File size: 3,053 Bytes
e65d0ad
8206a45
 
e65d0ad
8206a45
 
3d71f2e
8206a45
 
 
4441c50
 
8206a45
 
 
e65d0ad
dc037ee
 
 
 
 
 
 
 
 
 
 
 
8206a45
dc037ee
8206a45
ec5407e
 
 
 
 
dc037ee
ec5407e
 
 
 
 
 
 
 
 
 
903f0f8
8206a45
903f0f8
b72b033
8206a45
 
 
 
ec5407e
 
8206a45
4980b54
0bae633
8206a45
ec5407e
b72b033
dc037ee
ec5407e
 
8206a45
e65d0ad
dc037ee
e65d0ad
8206a45
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import json
import re
from transformers import AutoTokenizer, AutoModelForCausalLM

# Global variables for caching the model and tokenizer
tokenizer, model = None, None

def load_model():
    global tokenizer, model
    if tokenizer is None or model is None:
        # Use the DeepSeek instruct model for code evaluation.
        model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name)
    return tokenizer, model

def extract_json(response_text):
    # Attempt to extract all JSON blocks (non-greedy, with DOTALL)
    matches = re.findall(r'\{.*?\}', response_text, re.DOTALL)
    for m in reversed(matches):
        try:
            temp = json.loads(m)
            if isinstance(temp, dict) and "stars" in temp and "feedback" in temp:
                return temp
        except Exception:
            continue
    return None

def evaluate_code(question, code):
    # Revised prompt that explicitly states the expected arithmetic operation for square.
    prompt = f"""You are an expert code evaluator.
Evaluate the following solution for the given problem.
The problem asks for a function that returns the square of a number.
A correct solution must multiply the number by itself (using x*x or x**2).
If the solution uses any other operation (such as addition), it is completely incorrect.
Rate the solution as follows:
  - 5 stars: Perfect solution; correct, efficient, and follows best practices.
  - 4 stars: Correct solution with minor issues.
  - 3 stars: Partially correct solution with noticeable issues.
  - 2 stars: Incorrect solution with some correct elements.
  - 1 star: Mostly incorrect solution.
  - 0 stars: Completely incorrect solution.
Respond with exactly one JSON object (with no extra text) that has exactly two keys:
  "stars": an integer between 0 and 5,
  "feedback": a concise string message explaining your rating.
The JSON must start with '{{' and end with '}}'.
Do not output any additional text.
Question: "{question}"
Solution: "{code}"
Your response:"""
    
    tokenizer, model = load_model()
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(
        **inputs,
        max_new_tokens=120,
        temperature=0.2,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True
    )
    response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print("Raw model response:", response_text)  # Debug output

    result = extract_json(response_text)
    if result is None:
        result = {"stars": 0, "feedback": "Evaluation failed. Unable to extract valid JSON from AI response."}
    return result

# For direct command-line testing.
if __name__ == "__main__":
    import sys
    if len(sys.argv) < 3:
        print(json.dumps({"error": "Please provide a question and code as arguments"}))
        sys.exit(1)
    question = sys.argv[1]
    code = sys.argv[2]
    result = evaluate_code(question, code)
    print(json.dumps(result))