text
stringlengths 54
260
|
---|
06-07 10:52 - modeling.trainer - INFO - train - iter 208900: loss 3.0433, time 5.11s
|
06-07 10:52 - modeling.trainer - INFO - train - iter 208950: loss 3.0415, time 5.12s
|
06-07 10:52 - modeling.trainer - INFO - train - iter 209000: loss 3.0359, time 5.10s
|
06-07 10:52 - modeling.trainer - INFO - train - iter 209050: loss 3.0281, time 5.10s
|
06-07 10:52 - modeling.trainer - INFO - train - iter 209100: loss 3.0310, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209150: loss 3.0395, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209200: loss 3.0447, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209250: loss 3.0347, time 5.10s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209300: loss 3.0267, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209350: loss 3.0404, time 5.10s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209400: loss 3.0395, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209450: loss 3.0327, time 5.12s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209500: loss 3.0332, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209550: loss 3.0326, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209600: loss 3.0282, time 5.11s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209650: loss 3.0321, time 5.09s
|
06-07 10:53 - modeling.trainer - INFO - train - iter 209700: loss 3.0401, time 5.11s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 209750: loss 3.0264, time 5.10s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 209800: loss 3.0223, time 5.12s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 209850: loss 3.0348, time 5.09s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 209900: loss 3.0427, time 5.10s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 209950: loss 3.0407, time 5.09s
|
06-07 10:54 - modeling.trainer - INFO - val - iter 210000: lm_loss 1.4889, value_loss 0.7550, time_loss 0.6981, loss 2.9420, time 4.21s
|
06-07 10:54 - modeling.trainer - INFO - new best val loss 2.9420
|
06-07 10:54 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
|
06-07 10:54 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
|
06-07 10:54 - modeling.trainer - INFO - train - iter 210000: loss 3.0429, time 16.87s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 210050: loss 3.0424, time 5.12s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 210100: loss 3.0349, time 5.14s
|
06-07 10:54 - modeling.trainer - INFO - train - iter 210150: loss 3.0289, time 5.12s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210200: loss 3.0314, time 5.12s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210250: loss 3.0368, time 5.77s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210300: loss 3.0361, time 5.11s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210350: loss 3.0345, time 5.10s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210400: loss 3.0396, time 5.13s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210450: loss 3.0408, time 5.12s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210500: loss 3.0387, time 5.09s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210550: loss 3.0384, time 5.09s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210600: loss 3.0366, time 5.10s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210650: loss 3.0381, time 5.09s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210700: loss 3.0457, time 5.08s
|
06-07 10:55 - modeling.trainer - INFO - train - iter 210750: loss 3.0491, time 5.09s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 210800: loss 3.0384, time 5.10s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 210850: loss 3.0331, time 5.14s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 210900: loss 3.0398, time 5.11s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 210950: loss 3.0463, time 5.10s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211000: loss 3.0507, time 5.09s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211050: loss 3.0423, time 5.11s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211100: loss 3.0287, time 5.09s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211150: loss 3.0339, time 5.10s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211200: loss 3.0447, time 5.10s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211250: loss 3.0499, time 5.09s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211300: loss 3.0435, time 5.08s
|
06-07 10:56 - modeling.trainer - INFO - train - iter 211350: loss 3.0285, time 5.10s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211400: loss 3.0234, time 5.09s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211450: loss 3.0175, time 5.08s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211500: loss 3.0218, time 5.19s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211550: loss 3.0277, time 5.10s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211600: loss 3.0343, time 5.08s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211650: loss 3.0427, time 5.09s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211700: loss 3.0297, time 5.10s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211750: loss 3.0243, time 5.08s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211800: loss 3.0327, time 5.08s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211850: loss 3.0390, time 5.09s
|
06-07 10:57 - modeling.trainer - INFO - train - iter 211900: loss 3.0351, time 5.12s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 211950: loss 3.0324, time 5.08s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212000: loss 3.0271, time 5.76s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212050: loss 3.0347, time 5.08s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212100: loss 3.0466, time 5.09s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212150: loss 3.0378, time 5.10s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212200: loss 3.0292, time 5.08s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212250: loss 3.0254, time 5.09s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212300: loss 3.0302, time 5.10s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212350: loss 3.0349, time 5.09s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212400: loss 3.0322, time 5.08s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212450: loss 3.0358, time 5.09s
|
06-07 10:58 - modeling.trainer - INFO - train - iter 212500: loss 3.0339, time 5.10s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212550: loss 3.0313, time 5.11s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212600: loss 3.0317, time 5.12s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212650: loss 3.0220, time 5.08s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212700: loss 3.0284, time 5.09s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212750: loss 3.0364, time 5.08s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212800: loss 3.0331, time 5.07s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212850: loss 3.0343, time 5.09s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212900: loss 3.0370, time 5.09s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 212950: loss 3.0366, time 5.09s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 213000: loss 3.0335, time 5.09s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 213050: loss 3.0316, time 5.09s
|
06-07 10:59 - modeling.trainer - INFO - train - iter 213100: loss 3.0389, time 5.08s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213150: loss 3.0404, time 5.10s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213200: loss 3.0363, time 5.08s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213250: loss 3.0385, time 5.09s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213300: loss 3.0383, time 5.08s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213350: loss 3.0329, time 5.07s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213400: loss 3.0276, time 5.09s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213450: loss 3.0383, time 5.10s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213500: loss 3.0409, time 5.11s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213550: loss 3.0332, time 5.12s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213600: loss 3.0372, time 5.11s
|
06-07 11:00 - modeling.trainer - INFO - train - iter 213650: loss 3.0414, time 5.10s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.