File size: 2,130 Bytes
3f96245
 
adbc0ad
3f96245
 
dd448e5
 
 
3f96245
7d80d52
3f96245
 
 
 
adbc0ad
b5416e9
76337a5
7d0ce76
235c728
7d80d52
 
 
 
 
 
 
 
adbc0ad
 
3f96245
 
 
dd448e5
3f96245
dd448e5
 
4f7b738
dd448e5
 
 
 
4f7b738
d7fdf9f
4f7b738
adbc0ad
4f7b738
adbc0ad
5a94d26
 
 
cc21455
5a94d26
adbc0ad
 
 
 
 
 
dd448e5
adbc0ad
3f96245
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import streamlit as st
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key):
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def calculate_indicators(data):
    data = data.apply(pd.to_numeric, errors='coerce')

    data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
    data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))

    data['MA5'] = data['Close'].rolling(window=5).mean()
    data['MA20'] = data['Close'].rolling(window=20).mean()

    data['26EMA'] = data['Close'].ewm(span=26).mean()
    data['12EMA'] = data['Close'].ewm(span=12).mean()
    data['MACD'] = data['12EMA'] - data['26EMA']

    return data

def main():
    st.title("Stock Trend Predictor")

    api_key = API_KEY

    alpha_vantage_data = fetch_alpha_vantage_data(api_key)

    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})

    df = calculate_indicators(df)

    my_market_predictor = Pandas_Market_Predictor(df)

    # Remove Ichimoku Cloud columns
    ichimoku_columns = ["tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"]
    df = df.drop(columns=ichimoku_columns)

    indicators = ["Doji", "Inside", "MA5", "MA20", "MACD"]
    trend = my_market_predictor.Trend_Detection(indicators, 10)

    st.subheader("Predicted Trend:")
    st.write("Buy Trend :", trend['BUY'])
    st.write("Sell Trend :", trend['SELL'])
    st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")

    del df

if __name__ == "__main__":
    main()