File size: 4,446 Bytes
939b332 da28aa0 68eb0fd 939b332 68eb0fd 939b332 86110dd 01dd930 86110dd bb3e08f 86110dd 01dd930 701ad60 939b332 56d8047 bb3e08f a9f4212 bb3e08f ccb28f5 57fe85f ccb28f5 9a4fe9c 263b2ce 57fe85f ef5e989 939b332 fbf7879 4662aef fbf7879 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import numpy as np
import pandas as pd
# url = "https://raw.githubusercontent.com/DavMelchi/STORAGE/refs/heads/main/physical_db/physical_database.csv"
url = r"./physical_db/physical_database.csv"
def get_physical_db():
"""
Reads the physical_database.csv file from the physical_db directory and
returns a pandas DataFrame containing only the columns 'Code_Sector',
'Azimut', 'Longitude', 'Latitude', and 'Hauteur'.
Returns:
pd.DataFrame: A DataFrame containing the filtered columns.
"""
physical = pd.read_csv(url)
physical = physical[["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]]
return physical
class UtilsVars:
sector_mapping = {4: 1, 5: 2, 6: 3, 11: 1, 12: 2, 13: 3}
type_cellule = {1: "Macro Cell 1800", 0: "Macro Cell 900"}
oml_band_frequence = {1: "OML BAND GSM 1800", 0: "OML BAND GSM 900"}
gsm_band = {1: "G1800", 0: "G900"}
configuration_schema = {1: "EGPRS 1800", 0: "EGPRS 900"}
channeltype_mapping = {4: "BCCH", 3: "TRX_TCH"}
porteuse_mapping = {
3004: "OML UTRA Band VIII",
3006: "OML UTRA Band VIII",
10812: "OML UTRA Band I",
10787: "OML UTRA Band I",
10837: "OML UTRA Band I",
}
wcdma_band = {
3004: "U900",
3006: "U900",
10787: "U2100",
10837: "U2100",
10812: "U2100",
}
bsc_name = {
403698: "MBSCTST",
403699: "MBSC01",
403701: "MBSC04",
403702: "MBSC03",
403703: "MBSC02",
406283: "MBSKTL01",
406284: "MBSSEG01",
406308: "MBSSK0S1",
}
final_lte_database = ""
final_gsm_database = ""
final_wcdma_database = ""
final_trx_database = ""
final_mrbts_database = ""
final_invunit_database = ""
final_mal_database = ""
gsm_dfs = []
wcdma_dfs = []
lte_dfs = []
all_db_dfs = []
all_db_dfs_names = []
final_all_database = None
neighbors_database = ""
file_path = ""
# physisal_db = get_physical_db()
def get_band(text):
"""
Extract the band from the given string.
Parameters
----------
text : str
The string to extract the band from.
Returns
-------
str or np.nan
The extracted band, or NaN if the text was not a string or did not contain
any of the recognized bands (L1800, L2300, L800).
"""
if isinstance(text, str): # Check if text is a string
if "L1800" in text:
return "L1800"
elif "L2300" in text:
return "L2300"
elif "L800" in text:
return "L800"
return np.nan # or return None
##############################STATISTICS############################
class GsmAnalysisData:
total_number_of_bsc = 0
total_number_of_cell = 0
number_of_site = 0
number_of_cell_per_bsc = pd.DataFrame()
number_of_site_per_bsc = pd.DataFrame()
number_of_bts_name_empty = 0
number_of_bcf_name_empty = 0
number_of_bcch_empty = 0
bts_administate_distribution = pd.DataFrame()
trx_administate_distribution = pd.DataFrame()
number_of_trx_per_bsc = pd.DataFrame()
number_of_cell_per_lac = pd.DataFrame()
class WcdmaAnalysisData:
total_number_of_rnc = 0
total_number_of_wcel = 0
number_of_site = 0
number_of_site_per_rnc = 0
number_of_cell_per_rnc = pd.DataFrame()
number_of_empty_wbts_name = 0
number_of_empty_wcel_name = 0
wcel_administate_distribution = pd.DataFrame()
psc_distribution = pd.DataFrame()
number_of_cell_per_lac = pd.DataFrame()
class LteFddAnalysisData:
total_number_of_lncel = 0
total_number_of_site = 0
number_of_empty_lncel_name = 0
number_of_empty_lncel_cellname = 0
number_of_empty_lnbts_name = 0
number_of_cell_per_band = pd.DataFrame()
phycellid_distribution = pd.DataFrame()
rootsequenceindex_distribution = pd.DataFrame()
lncel_administate_distribution = pd.DataFrame()
number_of_cell_per_tac = pd.DataFrame()
class LteTddAnalysisData:
total_number_of_lncel = 0
total_number_of_site = 0
number_of_empty_lncel_name = 0
number_of_empty_lncel_cellname = 0
number_of_empty_lnbts_name = 0
number_of_cell_per_band = pd.DataFrame()
phycellid_distribution = pd.DataFrame()
rootsequenceindex_distribution = pd.DataFrame()
lncel_administate_distribution = pd.DataFrame()
number_of_cell_per_tac = pd.DataFrame()
|