A newer version of the Gradio SDK is available:
5.35.0
📚 管理Agent的记忆
[[open-in-colab]]
归根结底,Agent可以定义为由几个简单组件构成:它拥有工具、提示词。最重要的是,它具备对过往步骤的记忆,能够追溯完整的规划、执行和错误历史。
回放Agent的记忆
我们提供了多项功能来审查Agent的过往运行记录。
您可以通过插装(instrumentation)在可视化界面中查看Agent的运行过程,该界面支持对特定步骤进行缩放操作,具体方法参见插装指南。
您也可以使用agent.replay()
方法实现回放:
当Agent完成运行后:
from smolagents import InferenceClientModel, CodeAgent
agent = CodeAgent(tools=[], model=InferenceClientModel(), verbosity_level=0)
result = agent.run("What's the 20th Fibonacci number?")
若要回放最近一次运行,只需使用:
agent.replay()
动态修改Agent的记忆
许多高级应用场景需要对Agent的记忆进行动态修改。
您可以通过以下方式访问Agent的记忆:
from smolagents import ActionStep
system_prompt_step = agent.memory.system_prompt
print("The system prompt given to the agent was:")
print(system_prompt_step.system_prompt)
task_step = agent.memory.steps[0]
print("\n\nThe first task step was:")
print(task_step.task)
for step in agent.memory.steps:
if isinstance(step, ActionStep):
if step.error is not None:
print(f"\nStep {step.step_number} got this error:\n{step.error}\n")
else:
print(f"\nStep {step.step_number} got these observations:\n{step.observations}\n")
使用agent.memory.get_full_steps()
可获取完整步骤字典数据。
您还可以通过步骤回调(step callbacks)实现记忆的动态修改。
步骤回调函数可通过参数直接访问agent
对象,因此能够访问所有记忆步骤并根据需要进行修改。例如,假设您正在监控网页浏览Agent每个步骤的屏幕截图,希望保留最新截图同时删除旧步骤的图片以节省token消耗。
可参考以下代码示例: 注:此代码片段不完整,部分导入语句和对象定义已精简,完整代码请访问原始脚本
import helium
from PIL import Image
from io import BytesIO
from time import sleep
def update_screenshot(memory_step: ActionStep, agent: CodeAgent) -> None:
sleep(1.0) # Let JavaScript animations happen before taking the screenshot
driver = helium.get_driver()
latest_step = memory_step.step_number
for previous_memory_step in agent.memory.steps: # Remove previous screenshots from logs for lean processing
if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= latest_step - 2:
previous_memory_step.observations_images = None
png_bytes = driver.get_screenshot_as_png()
image = Image.open(BytesIO(png_bytes))
memory_step.observations_images = [image.copy()]
最后在初始化Agent时,将此函数传入step_callbacks
参数:
CodeAgent(
tools=[WebSearchTool(), go_back, close_popups, search_item_ctrl_f],
model=model,
additional_authorized_imports=["helium"],
step_callbacks=[update_screenshot],
max_steps=20,
verbosity_level=2,
)
请访问我们的 vision web browser code 查看完整可运行示例。
分步运行 Agents
当您需要处理耗时数天的工具调用时,这种方式特别有用:您可以逐步执行Agents。这还允许您在每一步更新记忆。
from smolagents import InferenceClientModel, CodeAgent, ActionStep, TaskStep
agent = CodeAgent(tools=[], model=InferenceClientModel(), verbosity_level=1)
print(agent.memory.system_prompt)
task = "What is the 20th Fibonacci number?"
# You could modify the memory as needed here by inputting the memory of another agent.
# agent.memory.steps = previous_agent.memory.steps
# Let's start a new task!
agent.memory.steps.append(TaskStep(task=task, task_images=[]))
final_answer = None
step_number = 1
while final_answer is None and step_number <= 10:
memory_step = ActionStep(
step_number=step_number,
observations_images=[],
)
# Run one step.
final_answer = agent.step(memory_step)
agent.memory.steps.append(memory_step)
step_number += 1
# Change the memory as you please!
# For instance to update the latest step:
# agent.memory.steps[-1] = ...
print("The final answer is:", final_answer)