File size: 6,103 Bytes
04fa07a
 
 
2d71661
f1ea272
7470611
04fa07a
 
 
 
 
 
 
8c9a116
04fa07a
 
 
 
 
 
 
 
 
 
 
2d71661
 
04fa07a
8c9a116
 
 
04fa07a
 
 
 
 
6128586
04fa07a
6128586
04fa07a
 
6128586
04fa07a
 
 
6128586
 
04fa07a
6128586
 
04fa07a
 
6128586
04fa07a
 
6128586
 
f1ea272
6128586
f1ea272
6128586
 
f1ea272
04fa07a
 
 
 
 
 
 
 
 
 
 
 
 
 
6128586
04fa07a
 
 
 
f1ea272
04fa07a
 
 
 
 
 
 
 
 
6128586
04fa07a
 
 
 
 
 
 
 
 
 
 
 
6128586
04fa07a
6128586
 
04fa07a
 
6128586
 
 
04fa07a
 
 
f1ea272
 
04fa07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6128586
04fa07a
 
 
 
f1ea272
04fa07a
 
 
f1ea272
2d71661
 
04fa07a
 
2d71661
04fa07a
 
f1ea272
04fa07a
2d71661
04fa07a
 
2d71661
 
04fa07a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import requests
import pandas as pd
import numpy as np
import pickle
import google.generativeai as genai
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image

# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
    "https://archive-api.open-meteo.com/v1/archive"
    "?latitude={lat}&longitude={lon}"
    "&start_date={start}&end_date={end}"
    "&daily=temperature_2m_max,temperature_2m_min,"
    "precipitation_sum,windspeed_10m_max,"
    "relative_humidity_2m_max,relative_humidity_2m_min"
    "&timezone=UTC"
)

# --- GEMINI SETUP ---
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
if not GOOGLE_API_KEY:
    raise ValueError("Missing GOOGLE_API_KEY environment variable")
genai.configure(api_key=GOOGLE_API_KEY)
flash = genai.GenerativeModel('gemini-1.5-flash')

# --- LOAD MODELS ---
def load_models():
    # Load VGG16 wildfire detector
    vgg_model = load_model(
        'vgg16_focal_unfreeze_more.keras',
        custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
    )
    # Load Xception severity classifier
    def focal_loss_fixed(gamma=2., alpha=.25):
        import tensorflow.keras.backend as K
        def loss_fn(y_true, y_pred):
            eps = K.epsilon()
            y_pred = K.clip(y_pred, eps, 1. - eps)
            ce = -y_true * K.log(y_pred)
            weight = alpha * K.pow(1 - y_pred, gamma)
            return K.mean(weight * ce, axis=-1)
        return loss_fn
    xce_model = load_model(
        'severity_post_tta.keras',
        custom_objects={'focal_loss_fixed': focal_loss_fixed()}
    )
    # Load ensemble models
    with open('ensemble_rf_model.pkl', 'rb') as f:
        rf_model = pickle.load(f)
    with open('ensemble_xgb_model.pkl', 'rb') as f:
        xgb_model = pickle.load(f)
    # Load weather trend model
    with open('wildfire_logistic_model_synthetic.joblib', 'rb') as f:
        lr_model = pickle.load(f)
    return vgg_model, xce_model, rf_model, xgb_model, lr_model

vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()

# --- LABEL MAPS ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
trend_rules = {
    'mild':    {'decrease':'mild','same':'mild','increase':'moderate'},
    'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
    'severe':  {'decrease':'moderate','same':'severe','increase':'severe'}
}

# --- PIPELINE FUNCTIONS ---

def detect_fire(img):
    x = keras_image.img_to_array(img.resize((128,128)))[None]
    x = vgg_preprocess(x)
    prob = float(vgg_model.predict(x)[0][0])
    return prob >= 0.5, prob


def classify_severity(img):
    x = keras_image.img_to_array(img.resize((224,224)))[None]
    x = xce_preprocess(x)
    preds = xception_model.predict(x)
    rf_p = rf_model.predict(preds)[0]
    xgb_p = xgb_model.predict(preds)[0]
    ensemble = int(round((rf_p + xgb_p)/2))
    return target_map.get(ensemble, 'moderate')


def fetch_weather_trend(lat, lon):
    end = datetime.utcnow()
    start = end - timedelta(days=1)
    url = API_URL.format(lat=lat, lon=lon,
                         start=start.strftime('%Y-%m-%d'),
                         end=end.strftime('%Y-%m-%d'))
    data = requests.get(url).json().get('daily', {})
    df = pd.DataFrame(data)
    for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
              'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
        df[c] = pd.to_numeric(df.get(c, []), errors='coerce')
    df['precipitation'] = df['precipitation_sum'].fillna(0)
    df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
    df['humidity']    = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
    df['wind_speed']  = df['windspeed_10m_max']
    df['fire_risk_score'] = (
        0.4*(df['temperature']/55) +
        0.2*(1-df['humidity']/100) +
        0.3*(df['wind_speed']/60) +
        0.1*(1-df['precipitation']/50)
    )
    feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
    feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
    trend_cl = lr_model.predict(feat)[0]
    return trend_map.get(trend_cl)


def generate_recommendations(wildfire_present, severity, weather_trend):
    prompt = f"""
You are a wildfire management expert.
- Wildfire Present: {wildfire_present}
- Severity: {severity}
- Weather Trend: {weather_trend}
Provide:
1. Immediate actions
2. Evacuation guidelines
3. Short-term containment
4. Long-term prevention & recovery
5. Community education
"""
    return flash.generate_content(prompt).text

# --- GRADIO INTERFACE ---

def pipeline(image):
    img = Image.fromarray(image).convert('RGB')
    fire, prob = detect_fire(img)
    if not fire:
        return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
    severity = classify_severity(img)
    trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
    recs = generate_recommendations(True, severity, trend)
    return f"Fire Detected (prob={prob:.2f})", severity.title(), trend, recs

interface = gr.Interface(
    fn=pipeline,
    inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
    outputs=[
        gr.Textbox(label='Fire Status'),
        gr.Textbox(label='Severity Level'),
        gr.Textbox(label='Weather Trend'),
        gr.Markdown(label='Recommendations')
    ],
    title='Wildfire Detection & Management Assistant',
    description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.'
)

if __name__ == '__main__':
    interface.launch()