon_start, proximal_exon_end, label='%sProximal' %(event_type)) parts = None if event_type == 'AFE': parts = [distal_exon, proximal_exon] else: raise Exception, "Parsing wrong event type, %s" %(event_type) # Make it so proximal isoform is always first gene = Gene(['%sProximal' %(event_type), '%sDistal' %(event_type)], parts, chrom=chrom, label=label) return gene if __name__ == '__main__': pass
AltAnalyze
/AltAnalyze-2.1.3.15.tar.gz/AltAnalyze-2.1.3.15/altanalyze/misopy/Gene.py
Gene.py