text
stringlengths
54
260
06-07 08:33 - modeling.trainer - INFO - train - iter 130000: loss 3.0926, time 16.87s
06-07 08:33 - modeling.trainer - INFO - train - iter 130050: loss 3.0872, time 5.09s
06-07 08:33 - modeling.trainer - INFO - train - iter 130100: loss 3.0772, time 5.09s
06-07 08:33 - modeling.trainer - INFO - train - iter 130150: loss 3.0823, time 5.09s
06-07 08:33 - modeling.trainer - INFO - train - iter 130200: loss 3.0858, time 5.76s
06-07 08:33 - modeling.trainer - INFO - train - iter 130250: loss 3.0829, time 5.06s
06-07 08:33 - modeling.trainer - INFO - train - iter 130300: loss 3.0871, time 5.06s
06-07 08:33 - modeling.trainer - INFO - train - iter 130350: loss 3.0892, time 5.07s
06-07 08:33 - modeling.trainer - INFO - train - iter 130400: loss 3.0857, time 5.06s
06-07 08:33 - modeling.trainer - INFO - train - iter 130450: loss 3.0856, time 5.06s
06-07 08:34 - modeling.trainer - INFO - train - iter 130500: loss 3.0863, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 130550: loss 3.0974, time 5.08s
06-07 08:34 - modeling.trainer - INFO - train - iter 130600: loss 3.0914, time 5.06s
06-07 08:34 - modeling.trainer - INFO - train - iter 130650: loss 3.0758, time 5.06s
06-07 08:34 - modeling.trainer - INFO - train - iter 130700: loss 3.0706, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 130750: loss 3.0750, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 130800: loss 3.0821, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 130850: loss 3.0822, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 130900: loss 3.0898, time 5.08s
06-07 08:34 - modeling.trainer - INFO - train - iter 130950: loss 3.0894, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 131000: loss 3.0838, time 5.07s
06-07 08:34 - modeling.trainer - INFO - train - iter 131050: loss 3.0843, time 5.08s
06-07 08:35 - modeling.trainer - INFO - train - iter 131100: loss 3.0917, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131150: loss 3.0881, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131200: loss 3.0801, time 5.08s
06-07 08:35 - modeling.trainer - INFO - train - iter 131250: loss 3.0836, time 5.08s
06-07 08:35 - modeling.trainer - INFO - train - iter 131300: loss 3.0980, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131350: loss 3.1013, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131400: loss 3.0880, time 5.08s
06-07 08:35 - modeling.trainer - INFO - train - iter 131450: loss 3.0823, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131500: loss 3.0833, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131550: loss 3.0919, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131600: loss 3.0945, time 5.07s
06-07 08:35 - modeling.trainer - INFO - train - iter 131650: loss 3.0914, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 131700: loss 3.0857, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 131750: loss 3.0884, time 5.08s
06-07 08:36 - modeling.trainer - INFO - train - iter 131800: loss 3.0946, time 5.08s
06-07 08:36 - modeling.trainer - INFO - train - iter 131850: loss 3.0869, time 5.08s
06-07 08:36 - modeling.trainer - INFO - train - iter 131900: loss 3.0813, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 131950: loss 3.0888, time 5.75s
06-07 08:36 - modeling.trainer - INFO - train - iter 132000: loss 3.0868, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 132050: loss 3.0786, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 132100: loss 3.0858, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 132150: loss 3.0871, time 5.07s
06-07 08:36 - modeling.trainer - INFO - train - iter 132200: loss 3.0885, time 5.06s
06-07 08:37 - modeling.trainer - INFO - train - iter 132250: loss 3.0884, time 5.07s
06-07 08:37 - modeling.trainer - INFO - train - iter 132300: loss 3.0837, time 5.07s
06-07 08:37 - modeling.trainer - INFO - train - iter 132350: loss 3.0870, time 5.07s
06-07 08:37 - modeling.trainer - INFO - train - iter 132400: loss 3.0938, time 5.08s
06-07 08:37 - modeling.trainer - INFO - train - iter 132450: loss 3.0895, time 5.10s
06-07 08:37 - modeling.trainer - INFO - train - iter 132500: loss 3.0851, time 5.10s
06-07 08:37 - modeling.trainer - INFO - train - iter 132550: loss 3.0925, time 5.09s
06-07 08:37 - modeling.trainer - INFO - train - iter 132600: loss 3.0876, time 5.09s
06-07 08:37 - modeling.trainer - INFO - train - iter 132650: loss 3.0784, time 5.08s
06-07 08:37 - modeling.trainer - INFO - train - iter 132700: loss 3.0785, time 5.06s
06-07 08:37 - modeling.trainer - INFO - train - iter 132750: loss 3.0777, time 5.06s
06-07 08:37 - modeling.trainer - INFO - train - iter 132800: loss 3.0841, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 132850: loss 3.0866, time 5.06s
06-07 08:38 - modeling.trainer - INFO - train - iter 132900: loss 3.0820, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 132950: loss 3.0821, time 5.08s
06-07 08:38 - modeling.trainer - INFO - train - iter 133000: loss 3.0926, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 133050: loss 3.0968, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 133100: loss 3.0881, time 5.06s
06-07 08:38 - modeling.trainer - INFO - train - iter 133150: loss 3.0861, time 5.08s
06-07 08:38 - modeling.trainer - INFO - train - iter 133200: loss 3.0790, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 133250: loss 3.0756, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 133300: loss 3.0835, time 5.07s
06-07 08:38 - modeling.trainer - INFO - train - iter 133350: loss 3.0856, time 5.06s
06-07 08:38 - modeling.trainer - INFO - train - iter 133400: loss 3.0779, time 5.06s
06-07 08:39 - modeling.trainer - INFO - train - iter 133450: loss 3.0800, time 5.06s
06-07 08:39 - modeling.trainer - INFO - train - iter 133500: loss 3.0774, time 5.06s
06-07 08:39 - modeling.trainer - INFO - train - iter 133550: loss 3.0802, time 5.07s
06-07 08:39 - modeling.trainer - INFO - train - iter 133600: loss 3.0868, time 5.08s
06-07 08:39 - modeling.trainer - INFO - train - iter 133650: loss 3.0790, time 5.07s
06-07 08:39 - modeling.trainer - INFO - train - iter 133700: loss 3.0758, time 5.73s
06-07 08:39 - modeling.trainer - INFO - train - iter 133750: loss 3.0890, time 5.07s
06-07 08:39 - modeling.trainer - INFO - train - iter 133800: loss 3.0898, time 5.08s
06-07 08:39 - modeling.trainer - INFO - train - iter 133850: loss 3.0824, time 5.07s
06-07 08:39 - modeling.trainer - INFO - train - iter 133900: loss 3.0850, time 5.07s
06-07 08:39 - modeling.trainer - INFO - train - iter 133950: loss 3.0811, time 5.07s
06-07 08:39 - modeling.trainer - INFO - train - iter 134000: loss 3.0811, time 5.07s
06-07 08:40 - modeling.trainer - INFO - train - iter 134050: loss 3.0907, time 5.07s
06-07 08:40 - modeling.trainer - INFO - train - iter 134100: loss 3.0949, time 5.06s
06-07 08:40 - modeling.trainer - INFO - train - iter 134150: loss 3.0922, time 5.06s
06-07 08:40 - modeling.trainer - INFO - train - iter 134200: loss 3.0951, time 5.08s
06-07 08:40 - modeling.trainer - INFO - train - iter 134250: loss 3.0855, time 5.07s
06-07 08:40 - modeling.trainer - INFO - train - iter 134300: loss 3.0839, time 5.09s
06-07 08:40 - modeling.trainer - INFO - train - iter 134350: loss 3.0784, time 5.09s
06-07 08:40 - modeling.trainer - INFO - train - iter 134400: loss 3.0691, time 5.06s
06-07 08:40 - modeling.trainer - INFO - train - iter 134450: loss 3.0840, time 5.07s
06-07 08:40 - modeling.trainer - INFO - train - iter 134500: loss 3.0865, time 5.10s
06-07 08:40 - modeling.trainer - INFO - train - iter 134550: loss 3.0739, time 5.07s
06-07 08:41 - modeling.trainer - INFO - train - iter 134600: loss 3.0750, time 5.07s
06-07 08:41 - modeling.trainer - INFO - train - iter 134650: loss 3.0778, time 5.06s
06-07 08:41 - modeling.trainer - INFO - train - iter 134700: loss 3.0750, time 5.06s
06-07 08:41 - modeling.trainer - INFO - train - iter 134750: loss 3.0736, time 5.06s
06-07 08:41 - modeling.trainer - INFO - train - iter 134800: loss 3.0761, time 5.07s
06-07 08:41 - modeling.trainer - INFO - train - iter 134850: loss 3.0790, time 5.07s
06-07 08:41 - modeling.trainer - INFO - train - iter 134900: loss 3.0846, time 5.06s
06-07 08:41 - modeling.trainer - INFO - train - iter 134950: loss 3.0840, time 5.06s