Spaces:
Sleeping
Sleeping
File size: 2,512 Bytes
e65d0ad 8206a45 e65d0ad 8206a45 3d71f2e 8206a45 4441c50 8206a45 e65d0ad 8206a45 3c44ee8 8206a45 3c44ee8 8206a45 3c44ee8 903f0f8 8206a45 903f0f8 8206a45 903f0f8 3c44ee8 8206a45 903f0f8 0bae633 8206a45 3c44ee8 903f0f8 3c44ee8 8206a45 e65d0ad 8206a45 e65d0ad 8206a45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import json
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
# Global variables for caching the model and tokenizer
tokenizer, model = None, None
def load_model():
global tokenizer, model
if tokenizer is None or model is None:
# Use the DeepSeek instruct model for code evaluation.
model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
def evaluate_code(question, code):
# Refined prompt: instruct the model to output exactly one JSON object.
prompt = f"""You are an expert code evaluator.
Evaluate the following solution for the given problem.
Respond with exactly one JSON object (with no extra text) that has exactly two keys:
"stars": an integer between 0 and 5 (0 means completely incorrect, 5 means excellent),
"feedback": a concise string message.
The JSON must start with '{{' and end with '}}'.
Do not output any text besides the JSON.
Question: "{question}"
Solution: "{code}"
Your response:"""
tokenizer, model = load_model()
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=100, # Allow enough tokens for a complete response
temperature=0.2, # Small randomness for a bit of creativity
pad_token_id=tokenizer.eos_token_id,
do_sample=True # Enable sampling to encourage model generation
)
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Raw model response:", response_text) # Debug output
# Use findall to get all JSON objects and take the last one
matches = re.findall(r'\{.*?\}', response_text)
if matches:
json_text = matches[-1]
try:
result = json.loads(json_text)
except Exception as e:
result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
else:
result = {"stars": 0, "feedback": "Evaluation failed. Unable to extract JSON from AI response."}
return result
# For direct command-line testing.
if __name__ == "__main__":
import sys
if len(sys.argv) < 3:
print(json.dumps({"error": "Please provide a question and code as arguments"}))
sys.exit(1)
question = sys.argv[1]
code = sys.argv[2]
result = evaluate_code(question, code)
print(json.dumps(result))
|