Spaces:
Running
Running
File size: 54,878 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 266ae82 8673558 092a033 f7fc39b 575b933 266ae82 575b933 2601f1c 575b933 266ae82 2601f1c 9d99925 dc88746 3b4dccb d33040c 3b4dccb 8673558 deb2291 266ae82 deb2291 c6716b6 3b4dccb 2601f1c b0464a9 2a3b22e 3b4dccb 2a3b22e eb46c40 d33040c eb46c40 2601f1c eb46c40 092a033 6a8e128 092a033 266ae82 dc88746 092a033 791c130 d33040c 791c130 d33040c 092a033 575b933 2601f1c dc88746 092a033 3b4dccb 348bc84 791c130 092a033 791c130 d33040c 791c130 d33040c 092a033 2601f1c 791c130 266ae82 19ea45c 2601f1c dc88746 092a033 dc88746 791c130 dc88746 092a033 dc88746 092a033 dc88746 092a033 dc88746 d33040c 365263e d33040c 2601f1c 266ae82 dc88746 c6716b6 dc88746 eb46c40 092a033 dc88746 092a033 791c130 dc88746 791c130 dc88746 092a033 a342a6b b0464a9 2a3b22e adb3bbe 266ae82 67742c4 a342a6b 6a8e128 2601f1c 67742c4 2601f1c 092a033 adb3bbe a342a6b d33040c 2601f1c a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 d33040c 2601f1c 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 8673558 d33040c 2601f1c d33040c 2601f1c 8673558 791c130 d33040c 791c130 365263e 092a033 8673558 d33040c 791c130 d33040c 3b902c0 791c130 2601f1c 092a033 266ae82 d33040c 266ae82 d33040c 6a8e128 365263e 2601f1c 365263e ddd95f0 8673558 6a8e128 2601f1c 365263e 2601f1c 998bc4b 2601f1c 365263e 092a033 2601f1c 092a033 998bc4b c205383 2601f1c 266ae82 8673558 ddd95f0 8673558 2601f1c 365263e 2601f1c ddd95f0 eb46c40 2601f1c 365263e d33040c eb46c40 8673558 ddd95f0 2601f1c 092a033 365263e 092a033 2601f1c 365263e 092a033 2601f1c ddd95f0 2601f1c eb46c40 2601f1c eb46c40 2601f1c eb46c40 2601f1c eb46c40 2601f1c 365263e 2601f1c 8673558 092a033 2601f1c eb46c40 2601f1c 092a033 2601f1c ddd95f0 2601f1c 365263e 092a033 2601f1c ddd95f0 998bc4b ddd95f0 2601f1c 365263e 092a033 2601f1c 092a033 365263e 2601f1c 092a033 2601f1c 092a033 2601f1c 365263e 2601f1c 092a033 2601f1c 365263e 092a033 2601f1c 092a033 365263e 2601f1c 092a033 2601f1c 8673558 d33040c eb46c40 d33040c 2601f1c 092a033 365263e 2601f1c 8673558 2601f1c ddd95f0 eb46c40 d33040c ddd95f0 eb46c40 d33040c 092a033 8673558 ddd95f0 8673558 365263e 2601f1c 365263e 8673558 eb46c40 8673558 365263e 8673558 092a033 365263e ddd95f0 2601f1c 092a033 2601f1c 365263e 092a033 365263e 092a033 2601f1c ddd95f0 365263e 8673558 2601f1c 365263e 2601f1c 8673558 092a033 eb46c40 8673558 eb46c40 365263e 8673558 ddd95f0 092a033 2601f1c 092a033 2601f1c 092a033 eb46c40 8673558 dc88746 092a033 dc88746 092a033 dc88746 092a033 998bc4b ddd95f0 eb46c40 ddd95f0 998bc4b ddd95f0 dc88746 365263e 2601f1c ddd95f0 dc88746 8673558 2601f1c ddd95f0 8673558 ddd95f0 8673558 d33040c 2601f1c 092a033 2601f1c 092a033 2601f1c 092a033 2601f1c 092a033 365263e 2601f1c 092a033 2601f1c 092a033 2601f1c 8673558 2601f1c 092a033 266ae82 092a033 266ae82 8673558 092a033 2601f1c 365263e 2601f1c d33040c 8673558 365263e d33040c ddd95f0 2601f1c 092a033 2601f1c d33040c ddd95f0 092a033 365263e 092a033 365263e 8673558 6a8e128 092a033 2601f1c dc88746 266ae82 365263e 2601f1c 8673558 eb46c40 365263e 8673558 092a033 ddd95f0 2601f1c 8673558 365263e eb46c40 365263e 2601f1c 092a033 2601f1c 6a8e128 791c130 266ae82 2601f1c eb46c40 a342a6b adb3bbe 06d22e5 d33040c 4ad44b9 eb46c40 a342a6b 575b933 d33040c 365263e d33040c a342a6b d33040c 2601f1c a342a6b 266ae82 a342a6b 538b42b 2601f1c 266ae82 ddd95f0 266ae82 365263e 8673558 365263e 266ae82 365263e ddd95f0 266ae82 092a033 2601f1c 365263e 2601f1c 266ae82 adb3bbe 575b933 d33040c 575b933 d33040c 2601f1c a342a6b d33040c 365263e 092a033 2601f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area,
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_data_processing import prepare_filtered_analytics_data # This is key for data structure
from analytics_plot_generator import (
generate_posts_activity_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
from formulas import PLOT_FORMULAS
# --- NEW CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_and_suggestions
from chatbot_handler import generate_llm_response
# --- END NEW CHATBOT MODULE IMPORTS ---
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Mapping from plot_configs IDs to PLOT_FORMULAS keys
PLOT_ID_TO_FORMULA_KEY_MAP = {
"posts_activity": "posts_activity",
"mentions_activity": "mentions_activity",
"mention_sentiment": "mention_sentiment",
"followers_count": "followers_count_over_time",
"followers_growth_rate": "followers_growth_rate",
"followers_by_location": "followers_by_demographics",
"followers_by_role": "followers_by_demographics",
"followers_by_industry": "followers_by_demographics",
"followers_by_seniority": "followers_by_demographics",
"engagement_rate": "engagement_rate_over_time",
"reach_over_time": "reach_over_time",
"impressions_over_time": "impressions_over_time",
"likes_over_time": "likes_over_time",
"clicks_over_time": "clicks_over_time",
"shares_over_time": "shares_over_time",
"comments_over_time": "comments_over_time",
"comments_sentiment": "comments_sentiment_breakdown",
"post_frequency_cs": "post_frequency",
"content_format_breakdown_cs": "content_format_breakdown",
"content_topic_breakdown_cs": "content_topic_breakdown",
"mention_analysis_volume": "mentions_activity",
"mention_analysis_sentiment": "mention_sentiment"
}
# --- Helper function to generate textual data summaries for chatbot ---
def generate_chatbot_data_summaries(
plot_configs_list,
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
token_state_value # To get column names if needed
):
"""
Generates textual summaries for each plot ID to be used by the chatbot.
"""
data_summaries = {}
date_col_posts = token_state_value.get("config_date_col_posts", "published_at")
# Ensure date columns are datetime objects for proper formatting and comparison
if date_col_posts in filtered_merged_posts_df.columns:
filtered_merged_posts_df[date_col_posts] = pd.to_datetime(filtered_merged_posts_df[date_col_posts], errors='coerce')
if 'date' in date_filtered_follower_stats_df.columns:
date_filtered_follower_stats_df['date'] = pd.to_datetime(date_filtered_follower_stats_df['date'], errors='coerce')
# Add more date conversions as needed for other dataframes
for plot_cfg in plot_configs_list:
plot_id = plot_cfg["id"]
summary_text = f"No data summary available for {plot_cfg['label']} for the selected period."
try:
if plot_id == "followers_count" and not date_filtered_follower_stats_df.empty:
df_summary = date_filtered_follower_stats_df[['date', 'follower_gains_monthly']].copy()
df_summary['date'] = df_summary['date'].dt.strftime('%Y-%m-%d')
summary_text = f"Follower Count (Monthly Gains):\n{df_summary.tail(5).to_string(index=False)}"
elif plot_id == "followers_growth_rate" and not date_filtered_follower_stats_df.empty:
df_summary = date_filtered_follower_stats_df[['date', 'growth_rate_monthly']].copy() # Assuming 'growth_rate_monthly' column
df_summary['date'] = df_summary['date'].dt.strftime('%Y-%m-%d')
summary_text = f"Follower Growth Rate (Monthly):\n{df_summary.tail(5).to_string(index=False)}"
elif plot_id == "followers_by_location" and not raw_follower_stats_df.empty and 'follower_geo' in raw_follower_stats_df.columns:
# Assuming 'follower_geo' contains location names and another column like 'count' exists
# This part needs to align with how generate_followers_by_demographics_plot processes 'follower_geo' data
# For simplicity, let's assume raw_follower_stats_df has pre-aggregated data for geo
# This is a placeholder, actual column names for count and name are needed from your data prep
if 'geo_name' in raw_follower_stats_df.columns and 'geo_count' in raw_follower_stats_df.columns:
df_summary = raw_follower_stats_df[['geo_name', 'geo_count']].nlargest(5, 'geo_count')
summary_text = f"Followers by Location (Top 5):\n{df_summary.to_string(index=False)}"
else:
summary_text = "Follower location data structure not as expected for summary."
elif plot_id == "engagement_rate" and not filtered_merged_posts_df.empty:
df_summary = filtered_merged_posts_df[[date_col_posts, 'engagement_rate']].copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Engagement Rate Over Time:\n{df_summary.tail(5).to_string(index=False)}"
elif plot_id == "reach_over_time" and not filtered_merged_posts_df.empty:
df_summary = filtered_merged_posts_df[[date_col_posts, 'reach']].copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Reach Over Time:\n{df_summary.tail(5).to_string(index=False)}"
elif plot_id == "impressions_over_time" and not filtered_merged_posts_df.empty:
df_summary = filtered_merged_posts_df[[date_col_posts, 'impressions_sum']].copy() # Assuming 'impressions_sum' or similar
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Impressions Over Time:\n{df_summary.tail(5).to_string(index=False)}"
elif plot_id == "comments_sentiment" and not filtered_merged_posts_df.empty and 'comment_sentiment' in filtered_merged_posts_df.columns:
sentiment_counts = filtered_merged_posts_df['comment_sentiment'].value_counts().reset_index()
sentiment_counts.columns = ['Sentiment', 'Count']
summary_text = f"Comments Sentiment Breakdown:\n{sentiment_counts.to_string(index=False)}"
# Add more elif blocks for other plot_ids, extracting relevant data:
# e.g., likes_over_time, clicks_over_time, shares_over_time, comments_over_time
# post_frequency_cs, content_format_breakdown_cs, content_topic_breakdown_cs
# mentions_activity, mention_sentiment
data_summaries[plot_id] = summary_text
except KeyError as e:
logging.warning(f"KeyError generating summary for {plot_id}: {e}. Using default summary.")
data_summaries[plot_id] = f"Data summary generation error for {plot_cfg['label']} (missing column: {e})."
except Exception as e:
logging.error(f"Error generating summary for {plot_id}: {e}", exc_info=True)
data_summaries[plot_id] = f"Error generating data summary for {plot_cfg['label']}."
return data_summaries
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 19 # Ensure this matches the number of plots generated
plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
# For each plot_config, add a default "no data" summary
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot."
return [message] + placeholder_figs + [plot_data_summaries_for_chatbot]
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df, # For time-based follower plots
raw_follower_stats_df, # For demographic follower plots
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
# Generate data summaries for chatbot AFTER data preparation
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, # Pass the plot_configs list
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}"
return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot]
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
plot_figs = [] # Initialize list to hold plot figures
plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs]
try:
# Dinamiche dei Follower (2 plots)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
# Demografia Follower (4 plots)
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"))
# Approfondimenti Performance Post (4 plots)
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
# Engagement Dettagliato Post nel Tempo (4 plots)
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists
# Analisi Strategia Contenuti (3 plots)
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
# Analisi Menzioni (Dettaglio) (2 plots)
plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions))
plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df
if len(plot_figs) != num_expected_plots:
logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.")
while len(plot_figs) < num_expected_plots:
plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta."))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
message += f" (Da: {s_display} A: {e_display})"
final_plot_figs = []
for i, p_fig_candidate in enumerate(plot_figs):
if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object
final_plot_figs.append(p_fig_candidate)
else:
err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.")
final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura."))
return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except (KeyError, ValueError) as e_plot_data:
logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True)
error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}"
num_already_generated = len(plot_figs)
for i in range(num_already_generated, num_expected_plots):
err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}"))
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}"
return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except Exception as e_general:
error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}"
logging.error(error_msg, exc_info=True)
placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)]
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}"
return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot]
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({}) # NEW: Store data summaries for chatbot
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime") # Use gr.DateTime
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime") # Use gr.DateTime
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
# Moved plot_configs to be globally accessible within the Blocks scope if needed by update_analytics_plots_figures
# or pass it explicitly. For now, it's defined here.
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
async def handle_panel_action(
plot_id_clicked: str,
action_type: str,
current_active_action_from_state: dict,
current_chat_histories: dict,
current_chat_plot_id: str,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo: {current_active_action_from_state}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Configurazione non trovata per plot_id {plot_id_clicked}")
num_button_updates = 2 * len(plot_configs) # insights, formula buttons
error_updates = [gr.update(visible=False)] * 10 # action_col, chatbot, input, suggestions_row, 3x sugg_btn, formula_md
error_updates.extend([current_active_action_from_state, current_chat_plot_id, current_chat_histories])
error_updates.extend([gr.update()] * num_button_updates)
return error_updates
clicked_plot_label = clicked_plot_config["label"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=True)
insights_chatbot_visible_update = gr.update(visible=False)
insights_chat_input_visible_update = gr.update(visible=False)
insights_suggestions_row_visible_update = gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
chatbot_content_update = gr.update()
suggestion_1_update = gr.update()
suggestion_2_update = gr.update()
suggestion_3_update = gr.update()
new_current_chat_plot_id = current_chat_plot_id
updated_chat_histories = current_chat_histories
formula_content_update = gr.update()
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
new_current_chat_plot_id = None
logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}")
else:
new_active_action_state_to_set = hypothetical_new_active_state
if action_type == "insights":
insights_chatbot_visible_update = gr.update(visible=True)
insights_chat_input_visible_update = gr.update(visible=True)
insights_suggestions_row_visible_update = gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
chat_history_for_this_plot = current_chat_histories.get(plot_id_clicked, [])
# Get data summary for this plot
plot_specific_data_summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"Nessun sommario dati specifico disponibile per '{clicked_plot_label}'.")
if not chat_history_for_this_plot:
initial_insight_msg, suggestions = get_initial_insight_and_suggestions(
plot_id_clicked,
clicked_plot_label,
plot_specific_data_summary # Pass the summary
)
chat_history_for_this_plot = [initial_insight_msg] # Gradio expects list of dicts
updated_chat_histories = current_chat_histories.copy()
updated_chat_histories[plot_id_clicked] = chat_history_for_this_plot
else:
# If history exists, still get fresh suggestions, but don't overwrite history's first message
_, suggestions = get_initial_insight_and_suggestions(
plot_id_clicked,
clicked_plot_label,
plot_specific_data_summary # Pass summary for context if needed by suggestions
)
chatbot_content_update = gr.update(value=chat_history_for_this_plot)
suggestion_1_update = gr.update(value=suggestions[0])
suggestion_2_update = gr.update(value=suggestions[1])
suggestion_3_update = gr.update(value=suggestions[2])
logging.info(f"Apertura pannello CHAT per {plot_id_clicked} ('{clicked_plot_label}')")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
formula_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n\n"
if formula_key and formula_key in PLOT_FORMULAS:
formula_data = PLOT_FORMULAS[formula_key]
formula_text += f"### {formula_data['title']}\n\n"
formula_text += f"**Descrizione:**\n{formula_data['description']}\n\n"
formula_text += "**Come viene calcolato:**\n"
for step in formula_data['calculation_steps']:
formula_text += f"- {step}\n"
else:
formula_text += "(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)"
formula_content_update = gr.update(value=formula_text)
new_current_chat_plot_id = None
logging.info(f"Apertura pannello FORMULA per {plot_id_clicked} (mappato a {formula_key})")
all_button_icon_updates = []
for cfg_item in plot_configs:
p_id_iter = cfg_item["id"]
# Update insights button icon
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=BOMB_ICON))
# Update formula button icon
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=FORMULA_ICON))
final_updates = [
action_col_visible_update,
insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update,
insights_suggestions_row_visible_update, suggestion_1_update, suggestion_2_update, suggestion_3_update,
formula_display_visible_update, formula_content_update,
new_active_action_state_to_set,
new_current_chat_plot_id,
updated_chat_histories
] + all_button_icon_updates
return final_updates
async def handle_chat_message_submission(
user_message: str,
current_plot_id: str,
chat_histories: dict,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
if not current_plot_id or not user_message.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
# Yield current state if no action needed
yield history_for_plot, gr.update(value=""), chat_histories # Clear input, return current history
return
plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None)
plot_label = plot_config["label"] if plot_config else "Grafico Selezionato"
# Retrieve the specific data summary for the current plot
plot_specific_data_summary = current_plot_data_for_chatbot.get(current_plot_id, f"Nessun sommario dati specifico disponibile per '{plot_label}'.")
history_for_plot = chat_histories.get(current_plot_id, []).copy()
history_for_plot.append({"role": "user", "content": user_message})
# Update UI immediately with user message
yield history_for_plot, gr.update(value=""), chat_histories # Clear input
# Pass the data summary to the LLM along with the history
bot_response_text = await generate_llm_response(
user_message,
current_plot_id,
plot_label,
history_for_plot, # This history now includes the initial insight with summary + user message
plot_specific_data_summary # Explicitly pass for this turn if needed by LLM handler logic
)
history_for_plot.append({"role": "assistant", "content": bot_response_text})
updated_chat_histories = chat_histories.copy()
updated_chat_histories[current_plot_id] = history_for_plot
yield history_for_plot, "", updated_chat_histories
async def handle_suggested_question_click(
suggestion_text: str,
current_plot_id: str,
chat_histories: dict,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
if not current_plot_id or not suggestion_text.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
yield history_for_plot, gr.update(value=""), chat_histories
return
# This is essentially the same as submitting a message, so reuse logic
# The suggestion_text becomes the user_message
async for update in handle_chat_message_submission(
suggestion_text,
current_plot_id,
chat_histories,
current_plot_data_for_chatbot
):
yield update
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state):
logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}")
if not plot_ui_objects:
logging.error("plot_ui_objects non popolato durante handle_explore_click.")
updates_for_missing_ui = [current_explored_plot_id_from_state]
for _ in plot_configs: # panel_component, explore_button
updates_for_missing_ui.extend([gr.update(), gr.update()])
return updates_for_missing_ui
new_explored_id_to_set = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state)
if is_toggling_off:
new_explored_id_to_set = None
logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}")
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Esplorazione grafico: {plot_id_clicked}")
panel_and_button_updates = []
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set)
panel_and_button_updates.append(gr.update(visible=panel_visible))
if p_id == new_explored_id_to_set:
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON))
else:
panel_and_button_updates.extend([gr.update(), gr.update()])
final_updates = [new_explored_id_to_set] + panel_and_button_updates
return final_updates
# Outputs for panel actions
action_panel_outputs_list = [
global_actions_column_ui,
insights_chatbot_ui, insights_chatbot_ui, # Target chatbot UI for visibility and value
insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui, # Target markdown for visibility and value
active_panel_action_state,
current_chat_plot_id_st,
chat_histories_st
]
for cfg_item_action in plot_configs:
pid_action = cfg_item_action["id"]
if pid_action in plot_ui_objects:
action_panel_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"])
action_panel_outputs_list.append(plot_ui_objects[pid_action]["formula_button"])
else:
action_panel_outputs_list.extend([None, None])
# Outputs for explore actions
explore_buttons_outputs_list = [explored_plot_id_state]
for cfg_item_explore in plot_configs:
pid_explore = cfg_item_explore["id"]
if pid_explore in plot_ui_objects:
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"])
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"])
else:
explore_buttons_outputs_list.extend([None, None])
# Inputs for panel actions
action_click_inputs = [
active_panel_action_state,
chat_histories_st,
current_chat_plot_id_st,
plot_data_for_chatbot_st # NEW: pass data summaries state
]
# Inputs for explore actions
explore_click_inputs = [explored_plot_id_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries): # Add summaries
logging.debug(f"Entering _handler for plot_id: {p_id}, action: {action_type_str}")
result = await handle_panel_action(p_id, action_type_str, current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries) # Pass summaries
logging.debug(f"_handler for plot_id: {p_id}, action: {action_type_str} completed.")
return result
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(
fn=create_panel_action_handler(plot_id, "insights"),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=create_panel_action_handler(plot_id, "formula"),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val),
inputs=explore_click_inputs,
outputs=explore_buttons_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else:
logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state
insights_chat_input_ui.submit(
fn=handle_chat_message_submission,
inputs=chat_submission_inputs,
outputs=chat_submission_outputs,
api_name="submit_chat_message"
)
suggestion_click_inputs = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state
insights_suggestion_1_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_1_btn] + suggestion_click_inputs, # Pass button value as first arg
outputs=chat_submission_outputs,
api_name="click_suggestion_1"
)
insights_suggestion_2_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_2_btn] + suggestion_click_inputs,
outputs=chat_submission_outputs,
api_name="click_suggestion_2"
)
insights_suggestion_3_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_3_btn] + suggestion_click_inputs,
outputs=chat_submission_outputs,
api_name="click_suggestion_3"
)
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories):
logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni/chat.")
# Pass plot_configs to the update function so it can be used by generate_chatbot_data_summaries
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val, plot_configs
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:-1] # All items except first (status) and last (summaries)
new_plot_data_summaries = plot_generation_results[-1] # Last item is the summaries dict
all_updates = [status_message_update]
for i in range(len(plot_configs)):
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}"))
all_updates.extend([
gr.update(visible=False), # global_actions_column_ui
gr.update(value=[], visible=False), # insights_chatbot_ui (value)
gr.update(value="", visible=False), # insights_chat_input_ui (value)
gr.update(visible=False), # insights_suggestions_row_ui
gr.update(value="Suggerimento 1", visible=True), # insights_suggestion_1_btn
gr.update(value="Suggerimento 2", visible=True), # insights_suggestion_2_btn
gr.update(value="Suggerimento 3", visible=True), # insights_suggestion_3_btn
gr.update(value="I dettagli sulla formula/metodologia appariranno qui.", visible=False), # formula_display_markdown_ui
None, # active_panel_action_state
None, # current_chat_plot_id_st
current_chat_histories, # chat_histories_st (preserve or reset as needed, here preserving)
new_plot_data_summaries # NEW: plot_data_for_chatbot_st
])
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON))
all_updates.append(gr.update(value=FORMULA_ICON))
all_updates.append(gr.update(value=EXPLORE_ICON))
all_updates.append(gr.update(visible=True)) # panel_component visibility
else:
all_updates.extend([None, None, None, None])
all_updates.append(None) # explored_plot_id_state
logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh delle analisi.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
for config_item_filter_sync in plot_configs:
pid_filter_sync = config_item_filter_sync["id"]
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"])
else:
apply_filter_and_sync_outputs_list.append(None)
apply_filter_and_sync_outputs_list.extend([
global_actions_column_ui, # Reset visibility
insights_chatbot_ui, # Reset content & visibility
insights_chat_input_ui, # Reset content & visibility
insights_suggestions_row_ui, # Reset visibility
insights_suggestion_1_btn, # Reset text & visibility
insights_suggestion_2_btn,
insights_suggestion_3_btn,
formula_display_markdown_ui, # Reset content & visibility
active_panel_action_state, # Reset state
current_chat_plot_id_st, # Reset state
chat_histories_st, # Preserve or reset state
plot_data_for_chatbot_st # NEW: Update this state
])
for cfg_filter_sync_btns in plot_configs:
pid_filter_sync_btns = cfg_filter_sync_btns["id"]
if pid_filter_sync_btns in plot_ui_objects:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"])
else:
apply_filter_and_sync_outputs_list.extend([None, None, None, None])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state) # Reset state
logging.info(f"Output totali definiti per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}")
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements, # This will now also update chatbot data summaries
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.")
try:
logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.warning("Matplotlib non trovato direttamente, ma potrebbe essere usato dai generatori di grafici.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|