text
stringlengths
54
260
06-11 10:20 - modeling.trainer - INFO - train - iter 1833900: loss 2.8378, time 6.59s
06-11 10:20 - modeling.trainer - INFO - train - iter 1833950: loss 2.8298, time 6.48s
06-11 10:20 - modeling.trainer - INFO - train - iter 1834000: loss 2.8359, time 6.49s
06-11 10:20 - modeling.trainer - INFO - train - iter 1834050: loss 2.8447, time 6.62s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834100: loss 2.8419, time 7.33s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834150: loss 2.8334, time 6.56s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834200: loss 2.8359, time 6.50s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834250: loss 2.8353, time 6.57s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834300: loss 2.8307, time 6.63s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834350: loss 2.8366, time 6.53s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834400: loss 2.8385, time 6.62s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834450: loss 2.8370, time 6.59s
06-11 10:21 - modeling.trainer - INFO - train - iter 1834500: loss 2.8344, time 6.49s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834550: loss 2.8359, time 6.63s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834600: loss 2.8410, time 6.63s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834650: loss 2.8402, time 6.67s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834700: loss 2.8363, time 6.57s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834750: loss 2.8334, time 6.60s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834800: loss 2.8440, time 6.56s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834850: loss 2.8431, time 6.54s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834900: loss 2.8364, time 6.58s
06-11 10:22 - modeling.trainer - INFO - train - iter 1834950: loss 2.8413, time 6.72s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835000: loss 2.8433, time 6.53s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835050: loss 2.8377, time 6.60s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835100: loss 2.8310, time 6.49s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835150: loss 2.8346, time 6.51s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835200: loss 2.8389, time 6.71s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835250: loss 2.8311, time 6.66s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835300: loss 2.8324, time 6.61s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835350: loss 2.8376, time 6.59s
06-11 10:23 - modeling.trainer - INFO - train - iter 1835400: loss 2.8293, time 6.63s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835450: loss 2.8376, time 6.69s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835500: loss 2.8452, time 6.53s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835550: loss 2.8418, time 6.62s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835600: loss 2.8413, time 6.61s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835650: loss 2.8391, time 6.54s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835700: loss 2.8277, time 6.55s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835750: loss 2.8265, time 6.52s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835800: loss 2.8405, time 6.59s
06-11 10:24 - modeling.trainer - INFO - train - iter 1835850: loss 2.8376, time 7.28s
06-11 10:25 - modeling.trainer - INFO - train - iter 1835900: loss 2.8338, time 6.66s
06-11 10:25 - modeling.trainer - INFO - train - iter 1835950: loss 2.8385, time 6.75s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836000: loss 2.8312, time 6.62s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836050: loss 2.8336, time 6.58s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836100: loss 2.8398, time 6.52s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836150: loss 2.8387, time 6.54s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836200: loss 2.8452, time 6.60s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836250: loss 2.8414, time 6.58s
06-11 10:25 - modeling.trainer - INFO - train - iter 1836300: loss 2.8320, time 6.58s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836350: loss 2.8274, time 6.67s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836400: loss 2.8319, time 6.60s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836450: loss 2.8474, time 6.56s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836500: loss 2.8436, time 6.60s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836550: loss 2.8323, time 6.55s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836600: loss 2.8416, time 6.63s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836650: loss 2.8431, time 6.68s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836700: loss 2.8434, time 6.59s
06-11 10:26 - modeling.trainer - INFO - train - iter 1836750: loss 2.8448, time 6.53s
06-11 10:27 - modeling.trainer - INFO - train - iter 1836800: loss 2.8450, time 6.61s
06-11 10:27 - modeling.trainer - INFO - train - iter 1836850: loss 2.8488, time 6.58s
06-11 10:27 - modeling.trainer - INFO - train - iter 1836900: loss 2.8416, time 6.79s
06-11 10:27 - modeling.trainer - INFO - train - iter 1836950: loss 2.8395, time 6.66s
06-11 10:27 - modeling.trainer - INFO - train - iter 1837000: loss 2.8344, time 6.61s
06-11 10:27 - modeling.trainer - INFO - train - iter 1837050: loss 2.8287, time 6.62s
06-11 10:27 - modeling.trainer - INFO - train - iter 1837100: loss 2.8348, time 6.62s
06-11 10:27 - modeling.trainer - INFO - train - iter 1837150: loss 2.8311, time 6.52s
06-11 10:27 - modeling.trainer - INFO - train - iter 1837200: loss 2.8340, time 6.57s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837250: loss 2.8404, time 6.59s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837300: loss 2.8342, time 6.49s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837350: loss 2.8311, time 6.54s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837400: loss 2.8381, time 6.49s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837450: loss 2.8374, time 6.64s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837500: loss 2.8323, time 6.58s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837550: loss 2.8301, time 6.66s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837600: loss 2.8320, time 7.26s
06-11 10:28 - modeling.trainer - INFO - train - iter 1837650: loss 2.8366, time 6.53s
06-11 10:29 - modeling.trainer - INFO - train - iter 1837700: loss 2.8378, time 6.60s
06-11 10:29 - modeling.trainer - INFO - train - iter 1837750: loss 2.8400, time 6.69s
06-11 10:29 - modeling.trainer - INFO - train - iter 1837800: loss 2.8448, time 6.51s
06-11 10:29 - modeling.trainer - INFO - train - iter 1837850: loss 2.8384, time 6.61s
06-11 10:29 - modeling.trainer - INFO - train - iter 1837900: loss 2.8351, time 6.62s
06-11 10:29 - modeling.trainer - INFO - train - iter 1837950: loss 2.8384, time 6.58s
06-11 10:29 - modeling.trainer - INFO - train - iter 1838000: loss 2.8397, time 6.51s
06-11 10:29 - modeling.trainer - INFO - train - iter 1838050: loss 2.8400, time 6.62s
06-11 10:29 - modeling.trainer - INFO - train - iter 1838100: loss 2.8282, time 6.54s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838150: loss 2.8265, time 6.61s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838200: loss 2.8281, time 6.62s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838250: loss 2.8332, time 6.52s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838300: loss 2.8383, time 6.61s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838350: loss 2.8403, time 6.65s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838400: loss 2.8390, time 6.63s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838450: loss 2.8404, time 6.64s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838500: loss 2.8430, time 6.58s
06-11 10:30 - modeling.trainer - INFO - train - iter 1838550: loss 2.8390, time 6.56s
06-11 10:31 - modeling.trainer - INFO - train - iter 1838600: loss 2.8370, time 6.61s
06-11 10:31 - modeling.trainer - INFO - train - iter 1838650: loss 2.8371, time 6.58s
06-11 10:31 - modeling.trainer - INFO - train - iter 1838700: loss 2.8421, time 6.62s
06-11 10:31 - modeling.trainer - INFO - train - iter 1838750: loss 2.8365, time 6.55s
06-11 10:31 - modeling.trainer - INFO - train - iter 1838800: loss 2.8337, time 6.61s
06-11 10:31 - modeling.trainer - INFO - train - iter 1838850: loss 2.8381, time 6.57s