File size: 12,123 Bytes
bbb5633
915a71f
8af17f7
915a71f
037fce6
03c8105
8af17f7
03c8105
 
4d83981
037fce6
5d8d3ef
bbb5633
6bede26
95569eb
 
d7f01ca
95569eb
 
 
4360288
d7f01ca
95569eb
4360288
 
 
95569eb
4360288
 
6bede26
 
d7f01ca
6bede26
 
 
 
bbb5633
03c8105
 
 
 
 
 
 
 
 
bbb5633
03c8105
 
6bede26
4d83981
 
915a71f
 
 
 
 
 
 
 
03c8105
037fce6
8af17f7
bbb5633
 
 
 
915a71f
 
 
 
 
 
8af17f7
915a71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d83981
8af17f7
bbb5633
915a71f
bbb5633
6bede26
bbb5633
915a71f
6bede26
915a71f
 
bbb5633
915a71f
8af17f7
 
bbb5633
 
915a71f
bbb5633
 
915a71f
 
bbb5633
 
 
 
915a71f
 
 
 
 
 
bbb5633
915a71f
6bede26
915a71f
 
6bede26
4d83981
915a71f
95569eb
915a71f
 
 
 
 
 
 
 
8af17f7
915a71f
 
 
 
 
 
8af17f7
4f2dad9
8af17f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915a71f
 
6bede26
 
915a71f
 
 
bbb5633
6bede26
 
bbb5633
915a71f
8af17f7
 
 
 
 
 
 
915a71f
 
 
 
 
 
 
8af17f7
bbb5633
915a71f
 
 
 
bbb5633
8af17f7
915a71f
6bede26
915a71f
bbb5633
6bede26
 
 
 
8af17f7
915a71f
6bede26
 
8af17f7
bbb5633
915a71f
 
 
 
 
 
 
 
 
95569eb
bbb5633
6bede26
 
 
 
 
 
 
95569eb
bbb5633
 
6bede26
 
 
bbb5633
915a71f
 
 
 
 
 
 
 
 
 
 
 
 
 
6bede26
bbb5633
915a71f
 
 
 
 
 
6bede26
bbb5633
915a71f
 
 
 
8af17f7
 
 
 
6bede26
037fce6
 
8af17f7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# app.py
# Gradio app exposing full Corpus (coarse) and Capoera (topic/mood) selections
import os, gc
import json
import gradio as gr
import torch
import spaces  # NEW: for ZeroGPU
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors

from beeper_model import BeeperRoseGPT, generate, prepare_model_for_state_dict

MODEL_VERSIONS = {
    "Beeper v4 (Advanced)": {
        "repo_id": "AbstractPhil/beeper-rose-v4",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v4 with nearly 40% the full corpus training - the most capable version currently."
    },
    "Beeper v3 (Multi-Concept)": {
        "repo_id": "AbstractPhil/beeper-rose-v3",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v3 with 30+ epochs including reasoning, math, and ethics"
    },
    "Beeper v2 (Extended)": {
        "repo_id": "AbstractPhil/beeper-rose-v2",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v2 with extended training (~15 epochs)"
    },
    "Beeper v1 (Original)": {
        "repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
        "model_file": "beeper_rose.safetensors",
        "description": "Original Beeper trained on TinyStories"
    },
}

CONFIG = {
    "context": 512,
    "vocab_size": 8192,
    "dim": 512,
    "n_heads": 8,
    "n_layers": 6,
    "mlp_ratio": 4.0,
    "temperature": 0.9,
    "top_k": 40,
    "top_p": 0.9,
    "repetition_penalty": 1.10,
    "presence_penalty": 0.6,
    "frequency_penalty": 0.0,
    "resid_dropout": 0.1,
    "dropout": 0.0,
    "grad_checkpoint": False,
    "runtime_pentachora": {
        "enable": True,
        "pool": "mean",
        "temp": 0.10,
        "coarse_alpha": 0.25,
        "topic_alpha":  0.15,
        "mood_alpha":   0.10,
    },
}

# no global device pinning — keep model on CPU until ZeroGPU allocates GPU
infer: BeeperRoseGPT | None = None
tok: Tokenizer | None = None
current_version: str | None = None

# Metadata for selectors
CORPUS_CHOICES: list[str] = []
CORPUS_INDEX: dict[str, int] = {}
TOPIC_CHOICES: list[str] = []
MOOD_CHOICES: list[str] = []


def _mood_labels(mood_bins: int) -> list[str]:
    center = mood_bins // 2
    labels = []
    for i in range(mood_bins):
        v = i - center
        name = { -3:"Very Negative", -2:"Negative", -1:"Slightly Negative",
                  0:"Neutral", 1:"Slightly Positive", 2:"Positive", 3:"Very Positive" }.get(v, f"Valence {v:+d}")
        labels.append(f"{i} ({name} {v:+d})")
    return labels

def _build_choices_from_config(repo_id: str, coarse_C: int, topic_C: int, mood_C: int):
    global CORPUS_CHOICES, CORPUS_INDEX, TOPIC_CHOICES, MOOD_CHOICES
    CORPUS_CHOICES, CORPUS_INDEX = [], {}
    names = []
    try:
        cfg_path = hf_hub_download(repo_id, "config.json")
        with open(cfg_path, "r", encoding="utf-8") as f:
            train_cfg = json.load(f)
        alive = train_cfg.get("_alive_entries")
        if isinstance(alive, list) and all(isinstance(e, dict) for e in alive):
            names = [str(e.get("name", f"Class {i}")) for i, e in enumerate(alive)]
        elif isinstance(train_cfg.get("corpus"), list):
            maybe = [str(e.get("name", f"Class {i}")) for i, e in enumerate(train_cfg["corpus"])]
            if len(maybe) == coarse_C:
                names = maybe
    except Exception:
        names = []

    if len(names) != coarse_C:
        names = [f"Class {i}" for i in range(coarse_C)]

    CORPUS_CHOICES = names
    CORPUS_INDEX = {name: i for i, name in enumerate(names)}
    TOPIC_CHOICES = [str(i) for i in range(topic_C)]
    MOOD_CHOICES  = _mood_labels(mood_C)


def load_model_version(version_name: str) -> str:
    global infer, tok, current_version, CORPUS_CHOICES, TOPIC_CHOICES, MOOD_CHOICES
    if current_version == version_name and infer is not None and tok is not None:
        return f"Already loaded: {version_name}"

    info = MODEL_VERSIONS[version_name]
    try:
        model_file = hf_hub_download(info["repo_id"], info["model_file"])
        tokenizer_file = hf_hub_download(info["repo_id"], "tokenizer.json")

        state = load_safetensors(model_file, device="cpu")
        m = BeeperRoseGPT(CONFIG)  # keep on CPU
        prepare_model_for_state_dict(m, state, device="cpu")

        try:
            missing, unexpected = m.load_state_dict(state, strict=True)
            _msg = f"strict load ok | missing={len(missing)} unexpected={len(unexpected)}"
        except Exception as e:
            _msg = f"strict load failed ({e}); non-strict fallback"
            m.load_state_dict(state, strict=False)

        m.eval()
        t = Tokenizer.from_file(tokenizer_file)

        infer, tok, current_version = m, t, version_name

        coarse_C = infer.penta_coarse.size(0) if infer.penta_coarse is not None else 0
        topic_C  = infer.penta_medium.size(0) if infer.penta_medium is not None else 512
        mood_C   = infer.penta_fine.size(0) if infer.penta_fine is not None else 7
        _build_choices_from_config(info["repo_id"], coarse_C, topic_C, mood_C)

        return f"Successfully loaded: {version_name} ({_msg})"
    except Exception as e:
        infer = None; tok = None; current_version = None
        CORPUS_CHOICES, TOPIC_CHOICES, MOOD_CHOICES = [], [], []
        return f"Error loading {version_name}: {str(e)}"

# Initial load: prefer v4, fallback to v3
try:
    status = load_model_version("Beeper v4 (Advanced)")
    if "Error" in status:
        print(status)
        status = load_model_version("Beeper v3 (Multi-Concept)")
except Exception:
    status = load_model_version("Beeper v3 (Multi-Concept)")
print(status)


def _parse_selected_indices(values: list[str] | None, mapping: dict[str,int] | None = None) -> list[int] | None:
    if not values: return None
    if mapping is None:
        return [int(v.split()[0]) if isinstance(v, str) else int(v) for v in values]
    return [mapping[v] for v in values if v in mapping]


@spaces.GPU()
def beeper_infer(prompt: str, runtime_cfg: dict) -> str:
    """ZeroGPU: allocate GPU only here, move model to GPU for inference."""
    global infer, tok
    dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if dev.type == "cuda" and next(infer.parameters()).device.type != "cuda":
        infer.to(dev)
        torch.cuda.empty_cache()

    try:
        out = generate(
            model=infer, tok=tok, cfg=CONFIG, prompt=prompt,
            max_new_tokens=int(runtime_cfg.pop("_max_new_tokens")),
            temperature=float(runtime_cfg.pop("_temperature")) if runtime_cfg.get("_temperature") is not None else None,
            top_k=int(runtime_cfg.pop("_top_k")) if runtime_cfg.get("_top_k") is not None else None,
            top_p=float(runtime_cfg.pop("_top_p")) if runtime_cfg.get("_top_p") is not None else None,
            repetition_penalty=1.10, presence_penalty=0.8, frequency_penalty=0.1,
            device=dev, detokenize=True, runtime_cfg=runtime_cfg,
        )
        return out
    finally:
        if dev.type == "cuda":
            infer.to("cpu")
            torch.cuda.empty_cache()
            gc.collect()


def beeper_reply(message, history, model_version, temperature, top_k, top_p, max_new_tokens,
                 corpus_selected, topic_selected, mood_selected):
    global infer, tok, current_version
    if model_version != current_version:
        s = load_model_version(model_version)
        if "Error" in s:
            return f"⚠️ {s}"

    if infer is None or tok is None:
        return "⚠️ Model not loaded. Please select a version and try again."

    rt = dict(CONFIG.get("runtime_pentachora", {}))
    rt["coarse_select"] = _parse_selected_indices(corpus_selected, CORPUS_INDEX)
    rt["topic_select"]  = _parse_selected_indices(topic_selected, None)
    rt["mood_select"]   = _parse_selected_indices(mood_selected, None)
    rt["_temperature"]   = temperature
    rt["_top_k"]         = top_k
    rt["_top_p"]         = top_p
    rt["_max_new_tokens"]= max_new_tokens

    m = (message or "").strip()
    if "?" in m:       prompt = f"Q: {m}\nA:"
    elif m.lower() in {"hi","hello","hey"}: prompt = 'The little robot said hello. She said, "'
    elif "story" in m.lower(): prompt = "Once upon a time, there was a robot. "
    else:              prompt = m + ". "

    out = beeper_infer(prompt, rt)

    if out.startswith(prompt): out = out[len(prompt):]
    out = out.replace("Q:","").replace("A:","").strip()
    if out and out[-1] not in ".!?”\"'": out += "."
    return out[:200]


# ---------------- UI ----------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🤖 Beeper — Corpus & Capoera–aware Chat")

    with gr.Row():
        with gr.Column(scale=3):
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_VERSIONS.keys()),
                value="Beeper v4 (Advanced)",
                label="Select Beeper Version"
            )
        with gr.Column(scale=7):
            version_info = gr.Markdown("**Current:** " + MODEL_VERSIONS["Beeper v4 (Advanced)"]["description"])

    with gr.Row():
        with gr.Column():
            corpus_select = gr.Dropdown(choices=CORPUS_CHOICES, multiselect=True, label="Corpus (Coarse classes)")
        with gr.Column():
            topic_select = gr.Dropdown(choices=TOPIC_CHOICES, multiselect=True, label="Capoera Topics (IDs)")
        with gr.Column():
            mood_select  = gr.Dropdown(choices=MOOD_CHOICES,  multiselect=True, label="Capoera Moods (valence)")

    chatbot = gr.Chatbot(label="Chat with Beeper", height=420)
    msg = gr.Textbox(label="Message", placeholder="Type your message here...")

    with gr.Row():
        with gr.Column(scale=2):
            temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
        with gr.Column(scale=2):
            top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
        with gr.Column(scale=2):
            top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
        with gr.Column(scale=2):
            max_new_tokens_slider = gr.Slider(20, 512, value=128, step=1, label="Max new tokens")

    with gr.Row():
        submit = gr.Button("Send", variant="primary")
        clear = gr.Button("Clear")

    def on_change_version(version_name: str):
        status = load_model_version(version_name)
        info = f"**Current:** {MODEL_VERSIONS[version_name]['description']}  \n{status}"
        return (
            info,
            gr.update(choices=CORPUS_CHOICES, value=[]),
            gr.update(choices=TOPIC_CHOICES,  value=[]),
            gr.update(choices=MOOD_CHOICES,   value=[]),
        )

    model_dropdown.change(
        on_change_version,
        inputs=[model_dropdown],
        outputs=[version_info, corpus_select, topic_select, mood_select],
    )

    def respond(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens,
                corpus_selected, topic_selected, mood_selected):
        if chat_history is None: chat_history = []
        resp = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens,
                            corpus_selected, topic_selected, mood_selected)
        chat_history.append((message, resp))
        return "", chat_history

    inputs_all = [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider,
                  corpus_select, topic_select, mood_select]
    outputs_all = [msg, chatbot]

    msg.submit(respond, inputs_all, outputs_all,
               concurrency_id="infer", concurrency_limit="default")
    submit.click(respond, inputs_all, outputs_all,
                 concurrency_id="infer", concurrency_limit="default")
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.queue(
        max_size=256,
        default_concurrency_limit=1,
        status_update_rate="auto",
        api_open=False,
    ).launch()