text
stringlengths 54
260
|
---|
06-07 05:18 - modeling.trainer - INFO - train - iter 17400: loss 3.4845, time 5.17s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17450: loss 3.4810, time 5.19s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17500: loss 3.4784, time 5.19s
|
06-07 05:18 - modeling.trainer - INFO - train - iter 17550: loss 3.4709, time 5.19s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17600: loss 3.4707, time 5.19s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17650: loss 3.4717, time 5.19s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17700: loss 3.4736, time 5.19s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17750: loss 3.4780, time 5.20s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17800: loss 3.4777, time 5.19s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17850: loss 3.4716, time 5.20s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17900: loss 3.4713, time 5.19s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 17950: loss 3.4824, time 5.18s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 18000: loss 3.4856, time 5.18s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 18050: loss 3.4781, time 5.17s
|
06-07 05:19 - modeling.trainer - INFO - train - iter 18100: loss 3.4741, time 5.21s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18150: loss 3.4788, time 5.19s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18200: loss 3.4721, time 5.25s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18250: loss 3.4694, time 5.20s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18300: loss 3.4739, time 5.17s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18350: loss 3.4762, time 5.19s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18400: loss 3.4738, time 5.19s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18450: loss 3.4695, time 5.20s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18500: loss 3.4689, time 5.20s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18550: loss 3.4607, time 5.19s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18600: loss 3.4543, time 5.18s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18650: loss 3.4656, time 5.19s
|
06-07 05:20 - modeling.trainer - INFO - train - iter 18700: loss 3.4676, time 5.18s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 18750: loss 3.4588, time 5.18s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 18800: loss 3.4719, time 5.83s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 18850: loss 3.4657, time 5.18s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 18900: loss 3.4489, time 5.17s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 18950: loss 3.4531, time 5.19s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 19000: loss 3.4588, time 5.19s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 19050: loss 3.4598, time 5.21s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 19100: loss 3.4630, time 5.19s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 19150: loss 3.4659, time 5.19s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 19200: loss 3.4682, time 5.20s
|
06-07 05:21 - modeling.trainer - INFO - train - iter 19250: loss 3.4632, time 5.21s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19300: loss 3.4612, time 5.21s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19350: loss 3.4597, time 5.19s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19400: loss 3.4478, time 5.20s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19450: loss 3.4506, time 5.18s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19500: loss 3.4514, time 5.20s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19550: loss 3.4510, time 5.32s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19600: loss 3.4547, time 5.21s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19650: loss 3.4580, time 5.17s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19700: loss 3.4544, time 5.15s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19750: loss 3.4479, time 5.15s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19800: loss 3.4494, time 5.18s
|
06-07 05:22 - modeling.trainer - INFO - train - iter 19850: loss 3.4559, time 5.16s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 19900: loss 3.4516, time 5.16s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 19950: loss 3.4474, time 5.14s
|
06-07 05:23 - modeling.trainer - INFO - val - iter 20000: lm_loss 1.8005, value_loss 0.7896, time_loss 0.7346, loss 3.3248, time 4.25s
|
06-07 05:23 - modeling.trainer - INFO - new best val loss 3.3248
|
06-07 05:23 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
|
06-07 05:23 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20000: loss 3.4429, time 17.00s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20050: loss 3.4391, time 5.21s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20100: loss 3.4466, time 5.20s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20150: loss 3.4423, time 5.18s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20200: loss 3.4390, time 5.19s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20250: loss 3.4468, time 5.18s
|
06-07 05:23 - modeling.trainer - INFO - train - iter 20300: loss 3.4522, time 5.20s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20350: loss 3.4449, time 5.18s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20400: loss 3.4437, time 5.16s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20450: loss 3.4472, time 5.17s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20500: loss 3.4372, time 5.92s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20550: loss 3.4316, time 5.20s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20600: loss 3.4431, time 5.22s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20650: loss 3.4431, time 5.19s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20700: loss 3.4392, time 5.17s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20750: loss 3.4419, time 5.20s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20800: loss 3.4397, time 5.17s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20850: loss 3.4420, time 5.18s
|
06-07 05:24 - modeling.trainer - INFO - train - iter 20900: loss 3.4456, time 5.16s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 20950: loss 3.4436, time 5.17s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21000: loss 3.4344, time 5.18s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21050: loss 3.4333, time 5.18s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21100: loss 3.4371, time 5.17s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21150: loss 3.4353, time 5.16s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21200: loss 3.4326, time 5.18s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21250: loss 3.4366, time 5.20s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21300: loss 3.4398, time 5.16s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21350: loss 3.4274, time 5.16s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21400: loss 3.4284, time 5.17s
|
06-07 05:25 - modeling.trainer - INFO - train - iter 21450: loss 3.4346, time 5.15s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21500: loss 3.4254, time 5.15s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21550: loss 3.4259, time 5.16s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21600: loss 3.4280, time 5.17s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21650: loss 3.4248, time 5.17s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21700: loss 3.4272, time 5.17s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21750: loss 3.4333, time 5.17s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21800: loss 3.4253, time 5.18s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21850: loss 3.4230, time 5.18s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21900: loss 3.4190, time 5.15s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 21950: loss 3.4107, time 5.15s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 22000: loss 3.4145, time 5.15s
|
06-07 05:26 - modeling.trainer - INFO - train - iter 22050: loss 3.4089, time 5.15s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22100: loss 3.4059, time 5.17s
|
06-07 05:27 - modeling.trainer - INFO - train - iter 22150: loss 3.4126, time 5.15s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.