Spaces:
Sleeping
Sleeping
File size: 37,815 Bytes
c7c538f 2281f75 c7c538f 2281f75 c7c538f fa0ae8d c7c538f 2281f75 fa0ae8d 2281f75 fa0ae8d c7c538f f3c357b c7c538f 9ef545f c7c538f 3e9eac8 494b544 3e9eac8 494b544 3e9eac8 494b544 3e9eac8 494b544 c7c538f 00a06ef f3c357b 45b968a f3c357b 45b968a f3c357b 1362b55 a08fcdc 1362b55 a08fcdc 6bbd6b2 a08fcdc 69ba4cd 41f3c3b f1e4d0b c7c538f 6b2c2bc c7c538f f1e4d0b c7c538f f1e4d0b a08fcdc f1e4d0b a08fcdc f1e4d0b 41f3c3b f1e4d0b 41f3c3b 6b2c2bc 41f3c3b 6b2c2bc f1e4d0b c7c538f f1e4d0b c7c538f 60950b2 c7c538f 6b2c2bc c7c538f 60950b2 c7c538f 6b2c2bc c7c538f 41f3c3b 00a06ef 41f3c3b 60950b2 00a06ef 60950b2 00a06ef 41f3c3b 60950b2 00a06ef 60950b2 00a06ef 6b2c2bc 00a06ef 6b2c2bc 60950b2 6b2c2bc 60950b2 00a06ef 41f3c3b 00a06ef 41f3c3b c7c538f 41f3c3b c7c538f 41f3c3b c7c538f 41f3c3b c7c538f fa0ae8d 9132f59 a69e2f2 9132f59 65829fc 69ba4cd 65829fc 00a06ef 6704e73 a69e2f2 6704e73 f3c357b a69e2f2 862c3c6 a69e2f2 fa0ae8d 862c3c6 fa0ae8d a69e2f2 862c3c6 a69e2f2 ed0b6cf a69e2f2 fa0ae8d a69e2f2 fa0ae8d a69e2f2 9132f59 c7c538f f1e4d0b c7c538f fa0ae8d 6704e73 c7c538f 9132f59 f1e4d0b c7c538f 862c3c6 c7c538f 9132f59 c7c538f 65829fc a69e2f2 862c3c6 c7c538f c7a87eb c7c538f 6704e73 65829fc aa250a7 2281f75 29848e1 494b544 aa250a7 494b544 aa250a7 494b544 aa250a7 494b544 2281f75 494b544 aa250a7 3e9eac8 aa250a7 fa0ae8d 9132f59 6704e73 9132f59 fa0ae8d 9132f59 5c3991d 65829fc 9132f59 41f3c3b 6704e73 c7c538f 6b2c2bc c7c538f 41f3c3b c7c538f 41f3c3b c7c538f a08fcdc a69e2f2 a08fcdc 862c3c6 fa0ae8d a08fcdc 3e9eac8 494b544 3e9eac8 494b544 3e9eac8 a08fcdc 494b544 c7c538f 60950b2 c7c538f 2281f75 c7c538f 65829fc 6704e73 c7c538f 6704e73 c7c538f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit using unsloth
RESEARCH TRAINING PHASE ONLY - No output generation
WORKS WITH PRE-TOKENIZED DATASET - No re-tokenization
OPTIMIZED FOR L40S GPU (48GB VRAM)
"""
# Set critical environment variables before any imports
import os
# Configure PyTorch memory allocator for better memory management with L40S GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
os.environ["XFORMERS_DISABLED"] = "1"
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
# L40S-specific CUDA optimization
os.environ["CUDA_AUTO_BOOST"] = "1"
import json
import logging
import argparse
import numpy as np
from dotenv import load_dotenv
import torch
import sys
from datasets import load_dataset
import transformers
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForCausalLM, AutoConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig
from unsloth import FastLanguageModel
# Set DeepSpeed environment variables to disable MPI
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "9994"
os.environ["RANK"] = "0"
os.environ["LOCAL_RANK"] = "0"
os.environ["WORLD_SIZE"] = "1"
# Try to import deepspeed, install mpi4py if needed
try:
import deepspeed
except ImportError as e:
if "mpi4py" in str(e):
logger.warning("mpi4py not found, installing...")
import subprocess
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "mpi4py"])
import deepspeed
logger.info("Successfully installed mpi4py and imported deepspeed")
except Exception as install_error:
logger.warning(f"Failed to install mpi4py: {install_error}")
logger.warning("Continuing without DeepSpeed MPI support")
# Set a flag to disable DeepSpeed later
os.environ["DISABLE_DEEPSPEED_MPI"] = "1"
else:
logger.error(f"Failed to import deepspeed: {e}")
raise
# Disable all attention optimizations that might cause issues
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["XFORMERS_DISABLED"] = "1"
# Completely disable xformers by removing it from sys.modules if it's loaded
if 'xformers' in sys.modules:
del sys.modules['xformers']
if 'xformers.ops' in sys.modules:
del sys.modules['xformers.ops']
# Patch Python's import system to prevent xformers from being imported
class XFormersBlocker:
def __init__(self, original_importer):
self.original_importer = original_importer
def find_spec(self, fullname, path, target=None):
if 'xformers' in fullname:
# Block xformers imports
return None
# Use the original importer for everything else
return self.original_importer.find_spec(fullname, path, target)
# Add our import blocker to sys.meta_path
sys.meta_path.insert(0, XFormersBlocker(sys.meta_path[0]))
# Configure logging first
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler("training.log")
]
)
logger = logging.getLogger(__name__)
# Make sure torch is installed and available before proceeding
try:
logger.info("Importing torch...")
import torch
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA version: {torch.version.cuda}")
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
except ImportError:
logger.error("PyTorch not found. Installing torch first...")
try:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "torch"])
logger.info("PyTorch installed successfully. Importing...")
import torch
logger.info(f"PyTorch version: {torch.__version__}")
except Exception as e:
logger.error(f"Failed to install PyTorch: {e}")
logger.error("Cannot proceed without PyTorch. Exiting.")
raise
# Now try to install flash-attention (for systems that support it)
try:
import subprocess
import sys
# Make sure torch is installed before attempting flash-attn
try:
logger.info("Ensuring PyTorch is installed before flash-attention...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "torch", "--quiet"])
logger.info("PyTorch installation verified")
except Exception as torch_error:
logger.warning(f"PyTorch installation check failed: {torch_error}")
logger.info("Will continue with flash-attention installation anyway")
logger.info("Attempting to install flash-attention...")
# Try multiple installation approaches for flash-attention
try:
# First try with pip install
logger.info("Trying standard pip install for flash-attn")
subprocess.check_call([sys.executable, "-m", "pip", "install", "flash-attn"])
except Exception as pip_error:
logger.warning(f"Standard installation failed: {pip_error}")
logger.info("Trying alternative installation approach...")
# Try the PIP_EXTRA_INDEX_URL approach
env = os.environ.copy()
if "PIP_EXTRA_INDEX_URL" not in env:
env["PIP_EXTRA_INDEX_URL"] = "https://download.pytorch.org/whl/cu118"
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "flash-attn"],
env=env
)
logger.info("Successfully installed flash-attention")
except Exception as e:
logger.warning(f"Failed to install flash-attention: {e}")
logger.info("Continuing without flash-attention")
# Check if flash attention was successfully installed
flash_attention_available = False
try:
import flash_attn
flash_attention_available = True
logger.info(f"Flash Attention will be used (version: {flash_attn.__version__})")
# We'll handle flash attention configuration during model loading
except ImportError:
logger.info("Flash Attention not available, will use standard attention mechanism")
# Check if tensorboard is available
try:
import tensorboard
TENSORBOARD_AVAILABLE = True
except ImportError:
TENSORBOARD_AVAILABLE = False
print("Tensorboard not available. Will skip tensorboard logging.")
# Default dataset path - use the correct path with username
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
def load_config(config_path):
"""Load the transformers config from JSON file"""
logger.info(f"Loading config from {config_path}")
with open(config_path, 'r') as f:
config = json.load(f)
return config
def load_and_prepare_dataset(dataset_name, config):
"""
Load and prepare the dataset for fine-tuning.
Sort entries by prompt_number as required.
Handles both pre-tokenized and string content.
"""
# Use the default dataset path if no specific path is provided
if dataset_name == "phi4-cognitive-dataset":
dataset_name = DEFAULT_DATASET
logger.info(f"Loading dataset: {dataset_name}")
try:
# Load dataset
dataset = load_dataset(dataset_name)
# Extract the split we want to use (usually 'train')
if 'train' in dataset:
dataset = dataset['train']
# Get the dataset config
dataset_config = config.get("dataset_config", {})
sort_field = dataset_config.get("sort_by_field", "prompt_number")
# Always sort in ascending order by prompt_number
logger.info(f"Sorting dataset by {sort_field} in ascending order")
dataset = dataset.sort(sort_field)
# Verify sorting
if len(dataset) > 1:
first_prompt = dataset[0].get(sort_field, None)
last_prompt = dataset[-1].get(sort_field, None)
logger.info(f"Dataset sorted: first {sort_field}={first_prompt}, last {sort_field}={last_prompt}")
# Additional verification of a few samples
sample_indices = [0, len(dataset)//2, len(dataset)-1]
sample_prompts = [dataset[i].get(sort_field, None) for i in sample_indices]
logger.info(f"Sample prompt numbers: {sample_prompts}")
# Verify order is ascending
if not all(sample_prompts[i] <= sample_prompts[i+1] for i in range(len(sample_prompts)-1)):
logger.warning("Dataset may not be properly sorted! Please check the ordering.")
# Print dataset structure for debugging
logger.info(f"Dataset loaded with {len(dataset)} entries")
logger.info(f"Dataset columns: {dataset.column_names}")
# Print a sample entry to understand structure
if len(dataset) > 0:
sample = dataset[0]
logger.info(f"Sample entry structure: {list(sample.keys())}")
# Check if dataset is pre-tokenized or contains string content
is_pre_tokenized = False
if 'input_ids' in sample and isinstance(sample['input_ids'], list) and all(isinstance(x, int) for x in sample['input_ids']):
logger.info("Dataset appears to be pre-tokenized with input_ids field")
is_pre_tokenized = True
elif 'conversations' in sample:
logger.info(f"Sample conversations structure: {sample['conversations'][:1]}")
# Check if conversations contain pre-tokenized data
if isinstance(sample['conversations'], list) and len(sample['conversations']) > 0:
conv = sample['conversations'][0]
if isinstance(conv, dict) and 'input_ids' in conv and isinstance(conv['input_ids'], list):
logger.info("Dataset appears to be pre-tokenized in conversations.input_ids")
is_pre_tokenized = True
elif isinstance(conv, dict) and 'content' in conv:
content = conv['content']
if isinstance(content, list) and all(isinstance(x, int) for x in content):
logger.info("Dataset appears to be pre-tokenized in conversations.content")
is_pre_tokenized = True
else:
logger.info("Dataset appears to contain string content that will need tokenization")
if is_pre_tokenized:
logger.info("Using pre-tokenized dataset - tokenizer will only be used as fallback")
else:
logger.info("Dataset contains string content - tokenizer will be used")
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
logger.info("Available datasets in the Hub:")
# Print a more helpful error message
print(f"Failed to load dataset: {dataset_name}")
print(f"Make sure the dataset exists and is accessible.")
print(f"If it's a private dataset, ensure your HF_TOKEN has access to it.")
raise
def tokenize_string(text, tokenizer):
"""Tokenize a string using the provided tokenizer"""
if not text:
return []
# Tokenize the text
tokens = tokenizer.encode(text, add_special_tokens=False)
return tokens
# Data collator for pre-tokenized dataset
class PreTokenizedCollator(DataCollatorMixin):
"""
Data collator that can handle both pre-tokenized datasets and string content.
Will tokenize strings if necessary, but logs warnings.
"""
def __init__(self, pad_token_id=0, tokenizer=None):
self.pad_token_id = pad_token_id
self.tokenizer = tokenizer # Keep a reference to the tokenizer for fallback tokenization
def __call__(self, features):
# Print a sample feature to understand structure
if len(features) > 0:
logger.info(f"Sample feature keys: {list(features[0].keys())}")
# Extract input_ids from conversations if needed
processed_features = []
for feature in features:
# If input_ids is directly available, use it without tokenization
if 'input_ids' in feature and isinstance(feature['input_ids'], list):
# Already tokenized, no processing needed
processed_features.append(feature)
continue
# If input_ids is not directly available, try to extract from conversations
if 'input_ids' not in feature and 'conversations' in feature:
# Extract from conversations based on your dataset structure
conversations = feature['conversations']
# Debug the conversations structure (only for first batch)
if len(processed_features) == 0:
logger.info(f"Conversations type: {type(conversations)}")
if isinstance(conversations, list) and len(conversations) > 0:
logger.info(f"First conversation type: {type(conversations[0])}")
# Try different approaches to extract input_ids
if isinstance(conversations, list) and len(conversations) > 0:
# Case 1: If conversations is a list of dicts with 'input_ids' field (pre-tokenized)
if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
feature['input_ids'] = conversations[0]['input_ids']
# Case 2: If conversations itself contains the input_ids (pre-tokenized)
elif all(isinstance(x, int) for x in conversations):
feature['input_ids'] = conversations
# Case 3: If conversations is a list of dicts with 'content' field
elif isinstance(conversations[0], dict) and 'content' in conversations[0]:
content = conversations[0]['content']
# If content is already a list of integers, use it directly
if isinstance(content, list) and all(isinstance(x, int) for x in content):
feature['input_ids'] = content
# If content is a string, tokenize it with a warning
elif isinstance(content, str) and self.tokenizer:
logger.warning("Found string content in dataset. Tokenizing as fallback.")
feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
else:
logger.warning(f"Unexpected content format: {type(content)}")
continue
# Case 4: If conversations is a list of strings
elif all(isinstance(x, str) for x in conversations) and self.tokenizer:
# Join all strings and tokenize
logger.warning("Found string conversations in dataset. Tokenizing as fallback.")
full_text = " ".join(conversations)
feature['input_ids'] = self.tokenizer.encode(full_text, add_special_tokens=False)
# Ensure input_ids is a list of integers
if 'input_ids' in feature:
# If input_ids is a string, tokenize it
if isinstance(feature['input_ids'], str) and self.tokenizer:
logger.warning("Found string input_ids in dataset. Tokenizing as fallback.")
feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
# If input_ids is not a list, convert it
elif not isinstance(feature['input_ids'], list):
try:
feature['input_ids'] = list(feature['input_ids'])
except:
logger.error(f"Could not convert input_ids to list: {type(feature['input_ids'])}")
continue
else:
logger.warning("No input_ids found in this example. Skipping.")
continue
processed_features.append(feature)
# If we still don't have input_ids, log an error
if len(processed_features) == 0:
logger.error("No valid examples found in batch. Check dataset format.")
raise ValueError("No valid examples found. Please check dataset structure.")
if 'input_ids' not in processed_features[0]:
logger.error(f"Could not find input_ids in features. Available keys: {list(processed_features[0].keys())}")
if 'conversations' in processed_features[0]:
logger.error(f"Conversations structure: {processed_features[0]['conversations'][:1]}")
raise ValueError("Could not find input_ids in dataset. Please check dataset structure.")
# Determine max length in this batch
batch_max_len = max(len(x["input_ids"]) for x in processed_features)
# Initialize batch tensors
batch = {
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
}
# Fill batch tensors
for i, feature in enumerate(processed_features):
input_ids = feature["input_ids"]
seq_len = len(input_ids)
# Convert to tensor if it's a list
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids, dtype=torch.long)
# Copy data to batch tensors
batch["input_ids"][i, :seq_len] = input_ids
batch["attention_mask"][i, :seq_len] = 1
# If there are labels, use them, otherwise use input_ids
if "labels" in feature:
labels = feature["labels"]
if isinstance(labels, list):
labels = torch.tensor(labels, dtype=torch.long)
batch["labels"][i, :len(labels)] = labels
else:
batch["labels"][i, :seq_len] = input_ids
return batch
def create_training_marker(output_dir):
"""Create a marker file to indicate training is active"""
# Create in current directory for app.py to find
with open("TRAINING_ACTIVE", "w") as f:
f.write(f"Training active in {output_dir}")
# Also create in output directory
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
f.write("This model is for research training only. No interactive outputs.")
def remove_training_marker():
"""Remove the training marker file"""
if os.path.exists("TRAINING_ACTIVE"):
os.remove("TRAINING_ACTIVE")
logger.info("Removed training active marker")
def load_model_safely(model_name, max_seq_length, dtype=None, use_flash_attention=False, use_deepspeed=False):
"""
Load the model directly with HuggingFace, bypassing Unsloth optimizations
to avoid memory-efficient attention issues
"""
logger.info(f"Loading model: {model_name}")
# Create BitsAndBytesConfig for 4-bit quantization
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
# Force eager implementation to avoid BMGHK format issues
attn_implementation = "eager"
logger.info(f"Forcing eager attention implementation to avoid BMGHK format issues")
# Skip Unsloth and use standard HuggingFace loading
logger.info("Bypassing Unsloth optimizations to avoid memory-efficient attention issues")
# Check available GPUs
gpu_count = torch.cuda.device_count()
logger.info(f"Found {gpu_count} GPU(s) available")
# Load with standard HuggingFace
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Set attention implementation in config
config.attn_implementation = attn_implementation
# Disable any custom attention mechanisms
if hasattr(config, "use_flash_attention"):
config.use_flash_attention = False
if hasattr(config, "use_memory_efficient_attention"):
config.use_memory_efficient_attention = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Set device mapping based on whether DeepSpeed is used
# When using DeepSpeed, we should use 'cpu' or 'meta' for initial loading
# to avoid OOM issues, as DeepSpeed will handle the device placement
if use_deepspeed:
logger.info("Using DeepSpeed - loading model initially on CPU to avoid OOM issues")
device_map = "cpu" # Load on CPU first, DeepSpeed will handle distribution
else:
# Always use auto device mapping for cloud hardware when not using DeepSpeed
device_map = "auto"
logger.info(f"Using device_map={device_map} for initial model loading")
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=config,
device_map=device_map,
torch_dtype=dtype or torch.float16,
quantization_config=bnb_config,
trust_remote_code=True,
attn_implementation=attn_implementation
)
logger.info("Model loaded successfully with standard HF loading")
# If using DeepSpeed, ensure model is properly prepared
if use_deepspeed:
logger.info("Model loaded on CPU - DeepSpeed will handle device placement during training")
return model, tokenizer
def train(config_path, dataset_name, output_dir):
"""Main training function - RESEARCH TRAINING PHASE ONLY"""
# Load environment variables
load_dotenv()
config = load_config(config_path)
# Set CUDA launch blocking for better error reporting
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Try to unload xformers if it's loaded
if 'xformers' in sys.modules:
logger.info("Removing xformers from sys.modules")
del sys.modules['xformers']
# Patch torch.nn.functional to avoid memory_efficient_attention
try:
import torch.nn.functional as F
if hasattr(F, 'scaled_dot_product_attention'):
logger.info("Patching torch.nn.functional.scaled_dot_product_attention")
original_sdpa = F.scaled_dot_product_attention
def safe_sdpa(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None):
# Force disable memory efficient attention
logger.info("Using safe scaled_dot_product_attention (no xformers)")
return original_sdpa(query, key, value, attn_mask, dropout_p, is_causal, scale)
F.scaled_dot_product_attention = safe_sdpa
except Exception as e:
logger.warning(f"Failed to patch scaled_dot_product_attention: {e}")
# Extract configs
model_config = config.get("model_config", {})
training_config = config.get("training_config", {})
hardware_config = config.get("hardware_config", {})
lora_config = config.get("lora_config", {})
dataset_config = config.get("dataset_config", {})
# Set the output directory
output_dir = output_dir or training_config.get("output_dir", "fine_tuned_model")
os.makedirs(output_dir, exist_ok=True)
# Create training marker
create_training_marker(output_dir)
try:
# Print configuration summary
logger.info("RESEARCH TRAINING PHASE ACTIVE - No output generation")
logger.info("Configuration Summary:")
model_name = model_config.get("model_name_or_path")
logger.info(f"Model: {model_name}")
logger.info(f"Dataset: {dataset_name if dataset_name != 'phi4-cognitive-dataset' else DEFAULT_DATASET}")
logger.info(f"Output directory: {output_dir}")
logger.info("IMPORTANT: Using already 4-bit quantized model - not re-quantizing")
# Check GPU availability
gpu_count = torch.cuda.device_count()
logger.info(f"Found {gpu_count} GPU(s) available")
for i in range(gpu_count):
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
# Load and prepare the dataset
dataset = load_and_prepare_dataset(dataset_name, config)
# Initialize tokenizer (just for model initialization, not for tokenizing data)
logger.info("Loading tokenizer (for model initialization only, not for tokenizing data)")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
# Initialize model
logger.info("Initializing model (preserving 4-bit quantization)")
# Use full sequence length of 2048 as required for pre-tokenized dataset
max_seq_length = training_config.get("max_seq_length", 2048)
logger.info(f"Using sequence length: {max_seq_length} as required for pre-tokenized dataset")
# Create LoRA config directly
logger.info("Creating LoRA configuration")
lora_config_obj = LoraConfig(
r=lora_config.get("r", 16),
lora_alpha=lora_config.get("lora_alpha", 32),
lora_dropout=lora_config.get("lora_dropout", 0.05),
bias=lora_config.get("bias", "none"),
target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
)
# Force eager attention implementation
use_flash_attention = False # Override to force eager implementation
# Initialize ds_config_path to None before checking
ds_config_path = None
# Optimize batch size for L40S GPU
gpu_info = torch.cuda.get_device_properties(0)
logger.info(f"GPU Model: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
# For L40S GPU, we can use a larger batch size and shard model across the single GPU
if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9: # Check if it's L40S (>40GB VRAM)
logger.info("Detected L40S GPU - optimizing for high-memory GPU")
per_device_train_batch_size = training_config.get("per_device_train_batch_size", 6)
logger.info(f"Using optimized batch size for L40S: {per_device_train_batch_size}")
else:
# Default to a smaller batch size for other GPUs
per_device_train_batch_size = 2
logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
# Check if DeepSpeed config is available and if MPI is disabled
deepspeed_config = config.get("deepspeed_config", None)
if deepspeed_config and os.environ.get("DISABLE_DEEPSPEED_MPI", "0") != "1":
logger.info("DeepSpeed configuration found - enabling DeepSpeed for distributed training")
# Create a temporary DeepSpeed config file
ds_config_path = os.path.join(output_dir, "ds_config_temp.json")
# Update DeepSpeed config with dynamic values
if isinstance(deepspeed_config.get("train_micro_batch_size_per_gpu"), str) and deepspeed_config.get("train_micro_batch_size_per_gpu") == "auto":
deepspeed_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size
if isinstance(deepspeed_config.get("train_batch_size"), str) and deepspeed_config.get("train_batch_size") == "auto":
deepspeed_config["train_batch_size"] = per_device_train_batch_size * gpu_count
# L40S-specific optimization: Enable ZeRO stage 2 with CPU offloading
if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9:
logger.info("Configuring DeepSpeed specifically for L40S GPU")
# Adjust ZeRO stage for L40S (48GB VRAM)
deepspeed_config["zero_optimization"]["stage"] = 2
# Enable CPU offloading for optimizer states to save GPU memory
deepspeed_config["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
# Adjust communication efficiency for single high-end GPU
deepspeed_config["reduce_bucket_size"] = 1e9
deepspeed_config["allgather_bucket_size"] = 1e9
# Ensure communication backend is set to avoid MPI
if "communication_data_type" not in deepspeed_config:
deepspeed_config["communication_data_type"] = "fp16"
# Write the DeepSpeed config to a file
with open(ds_config_path, 'w') as f:
json.dump(deepspeed_config, f, indent=2)
logger.info(f"Created DeepSpeed config at {ds_config_path}")
logger.info(f"DeepSpeed ZeRO Stage: {deepspeed_config.get('zero_optimization', {}).get('stage', 'Not specified')}")
# Enable CPU offloading if configured
if deepspeed_config.get("zero_optimization", {}).get("offload_optimizer", {}).get("device") == "cpu":
logger.info("DeepSpeed CPU offloading enabled for optimizer states")
# Set using_deepspeed flag
using_deepspeed = True
elif os.environ.get("DISABLE_DEEPSPEED_MPI", "0") == "1":
logger.warning("DeepSpeed MPI support is disabled due to missing mpi4py. Continuing without DeepSpeed.")
ds_config_path = None
using_deepspeed = False
else:
logger.warning("No DeepSpeed configuration found - continuing without DeepSpeed")
ds_config_path = None
using_deepspeed = False
# Initialize model with our safe loading function
logger.info("Loading pre-quantized model with eager attention")
dtype = torch.float16 if hardware_config.get("fp16", True) else None
model, tokenizer = load_model_safely(model_name, max_seq_length, dtype, use_flash_attention, use_deepspeed=using_deepspeed)
# Disable generation capabilities for research training
logger.info("Disabling generation capabilities - Research training only")
model.config.is_decoder = False
model.config.task_specific_params = None
# Apply LoRA to model
logger.info("Applying LoRA to model")
from peft import get_peft_model
model = get_peft_model(model, lora_config_obj)
logger.info("Successfully applied LoRA with standard PEFT")
# Explicitly set attention implementation in model config again after PEFT
model.config.attn_implementation = "eager"
# No need to format the dataset - it's already pre-tokenized
logger.info("Using dataset with flexible tokenization handling")
logger.info("Will use pre-tokenized data if available, or tokenize strings as fallback")
training_dataset = dataset
# Configure reporting backends with fallbacks
reports = []
if TENSORBOARD_AVAILABLE:
reports.append("tensorboard")
logger.info("Tensorboard available and enabled for reporting")
else:
logger.warning("Tensorboard not available - metrics won't be logged to tensorboard")
if os.getenv("WANDB_API_KEY"):
reports.append("wandb")
logger.info("Wandb API key found, enabling wandb reporting")
# Default to "none" if no reporting backends are available
if not reports:
reports = ["none"]
logger.warning("No reporting backends available - training metrics won't be logged")
training_args_dict = {
"output_dir": output_dir,
"num_train_epochs": training_config.get("num_train_epochs", 3),
"per_device_train_batch_size": per_device_train_batch_size,
"gradient_accumulation_steps": training_config.get("gradient_accumulation_steps", 4),
"learning_rate": training_config.get("learning_rate", 2e-5),
"lr_scheduler_type": training_config.get("lr_scheduler_type", "cosine"),
"warmup_ratio": training_config.get("warmup_ratio", 0.03),
"weight_decay": training_config.get("weight_decay", 0.01),
"optim": training_config.get("optim", "adamw_torch"),
"logging_steps": training_config.get("logging_steps", 10),
"save_steps": training_config.get("save_steps", 200),
"save_total_limit": training_config.get("save_total_limit", 3),
"fp16": hardware_config.get("fp16", True),
"bf16": hardware_config.get("bf16", False),
"max_grad_norm": training_config.get("max_grad_norm", 0.3),
"report_to": reports,
"logging_first_step": training_config.get("logging_first_step", True),
"disable_tqdm": training_config.get("disable_tqdm", False),
"remove_unused_columns": False,
"seed": 42,
"dataloader_num_workers": 4, # Use multiple workers for data loading
}
# Add DeepSpeed config path if available and enabled
if using_deepspeed and ds_config_path:
logger.info("Adding DeepSpeed configuration to training arguments")
training_args_dict["deepspeed"] = ds_config_path
else:
logger.info("DeepSpeed is disabled - using standard distributed training")
# Create TrainingArguments with validated parameters
try:
training_args = TrainingArguments(**training_args_dict)
except Exception as e:
logger.error(f"Failed to create training arguments with DeepSpeed: {e}")
if "deepspeed" in training_args_dict:
logger.warning("Removing DeepSpeed configuration and trying again")
del training_args_dict["deepspeed"]
training_args = TrainingArguments(**training_args_dict)
using_deepspeed = False
# Create trainer with pre-tokenized collator
trainer = Trainer(
model=model,
args=training_args,
train_dataset=training_dataset,
data_collator=PreTokenizedCollator(pad_token_id=tokenizer.pad_token_id, tokenizer=tokenizer),
)
# Start training
logger.info("Starting training - RESEARCH PHASE ONLY")
trainer.train()
# Save the model
logger.info(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
# Save LoRA adapter separately for easier deployment
lora_output_dir = os.path.join(output_dir, "lora_adapter")
model.save_pretrained(lora_output_dir)
logger.info(f"Saved LoRA adapter to {lora_output_dir}")
# Save tokenizer for completeness
tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
tokenizer.save_pretrained(tokenizer_output_dir)
logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
# Copy config file for reference
with open(os.path.join(output_dir, "training_config.json"), "w") as f:
json.dump(config, f, indent=2)
logger.info("Training complete - RESEARCH PHASE ONLY")
return output_dir
finally:
# Always remove the training marker when done
remove_training_marker()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune Unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit model (RESEARCH ONLY)")
parser.add_argument("--config", type=str, default="transformers_config.json",
help="Path to the transformers config JSON file")
parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset",
help="Dataset name or path")
parser.add_argument("--output_dir", type=str, default=None,
help="Output directory for the fine-tuned model")
parser.add_argument("--use_flash_attention", action="store_true",
help="Use Flash Attention if available (NOT RECOMMENDED)")
args = parser.parse_args()
# Override flash attention setting to force eager implementation
args.use_flash_attention = False
# Run training - Research phase only
try:
output_path = train(args.config, args.dataset, args.output_dir)
print(f"Research training completed. Model saved to: {output_path}")
except Exception as e:
logger.error(f"Training failed: {str(e)}")
remove_training_marker() # Clean up marker if training fails
raise |