Quantum-Optimization-Agent / quantum_agent.py
CCockrum's picture
Create quantum_agent.py
3fac523 verified
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from typing import Dict, List, Tuple, Any, Optional
import logging
from dataclasses import dataclass
from scipy.optimize import minimize
import json
logger = logging.getLogger(__name__)
@dataclass
class QuantumState:
"""Represents a quantum state."""
amplitudes: np.ndarray
num_qubits: int
fidelity: float = 1.0
def __post_init__(self):
"""Normalize amplitudes after initialization."""
self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
@dataclass
class QuantumCircuit:
"""Represents a quantum circuit."""
gates: List[str]
parameters: np.ndarray
num_qubits: int
depth: int
def __post_init__(self):
"""Initialize circuit properties."""
if len(self.gates) == 0:
# Generate some default gates for demonstration
gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
class QuantumNeuralNetwork(nn.Module):
"""Neural network for quantum parameter optimization."""
def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
super().__init__()
self.network = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
return self.network(x)
class ErrorMitigationNetwork(nn.Module):
"""Neural network for quantum error mitigation."""
def __init__(self, state_dim: int, hidden_dim: int = 128):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, state_dim * 2),
nn.Tanh()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
class QuantumAIAgent:
"""AI agent for quantum computing optimization."""
def __init__(self):
"""Initialize the quantum AI agent."""
self.optimization_history = []
self.error_mitigation_net = None
self.parameter_optimizer = None
logger.info("QuantumAIAgent initialized")
def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
initial_params: np.ndarray) -> Dict[str, Any]:
"""Optimize quantum algorithm parameters."""
logger.info(f"Optimizing {algorithm} algorithm")
if algorithm == "VQE":
return self._optimize_vqe(hamiltonian, initial_params)
elif algorithm == "QAOA":
return self._optimize_qaoa(hamiltonian, initial_params)
else:
raise ValueError(f"Unknown algorithm: {algorithm}")
def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
"""Optimize VQE parameters."""
def objective(params):
# Simulate VQE energy calculation
# In practice, this would involve quantum circuit simulation
circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
return circuit_result
# Use classical optimization
result = minimize(objective, initial_params, method='BFGS')
# Create optimal circuit
optimal_circuit = QuantumCircuit(
gates=[],
parameters=result.x,
num_qubits=int(np.log2(hamiltonian.shape[0])),
depth=len(result.x) // 2
)
return {
'ground_state_energy': result.fun,
'optimization_success': result.success,
'iterations': result.nit,
'optimal_parameters': result.x,
'optimal_circuit': optimal_circuit
}
def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
"""Optimize QAOA parameters."""
num_layers = len(initial_params) // 2
def objective(params):
beta = params[:num_layers]
gamma = params[num_layers:]
return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
result = minimize(objective, initial_params, method='COBYLA')
return {
'optimal_value': -result.fun, # Minimize negative for maximization
'optimization_success': result.success,
'iterations': result.nit,
'optimal_beta': result.x[:num_layers],
'optimal_gamma': result.x[num_layers:]
}
def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
"""Simulate VQE circuit and return energy expectation."""
# Simplified simulation - create parameterized state
num_qubits = int(np.log2(hamiltonian.shape[0]))
# Create a parameterized quantum state (simplified)
angles = params[:num_qubits]
state = np.zeros(2**num_qubits, dtype=complex)
# Simple parameterization: each qubit gets a rotation
for i in range(2**num_qubits):
amplitude = 1.0
for q in range(num_qubits):
if (i >> q) & 1:
amplitude *= np.sin(angles[q % len(angles)])
else:
amplitude *= np.cos(angles[q % len(angles)])
state[i] = amplitude
# Normalize
state = state / np.linalg.norm(state)
# Calculate expectation value
energy = np.real(np.conj(state).T @ hamiltonian @ state)
return energy
def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
"""Simulate QAOA circuit and return objective value."""
# Simplified QAOA simulation
num_qubits = int(np.log2(hamiltonian.shape[0]))
# Start with uniform superposition
state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
# Apply QAOA layers (simplified)
for i in range(len(beta)):
# Problem Hamiltonian evolution (simplified)
phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
state = phase_factors * state
# Mixer Hamiltonian evolution (simplified X rotations)
# This is a very simplified version
for q in range(num_qubits):
# Apply rotation (simplified)
rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
state = state * rotation_factor
# Normalize
state = state / np.linalg.norm(state)
# Calculate expectation value
expectation = np.real(np.conj(state).T @ hamiltonian @ state)
return -expectation # Return negative for minimization
def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
"""Apply AI-powered error mitigation."""
logger.info("Applying error mitigation")
# Initialize error mitigation network if not exists
if self.error_mitigation_net is None:
state_dim = len(quantum_state.amplitudes)
self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
# Convert quantum state to real input (real and imaginary parts)
state_real = np.real(quantum_state.amplitudes)
state_imag = np.imag(quantum_state.amplitudes)
input_data = np.concatenate([state_real, state_imag])
# Apply noise simulation
noise_factor = noise_model.get('noise_factor', 0.1)
noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
# Apply error mitigation (simplified - in practice would be trained)
with torch.no_grad():
input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
# Convert back to complex amplitudes
mid_point = len(corrected_output) // 2
corrected_real = corrected_output[:mid_point]
corrected_imag = corrected_output[mid_point:]
corrected_amplitudes = corrected_real + 1j * corrected_imag
# Normalize
corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
# Calculate improved fidelity
original_fidelity = quantum_state.fidelity
fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
return QuantumState(
amplitudes=corrected_amplitudes,
num_qubits=quantum_state.num_qubits,
fidelity=new_fidelity
)
def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
"""Optimize quantum resource allocation."""
logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
# Simple scheduling algorithm
schedule = []
current_time = 0
total_qubits_used = 0
# Sort circuits by qubit requirement (First-Fit Decreasing)
sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
for circuit_id, circuit in sorted_circuits:
if circuit.num_qubits <= available_qubits:
# Estimate execution time based on circuit depth
estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
schedule.append({
'circuit_id': circuit_id,
'qubits_allocated': circuit.num_qubits,
'start_time': current_time,
'estimated_duration': estimated_duration
})
current_time += estimated_duration
total_qubits_used += circuit.num_qubits
# Calculate resource utilization
max_possible_qubits = len(circuits) * available_qubits
resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
return {
'schedule': schedule,
'resource_utilization': resource_utilization,
'estimated_runtime': current_time,
'circuits_scheduled': len(schedule)
}
def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
"""Perform hybrid quantum-classical processing."""
logger.info(f"Running hybrid processing with {quantum_component}")
# Preprocess classical data
preprocessed_data = self._preprocess_classical_data(classical_data)
# Apply quantum component
if quantum_component == "quantum_kernel":
quantum_result = self._apply_quantum_kernel(preprocessed_data)
elif quantum_component == "quantum_feature_map":
quantum_result = self._apply_quantum_feature_map(preprocessed_data)
elif quantum_component == "quantum_neural_layer":
quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
else:
raise ValueError(f"Unknown quantum component: {quantum_component}")
# Post-process results
final_result = self._postprocess_quantum_result(quantum_result)
return {
'preprocessed_data': preprocessed_data,
'quantum_result': quantum_result,
'final_result': final_result
}
def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
"""Preprocess classical data for quantum processing."""
# Normalize data
normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
# Apply some classical preprocessing
processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
return processed_data
def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
"""Apply quantum kernel transformation."""
# Simulate quantum kernel computation
# In practice, this would involve quantum feature maps
kernel_matrix = np.zeros((len(data), len(data)))
for i in range(len(data)):
for j in range(len(data)):
# Simplified quantum kernel (RBF-like with quantum enhancement)
diff = data[i] - data[j]
quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
kernel_matrix[i, j] = quantum_enhancement
return kernel_matrix
def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
"""Apply quantum feature map."""
# Simulate quantum feature mapping
num_features = len(data)
quantum_features = np.zeros(num_features * 2) # Expand feature space
for i, x in enumerate(data):
# Simulate quantum feature encoding
quantum_features[2*i] = np.cos(np.pi * x)
quantum_features[2*i + 1] = np.sin(np.pi * x)
return quantum_features
def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
"""Apply quantum neural network layer."""
# Simulate quantum neural network layer
output_size = len(data)
quantum_output = np.zeros(output_size)
# Simplified quantum neural transformation
for i, x in enumerate(data):
# Simulate parameterized quantum circuit
theta = x * np.pi / 4 # Parameter encoding
quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
return quantum_output
def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
"""Post-process quantum results."""
# Calculate statistics
stats = {
'mean': np.mean(quantum_result),
'std': np.std(quantum_result),
'min': np.min(quantum_result),
'max': np.max(quantum_result)
}
# Calculate confidence (simplified)
confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
confidence = max(0, min(1, confidence))
return {
'statistics': stats,
'confidence': confidence,
'processed_data': quantum_result
}