File size: 9,476 Bytes
037fce6
03c8105
4d83981
03c8105
 
4d83981
037fce6
03c8105
6bede26
03c8105
6bede26
48dfa68
4360288
4459e69
48dfa68
4360288
 
 
4459e69
4360288
 
6bede26
 
 
 
 
 
 
 
03c8105
 
 
 
 
 
 
 
 
 
 
 
 
6bede26
4d83981
 
03c8105
 
037fce6
4360288
037fce6
6bede26
 
 
 
4d83981
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d83981
6bede26
e9a9ef9
6bede26
037fce6
03c8105
 
 
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
4360288
fae170d
 
 
 
 
 
 
4360288
 
 
 
 
 
 
 
 
 
4d83981
4360288
4d83981
03c8105
 
 
 
4360288
 
4d83981
fae170d
48dfa68
4360288
48dfa68
03c8105
 
 
4d83981
4360288
 
4d83981
4360288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d83981
4360288
037fce6
03c8105
 
 
6bede26
 
 
 
 
 
 
 
 
 
 
 
48dfa68
6bede26
 
 
 
48dfa68
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
9864aee
48dfa68
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9864aee
 
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
037fce6
 
4d83981
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors

# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
        "Beeper v3 (Multi-Concept)": {
        "repo_id": "AbstractPhil/beeper-rose-v3",
        "model_file": "beeper_rose_final.safetensors",
        "description": "Beeper v3 with 30+ epochs including reasoning, math, coding, and more."
    },
    "Beeper v2 (Extended)": {
        "repo_id": "AbstractPhil/beeper-rose-v2",
        "model_file": "beeper_rose_final.safetensors",
        "description": "Beeper v2 with extended training (~15 epochs)"
    },
    "Beeper v1 (Original)": {
        "repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
        "model_file": "beeper_rose_final.safetensors",
        "description": "Original Beeper trained on TinyStories"
    },
}

# Base configuration
config = {
    "context": 512,
    "vocab_size": 8192,
    "dim": 512,
    "n_heads": 8,
    "n_layers": 6,
    "mlp_ratio": 4.0,
    "temperature": 0.9,
    "top_k": 40,
    "top_p": 0.9,
    "repetition_penalty": 1.1,
    "presence_penalty": 0.6,
    "frequency_penalty": 0.0,
    "resid_dropout": 0.1,
    "dropout": 0.0,
    "grad_checkpoint": False,
    "tokenizer_path": "beeper.tokenizer.json"
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Global model and tokenizer variables
infer = None
tok = None
current_version = None

def load_model_version(version_name):
    """Load the selected model version"""
    global infer, tok, current_version
    
    if current_version == version_name and infer is not None:
        return f"Already loaded: {version_name}"
    
    version_info = MODEL_VERSIONS[version_name]
    
    try:
        # Download model and tokenizer files
        model_file = hf_hub_download(
            repo_id=version_info["repo_id"], 
            filename=version_info["model_file"]
        )
        tokenizer_file = hf_hub_download(
            repo_id=version_info["repo_id"], 
            filename="tokenizer.json"
        )
        
        # Initialize model
        infer = BeeperRoseGPT(config).to(device)
        
        # Load safetensors
        state_dict = load_safetensors(model_file, device=str(device))
        infer.load_state_dict(state_dict)
        infer.eval()
        
        # Load tokenizer
        tok = Tokenizer.from_file(tokenizer_file)
        
        current_version = version_name
        return f"Successfully loaded: {version_name}"
    
    except Exception as e:
        return f"Error loading {version_name}: {str(e)}"

# Load default model on startup
load_status = load_model_version("Beeper v3 (Multi-Concept)")
print(load_status)

# ----------------------------
# 💬 Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, model_version, temperature=None, top_k=None, top_p=None):
    global infer, tok, current_version
    
    # Load model if version changed
    if model_version != current_version:
        status = load_model_version(model_version)
        if "Error" in status:
            return f"⚠️ {status}"
    
    # Check if model is loaded
    if infer is None or tok is None:
        return "⚠️ Model not loaded. Please select a version and try again."
    
    # Use defaults if not provided
    if temperature is None:
        temperature = 0.9
    if top_k is None:
        top_k = 40
    if top_p is None:
        top_p = 0.9
    
    # Try Q&A format since she has some in corpus
    if "?" in message:
        prompt = f"Q: {message}\nA:"
    elif message.lower().strip() in ["hi", "hello", "hey"]:
        prompt = "The little robot said hello. She said, \""
    elif "story" in message.lower():
        prompt = "Once upon a time, there was a robot. "
    else:
        # Simple continuation
        prompt = message + ". "
    
    # Generate response with lower temperature for less repetition
    response = generate(
        model=infer,
        tok=tok,
        cfg=config,
        prompt=prompt,
        max_new_tokens=80,  # Shorter to avoid rambling
        temperature=float(temperature) * 0.8,  # Slightly lower temp
        top_k=int(top_k),
        top_p=float(top_p),
        repetition_penalty=1.2,  # Higher penalty for repetition
        presence_penalty=0.8,    # Higher presence penalty
        frequency_penalty=0.1,    # Add frequency penalty
        device=device,
        detokenize=True
    )
    
    # Aggressive cleanup
    # Remove the prompt completely
    if response.startswith(prompt):
        response = response[len(prompt):]
    
    # Remove Q&A format artifacts
    response = response.replace("Q:", "").replace("A:", "")
    
    # Split on newlines and take first non-empty line
    lines = response.split('\n')
    for line in lines:
        clean_line = line.strip()
        if clean_line and not clean_line.startswith(message[:10]):
            response = clean_line
            break
    
    # If response still contains the user message, try to extract after it
    if message.lower()[:20] in response.lower()[:50]:
        # Find where the echo ends
        words_in_message = message.split()
        for i in range(min(5, len(words_in_message)), 0, -1):
            pattern = ' '.join(words_in_message[:i])
            if pattern.lower() in response.lower():
                idx = response.lower().find(pattern.lower()) + len(pattern)
                response = response[idx:].strip()
                break
    
    # Remove any remaining "User" or "Beeper" artifacts
    for artifact in ["User:", "Beeper:", "U ser:", "Beep er:", "User ", "Beeper "]:
        response = response.replace(artifact, "")
    
    # Ensure we have something
    if not response or len(response) < 3:
        responses = [
            "I like robots and stories!",
            "That's interesting!",
            "I want to play in the park.",
            "The robot was happy.",
            "Yes, I think so too!"
        ]
        import random
        response = random.choice(responses)
    
    # Clean ending
    response = response.strip()
    if response and response[-1] not in '.!?"':
        response = response.rsplit('.', 1)[0] + '.' if '.' in response else response + '.'
    
    return response[:200]  # Cap length

# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🤖 Beeper - A Rose-based Tiny Language Model
        Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕
        """
    )
    
    with gr.Row():
        with gr.Column(scale=3):
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_VERSIONS.keys()),
                value="Beeper v3 (Multi-Concept)",
                label="Select Beeper Version",
                info="Choose which version of Beeper to chat with"
            )
        with gr.Column(scale=7):
            version_info = gr.Markdown("**Current:** Beeper v3 with 30+ epochs including reasoning, math, coding, and more.")
    
    # Update version info when dropdown changes
    def update_version_info(version_name):
        info = MODEL_VERSIONS[version_name]["description"]
        return f"**Current:** {info}"
    
    model_dropdown.change(
        fn=update_version_info,
        inputs=[model_dropdown],
        outputs=[version_info]
    )
    
    # Chat interface
    chatbot = gr.Chatbot(label="Chat with Beeper", type="tuples", height=400)
    msg = gr.Textbox(label="Message", placeholder="Type your message here... She will probably complete it for now, but maybe she'll answer.")
    
    with gr.Row():
        with gr.Column(scale=2):
            temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
        with gr.Column(scale=2):
            top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
        with gr.Column(scale=2):
            top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
    
    with gr.Row():
        submit = gr.Button("Send", variant="primary")
        clear = gr.Button("Clear")
    
    # Examples
    gr.Examples(
        examples=[
            ["Hello Beeper! How are you today?"],
            ["Can you tell me a story about a robot?"],
            ["What do you like to do for fun?"],
            ["What makes you happy?"],
            ["Tell me about your dreams"],
        ],
        inputs=msg
    )
    
    # Handle chat
    def respond(message, chat_history, model_version, temperature, top_k, top_p):
        if not chat_history:
            chat_history = []
        response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p)
        chat_history.append([message, response])
        return "", chat_history
    
    msg.submit(
        respond, 
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider], 
        [msg, chatbot]
    )
    submit.click(
        respond, 
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider], 
        [msg, chatbot]
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()