File size: 4,186 Bytes
ab50b27
 
087ef0b
9ce7bf5
087ef0b
ab50b27
8675d66
087ef0b
 
 
8675d66
 
087ef0b
 
 
 
 
 
 
8675d66
 
 
 
 
 
 
087ef0b
 
 
 
8675d66
087ef0b
 
 
 
 
 
 
8675d66
087ef0b
 
 
 
 
8675d66
3c1e863
f6326dc
 
a261fc2
 
34c23a9
f6326dc
 
d2bafef
34c23a9
 
 
 
 
 
 
 
 
ea51e19
 
34c23a9
 
a261fc2
 
 
34c23a9
a261fc2
bdc34d6
a261fc2
 
 
34c23a9
 
f6326dc
34c23a9
 
 
 
 
 
 
 
ea51e19
34c23a9
 
 
 
a261fc2
 
 
f6326dc
bdc34d6
f6326dc
fb9ed32
f6326dc
 
 
 
 
3c1e863
34c23a9
 
 
 
 
 
f6326dc
19f5c65
f6326dc
 
 
 
fea6772
34c23a9
 
a261fc2
34c23a9
 
 
ab50b27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
from thronetrader import StrategicSignals
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd


# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key, symbol):
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def main():
    st.title("Stock Trend Predictor")

    # User input for stock symbol
    symbol = st.text_input("Enter Stock Symbol (e.g., IBM):")

    if not symbol:
        st.warning("Please enter a valid stock symbol.")
        st.stop()

    # Use the hard-coded API key
    api_key = API_KEY

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Display the raw data
    st.subheader("Raw Data:")
    st.write(df)

if __name__ == "__main__":
    main()


 

# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"

def fetch_alpha_vantage_data(api_key, symbol):
    st.write("Fetching Alpha Vantage data...")
    url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
    response = requests.get(url)
    alpha_vantage_data = response.json()
    return alpha_vantage_data

def calculate_indicators(data):
    # Convert all columns to numeric
    data = data.apply(pd.to_numeric, errors='coerce')

    # Example: Simple condition for doji and inside
    data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
    data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
    return data

def display_signals(signal_type, signals):
    st.subheader(f"{signal_type} Signals:")
    st.write(signals)

def main():
    st.title("Stock Trend Predictor")

    # Input for stock symbol
    symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")

    # Fetch Alpha Vantage data
    alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)

    # Extract relevant data from Alpha Vantage response
    alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
    df = pd.DataFrame(alpha_vantage_time_series).T
    df.index = pd.to_datetime(df.index)
    df = df.dropna(axis=0)

    # Rename columns
    df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})

    # Calculate indicators
    df = calculate_indicators(df)

    # Display stock trading signals
    strategic_signals = StrategicSignals(symbol=symbol)

    # Display loading message during processing
    with st.spinner("Predicting signals using Strategic Indicators..."):
        # Display signals
        st.subheader(":orange[Strategic Indicators Trend Prediction]")
        display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
        display_signals("Breakout", strategic_signals.get_breakout_signals())
        display_signals("Crossover", strategic_signals.get_crossover_signals())
        display_signals("MACD", strategic_signals.get_macd_signals())
        display_signals("RSI", strategic_signals.get_rsi_signals())

    # Create predictor
    my_market_predictor = Pandas_Market_Predictor(df)

    # Predict Trend
    indicators = ["Doji", "Inside"]

    # Display loading message during prediction
    with st.spinner("Predicting trend using AI ...."):
        # Predict trend
        trend = my_market_predictor.Trend_Detection(indicators, 10)

    # Display results
    st.subheader(":orange[AI Trend Prediction]")
    st.write("Buy Trend :", trend['BUY'])
    st.write("Sell Trend :", trend['SELL'])

    # Delete the DataFrame to release memory
    del df

if __name__ == "__main__":
    main()