text
stringlengths 54
260
|
---|
06-07 05:52 - modeling.trainer - INFO - train - iter 37000: loss 3.2982, time 5.11s
|
06-07 05:52 - modeling.trainer - INFO - train - iter 37050: loss 3.3009, time 5.12s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37100: loss 3.2983, time 5.11s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37150: loss 3.2945, time 5.12s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37200: loss 3.2949, time 5.13s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37250: loss 3.2899, time 5.11s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37300: loss 3.2842, time 5.11s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37350: loss 3.2864, time 5.12s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37400: loss 3.2916, time 5.12s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37450: loss 3.2851, time 5.11s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37500: loss 3.2808, time 5.11s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37550: loss 3.2806, time 5.11s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37600: loss 3.2777, time 5.10s
|
06-07 05:53 - modeling.trainer - INFO - train - iter 37650: loss 3.2809, time 5.09s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 37700: loss 3.2867, time 5.11s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 37750: loss 3.2829, time 5.11s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 37800: loss 3.2856, time 5.10s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 37850: loss 3.2868, time 5.10s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 37900: loss 3.2749, time 5.10s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 37950: loss 3.2782, time 5.75s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 38000: loss 3.2801, time 5.09s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 38050: loss 3.2811, time 5.10s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 38100: loss 3.2892, time 5.10s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 38150: loss 3.2958, time 5.09s
|
06-07 05:54 - modeling.trainer - INFO - train - iter 38200: loss 3.2909, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38250: loss 3.2817, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38300: loss 3.2841, time 5.09s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38350: loss 3.2847, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38400: loss 3.2812, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38450: loss 3.2845, time 5.09s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38500: loss 3.2903, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38550: loss 3.2904, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38600: loss 3.2907, time 5.09s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38650: loss 3.2865, time 5.09s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38700: loss 3.2748, time 5.10s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38750: loss 3.2834, time 5.11s
|
06-07 05:55 - modeling.trainer - INFO - train - iter 38800: loss 3.2929, time 5.08s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 38850: loss 3.2834, time 5.11s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 38900: loss 3.2842, time 5.09s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 38950: loss 3.2875, time 5.09s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39000: loss 3.2901, time 5.09s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39050: loss 3.2890, time 5.09s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39100: loss 3.2765, time 5.11s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39150: loss 3.2690, time 5.10s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39200: loss 3.2767, time 5.10s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39250: loss 3.2872, time 5.09s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39300: loss 3.2858, time 5.09s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39350: loss 3.2891, time 5.10s
|
06-07 05:56 - modeling.trainer - INFO - train - iter 39400: loss 3.2847, time 5.10s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39450: loss 3.2740, time 5.09s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39500: loss 3.2746, time 5.09s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39550: loss 3.2688, time 5.10s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39600: loss 3.2706, time 5.10s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39650: loss 3.2768, time 5.11s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39700: loss 3.2798, time 6.07s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39750: loss 3.2804, time 5.09s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39800: loss 3.2759, time 5.11s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39850: loss 3.2750, time 5.10s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39900: loss 3.2737, time 5.09s
|
06-07 05:57 - modeling.trainer - INFO - train - iter 39950: loss 3.2781, time 5.11s
|
06-07 05:58 - modeling.trainer - INFO - val - iter 40000: lm_loss 1.6653, value_loss 0.7757, time_loss 0.7235, loss 3.1645, time 3.95s
|
06-07 05:58 - modeling.trainer - INFO - new best val loss 3.1645
|
06-07 05:58 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
|
06-07 05:58 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40000: loss 3.2731, time 16.65s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40050: loss 3.2746, time 5.09s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40100: loss 3.2883, time 5.14s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40150: loss 3.2851, time 5.12s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40200: loss 3.2744, time 5.10s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40250: loss 3.2745, time 5.11s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40300: loss 3.2765, time 5.09s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40350: loss 3.2745, time 5.09s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40400: loss 3.2690, time 5.09s
|
06-07 05:58 - modeling.trainer - INFO - train - iter 40450: loss 3.2645, time 5.11s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40500: loss 3.2791, time 5.09s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40550: loss 3.2851, time 5.09s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40600: loss 3.2806, time 5.09s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40650: loss 3.2718, time 5.10s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40700: loss 3.2669, time 5.09s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40750: loss 3.2748, time 5.10s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40800: loss 3.2679, time 5.13s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40850: loss 3.2614, time 5.09s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40900: loss 3.2676, time 5.10s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 40950: loss 3.2719, time 5.10s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 41000: loss 3.2787, time 5.10s
|
06-07 05:59 - modeling.trainer - INFO - train - iter 41050: loss 3.2728, time 5.09s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41100: loss 3.2671, time 5.10s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41150: loss 3.2702, time 5.10s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41200: loss 3.2611, time 5.09s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41250: loss 3.2657, time 5.09s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41300: loss 3.2758, time 5.10s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41350: loss 3.2715, time 5.09s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41400: loss 3.2714, time 5.75s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41450: loss 3.2737, time 5.08s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41500: loss 3.2633, time 5.09s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41550: loss 3.2622, time 5.09s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41600: loss 3.2708, time 5.10s
|
06-07 06:00 - modeling.trainer - INFO - train - iter 41650: loss 3.2714, time 5.09s
|
06-07 06:01 - modeling.trainer - INFO - train - iter 41700: loss 3.2695, time 5.10s
|
06-07 06:01 - modeling.trainer - INFO - train - iter 41750: loss 3.2672, time 5.10s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.