File size: 14,825 Bytes
d707455
 
61165d4
d707455
 
91c3d7f
 
d707455
21b2b3f
08b2694
 
21b2b3f
08b2694
21b2b3f
 
08b2694
21b2b3f
 
08b2694
21b2b3f
 
 
 
ac76af4
21b2b3f
 
 
 
08b2694
21b2b3f
 
 
 
 
 
08b2694
21b2b3f
d4d0c2a
21b2b3f
 
1ce0089
ceaf670
1ce0089
21b2b3f
 
5581045
21b2b3f
 
e911334
 
 
 
 
21b2b3f
5581045
21b2b3f
 
c8aa559
 
 
 
 
 
21b2b3f
 
a832ee9
21b2b3f
a832ee9
 
 
 
21b2b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b2694
 
21b2b3f
12da302
08b2694
21b2b3f
c3039ab
d707455
21b2b3f
 
d707455
 
21b2b3f
083533c
b948611
 
 
 
083533c
 
21b2b3f
4090f4e
 
21b2b3f
c3039ab
b948611
083533c
bc2c7d0
 
1ce0089
21b2b3f
79d8dc9
c28efce
 
21b2b3f
8956cd9
21b2b3f
 
 
 
 
 
 
 
 
 
 
c28efce
 
8956cd9
 
21b2b3f
c3039ab
21b2b3f
c3039ab
 
 
 
 
 
61165d4
c3039ab
61165d4
c3039ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0c4a21
8d3265d
 
 
 
367a3e1
3e7988d
 
 
 
 
 
 
 
 
21b2b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7988d
3d70ed8
3e7988d
 
 
c0c4a21
 
21b2b3f
c0c4a21
 
 
 
4c9126e
3e7988d
21b2b3f
c28efce
 
21b2b3f
 
c28efce
 
21b2b3f
 
 
 
 
 
 
c28efce
21b2b3f
c28efce
 
 
94c9bb9
c28efce
 
21b2b3f
 
 
4ff4b17
21b2b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c9bb9
21b2b3f
 
c28efce
21b2b3f
c3039ab
 
d9dabd9
 
21b2b3f
 
d9dabd9
 
 
 
 
 
 
 
 
 
 
 
 
4090f4e
 
d9dabd9
 
 
 
 
 
664f0f0
45fc23c
664f0f0
d9dabd9
 
 
 
 
 
664f0f0
45fc23c
664f0f0
 
4090f4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import requests
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Custom CSS for styling to match the screenshot
st.markdown("""
    <style>
        /* Main background and text colors */
        .main {
            background-color: #1A1A1A !important;
            color: white !important;
        }
        
        /* Container styling */
        .block-container {
            background-color: #1A1A1A !important;
            color: white !important;
            padding-left: 2rem !important;
            padding-right: 2rem !important;
        }
        
        /* Header styling */
        header[data-testid="stHeader"] {
            background-color: #1A1A1A !important;
        }
        
        /* Sidebar styling */
        section[data-testid="stSidebar"] > div:first-child {
            background-color: #1A1A1A !important;
            color: #FFFFFF !important;
            padding: 2rem 1.5rem 1.5rem 1.5rem !important;
            border-radius: 12px;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
        }
        
        /* Overall app background */
        html, body, [data-testid="stApp"] {
            background-color: #1A1A1A !important;
        }
        
        /* Custom table styling */
        .custom-table {
            background-color: #2e2e2e;
            color: white;
            font-family: monospace;
            padding: 1rem;
            border-radius: 8px;
            overflow-x: auto;
            white-space: pre;
            border: 1px solid #444;
        }
        
        /* Sidebar stats styling */
        .sidebar-stats {
            color: lightgray !important;
            font-size: 1.1rem !important;
            margin-top: 1.5rem;
            font-weight: 600;
        }
        
        /* Sidebar contrast block */
        .sidebar-contrast-block {
            background-color: #2e2e2e !important;
            padding: 1.25rem;
            border-radius: 10px;
            margin-top: 1.5rem;
        }
        
        /* DataFrame styling */
        .stDataFrame {
            color: white !important;
        }
        
        /* Markdown text color */
        .stMarkdown {
            color: white !important;
        }
        
        /* Title styling */
        h1, h2, h3 {
            color: white !important;
        }
        
        /* Alert styling */
        .stAlert {
            background-color: #2e2e2e !important;
            color: white !important;
            padding: 1.25rem !important;
            font-size: 1rem !important;
            border-radius: 0.5rem !important;
        }
        
        /* Chart background */
        .js-plotly-plot .plotly .main-svg {
            background-color: #1A1A1A !important;
        }
        
        /* Completeness breakdown section */
        .field-completeness {
            background-color: #2e2e2e;
            padding: 1.2rem;
            border-radius: 10px;
            margin-top: 1.5rem;
            color: lightgray;
        }
    </style>
""", unsafe_allow_html=True)

# Banner image
st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True)

# App header
st.title("MetaDiscovery Agent for Library of Congress Collections")
st.markdown("""
This tool connects to the LOC API, retrieves metadata from a selected collection, and performs an
analysis of metadata completeness, suggests enhancements, and identifies authority gaps.
""")

# Collection URLs using the correct LOC API format
collections = {
    "American Revolutionary War Maps": "american+revolutionary+war+maps",
    "Civil War Maps": "civil+war+maps",
    "Women's Suffrage": "women+suffrage",
    "World War I Posters": "world+war+posters"
}

# Initialize metadata_df variable
metadata_df = pd.DataFrame()

# Add collection selector to sidebar
selected = st.sidebar.selectbox("Select a collection", list(collections.keys()), key="collection_selector")
search_query = collections[selected]

# Define the collection URL
collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json"

# Create placeholders for sidebar elements
stats_placeholder = st.sidebar.empty()
completeness_placeholder = st.sidebar.empty()

# Helpful Resources (styled section in sidebar)
st.sidebar.markdown("""
    <div style='
        margin-top: 1.5rem;
        color: lightgray;
    '>
        <h3 style='font-size: 1.1rem; font-weight: 600;'>🔗 Helpful Resources</h3>
        <ul style='padding-left: 1em; list-style-type: none;'>
            <li><a href="https://www.loc.gov/apis/" target="_blank" style="color: lightgray; text-decoration: none;">LOC API Info</a></li>
            <li><a href="https://www.loc.gov/" target="_blank" style="color: lightgray; text-decoration: none;">Library of Congress Homepage</a></li>
            <li><a href="https://www.loc.gov/collections/" target="_blank" style="color: lightgray; text-decoration: none;">LOC Digital Collections</a></li>
            <li><a href="https://www.loc.gov/marc/" target="_blank" style="color: lightgray; text-decoration: none;">MARC Metadata Standards</a></li>
            <li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank" style="color: lightgray; text-decoration: none;">LOC Digital Strategy</a></li>
        </ul>
    </div>
""", unsafe_allow_html=True)

# Set fetch_data to True to automatically fetch data
fetch_data = True

if fetch_data:
    # Display a loading spinner while fetching data
    with st.spinner(f"Fetching data for {selected}..."):
        # Fetch data from LOC API with spoofed User-Agent header
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36"
        }

        try:
            response = requests.get(collection_url, headers=headers)
            response.raise_for_status()
            data = response.json()

            if "results" in data:
                records = data.get("results", [])
            elif "items" in data:
                records = data.get("items", [])
            else:
                records = []
                st.error("Unexpected API response structure. No records found.")
            st.write(f"Retrieved {len(records)} records")

        except requests.exceptions.RequestException as e:
            st.error(f"API Connection Error: {e}")
            records = []
        except ValueError:
            st.error("Failed to parse API response as JSON")
            records = []

        # Extract selected metadata fields
        items = []
        for record in records:
            if isinstance(record, dict):
                description = record.get("description", "")
                if isinstance(description, list):
                    description = " ".join([str(d) for d in description])
                item = {
                    "id": record.get("id", ""),
                    "title": record.get("title", ""),
                    "date": record.get("date", ""),
                    "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""),
                    "creator": record.get("creator", ""),
                    "description": description
                }
                if not item["title"] and "item" in record:
                    item["title"] = record.get("item", {}).get("title", "")
                if not item["date"] and "item" in record:
                    item["date"] = record.get("item", {}).get("date", "")
                items.append(item)

        metadata_df = pd.DataFrame(items)
        
        # Define custom completeness check
        def is_incomplete(value):
            return pd.isna(value) or value in ["", "N/A", "null", None]
        
        if not metadata_df.empty:
            # Incomplete record detection
            incomplete_mask = metadata_df.apply(lambda row: row.map(is_incomplete), axis=1).any(axis=1)
            incomplete_count = incomplete_mask.sum()
        
            # Overall completeness
            total_fields = metadata_df.size
            filled_fields = metadata_df.apply(lambda row: row.map(lambda x: not is_incomplete(x)), axis=1).sum().sum()
            overall_percent = (filled_fields / total_fields) * 100
        
            # Add "Overall Metadata Completeness" indicator to sidebar
            st.sidebar.markdown(
                f"""
                <div style='
                    background-color: #2e2e2e;
                    padding: 1rem;
                    border-radius: 10px;
                    margin-top: 1.5rem;
                    text-align: center;
                '>
                    <h3 style='color: lightgray; font-size: 1rem; margin-bottom: 0.5rem;'>Overall Metadata Completeness:</h3>
                    <p style='color: white; font-size: 1.8rem; font-weight: bold; margin: 0;'>{overall_percent:.1f}%</p>
                </div>
                """, 
                unsafe_allow_html=True
            )
        
            # Field-by-field completeness
            completeness = metadata_df.map(lambda x: not is_incomplete(x)).mean() * 100
            completeness_table = completeness.round(1).to_frame(name="Completeness (%)")
        
            # Render stats summary in sidebar
            stats_html = f"""
            <div class="sidebar-stats">
                <h3 style="color: lightgray; font-size: 1.1rem;">Quick Stats</h3>
                <p style="color:lightgray;">Total Records: <b>{len(metadata_df)}</b></p>
                <p style="color:lightgray;">Incomplete Records: <b>{incomplete_count}</b></p>
            </div>
            """
            stats_placeholder.markdown(stats_html, unsafe_allow_html=True)
        
            # Fill the Field Completeness Breakdown placeholder
            with completeness_placeholder:
                st.markdown("""
                    <div class='field-completeness'>
                        <h4 style='margin-bottom: 1rem; color: lightgray;'>Field Completeness Breakdown</h4>
                """, unsafe_allow_html=True)
            
                # Create a styled dataframe showing completeness percentages
                completeness_df = pd.DataFrame({
                    "Field": completeness.index,
                    "Completeness (%)": completeness.values
                })
                
                # Display the dataframe directly in the sidebar
                st.dataframe(
                    completeness_df.style.background_gradient(cmap="Greens").format("{:.1f}%"),
                    use_container_width=True,
                    height=240
                )
            
                st.markdown("</div>", unsafe_allow_html=True)

            # Display retrieved metadata sample in main panel
            st.subheader("Retrieved Metadata Sample")
            st.dataframe(metadata_df.head())

            # Metadata completeness analysis (bar chart)
            st.subheader("Metadata Completeness Analysis")
            
            # Create a bar chart with a dark theme to match the screenshot
            fig = px.bar(
                completeness_df, 
                x="Field", 
                y="Completeness (%)", 
                title="Metadata Completeness by Field",
                color="Completeness (%)",
                color_continuous_scale="Greens"
            )
            
            # Update the chart layout to match dark theme
            fig.update_layout(
                plot_bgcolor="#1A1A1A",
                paper_bgcolor="#1A1A1A",
                font_color="white",
                title_font_color="white",
                margin=dict(l=10, r=10, t=40, b=10),
                coloraxis_showscale=False
            )
            
            # Update axes
            fig.update_xaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
            fig.update_yaxes(title_font_color="white", tickfont_color="white", gridcolor="#333333")
            
            st.plotly_chart(fig, use_container_width=True)

            # Enhanced Metadata section
            st.subheader("✨ Suggested Metadata Enhancements")

            # Identify incomplete records with descriptions
            incomplete_mask = metadata_df.map(is_incomplete).any(axis=1)
            incomplete_records = metadata_df[incomplete_mask]
            incomplete_with_desc = incomplete_records[incomplete_records['description'].notnull()]
            reference_df = metadata_df[metadata_df['subject'].notnull() & metadata_df['description'].notnull()]
            
            # Create TF-IDF vectorizer
            tfidf = TfidfVectorizer(stop_words='english')
        
            if len(incomplete_with_desc) > 1 and len(reference_df) > 1:
                try:
                    suggestions = []
                    tfidf_matrix = tfidf.fit_transform(reference_df['description'])
        
                    for idx, row in incomplete_with_desc.iterrows():
                        if pd.isna(row['subject']) and pd.notna(row['description']):
                            desc_vec = tfidf.transform([str(row['description'])])
                            sims = cosine_similarity(desc_vec, tfidf_matrix).flatten()
                            top_idx = sims.argmax()
                            suggested_subject = reference_df.iloc[top_idx]['subject']
                            if pd.notna(suggested_subject) and suggested_subject:
                                suggestions.append((row['title'], suggested_subject))
        
                    if suggestions:
                        suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"])
                        st.markdown("<div class='custom-table'>" + suggestions_df.to_markdown(index=False) + "</div>", unsafe_allow_html=True)
                    else:
                        st.markdown("""
                            <div class='custom-table'>
                            <b>No metadata enhancement suggestions available.</b>
                            </div>
                        """, unsafe_allow_html=True)

                except Exception as e:
                    st.error(f"Error generating metadata suggestions: {e}")
            else:
                st.markdown("""
                    <div class='custom-table'>
                    <b>Not enough descriptive data to generate metadata suggestions.</b>
                    </div>
                    """, unsafe_allow_html=True)
        else:
            st.warning("⚠️ No metadata records found for this collection. Try selecting another one.")