File size: 8,220 Bytes
a3e0475
fc5f1c7
d6f5773
fc5f1c7
a3e0475
 
5c095c6
fc42bd4
 
 
 
 
 
 
 
 
073538f
5c095c6
 
 
fc42bd4
5c095c6
f6bb49b
5c095c6
 
 
 
 
 
f6bb49b
5c095c6
 
94ac9e7
a3e0475
5c095c6
 
 
 
 
 
fc5f1c7
5c095c6
ad1c148
5c095c6
a3e0475
 
 
fc42bd4
5c095c6
a3e0475
 
94ac9e7
 
 
 
 
5c095c6
94ac9e7
5c095c6
073538f
fc5f1c7
 
5c095c6
fc5f1c7
 
 
 
 
 
 
 
5c095c6
f6bb49b
fc5f1c7
 
f6bb49b
 
 
 
fc5f1c7
f6bb49b
5c095c6
fc5f1c7
5c095c6
 
fc42bd4
f6bb49b
 
5c095c6
fc5f1c7
 
 
f6bb49b
fc5f1c7
5c095c6
 
2a239ae
5c095c6
fc5f1c7
 
5c095c6
2a239ae
5c095c6
2a239ae
ad1c148
 
 
 
 
 
 
2a239ae
ad0b8d6
fc42bd4
 
f6bb49b
 
fc42bd4
ad0b8d6
2a239ae
ad1c148
2a239ae
ad1c148
5c095c6
2a239ae
f6bb49b
2a239ae
 
fc5f1c7
f6bb49b
fc5f1c7
f6bb49b
 
 
fc5f1c7
 
 
 
5c095c6
2a239ae
5c095c6
 
 
2a239ae
5c095c6
2a239ae
 
5c095c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f543f0b
ad0b8d6
5c095c6
ad0b8d6
 
5c095c6
ad0b8d6
b8a80ad
5c095c6
 
fc5f1c7
5c095c6
 
fc5f1c7
f6bb49b
ad1c148
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline

# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")

# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
    # The initial greeting is stored in chat_history.
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

if "response_ready" not in st.session_state:
    st.session_state.response_ready = False  # Tracks whether HAL has responded

if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""  # Stores the follow-up question

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline with explicit model specification
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    revision="714eb0f"
)

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
    # Specify task="text-generation" so that the endpoint uses the correct function.
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation"
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    """
    Generates a concise and conversational follow-up question related to the user's input.
    This version is designed to prompt a follow-up question that is relevant to the topic.
    """
    prompt_text = (
        f"Given the user's question: '{user_text}', generate a friendly, varied follow-up question. "
        "For example, if the question is about quarks, you might ask, "
        "'Would you like to know more about the six types of quarks, or is there another topic you'd like to explore?' "
        "Make sure the follow-up is concise and conversational."
    )
    hf = get_llm_hf_inference(max_new_tokens=64, temperature=0.7)
    return hf.invoke(input=prompt_text).strip()

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    """
    Generates HAL's response in a friendly, conversational manner.
    It uses sentiment analysis to adjust the tone if the user's input is negative.
    The function also generates a follow-up question.
    """
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)

    # Handle NASA-related queries separately
    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    # Build a filtered conversation history excluding the initial greeting
    filtered_history = ""
    for message in chat_history:
        if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
            continue
        filtered_history += f"{message['role']}: {message['content']}\n"

    prompt = PromptTemplate.from_template(
        (
            "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
            "User: {user_text}.\n [/INST]\n"
            "AI: Please answer the user's question without repeating previous greetings. "
            "Keep your response friendly and conversational, beginning with a phrase like "
            "'Certainly!', 'Of course!', or 'Great question!'.\nHAL:"
        )
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = response.split("HAL:")[-1].strip()

    # Append user and assistant messages to the chat history
    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    # Adjust the response if the sentiment is negative
    if sentiment == "NEGATIVE":
        response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
        # Update the last assistant message in chat_history with the empathetic response
        chat_history[-1]['content'] = response

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

# Custom Chat Styling
st.markdown("""
    <style>
    .user-msg {
        background-color: #0078D7;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...")  # Only ONE chat_input()

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    if image_url:
        st.image(image_url, caption="NASA Image of the Day")

    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True

# Render the entire chat history after processing new input.
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)