Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import google.generativeai as genai | |
import gradio as gr | |
from google.colab import drive, userdata | |
from datetime import datetime, timedelta | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image as keras_image | |
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess | |
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess | |
from tensorflow.keras.losses import BinaryFocalCrossentropy | |
# --- CONFIGURATION --- | |
# Coordinates for a representative forest area in Pakistan | |
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)} | |
API_URL = ( | |
"https://archive-api.open-meteo.com/v1/archive" | |
"?latitude={lat}&longitude={lon}" | |
"&start_date={start}&end_date={end}" | |
"&daily=temperature_2m_max,temperature_2m_min," | |
"precipitation_sum,windspeed_10m_max," | |
"relative_humidity_2m_max,relative_humidity_2m_min" | |
"&timezone=UTC" | |
) | |
# --- GEMINI SETUP --- | |
GOOGLE_API_KEY = userdata.get('GOOGLE_API_KEY') | |
genai.configure(api_key=GOOGLE_API_KEY) | |
flash = genai.GenerativeModel('gemini-1.5-flash') | |
# --- LOAD MODELS --- | |
def load_models(): | |
drive.mount('/content/drive', force_remount=False) | |
# Fire detection (VGG16 binary classifier) | |
vgg_model = load_model( | |
'/content/drive/MyDrive/vgg16_focal_unfreeze_more.keras', | |
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy} | |
) | |
# Severity classification (Xception + RF/XGB ensemble) | |
def focal_loss_fixed(gamma=2., alpha=.25): | |
import tensorflow.keras.backend as K | |
def loss_fn(y_true, y_pred): | |
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps) | |
ce = -y_true * K.log(y_pred) | |
w = alpha * K.pow(1-y_pred, gamma) | |
return K.mean(w*ce, axis=-1) | |
return loss_fn | |
xce_model = load_model( | |
'/content/drive/My Drive/severity_post_tta.keras', | |
custom_objects={'focal_loss_fixed': focal_loss_fixed()} | |
) | |
rf_model = joblib.load('/content/drive/My Drive/ensemble_rf_model.pkl') | |
xgb_model = joblib.load('/content/drive/My Drive/ensemble_xgb_model.pkl') | |
# Weather trend (Logistic Regression) | |
lr_model = joblib.load('/content/drive/MyDrive/wildfire_logistic_model_synthetic.joblib') | |
return vgg_model, xce_model, rf_model, xgb_model, lr_model | |
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models() | |
# --- LABEL MAPS --- | |
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'} | |
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'} | |
trend_rules = { | |
'mild': {'decrease':'mild','same':'mild','increase':'moderate'}, | |
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'}, | |
'severe': {'decrease':'moderate','same':'severe','increase':'severe'} | |
} | |
# --- PIPELINE FUNCTIONS --- | |
def detect_fire(img): | |
x = keras_image.img_to_array(img.resize((128,128)))[None] | |
x = vgg_preprocess(x) | |
prob = float(vgg_model.predict(x)[0][0]) | |
return prob >= 0.5, prob | |
def classify_severity(img): | |
x = keras_image.img_to_array(img.resize((224,224)))[None] | |
x = xce_preprocess(x) | |
preds = xception_model.predict(x) | |
rf_p = rf_model.predict(preds)[0] | |
xgb_p = xgb_model.predict(preds)[0] | |
ensemble = int(round((rf_p + xgb_p)/2)) | |
return target_map.get(ensemble, 'moderate') | |
def fetch_weather_trend(lat, lon): | |
end = datetime.utcnow() | |
start = end - timedelta(days=1) | |
url = API_URL.format(lat=lat, lon=lon, | |
start=start.strftime('%Y-%m-%d'), | |
end=end.strftime('%Y-%m-%d')) | |
data = requests.get(url).json().get('daily', {}) | |
df = pd.DataFrame(data) | |
# convert to numeric | |
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min', | |
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']: | |
df[c] = pd.to_numeric(df.get(c, []), errors='coerce') | |
df['precipitation'] = df['precipitation_sum'].fillna(0) | |
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2 | |
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2 | |
df['wind_speed'] = df['windspeed_10m_max'] | |
df['fire_risk_score'] = ( | |
0.4*(df['temperature']/55) + | |
0.2*(1-df['humidity']/100) + | |
0.3*(df['wind_speed']/60) + | |
0.1*(1-df['precipitation']/50) | |
) | |
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']] | |
v = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1) | |
trend_cl = lr_model.predict(v)[0] | |
return trend_map.get(trend_cl) | |
def generate_recommendations(wildfire_present, severity, weather_trend): | |
prompt = f""" | |
You are a wildfire management expert. | |
- Wildfire Present: {wildfire_present} | |
- Severity: {severity} | |
- Weather Trend: {weather_trend} | |
Provide: | |
1. Immediate actions | |
2. Evacuation guidelines | |
3. Short-term containment | |
4. Long-term prevention & recovery | |
5. Community education | |
""" | |
return flash.generate_content(prompt).text | |
# --- GRADIO INTERFACE --- | |
def pipeline(image): | |
img = Image.fromarray(image).convert('RGB') | |
fire, prob = detect_fire(img) | |
if not fire: | |
return f"No wildfire detected (prob={prob:.2f})", "N/A", "No wildfire detected. Stay alert." | |
severity = classify_severity(img) | |
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest']) | |
recs = generate_recommendations(True, severity, trend) | |
return f"Fire Detected (prob={prob:.2f})", severity.title(), recs | |
interface = gr.Interface( | |
fn=pipeline, | |
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'), | |
outputs=[ | |
gr.Textbox(label='Fire Status'), | |
gr.Textbox(label='Severity Level'), | |
gr.Markdown(label='Recommendations') | |
], | |
title='Wildfire Detection & Management Assistant', | |
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, and get expert recommendations.' | |
) | |
if __name__ == '__main__': | |
interface.launch() |