Spaces:
Running
Running
File size: 21,362 Bytes
d575454 e40be0f d575454 e40be0f d575454 e40be0f d575454 63f64cb dcb1fff 63f64cb dcb1fff edddb7c 63f64cb edddb7c 63f64cb dcb1fff 63f64cb dcb1fff 63f64cb edddb7c 63f64cb edddb7c 63f64cb edddb7c 63f64cb dcb1fff 63f64cb edddb7c 63f64cb dcb1fff d575454 e40be0f d575454 e40be0f d575454 e40be0f 63f64cb e40be0f 64f7441 d575454 64f7441 d575454 64f7441 63f64cb 64f7441 e40be0f 63f64cb d575454 64f7441 d575454 63f64cb d575454 63f64cb e40be0f 63f64cb d575454 64f7441 8bbd5a5 e40be0f 63f64cb 8bbd5a5 d575454 64f7441 d575454 63f64cb d575454 e40be0f d575454 63f64cb d575454 64f7441 d575454 e40be0f d575454 e40be0f dcb1fff 63f64cb dcb1fff 63f64cb dcb1fff 63f64cb d575454 e40be0f 64f7441 d575454 8bbd5a5 e40be0f 63f64cb 8bbd5a5 d575454 63f64cb e40be0f d575454 8bbd5a5 e40be0f 63f64cb 8bbd5a5 d575454 63f64cb d575454 e40be0f d575454 e40be0f d575454 64f7441 dcb1fff 63f64cb e40be0f dcb1fff e40be0f 64f7441 e40be0f d575454 e40be0f dcb1fff e40be0f 64f7441 d575454 64f7441 d575454 64f7441 d575454 e40be0f 63f64cb e40be0f d575454 e40be0f d575454 63f64cb d575454 64f7441 d575454 64f7441 d575454 64f7441 d575454 64f7441 d575454 64f7441 d575454 64f7441 d575454 e40be0f d575454 dcb1fff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# handlers/agentic_handlers.py
import gradio as gr
import logging
from collections import defaultdict
import json # Added for JSON serialization/deserialization
# Attempt to import agentic pipeline functions and UI formatters
try:
from run_agentic_pipeline import run_full_analytics_orchestration
from ui.insights_ui_generator import (
format_report_to_markdown,
extract_key_results_for_selection,
format_single_okr_for_display
)
AGENTIC_MODULES_LOADED = True
except ImportError as e:
logging.error(f"Could not import agentic pipeline modules for AgenticHandlers: {e}.")
AGENTIC_MODULES_LOADED = False
# Define placeholder functions if modules are not loaded to avoid NameErrors during class definition
async def run_full_analytics_orchestration(*args, **kwargs): return None
def format_report_to_markdown(report_string): return "Agentic modules not loaded. Report unavailable."
def extract_key_results_for_selection(okrs_dict): return []
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded. OKR display unavailable."
class AgenticHandlers:
def __init__(self, agentic_report_components, agentic_okrs_components,
token_state_ref, orchestration_raw_results_st_ref,
key_results_for_selection_st_ref, selected_key_result_ids_st_ref):
self.report_components = agentic_report_components
self.okrs_components = agentic_okrs_components
# References to global states
self.token_state = token_state_ref
self.orchestration_raw_results_st = orchestration_raw_results_st_ref
self.key_results_for_selection_st = key_results_for_selection_st_ref
self.selected_key_result_ids_st = selected_key_result_ids_st_ref
self.agentic_modules_really_loaded = AGENTIC_MODULES_LOADED
logging.info(f"AgenticHandlers initialized. Modules loaded: {self.agentic_modules_really_loaded}")
def _safe_checkbox_update(self, choices=None, value=None, interactive=True):
"""
Safely create a CheckboxGroup update with proper format.
"""
try:
update_dict = {}
if choices is not None:
# Ensure choices is a list of tuples (display, value)
formatted_choices = []
for choice in choices:
if isinstance(choice, tuple) and len(choice) == 2:
# Ensure both elements are strings
display_text = str(choice[0]).strip()
choice_value = str(choice[1]).strip()
formatted_choices.append((display_text, choice_value))
elif isinstance(choice, (str, int)):
# Convert single values to (display, value) tuples
choice_str = str(choice).strip()
formatted_choices.append((choice_str, choice_str))
else:
logging.warning(f"Invalid choice format: {choice}")
continue
update_dict['choices'] = formatted_choices
if value is not None:
# Ensure value is a list of strings that match choice values
if isinstance(value, list):
# Ensure all values are strings
formatted_value = [str(v).strip() for v in value if v is not None]
update_dict['value'] = formatted_value
else:
update_dict['value'] = []
update_dict['interactive'] = interactive
return gr.update(**update_dict)
except Exception as e:
logging.error(f"Error creating checkbox update: {e}")
return gr.update(choices=[], value=[], interactive=False)
async def run_agentic_pipeline_autonomously_on_update(self, current_token_state_val):
"""
This function is intended to be triggered by changes in token_state.
It yields updates for the agentic report and OKR tabs.
State values (5th, 6th, 7th) are serialized to JSON strings.
Updates for key_results_cbg are now for a CheckboxGroup.
"""
logging.info(f"Agentic pipeline auto-trigger. Token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
initial_report_status = "Pipeline AI: In attesa dei dati necessari..."
initial_okr_details = "Pipeline AI: In attesa dei dati necessari..."
# Initial state for key_results_cbg (CheckboxGroup)
initial_okr_cbg_update = self._safe_checkbox_update(choices=[], value=[], interactive=False)
initial_orchestration_results = self.orchestration_raw_results_st.value
initial_selected_krs = self.selected_key_result_ids_st.value
initial_krs_for_selection = self.key_results_for_selection_st.value
report_status_md_update = gr.update(value=initial_report_status) if self.report_components.get("agentic_pipeline_status_md") else gr.update()
report_display_md_update = gr.update()
okrs_detail_md_update = gr.update(value=initial_okr_details) if self.okrs_components.get("okr_detail_display_md") else gr.update()
if not current_token_state_val or not current_token_state_val.get("token"):
logging.info("Agentic pipeline: Token not available in token_state. Skipping actual run.")
yield (
report_status_md_update,
report_display_md_update,
initial_okr_cbg_update,
okrs_detail_md_update,
json.dumps(initial_orchestration_results), # Serialize to JSON
json.dumps(initial_selected_krs if isinstance(initial_selected_krs, list) else []), # Serialize to JSON
json.dumps(initial_krs_for_selection if isinstance(initial_krs_for_selection, list) else []) # Serialize to JSON
)
return
in_progress_status = "Analisi AI (Sempre) in corso..."
if self.report_components.get("agentic_pipeline_status_md"):
report_status_md_update = gr.update(value=in_progress_status)
if self.okrs_components.get("okr_detail_display_md"):
okrs_detail_md_update = gr.update(value="Dettagli OKR (Sempre) in corso di generazione...")
# Show loading state for CheckboxGroup
loading_okr_cbg_update = self._safe_checkbox_update(choices=[], value=[], interactive=False)
yield (
report_status_md_update,
report_display_md_update,
loading_okr_cbg_update,
okrs_detail_md_update,
json.dumps(initial_orchestration_results), # Serialize to JSON
json.dumps(initial_selected_krs if isinstance(initial_selected_krs, list) else []), # Serialize to JSON
json.dumps(initial_krs_for_selection if isinstance(initial_krs_for_selection, list) else []) # Serialize to JSON
)
if not self.agentic_modules_really_loaded:
logging.warning("Agentic modules not loaded. Skipping autonomous pipeline actual run.")
error_status = "Moduli AI non caricati. Operazione non disponibile."
if self.report_components.get("agentic_pipeline_status_md"):
report_status_md_update = gr.update(value=error_status)
if self.report_components.get("agentic_report_display_md"):
report_display_md_update = gr.update(value=error_status)
# Update for key_results_cbg (CheckboxGroup) in error case
error_okr_cbg_update = self._safe_checkbox_update(choices=[], value=[], interactive=False)
if self.okrs_components.get("okr_detail_display_md"):
okrs_detail_md_update = gr.update(value=error_status)
yield (
report_status_md_update,
report_display_md_update,
error_okr_cbg_update,
okrs_detail_md_update,
json.dumps(None),
json.dumps([]),
json.dumps([]) # Serialize to JSON
)
return
try:
date_filter_val_agentic = "Sempre"
custom_start_val_agentic = None
custom_end_val_agentic = None
logging.info("Agentic pipeline: Calling run_full_analytics_orchestration...")
orchestration_output = await run_full_analytics_orchestration(
current_token_state_val,
date_filter_val_agentic,
custom_start_val_agentic,
custom_end_val_agentic
)
final_status_text = "Pipeline AI (Sempre) completata."
logging.info(f"Autonomous agentic pipeline finished. Output keys: {orchestration_output.keys() if orchestration_output else 'None'}")
orchestration_results_update_val = None
selected_krs_update_val = [] # This will be the value for the CheckboxGroup, initially empty
krs_for_selection_update_val = []
final_okr_cbg_update = self._safe_checkbox_update(choices=[], value=[], interactive=False)
if orchestration_output:
orchestration_results_update_val = orchestration_output
report_str = orchestration_output.get('comprehensive_analysis_report', "Nessun report testuale fornito.")
if self.report_components.get("agentic_report_display_md"):
report_display_md_update = gr.update(value=format_report_to_markdown(report_str))
actionable_okrs = orchestration_output.get('actionable_okrs_and_tasks')
krs_for_ui_selection_list = extract_key_results_for_selection(actionable_okrs)
krs_for_selection_update_val = krs_for_ui_selection_list # This is the list of dicts
# Prepare choices for key_results_cbg (CheckboxGroup)
kr_choices_for_cbg = []
if krs_for_ui_selection_list and isinstance(krs_for_ui_selection_list, list):
for kr in krs_for_ui_selection_list:
if isinstance(kr, dict) and 'kr_description' in kr and 'unique_kr_id' in kr:
# Ensure kr_description is a string and clean it
kr_desc = str(kr['kr_description']).strip()
# Truncate very long descriptions to avoid UI issues
if len(kr_desc) > 100:
kr_desc = kr_desc[:97] + "..."
# Ensure unique_kr_id is a string
kr_id = str(kr['unique_kr_id']).strip()
kr_choices_for_cbg.append((kr_desc, kr_id))
# Create CheckboxGroup update with proper choices
final_okr_cbg_update = self._safe_checkbox_update(
choices=kr_choices_for_cbg,
value=[],
interactive=True
)
all_okrs_md_parts = []
if actionable_okrs and isinstance(actionable_okrs.get("okrs"), list):
for okr_idx, okr_item in enumerate(actionable_okrs["okrs"]):
all_okrs_md_parts.append(format_single_okr_for_display(okr_item, accepted_kr_indices=None, okr_main_index=okr_idx))
if not all_okrs_md_parts:
if self.okrs_components.get("okr_detail_display_md"):
okrs_detail_md_update = gr.update(value="Nessun OKR generato o trovato (Sempre).")
else:
if self.okrs_components.get("okr_detail_display_md"):
okrs_detail_md_update = gr.update(value="\n\n---\n\n".join(all_okrs_md_parts))
selected_krs_update_val = [] # Reset CheckboxGroup selection
else:
final_status_text = "Pipeline AI (Sempre): Nessun risultato prodotto."
if self.report_components.get("agentic_report_display_md"):
report_display_md_update = gr.update(value="Nessun report generato dalla pipeline AI (Sempre).")
# Update for key_results_cbg (CheckboxGroup) if no output
final_okr_cbg_update = self._safe_checkbox_update(choices=[], value=[], interactive=False)
if self.okrs_components.get("okr_detail_display_md"):
okrs_detail_md_update = gr.update(value="Nessun OKR generato o errore nella pipeline AI (Sempre).")
if self.report_components.get("agentic_pipeline_status_md"):
report_status_md_update = gr.update(value=final_status_text)
yield (
report_status_md_update,
report_display_md_update,
final_okr_cbg_update,
okrs_detail_md_update,
json.dumps(orchestration_results_update_val), # Serialize to JSON
json.dumps(selected_krs_update_val), # Serialize to JSON (value for selected_key_result_ids_st)
json.dumps(krs_for_selection_update_val) # Serialize to JSON (value for key_results_for_selection_st)
)
except Exception as e:
logging.error(f"Error during autonomous agentic pipeline execution: {e}", exc_info=True)
error_status_text = f"Errore pipeline AI (Sempre): {str(e)}"
if self.report_components.get("agentic_pipeline_status_md"):
report_status_md_update = gr.update(value=error_status_text)
if self.report_components.get("agentic_report_display_md"):
report_display_md_update = gr.update(value=f"Errore generazione report AI (Sempre): {str(e)}")
# Update for key_results_cbg (CheckboxGroup) in case of exception
error_okr_cbg_update = self._safe_checkbox_update(choices=[], value=[], interactive=False)
if self.okrs_components.get("okr_detail_display_md"):
okrs_detail_md_update = gr.update(value=f"Errore generazione OKR AI (Sempre): {str(e)}")
yield (
report_status_md_update,
report_display_md_update,
error_okr_cbg_update,
okrs_detail_md_update,
json.dumps(None),
json.dumps([]),
json.dumps([]) # Serialize to JSON
)
def update_okr_display_on_kr_selection(self, selected_kr_unique_ids: list,
raw_orchestration_results_json: str,
all_krs_for_selection_list_json: str):
"""
Updates the OKR detail display when Key Results are selected in the CheckboxGroup.
raw_orchestration_results_json and all_krs_for_selection_list_json are expected
to be JSON strings from state.
"""
if not self.agentic_modules_really_loaded:
return gr.update(value="Moduli AI non caricati. Impossibile visualizzare i dettagli OKR.")
# Handle case where selected_kr_unique_ids might be None or not a list
if not isinstance(selected_kr_unique_ids, list):
selected_kr_unique_ids = []
# Ensure all selected IDs are strings
selected_kr_unique_ids = [str(id).strip() for id in selected_kr_unique_ids if id is not None]
parsed_orchestration_results = None
try:
if raw_orchestration_results_json: # Check if the string is not empty
parsed_orchestration_results = json.loads(raw_orchestration_results_json)
except (json.JSONDecodeError, TypeError) as e:
logging.error(f"Failed to parse raw_orchestration_results_json: {raw_orchestration_results_json}. Error: {e}")
return gr.update(value="Errore: Dati interni corrotti (orchestration results).")
if not parsed_orchestration_results: # This covers None or empty after parsing
return gr.update(value="Nessun dato dalla pipeline AI (orchestration results).")
parsed_krs_for_selection_list = []
try:
if all_krs_for_selection_list_json: # Check if the string is not empty
parsed_krs_for_selection_list = json.loads(all_krs_for_selection_list_json)
except (json.JSONDecodeError, TypeError) as e:
logging.error(f"Failed to parse all_krs_for_selection_list_json: {all_krs_for_selection_list_json}. Error: {e}")
return gr.update(value="Errore: Dati interni corrotti (krs for selection).")
# Ensure parsed_krs_for_selection_list is a list, even if JSON was 'null' or other non-list type
if not isinstance(parsed_krs_for_selection_list, list):
logging.warning(f"Parsed all_krs_for_selection_list is not a list: {type(parsed_krs_for_selection_list)}. Defaulting to empty list.")
parsed_krs_for_selection_list = []
actionable_okrs_dict = parsed_orchestration_results.get("actionable_okrs_and_tasks") if isinstance(parsed_orchestration_results, dict) else None
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
return gr.update(value="Nessun OKR trovato nei risultati della pipeline (o dati in formato imprevisto).")
okrs_list = actionable_okrs_dict["okrs"]
if not okrs_list:
return gr.update(value="Nessun OKR generato.")
kr_id_to_indices = {}
if isinstance(parsed_krs_for_selection_list, list): # Ensure it's a list before iterating
for kr_info in parsed_krs_for_selection_list:
if isinstance(kr_info, dict) and 'unique_kr_id' in kr_info and 'okr_index' in kr_info and 'kr_index' in kr_info:
kr_id = str(kr_info['unique_kr_id']).strip()
kr_id_to_indices[kr_id] = (kr_info['okr_index'], kr_info['kr_index'])
else:
logging.warning(f"Skipping invalid kr_info item: {kr_info}")
selected_krs_by_okr_idx = defaultdict(list)
# selected_kr_unique_ids comes directly from CheckboxGroup, should be a list of strings/values
if isinstance(selected_kr_unique_ids, list):
for kr_unique_id in selected_kr_unique_ids:
kr_unique_id_str = str(kr_unique_id).strip()
if kr_unique_id_str in kr_id_to_indices:
okr_idx, kr_idx_in_okr = kr_id_to_indices[kr_unique_id_str]
selected_krs_by_okr_idx[okr_idx].append(kr_idx_in_okr)
output_md_parts = []
for okr_idx, okr_data in enumerate(okrs_list):
accepted_indices_for_this_okr = selected_krs_by_okr_idx.get(okr_idx)
if selected_kr_unique_ids:
if accepted_indices_for_this_okr is not None:
formatted_okr_md = format_single_okr_for_display(
okr_data,
accepted_kr_indices=accepted_indices_for_this_okr,
okr_main_index=okr_idx
)
output_md_parts.append(formatted_okr_md)
else:
formatted_okr_md = format_single_okr_for_display(
okr_data,
accepted_kr_indices=None,
okr_main_index=okr_idx
)
output_md_parts.append(formatted_okr_md)
if not output_md_parts and selected_kr_unique_ids:
final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
elif not output_md_parts and not selected_kr_unique_ids:
final_md = "Nessun OKR generato."
else:
final_md = "\n\n---\n\n".join(output_md_parts)
return gr.update(value=final_md)
def setup_event_handlers(self):
"""Sets up event handlers for the agentic OKRs tab."""
if not self.agentic_modules_really_loaded:
logging.warning("Agentic modules not loaded. Skipping agentic event handler setup.")
return
if self.okrs_components.get("key_results_cbg"):
self.okrs_components['key_results_cbg'].change(
fn=self.update_okr_display_on_kr_selection,
inputs=[
self.okrs_components['key_results_cbg'],
self.orchestration_raw_results_st,
self.key_results_for_selection_st
],
outputs=[self.okrs_components['okr_detail_display_md']],
api_name="update_okr_display_on_kr_selection" # Keep api_name for Gradio
)
logging.info("Agentic OKR selection handler setup complete.")
else:
logging.warning("key_results_cbg component not found for agentic OKR handler setup.") |