text
stringlengths
54
260
06-11 10:42 - modeling.trainer - INFO - train - iter 1843800: loss 2.8265, time 6.67s
06-11 10:42 - modeling.trainer - INFO - train - iter 1843850: loss 2.8290, time 6.65s
06-11 10:42 - modeling.trainer - INFO - train - iter 1843900: loss 2.8372, time 6.63s
06-11 10:43 - modeling.trainer - INFO - train - iter 1843950: loss 2.8466, time 6.58s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844000: loss 2.8469, time 6.52s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844050: loss 2.8296, time 6.54s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844100: loss 2.8288, time 6.58s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844150: loss 2.8362, time 6.57s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844200: loss 2.8359, time 6.75s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844250: loss 2.8429, time 6.56s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844300: loss 2.8485, time 6.73s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844350: loss 2.8394, time 6.53s
06-11 10:43 - modeling.trainer - INFO - train - iter 1844400: loss 2.8316, time 6.58s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844450: loss 2.8417, time 6.61s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844500: loss 2.8398, time 6.60s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844550: loss 2.8311, time 7.24s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844600: loss 2.8410, time 6.75s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844650: loss 2.8458, time 6.64s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844700: loss 2.8431, time 6.65s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844750: loss 2.8386, time 6.55s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844800: loss 2.8436, time 6.54s
06-11 10:44 - modeling.trainer - INFO - train - iter 1844850: loss 2.8514, time 6.63s
06-11 10:45 - modeling.trainer - INFO - train - iter 1844900: loss 2.8343, time 6.61s
06-11 10:45 - modeling.trainer - INFO - train - iter 1844950: loss 2.8187, time 6.60s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845000: loss 2.8312, time 6.57s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845050: loss 2.8386, time 6.58s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845100: loss 2.8361, time 6.52s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845150: loss 2.8386, time 6.54s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845200: loss 2.8435, time 6.55s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845250: loss 2.8450, time 6.63s
06-11 10:45 - modeling.trainer - INFO - train - iter 1845300: loss 2.8325, time 6.54s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845350: loss 2.8286, time 6.51s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845400: loss 2.8368, time 6.50s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845450: loss 2.8447, time 6.50s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845500: loss 2.8473, time 6.66s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845550: loss 2.8395, time 6.55s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845600: loss 2.8383, time 6.59s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845650: loss 2.8360, time 6.61s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845700: loss 2.8415, time 6.75s
06-11 10:46 - modeling.trainer - INFO - train - iter 1845750: loss 2.8519, time 6.59s
06-11 10:47 - modeling.trainer - INFO - train - iter 1845800: loss 2.8452, time 6.62s
06-11 10:47 - modeling.trainer - INFO - train - iter 1845850: loss 2.8421, time 6.63s
06-11 10:47 - modeling.trainer - INFO - train - iter 1845900: loss 2.8367, time 6.60s
06-11 10:47 - modeling.trainer - INFO - train - iter 1845950: loss 2.8292, time 6.59s
06-11 10:47 - modeling.trainer - INFO - train - iter 1846000: loss 2.8259, time 6.66s
06-11 10:47 - modeling.trainer - INFO - train - iter 1846050: loss 2.8314, time 6.61s
06-11 10:47 - modeling.trainer - INFO - train - iter 1846100: loss 2.8385, time 6.60s
06-11 10:47 - modeling.trainer - INFO - train - iter 1846150: loss 2.8332, time 6.57s
06-11 10:47 - modeling.trainer - INFO - train - iter 1846200: loss 2.8349, time 6.55s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846250: loss 2.8395, time 6.54s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846300: loss 2.8388, time 7.28s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846350: loss 2.8328, time 6.57s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846400: loss 2.8372, time 6.60s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846450: loss 2.8387, time 6.70s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846500: loss 2.8322, time 6.63s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846550: loss 2.8358, time 6.62s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846600: loss 2.8461, time 6.53s
06-11 10:48 - modeling.trainer - INFO - train - iter 1846650: loss 2.8455, time 6.60s
06-11 10:49 - modeling.trainer - INFO - train - iter 1846700: loss 2.8490, time 6.54s
06-11 10:49 - modeling.trainer - INFO - train - iter 1846750: loss 2.8581, time 6.59s
06-11 10:49 - modeling.trainer - INFO - train - iter 1846800: loss 2.8397, time 6.59s
06-11 10:49 - modeling.trainer - INFO - train - iter 1846850: loss 2.8292, time 6.58s
06-11 10:49 - modeling.trainer - INFO - train - iter 1846900: loss 2.8300, time 6.67s
06-11 10:49 - modeling.trainer - INFO - train - iter 1846950: loss 2.8360, time 6.69s
06-11 10:49 - modeling.trainer - INFO - train - iter 1847000: loss 2.8454, time 6.49s
06-11 10:49 - modeling.trainer - INFO - train - iter 1847050: loss 2.8443, time 6.63s
06-11 10:49 - modeling.trainer - INFO - train - iter 1847100: loss 2.8341, time 6.52s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847150: loss 2.8317, time 6.50s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847200: loss 2.8286, time 6.58s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847250: loss 2.8195, time 6.53s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847300: loss 2.8277, time 6.59s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847350: loss 2.8426, time 6.52s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847400: loss 2.8411, time 6.64s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847450: loss 2.8385, time 6.64s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847500: loss 2.8435, time 6.57s
06-11 10:50 - modeling.trainer - INFO - train - iter 1847550: loss 2.8418, time 6.61s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847600: loss 2.8448, time 6.54s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847650: loss 2.8405, time 6.53s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847700: loss 2.8368, time 6.59s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847750: loss 2.8429, time 6.55s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847800: loss 2.8417, time 6.62s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847850: loss 2.8405, time 6.68s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847900: loss 2.8467, time 6.56s
06-11 10:51 - modeling.trainer - INFO - train - iter 1847950: loss 2.8437, time 6.51s
06-11 10:51 - modeling.trainer - INFO - train - iter 1848000: loss 2.8293, time 6.49s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848050: loss 2.8313, time 7.19s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848100: loss 2.8403, time 6.68s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848150: loss 2.8451, time 6.58s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848200: loss 2.8408, time 6.54s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848250: loss 2.8417, time 6.58s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848300: loss 2.8454, time 6.53s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848350: loss 2.8373, time 6.56s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848400: loss 2.8312, time 6.58s
06-11 10:52 - modeling.trainer - INFO - train - iter 1848450: loss 2.8384, time 6.60s
06-11 10:53 - modeling.trainer - INFO - train - iter 1848500: loss 2.8453, time 6.63s
06-11 10:53 - modeling.trainer - INFO - train - iter 1848550: loss 2.8419, time 6.57s
06-11 10:53 - modeling.trainer - INFO - train - iter 1848600: loss 2.8390, time 6.61s
06-11 10:53 - modeling.trainer - INFO - train - iter 1848650: loss 2.8304, time 6.50s
06-11 10:53 - modeling.trainer - INFO - train - iter 1848700: loss 2.8370, time 6.53s
06-11 10:53 - modeling.trainer - INFO - train - iter 1848750: loss 2.8466, time 6.67s