File size: 59,727 Bytes
42310ef 39d77a4 42310ef 00c0329 39d77a4 42310ef 39d77a4 42310ef 8b5437e d2b2b68 8b5437e d2b2b68 42310ef 39d77a4 8b5437e 39d77a4 8b5437e 39d77a4 d2b2b68 a9286c4 cae84a4 a9286c4 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 3cce3b2 d2b2b68 42310ef b5afb04 443b117 b5afb04 17ce155 b5afb04 443b117 b5afb04 17ce155 b5afb04 17ce155 b5afb04 443b117 b5afb04 0d2b1a0 b5afb04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
# OpenCV Zoo Benchmark
Benchmarking the speed of OpenCV DNN inferring different models in the zoo. Result of each model includes the time of its preprocessing, inference and postprocessing stages.
Data for benchmarking will be downloaded and loaded in [data](./data) based on given config.
## Preparation
1. Install `python >= 3.6`.
2. Install dependencies: `pip install -r requirements.txt`.
3. Download data for benchmarking.
1. Download all data: `python download_data.py`
2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`.
3. You can also download all data from https://pan.baidu.com/s/18sV8D4vXUb2xC9EG45k7bg (code: pvrw). Please place and extract data packages under [./data](./data).
## Benchmarking
**Linux**:
```shell
export PYTHONPATH=$PYTHONPATH:..
# Single config
python benchmark.py --cfg ./config/face_detection_yunet.yaml
# All configs
python benchmark.py --all
# All configs but only fp32 models (--fp32, --fp16, --int8 are available for now)
python benchmark.py --all --fp32
# All configs but exclude some of them (fill with config name keywords, not sensitive to upper/lower case, seperate with colons)
python benchmark.py --all --cfg_exclude wechat
python benchmark.py --all --cfg_exclude wechat:dasiamrpn
# All configs but exclude some of the models (fill with exact model names, sensitive to upper/lower case, seperate with colons)
python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
# All configs with overwritten backend and target (run with --help to get available combinations)
python benchmark.py --all --cfg_overwrite_backend_target 1
```
**Windows**:
- CMD
```shell
set PYTHONPATH=%PYTHONPATH%;..
python benchmark.py --cfg ./config/face_detection_yunet.yaml
```
- PowerShell
```shell
$env:PYTHONPATH=$env:PYTHONPATH+";.."
python benchmark.py --cfg ./config/face_detection_yunet.yaml
```
## Detailed Results
Benchmark is done with latest `opencv-python==4.7.0.72` and `opencv-contrib-python==4.7.0.72` on the following platforms. Some models are excluded because of support issues.
| Model | Task | Input Size | CPU-INTEL (ms) | CPU-RPI (ms) | CPU-RV1126 (ms) | CPU-KVE2 (ms) | CPU-HSX3 (ms) | CPU-AXP (ms) | GPU-JETSON (ms) | NPU-KV3 (ms) | NPU-Ascend310 (ms) | CPU-D1 (ms) |
| -------------------------------------------------------- | ----------------------------- | ---------- | -------------- | ------------ | --------------- | ------------- | ------------- | ------------ | --------------- | ------------ | ------------------ | ----------- |
| [YuNet](../models/face_detection_yunet) | Face Detection | 160x120 | 0.72 | 5.43 | 68.89 | 2.47 | 11.04 | 98.16 | 12.18 | 4.04 | 2.24 | 86.69 |
| [SFace](../models/face_recognition_sface) | Face Recognition | 112x112 | 6.04 | 78.83 | 1550.71 | 33.79 | 140.83 | 2093.12 | 24.88 | 46.25 | 2.66 | --- |
| [FER](../models/facial_expression_recognition/) | Facial Expression Recognition | 112x112 | 3.16 | 32.53 | 604.36 | 15.99 | 64.96 | 811.32 | 31.07 | 29.80 | 2.19 | --- |
| [LPD-YuNet](../models/license_plate_detection_yunet/) | License Plate Detection | 320x240 | 8.63 | 167.70 | 3222.92 | 57.57 | 283.75 | 4300.13 | 56.12 | 29.53 | 7.63 | --- |
| [YOLOX](../models/object_detection_yolox/) | Object Detection | 640x640 | 141.20 | 1805.87 | 38359.93 | 577.93 | 2749.22 | 49994.75 | 388.95 | 420.98 | 28.59 | --- |
| [NanoDet](../models/object_detection_nanodet/) | Object Detection | 416x416 | 66.03 | 225.10 | 2303.55 | 118.38 | 408.16 | 3360.20 | 64.94 | 116.64 | 20.62 | --- |
| [DB-IC15](../models/text_detection_db) (EN) | Text Detection | 640x480 | 71.03 | 1862.75 | 49065.03 | 394.77 | 1908.87 | 65681.91 | 208.41 | --- | 17.15 | --- |
| [DB-TD500](../models/text_detection_db) (EN&CN) | Text Detection | 640x480 | 72.31 | 1878.45 | 49052.24 | 392.52 | 1922.34 | 65630.56 | 210.51 | --- | 17.95 | --- |
| [CRNN-EN](../models/text_recognition_crnn) | Text Recognition | 100x32 | 20.16 | 278.11 | 2230.12 | 77.51 | 464.58 | 3277.07 | 196.15 | 125.30 | --- | --- |
| [CRNN-CN](../models/text_recognition_crnn) | Text Recognition | 100x32 | 23.07 | 297.48 | 2244.03 | 82.93 | 495.94 | 3330.69 | 239.76 | 166.79 | --- | --- |
| [PP-ResNet](../models/image_classification_ppresnet) | Image Classification | 224x224 | 34.71 | 463.93 | 11793.09 | 178.87 | 759.81 | 15753.56 | 98.64 | 75.45 | 6.99 | --- |
| [MobileNet-V1](../models/image_classification_mobilenet) | Image Classification | 224x224 | 5.90 | 72.33 | 1546.16 | 32.78 | 140.60 | 2091.13 | 33.18 | 145.66\* | 5.15 | --- |
| [MobileNet-V2](../models/image_classification_mobilenet) | Image Classification | 224x224 | 5.97 | 66.56 | 1166.56 | 28.38 | 122.53 | 1583.25 | 31.92 | 146.31\* | 5.41 | --- |
| [PP-HumanSeg](../models/human_segmentation_pphumanseg) | Human Segmentation | 192x192 | 8.81 | 73.13 | 1610.78 | 34.58 | 144.23 | 2157.86 | 67.97 | 74.77 | 6.94 | --- |
| [WeChatQRCode](../models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100 | 1.29 | 5.71 | --- | --- | --- | --- | --- | --- | --- | --- |
| [DaSiamRPN](../models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 29.05 | 712.94 | 14738.64 | 152.78 | 929.63 | 19800.14 | 76.82 | --- | --- | --- |
| [YoutuReID](../models/person_reid_youtureid) | Person Re-Identification | 128x256 | 30.39 | 625.56 | 11117.07 | 195.67 | 898.23 | 14886.02 | 90.07 | 44.61 | 5.58 | --- |
| [MP-PalmDet](../models/palm_detection_mediapipe) | Palm Detection | 192x192 | 6.29 | 86.83 | 872.09 | 38.03 | 142.23 | 1191.81 | 83.20 | 33.81 | 5.17 | --- |
| [MP-HandPose](../models/handpose_estimation_mediapipe) | Hand Pose Estimation | 224x224 | 4.68 | 43.57 | 460.56 | 20.27 | 80.67 | 636.22 | 40.10 | 19.47 | 6.27 | --- |
| [MP-PersonDet](./models/person_detection_mediapipe) | Person Detection | 224x224 | 13.88 | 98.52 | 1326.56 | 46.07 | 191.41 | 1835.97 | 56.69 | --- | 16.45 | --- |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
### Intel 12700K
Specs: [details](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)
- CPU: 8 Performance-cores, 4 Efficient-cores, 20 threads
- Performance-core: 3.60 GHz base freq, turbo up to 4.90 GHz
- Efficient-core: 2.70 GHz base freq, turbo up to 3.80 GHz
CPU:
```
$ python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
0.58 0.67 0.48 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
0.82 0.81 0.48 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
6.18 6.33 5.83 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
7.42 7.42 5.83 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
3.32 3.46 2.76 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
4.27 4.22 2.76 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
4.68 5.04 4.36 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
4.82 4.98 4.36 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
8.20 9.33 6.66 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
6.25 7.02 5.49 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
6.00 6.31 5.49 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
6.23 5.64 5.49 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
6.50 6.87 5.49 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
35.40 36.58 33.63 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
35.79 35.53 33.48 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
8.53 8.59 7.55 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
65.15 77.44 45.40 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
58.82 69.99 45.26 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
137.53 136.70 119.95 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
139.60 147.79 119.95 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
29.46 42.21 25.82 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
6.14 6.02 5.91 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
8.51 9.89 5.91 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
13.88 14.82 12.39 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
30.87 30.69 29.85 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
30.77 30.02 27.97 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1.35 1.37 1.30 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
75.82 75.37 69.18 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
74.80 75.16 69.05 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
21.37 24.50 16.04 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
23.08 25.14 16.04 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
20.43 31.14 11.74 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
20.71 17.95 11.74 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
19.48 25.14 11.74 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
19.38 18.85 11.74 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
19.52 25.97 11.74 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
18.55 15.29 10.35 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
### Rasberry Pi 4B
Specs: [details](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/)
- CPU: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz.
CPU:
```
$ python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
5.45 5.44 5.39 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
6.12 6.15 5.39 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
78.04 77.96 77.62 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
91.44 93.03 77.62 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
32.21 31.86 31.85 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
38.22 39.27 31.85 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
43.85 43.76 43.51 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
46.66 47.00 43.51 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
73.29 73.70 72.86 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
74.51 87.71 73.83 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
67.29 68.22 61.55 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
68.53 61.77 61.55 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
68.31 72.16 61.55 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
547.70 547.68 494.91 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
527.14 567.06 465.02 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
192.61 194.08 156.62 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
248.03 229.41 209.65 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
246.41 247.64 207.91 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1932.97 1941.47 1859.96 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
1866.98 1866.50 1746.67 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
762.56 738.04 654.25 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
91.48 91.28 91.15 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
115.58 135.17 91.15 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
98.52 98.95 97.58 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
676.15 655.20 636.06 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
548.93 582.29 443.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
8.18 8.15 8.13 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
2025.09 2046.92 1971.57 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
2041.85 2048.24 1971.57 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
272.81 285.66 259.93 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
293.83 289.93 259.93 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
271.57 317.17 223.36 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
266.67 269.64 223.36 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
259.06 239.43 223.36 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
251.39 257.43 221.20 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
248.27 253.01 221.20 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
239.42 238.72 190.04 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
### Jetson Nano B01
Specs: [details](https://developer.nvidia.com/embedded/jetson-nano-developer-kit)
- CPU: Quad-core ARM A57 @ 1.43 GHz
- GPU: 128-core NVIDIA Maxwell
CPU:
```
$ python3 benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
5.37 5.44 5.27 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
6.11 7.99 5.27 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
65.14 65.13 64.93 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
79.33 88.12 64.93 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
28.19 28.17 28.05 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
34.85 35.66 28.05 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
41.02 42.37 40.80 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
44.20 44.39 40.80 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
65.91 65.93 65.68 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
68.94 68.95 68.77 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
62.12 62.24 55.29 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
66.04 55.58 55.29 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
65.31 64.86 55.29 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
376.88 368.22 367.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
390.32 385.28 367.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
133.15 130.57 129.38 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
215.57 225.11 212.66 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
217.37 214.85 212.66 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1228.13 1233.90 1219.11 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
1257.34 1256.26 1219.11 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
466.19 457.89 442.88 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
69.60 69.69 69.13 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
81.65 82.20 69.13 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
98.38 98.20 97.69 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
411.49 417.53 402.57 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
372.94 370.17 335.95 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
5.62 5.64 5.55 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
1089.89 1091.85 1071.95 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
1089.94 1095.07 1071.95 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
274.45 286.03 270.52 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
290.82 288.87 270.52 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
269.52 311.59 228.47 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
269.66 267.98 228.47 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
261.39 231.92 228.47 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
259.68 249.43 228.47 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
260.89 283.44 228.47 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
255.61 249.41 222.38 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
GPU (CUDA-FP32):
```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA
mean median min input size model
11.22 11.49 9.59 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
24.60 25.91 24.16 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
20.64 24.00 18.88 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
41.15 41.18 40.95 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
90.86 90.79 84.96 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
69.24 69.11 68.87 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
62.12 62.30 55.28 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
148.58 153.17 144.61 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
53.50 54.29 51.48 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
214.99 218.04 212.94 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
1238.91 1244.87 1227.30 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
76.54 76.09 74.51 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
67.34 67.83 62.38 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
56.69 55.54 48.96 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
126.65 126.63 124.96 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
303.12 302.80 299.30 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
302.58 299.78 297.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
58.05 62.90 52.47 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
59.39 56.82 52.47 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
45.60 62.40 21.73 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```
GPU (CUDA-FP16):
```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA_FP16
mean median min input size model
26.17 26.40 25.87 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
116.07 115.93 112.39 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
119.85 121.62 114.63 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
40.94 40.92 40.70 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
99.88 100.49 93.24 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
69.00 68.81 68.60 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
61.93 62.18 55.17 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
141.11 145.82 136.02 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
364.70 363.48 360.28 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
215.23 213.49 213.06 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
1223.32 1248.88 1213.25 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
52.91 52.96 50.17 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
212.86 213.21 210.03 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
221.12 255.53 217.16 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
96.68 94.21 89.24 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
343.38 344.17 337.62 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
344.29 345.07 337.62 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
48.91 50.31 45.41 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
50.20 49.66 45.41 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
39.56 52.56 20.76 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```
### Khadas VIM3
Specs: [details](https://www.khadas.com/vim3)
- (SoC) CPU: Amlogic A311D, 2.2 GHz Quad core ARM Cortex-A73 and 1.8 GHz dual core Cortex-A53
- NPU: 5 TOPS Performance NPU INT8 inference up to 1536 MAC Supports all major deep learning frameworks including TensorFlow and Caffe
CPU:
```
$ python3 benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
4.93 4.91 4.83 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
5.30 5.31 4.83 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
60.02 61.00 57.85 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
70.27 74.77 57.85 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
29.36 28.28 27.97 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
34.66 34.12 27.97 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
38.60 37.72 36.79 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
41.57 41.91 36.79 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
70.82 72.70 67.14 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
64.73 64.22 62.19 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
58.18 59.29 49.97 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
59.15 52.27 49.97 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
57.38 55.13 49.97 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
385.29 361.27 348.96 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
352.90 395.79 328.06 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
122.17 123.58 119.43 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
208.25 217.96 195.76 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
203.04 213.99 161.37 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1189.83 1150.85 1138.93 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
1137.18 1142.89 1080.23 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
428.66 524.98 391.33 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
66.91 67.09 64.90 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
79.42 81.44 64.90 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
84.42 85.99 83.30 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
439.53 431.92 406.03 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
358.63 379.93 296.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
5.29 5.30 5.21 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
973.75 968.68 954.58 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
961.44 959.29 935.29 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
202.74 202.73 200.75 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
217.07 217.26 200.75 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
199.81 231.31 169.27 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
199.73 203.96 169.27 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
192.97 175.68 169.27 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
189.65 189.43 169.27 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
188.98 202.49 169.27 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
183.49 188.71 149.81 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
NPU (TIMVX):
```
$ python3 benchmark.py --all --int8 --cfg_overwrite_backend_target 3 --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_TIMVX
target=cv.dnn.DNN_TARGET_NPU
mean median min input size model
5.67 5.74 5.59 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
76.97 77.86 75.59 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
40.38 39.41 38.12 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
44.36 45.77 42.06 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
60.75 62.46 56.34 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
57.40 58.10 52.11 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
340.20 347.74 330.70 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
200.50 224.02 160.81 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1103.24 1091.76 1059.77 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
95.92 102.80 92.77 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
307.90 310.52 302.46 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
178.71 178.87 177.84 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
183.51 183.72 177.84 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
172.06 189.19 149.19 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
### Atlas 200 DK
Specs: [details_en](https://e.huawei.com/uk/products/cloud-computing-dc/atlas/atlas-200), [details_cn](https://www.hiascend.com/zh/hardware/developer-kit)
- (SoC) CPU: 8-core Coretext-A55 @ 1.6 GHz (max)
- NPU: Ascend 310, dual DaVinci AI cores, 22/16/8 TOPS INT8.
CPU:
```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
8.02 8.07 7.93 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
9.44 9.34 7.93 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
104.51 112.90 102.07 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
131.49 147.17 102.07 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
47.71 57.86 46.48 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
59.26 59.07 46.48 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
57.95 58.02 57.30 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
65.52 70.76 57.30 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
107.98 127.65 106.59 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
103.96 124.91 102.87 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
90.46 90.53 76.14 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
98.40 76.49 76.14 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
98.06 95.36 76.14 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
564.69 556.79 537.84 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
621.54 661.56 537.84 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
226.08 216.89 216.07 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
343.08 346.39 315.99 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
351.64 346.41 315.99 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1995.97 1996.82 1967.76 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
2060.87 2055.60 1967.76 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
701.08 708.52 685.49 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
105.23 105.14 105.00 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
123.41 125.65 105.00 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
134.10 134.43 133.62 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
631.70 631.81 630.61 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
595.32 599.48 565.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1452.55 1453.75 1450.98 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
1433.26 1432.08 1409.78 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
299.36 299.92 298.75 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
329.84 333.32 298.75 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
303.65 367.68 262.48 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
299.60 315.91 262.48 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
290.29 263.05 262.48 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
290.41 279.30 262.48 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
294.61 295.36 262.48 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
289.53 279.60 262.48 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
NPU:
```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat:dasiamrpn:crnn --cfg_overwrite_backend_target 4
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CANN
target=cv.dnn.DNN_TARGET_NPU
mean median min input size model
2.24 2.21 2.19 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
2.66 2.66 2.64 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
2.19 2.19 2.16 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
6.27 6.22 6.17 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
6.94 6.94 6.85 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
5.15 5.13 5.10 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
5.41 5.42 5.10 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
6.99 6.99 6.95 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
7.63 7.64 7.43 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
20.62 22.09 19.16 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
28.59 28.60 27.91 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
5.17 5.26 5.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
16.45 16.44 16.31 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
5.58 5.57 5.54 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
17.15 17.18 16.83 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
17.95 18.61 16.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
```
### Toybrick RV1126
Specs: [details](https://t.rock-chips.com/en/portal.php?mod=view&aid=26)
- CPU: Quard core ARM Cortex-A7, up to 1.5GHz
- NPU (Not supported by OpenCV): 2.0TOPS, support 8bit / 16bit
CPU:
```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
68.89 68.59 68.23 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
60.98 61.11 52.00 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
1550.71 1578.99 1527.58 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
1214.15 1261.66 920.50 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
604.36 611.24 578.99 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
496.42 537.75 397.23 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
460.56 470.15 440.77 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
387.63 379.96 318.71 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
1610.78 1599.92 1583.95 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
1546.16 1539.50 1513.14 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
1166.56 1211.97 827.10 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
983.80 868.18 689.32 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
840.38 801.83 504.54 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
11793.09 11817.73 11741.04 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
7740.03 8134.99 4464.30 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
3222.92 3225.18 3170.71 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
2303.55 2307.46 2289.41 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
1888.15 1920.41 1528.78 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
38359.93 39021.21 37180.85 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
24504.50 25439.34 13443.63 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
14738.64 14764.84 14655.76 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
872.09 877.72 838.99 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
764.48 775.55 653.25 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
1326.56 1327.10 1305.18 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
11117.07 11109.12 11058.49 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
7037.96 7424.89 3750.12 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
49065.03 49144.55 48943.50 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
49052.24 48992.64 48927.44 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
2200.08 2193.78 2175.77 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
2244.03 2240.25 2175.77 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
2230.12 2290.28 2175.77 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
2220.33 2281.75 2171.61 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
2216.44 2212.48 2171.61 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
2041.65 2209.50 1268.91 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
1933.06 2210.81 1268.91 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
1826.34 2234.66 1184.53 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
### Khadas Edge2 (with RK3588)
Board specs: [details](https://www.khadas.com/edge2)
SoC specs: [details](https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html)
- CPU: 2.25GHz Quad Core ARM Cortex-A76 + 1.8GHz Quad Core Cortex-A55
- NPU (Not supported by OpenCV): Build-in 6 TOPS Performance NPU, triple core, support int4 / int8 / int16 / fp16 / bf16 / tf32
CPU:
```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
2.47 2.55 2.44 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
2.81 2.84 2.44 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
33.79 33.83 33.24 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
39.96 40.77 33.24 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
15.99 16.12 15.92 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
19.09 19.48 15.92 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
20.27 20.45 20.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
23.14 23.62 20.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
34.58 34.53 33.55 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
32.78 32.94 31.99 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
28.38 28.80 24.59 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
31.49 24.66 24.59 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
31.45 32.34 24.59 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
178.87 178.49 173.57 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
197.19 200.06 173.57 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
57.57 65.48 51.34 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
118.38 132.59 88.34 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
120.74 110.82 88.34 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
577.93 577.17 553.81 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
607.96 604.88 553.81 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
152.78 155.89 121.26 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
38.03 38.26 37.51 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
47.12 48.12 37.51 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
46.07 46.77 45.10 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
195.67 198.02 182.97 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
181.91 182.28 169.98 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
394.77 407.60 371.95 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
392.52 404.80 367.96 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
77.32 77.72 75.27 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
82.93 82.93 75.27 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
77.51 93.01 67.44 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
77.02 84.11 67.44 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
75.11 69.82 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
74.55 73.36 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
75.06 77.44 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
73.91 74.25 63.98 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
### Horizon Sunrise X3 PI
Specs: [details_cn](https://developer.horizon.ai/sunrise)
- CPU: ARM Cortex-A53,4xCore, 1.2G
- BPU (aka NPU, not supported by OpenCV): (Bernoulli Arch) 2×Core,up to 1.0G, ~5Tops
CPU:
```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
11.04 11.01 10.98 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
12.59 12.75 10.98 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
140.83 140.85 140.52 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
171.71 175.65 140.52 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
64.96 64.94 64.77 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
80.20 81.82 64.77 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
80.67 80.72 80.45 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
89.25 90.39 80.45 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
144.23 144.34 143.84 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
140.60 140.62 140.33 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
122.53 124.23 107.71 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
128.22 107.87 107.71 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
125.77 123.77 107.71 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
759.81 760.01 759.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
764.17 764.43 759.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
283.75 284.17 282.15 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
408.16 408.31 402.71 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
408.82 407.99 402.71 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
2749.22 2756.23 2737.96 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
2671.54 2692.18 2601.24 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
929.63 936.01 914.86 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
142.23 142.03 141.78 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
179.74 184.79 141.78 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
191.41 191.48 191.00 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
898.23 897.52 896.58 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
749.83 765.90 630.39 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1908.87 1905.00 1903.13 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
1922.34 1920.65 1896.97 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
470.78 469.17 467.92 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
495.94 497.12 467.92 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
464.58 528.72 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
465.04 467.01 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
452.90 409.34 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
450.23 438.57 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
453.52 468.72 408.69 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
443.38 447.29 381.90 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
### MAIX-III AX-PI
Specs: [details_en](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware), [details_cn](https://wiki.sipeed.com/hardware/zh/maixIII/ax-pi/axpi.html#%E7%A1%AC%E4%BB%B6%E5%8F%82%E6%95%B0)
- CPU: Quad cores ARM Cortex-A7
- NPU (Not supported by OpenCV): 14.4Tops@int4,3.6Tops@int8
CPU:
```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean median min input size model
98.16 98.99 97.73 [160, 120] YuNet with ['face_detection_yunet_2022mar.onnx']
93.21 93.81 89.15 [160, 120] YuNet with ['face_detection_yunet_2022mar_int8.onnx']
2093.12 2093.02 2092.54 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
1845.87 1871.17 1646.65 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
811.32 811.47 810.80 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
743.24 750.04 688.44 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
636.22 635.89 635.43 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
588.83 594.01 550.49 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
2157.86 2157.82 2156.99 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
2091.13 2091.61 2090.72 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
1583.25 1634.14 1176.19 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
1450.55 1177.07 1176.19 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
1272.81 1226.00 873.94 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
15753.56 15751.29 15748.97 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
11610.11 12023.99 8290.04 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
4300.13 4301.43 4298.29 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
3360.20 3357.84 3356.70 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
2961.58 3005.40 2641.27 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
49994.75 49968.90 49958.48 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
35966.66 37391.40 24670.30 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
19800.14 19816.02 19754.69 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
1191.81 1192.42 1191.40 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
1162.64 1165.77 1138.35 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
1835.97 1836.24 1835.34 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
14886.02 14884.48 14881.73 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
10491.63 10930.80 6975.34 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
65681.91 65674.89 65612.09 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
65630.56 65652.90 65531.21 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
3248.11 3242.59 3241.18 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
3330.69 3350.38 3241.18 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
3277.07 3427.65 3195.84 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
3263.48 3319.83 3195.84 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
3258.78 3196.90 3195.84 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
3090.12 3224.64 2353.81 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
3001.31 3237.93 2353.81 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
2887.05 3224.12 2206.89 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```
|