text
stringlengths 54
260
|
---|
06-07 05:09 - modeling.trainer - INFO - train - iter 12400: loss 3.5898, time 5.26s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12450: loss 3.5987, time 5.28s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12500: loss 3.5951, time 5.26s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12550: loss 3.5871, time 5.36s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12600: loss 3.5936, time 5.26s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12650: loss 3.5999, time 5.25s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12700: loss 3.5911, time 5.29s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12750: loss 3.5830, time 5.27s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12800: loss 3.5784, time 5.27s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12850: loss 3.5813, time 5.29s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12900: loss 3.5834, time 5.27s
|
06-07 05:10 - modeling.trainer - INFO - train - iter 12950: loss 3.5797, time 5.27s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13000: loss 3.5779, time 5.23s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13050: loss 3.5712, time 5.22s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13100: loss 3.5711, time 5.24s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13150: loss 3.5742, time 5.26s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13200: loss 3.5535, time 5.25s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13250: loss 3.5473, time 5.22s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13300: loss 3.5736, time 5.26s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13350: loss 3.5865, time 5.23s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13400: loss 3.5765, time 5.27s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13450: loss 3.5657, time 5.26s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13500: loss 3.5623, time 5.24s
|
06-07 05:11 - modeling.trainer - INFO - train - iter 13550: loss 3.5642, time 5.81s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13600: loss 3.5672, time 5.24s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13650: loss 3.5607, time 5.23s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13700: loss 3.5616, time 5.22s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13750: loss 3.5579, time 5.25s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13800: loss 3.5548, time 5.23s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13850: loss 3.5541, time 5.26s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13900: loss 3.5517, time 5.25s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 13950: loss 3.5514, time 5.24s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 14000: loss 3.5456, time 5.23s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 14050: loss 3.5488, time 5.27s
|
06-07 05:12 - modeling.trainer - INFO - train - iter 14100: loss 3.5535, time 5.24s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14150: loss 3.5567, time 5.23s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14200: loss 3.5477, time 5.33s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14250: loss 3.5439, time 5.28s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14300: loss 3.5448, time 5.25s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14350: loss 3.5366, time 5.24s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14400: loss 3.5385, time 5.22s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14450: loss 3.5387, time 5.25s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14500: loss 3.5319, time 5.25s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14550: loss 3.5356, time 5.25s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14600: loss 3.5386, time 5.25s
|
06-07 05:13 - modeling.trainer - INFO - train - iter 14650: loss 3.5475, time 5.22s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 14700: loss 3.5542, time 5.22s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 14750: loss 3.5376, time 5.23s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 14800: loss 3.5318, time 5.23s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 14850: loss 3.5347, time 5.22s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 14900: loss 3.5239, time 5.21s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 14950: loss 3.5157, time 5.21s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 15000: loss 3.5229, time 5.23s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 15050: loss 3.5292, time 5.23s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 15100: loss 3.5293, time 5.21s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 15150: loss 3.5261, time 5.23s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 15200: loss 3.5193, time 5.24s
|
06-07 05:14 - modeling.trainer - INFO - train - iter 15250: loss 3.5194, time 5.22s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15300: loss 3.5265, time 6.00s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15350: loss 3.5256, time 5.26s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15400: loss 3.5269, time 5.23s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15450: loss 3.5265, time 5.21s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15500: loss 3.5062, time 5.21s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15550: loss 3.5066, time 5.21s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15600: loss 3.5215, time 5.23s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15650: loss 3.5174, time 5.25s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15700: loss 3.5072, time 5.22s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15750: loss 3.5120, time 5.22s
|
06-07 05:15 - modeling.trainer - INFO - train - iter 15800: loss 3.5204, time 5.27s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 15850: loss 3.5115, time 5.26s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 15900: loss 3.4986, time 5.25s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 15950: loss 3.5049, time 5.22s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16000: loss 3.5150, time 5.22s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16050: loss 3.5075, time 5.21s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16100: loss 3.5005, time 5.22s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16150: loss 3.5033, time 5.21s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16200: loss 3.5061, time 5.22s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16250: loss 3.5058, time 5.22s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16300: loss 3.5084, time 5.20s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16350: loss 3.5036, time 5.21s
|
06-07 05:16 - modeling.trainer - INFO - train - iter 16400: loss 3.4981, time 5.22s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16450: loss 3.4958, time 5.33s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16500: loss 3.4906, time 5.19s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16550: loss 3.4947, time 5.20s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16600: loss 3.4969, time 5.20s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16650: loss 3.4915, time 5.20s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16700: loss 3.4945, time 5.21s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16750: loss 3.4929, time 5.24s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16800: loss 3.4843, time 5.21s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16850: loss 3.4929, time 5.22s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16900: loss 3.5006, time 5.18s
|
06-07 05:17 - modeling.trainer - INFO - train - iter 16950: loss 3.4886, time 5.22s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17000: loss 3.4815, time 5.21s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17050: loss 3.4926, time 5.84s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17100: loss 3.4948, time 5.20s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17150: loss 3.4839, time 5.21s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17200: loss 3.4910, time 5.21s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17250: loss 3.4965, time 5.20s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17300: loss 3.4958, time 5.19s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17350: loss 3.4939, time 5.19s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.