File size: 59,727 Bytes
42310ef
 
39d77a4
42310ef
 
 
 
 
 
 
00c0329
 
 
39d77a4
42310ef
 
 
39d77a4
42310ef
 
8b5437e
d2b2b68
 
8b5437e
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42310ef
 
39d77a4
8b5437e
39d77a4
 
 
 
8b5437e
 
39d77a4
 
 
 
d2b2b68
 
 
 
 
a9286c4
cae84a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9286c4
 
 
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
 
 
42310ef
b5afb04
 
 
 
 
443b117
b5afb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ce155
b5afb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443b117
 
 
 
b5afb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ce155
b5afb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ce155
b5afb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443b117
b5afb04
 
 
 
0d2b1a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5afb04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# OpenCV Zoo Benchmark

Benchmarking the speed of OpenCV DNN inferring different models in the zoo. Result of each model includes the time of its preprocessing, inference and postprocessing stages.

Data for benchmarking will be downloaded and loaded in [data](./data) based on given config.

## Preparation

1. Install `python >= 3.6`.
2. Install dependencies: `pip install -r requirements.txt`.
3. Download data for benchmarking.
    1. Download all data: `python download_data.py`
    2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`.
    3. You can also download all data from https://pan.baidu.com/s/18sV8D4vXUb2xC9EG45k7bg (code: pvrw). Please place and extract data packages under [./data](./data).

## Benchmarking

**Linux**:

```shell
export PYTHONPATH=$PYTHONPATH:.. 

# Single config
python benchmark.py --cfg ./config/face_detection_yunet.yaml

# All configs
python benchmark.py --all

# All configs but only fp32 models (--fp32, --fp16, --int8 are available for now)
python benchmark.py --all --fp32

# All configs but exclude some of them (fill with config name keywords, not sensitive to upper/lower case, seperate with colons)
python benchmark.py --all --cfg_exclude wechat
python benchmark.py --all --cfg_exclude wechat:dasiamrpn

# All configs but exclude some of the models (fill with exact model names, sensitive to upper/lower case, seperate with colons)
python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx

# All configs with overwritten backend and target (run with --help to get available combinations)
python benchmark.py --all --cfg_overwrite_backend_target 1
```

**Windows**:
- CMD
    ```shell
    set PYTHONPATH=%PYTHONPATH%;..
    python benchmark.py --cfg ./config/face_detection_yunet.yaml
    ```

- PowerShell
    ```shell
    $env:PYTHONPATH=$env:PYTHONPATH+";.."
    python benchmark.py --cfg ./config/face_detection_yunet.yaml
    ```

## Detailed Results

Benchmark is done with latest `opencv-python==4.7.0.72` and `opencv-contrib-python==4.7.0.72` on the following platforms. Some models are excluded because of support issues.


| Model                                                    | Task                          | Input Size | CPU-INTEL (ms) | CPU-RPI (ms) | CPU-RV1126 (ms) | CPU-KVE2 (ms) | CPU-HSX3 (ms) | CPU-AXP (ms) | GPU-JETSON (ms) | NPU-KV3 (ms) | NPU-Ascend310 (ms) | CPU-D1 (ms) |
| -------------------------------------------------------- | ----------------------------- | ---------- | -------------- | ------------ | --------------- | ------------- | ------------- | ------------ | --------------- | ------------ | ------------------ | ----------- |
| [YuNet](../models/face_detection_yunet)                  | Face Detection                | 160x120    | 0.72           | 5.43         | 68.89           | 2.47          | 11.04         | 98.16        | 12.18           | 4.04         | 2.24               | 86.69       |
| [SFace](../models/face_recognition_sface)                | Face Recognition              | 112x112    | 6.04           | 78.83        | 1550.71         | 33.79         | 140.83        | 2093.12      | 24.88           | 46.25        | 2.66               | ---         |
| [FER](../models/facial_expression_recognition/)          | Facial Expression Recognition | 112x112    | 3.16           | 32.53        | 604.36          | 15.99         | 64.96         | 811.32       | 31.07           | 29.80        | 2.19               | ---         |
| [LPD-YuNet](../models/license_plate_detection_yunet/)    | License Plate Detection       | 320x240    | 8.63           | 167.70       | 3222.92         | 57.57         | 283.75        | 4300.13      | 56.12           | 29.53        | 7.63               | ---         |
| [YOLOX](../models/object_detection_yolox/)               | Object Detection              | 640x640    | 141.20         | 1805.87      | 38359.93        | 577.93        | 2749.22       | 49994.75     | 388.95          | 420.98       | 28.59              | ---         |
| [NanoDet](../models/object_detection_nanodet/)           | Object Detection              | 416x416    | 66.03          | 225.10       | 2303.55         | 118.38        | 408.16        | 3360.20      | 64.94           | 116.64       | 20.62              | ---         |
| [DB-IC15](../models/text_detection_db) (EN)              | Text Detection                | 640x480    | 71.03          | 1862.75      | 49065.03        | 394.77        | 1908.87       | 65681.91     | 208.41          | ---          | 17.15              | ---         |
| [DB-TD500](../models/text_detection_db) (EN&CN)          | Text Detection                | 640x480    | 72.31          | 1878.45      | 49052.24        | 392.52        | 1922.34       | 65630.56     | 210.51          | ---          | 17.95              | ---         |
| [CRNN-EN](../models/text_recognition_crnn)               | Text Recognition              | 100x32     | 20.16          | 278.11       | 2230.12         | 77.51         | 464.58        | 3277.07      | 196.15          | 125.30       | ---                | ---         |
| [CRNN-CN](../models/text_recognition_crnn)               | Text Recognition              | 100x32     | 23.07          | 297.48       | 2244.03         | 82.93         | 495.94        | 3330.69      | 239.76          | 166.79       | ---                | ---         |
| [PP-ResNet](../models/image_classification_ppresnet)     | Image Classification          | 224x224    | 34.71          | 463.93       | 11793.09        | 178.87        | 759.81        | 15753.56     | 98.64           | 75.45        | 6.99               | ---         |
| [MobileNet-V1](../models/image_classification_mobilenet) | Image Classification          | 224x224    | 5.90           | 72.33        | 1546.16         | 32.78         | 140.60        | 2091.13      | 33.18           | 145.66\*     | 5.15               | ---         |
| [MobileNet-V2](../models/image_classification_mobilenet) | Image Classification          | 224x224    | 5.97           | 66.56        | 1166.56         | 28.38         | 122.53        | 1583.25      | 31.92           | 146.31\*     | 5.41               | ---         |
| [PP-HumanSeg](../models/human_segmentation_pphumanseg)   | Human Segmentation            | 192x192    | 8.81           | 73.13        | 1610.78         | 34.58         | 144.23        | 2157.86      | 67.97           | 74.77        | 6.94               | ---         |
| [WeChatQRCode](../models/qrcode_wechatqrcode)            | QR Code Detection and Parsing | 100x100    | 1.29           | 5.71         | ---             | ---           | ---           | ---          | ---             | ---          | ---                | ---         |
| [DaSiamRPN](../models/object_tracking_dasiamrpn)         | Object Tracking               | 1280x720   | 29.05          | 712.94       | 14738.64        | 152.78        | 929.63        | 19800.14     | 76.82           | ---          | ---                | ---         |
| [YoutuReID](../models/person_reid_youtureid)             | Person Re-Identification      | 128x256    | 30.39          | 625.56       | 11117.07        | 195.67        | 898.23        | 14886.02     | 90.07           | 44.61        | 5.58               | ---         |
| [MP-PalmDet](../models/palm_detection_mediapipe)         | Palm Detection                | 192x192    | 6.29           | 86.83        | 872.09          | 38.03         | 142.23        | 1191.81      | 83.20           | 33.81        | 5.17               | ---         |
| [MP-HandPose](../models/handpose_estimation_mediapipe)   | Hand Pose Estimation          | 224x224    | 4.68           | 43.57        | 460.56          | 20.27         | 80.67         | 636.22       | 40.10           | 19.47        | 6.27               | ---         |
| [MP-PersonDet](./models/person_detection_mediapipe)      | Person Detection              | 224x224    | 13.88          | 98.52        | 1326.56         | 46.07         | 191.41        | 1835.97      | 56.69           | ---          | 16.45              | ---         |

\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.

### Intel 12700K

Specs: [details](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)
- CPU: 8 Performance-cores, 4 Efficient-cores, 20 threads
  - Performance-core: 3.60 GHz base freq, turbo up to 4.90 GHz
  - Efficient-core: 2.70 GHz base freq, turbo up to 3.80 GHz

CPU: 

```
$ python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
0.58       0.67       0.48       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
0.82       0.81       0.48       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
6.18       6.33       5.83       [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
7.42       7.42       5.83       [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
3.32       3.46       2.76       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
4.27       4.22       2.76       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
4.68       5.04       4.36       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
4.82       4.98       4.36       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
8.20       9.33       6.66       [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
6.25       7.02       5.49       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
6.00       6.31       5.49       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
6.23       5.64       5.49       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
6.50       6.87       5.49       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
35.40      36.58      33.63      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
35.79      35.53      33.48      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
8.53       8.59       7.55       [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
65.15      77.44      45.40      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
58.82      69.99      45.26      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
137.53     136.70     119.95     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
139.60     147.79     119.95     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
29.46      42.21      25.82      [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
6.14       6.02       5.91       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
8.51       9.89       5.91       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
13.88      14.82      12.39      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
30.87      30.69      29.85      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
30.77      30.02      27.97      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1.35       1.37       1.30       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
75.82      75.37      69.18      [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
74.80      75.16      69.05      [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
21.37      24.50      16.04      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
23.08      25.14      16.04      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
20.43      31.14      11.74      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
20.71      17.95      11.74      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
19.48      25.14      11.74      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
19.38      18.85      11.74      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
19.52      25.97      11.74      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
18.55      15.29      10.35      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Rasberry Pi 4B

Specs: [details](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/)
- CPU: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz.

CPU:

```
$ python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
5.45       5.44       5.39       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
6.12       6.15       5.39       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
78.04      77.96      77.62      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
91.44      93.03      77.62      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
32.21      31.86      31.85      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
38.22      39.27      31.85      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
43.85      43.76      43.51      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
46.66      47.00      43.51      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
73.29      73.70      72.86      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
74.51      87.71      73.83      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
67.29      68.22      61.55      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
68.53      61.77      61.55      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
68.31      72.16      61.55      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
547.70     547.68     494.91     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
527.14     567.06     465.02     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
192.61     194.08     156.62     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
248.03     229.41     209.65     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
246.41     247.64     207.91     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1932.97    1941.47    1859.96    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1866.98    1866.50    1746.67    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
762.56     738.04     654.25     [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
91.48      91.28      91.15      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
115.58     135.17     91.15      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
98.52      98.95      97.58      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
676.15     655.20     636.06     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
548.93     582.29     443.32     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
8.18       8.15       8.13       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
2025.09    2046.92    1971.57    [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
2041.85    2048.24    1971.57    [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
272.81     285.66     259.93     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
293.83     289.93     259.93     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
271.57     317.17     223.36     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
266.67     269.64     223.36     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
259.06     239.43     223.36     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
251.39     257.43     221.20     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
248.27     253.01     221.20     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
239.42     238.72     190.04     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Jetson Nano B01

Specs: [details](https://developer.nvidia.com/embedded/jetson-nano-developer-kit)
- CPU: Quad-core ARM A57 @ 1.43 GHz
- GPU: 128-core NVIDIA Maxwell

CPU:

```
$ python3 benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
5.37       5.44       5.27       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
6.11       7.99       5.27       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
65.14      65.13      64.93      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
79.33      88.12      64.93      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
28.19      28.17      28.05      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
34.85      35.66      28.05      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
41.02      42.37      40.80      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
44.20      44.39      40.80      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
65.91      65.93      65.68      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
68.94      68.95      68.77      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
62.12      62.24      55.29      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
66.04      55.58      55.29      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
65.31      64.86      55.29      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
376.88     368.22     367.11     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
390.32     385.28     367.11     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
133.15     130.57     129.38     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
215.57     225.11     212.66     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
217.37     214.85     212.66     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1228.13    1233.90    1219.11    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1257.34    1256.26    1219.11    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
466.19     457.89     442.88     [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
69.60      69.69      69.13      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
81.65      82.20      69.13      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
98.38      98.20      97.69      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
411.49     417.53     402.57     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
372.94     370.17     335.95     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
5.62       5.64       5.55       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
1089.89    1091.85    1071.95    [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
1089.94    1095.07    1071.95    [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
274.45     286.03     270.52     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
290.82     288.87     270.52     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
269.52     311.59     228.47     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
269.66     267.98     228.47     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
261.39     231.92     228.47     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
259.68     249.43     228.47     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
260.89     283.44     228.47     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
255.61     249.41     222.38     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

GPU (CUDA-FP32):
```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA
mean       median     min        input size   model
11.22      11.49      9.59       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
24.60      25.91      24.16      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
20.64      24.00      18.88      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
41.15      41.18      40.95      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
90.86      90.79      84.96      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
69.24      69.11      68.87      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
62.12      62.30      55.28      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
148.58     153.17     144.61     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
53.50      54.29      51.48      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
214.99     218.04     212.94     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
1238.91    1244.87    1227.30    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
76.54      76.09      74.51      [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
67.34      67.83      62.38      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
56.69      55.54      48.96      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
126.65     126.63     124.96     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
303.12     302.80     299.30     [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
302.58     299.78     297.83     [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
58.05      62.90      52.47      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
59.39      56.82      52.47      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
45.60      62.40      21.73      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```

GPU (CUDA-FP16):

```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA_FP16
mean       median     min        input size   model
26.17      26.40      25.87      [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
116.07     115.93     112.39     [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
119.85     121.62     114.63     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
40.94      40.92      40.70      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
99.88      100.49     93.24      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
69.00      68.81      68.60      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
61.93      62.18      55.17      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
141.11     145.82     136.02     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
364.70     363.48     360.28     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
215.23     213.49     213.06     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
1223.32    1248.88    1213.25    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
52.91      52.96      50.17      [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
212.86     213.21     210.03     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
221.12     255.53     217.16     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
96.68      94.21      89.24      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
343.38     344.17     337.62     [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
344.29     345.07     337.62     [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
48.91      50.31      45.41      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
50.20      49.66      45.41      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
39.56      52.56      20.76      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```

### Khadas VIM3

Specs: [details](https://www.khadas.com/vim3)
- (SoC) CPU: Amlogic A311D, 2.2 GHz Quad core ARM Cortex-A73 and 1.8 GHz dual core Cortex-A53
- NPU: 5 TOPS Performance NPU INT8 inference up to 1536 MAC Supports all major deep learning frameworks including TensorFlow and Caffe 

CPU:

```
$ python3 benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
4.93       4.91       4.83       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
5.30       5.31       4.83       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
60.02      61.00      57.85      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
70.27      74.77      57.85      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
29.36      28.28      27.97      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
34.66      34.12      27.97      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
38.60      37.72      36.79      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
41.57      41.91      36.79      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
70.82      72.70      67.14      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
64.73      64.22      62.19      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
58.18      59.29      49.97      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
59.15      52.27      49.97      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
57.38      55.13      49.97      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
385.29     361.27     348.96     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
352.90     395.79     328.06     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
122.17     123.58     119.43     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
208.25     217.96     195.76     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
203.04     213.99     161.37     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1189.83    1150.85    1138.93    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1137.18    1142.89    1080.23    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
428.66     524.98     391.33     [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
66.91      67.09      64.90      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
79.42      81.44      64.90      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
84.42      85.99      83.30      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
439.53     431.92     406.03     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
358.63     379.93     296.32     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
5.29       5.30       5.21       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
973.75     968.68     954.58     [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
961.44     959.29     935.29     [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
202.74     202.73     200.75     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
217.07     217.26     200.75     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
199.81     231.31     169.27     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
199.73     203.96     169.27     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
192.97     175.68     169.27     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
189.65     189.43     169.27     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
188.98     202.49     169.27     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
183.49     188.71     149.81     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

NPU (TIMVX):

```
$ python3 benchmark.py --all --int8 --cfg_overwrite_backend_target 3 --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_TIMVX
target=cv.dnn.DNN_TARGET_NPU
mean       median     min        input size   model
5.67       5.74       5.59       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
76.97      77.86      75.59      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
40.38      39.41      38.12      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
44.36      45.77      42.06      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
60.75      62.46      56.34      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
57.40      58.10      52.11      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
340.20     347.74     330.70     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
200.50     224.02     160.81     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1103.24    1091.76    1059.77    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
95.92      102.80     92.77      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
307.90     310.52     302.46     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
178.71     178.87     177.84     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
183.51     183.72     177.84     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
172.06     189.19     149.19     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Atlas 200 DK

Specs: [details_en](https://e.huawei.com/uk/products/cloud-computing-dc/atlas/atlas-200), [details_cn](https://www.hiascend.com/zh/hardware/developer-kit)
- (SoC) CPU: 8-core Coretext-A55 @ 1.6 GHz (max)
- NPU: Ascend 310, dual DaVinci AI cores, 22/16/8 TOPS INT8.

CPU:

```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
8.02       8.07       7.93       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
9.44       9.34       7.93       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
104.51     112.90     102.07     [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
131.49     147.17     102.07     [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
47.71      57.86      46.48      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
59.26      59.07      46.48      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
57.95      58.02      57.30      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
65.52      70.76      57.30      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
107.98     127.65     106.59     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
103.96     124.91     102.87     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
90.46      90.53      76.14      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
98.40      76.49      76.14      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
98.06      95.36      76.14      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
564.69     556.79     537.84     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
621.54     661.56     537.84     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
226.08     216.89     216.07     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
343.08     346.39     315.99     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
351.64     346.41     315.99     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1995.97    1996.82    1967.76    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
2060.87    2055.60    1967.76    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
701.08     708.52     685.49     [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
105.23     105.14     105.00     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
123.41     125.65     105.00     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
134.10     134.43     133.62     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
631.70     631.81     630.61     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
595.32     599.48     565.32     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1452.55    1453.75    1450.98    [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
1433.26    1432.08    1409.78    [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
299.36     299.92     298.75     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
329.84     333.32     298.75     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
303.65     367.68     262.48     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
299.60     315.91     262.48     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
290.29     263.05     262.48     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
290.41     279.30     262.48     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
294.61     295.36     262.48     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
289.53     279.60     262.48     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

NPU:

```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat:dasiamrpn:crnn --cfg_overwrite_backend_target 4
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CANN
target=cv.dnn.DNN_TARGET_NPU
mean       median     min        input size   model
2.24       2.21       2.19       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
2.66       2.66       2.64       [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
2.19       2.19       2.16       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
6.27       6.22       6.17       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
6.94       6.94       6.85       [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
5.15       5.13       5.10       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
5.41       5.42       5.10       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
6.99       6.99       6.95       [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
7.63       7.64       7.43       [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
20.62      22.09      19.16      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
28.59      28.60      27.91      [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
5.17       5.26       5.09       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
16.45      16.44      16.31      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
5.58       5.57       5.54       [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
17.15      17.18      16.83      [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
17.95      18.61      16.83      [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
```

### Toybrick RV1126

Specs: [details](https://t.rock-chips.com/en/portal.php?mod=view&aid=26)
- CPU: Quard core ARM Cortex-A7, up to 1.5GHz
- NPU (Not supported by OpenCV): 2.0TOPS, support 8bit / 16bit

CPU:

```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
68.89      68.59      68.23      [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
60.98      61.11      52.00      [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
1550.71    1578.99    1527.58    [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
1214.15    1261.66    920.50     [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
604.36     611.24     578.99     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
496.42     537.75     397.23     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
460.56     470.15     440.77     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
387.63     379.96     318.71     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
1610.78    1599.92    1583.95    [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
1546.16    1539.50    1513.14    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
1166.56    1211.97    827.10     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
983.80     868.18     689.32     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
840.38     801.83     504.54     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
11793.09   11817.73   11741.04   [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
7740.03    8134.99    4464.30    [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
3222.92    3225.18    3170.71    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
2303.55    2307.46    2289.41    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
1888.15    1920.41    1528.78    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
38359.93   39021.21   37180.85   [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
24504.50   25439.34   13443.63   [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
14738.64   14764.84   14655.76   [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
872.09     877.72     838.99     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
764.48     775.55     653.25     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
1326.56    1327.10    1305.18    [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
11117.07   11109.12   11058.49   [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
7037.96    7424.89    3750.12    [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
49065.03   49144.55   48943.50   [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
49052.24   48992.64   48927.44   [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
2200.08    2193.78    2175.77    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
2244.03    2240.25    2175.77    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
2230.12    2290.28    2175.77    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
2220.33    2281.75    2171.61    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
2216.44    2212.48    2171.61    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
2041.65    2209.50    1268.91    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
1933.06    2210.81    1268.91    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
1826.34    2234.66    1184.53    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Khadas Edge2 (with RK3588)

Board specs: [details](https://www.khadas.com/edge2)
SoC specs: [details](https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html)
- CPU: 2.25GHz Quad Core ARM Cortex-A76 + 1.8GHz Quad Core Cortex-A55
- NPU (Not supported by OpenCV): Build-in 6 TOPS Performance NPU, triple core, support int4 / int8 / int16 / fp16 / bf16 / tf32

CPU:

```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
2.47       2.55       2.44       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
2.81       2.84       2.44       [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
33.79      33.83      33.24      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
39.96      40.77      33.24      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
15.99      16.12      15.92      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
19.09      19.48      15.92      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
20.27      20.45      20.11      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
23.14      23.62      20.11      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
34.58      34.53      33.55      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
32.78      32.94      31.99      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
28.38      28.80      24.59      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
31.49      24.66      24.59      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
31.45      32.34      24.59      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
178.87     178.49     173.57     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
197.19     200.06     173.57     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
57.57      65.48      51.34      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
118.38     132.59     88.34      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
120.74     110.82     88.34      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
577.93     577.17     553.81     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
607.96     604.88     553.81     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
152.78     155.89     121.26     [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
38.03      38.26      37.51      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
47.12      48.12      37.51      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
46.07      46.77      45.10      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
195.67     198.02     182.97     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
181.91     182.28     169.98     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
394.77     407.60     371.95     [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
392.52     404.80     367.96     [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
77.32      77.72      75.27      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
82.93      82.93      75.27      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
77.51      93.01      67.44      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
77.02      84.11      67.44      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
75.11      69.82      63.98      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
74.55      73.36      63.98      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
75.06      77.44      63.98      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
73.91      74.25      63.98      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Horizon Sunrise X3 PI

Specs: [details_cn](https://developer.horizon.ai/sunrise)
- CPU: ARM Cortex-A53,4xCore, 1.2G
- BPU (aka NPU, not supported by OpenCV): (Bernoulli Arch) 2×Core,up to 1.0G, ~5Tops

CPU:

```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
11.04      11.01      10.98      [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
12.59      12.75      10.98      [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
140.83     140.85     140.52     [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
171.71     175.65     140.52     [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
64.96      64.94      64.77      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
80.20      81.82      64.77      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
80.67      80.72      80.45      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
89.25      90.39      80.45      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
144.23     144.34     143.84     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
140.60     140.62     140.33     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
122.53     124.23     107.71     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
128.22     107.87     107.71     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
125.77     123.77     107.71     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
759.81     760.01     759.11     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
764.17     764.43     759.11     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
283.75     284.17     282.15     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
408.16     408.31     402.71     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
408.82     407.99     402.71     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
2749.22    2756.23    2737.96    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
2671.54    2692.18    2601.24    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
929.63     936.01     914.86     [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
142.23     142.03     141.78     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
179.74     184.79     141.78     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
191.41     191.48     191.00     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
898.23     897.52     896.58     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
749.83     765.90     630.39     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1908.87    1905.00    1903.13    [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
1922.34    1920.65    1896.97    [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
470.78     469.17     467.92     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
495.94     497.12     467.92     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
464.58     528.72     408.69     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
465.04     467.01     408.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
452.90     409.34     408.69     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
450.23     438.57     408.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
453.52     468.72     408.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
443.38     447.29     381.90     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### MAIX-III AX-PI

Specs: [details_en](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware), [details_cn](https://wiki.sipeed.com/hardware/zh/maixIII/ax-pi/axpi.html#%E7%A1%AC%E4%BB%B6%E5%8F%82%E6%95%B0)
- CPU: Quad cores ARM Cortex-A7
- NPU (Not supported by OpenCV): 14.4Tops@int4,3.6Tops@int8

CPU:

```
$ python3 benchmark.py --all --cfg_exclude wechat --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
98.16      98.99      97.73      [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
93.21      93.81      89.15      [160, 120]   YuNet with ['face_detection_yunet_2022mar_int8.onnx']
2093.12    2093.02    2092.54    [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
1845.87    1871.17    1646.65    [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
811.32     811.47     810.80     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
743.24     750.04     688.44     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
636.22     635.89     635.43     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
588.83     594.01     550.49     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
2157.86    2157.82    2156.99    [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
2091.13    2091.61    2090.72    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
1583.25    1634.14    1176.19    [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
1450.55    1177.07    1176.19    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
1272.81    1226.00    873.94     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
15753.56   15751.29   15748.97   [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
11610.11   12023.99   8290.04    [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
4300.13    4301.43    4298.29    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
3360.20    3357.84    3356.70    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
2961.58    3005.40    2641.27    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
49994.75   49968.90   49958.48   [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
35966.66   37391.40   24670.30   [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
19800.14   19816.02   19754.69   [1280, 720]  DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
1191.81    1192.42    1191.40    [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
1162.64    1165.77    1138.35    [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
1835.97    1836.24    1835.34    [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
14886.02   14884.48   14881.73   [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
10491.63   10930.80   6975.34    [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
65681.91   65674.89   65612.09   [640, 480]   DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
65630.56   65652.90   65531.21   [640, 480]   DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
3248.11    3242.59    3241.18    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
3330.69    3350.38    3241.18    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
3277.07    3427.65    3195.84    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
[ WARN:[email protected]] global onnx_graph_simplifier.cpp:804 getMatFromTensor DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.
3263.48    3319.83    3195.84    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
3258.78    3196.90    3195.84    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
3090.12    3224.64    2353.81    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
3001.31    3237.93    2353.81    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
2887.05    3224.12    2206.89    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```