File size: 13,147 Bytes
d6d82c2
 
 
 
7dfe957
91a3ee9
a95a188
 
 
7b65e1e
d6d82c2
c38e2fa
 
 
 
d6d82c2
 
 
 
 
 
a95a188
7dfe957
d6d82c2
 
 
 
7b65e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38e2fa
 
 
 
 
 
 
 
 
 
6f3aee6
c38e2fa
 
 
 
6f3aee6
c38e2fa
 
 
 
 
 
 
068c749
c38e2fa
 
 
 
 
2a3ff67
517b06c
 
 
2a3ff67
 
 
 
 
 
 
517b06c
 
 
 
 
 
2a3ff67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f3aee6
 
 
c38e2fa
 
517b06c
c38e2fa
 
6f3aee6
c38e2fa
 
 
 
 
 
 
 
be03516
a95a188
d6d82c2
a95a188
c38e2fa
a95a188
c38e2fa
 
7b65e1e
 
 
a95a188
be03516
7dfe957
7b65e1e
 
c38e2fa
 
 
 
 
 
 
 
 
7b65e1e
 
 
 
 
 
 
c38e2fa
 
7dfe957
c38e2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfe957
c38e2fa
7dfe957
c38e2fa
7dfe957
 
 
 
 
 
 
 
 
 
 
 
a95a188
7dfe957
 
 
a95a188
7dfe957
a95a188
7dfe957
 
 
 
 
 
 
 
 
 
 
7b65e1e
7dfe957
 
a95a188
7dfe957
 
91a3ee9
a95a188
 
 
 
 
91a3ee9
a95a188
91a3ee9
7b65e1e
7dfe957
7b65e1e
 
d6d82c2
91a3ee9
 
7b65e1e
 
 
 
 
 
 
 
 
 
 
 
91a3ee9
 
 
7b65e1e
 
 
 
 
 
91a3ee9
7dfe957
7b65e1e
91a3ee9
 
7b65e1e
 
 
 
 
 
 
 
91a3ee9
7b65e1e
 
91a3ee9
 
7dfe957
7b65e1e
91a3ee9
 
 
 
7b65e1e
91a3ee9
 
 
 
7dfe957
d6d82c2
 
 
 
 
 
 
 
 
 
7b65e1e
 
d6d82c2
 
 
 
7b65e1e
d6d82c2
7b65e1e
 
d6d82c2
7dfe957
 
 
d6d82c2
 
 
 
7b65e1e
 
d6d82c2
7dfe957
d6d82c2
7b65e1e
91a3ee9
7b65e1e
d6d82c2
 
 
 
7b65e1e
d6d82c2
 
 
7b65e1e
d6d82c2
 
 
 
7b65e1e
d6d82c2
7dfe957
 
 
d6d82c2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from typing import List, Optional
import os
import requests
import json
import traceback
import io

# Import transformers for local model inference
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch

# --- Configuration ---
# Determine the base directory of the main.py script
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# Adjust paths to go one level up from backend to find templates/static
TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates")
STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static")

# --- Initialize FastAPI ---
app = FastAPI()
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
templates = Jinja2Templates(directory=TEMPLATE_DIR)

# --- Language mapping ---
LANGUAGE_MAP = {
    "en": "English",
    "fr": "French",
    "es": "Spanish", 
    "de": "German",
    "zh": "Chinese",
    "ru": "Russian",
    "ja": "Japanese",
    "hi": "Hindi",
    "pt": "Portuguese",
    "tr": "Turkish",
    "ko": "Korean",
    "it": "Italian"
}

# --- Set cache directory to a writeable location ---
# This is crucial for Hugging Face Spaces where /app/.cache is not writable
# Using /tmp which is typically writable in most environments
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['HF_HOME'] = '/tmp/hf_home'
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'

# --- Global model and tokenizer variables ---
translator = None
tokenizer = None
model = None

# --- Model initialization function ---
def initialize_model():
    """Initialize the translation model and tokenizer."""
    global translator, tokenizer, model
    
    try:
        print("Initializing model and tokenizer...")
        
        # Use a smaller model that works well for instruction-based translation
        model_name = "google/flan-t5-small"
        
        # Load the tokenizer with explicit cache directory
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, 
            cache_dir="/tmp/transformers_cache"
        )
        
        # Check if TensorFlow and tf-keras are available
        tf_available = False
        try:
            import tensorflow
            # Try to import tf_keras which is the compatibility package
            try:
                import tf_keras
                print("tf-keras is installed, using TensorFlow with compatibility layer")
                tf_available = True
            except ImportError:
                print("tf-keras not found, will try to use PyTorch backend")
            print("TensorFlow is available, will use from_tf=True")
        except ImportError:
            print("TensorFlow is not installed, will use default PyTorch loading")
        
        # Load the model with appropriate settings based on TensorFlow availability
        print(f"Loading model {'with from_tf=True' if tf_available else 'with default PyTorch settings'}...")
        try:
            # First try with PyTorch approach which is more reliable
            model = AutoModelForSeq2SeqLM.from_pretrained(
                model_name,
                from_tf=False,  # Use PyTorch first
                cache_dir="/tmp/transformers_cache"
            )
        except Exception as e:
            print(f"PyTorch loading failed: {e}")
            if tf_available:
                print("Attempting to load with TensorFlow...")
                model = AutoModelForSeq2SeqLM.from_pretrained(
                    model_name,
                    from_tf=True,
                    cache_dir="/tmp/transformers_cache"
                )
            else:
                raise  # Re-raise if we can't use TensorFlow either
        
        # Create a pipeline with the loaded model and tokenizer
        print("Creating pipeline with pre-loaded model...")
        translator = pipeline(
            "text2text-generation",
            model=model,
            tokenizer=tokenizer,
            device=-1,  # Use CPU for compatibility (-1) or GPU if available (0)
            max_length=512
        )
        
        print(f"Model {model_name} successfully initialized")
        return True
    except Exception as e:
        print(f"Error initializing model: {e}")
        traceback.print_exc()
        return False

# --- Translation Function ---
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
    """
    Translate text using local T5 model with prompt engineering
    """
    global translator
    
    if not text.strip():
        return ""
        
    print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}")
    
    # Get full language name for prompt
    source_lang_name = LANGUAGE_MAP.get(source_lang, source_lang)
    
    # Initialize the model if it hasn't been loaded yet
    if translator is None:
        success = initialize_model()
        if not success:
            return fallback_translate(text, source_lang, target_lang)
    
    try:
        # Construct our eloquent Arabic translation prompt
        prompt = f"""Translate the following {source_lang_name} text into Modern Standard Arabic (Fusha).
Focus on conveying the meaning elegantly using proper Balagha (Arabic eloquence).
Adapt any cultural references or idioms appropriately rather than translating literally.
Ensure the translation reads naturally to a native Arabic speaker.

Text to translate:
{text}"""

        # Generate translation using the model
        outputs = translator(prompt, max_length=512, do_sample=False)
        
        if outputs and len(outputs) > 0:
            translated_text = outputs[0]['generated_text']
            print(f"Translation successful using transformers model")
            return culturally_adapt_arabic(translated_text)
        else:
            print("Model returned empty output")
            return fallback_translate(text, source_lang, target_lang)
            
    except Exception as e:
        print(f"Error in model translation: {e}")
        traceback.print_exc()
        return fallback_translate(text, source_lang, target_lang)

def fallback_translate(text: str, source_lang: str, target_lang: str = "ar") -> str:
    """Fallback to online translation APIs if local model fails."""
    # Try LibreTranslate
    libre_translate_endpoints = [
        "https://translate.terraprint.co/translate",
        "https://libretranslate.de/translate",
        "https://translate.argosopentech.com/translate"
    ]
    
    for endpoint in libre_translate_endpoints:
        try:
            print(f"Attempting fallback translation using LibreTranslate: {endpoint}")
            payload = {
                "q": text,
                "source": source_lang if source_lang != "auto" else "auto",
                "target": target_lang,
                "format": "text"
            }
            
            response = requests.post(endpoint, json=payload, timeout=10)
            
            if response.status_code == 200:
                result = response.json()
                translated_text = result.get("translatedText")
                
                if translated_text:
                    print(f"Translation successful using LibreTranslate {endpoint}")
                    return culturally_adapt_arabic(translated_text)
        except Exception as e:
            print(f"Error with LibreTranslate {endpoint}: {e}")
    
    # If all else fails, use a simple English-Arabic dictionary for common phrases
    common_phrases = {
        "hello": "مرحبا",
        "thank you": "شكرا لك",
        "goodbye": "مع السلامة",
        "welcome": "أهلا وسهلا",
        "yes": "نعم",
        "no": "لا",
        "please": "من فضلك",
        "sorry": "آسف",
    }
    
    if text.lower().strip() in common_phrases:
        return common_phrases[text.lower().strip()]
    
    # Last resort message
    return "عذراً، لم نتمكن من ترجمة النص بسبب خطأ فني. الرجاء المحاولة لاحقاً."

def culturally_adapt_arabic(text: str) -> str:
    """Apply post-processing rules to enhance Arabic translation with cultural sensitivity."""
    # Replace any Latin punctuation with Arabic ones
    text = text.replace('?', '؟').replace(';', '؛').replace(',', '،')
    return text

# --- Helper Functions ---
async def extract_text_from_file(file: UploadFile) -> str:
    """Extracts text content from uploaded files without writing to disk."""
    content = await file.read()
    file_extension = os.path.splitext(file.filename)[1].lower()
    extracted_text = ""

    try:
        if file_extension == '.txt':
            # Process text file directly from bytes
            try:
                extracted_text = content.decode('utf-8')
            except UnicodeDecodeError:
                # Try other common encodings if UTF-8 fails
                for encoding in ['latin-1', 'cp1252', 'utf-16']:
                    try:
                        extracted_text = content.decode(encoding)
                        break
                    except UnicodeDecodeError:
                        continue
                    
        elif file_extension == '.docx':
            try:
                import docx
                from io import BytesIO
                
                # Load DOCX from memory
                doc_stream = BytesIO(content)
                doc = docx.Document(doc_stream)
                extracted_text = '\n'.join([para.text for para in doc.paragraphs])
            except ImportError:
                raise HTTPException(status_code=501, detail="DOCX processing requires 'python-docx' library")
                
        elif file_extension == '.pdf':
            try:
                import fitz  # PyMuPDF
                from io import BytesIO
                
                # Load PDF from memory
                pdf_stream = BytesIO(content)
                doc = fitz.open(stream=pdf_stream, filetype="pdf")
                
                page_texts = []
                for page in doc:
                    page_texts.append(page.get_text())
                extracted_text = "\n".join(page_texts)
                doc.close()
            except ImportError:
                raise HTTPException(status_code=501, detail="PDF processing requires 'PyMuPDF' library")
                
        else:
            raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}")

        print(f"Extracted text length: {len(extracted_text)}")
        return extracted_text

    except Exception as e:
        print(f"Error processing file {file.filename}: {e}")
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Error processing document: {str(e)}")

# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    """Serves the main HTML page."""
    return templates.TemplateResponse("index.html", {"request": request})

@app.post("/translate/text")
async def translate_text_endpoint(
    text: str = Form(...),
    source_lang: str = Form(...),
    target_lang: str = Form("ar")
):
    """Translates direct text input."""
    if not text:
        raise HTTPException(status_code=400, detail="No text provided for translation.")
    
    try:
        translated_text = translate_text_internal(text, source_lang, target_lang)
        return JSONResponse(content={"translated_text": translated_text, "source_lang": source_lang})
    except Exception as e:
        print(f"Translation error: {e}")
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Translation error: {str(e)}")

@app.post("/translate/document")
async def translate_document_endpoint(
    file: UploadFile = File(...),
    source_lang: str = Form(...),
    target_lang: str = Form("ar")
):
    """Translates text extracted from an uploaded document."""
    try:
        # Extract text directly from the uploaded file
        extracted_text = await extract_text_from_file(file)
        
        if not extracted_text:
            raise HTTPException(status_code=400, detail="Could not extract any text from the document.")

        # Translate the extracted text
        translated_text = translate_text_internal(extracted_text, source_lang, target_lang)

        return JSONResponse(content={
            "original_filename": file.filename,
            "detected_source_lang": source_lang,
            "translated_text": translated_text
        })

    except HTTPException as http_exc:
        raise http_exc
    except Exception as e:
        print(f"Document translation error: {e}")
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Document translation error: {str(e)}")

# --- Run the server (for local development) ---
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)