text
stringlengths
54
260
06-07 06:26 - modeling.trainer - INFO - train - iter 56600: loss 3.2050, time 5.09s
06-07 06:26 - modeling.trainer - INFO - train - iter 56650: loss 3.1947, time 5.09s
06-07 06:26 - modeling.trainer - INFO - train - iter 56700: loss 3.2015, time 5.08s
06-07 06:26 - modeling.trainer - INFO - train - iter 56750: loss 3.2060, time 5.08s
06-07 06:27 - modeling.trainer - INFO - train - iter 56800: loss 3.2117, time 5.08s
06-07 06:27 - modeling.trainer - INFO - train - iter 56850: loss 3.2163, time 5.09s
06-07 06:27 - modeling.trainer - INFO - train - iter 56900: loss 3.2084, time 5.09s
06-07 06:27 - modeling.trainer - INFO - train - iter 56950: loss 3.2100, time 5.09s
06-07 06:27 - modeling.trainer - INFO - train - iter 57000: loss 3.2042, time 5.10s
06-07 06:27 - modeling.trainer - INFO - train - iter 57050: loss 3.2052, time 5.12s
06-07 06:27 - modeling.trainer - INFO - train - iter 57100: loss 3.2111, time 5.75s
06-07 06:27 - modeling.trainer - INFO - train - iter 57150: loss 3.2074, time 5.13s
06-07 06:27 - modeling.trainer - INFO - train - iter 57200: loss 3.2055, time 5.12s
06-07 06:27 - modeling.trainer - INFO - train - iter 57250: loss 3.2108, time 5.11s
06-07 06:27 - modeling.trainer - INFO - train - iter 57300: loss 3.2098, time 5.11s
06-07 06:27 - modeling.trainer - INFO - train - iter 57350: loss 3.2142, time 5.11s
06-07 06:28 - modeling.trainer - INFO - train - iter 57400: loss 3.2076, time 5.12s
06-07 06:28 - modeling.trainer - INFO - train - iter 57450: loss 3.1940, time 5.12s
06-07 06:28 - modeling.trainer - INFO - train - iter 57500: loss 3.2031, time 5.11s
06-07 06:28 - modeling.trainer - INFO - train - iter 57550: loss 3.2101, time 5.10s
06-07 06:28 - modeling.trainer - INFO - train - iter 57600: loss 3.2102, time 5.11s
06-07 06:28 - modeling.trainer - INFO - train - iter 57650: loss 3.2076, time 5.10s
06-07 06:28 - modeling.trainer - INFO - train - iter 57700: loss 3.2012, time 5.12s
06-07 06:28 - modeling.trainer - INFO - train - iter 57750: loss 3.1963, time 5.13s
06-07 06:28 - modeling.trainer - INFO - train - iter 57800: loss 3.2002, time 5.13s
06-07 06:28 - modeling.trainer - INFO - train - iter 57850: loss 3.2049, time 5.10s
06-07 06:28 - modeling.trainer - INFO - train - iter 57900: loss 3.2025, time 5.10s
06-07 06:28 - modeling.trainer - INFO - train - iter 57950: loss 3.2006, time 5.10s
06-07 06:29 - modeling.trainer - INFO - train - iter 58000: loss 3.1927, time 5.09s
06-07 06:29 - modeling.trainer - INFO - train - iter 58050: loss 3.1980, time 5.11s
06-07 06:29 - modeling.trainer - INFO - train - iter 58100: loss 3.2116, time 5.12s
06-07 06:29 - modeling.trainer - INFO - train - iter 58150: loss 3.2085, time 5.10s
06-07 06:29 - modeling.trainer - INFO - train - iter 58200: loss 3.2000, time 5.09s
06-07 06:29 - modeling.trainer - INFO - train - iter 58250: loss 3.1948, time 5.11s
06-07 06:29 - modeling.trainer - INFO - train - iter 58300: loss 3.1951, time 5.11s
06-07 06:29 - modeling.trainer - INFO - train - iter 58350: loss 3.1989, time 5.16s
06-07 06:29 - modeling.trainer - INFO - train - iter 58400: loss 3.2009, time 5.10s
06-07 06:29 - modeling.trainer - INFO - train - iter 58450: loss 3.2015, time 5.09s
06-07 06:29 - modeling.trainer - INFO - train - iter 58500: loss 3.1976, time 5.08s
06-07 06:29 - modeling.trainer - INFO - train - iter 58550: loss 3.2013, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 58600: loss 3.2144, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 58650: loss 3.2102, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 58700: loss 3.1994, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 58750: loss 3.2068, time 5.07s
06-07 06:30 - modeling.trainer - INFO - train - iter 58800: loss 3.2138, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 58850: loss 3.2043, time 5.70s
06-07 06:30 - modeling.trainer - INFO - train - iter 58900: loss 3.1935, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 58950: loss 3.1992, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 59000: loss 3.2069, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 59050: loss 3.1938, time 5.08s
06-07 06:30 - modeling.trainer - INFO - train - iter 59100: loss 3.1917, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59150: loss 3.1919, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59200: loss 3.1838, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59250: loss 3.1878, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59300: loss 3.1941, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59350: loss 3.2015, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59400: loss 3.2023, time 5.09s
06-07 06:31 - modeling.trainer - INFO - train - iter 59450: loss 3.2018, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59500: loss 3.2037, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59550: loss 3.2030, time 5.09s
06-07 06:31 - modeling.trainer - INFO - train - iter 59600: loss 3.2042, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59650: loss 3.2018, time 5.08s
06-07 06:31 - modeling.trainer - INFO - train - iter 59700: loss 3.1990, time 5.08s
06-07 06:32 - modeling.trainer - INFO - train - iter 59750: loss 3.1979, time 5.08s
06-07 06:32 - modeling.trainer - INFO - train - iter 59800: loss 3.2008, time 5.07s
06-07 06:32 - modeling.trainer - INFO - train - iter 59850: loss 3.2005, time 5.07s
06-07 06:32 - modeling.trainer - INFO - train - iter 59900: loss 3.2019, time 5.07s
06-07 06:32 - modeling.trainer - INFO - train - iter 59950: loss 3.2080, time 5.07s
06-07 06:32 - modeling.trainer - INFO - val - iter 60000: lm_loss 1.6051, value_loss 0.7655, time_loss 0.7152, loss 3.0859, time 4.50s
06-07 06:32 - modeling.trainer - INFO - new best val loss 3.0859
06-07 06:32 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 06:32 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 06:32 - modeling.trainer - INFO - train - iter 60000: loss 3.2023, time 18.09s
06-07 06:32 - modeling.trainer - INFO - train - iter 60050: loss 3.1989, time 5.09s
06-07 06:32 - modeling.trainer - INFO - train - iter 60100: loss 3.2044, time 5.08s
06-07 06:32 - modeling.trainer - INFO - train - iter 60150: loss 3.2023, time 5.08s
06-07 06:33 - modeling.trainer - INFO - train - iter 60200: loss 3.1935, time 5.08s
06-07 06:33 - modeling.trainer - INFO - train - iter 60250: loss 3.1944, time 5.09s
06-07 06:33 - modeling.trainer - INFO - train - iter 60300: loss 3.1957, time 5.09s
06-07 06:33 - modeling.trainer - INFO - train - iter 60350: loss 3.1996, time 5.09s
06-07 06:33 - modeling.trainer - INFO - train - iter 60400: loss 3.1998, time 5.08s
06-07 06:33 - modeling.trainer - INFO - train - iter 60450: loss 3.1925, time 5.10s
06-07 06:33 - modeling.trainer - INFO - train - iter 60500: loss 3.1941, time 5.10s
06-07 06:33 - modeling.trainer - INFO - train - iter 60550: loss 3.1916, time 5.72s
06-07 06:33 - modeling.trainer - INFO - train - iter 60600: loss 3.1888, time 5.10s
06-07 06:33 - modeling.trainer - INFO - train - iter 60650: loss 3.1927, time 5.09s
06-07 06:33 - modeling.trainer - INFO - train - iter 60700: loss 3.1952, time 5.10s
06-07 06:33 - modeling.trainer - INFO - train - iter 60750: loss 3.1929, time 5.11s
06-07 06:34 - modeling.trainer - INFO - train - iter 60800: loss 3.1941, time 5.09s
06-07 06:34 - modeling.trainer - INFO - train - iter 60850: loss 3.1929, time 5.14s
06-07 06:34 - modeling.trainer - INFO - train - iter 60900: loss 3.1962, time 5.10s
06-07 06:34 - modeling.trainer - INFO - train - iter 60950: loss 3.1929, time 5.12s
06-07 06:34 - modeling.trainer - INFO - train - iter 61000: loss 3.1893, time 5.11s
06-07 06:34 - modeling.trainer - INFO - train - iter 61050: loss 3.1926, time 5.10s
06-07 06:34 - modeling.trainer - INFO - train - iter 61100: loss 3.1963, time 5.09s
06-07 06:34 - modeling.trainer - INFO - train - iter 61150: loss 3.1972, time 5.09s
06-07 06:34 - modeling.trainer - INFO - train - iter 61200: loss 3.1856, time 5.09s
06-07 06:34 - modeling.trainer - INFO - train - iter 61250: loss 3.1797, time 5.08s
06-07 06:34 - modeling.trainer - INFO - train - iter 61300: loss 3.1816, time 5.08s
06-07 06:34 - modeling.trainer - INFO - train - iter 61350: loss 3.1917, time 5.10s