text
stringlengths
54
260
06-07 10:35 - modeling.trainer - INFO - train - iter 199100: loss 3.0353, time 5.16s
06-07 10:35 - modeling.trainer - INFO - train - iter 199150: loss 3.0356, time 5.20s
06-07 10:35 - modeling.trainer - INFO - train - iter 199200: loss 3.0355, time 5.18s
06-07 10:35 - modeling.trainer - INFO - train - iter 199250: loss 3.0399, time 5.14s
06-07 10:35 - modeling.trainer - INFO - train - iter 199300: loss 3.0509, time 5.15s
06-07 10:36 - modeling.trainer - INFO - train - iter 199350: loss 3.0471, time 5.17s
06-07 10:36 - modeling.trainer - INFO - train - iter 199400: loss 3.0422, time 5.15s
06-07 10:36 - modeling.trainer - INFO - train - iter 199450: loss 3.0402, time 5.16s
06-07 10:36 - modeling.trainer - INFO - train - iter 199500: loss 3.0425, time 5.16s
06-07 10:36 - modeling.trainer - INFO - train - iter 199550: loss 3.0453, time 5.16s
06-07 10:36 - modeling.trainer - INFO - train - iter 199600: loss 3.0366, time 5.16s
06-07 10:36 - modeling.trainer - INFO - train - iter 199650: loss 3.0463, time 5.15s
06-07 10:36 - modeling.trainer - INFO - train - iter 199700: loss 3.0548, time 5.18s
06-07 10:36 - modeling.trainer - INFO - train - iter 199750: loss 3.0478, time 5.16s
06-07 10:36 - modeling.trainer - INFO - train - iter 199800: loss 3.0461, time 5.17s
06-07 10:36 - modeling.trainer - INFO - train - iter 199850: loss 3.0450, time 5.81s
06-07 10:36 - modeling.trainer - INFO - train - iter 199900: loss 3.0469, time 5.16s
06-07 10:37 - modeling.trainer - INFO - train - iter 199950: loss 3.0425, time 5.19s
06-07 10:37 - modeling.trainer - INFO - val - iter 200000: lm_loss 1.4925, value_loss 0.7597, time_loss 0.6971, loss 2.9493, time 4.05s
06-07 10:37 - modeling.trainer - INFO - new best val loss 2.9493
06-07 10:37 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
06-07 10:37 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 10:37 - modeling.trainer - INFO - train - iter 200000: loss 3.0340, time 16.63s
06-07 10:37 - modeling.trainer - INFO - train - iter 200050: loss 3.0399, time 5.22s
06-07 10:37 - modeling.trainer - INFO - train - iter 200100: loss 3.0374, time 5.21s
06-07 10:37 - modeling.trainer - INFO - train - iter 200150: loss 3.0409, time 5.21s
06-07 10:37 - modeling.trainer - INFO - train - iter 200200: loss 3.0483, time 5.17s
06-07 10:37 - modeling.trainer - INFO - train - iter 200250: loss 3.0453, time 5.18s
06-07 10:37 - modeling.trainer - INFO - train - iter 200300: loss 3.0382, time 5.18s
06-07 10:37 - modeling.trainer - INFO - train - iter 200350: loss 3.0323, time 5.17s
06-07 10:38 - modeling.trainer - INFO - train - iter 200400: loss 3.0409, time 5.16s
06-07 10:38 - modeling.trainer - INFO - train - iter 200450: loss 3.0410, time 5.17s
06-07 10:38 - modeling.trainer - INFO - train - iter 200500: loss 3.0397, time 5.18s
06-07 10:38 - modeling.trainer - INFO - train - iter 200550: loss 3.0385, time 5.15s
06-07 10:38 - modeling.trainer - INFO - train - iter 200600: loss 3.0323, time 5.14s
06-07 10:38 - modeling.trainer - INFO - train - iter 200650: loss 3.0331, time 5.14s
06-07 10:38 - modeling.trainer - INFO - train - iter 200700: loss 3.0418, time 5.19s
06-07 10:38 - modeling.trainer - INFO - train - iter 200750: loss 3.0435, time 5.17s
06-07 10:38 - modeling.trainer - INFO - train - iter 200800: loss 3.0410, time 5.16s
06-07 10:38 - modeling.trainer - INFO - train - iter 200850: loss 3.0416, time 5.18s
06-07 10:38 - modeling.trainer - INFO - train - iter 200900: loss 3.0323, time 5.17s
06-07 10:38 - modeling.trainer - INFO - train - iter 200950: loss 3.0298, time 5.17s
06-07 10:39 - modeling.trainer - INFO - train - iter 201000: loss 3.0338, time 5.15s
06-07 10:39 - modeling.trainer - INFO - train - iter 201050: loss 3.0336, time 5.14s
06-07 10:39 - modeling.trainer - INFO - train - iter 201100: loss 3.0399, time 5.20s
06-07 10:39 - modeling.trainer - INFO - train - iter 201150: loss 3.0435, time 5.16s
06-07 10:39 - modeling.trainer - INFO - train - iter 201200: loss 3.0373, time 5.15s
06-07 10:39 - modeling.trainer - INFO - train - iter 201250: loss 3.0354, time 5.15s
06-07 10:39 - modeling.trainer - INFO - train - iter 201300: loss 3.0361, time 5.15s
06-07 10:39 - modeling.trainer - INFO - train - iter 201350: loss 3.0461, time 5.17s
06-07 10:39 - modeling.trainer - INFO - train - iter 201400: loss 3.0474, time 5.15s
06-07 10:39 - modeling.trainer - INFO - train - iter 201450: loss 3.0448, time 5.16s
06-07 10:39 - modeling.trainer - INFO - train - iter 201500: loss 3.0536, time 5.14s
06-07 10:40 - modeling.trainer - INFO - train - iter 201550: loss 3.0538, time 5.83s
06-07 10:40 - modeling.trainer - INFO - train - iter 201600: loss 3.0419, time 5.15s
06-07 10:40 - modeling.trainer - INFO - train - iter 201650: loss 3.0415, time 5.15s
06-07 10:40 - modeling.trainer - INFO - train - iter 201700: loss 3.0483, time 5.15s
06-07 10:40 - modeling.trainer - INFO - train - iter 201750: loss 3.0437, time 5.16s
06-07 10:40 - modeling.trainer - INFO - train - iter 201800: loss 3.0416, time 5.14s
06-07 10:40 - modeling.trainer - INFO - train - iter 201850: loss 3.0430, time 5.18s
06-07 10:40 - modeling.trainer - INFO - train - iter 201900: loss 3.0460, time 5.17s
06-07 10:40 - modeling.trainer - INFO - train - iter 201950: loss 3.0429, time 5.16s
06-07 10:40 - modeling.trainer - INFO - train - iter 202000: loss 3.0303, time 5.16s
06-07 10:40 - modeling.trainer - INFO - train - iter 202050: loss 3.0280, time 5.16s
06-07 10:40 - modeling.trainer - INFO - train - iter 202100: loss 3.0304, time 5.18s
06-07 10:41 - modeling.trainer - INFO - train - iter 202150: loss 3.0328, time 5.15s
06-07 10:41 - modeling.trainer - INFO - train - iter 202200: loss 3.0411, time 5.17s
06-07 10:41 - modeling.trainer - INFO - train - iter 202250: loss 3.0365, time 5.14s
06-07 10:41 - modeling.trainer - INFO - train - iter 202300: loss 3.0341, time 5.13s
06-07 10:41 - modeling.trainer - INFO - train - iter 202350: loss 3.0344, time 5.16s
06-07 10:41 - modeling.trainer - INFO - train - iter 202400: loss 3.0414, time 5.34s
06-07 10:41 - modeling.trainer - INFO - train - iter 202450: loss 3.0441, time 5.16s
06-07 10:41 - modeling.trainer - INFO - train - iter 202500: loss 3.0306, time 5.16s
06-07 10:41 - modeling.trainer - INFO - train - iter 202550: loss 3.0275, time 5.19s
06-07 10:41 - modeling.trainer - INFO - train - iter 202600: loss 3.0322, time 5.12s
06-07 10:41 - modeling.trainer - INFO - train - iter 202650: loss 3.0399, time 5.15s
06-07 10:41 - modeling.trainer - INFO - train - iter 202700: loss 3.0454, time 5.16s
06-07 10:42 - modeling.trainer - INFO - train - iter 202750: loss 3.0368, time 5.13s
06-07 10:42 - modeling.trainer - INFO - train - iter 202800: loss 3.0321, time 5.16s
06-07 10:42 - modeling.trainer - INFO - train - iter 202850: loss 3.0362, time 5.17s
06-07 10:42 - modeling.trainer - INFO - train - iter 202900: loss 3.0335, time 5.17s
06-07 10:42 - modeling.trainer - INFO - train - iter 202950: loss 3.0327, time 5.15s
06-07 10:42 - modeling.trainer - INFO - train - iter 203000: loss 3.0411, time 5.15s
06-07 10:42 - modeling.trainer - INFO - train - iter 203050: loss 3.0421, time 5.16s
06-07 10:42 - modeling.trainer - INFO - train - iter 203100: loss 3.0364, time 5.19s
06-07 10:42 - modeling.trainer - INFO - train - iter 203150: loss 3.0388, time 5.14s
06-07 10:42 - modeling.trainer - INFO - train - iter 203200: loss 3.0374, time 5.15s
06-07 10:42 - modeling.trainer - INFO - train - iter 203250: loss 3.0304, time 5.13s
06-07 10:43 - modeling.trainer - INFO - train - iter 203300: loss 3.0369, time 5.77s
06-07 10:43 - modeling.trainer - INFO - train - iter 203350: loss 3.0426, time 5.14s
06-07 10:43 - modeling.trainer - INFO - train - iter 203400: loss 3.0390, time 5.13s
06-07 10:43 - modeling.trainer - INFO - train - iter 203450: loss 3.0376, time 5.32s
06-07 10:43 - modeling.trainer - INFO - train - iter 203500: loss 3.0351, time 5.16s
06-07 10:43 - modeling.trainer - INFO - train - iter 203550: loss 3.0369, time 5.16s
06-07 10:43 - modeling.trainer - INFO - train - iter 203600: loss 3.0400, time 5.11s
06-07 10:43 - modeling.trainer - INFO - train - iter 203650: loss 3.0426, time 5.11s
06-07 10:43 - modeling.trainer - INFO - train - iter 203700: loss 3.0432, time 5.14s
06-07 10:43 - modeling.trainer - INFO - train - iter 203750: loss 3.0492, time 5.15s
06-07 10:43 - modeling.trainer - INFO - train - iter 203800: loss 3.0537, time 5.12s
06-07 10:43 - modeling.trainer - INFO - train - iter 203850: loss 3.0443, time 5.13s