Spaces:
Running
Running
File size: 13,479 Bytes
4d27e51 a3bc5c8 4d27e51 6390634 4d27e51 a3bc5c8 4d27e51 f90ad55 22b5f9b f90ad55 06f6a47 22b5f9b a3bc5c8 22b5f9b a3bc5c8 22b5f9b a3bc5c8 22b5f9b 26fda7b 22b5f9b a3bc5c8 22b5f9b a3bc5c8 4d27e51 6ed6cb1 4d27e51 a3bc5c8 4d27e51 66eafe1 4d27e51 a3bc5c8 4d27e51 8cfe42f 4d27e51 8cfe42f 4d27e51 8cfe42f 4d27e51 8cfe42f 4d27e51 5c2a9e9 4d27e51 334c51d a3bc5c8 4d27e51 a3bc5c8 4d27e51 a3bc5c8 22b5f9b a3bc5c8 f90ad55 a3bc5c8 f90ad55 a3bc5c8 4d27e51 a3bc5c8 4d27e51 22b5f9b 4d27e51 a3bc5c8 4d27e51 a3bc5c8 4d27e51 a3bc5c8 4d27e51 22b5f9b f90ad55 4d27e51 7a8a10e 4d27e51 a3bc5c8 4d27e51 22b5f9b f90ad55 a3bc5c8 7a8a10e 4d27e51 a3bc5c8 4d27e51 22b5f9b 4d27e51 a3bc5c8 7a8a10e a3bc5c8 4d27e51 a3bc5c8 4d27e51 a3bc5c8 4d27e51 2cb8794 4d27e51 2cb8794 4d27e51 a3bc5c8 4d27e51 0b6b01f 4d27e51 a3bc5c8 4d27e51 a3bc5c8 4d27e51 a3bc5c8 43152a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
st.markdown(
"""
<style>
/* Main app background and text color */
.stApp {
background-color: #F5FFFA; /* Mint cream, a very light green */
color: #000000; /* Black for the text */
}
/* Sidebar background color */
.css-1d36184 {
background-color: #B2F2B2; /* A pale green for the sidebar */
secondary-background-color: #B2F2B2;
}
/* Expander background color */
.streamlit-expanderContent {
background-color: #F5FFFA;
}
/* Expander header background color */
.streamlit-expanderHeader {
background-color: #F5FFFA;
}
/* Text Area background and text color */
.stTextArea textarea {
background-color: #D4F4D4; /* A light, soft green */
color: #000000; /* Black for text */
}
/* Button background and text color */
.stButton > button {
background-color: #D4F4D4;
color: #000000;
}
/* Warning box background and text color */
.stAlert.st-warning {
background-color: #C8F0C8; /* A light green for the warning box */
color: #000000;
}
/* Success box background and text color */
.stAlert.st-success {
background-color: #C8F0C8; /* A light green for the success box */
color: #000000;
}
</style>
""",
unsafe_allow_html=True
)
# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("HR.ai", divider="green")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes**")
expander.write("""**Named Entities:** This HR.ai web app predicts thirty-six (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** You can request results unlimited times for one (1) month.
**Supported Languages:** English
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]""")
with st.sidebar:
st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
<iframe
src="https://aiecosystem-hr-ai.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
'''
st.code(code, language="html")
st.text("")
st.text("")
st.divider()
st.subheader("π Ready to build your own AI Web App?", divider="green")
st.link_button("AI Web App Builder", "https://nlpblogs.com/custom-web-app-development/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
# --- Label Definitions ---
labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
# Create a mapping dictionary for labels to categories
category_mapping = {
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
"Personal Details": ["Date_of_birth", "Marital_status", "Person"],
"Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
"Employment Information" : ["Job_title", "Date", "Organization", "Role"],
"Performance": ["Performance_score"],
"Attendance": ["Leave_of_absence"],
"Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
"Compensation": ["Pay_rate", "Annual_salary"],
"Deductions": ["Tax", "Deductions"],
"Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
"Legal & Compliance": ["Offer_letter", "Agreement"],
"Professional_Development": [ "Certification", "Skill"]
}
# --- Model Loading ---
@st.cache_resource
def load_ner_model():
"""Loads the GLiNER model and caches it."""
try:
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
model = load_ner_model()
# Flatten the mapping to a single dictionary
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- Text Input and Clear Button ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
def clear_text():
"""Clears the text area."""
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
# --- Results Section ---
if st.button("Results"):
start_time = time.time()
if not text.strip():
st.warning("Please enter some text to extract entities.")
else:
with st.spinner("Extracting entities...", show_time=True):
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
if not df.empty:
df['category'] = df['label'].map(reverse_category_mapping)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
st.subheader("Grouped Entities by Category", divider = "green")
# Create tabs for each category
category_names = sorted(list(category_mapping.keys()))
category_tabs = st.tabs(category_names)
for i, category_name in enumerate(category_names):
with category_tabs[i]:
df_category_filtered = df[df['category'] == category_name]
if not df_category_filtered.empty:
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
else:
st.info(f"No entities found for the '{category_name}' category.")
with st.expander("See Glossary of tags"):
st.write('''
- **text**: ['entity extracted from your text data']
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
- **label**: ['label (tag) assigned to a given extracted entity']
- **start**: ['index of the start of the corresponding entity']
- **end**: ['index of the end of the corresponding entity']
''')
st.divider()
# Tree map
st.subheader("Tree map", divider = "green")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
st.plotly_chart(fig_treemap)
# Pie and Bar charts
grouped_counts = df['category'].value_counts().reset_index()
grouped_counts.columns = ['category', 'count']
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie chart", divider = "green")
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
fig_pie.update_layout(
paper_bgcolor='#F5FFFA',
plot_bgcolor='#F5FFFA'
)
st.plotly_chart(fig_pie)
with col2:
st.subheader("Bar chart", divider = "green")
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
fig_pie.update_layout(
paper_bgcolor='#F5FFFA',
plot_bgcolor='#F5FFFA'
)
st.plotly_chart(fig_bar)
# Most Frequent Entities
st.subheader("Most Frequent Entities", divider="green")
word_counts = df['text'].value_counts().reset_index()
word_counts.columns = ['Entity', 'Count']
repeating_entities = word_counts[word_counts['Count'] > 1]
if not repeating_entities.empty:
st.dataframe(repeating_entities, use_container_width=True)
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
paper_bgcolor='#F5FFFA',
plot_bgcolor='#F5FFFA')
st.plotly_chart(fig_repeating_bar)
else:
st.warning("No entities were found that occur more than once.")
# Download Section
st.divider()
dfa = pd.DataFrame(
data={
'Column Name': ['text', 'label', 'score', 'start', 'end'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
):
st.download_button(
label="Download results and glossary (zip)",
data=buf.getvalue(),
file_name="nlpblogs_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
experiment.end()
else: # If df is empty
st.warning("No entities were found in the provided text.")
end_time = time.time()
elapsed_time = end_time - start_time
st.text("")
st.text("")
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|