text
stringlengths
54
260
06-07 05:35 - modeling.trainer - INFO - train - iter 27200: loss 3.3572, time 5.14s
06-07 05:35 - modeling.trainer - INFO - train - iter 27250: loss 3.3705, time 5.14s
06-07 05:36 - modeling.trainer - INFO - train - iter 27300: loss 3.3685, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27350: loss 3.3633, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27400: loss 3.3569, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27450: loss 3.3586, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27500: loss 3.3625, time 6.09s
06-07 05:36 - modeling.trainer - INFO - train - iter 27550: loss 3.3556, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27600: loss 3.3499, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27650: loss 3.3489, time 5.13s
06-07 05:36 - modeling.trainer - INFO - train - iter 27700: loss 3.3449, time 5.14s
06-07 05:36 - modeling.trainer - INFO - train - iter 27750: loss 3.3450, time 5.14s
06-07 05:36 - modeling.trainer - INFO - train - iter 27800: loss 3.3527, time 5.14s
06-07 05:36 - modeling.trainer - INFO - train - iter 27850: loss 3.3574, time 5.14s
06-07 05:37 - modeling.trainer - INFO - train - iter 27900: loss 3.3570, time 5.14s
06-07 05:37 - modeling.trainer - INFO - train - iter 27950: loss 3.3590, time 5.16s
06-07 05:37 - modeling.trainer - INFO - train - iter 28000: loss 3.3635, time 5.18s
06-07 05:37 - modeling.trainer - INFO - train - iter 28050: loss 3.3664, time 5.21s
06-07 05:37 - modeling.trainer - INFO - train - iter 28100: loss 3.3625, time 5.15s
06-07 05:37 - modeling.trainer - INFO - train - iter 28150: loss 3.3627, time 5.15s
06-07 05:37 - modeling.trainer - INFO - train - iter 28200: loss 3.3562, time 5.14s
06-07 05:37 - modeling.trainer - INFO - train - iter 28250: loss 3.3527, time 5.13s
06-07 05:37 - modeling.trainer - INFO - train - iter 28300: loss 3.3623, time 5.13s
06-07 05:37 - modeling.trainer - INFO - train - iter 28350: loss 3.3686, time 5.12s
06-07 05:37 - modeling.trainer - INFO - train - iter 28400: loss 3.3570, time 5.13s
06-07 05:38 - modeling.trainer - INFO - train - iter 28450: loss 3.3463, time 5.13s
06-07 05:38 - modeling.trainer - INFO - train - iter 28500: loss 3.3470, time 5.12s
06-07 05:38 - modeling.trainer - INFO - train - iter 28550: loss 3.3486, time 5.12s
06-07 05:38 - modeling.trainer - INFO - train - iter 28600: loss 3.3477, time 5.12s
06-07 05:38 - modeling.trainer - INFO - train - iter 28650: loss 3.3490, time 5.12s
06-07 05:38 - modeling.trainer - INFO - train - iter 28700: loss 3.3544, time 5.13s
06-07 05:38 - modeling.trainer - INFO - train - iter 28750: loss 3.3426, time 5.15s
06-07 05:38 - modeling.trainer - INFO - train - iter 28800: loss 3.3325, time 5.15s
06-07 05:38 - modeling.trainer - INFO - train - iter 28850: loss 3.3402, time 5.13s
06-07 05:38 - modeling.trainer - INFO - train - iter 28900: loss 3.3457, time 5.13s
06-07 05:38 - modeling.trainer - INFO - train - iter 28950: loss 3.3477, time 5.12s
06-07 05:38 - modeling.trainer - INFO - train - iter 29000: loss 3.3456, time 5.14s
06-07 05:39 - modeling.trainer - INFO - train - iter 29050: loss 3.3431, time 5.13s
06-07 05:39 - modeling.trainer - INFO - train - iter 29100: loss 3.3480, time 5.13s
06-07 05:39 - modeling.trainer - INFO - train - iter 29150: loss 3.3489, time 5.12s
06-07 05:39 - modeling.trainer - INFO - train - iter 29200: loss 3.3440, time 5.15s
06-07 05:39 - modeling.trainer - INFO - train - iter 29250: loss 3.3454, time 5.79s
06-07 05:39 - modeling.trainer - INFO - train - iter 29300: loss 3.3400, time 5.13s
06-07 05:39 - modeling.trainer - INFO - train - iter 29350: loss 3.3484, time 5.13s
06-07 05:39 - modeling.trainer - INFO - train - iter 29400: loss 3.3521, time 5.13s
06-07 05:39 - modeling.trainer - INFO - train - iter 29450: loss 3.3435, time 5.15s
06-07 05:39 - modeling.trainer - INFO - train - iter 29500: loss 3.3449, time 5.14s
06-07 05:39 - modeling.trainer - INFO - train - iter 29550: loss 3.3372, time 5.13s
06-07 05:39 - modeling.trainer - INFO - train - iter 29600: loss 3.3393, time 5.12s
06-07 05:40 - modeling.trainer - INFO - train - iter 29650: loss 3.3349, time 5.13s
06-07 05:40 - modeling.trainer - INFO - train - iter 29700: loss 3.3315, time 5.13s
06-07 05:40 - modeling.trainer - INFO - train - iter 29750: loss 3.3387, time 5.12s
06-07 05:40 - modeling.trainer - INFO - train - iter 29800: loss 3.3426, time 5.14s
06-07 05:40 - modeling.trainer - INFO - train - iter 29850: loss 3.3441, time 5.13s
06-07 05:40 - modeling.trainer - INFO - train - iter 29900: loss 3.3437, time 5.15s
06-07 05:40 - modeling.trainer - INFO - train - iter 29950: loss 3.3433, time 5.13s
06-07 05:40 - modeling.trainer - INFO - val - iter 30000: lm_loss 1.7158, value_loss 0.7817, time_loss 0.7275, loss 3.2250, time 3.97s
06-07 05:40 - modeling.trainer - INFO - new best val loss 3.2250
06-07 05:40 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 05:40 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 05:40 - modeling.trainer - INFO - train - iter 30000: loss 3.3352, time 16.68s
06-07 05:40 - modeling.trainer - INFO - train - iter 30050: loss 3.3347, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30100: loss 3.3426, time 5.14s
06-07 05:41 - modeling.trainer - INFO - train - iter 30150: loss 3.3450, time 5.17s
06-07 05:41 - modeling.trainer - INFO - train - iter 30200: loss 3.3468, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30250: loss 3.3433, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30300: loss 3.3434, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30350: loss 3.3407, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30400: loss 3.3387, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30450: loss 3.3426, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30500: loss 3.3380, time 5.12s
06-07 05:41 - modeling.trainer - INFO - train - iter 30550: loss 3.3373, time 5.12s
06-07 05:41 - modeling.trainer - INFO - train - iter 30600: loss 3.3339, time 5.13s
06-07 05:41 - modeling.trainer - INFO - train - iter 30650: loss 3.3283, time 5.12s
06-07 05:42 - modeling.trainer - INFO - train - iter 30700: loss 3.3347, time 5.12s
06-07 05:42 - modeling.trainer - INFO - train - iter 30750: loss 3.3348, time 5.14s
06-07 05:42 - modeling.trainer - INFO - train - iter 30800: loss 3.3260, time 5.11s
06-07 05:42 - modeling.trainer - INFO - train - iter 30850: loss 3.3383, time 5.11s
06-07 05:42 - modeling.trainer - INFO - train - iter 30900: loss 3.3417, time 5.13s
06-07 05:42 - modeling.trainer - INFO - train - iter 30950: loss 3.3368, time 5.73s
06-07 05:42 - modeling.trainer - INFO - train - iter 31000: loss 3.3438, time 5.18s
06-07 05:42 - modeling.trainer - INFO - train - iter 31050: loss 3.3367, time 5.14s
06-07 05:42 - modeling.trainer - INFO - train - iter 31100: loss 3.3270, time 5.15s
06-07 05:42 - modeling.trainer - INFO - train - iter 31150: loss 3.3385, time 5.15s
06-07 05:42 - modeling.trainer - INFO - train - iter 31200: loss 3.3447, time 5.13s
06-07 05:43 - modeling.trainer - INFO - train - iter 31250: loss 3.3316, time 5.15s
06-07 05:43 - modeling.trainer - INFO - train - iter 31300: loss 3.3264, time 5.26s
06-07 05:43 - modeling.trainer - INFO - train - iter 31350: loss 3.3278, time 5.12s
06-07 05:43 - modeling.trainer - INFO - train - iter 31400: loss 3.3375, time 5.13s
06-07 05:43 - modeling.trainer - INFO - train - iter 31450: loss 3.3372, time 5.13s
06-07 05:43 - modeling.trainer - INFO - train - iter 31500: loss 3.3235, time 5.13s
06-07 05:43 - modeling.trainer - INFO - train - iter 31550: loss 3.3310, time 5.15s
06-07 05:43 - modeling.trainer - INFO - train - iter 31600: loss 3.3309, time 5.14s
06-07 05:43 - modeling.trainer - INFO - train - iter 31650: loss 3.3226, time 5.14s
06-07 05:43 - modeling.trainer - INFO - train - iter 31700: loss 3.3196, time 5.15s
06-07 05:43 - modeling.trainer - INFO - train - iter 31750: loss 3.3175, time 5.13s
06-07 05:43 - modeling.trainer - INFO - train - iter 31800: loss 3.3247, time 5.13s
06-07 05:44 - modeling.trainer - INFO - train - iter 31850: loss 3.3273, time 5.15s
06-07 05:44 - modeling.trainer - INFO - train - iter 31900: loss 3.3303, time 5.15s
06-07 05:44 - modeling.trainer - INFO - train - iter 31950: loss 3.3337, time 5.13s