text
stringlengths
54
260
06-07 08:24 - modeling.trainer - INFO - train - iter 125200: loss 3.0877, time 5.07s
06-07 08:24 - modeling.trainer - INFO - train - iter 125250: loss 3.0911, time 5.06s
06-07 08:25 - modeling.trainer - INFO - train - iter 125300: loss 3.0806, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125350: loss 3.0841, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125400: loss 3.0810, time 5.08s
06-07 08:25 - modeling.trainer - INFO - train - iter 125450: loss 3.0861, time 5.06s
06-07 08:25 - modeling.trainer - INFO - train - iter 125500: loss 3.0907, time 5.08s
06-07 08:25 - modeling.trainer - INFO - train - iter 125550: loss 3.0888, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125600: loss 3.0827, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125650: loss 3.0881, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125700: loss 3.0931, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125750: loss 3.0927, time 5.08s
06-07 08:25 - modeling.trainer - INFO - train - iter 125800: loss 3.0934, time 5.07s
06-07 08:25 - modeling.trainer - INFO - train - iter 125850: loss 3.0849, time 5.20s
06-07 08:26 - modeling.trainer - INFO - train - iter 125900: loss 3.0926, time 5.12s
06-07 08:26 - modeling.trainer - INFO - train - iter 125950: loss 3.0857, time 5.08s
06-07 08:26 - modeling.trainer - INFO - train - iter 126000: loss 3.0767, time 5.08s
06-07 08:26 - modeling.trainer - INFO - train - iter 126050: loss 3.0814, time 5.06s
06-07 08:26 - modeling.trainer - INFO - train - iter 126100: loss 3.0907, time 5.08s
06-07 08:26 - modeling.trainer - INFO - train - iter 126150: loss 3.0963, time 5.06s
06-07 08:26 - modeling.trainer - INFO - train - iter 126200: loss 3.0951, time 5.06s
06-07 08:26 - modeling.trainer - INFO - train - iter 126250: loss 3.0950, time 5.06s
06-07 08:26 - modeling.trainer - INFO - train - iter 126300: loss 3.0901, time 5.07s
06-07 08:26 - modeling.trainer - INFO - train - iter 126350: loss 3.0933, time 5.07s
06-07 08:26 - modeling.trainer - INFO - train - iter 126400: loss 3.0937, time 5.06s
06-07 08:26 - modeling.trainer - INFO - train - iter 126450: loss 3.0908, time 5.06s
06-07 08:27 - modeling.trainer - INFO - train - iter 126500: loss 3.0842, time 5.06s
06-07 08:27 - modeling.trainer - INFO - train - iter 126550: loss 3.0785, time 5.06s
06-07 08:27 - modeling.trainer - INFO - train - iter 126600: loss 3.0851, time 5.07s
06-07 08:27 - modeling.trainer - INFO - train - iter 126650: loss 3.0919, time 5.06s
06-07 08:27 - modeling.trainer - INFO - train - iter 126700: loss 3.0929, time 5.06s
06-07 08:27 - modeling.trainer - INFO - train - iter 126750: loss 3.0993, time 5.66s
06-07 08:27 - modeling.trainer - INFO - train - iter 126800: loss 3.0872, time 5.06s
06-07 08:27 - modeling.trainer - INFO - train - iter 126850: loss 3.0785, time 5.07s
06-07 08:27 - modeling.trainer - INFO - train - iter 126900: loss 3.0938, time 5.07s
06-07 08:27 - modeling.trainer - INFO - train - iter 126950: loss 3.0954, time 5.08s
06-07 08:27 - modeling.trainer - INFO - train - iter 127000: loss 3.0803, time 5.07s
06-07 08:27 - modeling.trainer - INFO - train - iter 127050: loss 3.0762, time 5.06s
06-07 08:28 - modeling.trainer - INFO - train - iter 127100: loss 3.0881, time 5.08s
06-07 08:28 - modeling.trainer - INFO - train - iter 127150: loss 3.0884, time 5.08s
06-07 08:28 - modeling.trainer - INFO - train - iter 127200: loss 3.0887, time 5.09s
06-07 08:28 - modeling.trainer - INFO - train - iter 127250: loss 3.0880, time 5.08s
06-07 08:28 - modeling.trainer - INFO - train - iter 127300: loss 3.0857, time 5.08s
06-07 08:28 - modeling.trainer - INFO - train - iter 127350: loss 3.0851, time 5.09s
06-07 08:28 - modeling.trainer - INFO - train - iter 127400: loss 3.0822, time 5.10s
06-07 08:28 - modeling.trainer - INFO - train - iter 127450: loss 3.0877, time 5.08s
06-07 08:28 - modeling.trainer - INFO - train - iter 127500: loss 3.0787, time 5.08s
06-07 08:28 - modeling.trainer - INFO - train - iter 127550: loss 3.0757, time 5.07s
06-07 08:28 - modeling.trainer - INFO - train - iter 127600: loss 3.0794, time 5.07s
06-07 08:29 - modeling.trainer - INFO - train - iter 127650: loss 3.0829, time 5.07s
06-07 08:29 - modeling.trainer - INFO - train - iter 127700: loss 3.0973, time 5.08s
06-07 08:29 - modeling.trainer - INFO - train - iter 127750: loss 3.1026, time 5.07s
06-07 08:29 - modeling.trainer - INFO - train - iter 127800: loss 3.0930, time 5.10s
06-07 08:29 - modeling.trainer - INFO - train - iter 127850: loss 3.0835, time 5.09s
06-07 08:29 - modeling.trainer - INFO - train - iter 127900: loss 3.0877, time 5.08s
06-07 08:29 - modeling.trainer - INFO - train - iter 127950: loss 3.0939, time 5.09s
06-07 08:29 - modeling.trainer - INFO - train - iter 128000: loss 3.0909, time 5.09s
06-07 08:29 - modeling.trainer - INFO - train - iter 128050: loss 3.0922, time 5.09s
06-07 08:29 - modeling.trainer - INFO - train - iter 128100: loss 3.0960, time 5.09s
06-07 08:29 - modeling.trainer - INFO - train - iter 128150: loss 3.0867, time 5.08s
06-07 08:29 - modeling.trainer - INFO - train - iter 128200: loss 3.0776, time 5.08s
06-07 08:30 - modeling.trainer - INFO - train - iter 128250: loss 3.0789, time 5.08s
06-07 08:30 - modeling.trainer - INFO - train - iter 128300: loss 3.0911, time 5.07s
06-07 08:30 - modeling.trainer - INFO - train - iter 128350: loss 3.0908, time 5.08s
06-07 08:30 - modeling.trainer - INFO - train - iter 128400: loss 3.0855, time 5.08s
06-07 08:30 - modeling.trainer - INFO - train - iter 128450: loss 3.0917, time 5.06s
06-07 08:30 - modeling.trainer - INFO - train - iter 128500: loss 3.0912, time 5.72s
06-07 08:30 - modeling.trainer - INFO - train - iter 128550: loss 3.0886, time 5.09s
06-07 08:30 - modeling.trainer - INFO - train - iter 128600: loss 3.0867, time 5.09s
06-07 08:30 - modeling.trainer - INFO - train - iter 128650: loss 3.0888, time 5.09s
06-07 08:30 - modeling.trainer - INFO - train - iter 128700: loss 3.0936, time 5.08s
06-07 08:30 - modeling.trainer - INFO - train - iter 128750: loss 3.0845, time 5.08s
06-07 08:30 - modeling.trainer - INFO - train - iter 128800: loss 3.0809, time 5.07s
06-07 08:31 - modeling.trainer - INFO - train - iter 128850: loss 3.0864, time 5.07s
06-07 08:31 - modeling.trainer - INFO - train - iter 128900: loss 3.0868, time 5.09s
06-07 08:31 - modeling.trainer - INFO - train - iter 128950: loss 3.0913, time 5.09s
06-07 08:31 - modeling.trainer - INFO - train - iter 129000: loss 3.0870, time 5.09s
06-07 08:31 - modeling.trainer - INFO - train - iter 129050: loss 3.0864, time 5.08s
06-07 08:31 - modeling.trainer - INFO - train - iter 129100: loss 3.0909, time 5.08s
06-07 08:31 - modeling.trainer - INFO - train - iter 129150: loss 3.0874, time 5.09s
06-07 08:31 - modeling.trainer - INFO - train - iter 129200: loss 3.0836, time 5.08s
06-07 08:31 - modeling.trainer - INFO - train - iter 129250: loss 3.0816, time 5.07s
06-07 08:31 - modeling.trainer - INFO - train - iter 129300: loss 3.0806, time 5.09s
06-07 08:31 - modeling.trainer - INFO - train - iter 129350: loss 3.0820, time 5.07s
06-07 08:31 - modeling.trainer - INFO - train - iter 129400: loss 3.0844, time 5.08s
06-07 08:32 - modeling.trainer - INFO - train - iter 129450: loss 3.0801, time 5.07s
06-07 08:32 - modeling.trainer - INFO - train - iter 129500: loss 3.0918, time 5.08s
06-07 08:32 - modeling.trainer - INFO - train - iter 129550: loss 3.0946, time 5.09s
06-07 08:32 - modeling.trainer - INFO - train - iter 129600: loss 3.0727, time 5.07s
06-07 08:32 - modeling.trainer - INFO - train - iter 129650: loss 3.0721, time 5.07s
06-07 08:32 - modeling.trainer - INFO - train - iter 129700: loss 3.0870, time 5.08s
06-07 08:32 - modeling.trainer - INFO - train - iter 129750: loss 3.0933, time 5.08s
06-07 08:32 - modeling.trainer - INFO - train - iter 129800: loss 3.0883, time 5.06s
06-07 08:32 - modeling.trainer - INFO - train - iter 129850: loss 3.0938, time 5.09s
06-07 08:32 - modeling.trainer - INFO - train - iter 129900: loss 3.0976, time 5.08s
06-07 08:32 - modeling.trainer - INFO - train - iter 129950: loss 3.0888, time 5.08s
06-07 08:33 - modeling.trainer - INFO - val - iter 130000: lm_loss 1.5240, value_loss 0.7553, time_loss 0.7032, loss 2.9825, time 4.15s
06-07 08:33 - modeling.trainer - INFO - new best val loss 2.9825
06-07 08:33 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 08:33 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt