Spaces:
Running
Running
File size: 12,930 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 f7fc39b 575b933 791c130 4ad44b9 575b933 2a3b22e 575b933 9d99925 791c130 b0464a9 2a3b22e 791c130 575b933 791c130 a342a6b 791c130 575b933 791c130 575b933 791c130 a342a6b b0464a9 2a3b22e adb3bbe a342a6b 179ea1f 67742c4 a342a6b 575b933 a342a6b 575b933 791c130 67742c4 adb3bbe a342a6b 575b933 f9d8231 179ea1f a342a6b 575b933 0612e1d 4ad44b9 0612e1d adb3bbe 791c130 a342a6b 0612e1d 575b933 a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 791c130 0612e1d 575b933 791c130 0612e1d 575b933 791c130 4ad44b9 791c130 4ad44b9 a342a6b faf26ff 575b933 791c130 3b902c0 791c130 3b902c0 791c130 a342a6b adb3bbe 06d22e5 791c130 a342a6b 791c130 4ad44b9 a342a6b 575b933 791c130 a342a6b 791c130 a342a6b 575b933 a342a6b 538b42b 791c130 575b933 adb3bbe 575b933 791c130 575b933 791c130 a342a6b 575b933 a342a6b 791c130 a342a6b 791c130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display
)
import analytics_plot_generators
import analytics_data_processing
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Analytics Tab: Plot Update Function ---
def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date):
"""
Prepares analytics data using external processing function and then generates plots.
"""
logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
if not token_state_value or not token_state_value.get("token"):
message = "β Access denied. No token. Cannot generate analytics."
logging.warning(message)
return message, None, None, None, None, None
# --- Prepare Data (Moved to analytics_data_processing) ---
try:
filtered_posts_df, filtered_mentions_df, follower_stats_df, start_dt_for_msg, end_dt_for_msg = \
analytics_data_processing.prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"β Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
return error_msg, None, None, None, None, None
# Date column names (still needed for plot generators)
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
date_column_followers = token_state_value.get("config_date_col_followers", "date")
logging.info(f"Data for plotting - Filtered posts: {len(filtered_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
logging.info(f"Follower stats (unfiltered by global range): {len(follower_stats_df)} rows.")
# --- Generate Plots ---
try:
plot_posts_activity = analytics_plot_generators.generate_posts_activity_plot(filtered_posts_df, date_column_posts)
plot_engagement_type = analytics_plot_generators.generate_engagement_type_plot(filtered_posts_df)
plot_mentions_activity = analytics_plot_generators.generate_mentions_activity_plot(filtered_mentions_df, date_column_mentions)
plot_mention_sentiment = analytics_plot_generators.generate_mention_sentiment_plot(filtered_mentions_df)
plot_follower_growth = analytics_plot_generators.generate_follower_growth_plot(follower_stats_df, date_column_followers)
message = f"π Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
num_plots_generated = sum(1 for p in [plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth] if p is not None)
logging.info(f"Successfully generated {num_plots_generated} plots.")
return message, plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth
except Exception as e:
error_msg = f"β Error generating analytics plots: {e}"
logging.error(error_msg, exc_info=True)
return error_msg, None, None, None, None, None
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"url_user_token_temp_storage": None,
"config_date_col_posts": "published_at",
"config_date_col_mentions": "date",
"config_date_col_followers": "date"
})
gr.Markdown("# π LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
sync_click_event = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
).then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
).then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
gr.Markdown("## π LinkedIn Performance Analytics")
gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower analytics show overall trends and are not affected by this date filter.")
analytics_status_md = gr.Markdown("Analytics status will appear here...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range (for Posts & Mentions)",
value="Last 30 Days"
)
# Corrected to gr.DateTime
custom_start_date_picker = gr.DateTime(label="Start Date (Custom)", visible=False, include_time=False, type="string")
custom_end_date_picker = gr.DateTime(label="End Date (Custom)", visible=False, include_time=False, type="string")
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
gr.Markdown("### Posts & Engagement Overview (Filtered by Date)")
with gr.Row():
posts_activity_plot = gr.Plot(label="Posts Activity Over Time")
engagement_type_plot = gr.Plot(label="Post Engagement Types")
gr.Markdown("### Mentions Overview (Filtered by Date)")
with gr.Row():
mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time")
mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution")
gr.Markdown("### Follower Overview (Not Filtered by Date Range Selector)")
with gr.Row():
follower_growth_plot = gr.Plot(label="Follower Growth Over Time")
apply_filter_btn.click(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot],
show_progress="full"
)
sync_click_event.then(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot],
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble environment variables not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|