Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,476 Bytes
037fce6 03c8105 4d83981 03c8105 4d83981 037fce6 03c8105 6bede26 03c8105 6bede26 48dfa68 4360288 4459e69 48dfa68 4360288 4459e69 4360288 6bede26 03c8105 6bede26 4d83981 03c8105 037fce6 4360288 037fce6 6bede26 4d83981 6bede26 4d83981 6bede26 e9a9ef9 6bede26 037fce6 03c8105 6bede26 4360288 fae170d 4360288 4d83981 4360288 4d83981 03c8105 4360288 4d83981 fae170d 48dfa68 4360288 48dfa68 03c8105 4d83981 4360288 4d83981 4360288 4d83981 4360288 037fce6 03c8105 6bede26 48dfa68 6bede26 48dfa68 6bede26 9864aee 48dfa68 6bede26 9864aee 6bede26 037fce6 4d83981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors
# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
"Beeper v3 (Multi-Concept)": {
"repo_id": "AbstractPhil/beeper-rose-v3",
"model_file": "beeper_rose_final.safetensors",
"description": "Beeper v3 with 30+ epochs including reasoning, math, coding, and more."
},
"Beeper v2 (Extended)": {
"repo_id": "AbstractPhil/beeper-rose-v2",
"model_file": "beeper_rose_final.safetensors",
"description": "Beeper v2 with extended training (~15 epochs)"
},
"Beeper v1 (Original)": {
"repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
"model_file": "beeper_rose_final.safetensors",
"description": "Original Beeper trained on TinyStories"
},
}
# Base configuration
config = {
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_heads": 8,
"n_layers": 6,
"mlp_ratio": 4.0,
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.1,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
"resid_dropout": 0.1,
"dropout": 0.0,
"grad_checkpoint": False,
"tokenizer_path": "beeper.tokenizer.json"
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Global model and tokenizer variables
infer = None
tok = None
current_version = None
def load_model_version(version_name):
"""Load the selected model version"""
global infer, tok, current_version
if current_version == version_name and infer is not None:
return f"Already loaded: {version_name}"
version_info = MODEL_VERSIONS[version_name]
try:
# Download model and tokenizer files
model_file = hf_hub_download(
repo_id=version_info["repo_id"],
filename=version_info["model_file"]
)
tokenizer_file = hf_hub_download(
repo_id=version_info["repo_id"],
filename="tokenizer.json"
)
# Initialize model
infer = BeeperRoseGPT(config).to(device)
# Load safetensors
state_dict = load_safetensors(model_file, device=str(device))
infer.load_state_dict(state_dict)
infer.eval()
# Load tokenizer
tok = Tokenizer.from_file(tokenizer_file)
current_version = version_name
return f"Successfully loaded: {version_name}"
except Exception as e:
return f"Error loading {version_name}: {str(e)}"
# Load default model on startup
load_status = load_model_version("Beeper v3 (Multi-Concept)")
print(load_status)
# ----------------------------
# 💬 Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, model_version, temperature=None, top_k=None, top_p=None):
global infer, tok, current_version
# Load model if version changed
if model_version != current_version:
status = load_model_version(model_version)
if "Error" in status:
return f"⚠️ {status}"
# Check if model is loaded
if infer is None or tok is None:
return "⚠️ Model not loaded. Please select a version and try again."
# Use defaults if not provided
if temperature is None:
temperature = 0.9
if top_k is None:
top_k = 40
if top_p is None:
top_p = 0.9
# Try Q&A format since she has some in corpus
if "?" in message:
prompt = f"Q: {message}\nA:"
elif message.lower().strip() in ["hi", "hello", "hey"]:
prompt = "The little robot said hello. She said, \""
elif "story" in message.lower():
prompt = "Once upon a time, there was a robot. "
else:
# Simple continuation
prompt = message + ". "
# Generate response with lower temperature for less repetition
response = generate(
model=infer,
tok=tok,
cfg=config,
prompt=prompt,
max_new_tokens=80, # Shorter to avoid rambling
temperature=float(temperature) * 0.8, # Slightly lower temp
top_k=int(top_k),
top_p=float(top_p),
repetition_penalty=1.2, # Higher penalty for repetition
presence_penalty=0.8, # Higher presence penalty
frequency_penalty=0.1, # Add frequency penalty
device=device,
detokenize=True
)
# Aggressive cleanup
# Remove the prompt completely
if response.startswith(prompt):
response = response[len(prompt):]
# Remove Q&A format artifacts
response = response.replace("Q:", "").replace("A:", "")
# Split on newlines and take first non-empty line
lines = response.split('\n')
for line in lines:
clean_line = line.strip()
if clean_line and not clean_line.startswith(message[:10]):
response = clean_line
break
# If response still contains the user message, try to extract after it
if message.lower()[:20] in response.lower()[:50]:
# Find where the echo ends
words_in_message = message.split()
for i in range(min(5, len(words_in_message)), 0, -1):
pattern = ' '.join(words_in_message[:i])
if pattern.lower() in response.lower():
idx = response.lower().find(pattern.lower()) + len(pattern)
response = response[idx:].strip()
break
# Remove any remaining "User" or "Beeper" artifacts
for artifact in ["User:", "Beeper:", "U ser:", "Beep er:", "User ", "Beeper "]:
response = response.replace(artifact, "")
# Ensure we have something
if not response or len(response) < 3:
responses = [
"I like robots and stories!",
"That's interesting!",
"I want to play in the park.",
"The robot was happy.",
"Yes, I think so too!"
]
import random
response = random.choice(responses)
# Clean ending
response = response.strip()
if response and response[-1] not in '.!?"':
response = response.rsplit('.', 1)[0] + '.' if '.' in response else response + '.'
return response[:200] # Cap length
# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🤖 Beeper - A Rose-based Tiny Language Model
Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕
"""
)
with gr.Row():
with gr.Column(scale=3):
model_dropdown = gr.Dropdown(
choices=list(MODEL_VERSIONS.keys()),
value="Beeper v3 (Multi-Concept)",
label="Select Beeper Version",
info="Choose which version of Beeper to chat with"
)
with gr.Column(scale=7):
version_info = gr.Markdown("**Current:** Beeper v3 with 30+ epochs including reasoning, math, coding, and more.")
# Update version info when dropdown changes
def update_version_info(version_name):
info = MODEL_VERSIONS[version_name]["description"]
return f"**Current:** {info}"
model_dropdown.change(
fn=update_version_info,
inputs=[model_dropdown],
outputs=[version_info]
)
# Chat interface
chatbot = gr.Chatbot(label="Chat with Beeper", type="tuples", height=400)
msg = gr.Textbox(label="Message", placeholder="Type your message here... She will probably complete it for now, but maybe she'll answer.")
with gr.Row():
with gr.Column(scale=2):
temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
with gr.Column(scale=2):
top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
with gr.Column(scale=2):
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
# Examples
gr.Examples(
examples=[
["Hello Beeper! How are you today?"],
["Can you tell me a story about a robot?"],
["What do you like to do for fun?"],
["What makes you happy?"],
["Tell me about your dreams"],
],
inputs=msg
)
# Handle chat
def respond(message, chat_history, model_version, temperature, top_k, top_p):
if not chat_history:
chat_history = []
response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p)
chat_history.append([message, response])
return "", chat_history
msg.submit(
respond,
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider],
[msg, chatbot]
)
submit.click(
respond,
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider],
[msg, chatbot]
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |