Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,422 Bytes
037fce6 03c8105 4d83981 03c8105 4d83981 037fce6 03c8105 6bede26 03c8105 6bede26 f3fa540 d0acdaf 6bede26 03c8105 6bede26 4d83981 03c8105 037fce6 03c8105 037fce6 6bede26 4d83981 6bede26 4d83981 6bede26 037fce6 03c8105 6bede26 fae170d 4d83981 fae170d 4d83981 03c8105 fae170d 4d83981 fae170d 03c8105 4d83981 037fce6 03c8105 6bede26 037fce6 4d83981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors
# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
"Beeper v1 (Original)": {
"repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
"model_file": "beeper_rose_final.safetensors",
"description": "Original Beeper trained on TinyStories"
},
"Beeper v2 (Extended)": {
"repo_id": "AbstractPhil/beeper-rose-v2",
"model_file": "beeper_rose_final.safetensors",
"description": "Beeper v2 with extended training (~15 epochs) on a good starting corpus of general knowledge."
}
}
# Base configuration
config = {
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_heads": 8,
"n_layers": 6,
"mlp_ratio": 4.0,
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.1,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
"resid_dropout": 0.1,
"dropout": 0.0,
"grad_checkpoint": False,
"tokenizer_path": "beeper.tokenizer.json"
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Global model and tokenizer variables
infer = None
tok = None
current_version = None
def load_model_version(version_name):
"""Load the selected model version"""
global infer, tok, current_version
if current_version == version_name and infer is not None:
return f"Already loaded: {version_name}"
version_info = MODEL_VERSIONS[version_name]
try:
# Download model and tokenizer files
model_file = hf_hub_download(
repo_id=version_info["repo_id"],
filename=version_info["model_file"]
)
tokenizer_file = hf_hub_download(
repo_id=version_info["repo_id"],
filename="tokenizer.json"
)
# Initialize model
infer = BeeperRoseGPT(config).to(device)
# Load safetensors
state_dict = load_safetensors(model_file, device=str(device))
infer.load_state_dict(state_dict)
infer.eval()
# Load tokenizer
tok = Tokenizer.from_file(tokenizer_file)
current_version = version_name
return f"Successfully loaded: {version_name}"
except Exception as e:
return f"Error loading {version_name}: {str(e)}"
# Load default model on startup
load_status = load_model_version("Beeper v1 (Original)")
print(load_status)
# ----------------------------
# 💬 Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, model_version, temperature=None, top_k=None, top_p=None):
global infer, tok, current_version
# Load model if version changed
if model_version != current_version:
status = load_model_version(model_version)
if "Error" in status:
return f"⚠️ {status}"
# Check if model is loaded
if infer is None or tok is None:
return "⚠️ Model not loaded. Please select a version and try again."
# Use defaults if not provided (for examples caching)
if temperature is None:
temperature = 0.9
if top_k is None:
top_k = 40
if top_p is None:
top_p = 0.9
# Build conversation context
prompt_parts = []
if history:
for h in history:
if h[0]: # User message exists
prompt_parts.append(f"User: {h[0]}")
if h[1]: # Assistant response exists
prompt_parts.append(f"Beeper: {h[1]}")
# Add current message
prompt_parts.append(f"User: {message}")
prompt_parts.append("Beeper:")
prompt = "\n".join(prompt_parts)
# Generate response
response = generate(
model=infer,
tok=tok,
cfg=config,
prompt=prompt,
max_new_tokens=128,
temperature=float(temperature),
top_k=int(top_k),
top_p=float(top_p),
repetition_penalty=config["repetition_penalty"],
presence_penalty=config["presence_penalty"],
frequency_penalty=config["frequency_penalty"],
device=device,
detokenize=True
)
# Clean up response - remove the prompt part if it's included
if response.startswith(prompt):
response = response[len(prompt):].strip()
return response
# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🤖 Beeper - A Rose-based Tiny Language Model
Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕
"""
)
with gr.Row():
with gr.Column(scale=3):
model_dropdown = gr.Dropdown(
choices=list(MODEL_VERSIONS.keys()),
value="Beeper v1 (Original)",
label="Select Beeper Version",
info="Choose which version of Beeper to chat with"
)
with gr.Column(scale=7):
version_info = gr.Markdown("**Current:** Beeper v1 - Original training on TinyStories")
# Update version info when dropdown changes
def update_version_info(version_name):
info = MODEL_VERSIONS[version_name]["description"]
return f"**Current:** {info}"
model_dropdown.change(
fn=update_version_info,
inputs=[model_dropdown],
outputs=[version_info]
)
# Chat interface
chatbot = gr.Chatbot(label="Chat with Beeper", type="messages", height=400)
msg = gr.Textbox(label="Message", placeholder="Type your message here...")
with gr.Row():
with gr.Column(scale=2):
temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
with gr.Column(scale=2):
top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
with gr.Column(scale=2):
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
# Examples
gr.Examples(
examples=[
["Hello Beeper! How are you today?"],
["Can you tell me a story about a robot?"],
["What do you like to do for fun?"],
["What makes you happy?"],
["Tell me about your dreams"],
],
inputs=msg
)
# Handle chat
def respond(message, chat_history, model_version, temperature, top_k, top_p):
response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p)
chat_history.append([message, response])
return "", chat_history
msg.submit(
respond,
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider],
[msg, chatbot]
)
submit.click(
respond,
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider],
[msg, chatbot]
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |