text
stringlengths
54
260
06-07 05:01 - modeling.trainer - INFO - train - iter 7600: loss 3.7886, time 5.41s
06-07 05:01 - modeling.trainer - INFO - train - iter 7650: loss 3.7833, time 5.40s
06-07 05:01 - modeling.trainer - INFO - train - iter 7700: loss 3.7850, time 5.38s
06-07 05:01 - modeling.trainer - INFO - train - iter 7750: loss 3.7787, time 5.40s
06-07 05:01 - modeling.trainer - INFO - train - iter 7800: loss 3.7881, time 5.41s
06-07 05:01 - modeling.trainer - INFO - train - iter 7850: loss 3.7964, time 5.38s
06-07 05:01 - modeling.trainer - INFO - train - iter 7900: loss 3.7770, time 5.37s
06-07 05:01 - modeling.trainer - INFO - train - iter 7950: loss 3.7620, time 5.34s
06-07 05:01 - modeling.trainer - INFO - train - iter 8000: loss 3.7759, time 5.36s
06-07 05:02 - modeling.trainer - INFO - train - iter 8050: loss 3.7808, time 5.40s
06-07 05:02 - modeling.trainer - INFO - train - iter 8100: loss 3.7724, time 5.38s
06-07 05:02 - modeling.trainer - INFO - train - iter 8150: loss 3.7610, time 5.38s
06-07 05:02 - modeling.trainer - INFO - train - iter 8200: loss 3.7556, time 5.37s
06-07 05:02 - modeling.trainer - INFO - train - iter 8250: loss 3.7509, time 5.36s
06-07 05:02 - modeling.trainer - INFO - train - iter 8300: loss 3.7490, time 5.37s
06-07 05:02 - modeling.trainer - INFO - train - iter 8350: loss 3.7459, time 6.68s
06-07 05:02 - modeling.trainer - INFO - train - iter 8400: loss 3.7406, time 5.39s
06-07 05:02 - modeling.trainer - INFO - train - iter 8450: loss 3.7435, time 5.42s
06-07 05:02 - modeling.trainer - INFO - train - iter 8500: loss 3.7481, time 5.36s
06-07 05:02 - modeling.trainer - INFO - train - iter 8550: loss 3.7503, time 5.43s
06-07 05:03 - modeling.trainer - INFO - train - iter 8600: loss 3.7345, time 5.45s
06-07 05:03 - modeling.trainer - INFO - train - iter 8650: loss 3.7209, time 5.41s
06-07 05:03 - modeling.trainer - INFO - train - iter 8700: loss 3.7250, time 5.36s
06-07 05:03 - modeling.trainer - INFO - train - iter 8750: loss 3.7211, time 5.33s
06-07 05:03 - modeling.trainer - INFO - train - iter 8800: loss 3.7177, time 5.34s
06-07 05:03 - modeling.trainer - INFO - train - iter 8850: loss 3.7169, time 5.34s
06-07 05:03 - modeling.trainer - INFO - train - iter 8900: loss 3.7061, time 5.34s
06-07 05:03 - modeling.trainer - INFO - train - iter 8950: loss 3.7118, time 5.34s
06-07 05:03 - modeling.trainer - INFO - train - iter 9000: loss 3.7190, time 5.31s
06-07 05:03 - modeling.trainer - INFO - train - iter 9050: loss 3.7234, time 5.34s
06-07 05:03 - modeling.trainer - INFO - train - iter 9100: loss 3.7213, time 5.35s
06-07 05:03 - modeling.trainer - INFO - train - iter 9150: loss 3.6985, time 5.33s
06-07 05:04 - modeling.trainer - INFO - train - iter 9200: loss 3.6952, time 5.33s
06-07 05:04 - modeling.trainer - INFO - train - iter 9250: loss 3.7037, time 5.30s
06-07 05:04 - modeling.trainer - INFO - train - iter 9300: loss 3.7023, time 5.35s
06-07 05:04 - modeling.trainer - INFO - train - iter 9350: loss 3.7066, time 5.30s
06-07 05:04 - modeling.trainer - INFO - train - iter 9400: loss 3.7172, time 5.33s
06-07 05:04 - modeling.trainer - INFO - train - iter 9450: loss 3.7128, time 5.32s
06-07 05:04 - modeling.trainer - INFO - train - iter 9500: loss 3.6930, time 5.35s
06-07 05:04 - modeling.trainer - INFO - train - iter 9550: loss 3.6906, time 5.34s
06-07 05:04 - modeling.trainer - INFO - train - iter 9600: loss 3.6878, time 5.34s
06-07 05:04 - modeling.trainer - INFO - train - iter 9650: loss 3.6780, time 5.36s
06-07 05:04 - modeling.trainer - INFO - train - iter 9700: loss 3.6765, time 5.38s
06-07 05:05 - modeling.trainer - INFO - train - iter 9750: loss 3.6737, time 5.36s
06-07 05:05 - modeling.trainer - INFO - train - iter 9800: loss 3.6723, time 5.33s
06-07 05:05 - modeling.trainer - INFO - train - iter 9850: loss 3.6708, time 5.33s
06-07 05:05 - modeling.trainer - INFO - train - iter 9900: loss 3.6781, time 5.33s
06-07 05:05 - modeling.trainer - INFO - train - iter 9950: loss 3.6794, time 5.31s
06-07 05:05 - modeling.trainer - INFO - val - iter 10000: lm_loss 1.9988, value_loss 0.8009, time_loss 0.7494, loss 3.5492, time 4.17s
06-07 05:05 - modeling.trainer - INFO - new best val loss 3.5492
06-07 05:05 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 05:05 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 05:05 - modeling.trainer - INFO - train - iter 10000: loss 3.6655, time 17.14s
06-07 05:05 - modeling.trainer - INFO - train - iter 10050: loss 3.6614, time 5.32s
06-07 05:05 - modeling.trainer - INFO - train - iter 10100: loss 3.6711, time 6.16s
06-07 05:05 - modeling.trainer - INFO - train - iter 10150: loss 3.6653, time 5.38s
06-07 05:06 - modeling.trainer - INFO - train - iter 10200: loss 3.6529, time 5.30s
06-07 05:06 - modeling.trainer - INFO - train - iter 10250: loss 3.6599, time 5.31s
06-07 05:06 - modeling.trainer - INFO - train - iter 10300: loss 3.6670, time 5.36s
06-07 05:06 - modeling.trainer - INFO - train - iter 10350: loss 3.6664, time 5.31s
06-07 05:06 - modeling.trainer - INFO - train - iter 10400: loss 3.6662, time 5.30s
06-07 05:06 - modeling.trainer - INFO - train - iter 10450: loss 3.6674, time 5.38s
06-07 05:06 - modeling.trainer - INFO - train - iter 10500: loss 3.6585, time 5.30s
06-07 05:06 - modeling.trainer - INFO - train - iter 10550: loss 3.6426, time 5.30s
06-07 05:06 - modeling.trainer - INFO - train - iter 10600: loss 3.6450, time 5.30s
06-07 05:06 - modeling.trainer - INFO - train - iter 10650: loss 3.6506, time 5.28s
06-07 05:06 - modeling.trainer - INFO - train - iter 10700: loss 3.6482, time 5.37s
06-07 05:07 - modeling.trainer - INFO - train - iter 10750: loss 3.6490, time 5.29s
06-07 05:07 - modeling.trainer - INFO - train - iter 10800: loss 3.6378, time 5.31s
06-07 05:07 - modeling.trainer - INFO - train - iter 10850: loss 3.6390, time 5.30s
06-07 05:07 - modeling.trainer - INFO - train - iter 10900: loss 3.6448, time 5.28s
06-07 05:07 - modeling.trainer - INFO - train - iter 10950: loss 3.6344, time 5.30s
06-07 05:07 - modeling.trainer - INFO - train - iter 11000: loss 3.6395, time 5.36s
06-07 05:07 - modeling.trainer - INFO - train - iter 11050: loss 3.6399, time 5.40s
06-07 05:07 - modeling.trainer - INFO - train - iter 11100: loss 3.6359, time 5.29s
06-07 05:07 - modeling.trainer - INFO - train - iter 11150: loss 3.6341, time 5.31s
06-07 05:07 - modeling.trainer - INFO - train - iter 11200: loss 3.6361, time 5.33s
06-07 05:07 - modeling.trainer - INFO - train - iter 11250: loss 3.6336, time 5.33s
06-07 05:08 - modeling.trainer - INFO - train - iter 11300: loss 3.6232, time 5.28s
06-07 05:08 - modeling.trainer - INFO - train - iter 11350: loss 3.6308, time 5.27s
06-07 05:08 - modeling.trainer - INFO - train - iter 11400: loss 3.6444, time 5.29s
06-07 05:08 - modeling.trainer - INFO - train - iter 11450: loss 3.6380, time 5.27s
06-07 05:08 - modeling.trainer - INFO - train - iter 11500: loss 3.6253, time 5.30s
06-07 05:08 - modeling.trainer - INFO - train - iter 11550: loss 3.6180, time 5.28s
06-07 05:08 - modeling.trainer - INFO - train - iter 11600: loss 3.6139, time 5.31s
06-07 05:08 - modeling.trainer - INFO - train - iter 11650: loss 3.6138, time 5.30s
06-07 05:08 - modeling.trainer - INFO - train - iter 11700: loss 3.6151, time 5.28s
06-07 05:08 - modeling.trainer - INFO - train - iter 11750: loss 3.6113, time 5.33s
06-07 05:08 - modeling.trainer - INFO - train - iter 11800: loss 3.6048, time 5.28s
06-07 05:08 - modeling.trainer - INFO - train - iter 11850: loss 3.6046, time 5.88s
06-07 05:09 - modeling.trainer - INFO - train - iter 11900: loss 3.6112, time 5.28s
06-07 05:09 - modeling.trainer - INFO - train - iter 11950: loss 3.6239, time 5.30s
06-07 05:09 - modeling.trainer - INFO - train - iter 12000: loss 3.6134, time 5.29s
06-07 05:09 - modeling.trainer - INFO - train - iter 12050: loss 3.6026, time 5.27s
06-07 05:09 - modeling.trainer - INFO - train - iter 12100: loss 3.6092, time 5.26s
06-07 05:09 - modeling.trainer - INFO - train - iter 12150: loss 3.6031, time 5.27s
06-07 05:09 - modeling.trainer - INFO - train - iter 12200: loss 3.5998, time 5.26s
06-07 05:09 - modeling.trainer - INFO - train - iter 12250: loss 3.6043, time 5.25s
06-07 05:09 - modeling.trainer - INFO - train - iter 12300: loss 3.6030, time 5.24s
06-07 05:09 - modeling.trainer - INFO - train - iter 12350: loss 3.5918, time 5.26s