Spaces:
Sleeping
Sleeping
File size: 6,283 Bytes
a3e0475 b9e2074 a3e0475 b9e2074 a3e0475 290623e a3e0475 94ac9e7 a3e0475 290623e b9e2074 ed7c9b0 290623e a3e0475 290623e a3e0475 290623e a3e0475 94ac9e7 290623e 94ac9e7 290623e 94ac9e7 290623e a3e0475 b9e2074 290623e b9e2074 290623e b9e2074 290623e b9e2074 290623e 1218ea2 b9e2074 68577cc b0211dd 290623e b0211dd 68577cc 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 4520c6d 290623e 4520c6d 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 290623e 2a239ae 4520c6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline # for Sentiment Analysis
from config import NASA_API_KEY # Import the NASA API key from the configuration file
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN") # Hugging Face token from environment variable
)
return llm
def get_nasa_apod():
"""
Fetch the Astronomy Picture of the Day (APOD) from the NASA API.
"""
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return f"Title: {data['title']}\nExplanation: {data['explanation']}\nURL: {data['url']}"
else:
return "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
"""
Analyzes the sentiment of the user's input to adjust responses.
"""
result = sentiment_analyzer(user_text)[0]
sentiment = result['label']
return sentiment
def predict_action(user_text):
"""
Predicts actions based on user input (e.g., fetch space info or general knowledge).
"""
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
if "weather" in user_text:
return "weather_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a relevant follow-up question based on the user's input.
"""
prompt_text = (
f"Given the user's message: '{user_text}', ask one natural follow-up question "
"that suggests a related topic or offers user the opportunity to go in a new direction."
)
hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
chat = hf.invoke(input=prompt_text)
return chat.strip()
def get_response(system_message, chat_history, user_text,
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_response = get_nasa_apod()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': nasa_response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return f"{nasa_response}\n\n{follow_up}", chat_history
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("AI:")[-1]
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
# Modify response based on sentiment analysis (e.g., offer help for negative sentiments)
if sentiment == "NEGATIVE":
response += "\nI'm sorry to hear that. How can I assist you further?"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return f"{response}\n\n{follow_up}", chat_history
# Streamlit setup
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="🤗")
st.title("NASA Personal Assistant")
st.markdown(f"*This chatbot uses {model_id} and NASA's APIs to provide information and responses.*")
# Initialize session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Sidebar for settings
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
# Main chat interface
user_input = st.chat_input(placeholder="Type your message here...")
if user_input:
response, st.session_state.chat_history = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history,
max_new_tokens=128
)
# Display messages
for message in st.session_state.chat_history:
st.chat_message(message["role"]).write(message["content"])
if st.button("Send"):
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
# Display response
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
# Display NASA image if available
if image_url:
st.image(image_url, caption="NASA Image of the Day")
# Follow-up question suggestions
follow_up_options = [follow_up, "Explain differently", "Give me an example"]
selected_option = st.radio("What would you like to do next?", follow_up_options)
if st.button("Continue"):
if selected_option:
response, _, st.session_state.chat_history, _ = get_response(
system_message="You are a helpful AI assistant.",
user_text=selected_option,
chat_history=st.session_state.chat_history
)
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
|