File size: 10,091 Bytes
42310ef
 
 
 
 
 
 
 
0199e9f
42310ef
a07f7bd
167c85e
 
a07f7bd
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
 
 
 
 
a07f7bd
42310ef
 
 
a07f7bd
 
 
 
 
 
 
 
 
d2b2b68
 
 
 
 
85a27e0
d2b2b68
42310ef
 
0199e9f
 
 
 
 
 
 
 
 
 
00c0329
42310ef
 
0199e9f
 
 
 
 
00c0329
 
0199e9f
 
 
 
00c0329
 
0199e9f
 
 
 
 
42310ef
 
 
 
 
 
 
 
de9c40f
a07f7bd
 
42310ef
 
 
 
 
 
 
 
 
 
 
 
de9c40f
a07f7bd
42310ef
86cd32d
 
42310ef
 
00c0329
d2b2b68
42310ef
a07f7bd
 
 
 
42310ef
a07f7bd
42310ef
23d8387
 
d2b2b68
23d8387
 
 
 
42310ef
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
42310ef
 
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d77a4
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a27e0
d2b2b68
 
 
 
 
 
85a27e0
 
d2b2b68
85a27e0
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import argparse

import yaml
import numpy as np
import cv2 as cv

from models import MODELS
from utils import METRICS, DATALOADERS

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
       "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]
backend_target_str_pairs = [
    ["cv.dnn.DNN_BACKEND_OPENCV", "cv.dnn.DNN_TARGET_CPU"],
    ["cv.dnn.DNN_BACKEND_CUDA",   "cv.dnn.DNN_TARGET_CUDA"],
    ["cv.dnn.DNN_BACKEND_CUDA",   "cv.dnn.DNN_TARGET_CUDA_FP16"],
    ["cv.dnn.DNN_BACKEND_TIMVX",  "cv.dnn.DNN_TARGET_NPU"],
    ["cv.dnn.DNN_BACKEND_CANN",   "cv.dnn.DNN_TARGET_NPU"]
]

parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
parser.add_argument('--cfg', '-c', type=str,
                    help='Benchmarking on the given config.')
parser.add_argument('--cfg_overwrite_backend_target', type=int, default=-1,
                    help='''Choose one of the backend-target pair to run this demo:
                        others: (default) use the one from config,
                        {:d}: OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument("--cfg_exclude", type=str, help="Configs to be excluded when using --all. Split keywords with colons (:). Not sensitive to upper/lower case.")
parser.add_argument("--model_exclude", type=str, help="Models to be excluded. Split model names with colons (:). Sensitive to upper/lower case.")
parser.add_argument("--fp32", action="store_true", help="Benchmark models of float32 precision only.")
parser.add_argument("--fp16", action="store_true", help="Benchmark models of float16 precision only.")
parser.add_argument("--int8", action="store_true", help="Benchmark models of int8 precision only.")
parser.add_argument("--int8bq", action="store_true", help="Benchmark models of blocked int8 precision only.")
parser.add_argument("--all", action="store_true", help="Benchmark all models")
args = parser.parse_args()

def build_from_cfg(cfg, registery, key=None, name=None):
    if key is not None:
        obj_name = cfg.pop(key)
        obj = registery.get(obj_name)
        return obj(**cfg)
    elif name is not None:
        obj = registery.get(name)
        return obj(**cfg)
    else:
        raise NotImplementedError()

class Benchmark:
    def __init__(self, **kwargs):
        self._type = kwargs.pop('type', None)
        if self._type is None:
            self._type = 'Base'
            print('Benchmark[\'type\'] is omitted, set to \'Base\' by default.')

        self._data_dict = kwargs.pop('data', None)
        assert self._data_dict, 'Benchmark[\'data\'] cannot be empty and must have path and files.'
        if 'type' in self._data_dict:
            self._dataloader = build_from_cfg(self._data_dict, registery=DATALOADERS, key='type')
        else:
            self._dataloader = build_from_cfg(self._data_dict, registery=DATALOADERS, name=self._type)

        self._metric_dict = kwargs.pop('metric', None)
        assert self._metric_dict, 'Benchmark[\'metric\'] cannot be empty.'
        if 'type' in self._metric_dict:
            self._metric = build_from_cfg(self._metric_dict, registery=METRICS, key='type')
        else:
            self._metric = build_from_cfg(self._metric_dict, registery=METRICS, name=self._type)

        backend_id = kwargs.pop('backend', 'default')
        available_backends = dict(
            default=cv.dnn.DNN_BACKEND_DEFAULT,
            # halide=cv.dnn.DNN_BACKEND_HALIDE,
            # inference_engine=cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
            opencv=cv.dnn.DNN_BACKEND_OPENCV,
            # vkcom=cv.dnn.DNN_BACKEND_VKCOM,
            cuda=cv.dnn.DNN_BACKEND_CUDA,
            timvx=cv.dnn.DNN_BACKEND_TIMVX,
            cann=cv.dnn.DNN_BACKEND_CANN,
        )

        target_id = kwargs.pop('target', 'cpu')
        available_targets = dict(
            cpu=cv.dnn.DNN_TARGET_CPU,
            # opencl=cv.dnn.DNN_TARGET_OPENCL,
            # opencl_fp16=cv.dnn.DNN_TARGET_OPENCL_FP16,
            # myriad=cv.dnn.DNN_TARGET_MYRIAD,
            # vulkan=cv.dnn.DNN_TARGET_VULKAN,
            # fpga=cv.dnn.DNN_TARGET_FPGA,
            cuda=cv.dnn.DNN_TARGET_CUDA,
            cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
            # hddl=cv.dnn.DNN_TARGET_HDDL,
            npu=cv.dnn.DNN_TARGET_NPU,
        )

        self._backend = available_backends[backend_id]
        self._target = available_targets[target_id]

        self._benchmark_results = dict()
        self._benchmark_results_brief = dict()

    def setBackendAndTarget(self, backend_id, target_id):
        self._backend = backend_id
        self._target = target_id

    def run(self, model):
        model.setBackendAndTarget(self._backend, self._target)

        for idx, data in enumerate(self._dataloader):
            filename, input_data = data[:2]

            if isinstance(input_data, np.ndarray):
                size = [input_data.shape[1], input_data.shape[0]]
            else:
                size = input_data.getFrameSize()

            if str(size) not in self._benchmark_results:
                self._benchmark_results[str(size)] = dict()
            self._benchmark_results[str(size)][filename] = self._metric.forward(model, *data[1:])

            if str(size) not in self._benchmark_results_brief:
                self._benchmark_results_brief[str(size)] = []
            self._benchmark_results_brief[str(size)] += self._benchmark_results[str(size)][filename]

    def printResults(self, model_name, model_path):
        for imgSize, res in self._benchmark_results_brief.items():
            mean, median, minimum = self._metric.getPerfStats(res)
            print("{:<10.2f} {:<10.2f} {:<10.2f} {:<12} {} with {}".format(
                mean, median, minimum, imgSize, model_name, model_path
            ))

if __name__ == '__main__':
    cfgs = []
    if args.cfg is not None:
        assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
        with open(args.cfg, 'r') as f:
            cfg = yaml.safe_load(f)
        cfgs.append(cfg)
    elif args.all:
        excludes = []
        if args.cfg_exclude is not None:
            excludes = args.cfg_exclude.split(":")

        for cfg_fname in sorted(os.listdir("config")):
            skip_flag = False
            for exc in excludes:
                if exc.lower() in cfg_fname.lower():
                    skip_flag = True
            if skip_flag:
                # print("{} is skipped.".format(cfg_fname))
                continue

            assert cfg_fname.endswith("yaml"), "Currently support yaml configs only."
            with open(os.path.join("config", cfg_fname), "r") as f:
                cfg = yaml.safe_load(f)
            cfgs.append(cfg)
    else:
        raise NotImplementedError("Specify either one config or use flag --all for benchmark.")

    print("Benchmarking ...")
    if args.all:
        backend_target_id = args.cfg_overwrite_backend_target if args.cfg_overwrite_backend_target >= 0 else 0
        backend_str = backend_target_str_pairs[backend_target_id][0]
        target_str = backend_target_str_pairs[backend_target_id][1]
        print("backend={}".format(backend_str))
        print("target={}".format(target_str))
    print("{:<10} {:<10} {:<10} {:<12} {}".format("mean", "median", "min", "input size", "model"))
    for cfg in cfgs:
        # Instantiate benchmark
        benchmark = Benchmark(**cfg['Benchmark'])

        # Set backend and target
        if args.cfg_overwrite_backend_target >= 0:
            backend_id = backend_target_pairs[args.cfg_overwrite_backend_target][0]
            target_id = backend_target_pairs[args.cfg_overwrite_backend_target][1]
            benchmark.setBackendAndTarget(backend_id, target_id)

        # Instantiate model
        model_config = cfg['Model']
        model_handler, model_paths = MODELS.get(model_config.pop('name'))

        _model_paths = []
        if args.fp32 or args.fp16 or args.int8 or args.int8bq:
            if args.fp32:
                _model_paths += model_paths['fp32']
            if args.fp16:
                _model_paths += model_paths['fp16']
            if args.int8:
                _model_paths += model_paths['int8']
            if args.int8bq:
                _model_paths += model_paths['int8bq']
        else:
            _model_paths = model_paths['fp32'] + model_paths['fp16'] + model_paths['int8'] + model_paths["int8bq"]
        # filter out excluded models
        excludes = []
        if args.model_exclude is not None:
            excludes = args.model_exclude.split(":")
        _model_paths_excluded = []
        for model_path in _model_paths:
            skip_flag = False
            for mp in model_path:
                for exc in excludes:
                    if exc in mp:
                        skip_flag = True
            if skip_flag:
                continue
            _model_paths_excluded.append(model_path)
        _model_paths = _model_paths_excluded

        for model_path in _model_paths:
            model = model_handler(*model_path, **model_config)
            # Format model_path
            for i in range(len(model_path)):
                model_path[i] = model_path[i].split('/')[-1]
            # Run benchmark
            benchmark.run(model)
            benchmark.printResults(model.name, model_path)