|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from typing import Dict, List, Tuple, Any, Optional |
|
import logging |
|
from dataclasses import dataclass |
|
from scipy.optimize import minimize |
|
import json |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class QuantumState: |
|
"""Represents a quantum state.""" |
|
amplitudes: np.ndarray |
|
num_qubits: int |
|
fidelity: float = 1.0 |
|
|
|
def __post_init__(self): |
|
"""Normalize amplitudes after initialization.""" |
|
self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes) |
|
|
|
@dataclass |
|
class QuantumCircuit: |
|
"""Represents a quantum circuit.""" |
|
gates: List[str] |
|
parameters: np.ndarray |
|
num_qubits: int |
|
depth: int |
|
|
|
def __post_init__(self): |
|
"""Initialize circuit properties.""" |
|
if len(self.gates) == 0: |
|
|
|
gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H'] |
|
self.gates = [np.random.choice(gate_types) for _ in range(self.depth)] |
|
|
|
class QuantumNeuralNetwork(nn.Module): |
|
"""Neural network for quantum parameter optimization.""" |
|
|
|
def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1): |
|
super().__init__() |
|
self.network = nn.Sequential( |
|
nn.Linear(input_dim, hidden_dim), |
|
nn.ReLU(), |
|
nn.Linear(hidden_dim, hidden_dim), |
|
nn.ReLU(), |
|
nn.Linear(hidden_dim, output_dim) |
|
) |
|
|
|
def forward(self, x): |
|
return self.network(x) |
|
|
|
class ErrorMitigationNetwork(nn.Module): |
|
"""Neural network for quantum error mitigation.""" |
|
|
|
def __init__(self, state_dim: int, hidden_dim: int = 128): |
|
super().__init__() |
|
self.encoder = nn.Sequential( |
|
nn.Linear(state_dim * 2, hidden_dim), |
|
nn.ReLU(), |
|
nn.Linear(hidden_dim, hidden_dim), |
|
nn.ReLU() |
|
) |
|
|
|
self.decoder = nn.Sequential( |
|
nn.Linear(hidden_dim, hidden_dim), |
|
nn.ReLU(), |
|
nn.Linear(hidden_dim, state_dim * 2), |
|
nn.Tanh() |
|
) |
|
|
|
def forward(self, x): |
|
encoded = self.encoder(x) |
|
decoded = self.decoder(encoded) |
|
return decoded |
|
|
|
class QuantumAIAgent: |
|
"""AI agent for quantum computing optimization.""" |
|
|
|
def __init__(self): |
|
"""Initialize the quantum AI agent.""" |
|
self.optimization_history = [] |
|
self.error_mitigation_net = None |
|
self.parameter_optimizer = None |
|
logger.info("QuantumAIAgent initialized") |
|
|
|
def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray, |
|
initial_params: np.ndarray) -> Dict[str, Any]: |
|
"""Optimize quantum algorithm parameters.""" |
|
logger.info(f"Optimizing {algorithm} algorithm") |
|
|
|
if algorithm == "VQE": |
|
return self._optimize_vqe(hamiltonian, initial_params) |
|
elif algorithm == "QAOA": |
|
return self._optimize_qaoa(hamiltonian, initial_params) |
|
else: |
|
raise ValueError(f"Unknown algorithm: {algorithm}") |
|
|
|
def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]: |
|
"""Optimize VQE parameters.""" |
|
def objective(params): |
|
|
|
|
|
circuit_result = self._simulate_vqe_circuit(params, hamiltonian) |
|
return circuit_result |
|
|
|
|
|
result = minimize(objective, initial_params, method='BFGS') |
|
|
|
|
|
optimal_circuit = QuantumCircuit( |
|
gates=[], |
|
parameters=result.x, |
|
num_qubits=int(np.log2(hamiltonian.shape[0])), |
|
depth=len(result.x) // 2 |
|
) |
|
|
|
return { |
|
'ground_state_energy': result.fun, |
|
'optimization_success': result.success, |
|
'iterations': result.nit, |
|
'optimal_parameters': result.x, |
|
'optimal_circuit': optimal_circuit |
|
} |
|
|
|
def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]: |
|
"""Optimize QAOA parameters.""" |
|
num_layers = len(initial_params) // 2 |
|
|
|
def objective(params): |
|
beta = params[:num_layers] |
|
gamma = params[num_layers:] |
|
return self._simulate_qaoa_circuit(beta, gamma, hamiltonian) |
|
|
|
result = minimize(objective, initial_params, method='COBYLA') |
|
|
|
return { |
|
'optimal_value': -result.fun, |
|
'optimization_success': result.success, |
|
'iterations': result.nit, |
|
'optimal_beta': result.x[:num_layers], |
|
'optimal_gamma': result.x[num_layers:] |
|
} |
|
|
|
def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float: |
|
"""Simulate VQE circuit and return energy expectation.""" |
|
|
|
num_qubits = int(np.log2(hamiltonian.shape[0])) |
|
|
|
|
|
angles = params[:num_qubits] |
|
state = np.zeros(2**num_qubits, dtype=complex) |
|
|
|
|
|
for i in range(2**num_qubits): |
|
amplitude = 1.0 |
|
for q in range(num_qubits): |
|
if (i >> q) & 1: |
|
amplitude *= np.sin(angles[q % len(angles)]) |
|
else: |
|
amplitude *= np.cos(angles[q % len(angles)]) |
|
state[i] = amplitude |
|
|
|
|
|
state = state / np.linalg.norm(state) |
|
|
|
|
|
energy = np.real(np.conj(state).T @ hamiltonian @ state) |
|
return energy |
|
|
|
def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float: |
|
"""Simulate QAOA circuit and return objective value.""" |
|
|
|
num_qubits = int(np.log2(hamiltonian.shape[0])) |
|
|
|
|
|
state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits) |
|
|
|
|
|
for i in range(len(beta)): |
|
|
|
phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian)) |
|
state = phase_factors * state |
|
|
|
|
|
|
|
for q in range(num_qubits): |
|
|
|
rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i]) |
|
state = state * rotation_factor |
|
|
|
|
|
state = state / np.linalg.norm(state) |
|
|
|
|
|
expectation = np.real(np.conj(state).T @ hamiltonian @ state) |
|
return -expectation |
|
|
|
def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState: |
|
"""Apply AI-powered error mitigation.""" |
|
logger.info("Applying error mitigation") |
|
|
|
|
|
if self.error_mitigation_net is None: |
|
state_dim = len(quantum_state.amplitudes) |
|
self.error_mitigation_net = ErrorMitigationNetwork(state_dim) |
|
|
|
|
|
state_real = np.real(quantum_state.amplitudes) |
|
state_imag = np.imag(quantum_state.amplitudes) |
|
input_data = np.concatenate([state_real, state_imag]) |
|
|
|
|
|
noise_factor = noise_model.get('noise_factor', 0.1) |
|
noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape) |
|
|
|
|
|
with torch.no_grad(): |
|
input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0) |
|
corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy() |
|
|
|
|
|
mid_point = len(corrected_output) // 2 |
|
corrected_real = corrected_output[:mid_point] |
|
corrected_imag = corrected_output[mid_point:] |
|
corrected_amplitudes = corrected_real + 1j * corrected_imag |
|
|
|
|
|
corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes) |
|
|
|
|
|
original_fidelity = quantum_state.fidelity |
|
fidelity_improvement = min(0.1, noise_factor * 0.5) |
|
new_fidelity = min(1.0, original_fidelity + fidelity_improvement) |
|
|
|
return QuantumState( |
|
amplitudes=corrected_amplitudes, |
|
num_qubits=quantum_state.num_qubits, |
|
fidelity=new_fidelity |
|
) |
|
|
|
def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]: |
|
"""Optimize quantum resource allocation.""" |
|
logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits") |
|
|
|
|
|
schedule = [] |
|
current_time = 0 |
|
total_qubits_used = 0 |
|
|
|
|
|
sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True) |
|
|
|
for circuit_id, circuit in sorted_circuits: |
|
if circuit.num_qubits <= available_qubits: |
|
|
|
estimated_duration = circuit.depth * 0.1 |
|
|
|
schedule.append({ |
|
'circuit_id': circuit_id, |
|
'qubits_allocated': circuit.num_qubits, |
|
'start_time': current_time, |
|
'estimated_duration': estimated_duration |
|
}) |
|
|
|
current_time += estimated_duration |
|
total_qubits_used += circuit.num_qubits |
|
|
|
|
|
max_possible_qubits = len(circuits) * available_qubits |
|
resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0 |
|
|
|
return { |
|
'schedule': schedule, |
|
'resource_utilization': resource_utilization, |
|
'estimated_runtime': current_time, |
|
'circuits_scheduled': len(schedule) |
|
} |
|
|
|
def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]: |
|
"""Perform hybrid quantum-classical processing.""" |
|
logger.info(f"Running hybrid processing with {quantum_component}") |
|
|
|
|
|
preprocessed_data = self._preprocess_classical_data(classical_data) |
|
|
|
|
|
if quantum_component == "quantum_kernel": |
|
quantum_result = self._apply_quantum_kernel(preprocessed_data) |
|
elif quantum_component == "quantum_feature_map": |
|
quantum_result = self._apply_quantum_feature_map(preprocessed_data) |
|
elif quantum_component == "quantum_neural_layer": |
|
quantum_result = self._apply_quantum_neural_layer(preprocessed_data) |
|
else: |
|
raise ValueError(f"Unknown quantum component: {quantum_component}") |
|
|
|
|
|
final_result = self._postprocess_quantum_result(quantum_result) |
|
|
|
return { |
|
'preprocessed_data': preprocessed_data, |
|
'quantum_result': quantum_result, |
|
'final_result': final_result |
|
} |
|
|
|
def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray: |
|
"""Preprocess classical data for quantum processing.""" |
|
|
|
normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8) |
|
|
|
|
|
processed_data = np.tanh(normalized_data) |
|
|
|
return processed_data |
|
|
|
def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray: |
|
"""Apply quantum kernel transformation.""" |
|
|
|
|
|
kernel_matrix = np.zeros((len(data), len(data))) |
|
|
|
for i in range(len(data)): |
|
for j in range(len(data)): |
|
|
|
diff = data[i] - data[j] |
|
quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2) |
|
kernel_matrix[i, j] = quantum_enhancement |
|
|
|
return kernel_matrix |
|
|
|
def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray: |
|
"""Apply quantum feature map.""" |
|
|
|
num_features = len(data) |
|
quantum_features = np.zeros(num_features * 2) |
|
|
|
for i, x in enumerate(data): |
|
|
|
quantum_features[2*i] = np.cos(np.pi * x) |
|
quantum_features[2*i + 1] = np.sin(np.pi * x) |
|
|
|
return quantum_features |
|
|
|
def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray: |
|
"""Apply quantum neural network layer.""" |
|
|
|
output_size = len(data) |
|
quantum_output = np.zeros(output_size) |
|
|
|
|
|
for i, x in enumerate(data): |
|
|
|
theta = x * np.pi / 4 |
|
quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2) |
|
|
|
return quantum_output |
|
|
|
def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]: |
|
"""Post-process quantum results.""" |
|
|
|
stats = { |
|
'mean': np.mean(quantum_result), |
|
'std': np.std(quantum_result), |
|
'min': np.min(quantum_result), |
|
'max': np.max(quantum_result) |
|
} |
|
|
|
|
|
confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8) |
|
confidence = max(0, min(1, confidence)) |
|
|
|
return { |
|
'statistics': stats, |
|
'confidence': confidence, |
|
'processed_data': quantum_result |
|
} |