File size: 29,446 Bytes
1efd29f
6245b3b
b138e3b
 
274a509
f367387
 
274a509
 
f3ed537
 
 
fd7c5f8
885c1f9
274a509
 
f367387
 
3c63f39
f3ed537
 
 
 
 
 
274a509
f3ed537
274a509
5b7f342
3c63f39
274a509
f367387
274a509
 
f367387
 
 
274a509
f367387
3c63f39
d27a85c
ecb092b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
ecb092b
274a509
ecb092b
 
 
 
 
 
 
 
 
 
 
274a509
f3ed537
274a509
 
 
f367387
3330689
274a509
 
3330689
274a509
 
5b7f342
274a509
f3ed537
 
 
 
 
274a509
3330689
274a509
f3ed537
 
274a509
f3ed537
 
 
274a509
f3ed537
274a509
 
3330689
 
f3ed537
274a509
f367387
274a509
 
 
f3ed537
 
274a509
 
 
 
 
 
f3ed537
 
274a509
 
 
f3ed537
274a509
 
 
1a943f1
274a509
 
 
f3ed537
34139eb
 
1ac7e9d
 
 
 
34139eb
f11fee0
1ac7e9d
 
f11fee0
 
 
 
 
34139eb
 
274a509
885c1f9
f367387
274a509
 
07b6a95
 
 
 
3330689
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb092b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccdfd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07b6a95
 
 
 
 
 
 
 
 
 
 
 
f367387
274a509
 
 
 
3330689
fd7c5f8
 
274a509
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
274a509
 
 
07b6a95
 
 
 
274a509
07b6a95
274a509
07b6a95
 
274a509
07b6a95
 
 
 
274a509
07b6a95
274a509
07b6a95
 
274a509
07b6a95
3c63f39
07b6a95
274a509
 
07b6a95
 
3c63f39
3330689
 
 
 
 
 
 
 
 
f3ed537
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
07b6a95
5ccdfd6
07b6a95
 
 
5ccdfd6
07b6a95
274a509
 
07b6a95
 
 
3f3847e
07b6a95
 
269a57d
07b6a95
 
 
 
 
3f3847e
274a509
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7c5f8
 
ecb092b
 
3c63f39
07b6a95
 
 
 
 
 
 
 
 
 
 
 
 
274a509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3330689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
 
 
 
 
 
 
 
3330689
 
274a509
3330689
274a509
 
 
 
 
 
 
34139eb
 
6a5d12d
 
 
 
34139eb
 
3c63f39
274a509
34139eb
 
 
 
 
 
 
 
 
aee35a5
34139eb
274a509
 
3330689
 
f3ed537
3330689
34139eb
 
 
 
3330689
34139eb
d4ec8a0
 
 
 
 
 
 
 
 
 
 
3330689
d4ec8a0
 
 
 
3330689
 
 
 
 
274a509
5ccdfd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274a509
f367387
6a5d12d
 
 
 
 
 
274a509
 
 
 
 
785101b
 
274a509
 
 
f3ed537
 
274a509
 
 
3330689
274a509
f367387
 
274a509
 
 
 
 
 
 
 
 
 
f367387
274a509
 
 
 
 
 
 
bc78434
f3ed537
274a509
 
3330689
 
 
 
 
274a509
 
 
 
 
d27a85c
274a509
fd7c5f8
 
 
5ccdfd6
 
 
 
 
 
 
f367387
3fa421f
f367387
 
274a509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
import gradio as gr
import regex as re
import csv
import pandas as pd
from typing import List, Dict, Tuple, Any
import logging
import os

# Import core logic from other modules, as in app_old.py
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
from hf_utils import download_space_repo, search_top_spaces
from chatbot_page import chat_with_user, extract_keywords_from_conversation
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

CSV_FILE = "repo_ids.csv"
CHATBOT_SYSTEM_PROMPT = (
    "You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
    "Ask questions to clarify what they want, their use case, preferred language, features, etc. "
    "When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
    "Return only the keywords as a comma-separated list."
)
CHATBOT_INITIAL_MESSAGE = "Hello! Please tell me about your ideal Hugging Face repo. What use case, preferred language, or features are you looking for?"

# --- Helper Functions (Logic) ---

def write_repos_to_csv(repo_ids: List[str]) -> None:
    """Writes a list of repo IDs to the CSV file, overwriting the previous content."""
    try:
        with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
            for repo_id in repo_ids:
                writer.writerow([repo_id, "", "", "", ""])
        logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
    except Exception as e:
        logger.error(f"Error writing to CSV: {e}")

def format_text_for_dataframe(text: str, max_length: int = 200) -> str:
    """Format text for better display in dataframe by truncating and cleaning."""
    if not text or pd.isna(text):
        return ""
    
    # Clean the text
    text = str(text).strip()
    
    # Remove excessive whitespace and newlines
    text = re.sub(r'\s+', ' ', text)
    
    # Truncate if too long
    if len(text) > max_length:
        text = text[:max_length-3] + "..."
    
    return text

def read_csv_to_dataframe() -> pd.DataFrame:
    """Reads the CSV file into a pandas DataFrame with formatted text for display."""
    try:
        df = pd.read_csv(CSV_FILE, dtype=str).fillna('')
        
        # Format text columns for better display
        if not df.empty:
            df['strength'] = df['strength'].apply(lambda x: format_text_for_dataframe(x, 180))
            df['weaknesses'] = df['weaknesses'].apply(lambda x: format_text_for_dataframe(x, 180))
            df['speciality'] = df['speciality'].apply(lambda x: format_text_for_dataframe(x, 150))
            df['repo id'] = df['repo id'].apply(lambda x: format_text_for_dataframe(x, 50))
            # Keep relevance rating as is since it should be short
        
        return df
    except FileNotFoundError:
        return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
    except Exception as e:
        logger.error(f"Error reading CSV: {e}")
        return pd.DataFrame()

def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") -> Tuple[str, str, pd.DataFrame]:
    """
    Downloads, analyzes a single repo, updates the CSV, and returns results.
    Now includes user requirements for better relevance rating.
    This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
    """
    try:
        logger.info(f"Starting analysis for repo: {repo_id}")
        download_space_repo(repo_id, local_dir="repo_files")
        txt_path = combine_repo_files_for_llm()
        
        with open(txt_path, "r", encoding="utf-8") as f:
            combined_content = f.read()

        llm_output = analyze_combined_file(txt_path, user_requirements)
        
        last_start = llm_output.rfind('{')
        last_end = llm_output.rfind('}')
        final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
        
        llm_json = parse_llm_json_response(final_json_str)
        
        summary = ""
        if isinstance(llm_json, dict) and "error" not in llm_json:
            strengths = llm_json.get("strength", "N/A")
            weaknesses = llm_json.get("weaknesses", "N/A")
            relevance = llm_json.get("relevance rating", "N/A")
            summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}\n\nRelevance: {relevance}"
        else:
            summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."

        # Update CSV
        df = read_csv_to_dataframe()
        repo_found_in_df = False
        for idx, row in df.iterrows():
            if row["repo id"] == repo_id:
                if isinstance(llm_json, dict):
                    df.at[idx, "strength"] = llm_json.get("strength", "")
                    df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
                    df.at[idx, "speciality"] = llm_json.get("speciality", "")
                    df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
                repo_found_in_df = True
                break
        
        if not repo_found_in_df:
             logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")

        df.to_csv(CSV_FILE, index=False)
        logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
        return combined_content, summary, df

    except Exception as e:
        logger.error(f"An error occurred during analysis of {repo_id}: {e}")
        error_summary = f"Error analyzing repo: {e}"
        return "", error_summary, read_csv_to_dataframe()

# --- NEW: Helper for Chat History Conversion ---
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
    """
    Converts Gradio's 'messages' format to the old 'tuple' format for compatibility.
    This robust version correctly handles histories that start with an assistant message.
    """
    tuple_history = []
    # Iterate through the history to find user messages
    for i, msg in enumerate(history):
        if msg['role'] == 'user':
            # Once a user message is found, check if the next message is from the assistant
            if i + 1 < len(history) and history[i+1]['role'] == 'assistant':
                user_content = msg['content']
                assistant_content = history[i+1]['content']
                tuple_history.append((user_content, assistant_content))
    return tuple_history

# --- Gradio UI ---

def create_ui() -> gr.Blocks:
    """Creates and configures the entire Gradio interface."""

    css = """
    /* Modern sleek design */
    .gradio-container {
        font-family: 'Inter', 'system-ui', sans-serif;
        background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 100%);
        min-height: 100vh;
    }
    
    .gr-form {
        background: rgba(255, 255, 255, 0.95);
        backdrop-filter: blur(10px);
        border-radius: 16px;
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
        padding: 24px;
        margin: 16px;
        border: 1px solid rgba(255, 255, 255, 0.2);
    }
    
    .gr-button {
        background: linear-gradient(45deg, #667eea, #764ba2);
        border: none;
        border-radius: 12px;
        color: white;
        font-weight: 600;
        padding: 12px 24px;
        transition: all 0.3s ease;
        box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
    }
    
    .gr-button:hover {
        transform: translateY(-2px);
        box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6);
    }
    
    .gr-textbox {
        border: 2px solid rgba(102, 126, 234, 0.2);
        border-radius: 12px;
        background: rgba(255, 255, 255, 0.9);
        transition: all 0.3s ease;
    }
    
    .gr-textbox:focus {
        border-color: #667eea;
        box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
    }
    
    .gr-panel {
        background: rgba(255, 255, 255, 0.95);
        border-radius: 16px;
        box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
        border: 1px solid rgba(255, 255, 255, 0.2);
    }
    
    .gr-tab-nav {
        background: rgba(255, 255, 255, 0.95);
        border-radius: 12px 12px 0 0;
        backdrop-filter: blur(10px);
    }
    
    .gr-tab-nav button {
        background: transparent;
        border: none;
        padding: 16px 24px;
        font-weight: 600;
        color: #666;
        transition: all 0.3s ease;
    }
    
    .gr-tab-nav button.selected {
        background: linear-gradient(45deg, #667eea, #764ba2);
        color: white;
        border-radius: 8px;
    }
    
    .chatbot {
        border-radius: 16px;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
    }
    
    /* Hide Gradio footer */
    footer {
        display: none !important;
    }
    
    /* Custom scrollbar */
    ::-webkit-scrollbar {
        width: 8px;
    }
    
    ::-webkit-scrollbar-track {
        background: rgba(255, 255, 255, 0.1);
        border-radius: 4px;
    }
    
    ::-webkit-scrollbar-thumb {
        background: linear-gradient(45deg, #667eea, #764ba2);
        border-radius: 4px;
    }
    
    /* Improved dataframe styling */
    .gr-dataframe {
        max-height: 400px;
        overflow-y: auto;
    }
    
    .gr-dataframe table {
        table-layout: fixed;
        width: 100%;
    }
    
    .gr-dataframe th,
    .gr-dataframe td {
        padding: 8px 12px;
        vertical-align: top;
        word-wrap: break-word;
        overflow-wrap: break-word;
        max-height: 100px;
        overflow-y: auto;
    }
    
    .gr-dataframe th:nth-child(1),
    .gr-dataframe td:nth-child(1) { width: 15%; }
    .gr-dataframe th:nth-child(2),
    .gr-dataframe td:nth-child(2) { width: 25%; }
    .gr-dataframe th:nth-child(3),
    .gr-dataframe td:nth-child(3) { width: 25%; }
    .gr-dataframe th:nth-child(4),
    .gr-dataframe td:nth-child(4) { width: 20%; }
    .gr-dataframe th:nth-child(5),
    .gr-dataframe td:nth-child(5) { width: 15%; }
    
    /* Make repository names clickable */
    .gr-dataframe td:nth-child(1) {
        cursor: pointer;
        color: #667eea;
        font-weight: 600;
        transition: all 0.3s ease;
    }
    
    .gr-dataframe td:nth-child(1):hover {
        background-color: rgba(102, 126, 234, 0.1);
        color: #764ba2;
        transform: scale(1.02);
    }
    
    .gr-dataframe tbody tr:hover {
        background-color: rgba(102, 126, 234, 0.05);
    }
    """

    with gr.Blocks(
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="gray",
            font=["Inter", "system-ui", "sans-serif"]
        ), 
        css=css, 
        title="πŸš€ HF Repo Analyzer"
    ) as app:
        
        # --- State Management ---
        # Using simple, separate state objects for robustness.
        repo_ids_state = gr.State([])
        current_repo_idx_state = gr.State(0)
        user_requirements_state = gr.State("")  # Store user requirements from chatbot
        loaded_repo_content_state = gr.State("")  # Store loaded repository content
        current_repo_id_state = gr.State("")  # Store current repository ID

        gr.Markdown(
            """
            <div style="text-align: center; padding: 40px 20px; background: rgba(255, 255, 255, 0.1); border-radius: 20px; margin: 20px auto; max-width: 900px; backdrop-filter: blur(10px);">
                <h1 style="font-size: 3.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
                    πŸš€ HF Repo Analyzer
                </h1>
                <p style="font-size: 1.3rem; color: rgba(255, 255, 255, 0.9); margin: 16px 0 0 0; font-weight: 400; line-height: 1.6;">
                    Discover, analyze, and evaluate Hugging Face repositories with AI-powered insights
                </p>
                <div style="height: 4px; width: 80px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 24px auto; border-radius: 2px;"></div>
            </div>
            """
        )

        with gr.Tabs() as tabs:
            # --- Input Tab ---
            with gr.TabItem("πŸ“ Input & Search", id="input_tab"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        gr.Markdown("### πŸ“ Repository IDs")
                        repo_id_input = gr.Textbox(
                            label="Repository IDs",
                            lines=8,
                            placeholder="microsoft/DialoGPT-medium\nopenai/whisper\nhuggingface/transformers",
                            info="Enter repo IDs separated by commas or new lines"
                        )
                        submit_repo_btn = gr.Button("πŸš€ Submit Repositories", variant="primary", size="lg")
                    
                    with gr.Column(scale=1):
                        gr.Markdown("### πŸ” Keyword Search")
                        keyword_input = gr.Textbox(
                            label="Search Keywords",
                            lines=8,
                            placeholder="text generation\nimage classification\nsentiment analysis",
                            info="Enter keywords to find relevant repositories"
                        )
                        search_btn = gr.Button("πŸ”Ž Search Repositories", variant="primary", size="lg")
                
                status_box_input = gr.Textbox(label="πŸ“Š Status", interactive=False, lines=2)

            # --- Analysis Tab ---
            with gr.TabItem("πŸ”¬ Analysis", id="analysis_tab"):
                gr.Markdown("### πŸ§ͺ Repository Analysis Engine")
                
                # Display current user requirements
                with gr.Row():
                    current_requirements_display = gr.Textbox(
                        label="πŸ“‹ Current User Requirements",
                        interactive=False,
                        lines=3,
                        info="Requirements extracted from AI chat conversation for relevance rating"
                    )
                
                with gr.Row():
                    analyze_next_btn = gr.Button("⚑ Analyze Next Repository", variant="primary", size="lg", scale=2)
                    with gr.Column(scale=3):
                        status_box_analysis = gr.Textbox(label="πŸ“ˆ Analysis Status", interactive=False, lines=2)
                
                with gr.Row(equal_height=True):
                    with gr.Column():
                        content_output = gr.Textbox(
                            label="πŸ“„ Repository Content", 
                            lines=20, 
                            show_copy_button=True,
                            info="Raw content extracted from the repository"
                        )
                    with gr.Column():
                        summary_output = gr.Textbox(
                            label="🎯 AI Analysis Summary", 
                            lines=20, 
                            show_copy_button=True,
                            info="Detailed analysis and insights from AI"
                        )

                gr.Markdown("### πŸ“Š Results Dashboard")
                gr.Markdown("πŸ’‘ **Tip:** Click on any repository name to explore it in detail!")
                df_output = gr.Dataframe(
                    headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
                    wrap=True,
                    interactive=True  # Make it interactive to detect selections
                )

            # --- Chatbot Tab ---
            with gr.TabItem("πŸ€– AI Assistant", id="chatbot_tab"):
                gr.Markdown("### πŸ’¬ Intelligent Repository Discovery")
                
                chatbot = gr.Chatbot(
                    label="πŸ€– AI Assistant",
                    height=450,
                    type="messages",
                    avatar_images=(
                        "https://cdn-icons-png.flaticon.com/512/149/149071.png",
                        "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
                    ),
                    show_copy_button=True
                )
                
                with gr.Row():
                    msg_input = gr.Textbox(
                        label="πŸ’­ Your Message", 
                        placeholder="Tell me about your ideal repository...", 
                        lines=1, 
                        scale=4,
                        info="Describe what you're looking for"
                    )
                    send_btn = gr.Button("πŸ“€ Send", variant="primary", scale=1)
                    end_chat_btn = gr.Button("🎯 Extract Keywords", scale=1)
                    use_keywords_btn = gr.Button("πŸ”Ž Search Now", variant="primary", scale=1)

                with gr.Row():
                    with gr.Column():
                        extracted_keywords_output = gr.Textbox(
                            label="🏷️ Extracted Keywords", 
                            interactive=False, 
                            show_copy_button=True,
                            info="AI-generated search terms from our conversation"
                        )
                    with gr.Column():
                        status_box_chatbot = gr.Textbox(
                            label="πŸ“Š Chat Status", 
                            interactive=False,
                            info="Current conversation status"
                        )

            # --- Repo Explorer Tab ---
            with gr.TabItem("πŸ” Repo Explorer", id="repo_explorer_tab"):
                repo_components, repo_states = create_repo_explorer_tab()
        
        # --- Footer ---
        gr.Markdown(
            """
            <div style="text-align: center; padding: 30px 20px; margin-top: 40px; background: rgba(255, 255, 255, 0.1); border-radius: 16px; backdrop-filter: blur(10px);">
                <p style="margin: 0; color: rgba(255, 255, 255, 0.8); font-size: 0.95rem; font-weight: 500;">
                    πŸš€ Powered by <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Gradio</span> 
                    & <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Hugging Face</span>
                </p>
                <div style="height: 2px; width: 60px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 16px auto; border-radius: 1px;"></div>
            </div>
            """
        )

        # --- Event Handler Functions ---

        def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
            """Processes submitted repo IDs, updates state, and prepares for analysis."""
            if not text:
                return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
            
            repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
            write_repos_to_csv(repo_ids)
            df = read_csv_to_dataframe()
            status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
            return repo_ids, 0, df, status, gr.update(selected="analysis_tab")

        def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
            """Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
            if not keywords:
                return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
            
            keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
            repo_ids = []
            for kw in keyword_list:
                repo_ids.extend(search_top_spaces(kw, limit=5))
            
            unique_repo_ids = list(dict.fromkeys(repo_ids))
            write_repos_to_csv(unique_repo_ids)
            df = read_csv_to_dataframe()
            status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
            return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")

        def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str:
            """Extract user requirements from chatbot conversation."""
            if not history:
                return ""
            
            user_messages = []
            for msg in history:
                if msg.get('role') == 'user':
                    user_messages.append(msg.get('content', ''))
            
            if not user_messages:
                return ""
            
            # Combine all user messages as requirements
            requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
            return requirements

        def handle_analyze_next(repo_ids: List[str], current_idx: int, user_requirements: str) -> Tuple[str, str, pd.DataFrame, int, str]:
            """Analyzes the next repository in the list."""
            if not repo_ids:
                return "", "", pd.DataFrame(), 0, "Status: No repositories to analyze. Please submit repo IDs first."
            if current_idx >= len(repo_ids):
                return "", "", read_csv_to_dataframe(), current_idx, "Status: All repositories have been analyzed."
            
            repo_id_to_analyze = repo_ids[current_idx]
            status = f"Status: Analyzing repository {current_idx + 1}/{len(repo_ids)}: {repo_id_to_analyze}"
            if user_requirements.strip():
                status += f"\nUsing user requirements for relevance rating."
            
            content, summary, df = analyze_and_update_single_repo(repo_id_to_analyze, user_requirements)
            
            next_idx = current_idx + 1
            if next_idx >= len(repo_ids):
                status += "\n\nFinished all analyses."

            return content, summary, df, next_idx, status

        def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
            """Appends the user's message to the history, preparing for the bot's response."""
            # Initialize chatbot with welcome message if empty
            if not history:
                history = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
            
            if user_message:
                history.append({"role": "user", "content": user_message})
            return history, ""

        def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
            """Generates and appends the bot's response using the compatible history format."""
            if not history or history[-1]["role"] != "user":
                return history
            
            user_message = history[-1]["content"]
            # Convert all messages *before* the last user message into tuples for the API
            tuple_history_for_api = convert_messages_to_tuples(history[:-1])
            
            response = chat_with_user(user_message, tuple_history_for_api)
            history.append({"role": "assistant", "content": response})
            return history

        def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str, str]:
            """Ends the chat, extracts and sanitizes keywords from the conversation, and extracts user requirements."""
            if not history:
                return "", "Status: Chat is empty, nothing to analyze.", ""
            
            # Convert the full, valid history for the extraction logic
            tuple_history = convert_messages_to_tuples(history)
            if not tuple_history:
                return "", "Status: No completed conversations to analyze.", ""
                
            # Get raw keywords string from the LLM
            raw_keywords_str = extract_keywords_from_conversation(tuple_history)
            
            # Sanitize the LLM output to extract only keyword-like parts.
            # A keyword can contain letters, numbers, underscores, spaces, and hyphens.
            cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str)
            
            # Trim whitespace from each found keyword and filter out any empty strings
            cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
            
            if not cleaned_keywords:
                return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'", ""

            # Join them into a clean, comma-separated string for the search tool
            final_keywords_str = ", ".join(cleaned_keywords)
            
            # Extract user requirements for analysis
            user_requirements = extract_user_requirements_from_chat(history)
            
            status = "Status: Keywords extracted. User requirements saved for analysis."
            return final_keywords_str, status, user_requirements

        def handle_dataframe_select(evt: gr.SelectData, df_data) -> Tuple[str, Any]:
            """Handle dataframe row selection and navigate to repo explorer."""
            if evt is None or df_data is None or len(df_data) == 0:
                return "", gr.update()
            
            try:
                # Get the selected row index
                row_index = evt.index[0] if isinstance(evt.index, (list, tuple)) else evt.index
                
                # Get the repository ID from the first column of the selected row
                if row_index < len(df_data):
                    repo_id = df_data[row_index][0] if len(df_data[row_index]) > 0 else ""
                    
                    # Navigate to repo explorer tab and pre-fill the repository ID
                    logger.info(f"Navigating to repo explorer for repository: {repo_id}")
                    return repo_id, gr.update(selected="repo_explorer_tab")
                
            except Exception as e:
                logger.error(f"Error handling dataframe selection: {e}")
            
            return "", gr.update()

        # --- Component Event Wiring ---
        
        # Initialize chatbot with welcome message on app load
        app.load(
            fn=lambda: [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
            outputs=[chatbot]
        )
        
        # Input Tab
        submit_repo_btn.click(
            fn=handle_repo_id_submission,
            inputs=[repo_id_input],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        search_btn.click(
            fn=handle_keyword_search,
            inputs=[keyword_input],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        
        # Analysis Tab
        analyze_next_btn.click(
            fn=handle_analyze_next,
            inputs=[repo_ids_state, current_repo_idx_state, user_requirements_state],
            outputs=[content_output, summary_output, df_output, current_repo_idx_state, status_box_analysis]
        )
        
        # Chatbot Tab
        msg_input.submit(
            fn=handle_user_message,
            inputs=[msg_input, chatbot],
            outputs=[chatbot, msg_input]
        ).then(
            fn=handle_bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
        send_btn.click(
            fn=handle_user_message,
            inputs=[msg_input, chatbot],
            outputs=[chatbot, msg_input]
        ).then(
            fn=handle_bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
        end_chat_btn.click(
            fn=handle_end_chat,
            inputs=[chatbot],
            outputs=[extracted_keywords_output, status_box_chatbot, user_requirements_state]
        ).then(
            fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
            inputs=[user_requirements_state],
            outputs=[current_requirements_display]
        )
        use_keywords_btn.click(
            fn=handle_keyword_search,
            inputs=[extracted_keywords_output],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        
        # Repo Explorer Tab
        setup_repo_explorer_events(repo_components, repo_states)
        
        # Add dataframe selection event
        df_output.select(
            fn=handle_dataframe_select,
            inputs=[df_output],
            outputs=[repo_components["repo_explorer_input"], tabs]
        )
        
    return app

if __name__ == "__main__":
    app = create_ui()
    app.launch(debug=True)