File size: 5,120 Bytes
28adb60 39d77a4 aa30eea 12c3d6b 28adb60 60ba673 f2e3176 46b1f95 12c3d6b 28adb60 39d77a4 28adb60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import sys
import argparse
import numpy as np
import cv2 as cv
from datasets import DATASETS
if "PYTHONPATH" in os.environ:
root_dir = os.environ["PYTHONPATH"]
else:
root_dir = os.path.join("..", "..")
sys.path.append(root_dir)
from models import MODELS
parser = argparse.ArgumentParser("Evaluation with OpenCV on different models in the zoo.")
parser.add_argument("--model", "-m", type=str, required=True, help="model name")
parser.add_argument("--dataset", "-d", type=str, required=True, help="Dataset name")
parser.add_argument("--dataset_root", "-dr", type=str, required=True, help="Root directory of given dataset")
args = parser.parse_args()
models = dict(
mobilenetv1=dict(
name="MobileNetV1",
topic="image_classification",
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
topK=5),
mobilenetv1_q=dict(
name="MobileNetV1",
topic="image_classification",
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr-int8-quantized.onnx"),
topK=5),
mobilenetv2=dict(
name="MobileNetV2",
topic="image_classification",
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
topK=5),
mobilenetv2_q=dict(
name="MobileNetV2",
topic="image_classification",
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr-int8-quantized.onnx"),
topK=5),
ppresnet=dict(
name="PPResNet",
topic="image_classification",
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx"),
topK=5),
ppresnet_q=dict(
name="PPResNet",
topic="image_classification",
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan-act_int8-wt_int8-quantized.onnx"),
topK=5),
yunet=dict(
name="YuNet",
topic="face_detection",
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar.onnx"),
topK=5000,
confThreshold=0.3,
nmsThreshold=0.45),
yunet_q=dict(
name="YuNet",
topic="face_detection",
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
topK=5000,
confThreshold=0.3,
nmsThreshold=0.45),
sface=dict(
name="SFace",
topic="face_recognition",
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec.onnx")),
sface_q=dict(
name="SFace",
topic="face_recognition",
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
crnn=dict(
name="CRNN",
topic="text_recognition",
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx")),
pphumanseg=dict(
name="PPHumanSeg",
topic="human_segmentation",
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct.onnx")),
pphumanseg_q=dict(
name="PPHumanSeg",
topic="human_segmentation",
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct-act_int8-wt_int8-quantized.onnx")),
)
datasets = dict(
imagenet=dict(
name="ImageNet",
topic="image_classification",
size=224),
widerface=dict(
name="WIDERFace",
topic="face_detection"),
lfw=dict(
name="LFW",
topic="face_recognition",
target_size=112),
icdar=dict(
name="ICDAR",
topic="text_recognition"),
iiit5k=dict(
name="IIIT5K",
topic="text_recognition"),
mini_supervisely=dict(
name="MiniSupervisely",
topic="human_segmentation"),
)
def main(args):
# Instantiate model
model_key = args.model.lower()
assert model_key in models
model_name = models[model_key].pop("name")
model_topic = models[model_key].pop("topic")
model_handler, _ = MODELS.get(model_name)
model = model_handler(**models[model_key])
# Instantiate dataset
dataset_key = args.dataset.lower()
assert dataset_key in datasets
dataset_name = datasets[dataset_key].pop("name")
dataset_topic = datasets[dataset_key].pop("topic")
dataset = DATASETS.get(dataset_name)(root=args.dataset_root, **datasets[dataset_key])
# Check if model_topic matches dataset_topic
assert model_topic == dataset_topic
# Run evaluation
dataset.eval(model)
dataset.print_result()
if __name__ == "__main__":
main(args)
|