File size: 7,422 Bytes
037fce6
03c8105
4d83981
03c8105
 
4d83981
037fce6
03c8105
6bede26
03c8105
6bede26
 
 
 
 
 
 
 
f3fa540
d0acdaf
6bede26
 
 
 
03c8105
 
 
 
 
 
 
 
 
 
 
 
 
6bede26
4d83981
 
03c8105
 
037fce6
03c8105
037fce6
6bede26
 
 
 
4d83981
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d83981
6bede26
 
 
037fce6
03c8105
 
 
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
fae170d
 
 
 
 
 
 
 
4d83981
 
fae170d
 
 
 
 
 
4d83981
 
 
 
 
 
 
 
 
03c8105
 
 
 
 
fae170d
4d83981
fae170d
03c8105
 
 
 
 
 
4d83981
 
 
 
 
 
037fce6
03c8105
 
 
6bede26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
037fce6
 
4d83981
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors

# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
    "Beeper v1 (Original)": {
        "repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
        "model_file": "beeper_rose_final.safetensors",
        "description": "Original Beeper trained on TinyStories"
    },
    "Beeper v2 (Extended)": {
        "repo_id": "AbstractPhil/beeper-rose-v2",
        "model_file": "beeper_rose_final.safetensors",
        "description": "Beeper v2 with extended training (~15 epochs) on a good starting corpus of general knowledge."
    }
}

# Base configuration
config = {
    "context": 512,
    "vocab_size": 8192,
    "dim": 512,
    "n_heads": 8,
    "n_layers": 6,
    "mlp_ratio": 4.0,
    "temperature": 0.9,
    "top_k": 40,
    "top_p": 0.9,
    "repetition_penalty": 1.1,
    "presence_penalty": 0.6,
    "frequency_penalty": 0.0,
    "resid_dropout": 0.1,
    "dropout": 0.0,
    "grad_checkpoint": False,
    "tokenizer_path": "beeper.tokenizer.json"
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Global model and tokenizer variables
infer = None
tok = None
current_version = None

def load_model_version(version_name):
    """Load the selected model version"""
    global infer, tok, current_version
    
    if current_version == version_name and infer is not None:
        return f"Already loaded: {version_name}"
    
    version_info = MODEL_VERSIONS[version_name]
    
    try:
        # Download model and tokenizer files
        model_file = hf_hub_download(
            repo_id=version_info["repo_id"], 
            filename=version_info["model_file"]
        )
        tokenizer_file = hf_hub_download(
            repo_id=version_info["repo_id"], 
            filename="tokenizer.json"
        )
        
        # Initialize model
        infer = BeeperRoseGPT(config).to(device)
        
        # Load safetensors
        state_dict = load_safetensors(model_file, device=str(device))
        infer.load_state_dict(state_dict)
        infer.eval()
        
        # Load tokenizer
        tok = Tokenizer.from_file(tokenizer_file)
        
        current_version = version_name
        return f"Successfully loaded: {version_name}"
    
    except Exception as e:
        return f"Error loading {version_name}: {str(e)}"

# Load default model on startup
load_status = load_model_version("Beeper v1 (Original)")
print(load_status)

# ----------------------------
# 💬 Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, model_version, temperature=None, top_k=None, top_p=None):
    global infer, tok, current_version
    
    # Load model if version changed
    if model_version != current_version:
        status = load_model_version(model_version)
        if "Error" in status:
            return f"⚠️ {status}"
    
    # Check if model is loaded
    if infer is None or tok is None:
        return "⚠️ Model not loaded. Please select a version and try again."
    
    # Use defaults if not provided (for examples caching)
    if temperature is None:
        temperature = 0.9
    if top_k is None:
        top_k = 40
    if top_p is None:
        top_p = 0.9
    
    # Build conversation context
    prompt_parts = []
    if history:
        for h in history:
            if h[0]:  # User message exists
                prompt_parts.append(f"User: {h[0]}")
            if h[1]:  # Assistant response exists
                prompt_parts.append(f"Beeper: {h[1]}")
    
    # Add current message
    prompt_parts.append(f"User: {message}")
    prompt_parts.append("Beeper:")
    
    prompt = "\n".join(prompt_parts)
    
    # Generate response
    response = generate(
        model=infer,
        tok=tok,
        cfg=config,
        prompt=prompt,
        max_new_tokens=128,
        temperature=float(temperature),
        top_k=int(top_k),
        top_p=float(top_p),
        repetition_penalty=config["repetition_penalty"],
        presence_penalty=config["presence_penalty"],
        frequency_penalty=config["frequency_penalty"],
        device=device,
        detokenize=True
    )
    
    # Clean up response - remove the prompt part if it's included
    if response.startswith(prompt):
        response = response[len(prompt):].strip()
    
    return response

# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🤖 Beeper - A Rose-based Tiny Language Model
        Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕
        """
    )
    
    with gr.Row():
        with gr.Column(scale=3):
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_VERSIONS.keys()),
                value="Beeper v1 (Original)",
                label="Select Beeper Version",
                info="Choose which version of Beeper to chat with"
            )
        with gr.Column(scale=7):
            version_info = gr.Markdown("**Current:** Beeper v1 - Original training on TinyStories")
    
    # Update version info when dropdown changes
    def update_version_info(version_name):
        info = MODEL_VERSIONS[version_name]["description"]
        return f"**Current:** {info}"
    
    model_dropdown.change(
        fn=update_version_info,
        inputs=[model_dropdown],
        outputs=[version_info]
    )
    
    # Chat interface
    chatbot = gr.Chatbot(label="Chat with Beeper", type="messages", height=400)
    msg = gr.Textbox(label="Message", placeholder="Type your message here...")
    
    with gr.Row():
        with gr.Column(scale=2):
            temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
        with gr.Column(scale=2):
            top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
        with gr.Column(scale=2):
            top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
    
    with gr.Row():
        submit = gr.Button("Send", variant="primary")
        clear = gr.Button("Clear")
    
    # Examples
    gr.Examples(
        examples=[
            ["Hello Beeper! How are you today?"],
            ["Can you tell me a story about a robot?"],
            ["What do you like to do for fun?"],
            ["What makes you happy?"],
            ["Tell me about your dreams"],
        ],
        inputs=msg
    )
    
    # Handle chat
    def respond(message, chat_history, model_version, temperature, top_k, top_p):
        response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p)
        chat_history.append([message, response])
        return "", chat_history
    
    msg.submit(
        respond, 
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider], 
        [msg, chatbot]
    )
    submit.click(
        respond, 
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider], 
        [msg, chatbot]
    )
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()