text
stringlengths
54
260
06-11 09:58 - modeling.trainer - INFO - train - iter 1824100: loss 2.8388, time 6.68s
06-11 09:58 - modeling.trainer - INFO - train - iter 1824150: loss 2.8306, time 6.55s
06-11 09:58 - modeling.trainer - INFO - train - iter 1824200: loss 2.8300, time 6.55s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824250: loss 2.8330, time 6.59s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824300: loss 2.8397, time 6.62s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824350: loss 2.8422, time 6.51s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824400: loss 2.8447, time 6.46s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824450: loss 2.8465, time 6.62s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824500: loss 2.8366, time 6.55s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824550: loss 2.8368, time 6.44s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824600: loss 2.8432, time 6.57s
06-11 09:59 - modeling.trainer - INFO - train - iter 1824650: loss 2.8431, time 6.51s
06-11 10:00 - modeling.trainer - INFO - train - iter 1824700: loss 2.8421, time 6.62s
06-11 10:00 - modeling.trainer - INFO - train - iter 1824750: loss 2.8364, time 6.65s
06-11 10:00 - modeling.trainer - INFO - train - iter 1824800: loss 2.8347, time 6.52s
06-11 10:00 - modeling.trainer - INFO - train - iter 1824850: loss 2.8413, time 6.58s
06-11 10:00 - modeling.trainer - INFO - train - iter 1824900: loss 2.8351, time 6.70s
06-11 10:00 - modeling.trainer - INFO - train - iter 1824950: loss 2.8283, time 6.68s
06-11 10:00 - modeling.trainer - INFO - train - iter 1825000: loss 2.8282, time 6.65s
06-11 10:00 - modeling.trainer - INFO - train - iter 1825050: loss 2.8292, time 6.60s
06-11 10:00 - modeling.trainer - INFO - train - iter 1825100: loss 2.8322, time 6.61s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825150: loss 2.8396, time 6.64s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825200: loss 2.8435, time 6.68s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825250: loss 2.8348, time 6.74s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825300: loss 2.8349, time 6.59s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825350: loss 2.8350, time 6.53s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825400: loss 2.8287, time 7.25s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825450: loss 2.8425, time 6.64s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825500: loss 2.8512, time 6.68s
06-11 10:01 - modeling.trainer - INFO - train - iter 1825550: loss 2.8457, time 6.60s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825600: loss 2.8406, time 6.55s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825650: loss 2.8396, time 6.62s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825700: loss 2.8485, time 6.62s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825750: loss 2.8447, time 6.57s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825800: loss 2.8384, time 6.65s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825850: loss 2.8381, time 6.60s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825900: loss 2.8454, time 6.69s
06-11 10:02 - modeling.trainer - INFO - train - iter 1825950: loss 2.8402, time 6.61s
06-11 10:02 - modeling.trainer - INFO - train - iter 1826000: loss 2.8330, time 6.54s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826050: loss 2.8379, time 6.48s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826100: loss 2.8411, time 6.65s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826150: loss 2.8501, time 6.58s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826200: loss 2.8476, time 6.59s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826250: loss 2.8433, time 6.52s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826300: loss 2.8357, time 6.55s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826350: loss 2.8396, time 6.69s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826400: loss 2.8498, time 6.51s
06-11 10:03 - modeling.trainer - INFO - train - iter 1826450: loss 2.8389, time 6.51s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826500: loss 2.8369, time 6.61s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826550: loss 2.8443, time 6.60s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826600: loss 2.8416, time 6.56s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826650: loss 2.8322, time 6.61s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826700: loss 2.8283, time 6.65s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826750: loss 2.8352, time 6.68s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826800: loss 2.8403, time 6.47s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826850: loss 2.8451, time 6.61s
06-11 10:04 - modeling.trainer - INFO - train - iter 1826900: loss 2.8382, time 6.75s
06-11 10:05 - modeling.trainer - INFO - train - iter 1826950: loss 2.8331, time 6.64s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827000: loss 2.8368, time 6.64s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827050: loss 2.8374, time 6.60s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827100: loss 2.8377, time 6.58s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827150: loss 2.8331, time 7.24s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827200: loss 2.8375, time 6.71s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827250: loss 2.8445, time 6.60s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827300: loss 2.8389, time 6.57s
06-11 10:05 - modeling.trainer - INFO - train - iter 1827350: loss 2.8283, time 6.65s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827400: loss 2.8337, time 6.63s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827450: loss 2.8418, time 6.74s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827500: loss 2.8423, time 6.63s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827550: loss 2.8435, time 6.48s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827600: loss 2.8436, time 6.56s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827650: loss 2.8446, time 6.58s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827700: loss 2.8351, time 6.57s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827750: loss 2.8352, time 6.60s
06-11 10:06 - modeling.trainer - INFO - train - iter 1827800: loss 2.8441, time 6.66s
06-11 10:07 - modeling.trainer - INFO - train - iter 1827850: loss 2.8445, time 6.63s
06-11 10:07 - modeling.trainer - INFO - train - iter 1827900: loss 2.8393, time 6.66s
06-11 10:07 - modeling.trainer - INFO - train - iter 1827950: loss 2.8352, time 6.60s
06-11 10:07 - modeling.trainer - INFO - train - iter 1828000: loss 2.8419, time 6.54s
06-11 10:07 - modeling.trainer - INFO - train - iter 1828050: loss 2.8463, time 6.52s
06-11 10:07 - modeling.trainer - INFO - train - iter 1828100: loss 2.8317, time 6.64s
06-11 10:07 - modeling.trainer - INFO - train - iter 1828150: loss 2.8270, time 6.60s
06-11 10:07 - modeling.trainer - INFO - train - iter 1828200: loss 2.8430, time 6.70s
06-11 10:07 - modeling.trainer - INFO - train - iter 1828250: loss 2.8467, time 6.63s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828300: loss 2.8391, time 6.53s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828350: loss 2.8291, time 6.62s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828400: loss 2.8301, time 6.61s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828450: loss 2.8332, time 6.58s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828500: loss 2.8317, time 6.71s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828550: loss 2.8389, time 6.56s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828600: loss 2.8327, time 6.51s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828650: loss 2.8304, time 6.54s
06-11 10:08 - modeling.trainer - INFO - train - iter 1828700: loss 2.8427, time 6.55s
06-11 10:09 - modeling.trainer - INFO - train - iter 1828750: loss 2.8411, time 6.64s
06-11 10:09 - modeling.trainer - INFO - train - iter 1828800: loss 2.8420, time 6.65s
06-11 10:09 - modeling.trainer - INFO - train - iter 1828850: loss 2.8296, time 6.65s
06-11 10:09 - modeling.trainer - INFO - train - iter 1828900: loss 2.8167, time 7.25s
06-11 10:09 - modeling.trainer - INFO - train - iter 1828950: loss 2.8365, time 6.53s
06-11 10:09 - modeling.trainer - INFO - train - iter 1829000: loss 2.8440, time 6.59s
06-11 10:09 - modeling.trainer - INFO - train - iter 1829050: loss 2.8429, time 6.60s