text
stringlengths
54
260
06-07 10:17 - modeling.trainer - INFO - train - iter 189200: loss 3.0344, time 5.45s
06-07 10:18 - modeling.trainer - INFO - train - iter 189250: loss 3.0372, time 5.41s
06-07 10:18 - modeling.trainer - INFO - train - iter 189300: loss 3.0443, time 5.39s
06-07 10:18 - modeling.trainer - INFO - train - iter 189350: loss 3.0497, time 5.39s
06-07 10:18 - modeling.trainer - INFO - train - iter 189400: loss 3.0573, time 6.06s
06-07 10:18 - modeling.trainer - INFO - train - iter 189450: loss 3.0533, time 5.42s
06-07 10:18 - modeling.trainer - INFO - train - iter 189500: loss 3.0466, time 5.43s
06-07 10:18 - modeling.trainer - INFO - train - iter 189550: loss 3.0489, time 5.46s
06-07 10:18 - modeling.trainer - INFO - train - iter 189600: loss 3.0484, time 5.40s
06-07 10:18 - modeling.trainer - INFO - train - iter 189650: loss 3.0397, time 5.39s
06-07 10:18 - modeling.trainer - INFO - train - iter 189700: loss 3.0414, time 5.38s
06-07 10:18 - modeling.trainer - INFO - train - iter 189750: loss 3.0514, time 5.42s
06-07 10:19 - modeling.trainer - INFO - train - iter 189800: loss 3.0432, time 5.42s
06-07 10:19 - modeling.trainer - INFO - train - iter 189850: loss 3.0471, time 5.40s
06-07 10:19 - modeling.trainer - INFO - train - iter 189900: loss 3.0481, time 5.45s
06-07 10:19 - modeling.trainer - INFO - train - iter 189950: loss 3.0404, time 5.44s
06-07 10:19 - modeling.trainer - INFO - val - iter 190000: lm_loss 1.4966, value_loss 0.7590, time_loss 0.6987, loss 2.9543, time 4.32s
06-07 10:19 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
06-07 10:19 - modeling.trainer - INFO - train - iter 190000: loss 3.0409, time 13.82s
06-07 10:19 - modeling.trainer - INFO - train - iter 190050: loss 3.0353, time 5.44s
06-07 10:19 - modeling.trainer - INFO - train - iter 190100: loss 3.0381, time 5.40s
06-07 10:19 - modeling.trainer - INFO - train - iter 190150: loss 3.0366, time 5.39s
06-07 10:19 - modeling.trainer - INFO - train - iter 190200: loss 3.0393, time 5.43s
06-07 10:19 - modeling.trainer - INFO - train - iter 190250: loss 3.0460, time 5.37s
06-07 10:20 - modeling.trainer - INFO - train - iter 190300: loss 3.0431, time 5.39s
06-07 10:20 - modeling.trainer - INFO - train - iter 190350: loss 3.0418, time 5.37s
06-07 10:20 - modeling.trainer - INFO - train - iter 190400: loss 3.0409, time 5.33s
06-07 10:20 - modeling.trainer - INFO - train - iter 190450: loss 3.0457, time 5.33s
06-07 10:20 - modeling.trainer - INFO - train - iter 190500: loss 3.0458, time 5.34s
06-07 10:20 - modeling.trainer - INFO - train - iter 190550: loss 3.0476, time 5.33s
06-07 10:20 - modeling.trainer - INFO - train - iter 190600: loss 3.0463, time 5.35s
06-07 10:20 - modeling.trainer - INFO - train - iter 190650: loss 3.0444, time 5.35s
06-07 10:20 - modeling.trainer - INFO - train - iter 190700: loss 3.0445, time 5.38s
06-07 10:20 - modeling.trainer - INFO - train - iter 190750: loss 3.0372, time 5.34s
06-07 10:20 - modeling.trainer - INFO - train - iter 190800: loss 3.0386, time 5.34s
06-07 10:21 - modeling.trainer - INFO - train - iter 190850: loss 3.0406, time 5.36s
06-07 10:21 - modeling.trainer - INFO - train - iter 190900: loss 3.0443, time 5.37s
06-07 10:21 - modeling.trainer - INFO - train - iter 190950: loss 3.0474, time 5.39s
06-07 10:21 - modeling.trainer - INFO - train - iter 191000: loss 3.0406, time 5.39s
06-07 10:21 - modeling.trainer - INFO - train - iter 191050: loss 3.0365, time 5.37s
06-07 10:21 - modeling.trainer - INFO - train - iter 191100: loss 3.0406, time 5.42s
06-07 10:21 - modeling.trainer - INFO - train - iter 191150: loss 3.0332, time 6.07s
06-07 10:21 - modeling.trainer - INFO - train - iter 191200: loss 3.0424, time 5.35s
06-07 10:21 - modeling.trainer - INFO - train - iter 191250: loss 3.0606, time 5.35s
06-07 10:21 - modeling.trainer - INFO - train - iter 191300: loss 3.0505, time 5.39s
06-07 10:21 - modeling.trainer - INFO - train - iter 191350: loss 3.0428, time 5.33s
06-07 10:22 - modeling.trainer - INFO - train - iter 191400: loss 3.0516, time 5.36s
06-07 10:22 - modeling.trainer - INFO - train - iter 191450: loss 3.0519, time 5.45s
06-07 10:22 - modeling.trainer - INFO - train - iter 191500: loss 3.0450, time 5.39s
06-07 10:22 - modeling.trainer - INFO - train - iter 191550: loss 3.0481, time 5.35s
06-07 10:22 - modeling.trainer - INFO - train - iter 191600: loss 3.0407, time 5.31s
06-07 10:22 - modeling.trainer - INFO - train - iter 191650: loss 3.0328, time 5.35s
06-07 10:22 - modeling.trainer - INFO - train - iter 191700: loss 3.0378, time 5.40s
06-07 10:22 - modeling.trainer - INFO - train - iter 191750: loss 3.0384, time 5.36s
06-07 10:22 - modeling.trainer - INFO - train - iter 191800: loss 3.0384, time 5.34s
06-07 10:22 - modeling.trainer - INFO - train - iter 191850: loss 3.0442, time 5.33s
06-07 10:22 - modeling.trainer - INFO - train - iter 191900: loss 3.0538, time 5.38s
06-07 10:23 - modeling.trainer - INFO - train - iter 191950: loss 3.0609, time 5.33s
06-07 10:23 - modeling.trainer - INFO - train - iter 192000: loss 3.0556, time 5.34s
06-07 10:23 - modeling.trainer - INFO - train - iter 192050: loss 3.0529, time 5.33s
06-07 10:23 - modeling.trainer - INFO - train - iter 192100: loss 3.0489, time 5.35s
06-07 10:23 - modeling.trainer - INFO - train - iter 192150: loss 3.0414, time 5.36s
06-07 10:23 - modeling.trainer - INFO - train - iter 192200: loss 3.0412, time 5.36s
06-07 10:23 - modeling.trainer - INFO - train - iter 192250: loss 3.0358, time 5.35s
06-07 10:23 - modeling.trainer - INFO - train - iter 192300: loss 3.0392, time 5.36s
06-07 10:23 - modeling.trainer - INFO - train - iter 192350: loss 3.0493, time 5.31s
06-07 10:23 - modeling.trainer - INFO - train - iter 192400: loss 3.0543, time 5.34s
06-07 10:23 - modeling.trainer - INFO - train - iter 192450: loss 3.0488, time 5.33s
06-07 10:24 - modeling.trainer - INFO - train - iter 192500: loss 3.0411, time 5.32s
06-07 10:24 - modeling.trainer - INFO - train - iter 192550: loss 3.0344, time 5.33s
06-07 10:24 - modeling.trainer - INFO - train - iter 192600: loss 3.0384, time 5.32s
06-07 10:24 - modeling.trainer - INFO - train - iter 192650: loss 3.0411, time 5.33s
06-07 10:24 - modeling.trainer - INFO - train - iter 192700: loss 3.0389, time 5.32s
06-07 10:24 - modeling.trainer - INFO - train - iter 192750: loss 3.0451, time 5.28s
06-07 10:24 - modeling.trainer - INFO - train - iter 192800: loss 3.0456, time 5.33s
06-07 10:24 - modeling.trainer - INFO - train - iter 192850: loss 3.0501, time 5.96s
06-07 10:24 - modeling.trainer - INFO - train - iter 192900: loss 3.0607, time 5.31s
06-07 10:24 - modeling.trainer - INFO - train - iter 192950: loss 3.0488, time 5.29s
06-07 10:24 - modeling.trainer - INFO - train - iter 193000: loss 3.0384, time 5.29s
06-07 10:24 - modeling.trainer - INFO - train - iter 193050: loss 3.0406, time 5.29s
06-07 10:25 - modeling.trainer - INFO - train - iter 193100: loss 3.0409, time 5.30s
06-07 10:25 - modeling.trainer - INFO - train - iter 193150: loss 3.0366, time 5.28s
06-07 10:25 - modeling.trainer - INFO - train - iter 193200: loss 3.0295, time 5.30s
06-07 10:25 - modeling.trainer - INFO - train - iter 193250: loss 3.0446, time 5.30s
06-07 10:25 - modeling.trainer - INFO - train - iter 193300: loss 3.0562, time 5.33s
06-07 10:25 - modeling.trainer - INFO - train - iter 193350: loss 3.0548, time 5.30s
06-07 10:25 - modeling.trainer - INFO - train - iter 193400: loss 3.0591, time 5.31s
06-07 10:25 - modeling.trainer - INFO - train - iter 193450: loss 3.0656, time 5.27s
06-07 10:25 - modeling.trainer - INFO - train - iter 193500: loss 3.0609, time 5.28s
06-07 10:25 - modeling.trainer - INFO - train - iter 193550: loss 3.0482, time 5.30s
06-07 10:25 - modeling.trainer - INFO - train - iter 193600: loss 3.0358, time 5.28s
06-07 10:26 - modeling.trainer - INFO - train - iter 193650: loss 3.0352, time 5.33s
06-07 10:26 - modeling.trainer - INFO - train - iter 193700: loss 3.0390, time 5.29s
06-07 10:26 - modeling.trainer - INFO - train - iter 193750: loss 3.0409, time 5.29s
06-07 10:26 - modeling.trainer - INFO - train - iter 193800: loss 3.0465, time 5.28s
06-07 10:26 - modeling.trainer - INFO - train - iter 193850: loss 3.0468, time 5.27s
06-07 10:26 - modeling.trainer - INFO - train - iter 193900: loss 3.0408, time 5.32s
06-07 10:26 - modeling.trainer - INFO - train - iter 193950: loss 3.0431, time 5.28s
06-07 10:26 - modeling.trainer - INFO - train - iter 194000: loss 3.0446, time 5.37s
06-07 10:26 - modeling.trainer - INFO - train - iter 194050: loss 3.0409, time 5.28s