text
stringlengths 54
260
|
---|
06-07 05:27 - modeling.trainer - INFO - train - iter 22200: loss 3.4176, time 5.15s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22250: loss 3.4203, time 5.88s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22300: loss 3.4112, time 5.14s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22350: loss 3.4093, time 5.16s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22400: loss 3.4113, time 5.18s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22450: loss 3.4015, time 5.19s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22500: loss 3.4081, time 5.18s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22550: loss 3.4145, time 5.16s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22600: loss 3.4067, time 5.16s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22650: loss 3.4058, time 5.16s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22700: loss 3.4193, time 5.16s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22750: loss 3.4196, time 5.18s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22800: loss 3.4084, time 5.16s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22850: loss 3.4008, time 5.17s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22900: loss 3.4073, time 5.17s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 22950: loss 3.4112, time 5.17s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 23000: loss 3.3977, time 5.15s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 23050: loss 3.3981, time 5.15s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 23100: loss 3.4119, time 5.14s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 23150: loss 3.4117, time 5.15s
|
06-07 05:28 - modeling.trainer - INFO - train - iter 23200: loss 3.3981, time 5.16s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23250: loss 3.3905, time 5.16s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23300: loss 3.4016, time 5.16s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23350: loss 3.4089, time 5.16s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23400: loss 3.4005, time 5.14s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23450: loss 3.4012, time 5.15s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23500: loss 3.4042, time 5.16s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23550: loss 3.4013, time 5.20s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23600: loss 3.3965, time 5.14s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23650: loss 3.3953, time 5.14s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23700: loss 3.4040, time 5.15s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23750: loss 3.4009, time 5.16s
|
06-07 05:29 - modeling.trainer - INFO - train - iter 23800: loss 3.3884, time 5.16s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 23850: loss 3.3900, time 5.15s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 23900: loss 3.3879, time 5.16s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 23950: loss 3.3936, time 5.15s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24000: loss 3.3984, time 5.73s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24050: loss 3.3854, time 5.16s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24100: loss 3.3869, time 5.14s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24150: loss 3.3936, time 5.16s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24200: loss 3.3916, time 5.14s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24250: loss 3.3856, time 5.14s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24300: loss 3.3829, time 5.14s
|
06-07 05:30 - modeling.trainer - INFO - train - iter 24350: loss 3.3898, time 5.14s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24400: loss 3.3934, time 5.16s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24450: loss 3.3923, time 5.15s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24500: loss 3.3876, time 5.15s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24550: loss 3.3837, time 5.13s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24600: loss 3.3849, time 5.15s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24650: loss 3.3823, time 5.15s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24700: loss 3.3857, time 5.17s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24750: loss 3.3913, time 5.15s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24800: loss 3.3896, time 5.18s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24850: loss 3.3924, time 5.16s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24900: loss 3.4010, time 5.23s
|
06-07 05:31 - modeling.trainer - INFO - train - iter 24950: loss 3.4001, time 5.14s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25000: loss 3.3919, time 5.16s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25050: loss 3.3925, time 5.17s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25100: loss 3.3911, time 5.17s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25150: loss 3.3893, time 5.15s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25200: loss 3.3935, time 5.15s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25250: loss 3.3871, time 5.15s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25300: loss 3.3817, time 5.13s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25350: loss 3.3827, time 5.14s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25400: loss 3.3790, time 5.14s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25450: loss 3.3770, time 5.15s
|
06-07 05:32 - modeling.trainer - INFO - train - iter 25500: loss 3.3791, time 5.13s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25550: loss 3.3790, time 5.14s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25600: loss 3.3827, time 5.13s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25650: loss 3.3781, time 5.15s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25700: loss 3.3763, time 5.14s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25750: loss 3.3849, time 5.86s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25800: loss 3.3821, time 5.13s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25850: loss 3.3708, time 5.14s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25900: loss 3.3674, time 5.14s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 25950: loss 3.3652, time 5.13s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 26000: loss 3.3654, time 5.13s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 26050: loss 3.3721, time 5.13s
|
06-07 05:33 - modeling.trainer - INFO - train - iter 26100: loss 3.3688, time 5.13s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26150: loss 3.3646, time 5.13s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26200: loss 3.3587, time 5.15s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26250: loss 3.3565, time 5.14s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26300: loss 3.3615, time 5.14s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26350: loss 3.3712, time 5.13s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26400: loss 3.3739, time 5.14s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26450: loss 3.3664, time 5.13s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26500: loss 3.3674, time 5.13s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26550: loss 3.3734, time 5.14s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26600: loss 3.3756, time 5.15s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26650: loss 3.3667, time 5.14s
|
06-07 05:34 - modeling.trainer - INFO - train - iter 26700: loss 3.3636, time 5.13s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 26750: loss 3.3676, time 5.15s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 26800: loss 3.3726, time 5.13s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 26850: loss 3.3722, time 5.12s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 26900: loss 3.3662, time 5.14s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 26950: loss 3.3624, time 5.13s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 27000: loss 3.3650, time 5.13s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 27050: loss 3.3704, time 5.13s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 27100: loss 3.3678, time 5.13s
|
06-07 05:35 - modeling.trainer - INFO - train - iter 27150: loss 3.3552, time 5.14s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.