text
stringlengths 54
260
|
---|
06-07 10:26 - modeling.trainer - INFO - train - iter 194100: loss 3.0417, time 5.29s
|
06-07 10:26 - modeling.trainer - INFO - train - iter 194150: loss 3.0404, time 5.31s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194200: loss 3.0366, time 5.29s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194250: loss 3.0355, time 5.28s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194300: loss 3.0398, time 5.30s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194350: loss 3.0430, time 5.26s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194400: loss 3.0477, time 5.32s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194450: loss 3.0501, time 5.27s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194500: loss 3.0473, time 5.28s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194550: loss 3.0483, time 5.29s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194600: loss 3.0484, time 5.92s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194650: loss 3.0383, time 5.31s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194700: loss 3.0313, time 5.28s
|
06-07 10:27 - modeling.trainer - INFO - train - iter 194750: loss 3.0363, time 5.25s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 194800: loss 3.0432, time 5.25s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 194850: loss 3.0500, time 5.27s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 194900: loss 3.0453, time 5.25s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 194950: loss 3.0364, time 5.28s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195000: loss 3.0414, time 5.24s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195050: loss 3.0430, time 5.24s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195100: loss 3.0373, time 5.23s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195150: loss 3.0346, time 5.25s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195200: loss 3.0384, time 5.26s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195250: loss 3.0407, time 5.26s
|
06-07 10:28 - modeling.trainer - INFO - train - iter 195300: loss 3.0389, time 5.24s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195350: loss 3.0417, time 5.26s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195400: loss 3.0418, time 5.23s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195450: loss 3.0440, time 5.24s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195500: loss 3.0444, time 5.24s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195550: loss 3.0379, time 5.26s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195600: loss 3.0395, time 5.26s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195650: loss 3.0476, time 5.30s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195700: loss 3.0459, time 5.27s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195750: loss 3.0349, time 5.26s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195800: loss 3.0378, time 5.24s
|
06-07 10:29 - modeling.trainer - INFO - train - iter 195850: loss 3.0444, time 5.21s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 195900: loss 3.0346, time 5.23s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 195950: loss 3.0344, time 5.21s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196000: loss 3.0434, time 5.22s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196050: loss 3.0472, time 5.22s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196100: loss 3.0347, time 5.21s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196150: loss 3.0331, time 5.23s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196200: loss 3.0464, time 5.23s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196250: loss 3.0345, time 5.33s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196300: loss 3.0351, time 5.24s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196350: loss 3.0458, time 5.83s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196400: loss 3.0391, time 5.21s
|
06-07 10:30 - modeling.trainer - INFO - train - iter 196450: loss 3.0409, time 5.20s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196500: loss 3.0380, time 5.19s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196550: loss 3.0278, time 5.21s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196600: loss 3.0374, time 5.20s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196650: loss 3.0497, time 5.19s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196700: loss 3.0498, time 5.20s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196750: loss 3.0478, time 5.21s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196800: loss 3.0561, time 5.22s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196850: loss 3.0499, time 5.22s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196900: loss 3.0405, time 5.19s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 196950: loss 3.0451, time 5.19s
|
06-07 10:31 - modeling.trainer - INFO - train - iter 197000: loss 3.0425, time 5.18s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197050: loss 3.0314, time 5.19s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197100: loss 3.0326, time 5.21s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197150: loss 3.0414, time 5.20s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197200: loss 3.0462, time 5.19s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197250: loss 3.0508, time 5.18s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197300: loss 3.0416, time 5.19s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197350: loss 3.0344, time 5.26s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197400: loss 3.0407, time 5.22s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197450: loss 3.0456, time 5.19s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197500: loss 3.0388, time 5.19s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197550: loss 3.0374, time 5.19s
|
06-07 10:32 - modeling.trainer - INFO - train - iter 197600: loss 3.0417, time 5.21s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197650: loss 3.0389, time 5.19s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197700: loss 3.0400, time 5.19s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197750: loss 3.0536, time 5.20s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197800: loss 3.0494, time 5.20s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197850: loss 3.0436, time 5.17s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197900: loss 3.0473, time 5.19s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 197950: loss 3.0404, time 5.19s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 198000: loss 3.0453, time 5.19s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 198050: loss 3.0430, time 5.18s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 198100: loss 3.0386, time 5.87s
|
06-07 10:33 - modeling.trainer - INFO - train - iter 198150: loss 3.0474, time 5.18s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198200: loss 3.0499, time 5.17s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198250: loss 3.0436, time 5.16s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198300: loss 3.0403, time 5.16s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198350: loss 3.0503, time 5.18s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198400: loss 3.0591, time 5.19s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198450: loss 3.0485, time 5.19s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198500: loss 3.0357, time 5.19s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198550: loss 3.0354, time 5.18s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198600: loss 3.0372, time 5.17s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198650: loss 3.0433, time 5.20s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198700: loss 3.0460, time 5.16s
|
06-07 10:34 - modeling.trainer - INFO - train - iter 198750: loss 3.0415, time 5.15s
|
06-07 10:35 - modeling.trainer - INFO - train - iter 198800: loss 3.0521, time 5.19s
|
06-07 10:35 - modeling.trainer - INFO - train - iter 198850: loss 3.0552, time 5.17s
|
06-07 10:35 - modeling.trainer - INFO - train - iter 198900: loss 3.0444, time 5.15s
|
06-07 10:35 - modeling.trainer - INFO - train - iter 198950: loss 3.0418, time 5.16s
|
06-07 10:35 - modeling.trainer - INFO - train - iter 199000: loss 3.0376, time 5.17s
|
06-07 10:35 - modeling.trainer - INFO - train - iter 199050: loss 3.0354, time 5.15s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.