Spaces:
Running
Running
File size: 14,825 Bytes
d707455 61165d4 d707455 91c3d7f d707455 21b2b3f 08b2694 21b2b3f 08b2694 21b2b3f 08b2694 21b2b3f 08b2694 21b2b3f ac76af4 21b2b3f 08b2694 21b2b3f 08b2694 21b2b3f d4d0c2a 21b2b3f 1ce0089 ceaf670 1ce0089 21b2b3f 5581045 21b2b3f e911334 21b2b3f 5581045 21b2b3f c8aa559 21b2b3f a832ee9 21b2b3f a832ee9 21b2b3f 08b2694 21b2b3f 12da302 08b2694 21b2b3f c3039ab d707455 21b2b3f d707455 21b2b3f 083533c b948611 083533c 21b2b3f 4090f4e 21b2b3f c3039ab b948611 083533c bc2c7d0 1ce0089 21b2b3f 79d8dc9 c28efce 21b2b3f 8956cd9 21b2b3f c28efce 8956cd9 21b2b3f c3039ab 21b2b3f c3039ab 61165d4 c3039ab 61165d4 c3039ab c0c4a21 8d3265d 367a3e1 3e7988d 21b2b3f 3e7988d 3d70ed8 3e7988d c0c4a21 21b2b3f c0c4a21 4c9126e 3e7988d 21b2b3f c28efce 21b2b3f c28efce 21b2b3f c28efce 21b2b3f c28efce 94c9bb9 c28efce 21b2b3f 4ff4b17 21b2b3f 94c9bb9 21b2b3f c28efce 21b2b3f c3039ab d9dabd9 21b2b3f d9dabd9 4090f4e d9dabd9 664f0f0 45fc23c 664f0f0 d9dabd9 664f0f0 45fc23c 664f0f0 4090f4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import requests
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Custom CSS for styling to match the screenshot
st.markdown("""
<style>
/* Main background and text colors */
.main {
background-color: #1A1A1A !important;
color: white !important;
}
/* Container styling */
.block-container {
background-color: #1A1A1A !important;
color: white !important;
padding-left: 2rem !important;
padding-right: 2rem !important;
}
/* Header styling */
header[data-testid="stHeader"] {
background-color: #1A1A1A !important;
}
/* Sidebar styling */
section[data-testid="stSidebar"] > div:first-child {
background-color: #1A1A1A !important;
color: #FFFFFF !important;
padding: 2rem 1.5rem 1.5rem 1.5rem !important;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
}
/* Overall app background */
html, body, [data-testid="stApp"] {
background-color: #1A1A1A !important;
}
/* Custom table styling */
.custom-table {
background-color: #2e2e2e;
color: white;
font-family: monospace;
padding: 1rem;
border-radius: 8px;
overflow-x: auto;
white-space: pre;
border: 1px solid #444;
}
/* Sidebar stats styling */
.sidebar-stats {
color: lightgray !important;
font-size: 1.1rem !important;
margin-top: 1.5rem;
font-weight: 600;
}
/* Sidebar contrast block */
.sidebar-contrast-block {
background-color: #2e2e2e !important;
padding: 1.25rem;
border-radius: 10px;
margin-top: 1.5rem;
}
/* DataFrame styling */
.stDataFrame {
color: white !important;
}
/* Markdown text color */
.stMarkdown {
color: white !important;
}
/* Title styling */
h1, h2, h3 {
color: white !important;
}
/* Alert styling */
.stAlert {
background-color: #2e2e2e !important;
color: white !important;
padding: 1.25rem !important;
font-size: 1rem !important;
border-radius: 0.5rem !important;
}
/* Chart background */
.js-plotly-plot .plotly .main-svg {
background-color: #1A1A1A !important;
}
/* Completeness breakdown section */
.field-completeness {
background-color: #2e2e2e;
padding: 1.2rem;
border-radius: 10px;
margin-top: 1.5rem;
color: lightgray;
}
</style>
""", unsafe_allow_html=True)
# Banner image
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)
# App header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs an
analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")
# Collection URLs using the correct LOC API format
collections = {
"American Revolutionary War Maps": "american+revolutionary+war+maps",
"Civil War Maps": "civil+war+maps",
"Women's Suffrage": "women+suffrage",
"World War I Posters": "world+war+posters"
}
# Initialize metadata_df variable
metadata_df = pd.DataFrame()
# Add collection selector to sidebar
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
search_query = collections[selected]
# Define the collection URL
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"
# Create placeholders for sidebar elements
stats_placeholder = st.sidebar.empty()
completeness_placeholder = st.sidebar.empty()
# Helpful Resources (styled section in sidebar)
st.sidebar.markdown("""
<div style='
margin-top: 1.5rem;
color: lightgray;
'>
<h3 style='font-size: 1.1rem; font-weight: 600;'>🔗 Helpful Resources</h3>
<ul style='padding-left: 1em; list-style-type: none;'>
<li><a href="https://www.loc.gov/apis/" target="_blank" style="color: lightgray; text-decoration: none;">LOC API Info</a></li>
<li><a href="https://www.loc.gov/" target="_blank" style="color: lightgray; text-decoration: none;">Library of Congress Homepage</a></li>
<li><a href="https://www.loc.gov/collections/" target="_blank" style="color: lightgray; text-decoration: none;">LOC Digital Collections</a></li>
<li><a href="https://www.loc.gov/marc/" target="_blank" style="color: lightgray; text-decoration: none;">MARC Metadata Standards</a></li>
<li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank" style="color: lightgray; text-decoration: none;">LOC Digital Strategy</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
# Set fetch_data to True to automatically fetch data
fetch_data = True
if fetch_data:
# Display a loading spinner while fetching data
with st.spinner(f"Fetching data for {selected}..."):
# Fetch data from LOC API with spoofed User-Agent header
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
}
try:
response = requests.get(collection_url, headers=headers)
response.raise_for_status()
data = response.json()
if "results" in data:
records = data.get("results", [])
elif "items" in data:
records = data.get("items", [])
else:
records = []
st.error("Unexpected API response structure. No records found.")
st.write(f"Retrieved {len(records)} records")
except requests.exceptions.RequestException as e:
st.error(f"API Connection Error: {e}")
records = []
except ValueError:
st.error("Failed to parse API response as JSON")
records = []
# Extract selected metadata fields
items = []
for record in records:
if isinstance(record, dict):
description = record.get("description", "")
if isinstance(description, list):
description = " ".join([str(d) for d in description])
item = {
"id": record.get("id", ""),
"title": record.get("title", ""),
"date": record.get("date", ""),
"subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
"creator": record.get("creator", ""),
"description": description
}
if not item["title"] and "item" in record:
item["title"] = record.get("item", {}).get("title", "")
if not item["date"] and "item" in record:
item["date"] = record.get("item", {}).get("date", "")
items.append(item)
metadata_df = pd.DataFrame(items)
# Define custom completeness check
def is_incomplete(value):
return pd.isna(value) or value in ["", "N/A", "null", None]
if not metadata_df.empty:
# Incomplete record detection
incomplete_mask = metadata_df.apply(lambda row: row.map(is_incomplete), axis=1).any(axis=1)
incomplete_count = incomplete_mask.sum()
# Overall completeness
total_fields = metadata_df.size
filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
overall_percent = (filled_fields / total_fields) * 100
# Add "Overall Metadata Completeness" indicator to sidebar
st.sidebar.markdown(
f"""
<div style='
background-color: #2e2e2e;
padding: 1rem;
border-radius: 10px;
margin-top: 1.5rem;
text-align: center;
'>
<h3 style='color: lightgray; font-size: 1rem; margin-bottom: 0.5rem;'>Overall Metadata Completeness:</h3>
<p style='color: white; font-size: 1.8rem; font-weight: bold; margin: 0;'>{overall_percent:.1f}%</p>
</div>
""",
unsafe_allow_html=True
)
# Field-by-field completeness
completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
# Render stats summary in sidebar
stats_html = f"""
<div class="sidebar-stats">
<h3 style="color: lightgray; font-size: 1.1rem;">Quick Stats</h3>
<p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
<p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
</div>
"""
stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
# Fill the Field Completeness Breakdown placeholder
with completeness_placeholder:
st.markdown("""
<div class='field-completeness'>
<h4 style='margin-bottom: 1rem; color: lightgray;'>Field Completeness Breakdown</h4>
""", unsafe_allow_html=True)
# Create a styled dataframe showing completeness percentages
completeness_df = pd.DataFrame({
"Field": completeness.index,
"Completeness (%)": completeness.values
})
# Display the dataframe directly in the sidebar
st.dataframe(
completeness_df.style.background_gradient(cmap="Greens").format("{:.1f}%"),
use_container_width=True,
height=240
)
st.markdown("</div>", unsafe_allow_html=True)
# Display retrieved metadata sample in main panel
st.subheader("Retrieved Metadata Sample")
st.dataframe(metadata_df.head())
# Metadata completeness analysis (bar chart)
st.subheader("Metadata Completeness Analysis")
# Create a bar chart with a dark theme to match the screenshot
fig = px.bar(
completeness_df,
x="Field",
y="Completeness (%)",
title="Metadata Completeness by Field",
color="Completeness (%)",
color_continuous_scale="Greens"
)
# Update the chart layout to match dark theme
fig.update_layout(
plot_bgcolor="#1A1A1A",
paper_bgcolor="#1A1A1A",
font_color="white",
title_font_color="white",
margin=dict(l=10, r=10, t=40, b=10),
coloraxis_showscale=False
)
# Update axes
fig.update_xaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
fig.update_yaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
st.plotly_chart(fig, use_container_width=True)
# Enhanced Metadata section
st.subheader("✨ Suggested Metadata Enhancements")
# Identify incomplete records with descriptions
incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
incomplete_records = metadata_df[incomplete_mask]
incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
# Create TF-IDF vectorizer
tfidf = TfidfVectorizer(stop_words='english')
if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
try:
suggestions = []
tfidf_matrix = tfidf.fit_transform(reference_df['description'])
for idx, row in incomplete_with_desc.iterrows():
if pd.isna(row['subject']) and pd.notna(row['description']):
desc_vec = tfidf.transform([str(row['description'])])
sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
top_idx = sims.argmax()
suggested_subject = reference_df.iloc[top_idx]['subject']
if pd.notna(suggested_subject) and suggested_subject:
suggestions.append((row['title'], suggested_subject))
if suggestions:
suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
st.markdown("<div class='custom-table'>" + suggestions_df.to_markdown(index=False) + "</div>", unsafe_allow_html=True)
else:
st.markdown("""
<div class='custom-table'>
<b>No metadata enhancement suggestions available.</b>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error generating metadata suggestions: {e}")
else:
st.markdown("""
<div class='custom-table'>
<b>Not enough descriptive data to generate metadata suggestions.</b>
</div>
""", unsafe_allow_html=True)
else:
st.warning("⚠️ No metadata records found for this collection. Try selecting another one.") |