text
stringlengths
54
260
06-07 06:43 - modeling.trainer - INFO - train - iter 66400: loss 3.1941, time 5.09s
06-07 06:43 - modeling.trainer - INFO - train - iter 66450: loss 3.1868, time 5.09s
06-07 06:43 - modeling.trainer - INFO - train - iter 66500: loss 3.1774, time 5.09s
06-07 06:43 - modeling.trainer - INFO - train - iter 66550: loss 3.1853, time 5.08s
06-07 06:43 - modeling.trainer - INFO - train - iter 66600: loss 3.1881, time 5.09s
06-07 06:43 - modeling.trainer - INFO - train - iter 66650: loss 3.1850, time 5.08s
06-07 06:44 - modeling.trainer - INFO - train - iter 66700: loss 3.1754, time 5.09s
06-07 06:44 - modeling.trainer - INFO - train - iter 66750: loss 3.1705, time 5.10s
06-07 06:44 - modeling.trainer - INFO - train - iter 66800: loss 3.1784, time 5.09s
06-07 06:44 - modeling.trainer - INFO - train - iter 66850: loss 3.1823, time 5.09s
06-07 06:44 - modeling.trainer - INFO - train - iter 66900: loss 3.1788, time 5.08s
06-07 06:44 - modeling.trainer - INFO - train - iter 66950: loss 3.1857, time 5.09s
06-07 06:44 - modeling.trainer - INFO - train - iter 67000: loss 3.1861, time 5.07s
06-07 06:44 - modeling.trainer - INFO - train - iter 67050: loss 3.1811, time 5.11s
06-07 06:44 - modeling.trainer - INFO - train - iter 67100: loss 3.1841, time 5.08s
06-07 06:44 - modeling.trainer - INFO - train - iter 67150: loss 3.1874, time 5.08s
06-07 06:44 - modeling.trainer - INFO - train - iter 67200: loss 3.1843, time 5.08s
06-07 06:45 - modeling.trainer - INFO - train - iter 67250: loss 3.1840, time 5.08s
06-07 06:45 - modeling.trainer - INFO - train - iter 67300: loss 3.1864, time 5.09s
06-07 06:45 - modeling.trainer - INFO - train - iter 67350: loss 3.1863, time 5.09s
06-07 06:45 - modeling.trainer - INFO - train - iter 67400: loss 3.1911, time 5.07s
06-07 06:45 - modeling.trainer - INFO - train - iter 67450: loss 3.1870, time 5.08s
06-07 06:45 - modeling.trainer - INFO - train - iter 67500: loss 3.1765, time 5.09s
06-07 06:45 - modeling.trainer - INFO - train - iter 67550: loss 3.1676, time 5.72s
06-07 06:45 - modeling.trainer - INFO - train - iter 67600: loss 3.1762, time 5.08s
06-07 06:45 - modeling.trainer - INFO - train - iter 67650: loss 3.1834, time 5.09s
06-07 06:45 - modeling.trainer - INFO - train - iter 67700: loss 3.1794, time 5.09s
06-07 06:45 - modeling.trainer - INFO - train - iter 67750: loss 3.1809, time 5.08s
06-07 06:45 - modeling.trainer - INFO - train - iter 67800: loss 3.1851, time 5.09s
06-07 06:46 - modeling.trainer - INFO - train - iter 67850: loss 3.1807, time 5.08s
06-07 06:46 - modeling.trainer - INFO - train - iter 67900: loss 3.1762, time 5.09s
06-07 06:46 - modeling.trainer - INFO - train - iter 67950: loss 3.1783, time 5.09s
06-07 06:46 - modeling.trainer - INFO - train - iter 68000: loss 3.1756, time 5.08s
06-07 06:46 - modeling.trainer - INFO - train - iter 68050: loss 3.1717, time 5.08s
06-07 06:46 - modeling.trainer - INFO - train - iter 68100: loss 3.1690, time 5.09s
06-07 06:46 - modeling.trainer - INFO - train - iter 68150: loss 3.1679, time 5.10s
06-07 06:46 - modeling.trainer - INFO - train - iter 68200: loss 3.1742, time 5.09s
06-07 06:46 - modeling.trainer - INFO - train - iter 68250: loss 3.1817, time 5.09s
06-07 06:46 - modeling.trainer - INFO - train - iter 68300: loss 3.1829, time 5.08s
06-07 06:46 - modeling.trainer - INFO - train - iter 68350: loss 3.1791, time 5.08s
06-07 06:46 - modeling.trainer - INFO - train - iter 68400: loss 3.1792, time 5.08s
06-07 06:47 - modeling.trainer - INFO - train - iter 68450: loss 3.1827, time 5.08s
06-07 06:47 - modeling.trainer - INFO - train - iter 68500: loss 3.1776, time 5.09s
06-07 06:47 - modeling.trainer - INFO - train - iter 68550: loss 3.1759, time 5.09s
06-07 06:47 - modeling.trainer - INFO - train - iter 68600: loss 3.1803, time 5.09s
06-07 06:47 - modeling.trainer - INFO - train - iter 68650: loss 3.1732, time 5.08s
06-07 06:47 - modeling.trainer - INFO - train - iter 68700: loss 3.1741, time 5.09s
06-07 06:47 - modeling.trainer - INFO - train - iter 68750: loss 3.1752, time 5.11s
06-07 06:47 - modeling.trainer - INFO - train - iter 68800: loss 3.1690, time 5.11s
06-07 06:47 - modeling.trainer - INFO - train - iter 68850: loss 3.1838, time 5.09s
06-07 06:47 - modeling.trainer - INFO - train - iter 68900: loss 3.1894, time 5.10s
06-07 06:47 - modeling.trainer - INFO - train - iter 68950: loss 3.1764, time 5.08s
06-07 06:47 - modeling.trainer - INFO - train - iter 69000: loss 3.1653, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69050: loss 3.1694, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69100: loss 3.1798, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69150: loss 3.1782, time 5.10s
06-07 06:48 - modeling.trainer - INFO - train - iter 69200: loss 3.1737, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69250: loss 3.1722, time 5.10s
06-07 06:48 - modeling.trainer - INFO - train - iter 69300: loss 3.1690, time 5.77s
06-07 06:48 - modeling.trainer - INFO - train - iter 69350: loss 3.1690, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69400: loss 3.1735, time 5.10s
06-07 06:48 - modeling.trainer - INFO - train - iter 69450: loss 3.1756, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69500: loss 3.1801, time 5.09s
06-07 06:48 - modeling.trainer - INFO - train - iter 69550: loss 3.1781, time 5.08s
06-07 06:49 - modeling.trainer - INFO - train - iter 69600: loss 3.1759, time 5.07s
06-07 06:49 - modeling.trainer - INFO - train - iter 69650: loss 3.1789, time 5.08s
06-07 06:49 - modeling.trainer - INFO - train - iter 69700: loss 3.1822, time 5.07s
06-07 06:49 - modeling.trainer - INFO - train - iter 69750: loss 3.1661, time 5.07s
06-07 06:49 - modeling.trainer - INFO - train - iter 69800: loss 3.1617, time 5.08s
06-07 06:49 - modeling.trainer - INFO - train - iter 69850: loss 3.1754, time 5.08s
06-07 06:49 - modeling.trainer - INFO - train - iter 69900: loss 3.1794, time 5.09s
06-07 06:49 - modeling.trainer - INFO - train - iter 69950: loss 3.1730, time 5.09s
06-07 06:49 - modeling.trainer - INFO - val - iter 70000: lm_loss 1.5855, value_loss 0.7628, time_loss 0.7127, loss 3.0610, time 4.28s
06-07 06:49 - modeling.trainer - INFO - new best val loss 3.0610
06-07 06:49 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 06:49 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 06:49 - modeling.trainer - INFO - train - iter 70000: loss 3.1736, time 17.00s
06-07 06:49 - modeling.trainer - INFO - train - iter 70050: loss 3.1855, time 5.08s
06-07 06:50 - modeling.trainer - INFO - train - iter 70100: loss 3.1848, time 5.08s
06-07 06:50 - modeling.trainer - INFO - train - iter 70150: loss 3.1780, time 5.06s
06-07 06:50 - modeling.trainer - INFO - train - iter 70200: loss 3.1627, time 5.06s
06-07 06:50 - modeling.trainer - INFO - train - iter 70250: loss 3.1572, time 5.06s
06-07 06:50 - modeling.trainer - INFO - train - iter 70300: loss 3.1653, time 5.06s
06-07 06:50 - modeling.trainer - INFO - train - iter 70350: loss 3.1663, time 5.07s
06-07 06:50 - modeling.trainer - INFO - train - iter 70400: loss 3.1660, time 5.07s
06-07 06:50 - modeling.trainer - INFO - train - iter 70450: loss 3.1605, time 5.08s
06-07 06:50 - modeling.trainer - INFO - train - iter 70500: loss 3.1578, time 5.07s
06-07 06:50 - modeling.trainer - INFO - train - iter 70550: loss 3.1588, time 5.08s
06-07 06:50 - modeling.trainer - INFO - train - iter 70600: loss 3.1634, time 5.07s
06-07 06:50 - modeling.trainer - INFO - train - iter 70650: loss 3.1803, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 70700: loss 3.1845, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 70750: loss 3.1770, time 5.06s
06-07 06:51 - modeling.trainer - INFO - train - iter 70800: loss 3.1729, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 70850: loss 3.1788, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 70900: loss 3.1722, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 70950: loss 3.1639, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 71000: loss 3.1648, time 5.73s
06-07 06:51 - modeling.trainer - INFO - train - iter 71050: loss 3.1632, time 5.10s
06-07 06:51 - modeling.trainer - INFO - train - iter 71100: loss 3.1647, time 5.07s
06-07 06:51 - modeling.trainer - INFO - train - iter 71150: loss 3.1683, time 5.07s