text
stringlengths 54
260
|
---|
06-07 06:09 - modeling.trainer - INFO - train - iter 46800: loss 3.2404, time 5.08s
|
06-07 06:09 - modeling.trainer - INFO - train - iter 46850: loss 3.2415, time 5.09s
|
06-07 06:09 - modeling.trainer - INFO - train - iter 46900: loss 3.2492, time 5.09s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 46950: loss 3.2471, time 5.09s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47000: loss 3.2430, time 5.10s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47050: loss 3.2409, time 5.09s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47100: loss 3.2321, time 5.10s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47150: loss 3.2355, time 5.09s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47200: loss 3.2388, time 5.11s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47250: loss 3.2393, time 5.12s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47300: loss 3.2415, time 5.11s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47350: loss 3.2341, time 5.09s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47400: loss 3.2351, time 5.10s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47450: loss 3.2381, time 5.08s
|
06-07 06:10 - modeling.trainer - INFO - train - iter 47500: loss 3.2405, time 5.08s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47550: loss 3.2472, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47600: loss 3.2455, time 5.08s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47650: loss 3.2465, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47700: loss 3.2437, time 5.10s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47750: loss 3.2354, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47800: loss 3.2342, time 5.10s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47850: loss 3.2391, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47900: loss 3.2465, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 47950: loss 3.2373, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 48000: loss 3.2258, time 5.10s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 48050: loss 3.2280, time 5.09s
|
06-07 06:11 - modeling.trainer - INFO - train - iter 48100: loss 3.2388, time 5.09s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48150: loss 3.2435, time 5.08s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48200: loss 3.2355, time 5.08s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48250: loss 3.2356, time 5.08s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48300: loss 3.2334, time 5.08s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48350: loss 3.2285, time 5.08s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48400: loss 3.2396, time 5.75s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48450: loss 3.2446, time 5.09s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48500: loss 3.2400, time 5.09s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48550: loss 3.2321, time 5.08s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48600: loss 3.2309, time 5.09s
|
06-07 06:12 - modeling.trainer - INFO - train - iter 48650: loss 3.2387, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 48700: loss 3.2447, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 48750: loss 3.2452, time 5.09s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 48800: loss 3.2360, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 48850: loss 3.2380, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 48900: loss 3.2342, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 48950: loss 3.2227, time 5.09s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 49000: loss 3.2262, time 5.12s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 49050: loss 3.2306, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 49100: loss 3.2439, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 49150: loss 3.2466, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 49200: loss 3.2368, time 5.08s
|
06-07 06:13 - modeling.trainer - INFO - train - iter 49250: loss 3.2276, time 5.08s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49300: loss 3.2239, time 5.08s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49350: loss 3.2332, time 5.08s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49400: loss 3.2285, time 5.08s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49450: loss 3.2274, time 5.09s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49500: loss 3.2290, time 5.08s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49550: loss 3.2305, time 5.16s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49600: loss 3.2342, time 5.09s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49650: loss 3.2403, time 5.13s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49700: loss 3.2364, time 5.12s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49750: loss 3.2341, time 5.11s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49800: loss 3.2347, time 5.13s
|
06-07 06:14 - modeling.trainer - INFO - train - iter 49850: loss 3.2275, time 5.11s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 49900: loss 3.2367, time 5.11s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 49950: loss 3.2333, time 5.11s
|
06-07 06:15 - modeling.trainer - INFO - val - iter 50000: lm_loss 1.6293, value_loss 0.7658, time_loss 0.7191, loss 3.1142, time 4.10s
|
06-07 06:15 - modeling.trainer - INFO - new best val loss 3.1142
|
06-07 06:15 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
|
06-07 06:15 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50000: loss 3.2348, time 16.74s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50050: loss 3.2343, time 5.10s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50100: loss 3.2251, time 5.76s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50150: loss 3.2286, time 5.12s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50200: loss 3.2220, time 5.10s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50250: loss 3.2177, time 5.09s
|
06-07 06:15 - modeling.trainer - INFO - train - iter 50300: loss 3.2304, time 5.09s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50350: loss 3.2421, time 5.09s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50400: loss 3.2429, time 5.09s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50450: loss 3.2300, time 5.10s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50500: loss 3.2253, time 5.09s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50550: loss 3.2316, time 5.10s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50600: loss 3.2328, time 5.08s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50650: loss 3.2362, time 5.08s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50700: loss 3.2389, time 5.09s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50750: loss 3.2293, time 5.11s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50800: loss 3.2297, time 5.11s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50850: loss 3.2423, time 5.11s
|
06-07 06:16 - modeling.trainer - INFO - train - iter 50900: loss 3.2357, time 5.11s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 50950: loss 3.2266, time 5.09s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51000: loss 3.2265, time 5.09s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51050: loss 3.2292, time 5.10s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51100: loss 3.2306, time 5.10s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51150: loss 3.2273, time 5.11s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51200: loss 3.2200, time 5.12s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51250: loss 3.2266, time 5.11s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51300: loss 3.2324, time 5.10s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51350: loss 3.2323, time 5.09s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51400: loss 3.2391, time 5.10s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51450: loss 3.2292, time 5.10s
|
06-07 06:17 - modeling.trainer - INFO - train - iter 51500: loss 3.2190, time 5.10s
|
06-07 06:18 - modeling.trainer - INFO - train - iter 51550: loss 3.2243, time 5.10s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.